dns_resolver: Do not accept domain names longer than 255 chars
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151
152 /*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179
180 static seqcount_t devnet_rename_seq;
181
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 while (++net->dev_base_seq == 0);
185 }
186
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228 }
229
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245 }
246
247 /*
248 * Our notifier list
249 */
250
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252
253 /*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261 #ifdef CONFIG_LOCKDEP
262 /*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322 }
323
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342
343 /*******************************************************************************
344
345 Protocol management and registration routines
346
347 *******************************************************************************/
348
349 /*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372
373 /**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386 void dev_add_pack(struct packet_type *pt)
387 {
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395
396 /**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428
429 /**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448
449
450 /**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471
472 /**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
502 }
503
504 /**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 __dev_remove_offload(po);
519
520 synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523
524 /******************************************************************************
525
526 Device Boot-time Settings Routines
527
528 *******************************************************************************/
529
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533 /**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559
560 /**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589 /**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618 }
619
620 /*
621 * Saves at boot time configured settings for any netdevice.
622 */
623 int __init netdev_boot_setup(char *str)
624 {
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645 }
646
647 __setup("netdev=", netdev_boot_setup);
648
649 /*******************************************************************************
650
651 Device Interface Subroutines
652
653 *******************************************************************************/
654
655 /**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679
680 /**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705 /**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729
730 /**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754
755 /**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780 /**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803
804 /**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 struct net_device *dev;
817 unsigned int seq;
818
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836 }
837
838 /**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854 {
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895 /**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908 {
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922 /**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930 bool dev_valid_name(const char *name)
931 {
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947
948 /**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012 }
1013
1014 /**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046 {
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054 }
1055
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059 {
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152 }
1153
1154 /**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184 }
1185
1186
1187 /**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198
1199 /**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215
1216 /**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_poll_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_poll_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276 }
1277
1278 /**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290 int dev_open(struct net_device *dev)
1291 {
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1318
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1325 *
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1328 */
1329 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1330 }
1331
1332 dev_deactivate_many(head);
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337 /*
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1340 *
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1343 */
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1346
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1350 }
1351
1352 return 0;
1353 }
1354
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 int retval;
1358 LIST_HEAD(single);
1359
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1363
1364 return retval;
1365 }
1366
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396 int dev_close(struct net_device *dev)
1397 {
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441 {
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446 }
1447
1448 static int dev_boot_phase = 1;
1449
1450 /**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491 unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495 rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576
1577 /**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613 #endif
1614 static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625 #endif
1626 static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635 }
1636
1637 #define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 unsigned int len;
1646
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1649
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1653
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1656 */
1657 if (skb_is_gso(skb))
1658 return true;
1659
1660 return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1665 {
1666 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1667 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1668 atomic_long_inc(&dev->rx_dropped);
1669 kfree_skb(skb);
1670 return NET_RX_DROP;
1671 }
1672 }
1673
1674 if (unlikely(!is_skb_forwardable(dev, skb))) {
1675 atomic_long_inc(&dev->rx_dropped);
1676 kfree_skb(skb);
1677 return NET_RX_DROP;
1678 }
1679
1680 skb_scrub_packet(skb, true);
1681 skb->protocol = eth_type_trans(skb, dev);
1682
1683 return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1686
1687 /**
1688 * dev_forward_skb - loopback an skb to another netif
1689 *
1690 * @dev: destination network device
1691 * @skb: buffer to forward
1692 *
1693 * return values:
1694 * NET_RX_SUCCESS (no congestion)
1695 * NET_RX_DROP (packet was dropped, but freed)
1696 *
1697 * dev_forward_skb can be used for injecting an skb from the
1698 * start_xmit function of one device into the receive queue
1699 * of another device.
1700 *
1701 * The receiving device may be in another namespace, so
1702 * we have to clear all information in the skb that could
1703 * impact namespace isolation.
1704 */
1705 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1706 {
1707 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1708 }
1709 EXPORT_SYMBOL_GPL(dev_forward_skb);
1710
1711 static inline int deliver_skb(struct sk_buff *skb,
1712 struct packet_type *pt_prev,
1713 struct net_device *orig_dev)
1714 {
1715 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1716 return -ENOMEM;
1717 atomic_inc(&skb->users);
1718 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1719 }
1720
1721 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1722 {
1723 if (!ptype->af_packet_priv || !skb->sk)
1724 return false;
1725
1726 if (ptype->id_match)
1727 return ptype->id_match(ptype, skb->sk);
1728 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 /*
1735 * Support routine. Sends outgoing frames to any network
1736 * taps currently in use.
1737 */
1738
1739 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1740 {
1741 struct packet_type *ptype;
1742 struct sk_buff *skb2 = NULL;
1743 struct packet_type *pt_prev = NULL;
1744
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1747 /* Never send packets back to the socket
1748 * they originated from - MvS (miquels@drinkel.ow.org)
1749 */
1750 if ((ptype->dev == dev || !ptype->dev) &&
1751 (!skb_loop_sk(ptype, skb))) {
1752 if (pt_prev) {
1753 deliver_skb(skb2, pt_prev, skb->dev);
1754 pt_prev = ptype;
1755 continue;
1756 }
1757
1758 skb2 = skb_clone(skb, GFP_ATOMIC);
1759 if (!skb2)
1760 break;
1761
1762 net_timestamp_set(skb2);
1763
1764 /* skb->nh should be correctly
1765 set by sender, so that the second statement is
1766 just protection against buggy protocols.
1767 */
1768 skb_reset_mac_header(skb2);
1769
1770 if (skb_network_header(skb2) < skb2->data ||
1771 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1772 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1773 ntohs(skb2->protocol),
1774 dev->name);
1775 skb_reset_network_header(skb2);
1776 }
1777
1778 skb2->transport_header = skb2->network_header;
1779 skb2->pkt_type = PACKET_OUTGOING;
1780 pt_prev = ptype;
1781 }
1782 }
1783 if (pt_prev)
1784 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1785 rcu_read_unlock();
1786 }
1787
1788 /**
1789 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1790 * @dev: Network device
1791 * @txq: number of queues available
1792 *
1793 * If real_num_tx_queues is changed the tc mappings may no longer be
1794 * valid. To resolve this verify the tc mapping remains valid and if
1795 * not NULL the mapping. With no priorities mapping to this
1796 * offset/count pair it will no longer be used. In the worst case TC0
1797 * is invalid nothing can be done so disable priority mappings. If is
1798 * expected that drivers will fix this mapping if they can before
1799 * calling netif_set_real_num_tx_queues.
1800 */
1801 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1802 {
1803 int i;
1804 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1805
1806 /* If TC0 is invalidated disable TC mapping */
1807 if (tc->offset + tc->count > txq) {
1808 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1809 dev->num_tc = 0;
1810 return;
1811 }
1812
1813 /* Invalidated prio to tc mappings set to TC0 */
1814 for (i = 1; i < TC_BITMASK + 1; i++) {
1815 int q = netdev_get_prio_tc_map(dev, i);
1816
1817 tc = &dev->tc_to_txq[q];
1818 if (tc->offset + tc->count > txq) {
1819 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1820 i, q);
1821 netdev_set_prio_tc_map(dev, i, 0);
1822 }
1823 }
1824 }
1825
1826 #ifdef CONFIG_XPS
1827 static DEFINE_MUTEX(xps_map_mutex);
1828 #define xmap_dereference(P) \
1829 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1830
1831 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1832 int cpu, u16 index)
1833 {
1834 struct xps_map *map = NULL;
1835 int pos;
1836
1837 if (dev_maps)
1838 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1839
1840 for (pos = 0; map && pos < map->len; pos++) {
1841 if (map->queues[pos] == index) {
1842 if (map->len > 1) {
1843 map->queues[pos] = map->queues[--map->len];
1844 } else {
1845 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1846 kfree_rcu(map, rcu);
1847 map = NULL;
1848 }
1849 break;
1850 }
1851 }
1852
1853 return map;
1854 }
1855
1856 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1857 {
1858 struct xps_dev_maps *dev_maps;
1859 int cpu, i;
1860 bool active = false;
1861
1862 mutex_lock(&xps_map_mutex);
1863 dev_maps = xmap_dereference(dev->xps_maps);
1864
1865 if (!dev_maps)
1866 goto out_no_maps;
1867
1868 for_each_possible_cpu(cpu) {
1869 for (i = index; i < dev->num_tx_queues; i++) {
1870 if (!remove_xps_queue(dev_maps, cpu, i))
1871 break;
1872 }
1873 if (i == dev->num_tx_queues)
1874 active = true;
1875 }
1876
1877 if (!active) {
1878 RCU_INIT_POINTER(dev->xps_maps, NULL);
1879 kfree_rcu(dev_maps, rcu);
1880 }
1881
1882 for (i = index; i < dev->num_tx_queues; i++)
1883 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1884 NUMA_NO_NODE);
1885
1886 out_no_maps:
1887 mutex_unlock(&xps_map_mutex);
1888 }
1889
1890 static struct xps_map *expand_xps_map(struct xps_map *map,
1891 int cpu, u16 index)
1892 {
1893 struct xps_map *new_map;
1894 int alloc_len = XPS_MIN_MAP_ALLOC;
1895 int i, pos;
1896
1897 for (pos = 0; map && pos < map->len; pos++) {
1898 if (map->queues[pos] != index)
1899 continue;
1900 return map;
1901 }
1902
1903 /* Need to add queue to this CPU's existing map */
1904 if (map) {
1905 if (pos < map->alloc_len)
1906 return map;
1907
1908 alloc_len = map->alloc_len * 2;
1909 }
1910
1911 /* Need to allocate new map to store queue on this CPU's map */
1912 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1913 cpu_to_node(cpu));
1914 if (!new_map)
1915 return NULL;
1916
1917 for (i = 0; i < pos; i++)
1918 new_map->queues[i] = map->queues[i];
1919 new_map->alloc_len = alloc_len;
1920 new_map->len = pos;
1921
1922 return new_map;
1923 }
1924
1925 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1926 u16 index)
1927 {
1928 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1929 struct xps_map *map, *new_map;
1930 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1931 int cpu, numa_node_id = -2;
1932 bool active = false;
1933
1934 mutex_lock(&xps_map_mutex);
1935
1936 dev_maps = xmap_dereference(dev->xps_maps);
1937
1938 /* allocate memory for queue storage */
1939 for_each_online_cpu(cpu) {
1940 if (!cpumask_test_cpu(cpu, mask))
1941 continue;
1942
1943 if (!new_dev_maps)
1944 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1945 if (!new_dev_maps) {
1946 mutex_unlock(&xps_map_mutex);
1947 return -ENOMEM;
1948 }
1949
1950 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1951 NULL;
1952
1953 map = expand_xps_map(map, cpu, index);
1954 if (!map)
1955 goto error;
1956
1957 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1958 }
1959
1960 if (!new_dev_maps)
1961 goto out_no_new_maps;
1962
1963 for_each_possible_cpu(cpu) {
1964 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1965 /* add queue to CPU maps */
1966 int pos = 0;
1967
1968 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1969 while ((pos < map->len) && (map->queues[pos] != index))
1970 pos++;
1971
1972 if (pos == map->len)
1973 map->queues[map->len++] = index;
1974 #ifdef CONFIG_NUMA
1975 if (numa_node_id == -2)
1976 numa_node_id = cpu_to_node(cpu);
1977 else if (numa_node_id != cpu_to_node(cpu))
1978 numa_node_id = -1;
1979 #endif
1980 } else if (dev_maps) {
1981 /* fill in the new device map from the old device map */
1982 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1983 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1984 }
1985
1986 }
1987
1988 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1989
1990 /* Cleanup old maps */
1991 if (dev_maps) {
1992 for_each_possible_cpu(cpu) {
1993 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1994 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1995 if (map && map != new_map)
1996 kfree_rcu(map, rcu);
1997 }
1998
1999 kfree_rcu(dev_maps, rcu);
2000 }
2001
2002 dev_maps = new_dev_maps;
2003 active = true;
2004
2005 out_no_new_maps:
2006 /* update Tx queue numa node */
2007 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2008 (numa_node_id >= 0) ? numa_node_id :
2009 NUMA_NO_NODE);
2010
2011 if (!dev_maps)
2012 goto out_no_maps;
2013
2014 /* removes queue from unused CPUs */
2015 for_each_possible_cpu(cpu) {
2016 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2017 continue;
2018
2019 if (remove_xps_queue(dev_maps, cpu, index))
2020 active = true;
2021 }
2022
2023 /* free map if not active */
2024 if (!active) {
2025 RCU_INIT_POINTER(dev->xps_maps, NULL);
2026 kfree_rcu(dev_maps, rcu);
2027 }
2028
2029 out_no_maps:
2030 mutex_unlock(&xps_map_mutex);
2031
2032 return 0;
2033 error:
2034 /* remove any maps that we added */
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2038 NULL;
2039 if (new_map && new_map != map)
2040 kfree(new_map);
2041 }
2042
2043 mutex_unlock(&xps_map_mutex);
2044
2045 kfree(new_dev_maps);
2046 return -ENOMEM;
2047 }
2048 EXPORT_SYMBOL(netif_set_xps_queue);
2049
2050 #endif
2051 /*
2052 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2053 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2054 */
2055 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2056 {
2057 int rc;
2058
2059 if (txq < 1 || txq > dev->num_tx_queues)
2060 return -EINVAL;
2061
2062 if (dev->reg_state == NETREG_REGISTERED ||
2063 dev->reg_state == NETREG_UNREGISTERING) {
2064 ASSERT_RTNL();
2065
2066 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2067 txq);
2068 if (rc)
2069 return rc;
2070
2071 if (dev->num_tc)
2072 netif_setup_tc(dev, txq);
2073
2074 if (txq < dev->real_num_tx_queues) {
2075 qdisc_reset_all_tx_gt(dev, txq);
2076 #ifdef CONFIG_XPS
2077 netif_reset_xps_queues_gt(dev, txq);
2078 #endif
2079 }
2080 }
2081
2082 dev->real_num_tx_queues = txq;
2083 return 0;
2084 }
2085 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2086
2087 #ifdef CONFIG_SYSFS
2088 /**
2089 * netif_set_real_num_rx_queues - set actual number of RX queues used
2090 * @dev: Network device
2091 * @rxq: Actual number of RX queues
2092 *
2093 * This must be called either with the rtnl_lock held or before
2094 * registration of the net device. Returns 0 on success, or a
2095 * negative error code. If called before registration, it always
2096 * succeeds.
2097 */
2098 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2099 {
2100 int rc;
2101
2102 if (rxq < 1 || rxq > dev->num_rx_queues)
2103 return -EINVAL;
2104
2105 if (dev->reg_state == NETREG_REGISTERED) {
2106 ASSERT_RTNL();
2107
2108 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2109 rxq);
2110 if (rc)
2111 return rc;
2112 }
2113
2114 dev->real_num_rx_queues = rxq;
2115 return 0;
2116 }
2117 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2118 #endif
2119
2120 /**
2121 * netif_get_num_default_rss_queues - default number of RSS queues
2122 *
2123 * This routine should set an upper limit on the number of RSS queues
2124 * used by default by multiqueue devices.
2125 */
2126 int netif_get_num_default_rss_queues(void)
2127 {
2128 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2129 }
2130 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2131
2132 static inline void __netif_reschedule(struct Qdisc *q)
2133 {
2134 struct softnet_data *sd;
2135 unsigned long flags;
2136
2137 local_irq_save(flags);
2138 sd = &__get_cpu_var(softnet_data);
2139 q->next_sched = NULL;
2140 *sd->output_queue_tailp = q;
2141 sd->output_queue_tailp = &q->next_sched;
2142 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2143 local_irq_restore(flags);
2144 }
2145
2146 void __netif_schedule(struct Qdisc *q)
2147 {
2148 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2149 __netif_reschedule(q);
2150 }
2151 EXPORT_SYMBOL(__netif_schedule);
2152
2153 struct dev_kfree_skb_cb {
2154 enum skb_free_reason reason;
2155 };
2156
2157 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2158 {
2159 return (struct dev_kfree_skb_cb *)skb->cb;
2160 }
2161
2162 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2163 {
2164 unsigned long flags;
2165
2166 if (likely(atomic_read(&skb->users) == 1)) {
2167 smp_rmb();
2168 atomic_set(&skb->users, 0);
2169 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2170 return;
2171 }
2172 get_kfree_skb_cb(skb)->reason = reason;
2173 local_irq_save(flags);
2174 skb->next = __this_cpu_read(softnet_data.completion_queue);
2175 __this_cpu_write(softnet_data.completion_queue, skb);
2176 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2177 local_irq_restore(flags);
2178 }
2179 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2180
2181 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2182 {
2183 if (in_irq() || irqs_disabled())
2184 __dev_kfree_skb_irq(skb, reason);
2185 else
2186 dev_kfree_skb(skb);
2187 }
2188 EXPORT_SYMBOL(__dev_kfree_skb_any);
2189
2190
2191 /**
2192 * netif_device_detach - mark device as removed
2193 * @dev: network device
2194 *
2195 * Mark device as removed from system and therefore no longer available.
2196 */
2197 void netif_device_detach(struct net_device *dev)
2198 {
2199 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2200 netif_running(dev)) {
2201 netif_tx_stop_all_queues(dev);
2202 }
2203 }
2204 EXPORT_SYMBOL(netif_device_detach);
2205
2206 /**
2207 * netif_device_attach - mark device as attached
2208 * @dev: network device
2209 *
2210 * Mark device as attached from system and restart if needed.
2211 */
2212 void netif_device_attach(struct net_device *dev)
2213 {
2214 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2215 netif_running(dev)) {
2216 netif_tx_wake_all_queues(dev);
2217 __netdev_watchdog_up(dev);
2218 }
2219 }
2220 EXPORT_SYMBOL(netif_device_attach);
2221
2222 static void skb_warn_bad_offload(const struct sk_buff *skb)
2223 {
2224 static const netdev_features_t null_features = 0;
2225 struct net_device *dev = skb->dev;
2226 const char *driver = "";
2227
2228 if (!net_ratelimit())
2229 return;
2230
2231 if (dev && dev->dev.parent)
2232 driver = dev_driver_string(dev->dev.parent);
2233
2234 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2235 "gso_type=%d ip_summed=%d\n",
2236 driver, dev ? &dev->features : &null_features,
2237 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2238 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2239 skb_shinfo(skb)->gso_type, skb->ip_summed);
2240 }
2241
2242 /*
2243 * Invalidate hardware checksum when packet is to be mangled, and
2244 * complete checksum manually on outgoing path.
2245 */
2246 int skb_checksum_help(struct sk_buff *skb)
2247 {
2248 __wsum csum;
2249 int ret = 0, offset;
2250
2251 if (skb->ip_summed == CHECKSUM_COMPLETE)
2252 goto out_set_summed;
2253
2254 if (unlikely(skb_shinfo(skb)->gso_size)) {
2255 skb_warn_bad_offload(skb);
2256 return -EINVAL;
2257 }
2258
2259 /* Before computing a checksum, we should make sure no frag could
2260 * be modified by an external entity : checksum could be wrong.
2261 */
2262 if (skb_has_shared_frag(skb)) {
2263 ret = __skb_linearize(skb);
2264 if (ret)
2265 goto out;
2266 }
2267
2268 offset = skb_checksum_start_offset(skb);
2269 BUG_ON(offset >= skb_headlen(skb));
2270 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2271
2272 offset += skb->csum_offset;
2273 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2274
2275 if (skb_cloned(skb) &&
2276 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2277 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2278 if (ret)
2279 goto out;
2280 }
2281
2282 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2283 out_set_summed:
2284 skb->ip_summed = CHECKSUM_NONE;
2285 out:
2286 return ret;
2287 }
2288 EXPORT_SYMBOL(skb_checksum_help);
2289
2290 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2291 {
2292 unsigned int vlan_depth = skb->mac_len;
2293 __be16 type = skb->protocol;
2294
2295 /* Tunnel gso handlers can set protocol to ethernet. */
2296 if (type == htons(ETH_P_TEB)) {
2297 struct ethhdr *eth;
2298
2299 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2300 return 0;
2301
2302 eth = (struct ethhdr *)skb_mac_header(skb);
2303 type = eth->h_proto;
2304 }
2305
2306 /* if skb->protocol is 802.1Q/AD then the header should already be
2307 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2308 * ETH_HLEN otherwise
2309 */
2310 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2311 if (vlan_depth) {
2312 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2313 return 0;
2314 vlan_depth -= VLAN_HLEN;
2315 } else {
2316 vlan_depth = ETH_HLEN;
2317 }
2318 do {
2319 struct vlan_hdr *vh;
2320
2321 if (unlikely(!pskb_may_pull(skb,
2322 vlan_depth + VLAN_HLEN)))
2323 return 0;
2324
2325 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2326 type = vh->h_vlan_encapsulated_proto;
2327 vlan_depth += VLAN_HLEN;
2328 } while (type == htons(ETH_P_8021Q) ||
2329 type == htons(ETH_P_8021AD));
2330 }
2331
2332 *depth = vlan_depth;
2333
2334 return type;
2335 }
2336
2337 /**
2338 * skb_mac_gso_segment - mac layer segmentation handler.
2339 * @skb: buffer to segment
2340 * @features: features for the output path (see dev->features)
2341 */
2342 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2343 netdev_features_t features)
2344 {
2345 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2346 struct packet_offload *ptype;
2347 int vlan_depth = skb->mac_len;
2348 __be16 type = skb_network_protocol(skb, &vlan_depth);
2349
2350 if (unlikely(!type))
2351 return ERR_PTR(-EINVAL);
2352
2353 __skb_pull(skb, vlan_depth);
2354
2355 rcu_read_lock();
2356 list_for_each_entry_rcu(ptype, &offload_base, list) {
2357 if (ptype->type == type && ptype->callbacks.gso_segment) {
2358 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2359 int err;
2360
2361 err = ptype->callbacks.gso_send_check(skb);
2362 segs = ERR_PTR(err);
2363 if (err || skb_gso_ok(skb, features))
2364 break;
2365 __skb_push(skb, (skb->data -
2366 skb_network_header(skb)));
2367 }
2368 segs = ptype->callbacks.gso_segment(skb, features);
2369 break;
2370 }
2371 }
2372 rcu_read_unlock();
2373
2374 __skb_push(skb, skb->data - skb_mac_header(skb));
2375
2376 return segs;
2377 }
2378 EXPORT_SYMBOL(skb_mac_gso_segment);
2379
2380
2381 /* openvswitch calls this on rx path, so we need a different check.
2382 */
2383 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2384 {
2385 if (tx_path)
2386 return skb->ip_summed != CHECKSUM_PARTIAL;
2387 else
2388 return skb->ip_summed == CHECKSUM_NONE;
2389 }
2390
2391 /**
2392 * __skb_gso_segment - Perform segmentation on skb.
2393 * @skb: buffer to segment
2394 * @features: features for the output path (see dev->features)
2395 * @tx_path: whether it is called in TX path
2396 *
2397 * This function segments the given skb and returns a list of segments.
2398 *
2399 * It may return NULL if the skb requires no segmentation. This is
2400 * only possible when GSO is used for verifying header integrity.
2401 */
2402 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2403 netdev_features_t features, bool tx_path)
2404 {
2405 if (unlikely(skb_needs_check(skb, tx_path))) {
2406 int err;
2407
2408 skb_warn_bad_offload(skb);
2409
2410 if (skb_header_cloned(skb) &&
2411 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2412 return ERR_PTR(err);
2413 }
2414
2415 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2416 SKB_GSO_CB(skb)->encap_level = 0;
2417
2418 skb_reset_mac_header(skb);
2419 skb_reset_mac_len(skb);
2420
2421 return skb_mac_gso_segment(skb, features);
2422 }
2423 EXPORT_SYMBOL(__skb_gso_segment);
2424
2425 /* Take action when hardware reception checksum errors are detected. */
2426 #ifdef CONFIG_BUG
2427 void netdev_rx_csum_fault(struct net_device *dev)
2428 {
2429 if (net_ratelimit()) {
2430 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2431 dump_stack();
2432 }
2433 }
2434 EXPORT_SYMBOL(netdev_rx_csum_fault);
2435 #endif
2436
2437 /* Actually, we should eliminate this check as soon as we know, that:
2438 * 1. IOMMU is present and allows to map all the memory.
2439 * 2. No high memory really exists on this machine.
2440 */
2441
2442 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2443 {
2444 #ifdef CONFIG_HIGHMEM
2445 int i;
2446 if (!(dev->features & NETIF_F_HIGHDMA)) {
2447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2449 if (PageHighMem(skb_frag_page(frag)))
2450 return 1;
2451 }
2452 }
2453
2454 if (PCI_DMA_BUS_IS_PHYS) {
2455 struct device *pdev = dev->dev.parent;
2456
2457 if (!pdev)
2458 return 0;
2459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2461 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2462 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2463 return 1;
2464 }
2465 }
2466 #endif
2467 return 0;
2468 }
2469
2470 struct dev_gso_cb {
2471 void (*destructor)(struct sk_buff *skb);
2472 };
2473
2474 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2475
2476 static void dev_gso_skb_destructor(struct sk_buff *skb)
2477 {
2478 struct dev_gso_cb *cb;
2479
2480 kfree_skb_list(skb->next);
2481 skb->next = NULL;
2482
2483 cb = DEV_GSO_CB(skb);
2484 if (cb->destructor)
2485 cb->destructor(skb);
2486 }
2487
2488 /**
2489 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2490 * @skb: buffer to segment
2491 * @features: device features as applicable to this skb
2492 *
2493 * This function segments the given skb and stores the list of segments
2494 * in skb->next.
2495 */
2496 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2497 {
2498 struct sk_buff *segs;
2499
2500 segs = skb_gso_segment(skb, features);
2501
2502 /* Verifying header integrity only. */
2503 if (!segs)
2504 return 0;
2505
2506 if (IS_ERR(segs))
2507 return PTR_ERR(segs);
2508
2509 skb->next = segs;
2510 DEV_GSO_CB(skb)->destructor = skb->destructor;
2511 skb->destructor = dev_gso_skb_destructor;
2512
2513 return 0;
2514 }
2515
2516 static netdev_features_t harmonize_features(struct sk_buff *skb,
2517 netdev_features_t features)
2518 {
2519 int tmp;
2520
2521 if (skb->ip_summed != CHECKSUM_NONE &&
2522 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2523 features &= ~NETIF_F_ALL_CSUM;
2524 } else if (illegal_highdma(skb->dev, skb)) {
2525 features &= ~NETIF_F_SG;
2526 }
2527
2528 return features;
2529 }
2530
2531 netdev_features_t netif_skb_features(struct sk_buff *skb)
2532 {
2533 __be16 protocol = skb->protocol;
2534 netdev_features_t features = skb->dev->features;
2535
2536 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2537 features &= ~NETIF_F_GSO_MASK;
2538
2539 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2540 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2541 protocol = veh->h_vlan_encapsulated_proto;
2542 } else if (!vlan_tx_tag_present(skb)) {
2543 return harmonize_features(skb, features);
2544 }
2545
2546 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2547 NETIF_F_HW_VLAN_STAG_TX);
2548
2549 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2550 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2551 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2552 NETIF_F_HW_VLAN_STAG_TX;
2553
2554 return harmonize_features(skb, features);
2555 }
2556 EXPORT_SYMBOL(netif_skb_features);
2557
2558 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2559 struct netdev_queue *txq)
2560 {
2561 const struct net_device_ops *ops = dev->netdev_ops;
2562 int rc = NETDEV_TX_OK;
2563 unsigned int skb_len;
2564
2565 if (likely(!skb->next)) {
2566 netdev_features_t features;
2567
2568 /*
2569 * If device doesn't need skb->dst, release it right now while
2570 * its hot in this cpu cache
2571 */
2572 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2573 skb_dst_drop(skb);
2574
2575 features = netif_skb_features(skb);
2576
2577 if (vlan_tx_tag_present(skb) &&
2578 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2579 skb = __vlan_put_tag(skb, skb->vlan_proto,
2580 vlan_tx_tag_get(skb));
2581 if (unlikely(!skb))
2582 goto out;
2583
2584 skb->vlan_tci = 0;
2585 }
2586
2587 /* If encapsulation offload request, verify we are testing
2588 * hardware encapsulation features instead of standard
2589 * features for the netdev
2590 */
2591 if (skb->encapsulation)
2592 features &= dev->hw_enc_features;
2593
2594 if (netif_needs_gso(skb, features)) {
2595 if (unlikely(dev_gso_segment(skb, features)))
2596 goto out_kfree_skb;
2597 if (skb->next)
2598 goto gso;
2599 } else {
2600 if (skb_needs_linearize(skb, features) &&
2601 __skb_linearize(skb))
2602 goto out_kfree_skb;
2603
2604 /* If packet is not checksummed and device does not
2605 * support checksumming for this protocol, complete
2606 * checksumming here.
2607 */
2608 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2609 if (skb->encapsulation)
2610 skb_set_inner_transport_header(skb,
2611 skb_checksum_start_offset(skb));
2612 else
2613 skb_set_transport_header(skb,
2614 skb_checksum_start_offset(skb));
2615 if (!(features & NETIF_F_ALL_CSUM) &&
2616 skb_checksum_help(skb))
2617 goto out_kfree_skb;
2618 }
2619 }
2620
2621 if (!list_empty(&ptype_all))
2622 dev_queue_xmit_nit(skb, dev);
2623
2624 skb_len = skb->len;
2625 trace_net_dev_start_xmit(skb, dev);
2626 rc = ops->ndo_start_xmit(skb, dev);
2627 trace_net_dev_xmit(skb, rc, dev, skb_len);
2628 if (rc == NETDEV_TX_OK)
2629 txq_trans_update(txq);
2630 return rc;
2631 }
2632
2633 gso:
2634 do {
2635 struct sk_buff *nskb = skb->next;
2636
2637 skb->next = nskb->next;
2638 nskb->next = NULL;
2639
2640 if (!list_empty(&ptype_all))
2641 dev_queue_xmit_nit(nskb, dev);
2642
2643 skb_len = nskb->len;
2644 trace_net_dev_start_xmit(nskb, dev);
2645 rc = ops->ndo_start_xmit(nskb, dev);
2646 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2647 if (unlikely(rc != NETDEV_TX_OK)) {
2648 if (rc & ~NETDEV_TX_MASK)
2649 goto out_kfree_gso_skb;
2650 nskb->next = skb->next;
2651 skb->next = nskb;
2652 return rc;
2653 }
2654 txq_trans_update(txq);
2655 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2656 return NETDEV_TX_BUSY;
2657 } while (skb->next);
2658
2659 out_kfree_gso_skb:
2660 if (likely(skb->next == NULL)) {
2661 skb->destructor = DEV_GSO_CB(skb)->destructor;
2662 consume_skb(skb);
2663 return rc;
2664 }
2665 out_kfree_skb:
2666 kfree_skb(skb);
2667 out:
2668 return rc;
2669 }
2670 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2671
2672 static void qdisc_pkt_len_init(struct sk_buff *skb)
2673 {
2674 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2675
2676 qdisc_skb_cb(skb)->pkt_len = skb->len;
2677
2678 /* To get more precise estimation of bytes sent on wire,
2679 * we add to pkt_len the headers size of all segments
2680 */
2681 if (shinfo->gso_size) {
2682 unsigned int hdr_len;
2683 u16 gso_segs = shinfo->gso_segs;
2684
2685 /* mac layer + network layer */
2686 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2687
2688 /* + transport layer */
2689 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2690 hdr_len += tcp_hdrlen(skb);
2691 else
2692 hdr_len += sizeof(struct udphdr);
2693
2694 if (shinfo->gso_type & SKB_GSO_DODGY)
2695 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2696 shinfo->gso_size);
2697
2698 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2699 }
2700 }
2701
2702 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2703 struct net_device *dev,
2704 struct netdev_queue *txq)
2705 {
2706 spinlock_t *root_lock = qdisc_lock(q);
2707 bool contended;
2708 int rc;
2709
2710 qdisc_pkt_len_init(skb);
2711 qdisc_calculate_pkt_len(skb, q);
2712 /*
2713 * Heuristic to force contended enqueues to serialize on a
2714 * separate lock before trying to get qdisc main lock.
2715 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2716 * and dequeue packets faster.
2717 */
2718 contended = qdisc_is_running(q);
2719 if (unlikely(contended))
2720 spin_lock(&q->busylock);
2721
2722 spin_lock(root_lock);
2723 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2724 kfree_skb(skb);
2725 rc = NET_XMIT_DROP;
2726 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2727 qdisc_run_begin(q)) {
2728 /*
2729 * This is a work-conserving queue; there are no old skbs
2730 * waiting to be sent out; and the qdisc is not running -
2731 * xmit the skb directly.
2732 */
2733 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2734 skb_dst_force(skb);
2735
2736 qdisc_bstats_update(q, skb);
2737
2738 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2739 if (unlikely(contended)) {
2740 spin_unlock(&q->busylock);
2741 contended = false;
2742 }
2743 __qdisc_run(q);
2744 } else
2745 qdisc_run_end(q);
2746
2747 rc = NET_XMIT_SUCCESS;
2748 } else {
2749 skb_dst_force(skb);
2750 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2751 if (qdisc_run_begin(q)) {
2752 if (unlikely(contended)) {
2753 spin_unlock(&q->busylock);
2754 contended = false;
2755 }
2756 __qdisc_run(q);
2757 }
2758 }
2759 spin_unlock(root_lock);
2760 if (unlikely(contended))
2761 spin_unlock(&q->busylock);
2762 return rc;
2763 }
2764
2765 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2766 static void skb_update_prio(struct sk_buff *skb)
2767 {
2768 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2769
2770 if (!skb->priority && skb->sk && map) {
2771 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2772
2773 if (prioidx < map->priomap_len)
2774 skb->priority = map->priomap[prioidx];
2775 }
2776 }
2777 #else
2778 #define skb_update_prio(skb)
2779 #endif
2780
2781 static DEFINE_PER_CPU(int, xmit_recursion);
2782 #define RECURSION_LIMIT 10
2783
2784 /**
2785 * dev_loopback_xmit - loop back @skb
2786 * @skb: buffer to transmit
2787 */
2788 int dev_loopback_xmit(struct sk_buff *skb)
2789 {
2790 skb_reset_mac_header(skb);
2791 __skb_pull(skb, skb_network_offset(skb));
2792 skb->pkt_type = PACKET_LOOPBACK;
2793 skb->ip_summed = CHECKSUM_UNNECESSARY;
2794 WARN_ON(!skb_dst(skb));
2795 skb_dst_force(skb);
2796 netif_rx_ni(skb);
2797 return 0;
2798 }
2799 EXPORT_SYMBOL(dev_loopback_xmit);
2800
2801 /**
2802 * __dev_queue_xmit - transmit a buffer
2803 * @skb: buffer to transmit
2804 * @accel_priv: private data used for L2 forwarding offload
2805 *
2806 * Queue a buffer for transmission to a network device. The caller must
2807 * have set the device and priority and built the buffer before calling
2808 * this function. The function can be called from an interrupt.
2809 *
2810 * A negative errno code is returned on a failure. A success does not
2811 * guarantee the frame will be transmitted as it may be dropped due
2812 * to congestion or traffic shaping.
2813 *
2814 * -----------------------------------------------------------------------------------
2815 * I notice this method can also return errors from the queue disciplines,
2816 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2817 * be positive.
2818 *
2819 * Regardless of the return value, the skb is consumed, so it is currently
2820 * difficult to retry a send to this method. (You can bump the ref count
2821 * before sending to hold a reference for retry if you are careful.)
2822 *
2823 * When calling this method, interrupts MUST be enabled. This is because
2824 * the BH enable code must have IRQs enabled so that it will not deadlock.
2825 * --BLG
2826 */
2827 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2828 {
2829 struct net_device *dev = skb->dev;
2830 struct netdev_queue *txq;
2831 struct Qdisc *q;
2832 int rc = -ENOMEM;
2833
2834 skb_reset_mac_header(skb);
2835
2836 /* Disable soft irqs for various locks below. Also
2837 * stops preemption for RCU.
2838 */
2839 rcu_read_lock_bh();
2840
2841 skb_update_prio(skb);
2842
2843 txq = netdev_pick_tx(dev, skb, accel_priv);
2844 q = rcu_dereference_bh(txq->qdisc);
2845
2846 #ifdef CONFIG_NET_CLS_ACT
2847 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2848 #endif
2849 trace_net_dev_queue(skb);
2850 if (q->enqueue) {
2851 rc = __dev_xmit_skb(skb, q, dev, txq);
2852 goto out;
2853 }
2854
2855 /* The device has no queue. Common case for software devices:
2856 loopback, all the sorts of tunnels...
2857
2858 Really, it is unlikely that netif_tx_lock protection is necessary
2859 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2860 counters.)
2861 However, it is possible, that they rely on protection
2862 made by us here.
2863
2864 Check this and shot the lock. It is not prone from deadlocks.
2865 Either shot noqueue qdisc, it is even simpler 8)
2866 */
2867 if (dev->flags & IFF_UP) {
2868 int cpu = smp_processor_id(); /* ok because BHs are off */
2869
2870 if (txq->xmit_lock_owner != cpu) {
2871
2872 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2873 goto recursion_alert;
2874
2875 HARD_TX_LOCK(dev, txq, cpu);
2876
2877 if (!netif_xmit_stopped(txq)) {
2878 __this_cpu_inc(xmit_recursion);
2879 rc = dev_hard_start_xmit(skb, dev, txq);
2880 __this_cpu_dec(xmit_recursion);
2881 if (dev_xmit_complete(rc)) {
2882 HARD_TX_UNLOCK(dev, txq);
2883 goto out;
2884 }
2885 }
2886 HARD_TX_UNLOCK(dev, txq);
2887 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2888 dev->name);
2889 } else {
2890 /* Recursion is detected! It is possible,
2891 * unfortunately
2892 */
2893 recursion_alert:
2894 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2895 dev->name);
2896 }
2897 }
2898
2899 rc = -ENETDOWN;
2900 rcu_read_unlock_bh();
2901
2902 atomic_long_inc(&dev->tx_dropped);
2903 kfree_skb(skb);
2904 return rc;
2905 out:
2906 rcu_read_unlock_bh();
2907 return rc;
2908 }
2909
2910 int dev_queue_xmit(struct sk_buff *skb)
2911 {
2912 return __dev_queue_xmit(skb, NULL);
2913 }
2914 EXPORT_SYMBOL(dev_queue_xmit);
2915
2916 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2917 {
2918 return __dev_queue_xmit(skb, accel_priv);
2919 }
2920 EXPORT_SYMBOL(dev_queue_xmit_accel);
2921
2922
2923 /*=======================================================================
2924 Receiver routines
2925 =======================================================================*/
2926
2927 int netdev_max_backlog __read_mostly = 1000;
2928 EXPORT_SYMBOL(netdev_max_backlog);
2929
2930 int netdev_tstamp_prequeue __read_mostly = 1;
2931 int netdev_budget __read_mostly = 300;
2932 int weight_p __read_mostly = 64; /* old backlog weight */
2933
2934 /* Called with irq disabled */
2935 static inline void ____napi_schedule(struct softnet_data *sd,
2936 struct napi_struct *napi)
2937 {
2938 list_add_tail(&napi->poll_list, &sd->poll_list);
2939 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2940 }
2941
2942 #ifdef CONFIG_RPS
2943
2944 /* One global table that all flow-based protocols share. */
2945 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2946 EXPORT_SYMBOL(rps_sock_flow_table);
2947
2948 struct static_key rps_needed __read_mostly;
2949
2950 static struct rps_dev_flow *
2951 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2952 struct rps_dev_flow *rflow, u16 next_cpu)
2953 {
2954 if (next_cpu != RPS_NO_CPU) {
2955 #ifdef CONFIG_RFS_ACCEL
2956 struct netdev_rx_queue *rxqueue;
2957 struct rps_dev_flow_table *flow_table;
2958 struct rps_dev_flow *old_rflow;
2959 u32 flow_id;
2960 u16 rxq_index;
2961 int rc;
2962
2963 /* Should we steer this flow to a different hardware queue? */
2964 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2965 !(dev->features & NETIF_F_NTUPLE))
2966 goto out;
2967 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2968 if (rxq_index == skb_get_rx_queue(skb))
2969 goto out;
2970
2971 rxqueue = dev->_rx + rxq_index;
2972 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2973 if (!flow_table)
2974 goto out;
2975 flow_id = skb_get_hash(skb) & flow_table->mask;
2976 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2977 rxq_index, flow_id);
2978 if (rc < 0)
2979 goto out;
2980 old_rflow = rflow;
2981 rflow = &flow_table->flows[flow_id];
2982 rflow->filter = rc;
2983 if (old_rflow->filter == rflow->filter)
2984 old_rflow->filter = RPS_NO_FILTER;
2985 out:
2986 #endif
2987 rflow->last_qtail =
2988 per_cpu(softnet_data, next_cpu).input_queue_head;
2989 }
2990
2991 rflow->cpu = next_cpu;
2992 return rflow;
2993 }
2994
2995 /*
2996 * get_rps_cpu is called from netif_receive_skb and returns the target
2997 * CPU from the RPS map of the receiving queue for a given skb.
2998 * rcu_read_lock must be held on entry.
2999 */
3000 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3001 struct rps_dev_flow **rflowp)
3002 {
3003 struct netdev_rx_queue *rxqueue;
3004 struct rps_map *map;
3005 struct rps_dev_flow_table *flow_table;
3006 struct rps_sock_flow_table *sock_flow_table;
3007 int cpu = -1;
3008 u16 tcpu;
3009 u32 hash;
3010
3011 if (skb_rx_queue_recorded(skb)) {
3012 u16 index = skb_get_rx_queue(skb);
3013 if (unlikely(index >= dev->real_num_rx_queues)) {
3014 WARN_ONCE(dev->real_num_rx_queues > 1,
3015 "%s received packet on queue %u, but number "
3016 "of RX queues is %u\n",
3017 dev->name, index, dev->real_num_rx_queues);
3018 goto done;
3019 }
3020 rxqueue = dev->_rx + index;
3021 } else
3022 rxqueue = dev->_rx;
3023
3024 map = rcu_dereference(rxqueue->rps_map);
3025 if (map) {
3026 if (map->len == 1 &&
3027 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3028 tcpu = map->cpus[0];
3029 if (cpu_online(tcpu))
3030 cpu = tcpu;
3031 goto done;
3032 }
3033 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3034 goto done;
3035 }
3036
3037 skb_reset_network_header(skb);
3038 hash = skb_get_hash(skb);
3039 if (!hash)
3040 goto done;
3041
3042 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3043 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3044 if (flow_table && sock_flow_table) {
3045 u16 next_cpu;
3046 struct rps_dev_flow *rflow;
3047
3048 rflow = &flow_table->flows[hash & flow_table->mask];
3049 tcpu = rflow->cpu;
3050
3051 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3052
3053 /*
3054 * If the desired CPU (where last recvmsg was done) is
3055 * different from current CPU (one in the rx-queue flow
3056 * table entry), switch if one of the following holds:
3057 * - Current CPU is unset (equal to RPS_NO_CPU).
3058 * - Current CPU is offline.
3059 * - The current CPU's queue tail has advanced beyond the
3060 * last packet that was enqueued using this table entry.
3061 * This guarantees that all previous packets for the flow
3062 * have been dequeued, thus preserving in order delivery.
3063 */
3064 if (unlikely(tcpu != next_cpu) &&
3065 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3066 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3067 rflow->last_qtail)) >= 0)) {
3068 tcpu = next_cpu;
3069 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3070 }
3071
3072 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3073 *rflowp = rflow;
3074 cpu = tcpu;
3075 goto done;
3076 }
3077 }
3078
3079 if (map) {
3080 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3081
3082 if (cpu_online(tcpu)) {
3083 cpu = tcpu;
3084 goto done;
3085 }
3086 }
3087
3088 done:
3089 return cpu;
3090 }
3091
3092 #ifdef CONFIG_RFS_ACCEL
3093
3094 /**
3095 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3096 * @dev: Device on which the filter was set
3097 * @rxq_index: RX queue index
3098 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3099 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3100 *
3101 * Drivers that implement ndo_rx_flow_steer() should periodically call
3102 * this function for each installed filter and remove the filters for
3103 * which it returns %true.
3104 */
3105 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3106 u32 flow_id, u16 filter_id)
3107 {
3108 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3109 struct rps_dev_flow_table *flow_table;
3110 struct rps_dev_flow *rflow;
3111 bool expire = true;
3112 int cpu;
3113
3114 rcu_read_lock();
3115 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3116 if (flow_table && flow_id <= flow_table->mask) {
3117 rflow = &flow_table->flows[flow_id];
3118 cpu = ACCESS_ONCE(rflow->cpu);
3119 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3120 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3121 rflow->last_qtail) <
3122 (int)(10 * flow_table->mask)))
3123 expire = false;
3124 }
3125 rcu_read_unlock();
3126 return expire;
3127 }
3128 EXPORT_SYMBOL(rps_may_expire_flow);
3129
3130 #endif /* CONFIG_RFS_ACCEL */
3131
3132 /* Called from hardirq (IPI) context */
3133 static void rps_trigger_softirq(void *data)
3134 {
3135 struct softnet_data *sd = data;
3136
3137 ____napi_schedule(sd, &sd->backlog);
3138 sd->received_rps++;
3139 }
3140
3141 #endif /* CONFIG_RPS */
3142
3143 /*
3144 * Check if this softnet_data structure is another cpu one
3145 * If yes, queue it to our IPI list and return 1
3146 * If no, return 0
3147 */
3148 static int rps_ipi_queued(struct softnet_data *sd)
3149 {
3150 #ifdef CONFIG_RPS
3151 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3152
3153 if (sd != mysd) {
3154 sd->rps_ipi_next = mysd->rps_ipi_list;
3155 mysd->rps_ipi_list = sd;
3156
3157 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3158 return 1;
3159 }
3160 #endif /* CONFIG_RPS */
3161 return 0;
3162 }
3163
3164 #ifdef CONFIG_NET_FLOW_LIMIT
3165 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3166 #endif
3167
3168 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3169 {
3170 #ifdef CONFIG_NET_FLOW_LIMIT
3171 struct sd_flow_limit *fl;
3172 struct softnet_data *sd;
3173 unsigned int old_flow, new_flow;
3174
3175 if (qlen < (netdev_max_backlog >> 1))
3176 return false;
3177
3178 sd = &__get_cpu_var(softnet_data);
3179
3180 rcu_read_lock();
3181 fl = rcu_dereference(sd->flow_limit);
3182 if (fl) {
3183 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3184 old_flow = fl->history[fl->history_head];
3185 fl->history[fl->history_head] = new_flow;
3186
3187 fl->history_head++;
3188 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3189
3190 if (likely(fl->buckets[old_flow]))
3191 fl->buckets[old_flow]--;
3192
3193 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3194 fl->count++;
3195 rcu_read_unlock();
3196 return true;
3197 }
3198 }
3199 rcu_read_unlock();
3200 #endif
3201 return false;
3202 }
3203
3204 /*
3205 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3206 * queue (may be a remote CPU queue).
3207 */
3208 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3209 unsigned int *qtail)
3210 {
3211 struct softnet_data *sd;
3212 unsigned long flags;
3213 unsigned int qlen;
3214
3215 sd = &per_cpu(softnet_data, cpu);
3216
3217 local_irq_save(flags);
3218
3219 rps_lock(sd);
3220 qlen = skb_queue_len(&sd->input_pkt_queue);
3221 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3222 if (skb_queue_len(&sd->input_pkt_queue)) {
3223 enqueue:
3224 __skb_queue_tail(&sd->input_pkt_queue, skb);
3225 input_queue_tail_incr_save(sd, qtail);
3226 rps_unlock(sd);
3227 local_irq_restore(flags);
3228 return NET_RX_SUCCESS;
3229 }
3230
3231 /* Schedule NAPI for backlog device
3232 * We can use non atomic operation since we own the queue lock
3233 */
3234 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3235 if (!rps_ipi_queued(sd))
3236 ____napi_schedule(sd, &sd->backlog);
3237 }
3238 goto enqueue;
3239 }
3240
3241 sd->dropped++;
3242 rps_unlock(sd);
3243
3244 local_irq_restore(flags);
3245
3246 atomic_long_inc(&skb->dev->rx_dropped);
3247 kfree_skb(skb);
3248 return NET_RX_DROP;
3249 }
3250
3251 static int netif_rx_internal(struct sk_buff *skb)
3252 {
3253 int ret;
3254
3255 net_timestamp_check(netdev_tstamp_prequeue, skb);
3256
3257 trace_netif_rx(skb);
3258 #ifdef CONFIG_RPS
3259 if (static_key_false(&rps_needed)) {
3260 struct rps_dev_flow voidflow, *rflow = &voidflow;
3261 int cpu;
3262
3263 preempt_disable();
3264 rcu_read_lock();
3265
3266 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3267 if (cpu < 0)
3268 cpu = smp_processor_id();
3269
3270 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3271
3272 rcu_read_unlock();
3273 preempt_enable();
3274 } else
3275 #endif
3276 {
3277 unsigned int qtail;
3278 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3279 put_cpu();
3280 }
3281 return ret;
3282 }
3283
3284 /**
3285 * netif_rx - post buffer to the network code
3286 * @skb: buffer to post
3287 *
3288 * This function receives a packet from a device driver and queues it for
3289 * the upper (protocol) levels to process. It always succeeds. The buffer
3290 * may be dropped during processing for congestion control or by the
3291 * protocol layers.
3292 *
3293 * return values:
3294 * NET_RX_SUCCESS (no congestion)
3295 * NET_RX_DROP (packet was dropped)
3296 *
3297 */
3298
3299 int netif_rx(struct sk_buff *skb)
3300 {
3301 trace_netif_rx_entry(skb);
3302
3303 return netif_rx_internal(skb);
3304 }
3305 EXPORT_SYMBOL(netif_rx);
3306
3307 int netif_rx_ni(struct sk_buff *skb)
3308 {
3309 int err;
3310
3311 trace_netif_rx_ni_entry(skb);
3312
3313 preempt_disable();
3314 err = netif_rx_internal(skb);
3315 if (local_softirq_pending())
3316 do_softirq();
3317 preempt_enable();
3318
3319 return err;
3320 }
3321 EXPORT_SYMBOL(netif_rx_ni);
3322
3323 static void net_tx_action(struct softirq_action *h)
3324 {
3325 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3326
3327 if (sd->completion_queue) {
3328 struct sk_buff *clist;
3329
3330 local_irq_disable();
3331 clist = sd->completion_queue;
3332 sd->completion_queue = NULL;
3333 local_irq_enable();
3334
3335 while (clist) {
3336 struct sk_buff *skb = clist;
3337 clist = clist->next;
3338
3339 WARN_ON(atomic_read(&skb->users));
3340 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3341 trace_consume_skb(skb);
3342 else
3343 trace_kfree_skb(skb, net_tx_action);
3344 __kfree_skb(skb);
3345 }
3346 }
3347
3348 if (sd->output_queue) {
3349 struct Qdisc *head;
3350
3351 local_irq_disable();
3352 head = sd->output_queue;
3353 sd->output_queue = NULL;
3354 sd->output_queue_tailp = &sd->output_queue;
3355 local_irq_enable();
3356
3357 while (head) {
3358 struct Qdisc *q = head;
3359 spinlock_t *root_lock;
3360
3361 head = head->next_sched;
3362
3363 root_lock = qdisc_lock(q);
3364 if (spin_trylock(root_lock)) {
3365 smp_mb__before_clear_bit();
3366 clear_bit(__QDISC_STATE_SCHED,
3367 &q->state);
3368 qdisc_run(q);
3369 spin_unlock(root_lock);
3370 } else {
3371 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3372 &q->state)) {
3373 __netif_reschedule(q);
3374 } else {
3375 smp_mb__before_clear_bit();
3376 clear_bit(__QDISC_STATE_SCHED,
3377 &q->state);
3378 }
3379 }
3380 }
3381 }
3382 }
3383
3384 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3385 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3386 /* This hook is defined here for ATM LANE */
3387 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3388 unsigned char *addr) __read_mostly;
3389 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3390 #endif
3391
3392 #ifdef CONFIG_NET_CLS_ACT
3393 /* TODO: Maybe we should just force sch_ingress to be compiled in
3394 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3395 * a compare and 2 stores extra right now if we dont have it on
3396 * but have CONFIG_NET_CLS_ACT
3397 * NOTE: This doesn't stop any functionality; if you dont have
3398 * the ingress scheduler, you just can't add policies on ingress.
3399 *
3400 */
3401 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3402 {
3403 struct net_device *dev = skb->dev;
3404 u32 ttl = G_TC_RTTL(skb->tc_verd);
3405 int result = TC_ACT_OK;
3406 struct Qdisc *q;
3407
3408 if (unlikely(MAX_RED_LOOP < ttl++)) {
3409 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3410 skb->skb_iif, dev->ifindex);
3411 return TC_ACT_SHOT;
3412 }
3413
3414 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3415 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3416
3417 q = rxq->qdisc;
3418 if (q != &noop_qdisc) {
3419 spin_lock(qdisc_lock(q));
3420 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3421 result = qdisc_enqueue_root(skb, q);
3422 spin_unlock(qdisc_lock(q));
3423 }
3424
3425 return result;
3426 }
3427
3428 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3429 struct packet_type **pt_prev,
3430 int *ret, struct net_device *orig_dev)
3431 {
3432 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3433
3434 if (!rxq || rxq->qdisc == &noop_qdisc)
3435 goto out;
3436
3437 if (*pt_prev) {
3438 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3439 *pt_prev = NULL;
3440 }
3441
3442 switch (ing_filter(skb, rxq)) {
3443 case TC_ACT_SHOT:
3444 case TC_ACT_STOLEN:
3445 kfree_skb(skb);
3446 return NULL;
3447 }
3448
3449 out:
3450 skb->tc_verd = 0;
3451 return skb;
3452 }
3453 #endif
3454
3455 /**
3456 * netdev_rx_handler_register - register receive handler
3457 * @dev: device to register a handler for
3458 * @rx_handler: receive handler to register
3459 * @rx_handler_data: data pointer that is used by rx handler
3460 *
3461 * Register a receive handler for a device. This handler will then be
3462 * called from __netif_receive_skb. A negative errno code is returned
3463 * on a failure.
3464 *
3465 * The caller must hold the rtnl_mutex.
3466 *
3467 * For a general description of rx_handler, see enum rx_handler_result.
3468 */
3469 int netdev_rx_handler_register(struct net_device *dev,
3470 rx_handler_func_t *rx_handler,
3471 void *rx_handler_data)
3472 {
3473 ASSERT_RTNL();
3474
3475 if (dev->rx_handler)
3476 return -EBUSY;
3477
3478 /* Note: rx_handler_data must be set before rx_handler */
3479 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3480 rcu_assign_pointer(dev->rx_handler, rx_handler);
3481
3482 return 0;
3483 }
3484 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3485
3486 /**
3487 * netdev_rx_handler_unregister - unregister receive handler
3488 * @dev: device to unregister a handler from
3489 *
3490 * Unregister a receive handler from a device.
3491 *
3492 * The caller must hold the rtnl_mutex.
3493 */
3494 void netdev_rx_handler_unregister(struct net_device *dev)
3495 {
3496
3497 ASSERT_RTNL();
3498 RCU_INIT_POINTER(dev->rx_handler, NULL);
3499 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3500 * section has a guarantee to see a non NULL rx_handler_data
3501 * as well.
3502 */
3503 synchronize_net();
3504 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3505 }
3506 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3507
3508 /*
3509 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3510 * the special handling of PFMEMALLOC skbs.
3511 */
3512 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3513 {
3514 switch (skb->protocol) {
3515 case htons(ETH_P_ARP):
3516 case htons(ETH_P_IP):
3517 case htons(ETH_P_IPV6):
3518 case htons(ETH_P_8021Q):
3519 case htons(ETH_P_8021AD):
3520 return true;
3521 default:
3522 return false;
3523 }
3524 }
3525
3526 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3527 {
3528 struct packet_type *ptype, *pt_prev;
3529 rx_handler_func_t *rx_handler;
3530 struct net_device *orig_dev;
3531 struct net_device *null_or_dev;
3532 bool deliver_exact = false;
3533 int ret = NET_RX_DROP;
3534 __be16 type;
3535
3536 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3537
3538 trace_netif_receive_skb(skb);
3539
3540 orig_dev = skb->dev;
3541
3542 skb_reset_network_header(skb);
3543 if (!skb_transport_header_was_set(skb))
3544 skb_reset_transport_header(skb);
3545 skb_reset_mac_len(skb);
3546
3547 pt_prev = NULL;
3548
3549 rcu_read_lock();
3550
3551 another_round:
3552 skb->skb_iif = skb->dev->ifindex;
3553
3554 __this_cpu_inc(softnet_data.processed);
3555
3556 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3557 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3558 skb = vlan_untag(skb);
3559 if (unlikely(!skb))
3560 goto unlock;
3561 }
3562
3563 #ifdef CONFIG_NET_CLS_ACT
3564 if (skb->tc_verd & TC_NCLS) {
3565 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3566 goto ncls;
3567 }
3568 #endif
3569
3570 if (pfmemalloc)
3571 goto skip_taps;
3572
3573 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3574 if (!ptype->dev || ptype->dev == skb->dev) {
3575 if (pt_prev)
3576 ret = deliver_skb(skb, pt_prev, orig_dev);
3577 pt_prev = ptype;
3578 }
3579 }
3580
3581 skip_taps:
3582 #ifdef CONFIG_NET_CLS_ACT
3583 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3584 if (!skb)
3585 goto unlock;
3586 ncls:
3587 #endif
3588
3589 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3590 goto drop;
3591
3592 if (vlan_tx_tag_present(skb)) {
3593 if (pt_prev) {
3594 ret = deliver_skb(skb, pt_prev, orig_dev);
3595 pt_prev = NULL;
3596 }
3597 if (vlan_do_receive(&skb))
3598 goto another_round;
3599 else if (unlikely(!skb))
3600 goto unlock;
3601 }
3602
3603 rx_handler = rcu_dereference(skb->dev->rx_handler);
3604 if (rx_handler) {
3605 if (pt_prev) {
3606 ret = deliver_skb(skb, pt_prev, orig_dev);
3607 pt_prev = NULL;
3608 }
3609 switch (rx_handler(&skb)) {
3610 case RX_HANDLER_CONSUMED:
3611 ret = NET_RX_SUCCESS;
3612 goto unlock;
3613 case RX_HANDLER_ANOTHER:
3614 goto another_round;
3615 case RX_HANDLER_EXACT:
3616 deliver_exact = true;
3617 case RX_HANDLER_PASS:
3618 break;
3619 default:
3620 BUG();
3621 }
3622 }
3623
3624 if (unlikely(vlan_tx_tag_present(skb))) {
3625 if (vlan_tx_tag_get_id(skb))
3626 skb->pkt_type = PACKET_OTHERHOST;
3627 /* Note: we might in the future use prio bits
3628 * and set skb->priority like in vlan_do_receive()
3629 * For the time being, just ignore Priority Code Point
3630 */
3631 skb->vlan_tci = 0;
3632 }
3633
3634 /* deliver only exact match when indicated */
3635 null_or_dev = deliver_exact ? skb->dev : NULL;
3636
3637 type = skb->protocol;
3638 list_for_each_entry_rcu(ptype,
3639 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3640 if (ptype->type == type &&
3641 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3642 ptype->dev == orig_dev)) {
3643 if (pt_prev)
3644 ret = deliver_skb(skb, pt_prev, orig_dev);
3645 pt_prev = ptype;
3646 }
3647 }
3648
3649 if (pt_prev) {
3650 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3651 goto drop;
3652 else
3653 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3654 } else {
3655 drop:
3656 atomic_long_inc(&skb->dev->rx_dropped);
3657 kfree_skb(skb);
3658 /* Jamal, now you will not able to escape explaining
3659 * me how you were going to use this. :-)
3660 */
3661 ret = NET_RX_DROP;
3662 }
3663
3664 unlock:
3665 rcu_read_unlock();
3666 return ret;
3667 }
3668
3669 static int __netif_receive_skb(struct sk_buff *skb)
3670 {
3671 int ret;
3672
3673 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3674 unsigned long pflags = current->flags;
3675
3676 /*
3677 * PFMEMALLOC skbs are special, they should
3678 * - be delivered to SOCK_MEMALLOC sockets only
3679 * - stay away from userspace
3680 * - have bounded memory usage
3681 *
3682 * Use PF_MEMALLOC as this saves us from propagating the allocation
3683 * context down to all allocation sites.
3684 */
3685 current->flags |= PF_MEMALLOC;
3686 ret = __netif_receive_skb_core(skb, true);
3687 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3688 } else
3689 ret = __netif_receive_skb_core(skb, false);
3690
3691 return ret;
3692 }
3693
3694 static int netif_receive_skb_internal(struct sk_buff *skb)
3695 {
3696 net_timestamp_check(netdev_tstamp_prequeue, skb);
3697
3698 if (skb_defer_rx_timestamp(skb))
3699 return NET_RX_SUCCESS;
3700
3701 #ifdef CONFIG_RPS
3702 if (static_key_false(&rps_needed)) {
3703 struct rps_dev_flow voidflow, *rflow = &voidflow;
3704 int cpu, ret;
3705
3706 rcu_read_lock();
3707
3708 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3709
3710 if (cpu >= 0) {
3711 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3712 rcu_read_unlock();
3713 return ret;
3714 }
3715 rcu_read_unlock();
3716 }
3717 #endif
3718 return __netif_receive_skb(skb);
3719 }
3720
3721 /**
3722 * netif_receive_skb - process receive buffer from network
3723 * @skb: buffer to process
3724 *
3725 * netif_receive_skb() is the main receive data processing function.
3726 * It always succeeds. The buffer may be dropped during processing
3727 * for congestion control or by the protocol layers.
3728 *
3729 * This function may only be called from softirq context and interrupts
3730 * should be enabled.
3731 *
3732 * Return values (usually ignored):
3733 * NET_RX_SUCCESS: no congestion
3734 * NET_RX_DROP: packet was dropped
3735 */
3736 int netif_receive_skb(struct sk_buff *skb)
3737 {
3738 trace_netif_receive_skb_entry(skb);
3739
3740 return netif_receive_skb_internal(skb);
3741 }
3742 EXPORT_SYMBOL(netif_receive_skb);
3743
3744 /* Network device is going away, flush any packets still pending
3745 * Called with irqs disabled.
3746 */
3747 static void flush_backlog(void *arg)
3748 {
3749 struct net_device *dev = arg;
3750 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3751 struct sk_buff *skb, *tmp;
3752
3753 rps_lock(sd);
3754 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3755 if (skb->dev == dev) {
3756 __skb_unlink(skb, &sd->input_pkt_queue);
3757 kfree_skb(skb);
3758 input_queue_head_incr(sd);
3759 }
3760 }
3761 rps_unlock(sd);
3762
3763 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3764 if (skb->dev == dev) {
3765 __skb_unlink(skb, &sd->process_queue);
3766 kfree_skb(skb);
3767 input_queue_head_incr(sd);
3768 }
3769 }
3770 }
3771
3772 static int napi_gro_complete(struct sk_buff *skb)
3773 {
3774 struct packet_offload *ptype;
3775 __be16 type = skb->protocol;
3776 struct list_head *head = &offload_base;
3777 int err = -ENOENT;
3778
3779 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3780
3781 if (NAPI_GRO_CB(skb)->count == 1) {
3782 skb_shinfo(skb)->gso_size = 0;
3783 goto out;
3784 }
3785
3786 rcu_read_lock();
3787 list_for_each_entry_rcu(ptype, head, list) {
3788 if (ptype->type != type || !ptype->callbacks.gro_complete)
3789 continue;
3790
3791 err = ptype->callbacks.gro_complete(skb, 0);
3792 break;
3793 }
3794 rcu_read_unlock();
3795
3796 if (err) {
3797 WARN_ON(&ptype->list == head);
3798 kfree_skb(skb);
3799 return NET_RX_SUCCESS;
3800 }
3801
3802 out:
3803 return netif_receive_skb_internal(skb);
3804 }
3805
3806 /* napi->gro_list contains packets ordered by age.
3807 * youngest packets at the head of it.
3808 * Complete skbs in reverse order to reduce latencies.
3809 */
3810 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3811 {
3812 struct sk_buff *skb, *prev = NULL;
3813
3814 /* scan list and build reverse chain */
3815 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3816 skb->prev = prev;
3817 prev = skb;
3818 }
3819
3820 for (skb = prev; skb; skb = prev) {
3821 skb->next = NULL;
3822
3823 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3824 return;
3825
3826 prev = skb->prev;
3827 napi_gro_complete(skb);
3828 napi->gro_count--;
3829 }
3830
3831 napi->gro_list = NULL;
3832 }
3833 EXPORT_SYMBOL(napi_gro_flush);
3834
3835 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3836 {
3837 struct sk_buff *p;
3838 unsigned int maclen = skb->dev->hard_header_len;
3839 u32 hash = skb_get_hash_raw(skb);
3840
3841 for (p = napi->gro_list; p; p = p->next) {
3842 unsigned long diffs;
3843
3844 NAPI_GRO_CB(p)->flush = 0;
3845
3846 if (hash != skb_get_hash_raw(p)) {
3847 NAPI_GRO_CB(p)->same_flow = 0;
3848 continue;
3849 }
3850
3851 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3852 diffs |= p->vlan_tci ^ skb->vlan_tci;
3853 if (maclen == ETH_HLEN)
3854 diffs |= compare_ether_header(skb_mac_header(p),
3855 skb_mac_header(skb));
3856 else if (!diffs)
3857 diffs = memcmp(skb_mac_header(p),
3858 skb_mac_header(skb),
3859 maclen);
3860 NAPI_GRO_CB(p)->same_flow = !diffs;
3861 }
3862 }
3863
3864 static void skb_gro_reset_offset(struct sk_buff *skb)
3865 {
3866 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3867 const skb_frag_t *frag0 = &pinfo->frags[0];
3868
3869 NAPI_GRO_CB(skb)->data_offset = 0;
3870 NAPI_GRO_CB(skb)->frag0 = NULL;
3871 NAPI_GRO_CB(skb)->frag0_len = 0;
3872
3873 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3874 pinfo->nr_frags &&
3875 !PageHighMem(skb_frag_page(frag0))) {
3876 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3877 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3878 }
3879 }
3880
3881 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3882 {
3883 struct skb_shared_info *pinfo = skb_shinfo(skb);
3884
3885 BUG_ON(skb->end - skb->tail < grow);
3886
3887 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3888
3889 skb->data_len -= grow;
3890 skb->tail += grow;
3891
3892 pinfo->frags[0].page_offset += grow;
3893 skb_frag_size_sub(&pinfo->frags[0], grow);
3894
3895 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3896 skb_frag_unref(skb, 0);
3897 memmove(pinfo->frags, pinfo->frags + 1,
3898 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3899 }
3900 }
3901
3902 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3903 {
3904 struct sk_buff **pp = NULL;
3905 struct packet_offload *ptype;
3906 __be16 type = skb->protocol;
3907 struct list_head *head = &offload_base;
3908 int same_flow;
3909 enum gro_result ret;
3910 int grow;
3911
3912 if (!(skb->dev->features & NETIF_F_GRO))
3913 goto normal;
3914
3915 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3916 goto normal;
3917
3918 gro_list_prepare(napi, skb);
3919 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3920
3921 rcu_read_lock();
3922 list_for_each_entry_rcu(ptype, head, list) {
3923 if (ptype->type != type || !ptype->callbacks.gro_receive)
3924 continue;
3925
3926 skb_set_network_header(skb, skb_gro_offset(skb));
3927 skb_reset_mac_len(skb);
3928 NAPI_GRO_CB(skb)->same_flow = 0;
3929 NAPI_GRO_CB(skb)->flush = 0;
3930 NAPI_GRO_CB(skb)->free = 0;
3931 NAPI_GRO_CB(skb)->udp_mark = 0;
3932
3933 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3934 break;
3935 }
3936 rcu_read_unlock();
3937
3938 if (&ptype->list == head)
3939 goto normal;
3940
3941 same_flow = NAPI_GRO_CB(skb)->same_flow;
3942 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3943
3944 if (pp) {
3945 struct sk_buff *nskb = *pp;
3946
3947 *pp = nskb->next;
3948 nskb->next = NULL;
3949 napi_gro_complete(nskb);
3950 napi->gro_count--;
3951 }
3952
3953 if (same_flow)
3954 goto ok;
3955
3956 if (NAPI_GRO_CB(skb)->flush)
3957 goto normal;
3958
3959 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3960 struct sk_buff *nskb = napi->gro_list;
3961
3962 /* locate the end of the list to select the 'oldest' flow */
3963 while (nskb->next) {
3964 pp = &nskb->next;
3965 nskb = *pp;
3966 }
3967 *pp = NULL;
3968 nskb->next = NULL;
3969 napi_gro_complete(nskb);
3970 } else {
3971 napi->gro_count++;
3972 }
3973 NAPI_GRO_CB(skb)->count = 1;
3974 NAPI_GRO_CB(skb)->age = jiffies;
3975 NAPI_GRO_CB(skb)->last = skb;
3976 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3977 skb->next = napi->gro_list;
3978 napi->gro_list = skb;
3979 ret = GRO_HELD;
3980
3981 pull:
3982 grow = skb_gro_offset(skb) - skb_headlen(skb);
3983 if (grow > 0)
3984 gro_pull_from_frag0(skb, grow);
3985 ok:
3986 return ret;
3987
3988 normal:
3989 ret = GRO_NORMAL;
3990 goto pull;
3991 }
3992
3993 struct packet_offload *gro_find_receive_by_type(__be16 type)
3994 {
3995 struct list_head *offload_head = &offload_base;
3996 struct packet_offload *ptype;
3997
3998 list_for_each_entry_rcu(ptype, offload_head, list) {
3999 if (ptype->type != type || !ptype->callbacks.gro_receive)
4000 continue;
4001 return ptype;
4002 }
4003 return NULL;
4004 }
4005 EXPORT_SYMBOL(gro_find_receive_by_type);
4006
4007 struct packet_offload *gro_find_complete_by_type(__be16 type)
4008 {
4009 struct list_head *offload_head = &offload_base;
4010 struct packet_offload *ptype;
4011
4012 list_for_each_entry_rcu(ptype, offload_head, list) {
4013 if (ptype->type != type || !ptype->callbacks.gro_complete)
4014 continue;
4015 return ptype;
4016 }
4017 return NULL;
4018 }
4019 EXPORT_SYMBOL(gro_find_complete_by_type);
4020
4021 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4022 {
4023 switch (ret) {
4024 case GRO_NORMAL:
4025 if (netif_receive_skb_internal(skb))
4026 ret = GRO_DROP;
4027 break;
4028
4029 case GRO_DROP:
4030 kfree_skb(skb);
4031 break;
4032
4033 case GRO_MERGED_FREE:
4034 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4035 kmem_cache_free(skbuff_head_cache, skb);
4036 else
4037 __kfree_skb(skb);
4038 break;
4039
4040 case GRO_HELD:
4041 case GRO_MERGED:
4042 break;
4043 }
4044
4045 return ret;
4046 }
4047
4048 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4049 {
4050 trace_napi_gro_receive_entry(skb);
4051
4052 skb_gro_reset_offset(skb);
4053
4054 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4055 }
4056 EXPORT_SYMBOL(napi_gro_receive);
4057
4058 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4059 {
4060 __skb_pull(skb, skb_headlen(skb));
4061 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4062 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4063 skb->vlan_tci = 0;
4064 skb->dev = napi->dev;
4065 skb->skb_iif = 0;
4066 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4067
4068 napi->skb = skb;
4069 }
4070
4071 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4072 {
4073 struct sk_buff *skb = napi->skb;
4074
4075 if (!skb) {
4076 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4077 napi->skb = skb;
4078 }
4079 return skb;
4080 }
4081 EXPORT_SYMBOL(napi_get_frags);
4082
4083 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4084 struct sk_buff *skb,
4085 gro_result_t ret)
4086 {
4087 switch (ret) {
4088 case GRO_NORMAL:
4089 case GRO_HELD:
4090 __skb_push(skb, ETH_HLEN);
4091 skb->protocol = eth_type_trans(skb, skb->dev);
4092 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4093 ret = GRO_DROP;
4094 break;
4095
4096 case GRO_DROP:
4097 case GRO_MERGED_FREE:
4098 napi_reuse_skb(napi, skb);
4099 break;
4100
4101 case GRO_MERGED:
4102 break;
4103 }
4104
4105 return ret;
4106 }
4107
4108 /* Upper GRO stack assumes network header starts at gro_offset=0
4109 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4110 * We copy ethernet header into skb->data to have a common layout.
4111 */
4112 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4113 {
4114 struct sk_buff *skb = napi->skb;
4115 const struct ethhdr *eth;
4116 unsigned int hlen = sizeof(*eth);
4117
4118 napi->skb = NULL;
4119
4120 skb_reset_mac_header(skb);
4121 skb_gro_reset_offset(skb);
4122
4123 eth = skb_gro_header_fast(skb, 0);
4124 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4125 eth = skb_gro_header_slow(skb, hlen, 0);
4126 if (unlikely(!eth)) {
4127 napi_reuse_skb(napi, skb);
4128 return NULL;
4129 }
4130 } else {
4131 gro_pull_from_frag0(skb, hlen);
4132 NAPI_GRO_CB(skb)->frag0 += hlen;
4133 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4134 }
4135 __skb_pull(skb, hlen);
4136
4137 /*
4138 * This works because the only protocols we care about don't require
4139 * special handling.
4140 * We'll fix it up properly in napi_frags_finish()
4141 */
4142 skb->protocol = eth->h_proto;
4143
4144 return skb;
4145 }
4146
4147 gro_result_t napi_gro_frags(struct napi_struct *napi)
4148 {
4149 struct sk_buff *skb = napi_frags_skb(napi);
4150
4151 if (!skb)
4152 return GRO_DROP;
4153
4154 trace_napi_gro_frags_entry(skb);
4155
4156 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4157 }
4158 EXPORT_SYMBOL(napi_gro_frags);
4159
4160 /*
4161 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4162 * Note: called with local irq disabled, but exits with local irq enabled.
4163 */
4164 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4165 {
4166 #ifdef CONFIG_RPS
4167 struct softnet_data *remsd = sd->rps_ipi_list;
4168
4169 if (remsd) {
4170 sd->rps_ipi_list = NULL;
4171
4172 local_irq_enable();
4173
4174 /* Send pending IPI's to kick RPS processing on remote cpus. */
4175 while (remsd) {
4176 struct softnet_data *next = remsd->rps_ipi_next;
4177
4178 if (cpu_online(remsd->cpu))
4179 smp_call_function_single_async(remsd->cpu,
4180 &remsd->csd);
4181 remsd = next;
4182 }
4183 } else
4184 #endif
4185 local_irq_enable();
4186 }
4187
4188 static int process_backlog(struct napi_struct *napi, int quota)
4189 {
4190 int work = 0;
4191 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4192
4193 #ifdef CONFIG_RPS
4194 /* Check if we have pending ipi, its better to send them now,
4195 * not waiting net_rx_action() end.
4196 */
4197 if (sd->rps_ipi_list) {
4198 local_irq_disable();
4199 net_rps_action_and_irq_enable(sd);
4200 }
4201 #endif
4202 napi->weight = weight_p;
4203 local_irq_disable();
4204 while (work < quota) {
4205 struct sk_buff *skb;
4206 unsigned int qlen;
4207
4208 while ((skb = __skb_dequeue(&sd->process_queue))) {
4209 local_irq_enable();
4210 __netif_receive_skb(skb);
4211 local_irq_disable();
4212 input_queue_head_incr(sd);
4213 if (++work >= quota) {
4214 local_irq_enable();
4215 return work;
4216 }
4217 }
4218
4219 rps_lock(sd);
4220 qlen = skb_queue_len(&sd->input_pkt_queue);
4221 if (qlen)
4222 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4223 &sd->process_queue);
4224
4225 if (qlen < quota - work) {
4226 /*
4227 * Inline a custom version of __napi_complete().
4228 * only current cpu owns and manipulates this napi,
4229 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4230 * we can use a plain write instead of clear_bit(),
4231 * and we dont need an smp_mb() memory barrier.
4232 */
4233 list_del(&napi->poll_list);
4234 napi->state = 0;
4235
4236 quota = work + qlen;
4237 }
4238 rps_unlock(sd);
4239 }
4240 local_irq_enable();
4241
4242 return work;
4243 }
4244
4245 /**
4246 * __napi_schedule - schedule for receive
4247 * @n: entry to schedule
4248 *
4249 * The entry's receive function will be scheduled to run
4250 */
4251 void __napi_schedule(struct napi_struct *n)
4252 {
4253 unsigned long flags;
4254
4255 local_irq_save(flags);
4256 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4257 local_irq_restore(flags);
4258 }
4259 EXPORT_SYMBOL(__napi_schedule);
4260
4261 void __napi_complete(struct napi_struct *n)
4262 {
4263 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4264 BUG_ON(n->gro_list);
4265
4266 list_del(&n->poll_list);
4267 smp_mb__before_clear_bit();
4268 clear_bit(NAPI_STATE_SCHED, &n->state);
4269 }
4270 EXPORT_SYMBOL(__napi_complete);
4271
4272 void napi_complete(struct napi_struct *n)
4273 {
4274 unsigned long flags;
4275
4276 /*
4277 * don't let napi dequeue from the cpu poll list
4278 * just in case its running on a different cpu
4279 */
4280 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4281 return;
4282
4283 napi_gro_flush(n, false);
4284 local_irq_save(flags);
4285 __napi_complete(n);
4286 local_irq_restore(flags);
4287 }
4288 EXPORT_SYMBOL(napi_complete);
4289
4290 /* must be called under rcu_read_lock(), as we dont take a reference */
4291 struct napi_struct *napi_by_id(unsigned int napi_id)
4292 {
4293 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4294 struct napi_struct *napi;
4295
4296 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4297 if (napi->napi_id == napi_id)
4298 return napi;
4299
4300 return NULL;
4301 }
4302 EXPORT_SYMBOL_GPL(napi_by_id);
4303
4304 void napi_hash_add(struct napi_struct *napi)
4305 {
4306 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4307
4308 spin_lock(&napi_hash_lock);
4309
4310 /* 0 is not a valid id, we also skip an id that is taken
4311 * we expect both events to be extremely rare
4312 */
4313 napi->napi_id = 0;
4314 while (!napi->napi_id) {
4315 napi->napi_id = ++napi_gen_id;
4316 if (napi_by_id(napi->napi_id))
4317 napi->napi_id = 0;
4318 }
4319
4320 hlist_add_head_rcu(&napi->napi_hash_node,
4321 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4322
4323 spin_unlock(&napi_hash_lock);
4324 }
4325 }
4326 EXPORT_SYMBOL_GPL(napi_hash_add);
4327
4328 /* Warning : caller is responsible to make sure rcu grace period
4329 * is respected before freeing memory containing @napi
4330 */
4331 void napi_hash_del(struct napi_struct *napi)
4332 {
4333 spin_lock(&napi_hash_lock);
4334
4335 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4336 hlist_del_rcu(&napi->napi_hash_node);
4337
4338 spin_unlock(&napi_hash_lock);
4339 }
4340 EXPORT_SYMBOL_GPL(napi_hash_del);
4341
4342 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4343 int (*poll)(struct napi_struct *, int), int weight)
4344 {
4345 INIT_LIST_HEAD(&napi->poll_list);
4346 napi->gro_count = 0;
4347 napi->gro_list = NULL;
4348 napi->skb = NULL;
4349 napi->poll = poll;
4350 if (weight > NAPI_POLL_WEIGHT)
4351 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4352 weight, dev->name);
4353 napi->weight = weight;
4354 list_add(&napi->dev_list, &dev->napi_list);
4355 napi->dev = dev;
4356 #ifdef CONFIG_NETPOLL
4357 spin_lock_init(&napi->poll_lock);
4358 napi->poll_owner = -1;
4359 #endif
4360 set_bit(NAPI_STATE_SCHED, &napi->state);
4361 }
4362 EXPORT_SYMBOL(netif_napi_add);
4363
4364 void netif_napi_del(struct napi_struct *napi)
4365 {
4366 list_del_init(&napi->dev_list);
4367 napi_free_frags(napi);
4368
4369 kfree_skb_list(napi->gro_list);
4370 napi->gro_list = NULL;
4371 napi->gro_count = 0;
4372 }
4373 EXPORT_SYMBOL(netif_napi_del);
4374
4375 static void net_rx_action(struct softirq_action *h)
4376 {
4377 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4378 unsigned long time_limit = jiffies + 2;
4379 int budget = netdev_budget;
4380 void *have;
4381
4382 local_irq_disable();
4383
4384 while (!list_empty(&sd->poll_list)) {
4385 struct napi_struct *n;
4386 int work, weight;
4387
4388 /* If softirq window is exhuasted then punt.
4389 * Allow this to run for 2 jiffies since which will allow
4390 * an average latency of 1.5/HZ.
4391 */
4392 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4393 goto softnet_break;
4394
4395 local_irq_enable();
4396
4397 /* Even though interrupts have been re-enabled, this
4398 * access is safe because interrupts can only add new
4399 * entries to the tail of this list, and only ->poll()
4400 * calls can remove this head entry from the list.
4401 */
4402 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4403
4404 have = netpoll_poll_lock(n);
4405
4406 weight = n->weight;
4407
4408 /* This NAPI_STATE_SCHED test is for avoiding a race
4409 * with netpoll's poll_napi(). Only the entity which
4410 * obtains the lock and sees NAPI_STATE_SCHED set will
4411 * actually make the ->poll() call. Therefore we avoid
4412 * accidentally calling ->poll() when NAPI is not scheduled.
4413 */
4414 work = 0;
4415 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4416 work = n->poll(n, weight);
4417 trace_napi_poll(n);
4418 }
4419
4420 WARN_ON_ONCE(work > weight);
4421
4422 budget -= work;
4423
4424 local_irq_disable();
4425
4426 /* Drivers must not modify the NAPI state if they
4427 * consume the entire weight. In such cases this code
4428 * still "owns" the NAPI instance and therefore can
4429 * move the instance around on the list at-will.
4430 */
4431 if (unlikely(work == weight)) {
4432 if (unlikely(napi_disable_pending(n))) {
4433 local_irq_enable();
4434 napi_complete(n);
4435 local_irq_disable();
4436 } else {
4437 if (n->gro_list) {
4438 /* flush too old packets
4439 * If HZ < 1000, flush all packets.
4440 */
4441 local_irq_enable();
4442 napi_gro_flush(n, HZ >= 1000);
4443 local_irq_disable();
4444 }
4445 list_move_tail(&n->poll_list, &sd->poll_list);
4446 }
4447 }
4448
4449 netpoll_poll_unlock(have);
4450 }
4451 out:
4452 net_rps_action_and_irq_enable(sd);
4453
4454 #ifdef CONFIG_NET_DMA
4455 /*
4456 * There may not be any more sk_buffs coming right now, so push
4457 * any pending DMA copies to hardware
4458 */
4459 dma_issue_pending_all();
4460 #endif
4461
4462 return;
4463
4464 softnet_break:
4465 sd->time_squeeze++;
4466 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4467 goto out;
4468 }
4469
4470 struct netdev_adjacent {
4471 struct net_device *dev;
4472
4473 /* upper master flag, there can only be one master device per list */
4474 bool master;
4475
4476 /* counter for the number of times this device was added to us */
4477 u16 ref_nr;
4478
4479 /* private field for the users */
4480 void *private;
4481
4482 struct list_head list;
4483 struct rcu_head rcu;
4484 };
4485
4486 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4487 struct net_device *adj_dev,
4488 struct list_head *adj_list)
4489 {
4490 struct netdev_adjacent *adj;
4491
4492 list_for_each_entry(adj, adj_list, list) {
4493 if (adj->dev == adj_dev)
4494 return adj;
4495 }
4496 return NULL;
4497 }
4498
4499 /**
4500 * netdev_has_upper_dev - Check if device is linked to an upper device
4501 * @dev: device
4502 * @upper_dev: upper device to check
4503 *
4504 * Find out if a device is linked to specified upper device and return true
4505 * in case it is. Note that this checks only immediate upper device,
4506 * not through a complete stack of devices. The caller must hold the RTNL lock.
4507 */
4508 bool netdev_has_upper_dev(struct net_device *dev,
4509 struct net_device *upper_dev)
4510 {
4511 ASSERT_RTNL();
4512
4513 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4514 }
4515 EXPORT_SYMBOL(netdev_has_upper_dev);
4516
4517 /**
4518 * netdev_has_any_upper_dev - Check if device is linked to some device
4519 * @dev: device
4520 *
4521 * Find out if a device is linked to an upper device and return true in case
4522 * it is. The caller must hold the RTNL lock.
4523 */
4524 static bool netdev_has_any_upper_dev(struct net_device *dev)
4525 {
4526 ASSERT_RTNL();
4527
4528 return !list_empty(&dev->all_adj_list.upper);
4529 }
4530
4531 /**
4532 * netdev_master_upper_dev_get - Get master upper device
4533 * @dev: device
4534 *
4535 * Find a master upper device and return pointer to it or NULL in case
4536 * it's not there. The caller must hold the RTNL lock.
4537 */
4538 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4539 {
4540 struct netdev_adjacent *upper;
4541
4542 ASSERT_RTNL();
4543
4544 if (list_empty(&dev->adj_list.upper))
4545 return NULL;
4546
4547 upper = list_first_entry(&dev->adj_list.upper,
4548 struct netdev_adjacent, list);
4549 if (likely(upper->master))
4550 return upper->dev;
4551 return NULL;
4552 }
4553 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4554
4555 void *netdev_adjacent_get_private(struct list_head *adj_list)
4556 {
4557 struct netdev_adjacent *adj;
4558
4559 adj = list_entry(adj_list, struct netdev_adjacent, list);
4560
4561 return adj->private;
4562 }
4563 EXPORT_SYMBOL(netdev_adjacent_get_private);
4564
4565 /**
4566 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4567 * @dev: device
4568 * @iter: list_head ** of the current position
4569 *
4570 * Gets the next device from the dev's upper list, starting from iter
4571 * position. The caller must hold RCU read lock.
4572 */
4573 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4574 struct list_head **iter)
4575 {
4576 struct netdev_adjacent *upper;
4577
4578 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4579
4580 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4581
4582 if (&upper->list == &dev->adj_list.upper)
4583 return NULL;
4584
4585 *iter = &upper->list;
4586
4587 return upper->dev;
4588 }
4589 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4590
4591 /**
4592 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4593 * @dev: device
4594 * @iter: list_head ** of the current position
4595 *
4596 * Gets the next device from the dev's upper list, starting from iter
4597 * position. The caller must hold RCU read lock.
4598 */
4599 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4600 struct list_head **iter)
4601 {
4602 struct netdev_adjacent *upper;
4603
4604 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4605
4606 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4607
4608 if (&upper->list == &dev->all_adj_list.upper)
4609 return NULL;
4610
4611 *iter = &upper->list;
4612
4613 return upper->dev;
4614 }
4615 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4616
4617 /**
4618 * netdev_lower_get_next_private - Get the next ->private from the
4619 * lower neighbour list
4620 * @dev: device
4621 * @iter: list_head ** of the current position
4622 *
4623 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4624 * list, starting from iter position. The caller must hold either hold the
4625 * RTNL lock or its own locking that guarantees that the neighbour lower
4626 * list will remain unchainged.
4627 */
4628 void *netdev_lower_get_next_private(struct net_device *dev,
4629 struct list_head **iter)
4630 {
4631 struct netdev_adjacent *lower;
4632
4633 lower = list_entry(*iter, struct netdev_adjacent, list);
4634
4635 if (&lower->list == &dev->adj_list.lower)
4636 return NULL;
4637
4638 *iter = lower->list.next;
4639
4640 return lower->private;
4641 }
4642 EXPORT_SYMBOL(netdev_lower_get_next_private);
4643
4644 /**
4645 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4646 * lower neighbour list, RCU
4647 * variant
4648 * @dev: device
4649 * @iter: list_head ** of the current position
4650 *
4651 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4652 * list, starting from iter position. The caller must hold RCU read lock.
4653 */
4654 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4655 struct list_head **iter)
4656 {
4657 struct netdev_adjacent *lower;
4658
4659 WARN_ON_ONCE(!rcu_read_lock_held());
4660
4661 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4662
4663 if (&lower->list == &dev->adj_list.lower)
4664 return NULL;
4665
4666 *iter = &lower->list;
4667
4668 return lower->private;
4669 }
4670 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4671
4672 /**
4673 * netdev_lower_get_next - Get the next device from the lower neighbour
4674 * list
4675 * @dev: device
4676 * @iter: list_head ** of the current position
4677 *
4678 * Gets the next netdev_adjacent from the dev's lower neighbour
4679 * list, starting from iter position. The caller must hold RTNL lock or
4680 * its own locking that guarantees that the neighbour lower
4681 * list will remain unchainged.
4682 */
4683 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4684 {
4685 struct netdev_adjacent *lower;
4686
4687 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4688
4689 if (&lower->list == &dev->adj_list.lower)
4690 return NULL;
4691
4692 *iter = &lower->list;
4693
4694 return lower->dev;
4695 }
4696 EXPORT_SYMBOL(netdev_lower_get_next);
4697
4698 /**
4699 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4700 * lower neighbour list, RCU
4701 * variant
4702 * @dev: device
4703 *
4704 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4705 * list. The caller must hold RCU read lock.
4706 */
4707 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4708 {
4709 struct netdev_adjacent *lower;
4710
4711 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4712 struct netdev_adjacent, list);
4713 if (lower)
4714 return lower->private;
4715 return NULL;
4716 }
4717 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4718
4719 /**
4720 * netdev_master_upper_dev_get_rcu - Get master upper device
4721 * @dev: device
4722 *
4723 * Find a master upper device and return pointer to it or NULL in case
4724 * it's not there. The caller must hold the RCU read lock.
4725 */
4726 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4727 {
4728 struct netdev_adjacent *upper;
4729
4730 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4731 struct netdev_adjacent, list);
4732 if (upper && likely(upper->master))
4733 return upper->dev;
4734 return NULL;
4735 }
4736 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4737
4738 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4739 struct net_device *adj_dev,
4740 struct list_head *dev_list)
4741 {
4742 char linkname[IFNAMSIZ+7];
4743 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4744 "upper_%s" : "lower_%s", adj_dev->name);
4745 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4746 linkname);
4747 }
4748 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4749 char *name,
4750 struct list_head *dev_list)
4751 {
4752 char linkname[IFNAMSIZ+7];
4753 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4754 "upper_%s" : "lower_%s", name);
4755 sysfs_remove_link(&(dev->dev.kobj), linkname);
4756 }
4757
4758 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4759 (dev_list == &dev->adj_list.upper || \
4760 dev_list == &dev->adj_list.lower)
4761
4762 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4763 struct net_device *adj_dev,
4764 struct list_head *dev_list,
4765 void *private, bool master)
4766 {
4767 struct netdev_adjacent *adj;
4768 int ret;
4769
4770 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4771
4772 if (adj) {
4773 adj->ref_nr++;
4774 return 0;
4775 }
4776
4777 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4778 if (!adj)
4779 return -ENOMEM;
4780
4781 adj->dev = adj_dev;
4782 adj->master = master;
4783 adj->ref_nr = 1;
4784 adj->private = private;
4785 dev_hold(adj_dev);
4786
4787 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4788 adj_dev->name, dev->name, adj_dev->name);
4789
4790 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4791 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4792 if (ret)
4793 goto free_adj;
4794 }
4795
4796 /* Ensure that master link is always the first item in list. */
4797 if (master) {
4798 ret = sysfs_create_link(&(dev->dev.kobj),
4799 &(adj_dev->dev.kobj), "master");
4800 if (ret)
4801 goto remove_symlinks;
4802
4803 list_add_rcu(&adj->list, dev_list);
4804 } else {
4805 list_add_tail_rcu(&adj->list, dev_list);
4806 }
4807
4808 return 0;
4809
4810 remove_symlinks:
4811 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4812 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4813 free_adj:
4814 kfree(adj);
4815 dev_put(adj_dev);
4816
4817 return ret;
4818 }
4819
4820 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4821 struct net_device *adj_dev,
4822 struct list_head *dev_list)
4823 {
4824 struct netdev_adjacent *adj;
4825
4826 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4827
4828 if (!adj) {
4829 pr_err("tried to remove device %s from %s\n",
4830 dev->name, adj_dev->name);
4831 BUG();
4832 }
4833
4834 if (adj->ref_nr > 1) {
4835 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4836 adj->ref_nr-1);
4837 adj->ref_nr--;
4838 return;
4839 }
4840
4841 if (adj->master)
4842 sysfs_remove_link(&(dev->dev.kobj), "master");
4843
4844 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4845 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4846
4847 list_del_rcu(&adj->list);
4848 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4849 adj_dev->name, dev->name, adj_dev->name);
4850 dev_put(adj_dev);
4851 kfree_rcu(adj, rcu);
4852 }
4853
4854 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4855 struct net_device *upper_dev,
4856 struct list_head *up_list,
4857 struct list_head *down_list,
4858 void *private, bool master)
4859 {
4860 int ret;
4861
4862 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4863 master);
4864 if (ret)
4865 return ret;
4866
4867 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4868 false);
4869 if (ret) {
4870 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4871 return ret;
4872 }
4873
4874 return 0;
4875 }
4876
4877 static int __netdev_adjacent_dev_link(struct net_device *dev,
4878 struct net_device *upper_dev)
4879 {
4880 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4881 &dev->all_adj_list.upper,
4882 &upper_dev->all_adj_list.lower,
4883 NULL, false);
4884 }
4885
4886 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4887 struct net_device *upper_dev,
4888 struct list_head *up_list,
4889 struct list_head *down_list)
4890 {
4891 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4892 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4893 }
4894
4895 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4896 struct net_device *upper_dev)
4897 {
4898 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4899 &dev->all_adj_list.upper,
4900 &upper_dev->all_adj_list.lower);
4901 }
4902
4903 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4904 struct net_device *upper_dev,
4905 void *private, bool master)
4906 {
4907 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4908
4909 if (ret)
4910 return ret;
4911
4912 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4913 &dev->adj_list.upper,
4914 &upper_dev->adj_list.lower,
4915 private, master);
4916 if (ret) {
4917 __netdev_adjacent_dev_unlink(dev, upper_dev);
4918 return ret;
4919 }
4920
4921 return 0;
4922 }
4923
4924 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4925 struct net_device *upper_dev)
4926 {
4927 __netdev_adjacent_dev_unlink(dev, upper_dev);
4928 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4929 &dev->adj_list.upper,
4930 &upper_dev->adj_list.lower);
4931 }
4932
4933 static int __netdev_upper_dev_link(struct net_device *dev,
4934 struct net_device *upper_dev, bool master,
4935 void *private)
4936 {
4937 struct netdev_adjacent *i, *j, *to_i, *to_j;
4938 int ret = 0;
4939
4940 ASSERT_RTNL();
4941
4942 if (dev == upper_dev)
4943 return -EBUSY;
4944
4945 /* To prevent loops, check if dev is not upper device to upper_dev. */
4946 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4947 return -EBUSY;
4948
4949 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4950 return -EEXIST;
4951
4952 if (master && netdev_master_upper_dev_get(dev))
4953 return -EBUSY;
4954
4955 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4956 master);
4957 if (ret)
4958 return ret;
4959
4960 /* Now that we linked these devs, make all the upper_dev's
4961 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4962 * versa, and don't forget the devices itself. All of these
4963 * links are non-neighbours.
4964 */
4965 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4966 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4967 pr_debug("Interlinking %s with %s, non-neighbour\n",
4968 i->dev->name, j->dev->name);
4969 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4970 if (ret)
4971 goto rollback_mesh;
4972 }
4973 }
4974
4975 /* add dev to every upper_dev's upper device */
4976 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4977 pr_debug("linking %s's upper device %s with %s\n",
4978 upper_dev->name, i->dev->name, dev->name);
4979 ret = __netdev_adjacent_dev_link(dev, i->dev);
4980 if (ret)
4981 goto rollback_upper_mesh;
4982 }
4983
4984 /* add upper_dev to every dev's lower device */
4985 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4986 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4987 i->dev->name, upper_dev->name);
4988 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4989 if (ret)
4990 goto rollback_lower_mesh;
4991 }
4992
4993 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4994 return 0;
4995
4996 rollback_lower_mesh:
4997 to_i = i;
4998 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4999 if (i == to_i)
5000 break;
5001 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5002 }
5003
5004 i = NULL;
5005
5006 rollback_upper_mesh:
5007 to_i = i;
5008 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5009 if (i == to_i)
5010 break;
5011 __netdev_adjacent_dev_unlink(dev, i->dev);
5012 }
5013
5014 i = j = NULL;
5015
5016 rollback_mesh:
5017 to_i = i;
5018 to_j = j;
5019 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5020 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5021 if (i == to_i && j == to_j)
5022 break;
5023 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5024 }
5025 if (i == to_i)
5026 break;
5027 }
5028
5029 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5030
5031 return ret;
5032 }
5033
5034 /**
5035 * netdev_upper_dev_link - Add a link to the upper device
5036 * @dev: device
5037 * @upper_dev: new upper device
5038 *
5039 * Adds a link to device which is upper to this one. The caller must hold
5040 * the RTNL lock. On a failure a negative errno code is returned.
5041 * On success the reference counts are adjusted and the function
5042 * returns zero.
5043 */
5044 int netdev_upper_dev_link(struct net_device *dev,
5045 struct net_device *upper_dev)
5046 {
5047 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5048 }
5049 EXPORT_SYMBOL(netdev_upper_dev_link);
5050
5051 /**
5052 * netdev_master_upper_dev_link - Add a master link to the upper device
5053 * @dev: device
5054 * @upper_dev: new upper device
5055 *
5056 * Adds a link to device which is upper to this one. In this case, only
5057 * one master upper device can be linked, although other non-master devices
5058 * might be linked as well. The caller must hold the RTNL lock.
5059 * On a failure a negative errno code is returned. On success the reference
5060 * counts are adjusted and the function returns zero.
5061 */
5062 int netdev_master_upper_dev_link(struct net_device *dev,
5063 struct net_device *upper_dev)
5064 {
5065 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5066 }
5067 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5068
5069 int netdev_master_upper_dev_link_private(struct net_device *dev,
5070 struct net_device *upper_dev,
5071 void *private)
5072 {
5073 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5074 }
5075 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5076
5077 /**
5078 * netdev_upper_dev_unlink - Removes a link to upper device
5079 * @dev: device
5080 * @upper_dev: new upper device
5081 *
5082 * Removes a link to device which is upper to this one. The caller must hold
5083 * the RTNL lock.
5084 */
5085 void netdev_upper_dev_unlink(struct net_device *dev,
5086 struct net_device *upper_dev)
5087 {
5088 struct netdev_adjacent *i, *j;
5089 ASSERT_RTNL();
5090
5091 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5092
5093 /* Here is the tricky part. We must remove all dev's lower
5094 * devices from all upper_dev's upper devices and vice
5095 * versa, to maintain the graph relationship.
5096 */
5097 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5098 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5099 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5100
5101 /* remove also the devices itself from lower/upper device
5102 * list
5103 */
5104 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5105 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5106
5107 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5108 __netdev_adjacent_dev_unlink(dev, i->dev);
5109
5110 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5111 }
5112 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5113
5114 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5115 {
5116 struct netdev_adjacent *iter;
5117
5118 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5119 netdev_adjacent_sysfs_del(iter->dev, oldname,
5120 &iter->dev->adj_list.lower);
5121 netdev_adjacent_sysfs_add(iter->dev, dev,
5122 &iter->dev->adj_list.lower);
5123 }
5124
5125 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5126 netdev_adjacent_sysfs_del(iter->dev, oldname,
5127 &iter->dev->adj_list.upper);
5128 netdev_adjacent_sysfs_add(iter->dev, dev,
5129 &iter->dev->adj_list.upper);
5130 }
5131 }
5132
5133 void *netdev_lower_dev_get_private(struct net_device *dev,
5134 struct net_device *lower_dev)
5135 {
5136 struct netdev_adjacent *lower;
5137
5138 if (!lower_dev)
5139 return NULL;
5140 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5141 if (!lower)
5142 return NULL;
5143
5144 return lower->private;
5145 }
5146 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5147
5148
5149 int dev_get_nest_level(struct net_device *dev,
5150 bool (*type_check)(struct net_device *dev))
5151 {
5152 struct net_device *lower = NULL;
5153 struct list_head *iter;
5154 int max_nest = -1;
5155 int nest;
5156
5157 ASSERT_RTNL();
5158
5159 netdev_for_each_lower_dev(dev, lower, iter) {
5160 nest = dev_get_nest_level(lower, type_check);
5161 if (max_nest < nest)
5162 max_nest = nest;
5163 }
5164
5165 if (type_check(dev))
5166 max_nest++;
5167
5168 return max_nest;
5169 }
5170 EXPORT_SYMBOL(dev_get_nest_level);
5171
5172 static void dev_change_rx_flags(struct net_device *dev, int flags)
5173 {
5174 const struct net_device_ops *ops = dev->netdev_ops;
5175
5176 if (ops->ndo_change_rx_flags)
5177 ops->ndo_change_rx_flags(dev, flags);
5178 }
5179
5180 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5181 {
5182 unsigned int old_flags = dev->flags;
5183 kuid_t uid;
5184 kgid_t gid;
5185
5186 ASSERT_RTNL();
5187
5188 dev->flags |= IFF_PROMISC;
5189 dev->promiscuity += inc;
5190 if (dev->promiscuity == 0) {
5191 /*
5192 * Avoid overflow.
5193 * If inc causes overflow, untouch promisc and return error.
5194 */
5195 if (inc < 0)
5196 dev->flags &= ~IFF_PROMISC;
5197 else {
5198 dev->promiscuity -= inc;
5199 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5200 dev->name);
5201 return -EOVERFLOW;
5202 }
5203 }
5204 if (dev->flags != old_flags) {
5205 pr_info("device %s %s promiscuous mode\n",
5206 dev->name,
5207 dev->flags & IFF_PROMISC ? "entered" : "left");
5208 if (audit_enabled) {
5209 current_uid_gid(&uid, &gid);
5210 audit_log(current->audit_context, GFP_ATOMIC,
5211 AUDIT_ANOM_PROMISCUOUS,
5212 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5213 dev->name, (dev->flags & IFF_PROMISC),
5214 (old_flags & IFF_PROMISC),
5215 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5216 from_kuid(&init_user_ns, uid),
5217 from_kgid(&init_user_ns, gid),
5218 audit_get_sessionid(current));
5219 }
5220
5221 dev_change_rx_flags(dev, IFF_PROMISC);
5222 }
5223 if (notify)
5224 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5225 return 0;
5226 }
5227
5228 /**
5229 * dev_set_promiscuity - update promiscuity count on a device
5230 * @dev: device
5231 * @inc: modifier
5232 *
5233 * Add or remove promiscuity from a device. While the count in the device
5234 * remains above zero the interface remains promiscuous. Once it hits zero
5235 * the device reverts back to normal filtering operation. A negative inc
5236 * value is used to drop promiscuity on the device.
5237 * Return 0 if successful or a negative errno code on error.
5238 */
5239 int dev_set_promiscuity(struct net_device *dev, int inc)
5240 {
5241 unsigned int old_flags = dev->flags;
5242 int err;
5243
5244 err = __dev_set_promiscuity(dev, inc, true);
5245 if (err < 0)
5246 return err;
5247 if (dev->flags != old_flags)
5248 dev_set_rx_mode(dev);
5249 return err;
5250 }
5251 EXPORT_SYMBOL(dev_set_promiscuity);
5252
5253 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5254 {
5255 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5256
5257 ASSERT_RTNL();
5258
5259 dev->flags |= IFF_ALLMULTI;
5260 dev->allmulti += inc;
5261 if (dev->allmulti == 0) {
5262 /*
5263 * Avoid overflow.
5264 * If inc causes overflow, untouch allmulti and return error.
5265 */
5266 if (inc < 0)
5267 dev->flags &= ~IFF_ALLMULTI;
5268 else {
5269 dev->allmulti -= inc;
5270 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5271 dev->name);
5272 return -EOVERFLOW;
5273 }
5274 }
5275 if (dev->flags ^ old_flags) {
5276 dev_change_rx_flags(dev, IFF_ALLMULTI);
5277 dev_set_rx_mode(dev);
5278 if (notify)
5279 __dev_notify_flags(dev, old_flags,
5280 dev->gflags ^ old_gflags);
5281 }
5282 return 0;
5283 }
5284
5285 /**
5286 * dev_set_allmulti - update allmulti count on a device
5287 * @dev: device
5288 * @inc: modifier
5289 *
5290 * Add or remove reception of all multicast frames to a device. While the
5291 * count in the device remains above zero the interface remains listening
5292 * to all interfaces. Once it hits zero the device reverts back to normal
5293 * filtering operation. A negative @inc value is used to drop the counter
5294 * when releasing a resource needing all multicasts.
5295 * Return 0 if successful or a negative errno code on error.
5296 */
5297
5298 int dev_set_allmulti(struct net_device *dev, int inc)
5299 {
5300 return __dev_set_allmulti(dev, inc, true);
5301 }
5302 EXPORT_SYMBOL(dev_set_allmulti);
5303
5304 /*
5305 * Upload unicast and multicast address lists to device and
5306 * configure RX filtering. When the device doesn't support unicast
5307 * filtering it is put in promiscuous mode while unicast addresses
5308 * are present.
5309 */
5310 void __dev_set_rx_mode(struct net_device *dev)
5311 {
5312 const struct net_device_ops *ops = dev->netdev_ops;
5313
5314 /* dev_open will call this function so the list will stay sane. */
5315 if (!(dev->flags&IFF_UP))
5316 return;
5317
5318 if (!netif_device_present(dev))
5319 return;
5320
5321 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5322 /* Unicast addresses changes may only happen under the rtnl,
5323 * therefore calling __dev_set_promiscuity here is safe.
5324 */
5325 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5326 __dev_set_promiscuity(dev, 1, false);
5327 dev->uc_promisc = true;
5328 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5329 __dev_set_promiscuity(dev, -1, false);
5330 dev->uc_promisc = false;
5331 }
5332 }
5333
5334 if (ops->ndo_set_rx_mode)
5335 ops->ndo_set_rx_mode(dev);
5336 }
5337
5338 void dev_set_rx_mode(struct net_device *dev)
5339 {
5340 netif_addr_lock_bh(dev);
5341 __dev_set_rx_mode(dev);
5342 netif_addr_unlock_bh(dev);
5343 }
5344
5345 /**
5346 * dev_get_flags - get flags reported to userspace
5347 * @dev: device
5348 *
5349 * Get the combination of flag bits exported through APIs to userspace.
5350 */
5351 unsigned int dev_get_flags(const struct net_device *dev)
5352 {
5353 unsigned int flags;
5354
5355 flags = (dev->flags & ~(IFF_PROMISC |
5356 IFF_ALLMULTI |
5357 IFF_RUNNING |
5358 IFF_LOWER_UP |
5359 IFF_DORMANT)) |
5360 (dev->gflags & (IFF_PROMISC |
5361 IFF_ALLMULTI));
5362
5363 if (netif_running(dev)) {
5364 if (netif_oper_up(dev))
5365 flags |= IFF_RUNNING;
5366 if (netif_carrier_ok(dev))
5367 flags |= IFF_LOWER_UP;
5368 if (netif_dormant(dev))
5369 flags |= IFF_DORMANT;
5370 }
5371
5372 return flags;
5373 }
5374 EXPORT_SYMBOL(dev_get_flags);
5375
5376 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5377 {
5378 unsigned int old_flags = dev->flags;
5379 int ret;
5380
5381 ASSERT_RTNL();
5382
5383 /*
5384 * Set the flags on our device.
5385 */
5386
5387 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5388 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5389 IFF_AUTOMEDIA)) |
5390 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5391 IFF_ALLMULTI));
5392
5393 /*
5394 * Load in the correct multicast list now the flags have changed.
5395 */
5396
5397 if ((old_flags ^ flags) & IFF_MULTICAST)
5398 dev_change_rx_flags(dev, IFF_MULTICAST);
5399
5400 dev_set_rx_mode(dev);
5401
5402 /*
5403 * Have we downed the interface. We handle IFF_UP ourselves
5404 * according to user attempts to set it, rather than blindly
5405 * setting it.
5406 */
5407
5408 ret = 0;
5409 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5410 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5411
5412 if (!ret)
5413 dev_set_rx_mode(dev);
5414 }
5415
5416 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5417 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5418 unsigned int old_flags = dev->flags;
5419
5420 dev->gflags ^= IFF_PROMISC;
5421
5422 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5423 if (dev->flags != old_flags)
5424 dev_set_rx_mode(dev);
5425 }
5426
5427 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5428 is important. Some (broken) drivers set IFF_PROMISC, when
5429 IFF_ALLMULTI is requested not asking us and not reporting.
5430 */
5431 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5432 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5433
5434 dev->gflags ^= IFF_ALLMULTI;
5435 __dev_set_allmulti(dev, inc, false);
5436 }
5437
5438 return ret;
5439 }
5440
5441 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5442 unsigned int gchanges)
5443 {
5444 unsigned int changes = dev->flags ^ old_flags;
5445
5446 if (gchanges)
5447 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5448
5449 if (changes & IFF_UP) {
5450 if (dev->flags & IFF_UP)
5451 call_netdevice_notifiers(NETDEV_UP, dev);
5452 else
5453 call_netdevice_notifiers(NETDEV_DOWN, dev);
5454 }
5455
5456 if (dev->flags & IFF_UP &&
5457 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5458 struct netdev_notifier_change_info change_info;
5459
5460 change_info.flags_changed = changes;
5461 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5462 &change_info.info);
5463 }
5464 }
5465
5466 /**
5467 * dev_change_flags - change device settings
5468 * @dev: device
5469 * @flags: device state flags
5470 *
5471 * Change settings on device based state flags. The flags are
5472 * in the userspace exported format.
5473 */
5474 int dev_change_flags(struct net_device *dev, unsigned int flags)
5475 {
5476 int ret;
5477 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5478
5479 ret = __dev_change_flags(dev, flags);
5480 if (ret < 0)
5481 return ret;
5482
5483 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5484 __dev_notify_flags(dev, old_flags, changes);
5485 return ret;
5486 }
5487 EXPORT_SYMBOL(dev_change_flags);
5488
5489 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5490 {
5491 const struct net_device_ops *ops = dev->netdev_ops;
5492
5493 if (ops->ndo_change_mtu)
5494 return ops->ndo_change_mtu(dev, new_mtu);
5495
5496 dev->mtu = new_mtu;
5497 return 0;
5498 }
5499
5500 /**
5501 * dev_set_mtu - Change maximum transfer unit
5502 * @dev: device
5503 * @new_mtu: new transfer unit
5504 *
5505 * Change the maximum transfer size of the network device.
5506 */
5507 int dev_set_mtu(struct net_device *dev, int new_mtu)
5508 {
5509 int err, orig_mtu;
5510
5511 if (new_mtu == dev->mtu)
5512 return 0;
5513
5514 /* MTU must be positive. */
5515 if (new_mtu < 0)
5516 return -EINVAL;
5517
5518 if (!netif_device_present(dev))
5519 return -ENODEV;
5520
5521 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5522 err = notifier_to_errno(err);
5523 if (err)
5524 return err;
5525
5526 orig_mtu = dev->mtu;
5527 err = __dev_set_mtu(dev, new_mtu);
5528
5529 if (!err) {
5530 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5531 err = notifier_to_errno(err);
5532 if (err) {
5533 /* setting mtu back and notifying everyone again,
5534 * so that they have a chance to revert changes.
5535 */
5536 __dev_set_mtu(dev, orig_mtu);
5537 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5538 }
5539 }
5540 return err;
5541 }
5542 EXPORT_SYMBOL(dev_set_mtu);
5543
5544 /**
5545 * dev_set_group - Change group this device belongs to
5546 * @dev: device
5547 * @new_group: group this device should belong to
5548 */
5549 void dev_set_group(struct net_device *dev, int new_group)
5550 {
5551 dev->group = new_group;
5552 }
5553 EXPORT_SYMBOL(dev_set_group);
5554
5555 /**
5556 * dev_set_mac_address - Change Media Access Control Address
5557 * @dev: device
5558 * @sa: new address
5559 *
5560 * Change the hardware (MAC) address of the device
5561 */
5562 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5563 {
5564 const struct net_device_ops *ops = dev->netdev_ops;
5565 int err;
5566
5567 if (!ops->ndo_set_mac_address)
5568 return -EOPNOTSUPP;
5569 if (sa->sa_family != dev->type)
5570 return -EINVAL;
5571 if (!netif_device_present(dev))
5572 return -ENODEV;
5573 err = ops->ndo_set_mac_address(dev, sa);
5574 if (err)
5575 return err;
5576 dev->addr_assign_type = NET_ADDR_SET;
5577 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5578 add_device_randomness(dev->dev_addr, dev->addr_len);
5579 return 0;
5580 }
5581 EXPORT_SYMBOL(dev_set_mac_address);
5582
5583 /**
5584 * dev_change_carrier - Change device carrier
5585 * @dev: device
5586 * @new_carrier: new value
5587 *
5588 * Change device carrier
5589 */
5590 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5591 {
5592 const struct net_device_ops *ops = dev->netdev_ops;
5593
5594 if (!ops->ndo_change_carrier)
5595 return -EOPNOTSUPP;
5596 if (!netif_device_present(dev))
5597 return -ENODEV;
5598 return ops->ndo_change_carrier(dev, new_carrier);
5599 }
5600 EXPORT_SYMBOL(dev_change_carrier);
5601
5602 /**
5603 * dev_get_phys_port_id - Get device physical port ID
5604 * @dev: device
5605 * @ppid: port ID
5606 *
5607 * Get device physical port ID
5608 */
5609 int dev_get_phys_port_id(struct net_device *dev,
5610 struct netdev_phys_port_id *ppid)
5611 {
5612 const struct net_device_ops *ops = dev->netdev_ops;
5613
5614 if (!ops->ndo_get_phys_port_id)
5615 return -EOPNOTSUPP;
5616 return ops->ndo_get_phys_port_id(dev, ppid);
5617 }
5618 EXPORT_SYMBOL(dev_get_phys_port_id);
5619
5620 /**
5621 * dev_new_index - allocate an ifindex
5622 * @net: the applicable net namespace
5623 *
5624 * Returns a suitable unique value for a new device interface
5625 * number. The caller must hold the rtnl semaphore or the
5626 * dev_base_lock to be sure it remains unique.
5627 */
5628 static int dev_new_index(struct net *net)
5629 {
5630 int ifindex = net->ifindex;
5631 for (;;) {
5632 if (++ifindex <= 0)
5633 ifindex = 1;
5634 if (!__dev_get_by_index(net, ifindex))
5635 return net->ifindex = ifindex;
5636 }
5637 }
5638
5639 /* Delayed registration/unregisteration */
5640 static LIST_HEAD(net_todo_list);
5641 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5642
5643 static void net_set_todo(struct net_device *dev)
5644 {
5645 list_add_tail(&dev->todo_list, &net_todo_list);
5646 dev_net(dev)->dev_unreg_count++;
5647 }
5648
5649 static void rollback_registered_many(struct list_head *head)
5650 {
5651 struct net_device *dev, *tmp;
5652 LIST_HEAD(close_head);
5653
5654 BUG_ON(dev_boot_phase);
5655 ASSERT_RTNL();
5656
5657 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5658 /* Some devices call without registering
5659 * for initialization unwind. Remove those
5660 * devices and proceed with the remaining.
5661 */
5662 if (dev->reg_state == NETREG_UNINITIALIZED) {
5663 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5664 dev->name, dev);
5665
5666 WARN_ON(1);
5667 list_del(&dev->unreg_list);
5668 continue;
5669 }
5670 dev->dismantle = true;
5671 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5672 }
5673
5674 /* If device is running, close it first. */
5675 list_for_each_entry(dev, head, unreg_list)
5676 list_add_tail(&dev->close_list, &close_head);
5677 dev_close_many(&close_head);
5678
5679 list_for_each_entry(dev, head, unreg_list) {
5680 /* And unlink it from device chain. */
5681 unlist_netdevice(dev);
5682
5683 dev->reg_state = NETREG_UNREGISTERING;
5684 }
5685
5686 synchronize_net();
5687
5688 list_for_each_entry(dev, head, unreg_list) {
5689 /* Shutdown queueing discipline. */
5690 dev_shutdown(dev);
5691
5692
5693 /* Notify protocols, that we are about to destroy
5694 this device. They should clean all the things.
5695 */
5696 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5697
5698 /*
5699 * Flush the unicast and multicast chains
5700 */
5701 dev_uc_flush(dev);
5702 dev_mc_flush(dev);
5703
5704 if (dev->netdev_ops->ndo_uninit)
5705 dev->netdev_ops->ndo_uninit(dev);
5706
5707 if (!dev->rtnl_link_ops ||
5708 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5709 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5710
5711 /* Notifier chain MUST detach us all upper devices. */
5712 WARN_ON(netdev_has_any_upper_dev(dev));
5713
5714 /* Remove entries from kobject tree */
5715 netdev_unregister_kobject(dev);
5716 #ifdef CONFIG_XPS
5717 /* Remove XPS queueing entries */
5718 netif_reset_xps_queues_gt(dev, 0);
5719 #endif
5720 }
5721
5722 synchronize_net();
5723
5724 list_for_each_entry(dev, head, unreg_list)
5725 dev_put(dev);
5726 }
5727
5728 static void rollback_registered(struct net_device *dev)
5729 {
5730 LIST_HEAD(single);
5731
5732 list_add(&dev->unreg_list, &single);
5733 rollback_registered_many(&single);
5734 list_del(&single);
5735 }
5736
5737 static netdev_features_t netdev_fix_features(struct net_device *dev,
5738 netdev_features_t features)
5739 {
5740 /* Fix illegal checksum combinations */
5741 if ((features & NETIF_F_HW_CSUM) &&
5742 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5743 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5744 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5745 }
5746
5747 /* TSO requires that SG is present as well. */
5748 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5749 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5750 features &= ~NETIF_F_ALL_TSO;
5751 }
5752
5753 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5754 !(features & NETIF_F_IP_CSUM)) {
5755 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5756 features &= ~NETIF_F_TSO;
5757 features &= ~NETIF_F_TSO_ECN;
5758 }
5759
5760 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5761 !(features & NETIF_F_IPV6_CSUM)) {
5762 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5763 features &= ~NETIF_F_TSO6;
5764 }
5765
5766 /* TSO ECN requires that TSO is present as well. */
5767 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5768 features &= ~NETIF_F_TSO_ECN;
5769
5770 /* Software GSO depends on SG. */
5771 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5772 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5773 features &= ~NETIF_F_GSO;
5774 }
5775
5776 /* UFO needs SG and checksumming */
5777 if (features & NETIF_F_UFO) {
5778 /* maybe split UFO into V4 and V6? */
5779 if (!((features & NETIF_F_GEN_CSUM) ||
5780 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5781 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5782 netdev_dbg(dev,
5783 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5784 features &= ~NETIF_F_UFO;
5785 }
5786
5787 if (!(features & NETIF_F_SG)) {
5788 netdev_dbg(dev,
5789 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5790 features &= ~NETIF_F_UFO;
5791 }
5792 }
5793
5794 #ifdef CONFIG_NET_RX_BUSY_POLL
5795 if (dev->netdev_ops->ndo_busy_poll)
5796 features |= NETIF_F_BUSY_POLL;
5797 else
5798 #endif
5799 features &= ~NETIF_F_BUSY_POLL;
5800
5801 return features;
5802 }
5803
5804 int __netdev_update_features(struct net_device *dev)
5805 {
5806 netdev_features_t features;
5807 int err = 0;
5808
5809 ASSERT_RTNL();
5810
5811 features = netdev_get_wanted_features(dev);
5812
5813 if (dev->netdev_ops->ndo_fix_features)
5814 features = dev->netdev_ops->ndo_fix_features(dev, features);
5815
5816 /* driver might be less strict about feature dependencies */
5817 features = netdev_fix_features(dev, features);
5818
5819 if (dev->features == features)
5820 return 0;
5821
5822 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5823 &dev->features, &features);
5824
5825 if (dev->netdev_ops->ndo_set_features)
5826 err = dev->netdev_ops->ndo_set_features(dev, features);
5827
5828 if (unlikely(err < 0)) {
5829 netdev_err(dev,
5830 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5831 err, &features, &dev->features);
5832 return -1;
5833 }
5834
5835 if (!err)
5836 dev->features = features;
5837
5838 return 1;
5839 }
5840
5841 /**
5842 * netdev_update_features - recalculate device features
5843 * @dev: the device to check
5844 *
5845 * Recalculate dev->features set and send notifications if it
5846 * has changed. Should be called after driver or hardware dependent
5847 * conditions might have changed that influence the features.
5848 */
5849 void netdev_update_features(struct net_device *dev)
5850 {
5851 if (__netdev_update_features(dev))
5852 netdev_features_change(dev);
5853 }
5854 EXPORT_SYMBOL(netdev_update_features);
5855
5856 /**
5857 * netdev_change_features - recalculate device features
5858 * @dev: the device to check
5859 *
5860 * Recalculate dev->features set and send notifications even
5861 * if they have not changed. Should be called instead of
5862 * netdev_update_features() if also dev->vlan_features might
5863 * have changed to allow the changes to be propagated to stacked
5864 * VLAN devices.
5865 */
5866 void netdev_change_features(struct net_device *dev)
5867 {
5868 __netdev_update_features(dev);
5869 netdev_features_change(dev);
5870 }
5871 EXPORT_SYMBOL(netdev_change_features);
5872
5873 /**
5874 * netif_stacked_transfer_operstate - transfer operstate
5875 * @rootdev: the root or lower level device to transfer state from
5876 * @dev: the device to transfer operstate to
5877 *
5878 * Transfer operational state from root to device. This is normally
5879 * called when a stacking relationship exists between the root
5880 * device and the device(a leaf device).
5881 */
5882 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5883 struct net_device *dev)
5884 {
5885 if (rootdev->operstate == IF_OPER_DORMANT)
5886 netif_dormant_on(dev);
5887 else
5888 netif_dormant_off(dev);
5889
5890 if (netif_carrier_ok(rootdev)) {
5891 if (!netif_carrier_ok(dev))
5892 netif_carrier_on(dev);
5893 } else {
5894 if (netif_carrier_ok(dev))
5895 netif_carrier_off(dev);
5896 }
5897 }
5898 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5899
5900 #ifdef CONFIG_SYSFS
5901 static int netif_alloc_rx_queues(struct net_device *dev)
5902 {
5903 unsigned int i, count = dev->num_rx_queues;
5904 struct netdev_rx_queue *rx;
5905
5906 BUG_ON(count < 1);
5907
5908 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5909 if (!rx)
5910 return -ENOMEM;
5911
5912 dev->_rx = rx;
5913
5914 for (i = 0; i < count; i++)
5915 rx[i].dev = dev;
5916 return 0;
5917 }
5918 #endif
5919
5920 static void netdev_init_one_queue(struct net_device *dev,
5921 struct netdev_queue *queue, void *_unused)
5922 {
5923 /* Initialize queue lock */
5924 spin_lock_init(&queue->_xmit_lock);
5925 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5926 queue->xmit_lock_owner = -1;
5927 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5928 queue->dev = dev;
5929 #ifdef CONFIG_BQL
5930 dql_init(&queue->dql, HZ);
5931 #endif
5932 }
5933
5934 static void netif_free_tx_queues(struct net_device *dev)
5935 {
5936 if (is_vmalloc_addr(dev->_tx))
5937 vfree(dev->_tx);
5938 else
5939 kfree(dev->_tx);
5940 }
5941
5942 static int netif_alloc_netdev_queues(struct net_device *dev)
5943 {
5944 unsigned int count = dev->num_tx_queues;
5945 struct netdev_queue *tx;
5946 size_t sz = count * sizeof(*tx);
5947
5948 BUG_ON(count < 1 || count > 0xffff);
5949
5950 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5951 if (!tx) {
5952 tx = vzalloc(sz);
5953 if (!tx)
5954 return -ENOMEM;
5955 }
5956 dev->_tx = tx;
5957
5958 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5959 spin_lock_init(&dev->tx_global_lock);
5960
5961 return 0;
5962 }
5963
5964 /**
5965 * register_netdevice - register a network device
5966 * @dev: device to register
5967 *
5968 * Take a completed network device structure and add it to the kernel
5969 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5970 * chain. 0 is returned on success. A negative errno code is returned
5971 * on a failure to set up the device, or if the name is a duplicate.
5972 *
5973 * Callers must hold the rtnl semaphore. You may want
5974 * register_netdev() instead of this.
5975 *
5976 * BUGS:
5977 * The locking appears insufficient to guarantee two parallel registers
5978 * will not get the same name.
5979 */
5980
5981 int register_netdevice(struct net_device *dev)
5982 {
5983 int ret;
5984 struct net *net = dev_net(dev);
5985
5986 BUG_ON(dev_boot_phase);
5987 ASSERT_RTNL();
5988
5989 might_sleep();
5990
5991 /* When net_device's are persistent, this will be fatal. */
5992 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5993 BUG_ON(!net);
5994
5995 spin_lock_init(&dev->addr_list_lock);
5996 netdev_set_addr_lockdep_class(dev);
5997
5998 dev->iflink = -1;
5999
6000 ret = dev_get_valid_name(net, dev, dev->name);
6001 if (ret < 0)
6002 goto out;
6003
6004 /* Init, if this function is available */
6005 if (dev->netdev_ops->ndo_init) {
6006 ret = dev->netdev_ops->ndo_init(dev);
6007 if (ret) {
6008 if (ret > 0)
6009 ret = -EIO;
6010 goto out;
6011 }
6012 }
6013
6014 if (((dev->hw_features | dev->features) &
6015 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6016 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6017 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6018 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6019 ret = -EINVAL;
6020 goto err_uninit;
6021 }
6022
6023 ret = -EBUSY;
6024 if (!dev->ifindex)
6025 dev->ifindex = dev_new_index(net);
6026 else if (__dev_get_by_index(net, dev->ifindex))
6027 goto err_uninit;
6028
6029 if (dev->iflink == -1)
6030 dev->iflink = dev->ifindex;
6031
6032 /* Transfer changeable features to wanted_features and enable
6033 * software offloads (GSO and GRO).
6034 */
6035 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6036 dev->features |= NETIF_F_SOFT_FEATURES;
6037 dev->wanted_features = dev->features & dev->hw_features;
6038
6039 if (!(dev->flags & IFF_LOOPBACK)) {
6040 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6041 }
6042
6043 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6044 */
6045 dev->vlan_features |= NETIF_F_HIGHDMA;
6046
6047 /* Make NETIF_F_SG inheritable to tunnel devices.
6048 */
6049 dev->hw_enc_features |= NETIF_F_SG;
6050
6051 /* Make NETIF_F_SG inheritable to MPLS.
6052 */
6053 dev->mpls_features |= NETIF_F_SG;
6054
6055 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6056 ret = notifier_to_errno(ret);
6057 if (ret)
6058 goto err_uninit;
6059
6060 ret = netdev_register_kobject(dev);
6061 if (ret)
6062 goto err_uninit;
6063 dev->reg_state = NETREG_REGISTERED;
6064
6065 __netdev_update_features(dev);
6066
6067 /*
6068 * Default initial state at registry is that the
6069 * device is present.
6070 */
6071
6072 set_bit(__LINK_STATE_PRESENT, &dev->state);
6073
6074 linkwatch_init_dev(dev);
6075
6076 dev_init_scheduler(dev);
6077 dev_hold(dev);
6078 list_netdevice(dev);
6079 add_device_randomness(dev->dev_addr, dev->addr_len);
6080
6081 /* If the device has permanent device address, driver should
6082 * set dev_addr and also addr_assign_type should be set to
6083 * NET_ADDR_PERM (default value).
6084 */
6085 if (dev->addr_assign_type == NET_ADDR_PERM)
6086 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6087
6088 /* Notify protocols, that a new device appeared. */
6089 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6090 ret = notifier_to_errno(ret);
6091 if (ret) {
6092 rollback_registered(dev);
6093 dev->reg_state = NETREG_UNREGISTERED;
6094 }
6095 /*
6096 * Prevent userspace races by waiting until the network
6097 * device is fully setup before sending notifications.
6098 */
6099 if (!dev->rtnl_link_ops ||
6100 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6101 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6102
6103 out:
6104 return ret;
6105
6106 err_uninit:
6107 if (dev->netdev_ops->ndo_uninit)
6108 dev->netdev_ops->ndo_uninit(dev);
6109 goto out;
6110 }
6111 EXPORT_SYMBOL(register_netdevice);
6112
6113 /**
6114 * init_dummy_netdev - init a dummy network device for NAPI
6115 * @dev: device to init
6116 *
6117 * This takes a network device structure and initialize the minimum
6118 * amount of fields so it can be used to schedule NAPI polls without
6119 * registering a full blown interface. This is to be used by drivers
6120 * that need to tie several hardware interfaces to a single NAPI
6121 * poll scheduler due to HW limitations.
6122 */
6123 int init_dummy_netdev(struct net_device *dev)
6124 {
6125 /* Clear everything. Note we don't initialize spinlocks
6126 * are they aren't supposed to be taken by any of the
6127 * NAPI code and this dummy netdev is supposed to be
6128 * only ever used for NAPI polls
6129 */
6130 memset(dev, 0, sizeof(struct net_device));
6131
6132 /* make sure we BUG if trying to hit standard
6133 * register/unregister code path
6134 */
6135 dev->reg_state = NETREG_DUMMY;
6136
6137 /* NAPI wants this */
6138 INIT_LIST_HEAD(&dev->napi_list);
6139
6140 /* a dummy interface is started by default */
6141 set_bit(__LINK_STATE_PRESENT, &dev->state);
6142 set_bit(__LINK_STATE_START, &dev->state);
6143
6144 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6145 * because users of this 'device' dont need to change
6146 * its refcount.
6147 */
6148
6149 return 0;
6150 }
6151 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6152
6153
6154 /**
6155 * register_netdev - register a network device
6156 * @dev: device to register
6157 *
6158 * Take a completed network device structure and add it to the kernel
6159 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6160 * chain. 0 is returned on success. A negative errno code is returned
6161 * on a failure to set up the device, or if the name is a duplicate.
6162 *
6163 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6164 * and expands the device name if you passed a format string to
6165 * alloc_netdev.
6166 */
6167 int register_netdev(struct net_device *dev)
6168 {
6169 int err;
6170
6171 rtnl_lock();
6172 err = register_netdevice(dev);
6173 rtnl_unlock();
6174 return err;
6175 }
6176 EXPORT_SYMBOL(register_netdev);
6177
6178 int netdev_refcnt_read(const struct net_device *dev)
6179 {
6180 int i, refcnt = 0;
6181
6182 for_each_possible_cpu(i)
6183 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6184 return refcnt;
6185 }
6186 EXPORT_SYMBOL(netdev_refcnt_read);
6187
6188 /**
6189 * netdev_wait_allrefs - wait until all references are gone.
6190 * @dev: target net_device
6191 *
6192 * This is called when unregistering network devices.
6193 *
6194 * Any protocol or device that holds a reference should register
6195 * for netdevice notification, and cleanup and put back the
6196 * reference if they receive an UNREGISTER event.
6197 * We can get stuck here if buggy protocols don't correctly
6198 * call dev_put.
6199 */
6200 static void netdev_wait_allrefs(struct net_device *dev)
6201 {
6202 unsigned long rebroadcast_time, warning_time;
6203 int refcnt;
6204
6205 linkwatch_forget_dev(dev);
6206
6207 rebroadcast_time = warning_time = jiffies;
6208 refcnt = netdev_refcnt_read(dev);
6209
6210 while (refcnt != 0) {
6211 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6212 rtnl_lock();
6213
6214 /* Rebroadcast unregister notification */
6215 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6216
6217 __rtnl_unlock();
6218 rcu_barrier();
6219 rtnl_lock();
6220
6221 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6222 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6223 &dev->state)) {
6224 /* We must not have linkwatch events
6225 * pending on unregister. If this
6226 * happens, we simply run the queue
6227 * unscheduled, resulting in a noop
6228 * for this device.
6229 */
6230 linkwatch_run_queue();
6231 }
6232
6233 __rtnl_unlock();
6234
6235 rebroadcast_time = jiffies;
6236 }
6237
6238 msleep(250);
6239
6240 refcnt = netdev_refcnt_read(dev);
6241
6242 if (time_after(jiffies, warning_time + 10 * HZ)) {
6243 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6244 dev->name, refcnt);
6245 warning_time = jiffies;
6246 }
6247 }
6248 }
6249
6250 /* The sequence is:
6251 *
6252 * rtnl_lock();
6253 * ...
6254 * register_netdevice(x1);
6255 * register_netdevice(x2);
6256 * ...
6257 * unregister_netdevice(y1);
6258 * unregister_netdevice(y2);
6259 * ...
6260 * rtnl_unlock();
6261 * free_netdev(y1);
6262 * free_netdev(y2);
6263 *
6264 * We are invoked by rtnl_unlock().
6265 * This allows us to deal with problems:
6266 * 1) We can delete sysfs objects which invoke hotplug
6267 * without deadlocking with linkwatch via keventd.
6268 * 2) Since we run with the RTNL semaphore not held, we can sleep
6269 * safely in order to wait for the netdev refcnt to drop to zero.
6270 *
6271 * We must not return until all unregister events added during
6272 * the interval the lock was held have been completed.
6273 */
6274 void netdev_run_todo(void)
6275 {
6276 struct list_head list;
6277
6278 /* Snapshot list, allow later requests */
6279 list_replace_init(&net_todo_list, &list);
6280
6281 __rtnl_unlock();
6282
6283
6284 /* Wait for rcu callbacks to finish before next phase */
6285 if (!list_empty(&list))
6286 rcu_barrier();
6287
6288 while (!list_empty(&list)) {
6289 struct net_device *dev
6290 = list_first_entry(&list, struct net_device, todo_list);
6291 list_del(&dev->todo_list);
6292
6293 rtnl_lock();
6294 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6295 __rtnl_unlock();
6296
6297 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6298 pr_err("network todo '%s' but state %d\n",
6299 dev->name, dev->reg_state);
6300 dump_stack();
6301 continue;
6302 }
6303
6304 dev->reg_state = NETREG_UNREGISTERED;
6305
6306 on_each_cpu(flush_backlog, dev, 1);
6307
6308 netdev_wait_allrefs(dev);
6309
6310 /* paranoia */
6311 BUG_ON(netdev_refcnt_read(dev));
6312 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6313 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6314 WARN_ON(dev->dn_ptr);
6315
6316 if (dev->destructor)
6317 dev->destructor(dev);
6318
6319 /* Report a network device has been unregistered */
6320 rtnl_lock();
6321 dev_net(dev)->dev_unreg_count--;
6322 __rtnl_unlock();
6323 wake_up(&netdev_unregistering_wq);
6324
6325 /* Free network device */
6326 kobject_put(&dev->dev.kobj);
6327 }
6328 }
6329
6330 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6331 * fields in the same order, with only the type differing.
6332 */
6333 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6334 const struct net_device_stats *netdev_stats)
6335 {
6336 #if BITS_PER_LONG == 64
6337 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6338 memcpy(stats64, netdev_stats, sizeof(*stats64));
6339 #else
6340 size_t i, n = sizeof(*stats64) / sizeof(u64);
6341 const unsigned long *src = (const unsigned long *)netdev_stats;
6342 u64 *dst = (u64 *)stats64;
6343
6344 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6345 sizeof(*stats64) / sizeof(u64));
6346 for (i = 0; i < n; i++)
6347 dst[i] = src[i];
6348 #endif
6349 }
6350 EXPORT_SYMBOL(netdev_stats_to_stats64);
6351
6352 /**
6353 * dev_get_stats - get network device statistics
6354 * @dev: device to get statistics from
6355 * @storage: place to store stats
6356 *
6357 * Get network statistics from device. Return @storage.
6358 * The device driver may provide its own method by setting
6359 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6360 * otherwise the internal statistics structure is used.
6361 */
6362 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6363 struct rtnl_link_stats64 *storage)
6364 {
6365 const struct net_device_ops *ops = dev->netdev_ops;
6366
6367 if (ops->ndo_get_stats64) {
6368 memset(storage, 0, sizeof(*storage));
6369 ops->ndo_get_stats64(dev, storage);
6370 } else if (ops->ndo_get_stats) {
6371 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6372 } else {
6373 netdev_stats_to_stats64(storage, &dev->stats);
6374 }
6375 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6376 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6377 return storage;
6378 }
6379 EXPORT_SYMBOL(dev_get_stats);
6380
6381 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6382 {
6383 struct netdev_queue *queue = dev_ingress_queue(dev);
6384
6385 #ifdef CONFIG_NET_CLS_ACT
6386 if (queue)
6387 return queue;
6388 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6389 if (!queue)
6390 return NULL;
6391 netdev_init_one_queue(dev, queue, NULL);
6392 queue->qdisc = &noop_qdisc;
6393 queue->qdisc_sleeping = &noop_qdisc;
6394 rcu_assign_pointer(dev->ingress_queue, queue);
6395 #endif
6396 return queue;
6397 }
6398
6399 static const struct ethtool_ops default_ethtool_ops;
6400
6401 void netdev_set_default_ethtool_ops(struct net_device *dev,
6402 const struct ethtool_ops *ops)
6403 {
6404 if (dev->ethtool_ops == &default_ethtool_ops)
6405 dev->ethtool_ops = ops;
6406 }
6407 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6408
6409 void netdev_freemem(struct net_device *dev)
6410 {
6411 char *addr = (char *)dev - dev->padded;
6412
6413 if (is_vmalloc_addr(addr))
6414 vfree(addr);
6415 else
6416 kfree(addr);
6417 }
6418
6419 /**
6420 * alloc_netdev_mqs - allocate network device
6421 * @sizeof_priv: size of private data to allocate space for
6422 * @name: device name format string
6423 * @setup: callback to initialize device
6424 * @txqs: the number of TX subqueues to allocate
6425 * @rxqs: the number of RX subqueues to allocate
6426 *
6427 * Allocates a struct net_device with private data area for driver use
6428 * and performs basic initialization. Also allocates subqueue structs
6429 * for each queue on the device.
6430 */
6431 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6432 void (*setup)(struct net_device *),
6433 unsigned int txqs, unsigned int rxqs)
6434 {
6435 struct net_device *dev;
6436 size_t alloc_size;
6437 struct net_device *p;
6438
6439 BUG_ON(strlen(name) >= sizeof(dev->name));
6440
6441 if (txqs < 1) {
6442 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6443 return NULL;
6444 }
6445
6446 #ifdef CONFIG_SYSFS
6447 if (rxqs < 1) {
6448 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6449 return NULL;
6450 }
6451 #endif
6452
6453 alloc_size = sizeof(struct net_device);
6454 if (sizeof_priv) {
6455 /* ensure 32-byte alignment of private area */
6456 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6457 alloc_size += sizeof_priv;
6458 }
6459 /* ensure 32-byte alignment of whole construct */
6460 alloc_size += NETDEV_ALIGN - 1;
6461
6462 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6463 if (!p)
6464 p = vzalloc(alloc_size);
6465 if (!p)
6466 return NULL;
6467
6468 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6469 dev->padded = (char *)dev - (char *)p;
6470
6471 dev->pcpu_refcnt = alloc_percpu(int);
6472 if (!dev->pcpu_refcnt)
6473 goto free_dev;
6474
6475 if (dev_addr_init(dev))
6476 goto free_pcpu;
6477
6478 dev_mc_init(dev);
6479 dev_uc_init(dev);
6480
6481 dev_net_set(dev, &init_net);
6482
6483 dev->gso_max_size = GSO_MAX_SIZE;
6484 dev->gso_max_segs = GSO_MAX_SEGS;
6485
6486 INIT_LIST_HEAD(&dev->napi_list);
6487 INIT_LIST_HEAD(&dev->unreg_list);
6488 INIT_LIST_HEAD(&dev->close_list);
6489 INIT_LIST_HEAD(&dev->link_watch_list);
6490 INIT_LIST_HEAD(&dev->adj_list.upper);
6491 INIT_LIST_HEAD(&dev->adj_list.lower);
6492 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6493 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6494 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6495 setup(dev);
6496
6497 dev->num_tx_queues = txqs;
6498 dev->real_num_tx_queues = txqs;
6499 if (netif_alloc_netdev_queues(dev))
6500 goto free_all;
6501
6502 #ifdef CONFIG_SYSFS
6503 dev->num_rx_queues = rxqs;
6504 dev->real_num_rx_queues = rxqs;
6505 if (netif_alloc_rx_queues(dev))
6506 goto free_all;
6507 #endif
6508
6509 strcpy(dev->name, name);
6510 dev->group = INIT_NETDEV_GROUP;
6511 if (!dev->ethtool_ops)
6512 dev->ethtool_ops = &default_ethtool_ops;
6513 return dev;
6514
6515 free_all:
6516 free_netdev(dev);
6517 return NULL;
6518
6519 free_pcpu:
6520 free_percpu(dev->pcpu_refcnt);
6521 free_dev:
6522 netdev_freemem(dev);
6523 return NULL;
6524 }
6525 EXPORT_SYMBOL(alloc_netdev_mqs);
6526
6527 /**
6528 * free_netdev - free network device
6529 * @dev: device
6530 *
6531 * This function does the last stage of destroying an allocated device
6532 * interface. The reference to the device object is released.
6533 * If this is the last reference then it will be freed.
6534 */
6535 void free_netdev(struct net_device *dev)
6536 {
6537 struct napi_struct *p, *n;
6538
6539 release_net(dev_net(dev));
6540
6541 netif_free_tx_queues(dev);
6542 #ifdef CONFIG_SYSFS
6543 kfree(dev->_rx);
6544 #endif
6545
6546 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6547
6548 /* Flush device addresses */
6549 dev_addr_flush(dev);
6550
6551 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6552 netif_napi_del(p);
6553
6554 free_percpu(dev->pcpu_refcnt);
6555 dev->pcpu_refcnt = NULL;
6556
6557 /* Compatibility with error handling in drivers */
6558 if (dev->reg_state == NETREG_UNINITIALIZED) {
6559 netdev_freemem(dev);
6560 return;
6561 }
6562
6563 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6564 dev->reg_state = NETREG_RELEASED;
6565
6566 /* will free via device release */
6567 put_device(&dev->dev);
6568 }
6569 EXPORT_SYMBOL(free_netdev);
6570
6571 /**
6572 * synchronize_net - Synchronize with packet receive processing
6573 *
6574 * Wait for packets currently being received to be done.
6575 * Does not block later packets from starting.
6576 */
6577 void synchronize_net(void)
6578 {
6579 might_sleep();
6580 if (rtnl_is_locked())
6581 synchronize_rcu_expedited();
6582 else
6583 synchronize_rcu();
6584 }
6585 EXPORT_SYMBOL(synchronize_net);
6586
6587 /**
6588 * unregister_netdevice_queue - remove device from the kernel
6589 * @dev: device
6590 * @head: list
6591 *
6592 * This function shuts down a device interface and removes it
6593 * from the kernel tables.
6594 * If head not NULL, device is queued to be unregistered later.
6595 *
6596 * Callers must hold the rtnl semaphore. You may want
6597 * unregister_netdev() instead of this.
6598 */
6599
6600 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6601 {
6602 ASSERT_RTNL();
6603
6604 if (head) {
6605 list_move_tail(&dev->unreg_list, head);
6606 } else {
6607 rollback_registered(dev);
6608 /* Finish processing unregister after unlock */
6609 net_set_todo(dev);
6610 }
6611 }
6612 EXPORT_SYMBOL(unregister_netdevice_queue);
6613
6614 /**
6615 * unregister_netdevice_many - unregister many devices
6616 * @head: list of devices
6617 */
6618 void unregister_netdevice_many(struct list_head *head)
6619 {
6620 struct net_device *dev;
6621
6622 if (!list_empty(head)) {
6623 rollback_registered_many(head);
6624 list_for_each_entry(dev, head, unreg_list)
6625 net_set_todo(dev);
6626 }
6627 }
6628 EXPORT_SYMBOL(unregister_netdevice_many);
6629
6630 /**
6631 * unregister_netdev - remove device from the kernel
6632 * @dev: device
6633 *
6634 * This function shuts down a device interface and removes it
6635 * from the kernel tables.
6636 *
6637 * This is just a wrapper for unregister_netdevice that takes
6638 * the rtnl semaphore. In general you want to use this and not
6639 * unregister_netdevice.
6640 */
6641 void unregister_netdev(struct net_device *dev)
6642 {
6643 rtnl_lock();
6644 unregister_netdevice(dev);
6645 rtnl_unlock();
6646 }
6647 EXPORT_SYMBOL(unregister_netdev);
6648
6649 /**
6650 * dev_change_net_namespace - move device to different nethost namespace
6651 * @dev: device
6652 * @net: network namespace
6653 * @pat: If not NULL name pattern to try if the current device name
6654 * is already taken in the destination network namespace.
6655 *
6656 * This function shuts down a device interface and moves it
6657 * to a new network namespace. On success 0 is returned, on
6658 * a failure a netagive errno code is returned.
6659 *
6660 * Callers must hold the rtnl semaphore.
6661 */
6662
6663 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6664 {
6665 int err;
6666
6667 ASSERT_RTNL();
6668
6669 /* Don't allow namespace local devices to be moved. */
6670 err = -EINVAL;
6671 if (dev->features & NETIF_F_NETNS_LOCAL)
6672 goto out;
6673
6674 /* Ensure the device has been registrered */
6675 if (dev->reg_state != NETREG_REGISTERED)
6676 goto out;
6677
6678 /* Get out if there is nothing todo */
6679 err = 0;
6680 if (net_eq(dev_net(dev), net))
6681 goto out;
6682
6683 /* Pick the destination device name, and ensure
6684 * we can use it in the destination network namespace.
6685 */
6686 err = -EEXIST;
6687 if (__dev_get_by_name(net, dev->name)) {
6688 /* We get here if we can't use the current device name */
6689 if (!pat)
6690 goto out;
6691 if (dev_get_valid_name(net, dev, pat) < 0)
6692 goto out;
6693 }
6694
6695 /*
6696 * And now a mini version of register_netdevice unregister_netdevice.
6697 */
6698
6699 /* If device is running close it first. */
6700 dev_close(dev);
6701
6702 /* And unlink it from device chain */
6703 err = -ENODEV;
6704 unlist_netdevice(dev);
6705
6706 synchronize_net();
6707
6708 /* Shutdown queueing discipline. */
6709 dev_shutdown(dev);
6710
6711 /* Notify protocols, that we are about to destroy
6712 this device. They should clean all the things.
6713
6714 Note that dev->reg_state stays at NETREG_REGISTERED.
6715 This is wanted because this way 8021q and macvlan know
6716 the device is just moving and can keep their slaves up.
6717 */
6718 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6719 rcu_barrier();
6720 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6721 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6722
6723 /*
6724 * Flush the unicast and multicast chains
6725 */
6726 dev_uc_flush(dev);
6727 dev_mc_flush(dev);
6728
6729 /* Send a netdev-removed uevent to the old namespace */
6730 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6731
6732 /* Actually switch the network namespace */
6733 dev_net_set(dev, net);
6734
6735 /* If there is an ifindex conflict assign a new one */
6736 if (__dev_get_by_index(net, dev->ifindex)) {
6737 int iflink = (dev->iflink == dev->ifindex);
6738 dev->ifindex = dev_new_index(net);
6739 if (iflink)
6740 dev->iflink = dev->ifindex;
6741 }
6742
6743 /* Send a netdev-add uevent to the new namespace */
6744 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6745
6746 /* Fixup kobjects */
6747 err = device_rename(&dev->dev, dev->name);
6748 WARN_ON(err);
6749
6750 /* Add the device back in the hashes */
6751 list_netdevice(dev);
6752
6753 /* Notify protocols, that a new device appeared. */
6754 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6755
6756 /*
6757 * Prevent userspace races by waiting until the network
6758 * device is fully setup before sending notifications.
6759 */
6760 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6761
6762 synchronize_net();
6763 err = 0;
6764 out:
6765 return err;
6766 }
6767 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6768
6769 static int dev_cpu_callback(struct notifier_block *nfb,
6770 unsigned long action,
6771 void *ocpu)
6772 {
6773 struct sk_buff **list_skb;
6774 struct sk_buff *skb;
6775 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6776 struct softnet_data *sd, *oldsd;
6777
6778 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6779 return NOTIFY_OK;
6780
6781 local_irq_disable();
6782 cpu = smp_processor_id();
6783 sd = &per_cpu(softnet_data, cpu);
6784 oldsd = &per_cpu(softnet_data, oldcpu);
6785
6786 /* Find end of our completion_queue. */
6787 list_skb = &sd->completion_queue;
6788 while (*list_skb)
6789 list_skb = &(*list_skb)->next;
6790 /* Append completion queue from offline CPU. */
6791 *list_skb = oldsd->completion_queue;
6792 oldsd->completion_queue = NULL;
6793
6794 /* Append output queue from offline CPU. */
6795 if (oldsd->output_queue) {
6796 *sd->output_queue_tailp = oldsd->output_queue;
6797 sd->output_queue_tailp = oldsd->output_queue_tailp;
6798 oldsd->output_queue = NULL;
6799 oldsd->output_queue_tailp = &oldsd->output_queue;
6800 }
6801 /* Append NAPI poll list from offline CPU. */
6802 if (!list_empty(&oldsd->poll_list)) {
6803 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6804 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6805 }
6806
6807 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6808 local_irq_enable();
6809
6810 /* Process offline CPU's input_pkt_queue */
6811 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6812 netif_rx_internal(skb);
6813 input_queue_head_incr(oldsd);
6814 }
6815 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6816 netif_rx_internal(skb);
6817 input_queue_head_incr(oldsd);
6818 }
6819
6820 return NOTIFY_OK;
6821 }
6822
6823
6824 /**
6825 * netdev_increment_features - increment feature set by one
6826 * @all: current feature set
6827 * @one: new feature set
6828 * @mask: mask feature set
6829 *
6830 * Computes a new feature set after adding a device with feature set
6831 * @one to the master device with current feature set @all. Will not
6832 * enable anything that is off in @mask. Returns the new feature set.
6833 */
6834 netdev_features_t netdev_increment_features(netdev_features_t all,
6835 netdev_features_t one, netdev_features_t mask)
6836 {
6837 if (mask & NETIF_F_GEN_CSUM)
6838 mask |= NETIF_F_ALL_CSUM;
6839 mask |= NETIF_F_VLAN_CHALLENGED;
6840
6841 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6842 all &= one | ~NETIF_F_ALL_FOR_ALL;
6843
6844 /* If one device supports hw checksumming, set for all. */
6845 if (all & NETIF_F_GEN_CSUM)
6846 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6847
6848 return all;
6849 }
6850 EXPORT_SYMBOL(netdev_increment_features);
6851
6852 static struct hlist_head * __net_init netdev_create_hash(void)
6853 {
6854 int i;
6855 struct hlist_head *hash;
6856
6857 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6858 if (hash != NULL)
6859 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6860 INIT_HLIST_HEAD(&hash[i]);
6861
6862 return hash;
6863 }
6864
6865 /* Initialize per network namespace state */
6866 static int __net_init netdev_init(struct net *net)
6867 {
6868 if (net != &init_net)
6869 INIT_LIST_HEAD(&net->dev_base_head);
6870
6871 net->dev_name_head = netdev_create_hash();
6872 if (net->dev_name_head == NULL)
6873 goto err_name;
6874
6875 net->dev_index_head = netdev_create_hash();
6876 if (net->dev_index_head == NULL)
6877 goto err_idx;
6878
6879 return 0;
6880
6881 err_idx:
6882 kfree(net->dev_name_head);
6883 err_name:
6884 return -ENOMEM;
6885 }
6886
6887 /**
6888 * netdev_drivername - network driver for the device
6889 * @dev: network device
6890 *
6891 * Determine network driver for device.
6892 */
6893 const char *netdev_drivername(const struct net_device *dev)
6894 {
6895 const struct device_driver *driver;
6896 const struct device *parent;
6897 const char *empty = "";
6898
6899 parent = dev->dev.parent;
6900 if (!parent)
6901 return empty;
6902
6903 driver = parent->driver;
6904 if (driver && driver->name)
6905 return driver->name;
6906 return empty;
6907 }
6908
6909 static int __netdev_printk(const char *level, const struct net_device *dev,
6910 struct va_format *vaf)
6911 {
6912 int r;
6913
6914 if (dev && dev->dev.parent) {
6915 r = dev_printk_emit(level[1] - '0',
6916 dev->dev.parent,
6917 "%s %s %s: %pV",
6918 dev_driver_string(dev->dev.parent),
6919 dev_name(dev->dev.parent),
6920 netdev_name(dev), vaf);
6921 } else if (dev) {
6922 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6923 } else {
6924 r = printk("%s(NULL net_device): %pV", level, vaf);
6925 }
6926
6927 return r;
6928 }
6929
6930 int netdev_printk(const char *level, const struct net_device *dev,
6931 const char *format, ...)
6932 {
6933 struct va_format vaf;
6934 va_list args;
6935 int r;
6936
6937 va_start(args, format);
6938
6939 vaf.fmt = format;
6940 vaf.va = &args;
6941
6942 r = __netdev_printk(level, dev, &vaf);
6943
6944 va_end(args);
6945
6946 return r;
6947 }
6948 EXPORT_SYMBOL(netdev_printk);
6949
6950 #define define_netdev_printk_level(func, level) \
6951 int func(const struct net_device *dev, const char *fmt, ...) \
6952 { \
6953 int r; \
6954 struct va_format vaf; \
6955 va_list args; \
6956 \
6957 va_start(args, fmt); \
6958 \
6959 vaf.fmt = fmt; \
6960 vaf.va = &args; \
6961 \
6962 r = __netdev_printk(level, dev, &vaf); \
6963 \
6964 va_end(args); \
6965 \
6966 return r; \
6967 } \
6968 EXPORT_SYMBOL(func);
6969
6970 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6971 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6972 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6973 define_netdev_printk_level(netdev_err, KERN_ERR);
6974 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6975 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6976 define_netdev_printk_level(netdev_info, KERN_INFO);
6977
6978 static void __net_exit netdev_exit(struct net *net)
6979 {
6980 kfree(net->dev_name_head);
6981 kfree(net->dev_index_head);
6982 }
6983
6984 static struct pernet_operations __net_initdata netdev_net_ops = {
6985 .init = netdev_init,
6986 .exit = netdev_exit,
6987 };
6988
6989 static void __net_exit default_device_exit(struct net *net)
6990 {
6991 struct net_device *dev, *aux;
6992 /*
6993 * Push all migratable network devices back to the
6994 * initial network namespace
6995 */
6996 rtnl_lock();
6997 for_each_netdev_safe(net, dev, aux) {
6998 int err;
6999 char fb_name[IFNAMSIZ];
7000
7001 /* Ignore unmoveable devices (i.e. loopback) */
7002 if (dev->features & NETIF_F_NETNS_LOCAL)
7003 continue;
7004
7005 /* Leave virtual devices for the generic cleanup */
7006 if (dev->rtnl_link_ops)
7007 continue;
7008
7009 /* Push remaining network devices to init_net */
7010 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7011 err = dev_change_net_namespace(dev, &init_net, fb_name);
7012 if (err) {
7013 pr_emerg("%s: failed to move %s to init_net: %d\n",
7014 __func__, dev->name, err);
7015 BUG();
7016 }
7017 }
7018 rtnl_unlock();
7019 }
7020
7021 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7022 {
7023 /* Return with the rtnl_lock held when there are no network
7024 * devices unregistering in any network namespace in net_list.
7025 */
7026 struct net *net;
7027 bool unregistering;
7028 DEFINE_WAIT(wait);
7029
7030 for (;;) {
7031 prepare_to_wait(&netdev_unregistering_wq, &wait,
7032 TASK_UNINTERRUPTIBLE);
7033 unregistering = false;
7034 rtnl_lock();
7035 list_for_each_entry(net, net_list, exit_list) {
7036 if (net->dev_unreg_count > 0) {
7037 unregistering = true;
7038 break;
7039 }
7040 }
7041 if (!unregistering)
7042 break;
7043 __rtnl_unlock();
7044 schedule();
7045 }
7046 finish_wait(&netdev_unregistering_wq, &wait);
7047 }
7048
7049 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7050 {
7051 /* At exit all network devices most be removed from a network
7052 * namespace. Do this in the reverse order of registration.
7053 * Do this across as many network namespaces as possible to
7054 * improve batching efficiency.
7055 */
7056 struct net_device *dev;
7057 struct net *net;
7058 LIST_HEAD(dev_kill_list);
7059
7060 /* To prevent network device cleanup code from dereferencing
7061 * loopback devices or network devices that have been freed
7062 * wait here for all pending unregistrations to complete,
7063 * before unregistring the loopback device and allowing the
7064 * network namespace be freed.
7065 *
7066 * The netdev todo list containing all network devices
7067 * unregistrations that happen in default_device_exit_batch
7068 * will run in the rtnl_unlock() at the end of
7069 * default_device_exit_batch.
7070 */
7071 rtnl_lock_unregistering(net_list);
7072 list_for_each_entry(net, net_list, exit_list) {
7073 for_each_netdev_reverse(net, dev) {
7074 if (dev->rtnl_link_ops)
7075 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7076 else
7077 unregister_netdevice_queue(dev, &dev_kill_list);
7078 }
7079 }
7080 unregister_netdevice_many(&dev_kill_list);
7081 list_del(&dev_kill_list);
7082 rtnl_unlock();
7083 }
7084
7085 static struct pernet_operations __net_initdata default_device_ops = {
7086 .exit = default_device_exit,
7087 .exit_batch = default_device_exit_batch,
7088 };
7089
7090 /*
7091 * Initialize the DEV module. At boot time this walks the device list and
7092 * unhooks any devices that fail to initialise (normally hardware not
7093 * present) and leaves us with a valid list of present and active devices.
7094 *
7095 */
7096
7097 /*
7098 * This is called single threaded during boot, so no need
7099 * to take the rtnl semaphore.
7100 */
7101 static int __init net_dev_init(void)
7102 {
7103 int i, rc = -ENOMEM;
7104
7105 BUG_ON(!dev_boot_phase);
7106
7107 if (dev_proc_init())
7108 goto out;
7109
7110 if (netdev_kobject_init())
7111 goto out;
7112
7113 INIT_LIST_HEAD(&ptype_all);
7114 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7115 INIT_LIST_HEAD(&ptype_base[i]);
7116
7117 INIT_LIST_HEAD(&offload_base);
7118
7119 if (register_pernet_subsys(&netdev_net_ops))
7120 goto out;
7121
7122 /*
7123 * Initialise the packet receive queues.
7124 */
7125
7126 for_each_possible_cpu(i) {
7127 struct softnet_data *sd = &per_cpu(softnet_data, i);
7128
7129 skb_queue_head_init(&sd->input_pkt_queue);
7130 skb_queue_head_init(&sd->process_queue);
7131 INIT_LIST_HEAD(&sd->poll_list);
7132 sd->output_queue_tailp = &sd->output_queue;
7133 #ifdef CONFIG_RPS
7134 sd->csd.func = rps_trigger_softirq;
7135 sd->csd.info = sd;
7136 sd->cpu = i;
7137 #endif
7138
7139 sd->backlog.poll = process_backlog;
7140 sd->backlog.weight = weight_p;
7141 }
7142
7143 dev_boot_phase = 0;
7144
7145 /* The loopback device is special if any other network devices
7146 * is present in a network namespace the loopback device must
7147 * be present. Since we now dynamically allocate and free the
7148 * loopback device ensure this invariant is maintained by
7149 * keeping the loopback device as the first device on the
7150 * list of network devices. Ensuring the loopback devices
7151 * is the first device that appears and the last network device
7152 * that disappears.
7153 */
7154 if (register_pernet_device(&loopback_net_ops))
7155 goto out;
7156
7157 if (register_pernet_device(&default_device_ops))
7158 goto out;
7159
7160 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7161 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7162
7163 hotcpu_notifier(dev_cpu_callback, 0);
7164 dst_init();
7165 rc = 0;
7166 out:
7167 return rc;
7168 }
7169
7170 subsys_initcall(net_dev_init);
This page took 0.261594 seconds and 6 git commands to generate.