Merge branch 'origin' into devel-stable
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 /*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
175
176 /*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
211 {
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228 static void unlist_netdevice(struct net_device *dev)
229 {
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327 }
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331 {
332 }
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 }
336 #endif
337
338 /*******************************************************************************
339
340 Protocol management and registration routines
341
342 *******************************************************************************/
343
344 /*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360 /**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373 void dev_add_pack(struct packet_type *pt)
374 {
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385 }
386 EXPORT_SYMBOL(dev_add_pack);
387
388 /**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401 void __dev_remove_pack(struct packet_type *pt)
402 {
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446 /******************************************************************************
447
448 Device Boot-time Settings Routines
449
450 *******************************************************************************/
451
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455 /**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 {
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480 }
481
482 /**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491 int netdev_boot_setup_check(struct net_device *dev)
492 {
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511 /**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521 unsigned long netdev_boot_base(const char *prefix, int unit)
522 {
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540 }
541
542 /*
543 * Saves at boot time configured settings for any netdevice.
544 */
545 int __init netdev_boot_setup(char *str)
546 {
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567 }
568
569 __setup("netdev=", netdev_boot_setup);
570
571 /*******************************************************************************
572
573 Device Interface Subroutines
574
575 *******************************************************************************/
576
577 /**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 {
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600 }
601 EXPORT_SYMBOL(__dev_get_by_name);
602
603 /**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629 /**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 {
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651 }
652 EXPORT_SYMBOL(dev_get_by_name);
653
654 /**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_index);
679
680 /**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 {
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706 /**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_index);
729
730 /**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 {
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(dev_getbyhwaddr);
759
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786 /**
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
800 {
801 struct net_device *dev, *ret;
802
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
810 }
811 }
812 rcu_read_unlock();
813 return ret;
814 }
815 EXPORT_SYMBOL(dev_get_by_flags);
816
817 /**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
824 */
825 int dev_valid_name(const char *name)
826 {
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
840 }
841 EXPORT_SYMBOL(dev_valid_name);
842
843 /**
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859 {
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
880
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907 }
908
909 /**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923 int dev_alloc_name(struct net_device *dev, const char *name)
924 {
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935 }
936 EXPORT_SYMBOL(dev_alloc_name);
937
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940 {
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952 }
953
954 /**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
962 int dev_change_name(struct net_device *dev, const char *newname)
963 {
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
968
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
971
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
984
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
995 }
996
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1006
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1020 }
1021 }
1022
1023 return err;
1024 }
1025
1026 /**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1031 *
1032 * Set ifalias for a device,
1033 */
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035 {
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055 }
1056
1057
1058 /**
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064 void netdev_features_change(struct net_device *dev)
1065 {
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1067 }
1068 EXPORT_SYMBOL(netdev_features_change);
1069
1070 /**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078 void netdev_state_change(struct net_device *dev)
1079 {
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084 }
1085 EXPORT_SYMBOL(netdev_state_change);
1086
1087 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1088 {
1089 call_netdevice_notifiers(event, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_bonding_change);
1092
1093 /**
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
1103 void dev_load(struct net *net, const char *name)
1104 {
1105 struct net_device *dev;
1106
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1110
1111 if (!dev && capable(CAP_NET_ADMIN))
1112 request_module("%s", name);
1113 }
1114 EXPORT_SYMBOL(dev_load);
1115
1116 static int __dev_open(struct net_device *dev)
1117 {
1118 const struct net_device_ops *ops = dev->netdev_ops;
1119 int ret;
1120
1121 ASSERT_RTNL();
1122
1123 /*
1124 * Is it even present?
1125 */
1126 if (!netif_device_present(dev))
1127 return -ENODEV;
1128
1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1130 ret = notifier_to_errno(ret);
1131 if (ret)
1132 return ret;
1133
1134 /*
1135 * Call device private open method
1136 */
1137 set_bit(__LINK_STATE_START, &dev->state);
1138
1139 if (ops->ndo_validate_addr)
1140 ret = ops->ndo_validate_addr(dev);
1141
1142 if (!ret && ops->ndo_open)
1143 ret = ops->ndo_open(dev);
1144
1145 /*
1146 * If it went open OK then:
1147 */
1148
1149 if (ret)
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151 else {
1152 /*
1153 * Set the flags.
1154 */
1155 dev->flags |= IFF_UP;
1156
1157 /*
1158 * Enable NET_DMA
1159 */
1160 net_dmaengine_get();
1161
1162 /*
1163 * Initialize multicasting status
1164 */
1165 dev_set_rx_mode(dev);
1166
1167 /*
1168 * Wakeup transmit queue engine
1169 */
1170 dev_activate(dev);
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * dev_open - prepare an interface for use.
1178 * @dev: device to open
1179 *
1180 * Takes a device from down to up state. The device's private open
1181 * function is invoked and then the multicast lists are loaded. Finally
1182 * the device is moved into the up state and a %NETDEV_UP message is
1183 * sent to the netdev notifier chain.
1184 *
1185 * Calling this function on an active interface is a nop. On a failure
1186 * a negative errno code is returned.
1187 */
1188 int dev_open(struct net_device *dev)
1189 {
1190 int ret;
1191
1192 /*
1193 * Is it already up?
1194 */
1195 if (dev->flags & IFF_UP)
1196 return 0;
1197
1198 /*
1199 * Open device
1200 */
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1204
1205 /*
1206 * ... and announce new interface.
1207 */
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1210
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(dev_open);
1214
1215 static int __dev_close(struct net_device *dev)
1216 {
1217 const struct net_device_ops *ops = dev->netdev_ops;
1218
1219 ASSERT_RTNL();
1220 might_sleep();
1221
1222 /*
1223 * Tell people we are going down, so that they can
1224 * prepare to death, when device is still operating.
1225 */
1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1227
1228 clear_bit(__LINK_STATE_START, &dev->state);
1229
1230 /* Synchronize to scheduled poll. We cannot touch poll list,
1231 * it can be even on different cpu. So just clear netif_running().
1232 *
1233 * dev->stop() will invoke napi_disable() on all of it's
1234 * napi_struct instances on this device.
1235 */
1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1237
1238 dev_deactivate(dev);
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 /*
1251 * Device is now down.
1252 */
1253
1254 dev->flags &= ~IFF_UP;
1255
1256 /*
1257 * Shutdown NET_DMA
1258 */
1259 net_dmaengine_put();
1260
1261 return 0;
1262 }
1263
1264 /**
1265 * dev_close - shutdown an interface.
1266 * @dev: device to shutdown
1267 *
1268 * This function moves an active device into down state. A
1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1271 * chain.
1272 */
1273 int dev_close(struct net_device *dev)
1274 {
1275 if (!(dev->flags & IFF_UP))
1276 return 0;
1277
1278 __dev_close(dev);
1279
1280 /*
1281 * Tell people we are down
1282 */
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1284 call_netdevice_notifiers(NETDEV_DOWN, dev);
1285
1286 return 0;
1287 }
1288 EXPORT_SYMBOL(dev_close);
1289
1290
1291 /**
1292 * dev_disable_lro - disable Large Receive Offload on a device
1293 * @dev: device
1294 *
1295 * Disable Large Receive Offload (LRO) on a net device. Must be
1296 * called under RTNL. This is needed if received packets may be
1297 * forwarded to another interface.
1298 */
1299 void dev_disable_lro(struct net_device *dev)
1300 {
1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1302 dev->ethtool_ops->set_flags) {
1303 u32 flags = dev->ethtool_ops->get_flags(dev);
1304 if (flags & ETH_FLAG_LRO) {
1305 flags &= ~ETH_FLAG_LRO;
1306 dev->ethtool_ops->set_flags(dev, flags);
1307 }
1308 }
1309 WARN_ON(dev->features & NETIF_F_LRO);
1310 }
1311 EXPORT_SYMBOL(dev_disable_lro);
1312
1313
1314 static int dev_boot_phase = 1;
1315
1316 /*
1317 * Device change register/unregister. These are not inline or static
1318 * as we export them to the world.
1319 */
1320
1321 /**
1322 * register_netdevice_notifier - register a network notifier block
1323 * @nb: notifier
1324 *
1325 * Register a notifier to be called when network device events occur.
1326 * The notifier passed is linked into the kernel structures and must
1327 * not be reused until it has been unregistered. A negative errno code
1328 * is returned on a failure.
1329 *
1330 * When registered all registration and up events are replayed
1331 * to the new notifier to allow device to have a race free
1332 * view of the network device list.
1333 */
1334
1335 int register_netdevice_notifier(struct notifier_block *nb)
1336 {
1337 struct net_device *dev;
1338 struct net_device *last;
1339 struct net *net;
1340 int err;
1341
1342 rtnl_lock();
1343 err = raw_notifier_chain_register(&netdev_chain, nb);
1344 if (err)
1345 goto unlock;
1346 if (dev_boot_phase)
1347 goto unlock;
1348 for_each_net(net) {
1349 for_each_netdev(net, dev) {
1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1351 err = notifier_to_errno(err);
1352 if (err)
1353 goto rollback;
1354
1355 if (!(dev->flags & IFF_UP))
1356 continue;
1357
1358 nb->notifier_call(nb, NETDEV_UP, dev);
1359 }
1360 }
1361
1362 unlock:
1363 rtnl_unlock();
1364 return err;
1365
1366 rollback:
1367 last = dev;
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 if (dev == last)
1371 break;
1372
1373 if (dev->flags & IFF_UP) {
1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1375 nb->notifier_call(nb, NETDEV_DOWN, dev);
1376 }
1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1379 }
1380 }
1381
1382 raw_notifier_chain_unregister(&netdev_chain, nb);
1383 goto unlock;
1384 }
1385 EXPORT_SYMBOL(register_netdevice_notifier);
1386
1387 /**
1388 * unregister_netdevice_notifier - unregister a network notifier block
1389 * @nb: notifier
1390 *
1391 * Unregister a notifier previously registered by
1392 * register_netdevice_notifier(). The notifier is unlinked into the
1393 * kernel structures and may then be reused. A negative errno code
1394 * is returned on a failure.
1395 */
1396
1397 int unregister_netdevice_notifier(struct notifier_block *nb)
1398 {
1399 int err;
1400
1401 rtnl_lock();
1402 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1403 rtnl_unlock();
1404 return err;
1405 }
1406 EXPORT_SYMBOL(unregister_netdevice_notifier);
1407
1408 /**
1409 * call_netdevice_notifiers - call all network notifier blocks
1410 * @val: value passed unmodified to notifier function
1411 * @dev: net_device pointer passed unmodified to notifier function
1412 *
1413 * Call all network notifier blocks. Parameters and return value
1414 * are as for raw_notifier_call_chain().
1415 */
1416
1417 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1418 {
1419 return raw_notifier_call_chain(&netdev_chain, val, dev);
1420 }
1421
1422 /* When > 0 there are consumers of rx skb time stamps */
1423 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1424
1425 void net_enable_timestamp(void)
1426 {
1427 atomic_inc(&netstamp_needed);
1428 }
1429 EXPORT_SYMBOL(net_enable_timestamp);
1430
1431 void net_disable_timestamp(void)
1432 {
1433 atomic_dec(&netstamp_needed);
1434 }
1435 EXPORT_SYMBOL(net_disable_timestamp);
1436
1437 static inline void net_timestamp(struct sk_buff *skb)
1438 {
1439 if (atomic_read(&netstamp_needed))
1440 __net_timestamp(skb);
1441 else
1442 skb->tstamp.tv64 = 0;
1443 }
1444
1445 /**
1446 * dev_forward_skb - loopback an skb to another netif
1447 *
1448 * @dev: destination network device
1449 * @skb: buffer to forward
1450 *
1451 * return values:
1452 * NET_RX_SUCCESS (no congestion)
1453 * NET_RX_DROP (packet was dropped)
1454 *
1455 * dev_forward_skb can be used for injecting an skb from the
1456 * start_xmit function of one device into the receive queue
1457 * of another device.
1458 *
1459 * The receiving device may be in another namespace, so
1460 * we have to clear all information in the skb that could
1461 * impact namespace isolation.
1462 */
1463 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1464 {
1465 skb_orphan(skb);
1466
1467 if (!(dev->flags & IFF_UP))
1468 return NET_RX_DROP;
1469
1470 if (skb->len > (dev->mtu + dev->hard_header_len))
1471 return NET_RX_DROP;
1472
1473 skb_set_dev(skb, dev);
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
1477 return netif_rx(skb);
1478 }
1479 EXPORT_SYMBOL_GPL(dev_forward_skb);
1480
1481 /*
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1484 */
1485
1486 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1487 {
1488 struct packet_type *ptype;
1489
1490 #ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493 #else
1494 net_timestamp(skb);
1495 #endif
1496
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1501 */
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1506 if (!skb2)
1507 break;
1508
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1512 */
1513 skb_reset_mac_header(skb2);
1514
1515 if (skb_network_header(skb2) < skb2->data ||
1516 skb2->network_header > skb2->tail) {
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
1521 skb_reset_network_header(skb2);
1522 }
1523
1524 skb2->transport_header = skb2->network_header;
1525 skb2->pkt_type = PACKET_OUTGOING;
1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1527 }
1528 }
1529 rcu_read_unlock();
1530 }
1531
1532
1533 static inline void __netif_reschedule(struct Qdisc *q)
1534 {
1535 struct softnet_data *sd;
1536 unsigned long flags;
1537
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1544 }
1545
1546 void __netif_schedule(struct Qdisc *q)
1547 {
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
1550 }
1551 EXPORT_SYMBOL(__netif_schedule);
1552
1553 void dev_kfree_skb_irq(struct sk_buff *skb)
1554 {
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
1558
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
1566 }
1567 EXPORT_SYMBOL(dev_kfree_skb_irq);
1568
1569 void dev_kfree_skb_any(struct sk_buff *skb)
1570 {
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1575 }
1576 EXPORT_SYMBOL(dev_kfree_skb_any);
1577
1578
1579 /**
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1582 *
1583 * Mark device as removed from system and therefore no longer available.
1584 */
1585 void netif_device_detach(struct net_device *dev)
1586 {
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
1589 netif_tx_stop_all_queues(dev);
1590 }
1591 }
1592 EXPORT_SYMBOL(netif_device_detach);
1593
1594 /**
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1597 *
1598 * Mark device as attached from system and restart if needed.
1599 */
1600 void netif_device_attach(struct net_device *dev)
1601 {
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
1604 netif_tx_wake_all_queues(dev);
1605 __netdev_watchdog_up(dev);
1606 }
1607 }
1608 EXPORT_SYMBOL(netif_device_attach);
1609
1610 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1611 {
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
1619 }
1620
1621 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1622 {
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1625
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635
1636 /**
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1640 *
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1644 */
1645 #ifdef CONFIG_NET_NS
1646 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1647 {
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657 #ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659 #endif
1660 }
1661 skb->dev = dev;
1662 }
1663 EXPORT_SYMBOL(skb_set_dev);
1664 #endif /* CONFIG_NET_NS */
1665
1666 /*
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1669 */
1670 int skb_checksum_help(struct sk_buff *skb)
1671 {
1672 __wsum csum;
1673 int ret = 0, offset;
1674
1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
1676 goto out_set_summed;
1677
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1681 }
1682
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1686
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1689
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1695 }
1696
1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1698 out_set_summed:
1699 skb->ip_summed = CHECKSUM_NONE;
1700 out:
1701 return ret;
1702 }
1703 EXPORT_SYMBOL(skb_checksum_help);
1704
1705 /**
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
1708 * @features: features for the output path (see dev->features)
1709 *
1710 * This function segments the given skb and returns a list of segments.
1711 *
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
1714 */
1715 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1716 {
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
1719 __be16 type = skb->protocol;
1720 int err;
1721
1722 skb_reset_mac_header(skb);
1723 skb->mac_len = skb->network_header - skb->mac_header;
1724 __skb_pull(skb, skb->mac_len);
1725
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1729
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1732
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1738
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1742 }
1743
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
1755 }
1756 segs = ptype->gso_segment(skb, features);
1757 break;
1758 }
1759 }
1760 rcu_read_unlock();
1761
1762 __skb_push(skb, skb->data - skb_mac_header(skb));
1763
1764 return segs;
1765 }
1766 EXPORT_SYMBOL(skb_gso_segment);
1767
1768 /* Take action when hardware reception checksum errors are detected. */
1769 #ifdef CONFIG_BUG
1770 void netdev_rx_csum_fault(struct net_device *dev)
1771 {
1772 if (net_ratelimit()) {
1773 printk(KERN_ERR "%s: hw csum failure.\n",
1774 dev ? dev->name : "<unknown>");
1775 dump_stack();
1776 }
1777 }
1778 EXPORT_SYMBOL(netdev_rx_csum_fault);
1779 #endif
1780
1781 /* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1784 */
1785
1786 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1787 {
1788 #ifdef CONFIG_HIGHMEM
1789 int i;
1790
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1793
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1797
1798 #endif
1799 return 0;
1800 }
1801
1802 struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1804 };
1805
1806 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1807
1808 static void dev_gso_skb_destructor(struct sk_buff *skb)
1809 {
1810 struct dev_gso_cb *cb;
1811
1812 do {
1813 struct sk_buff *nskb = skb->next;
1814
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1819
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1823 }
1824
1825 /**
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1828 *
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1831 */
1832 static int dev_gso_segment(struct sk_buff *skb)
1833 {
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1838
1839 segs = skb_gso_segment(skb, features);
1840
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
1844
1845 if (IS_ERR(segs))
1846 return PTR_ERR(segs);
1847
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1851
1852 return 0;
1853 }
1854
1855 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
1857 {
1858 const struct net_device_ops *ops = dev->netdev_ops;
1859 int rc = NETDEV_TX_OK;
1860
1861 if (likely(!skb->next)) {
1862 if (!list_empty(&ptype_all))
1863 dev_queue_xmit_nit(skb, dev);
1864
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1870 }
1871
1872 /*
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1875 */
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1878
1879 rc = ops->ndo_start_xmit(skb, dev);
1880 if (rc == NETDEV_TX_OK)
1881 txq_trans_update(txq);
1882 /*
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1888 *
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1895 */
1896 return rc;
1897 }
1898
1899 gso:
1900 do {
1901 struct sk_buff *nskb = skb->next;
1902
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
1905
1906 /*
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1912
1913 rc = ops->ndo_start_xmit(nskb, dev);
1914 if (unlikely(rc != NETDEV_TX_OK)) {
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
1917 nskb->next = skb->next;
1918 skb->next = nskb;
1919 return rc;
1920 }
1921 txq_trans_update(txq);
1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1923 return NETDEV_TX_BUSY;
1924 } while (skb->next);
1925
1926 out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
1929 out_kfree_skb:
1930 kfree_skb(skb);
1931 return rc;
1932 }
1933
1934 static u32 skb_tx_hashrnd;
1935
1936 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1937 {
1938 u32 hash;
1939
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
1942 while (unlikely(hash >= dev->real_num_tx_queues))
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1945 }
1946
1947 if (skb->sk && skb->sk->sk_hash)
1948 hash = skb->sk->sk_hash;
1949 else
1950 hash = skb->protocol;
1951
1952 hash = jhash_1word(hash, skb_tx_hashrnd);
1953
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1955 }
1956 EXPORT_SYMBOL(skb_tx_hash);
1957
1958 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1959 {
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
1962 WARN(1, "%s selects TX queue %d, but "
1963 "real number of TX queues is %d\n",
1964 dev->name, queue_index,
1965 dev->real_num_tx_queues);
1966 }
1967 return 0;
1968 }
1969 return queue_index;
1970 }
1971
1972 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1973 struct sk_buff *skb)
1974 {
1975 u16 queue_index;
1976 struct sock *sk = skb->sk;
1977
1978 if (sk_tx_queue_recorded(sk)) {
1979 queue_index = sk_tx_queue_get(sk);
1980 } else {
1981 const struct net_device_ops *ops = dev->netdev_ops;
1982
1983 if (ops->ndo_select_queue) {
1984 queue_index = ops->ndo_select_queue(dev, skb);
1985 queue_index = dev_cap_txqueue(dev, queue_index);
1986 } else {
1987 queue_index = 0;
1988 if (dev->real_num_tx_queues > 1)
1989 queue_index = skb_tx_hash(dev, skb);
1990
1991 if (sk && sk->sk_dst_cache)
1992 sk_tx_queue_set(sk, queue_index);
1993 }
1994 }
1995
1996 skb_set_queue_mapping(skb, queue_index);
1997 return netdev_get_tx_queue(dev, queue_index);
1998 }
1999
2000 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2001 struct net_device *dev,
2002 struct netdev_queue *txq)
2003 {
2004 spinlock_t *root_lock = qdisc_lock(q);
2005 int rc;
2006
2007 spin_lock(root_lock);
2008 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2009 kfree_skb(skb);
2010 rc = NET_XMIT_DROP;
2011 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2012 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2013 /*
2014 * This is a work-conserving queue; there are no old skbs
2015 * waiting to be sent out; and the qdisc is not running -
2016 * xmit the skb directly.
2017 */
2018 __qdisc_update_bstats(q, skb->len);
2019 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2020 __qdisc_run(q);
2021 else
2022 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2023
2024 rc = NET_XMIT_SUCCESS;
2025 } else {
2026 rc = qdisc_enqueue_root(skb, q);
2027 qdisc_run(q);
2028 }
2029 spin_unlock(root_lock);
2030
2031 return rc;
2032 }
2033
2034 /*
2035 * Returns true if either:
2036 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2037 * 2. skb is fragmented and the device does not support SG, or if
2038 * at least one of fragments is in highmem and device does not
2039 * support DMA from it.
2040 */
2041 static inline int skb_needs_linearize(struct sk_buff *skb,
2042 struct net_device *dev)
2043 {
2044 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2045 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2046 illegal_highdma(dev, skb)));
2047 }
2048
2049 /**
2050 * dev_queue_xmit - transmit a buffer
2051 * @skb: buffer to transmit
2052 *
2053 * Queue a buffer for transmission to a network device. The caller must
2054 * have set the device and priority and built the buffer before calling
2055 * this function. The function can be called from an interrupt.
2056 *
2057 * A negative errno code is returned on a failure. A success does not
2058 * guarantee the frame will be transmitted as it may be dropped due
2059 * to congestion or traffic shaping.
2060 *
2061 * -----------------------------------------------------------------------------------
2062 * I notice this method can also return errors from the queue disciplines,
2063 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2064 * be positive.
2065 *
2066 * Regardless of the return value, the skb is consumed, so it is currently
2067 * difficult to retry a send to this method. (You can bump the ref count
2068 * before sending to hold a reference for retry if you are careful.)
2069 *
2070 * When calling this method, interrupts MUST be enabled. This is because
2071 * the BH enable code must have IRQs enabled so that it will not deadlock.
2072 * --BLG
2073 */
2074 int dev_queue_xmit(struct sk_buff *skb)
2075 {
2076 struct net_device *dev = skb->dev;
2077 struct netdev_queue *txq;
2078 struct Qdisc *q;
2079 int rc = -ENOMEM;
2080
2081 /* GSO will handle the following emulations directly. */
2082 if (netif_needs_gso(dev, skb))
2083 goto gso;
2084
2085 /* Convert a paged skb to linear, if required */
2086 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2087 goto out_kfree_skb;
2088
2089 /* If packet is not checksummed and device does not support
2090 * checksumming for this protocol, complete checksumming here.
2091 */
2092 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2093 skb_set_transport_header(skb, skb->csum_start -
2094 skb_headroom(skb));
2095 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2096 goto out_kfree_skb;
2097 }
2098
2099 gso:
2100 /* Disable soft irqs for various locks below. Also
2101 * stops preemption for RCU.
2102 */
2103 rcu_read_lock_bh();
2104
2105 txq = dev_pick_tx(dev, skb);
2106 q = rcu_dereference_bh(txq->qdisc);
2107
2108 #ifdef CONFIG_NET_CLS_ACT
2109 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2110 #endif
2111 if (q->enqueue) {
2112 rc = __dev_xmit_skb(skb, q, dev, txq);
2113 goto out;
2114 }
2115
2116 /* The device has no queue. Common case for software devices:
2117 loopback, all the sorts of tunnels...
2118
2119 Really, it is unlikely that netif_tx_lock protection is necessary
2120 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2121 counters.)
2122 However, it is possible, that they rely on protection
2123 made by us here.
2124
2125 Check this and shot the lock. It is not prone from deadlocks.
2126 Either shot noqueue qdisc, it is even simpler 8)
2127 */
2128 if (dev->flags & IFF_UP) {
2129 int cpu = smp_processor_id(); /* ok because BHs are off */
2130
2131 if (txq->xmit_lock_owner != cpu) {
2132
2133 HARD_TX_LOCK(dev, txq, cpu);
2134
2135 if (!netif_tx_queue_stopped(txq)) {
2136 rc = dev_hard_start_xmit(skb, dev, txq);
2137 if (dev_xmit_complete(rc)) {
2138 HARD_TX_UNLOCK(dev, txq);
2139 goto out;
2140 }
2141 }
2142 HARD_TX_UNLOCK(dev, txq);
2143 if (net_ratelimit())
2144 printk(KERN_CRIT "Virtual device %s asks to "
2145 "queue packet!\n", dev->name);
2146 } else {
2147 /* Recursion is detected! It is possible,
2148 * unfortunately */
2149 if (net_ratelimit())
2150 printk(KERN_CRIT "Dead loop on virtual device "
2151 "%s, fix it urgently!\n", dev->name);
2152 }
2153 }
2154
2155 rc = -ENETDOWN;
2156 rcu_read_unlock_bh();
2157
2158 out_kfree_skb:
2159 kfree_skb(skb);
2160 return rc;
2161 out:
2162 rcu_read_unlock_bh();
2163 return rc;
2164 }
2165 EXPORT_SYMBOL(dev_queue_xmit);
2166
2167
2168 /*=======================================================================
2169 Receiver routines
2170 =======================================================================*/
2171
2172 int netdev_max_backlog __read_mostly = 1000;
2173 int netdev_budget __read_mostly = 300;
2174 int weight_p __read_mostly = 64; /* old backlog weight */
2175
2176 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2177
2178
2179 /**
2180 * netif_rx - post buffer to the network code
2181 * @skb: buffer to post
2182 *
2183 * This function receives a packet from a device driver and queues it for
2184 * the upper (protocol) levels to process. It always succeeds. The buffer
2185 * may be dropped during processing for congestion control or by the
2186 * protocol layers.
2187 *
2188 * return values:
2189 * NET_RX_SUCCESS (no congestion)
2190 * NET_RX_DROP (packet was dropped)
2191 *
2192 */
2193
2194 int netif_rx(struct sk_buff *skb)
2195 {
2196 struct softnet_data *queue;
2197 unsigned long flags;
2198
2199 /* if netpoll wants it, pretend we never saw it */
2200 if (netpoll_rx(skb))
2201 return NET_RX_DROP;
2202
2203 if (!skb->tstamp.tv64)
2204 net_timestamp(skb);
2205
2206 /*
2207 * The code is rearranged so that the path is the most
2208 * short when CPU is congested, but is still operating.
2209 */
2210 local_irq_save(flags);
2211 queue = &__get_cpu_var(softnet_data);
2212
2213 __get_cpu_var(netdev_rx_stat).total++;
2214 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2215 if (queue->input_pkt_queue.qlen) {
2216 enqueue:
2217 __skb_queue_tail(&queue->input_pkt_queue, skb);
2218 local_irq_restore(flags);
2219 return NET_RX_SUCCESS;
2220 }
2221
2222 napi_schedule(&queue->backlog);
2223 goto enqueue;
2224 }
2225
2226 __get_cpu_var(netdev_rx_stat).dropped++;
2227 local_irq_restore(flags);
2228
2229 kfree_skb(skb);
2230 return NET_RX_DROP;
2231 }
2232 EXPORT_SYMBOL(netif_rx);
2233
2234 int netif_rx_ni(struct sk_buff *skb)
2235 {
2236 int err;
2237
2238 preempt_disable();
2239 err = netif_rx(skb);
2240 if (local_softirq_pending())
2241 do_softirq();
2242 preempt_enable();
2243
2244 return err;
2245 }
2246 EXPORT_SYMBOL(netif_rx_ni);
2247
2248 static void net_tx_action(struct softirq_action *h)
2249 {
2250 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2251
2252 if (sd->completion_queue) {
2253 struct sk_buff *clist;
2254
2255 local_irq_disable();
2256 clist = sd->completion_queue;
2257 sd->completion_queue = NULL;
2258 local_irq_enable();
2259
2260 while (clist) {
2261 struct sk_buff *skb = clist;
2262 clist = clist->next;
2263
2264 WARN_ON(atomic_read(&skb->users));
2265 __kfree_skb(skb);
2266 }
2267 }
2268
2269 if (sd->output_queue) {
2270 struct Qdisc *head;
2271
2272 local_irq_disable();
2273 head = sd->output_queue;
2274 sd->output_queue = NULL;
2275 local_irq_enable();
2276
2277 while (head) {
2278 struct Qdisc *q = head;
2279 spinlock_t *root_lock;
2280
2281 head = head->next_sched;
2282
2283 root_lock = qdisc_lock(q);
2284 if (spin_trylock(root_lock)) {
2285 smp_mb__before_clear_bit();
2286 clear_bit(__QDISC_STATE_SCHED,
2287 &q->state);
2288 qdisc_run(q);
2289 spin_unlock(root_lock);
2290 } else {
2291 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2292 &q->state)) {
2293 __netif_reschedule(q);
2294 } else {
2295 smp_mb__before_clear_bit();
2296 clear_bit(__QDISC_STATE_SCHED,
2297 &q->state);
2298 }
2299 }
2300 }
2301 }
2302 }
2303
2304 static inline int deliver_skb(struct sk_buff *skb,
2305 struct packet_type *pt_prev,
2306 struct net_device *orig_dev)
2307 {
2308 atomic_inc(&skb->users);
2309 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2310 }
2311
2312 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2313
2314 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2315 /* This hook is defined here for ATM LANE */
2316 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2317 unsigned char *addr) __read_mostly;
2318 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2319 #endif
2320
2321 /*
2322 * If bridge module is loaded call bridging hook.
2323 * returns NULL if packet was consumed.
2324 */
2325 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2326 struct sk_buff *skb) __read_mostly;
2327 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2328
2329 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2330 struct packet_type **pt_prev, int *ret,
2331 struct net_device *orig_dev)
2332 {
2333 struct net_bridge_port *port;
2334
2335 if (skb->pkt_type == PACKET_LOOPBACK ||
2336 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2337 return skb;
2338
2339 if (*pt_prev) {
2340 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2341 *pt_prev = NULL;
2342 }
2343
2344 return br_handle_frame_hook(port, skb);
2345 }
2346 #else
2347 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2348 #endif
2349
2350 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2351 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2352 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2353
2354 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2355 struct packet_type **pt_prev,
2356 int *ret,
2357 struct net_device *orig_dev)
2358 {
2359 if (skb->dev->macvlan_port == NULL)
2360 return skb;
2361
2362 if (*pt_prev) {
2363 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2364 *pt_prev = NULL;
2365 }
2366 return macvlan_handle_frame_hook(skb);
2367 }
2368 #else
2369 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2370 #endif
2371
2372 #ifdef CONFIG_NET_CLS_ACT
2373 /* TODO: Maybe we should just force sch_ingress to be compiled in
2374 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2375 * a compare and 2 stores extra right now if we dont have it on
2376 * but have CONFIG_NET_CLS_ACT
2377 * NOTE: This doesnt stop any functionality; if you dont have
2378 * the ingress scheduler, you just cant add policies on ingress.
2379 *
2380 */
2381 static int ing_filter(struct sk_buff *skb)
2382 {
2383 struct net_device *dev = skb->dev;
2384 u32 ttl = G_TC_RTTL(skb->tc_verd);
2385 struct netdev_queue *rxq;
2386 int result = TC_ACT_OK;
2387 struct Qdisc *q;
2388
2389 if (MAX_RED_LOOP < ttl++) {
2390 printk(KERN_WARNING
2391 "Redir loop detected Dropping packet (%d->%d)\n",
2392 skb->skb_iif, dev->ifindex);
2393 return TC_ACT_SHOT;
2394 }
2395
2396 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2397 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2398
2399 rxq = &dev->rx_queue;
2400
2401 q = rxq->qdisc;
2402 if (q != &noop_qdisc) {
2403 spin_lock(qdisc_lock(q));
2404 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2405 result = qdisc_enqueue_root(skb, q);
2406 spin_unlock(qdisc_lock(q));
2407 }
2408
2409 return result;
2410 }
2411
2412 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2413 struct packet_type **pt_prev,
2414 int *ret, struct net_device *orig_dev)
2415 {
2416 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2417 goto out;
2418
2419 if (*pt_prev) {
2420 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2421 *pt_prev = NULL;
2422 } else {
2423 /* Huh? Why does turning on AF_PACKET affect this? */
2424 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2425 }
2426
2427 switch (ing_filter(skb)) {
2428 case TC_ACT_SHOT:
2429 case TC_ACT_STOLEN:
2430 kfree_skb(skb);
2431 return NULL;
2432 }
2433
2434 out:
2435 skb->tc_verd = 0;
2436 return skb;
2437 }
2438 #endif
2439
2440 /*
2441 * netif_nit_deliver - deliver received packets to network taps
2442 * @skb: buffer
2443 *
2444 * This function is used to deliver incoming packets to network
2445 * taps. It should be used when the normal netif_receive_skb path
2446 * is bypassed, for example because of VLAN acceleration.
2447 */
2448 void netif_nit_deliver(struct sk_buff *skb)
2449 {
2450 struct packet_type *ptype;
2451
2452 if (list_empty(&ptype_all))
2453 return;
2454
2455 skb_reset_network_header(skb);
2456 skb_reset_transport_header(skb);
2457 skb->mac_len = skb->network_header - skb->mac_header;
2458
2459 rcu_read_lock();
2460 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2461 if (!ptype->dev || ptype->dev == skb->dev)
2462 deliver_skb(skb, ptype, skb->dev);
2463 }
2464 rcu_read_unlock();
2465 }
2466
2467 /**
2468 * netif_receive_skb - process receive buffer from network
2469 * @skb: buffer to process
2470 *
2471 * netif_receive_skb() is the main receive data processing function.
2472 * It always succeeds. The buffer may be dropped during processing
2473 * for congestion control or by the protocol layers.
2474 *
2475 * This function may only be called from softirq context and interrupts
2476 * should be enabled.
2477 *
2478 * Return values (usually ignored):
2479 * NET_RX_SUCCESS: no congestion
2480 * NET_RX_DROP: packet was dropped
2481 */
2482 int netif_receive_skb(struct sk_buff *skb)
2483 {
2484 struct packet_type *ptype, *pt_prev;
2485 struct net_device *orig_dev;
2486 struct net_device *null_or_orig;
2487 struct net_device *null_or_bond;
2488 int ret = NET_RX_DROP;
2489 __be16 type;
2490
2491 if (!skb->tstamp.tv64)
2492 net_timestamp(skb);
2493
2494 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2495 return NET_RX_SUCCESS;
2496
2497 /* if we've gotten here through NAPI, check netpoll */
2498 if (netpoll_receive_skb(skb))
2499 return NET_RX_DROP;
2500
2501 if (!skb->skb_iif)
2502 skb->skb_iif = skb->dev->ifindex;
2503
2504 null_or_orig = NULL;
2505 orig_dev = skb->dev;
2506 if (orig_dev->master) {
2507 if (skb_bond_should_drop(skb))
2508 null_or_orig = orig_dev; /* deliver only exact match */
2509 else
2510 skb->dev = orig_dev->master;
2511 }
2512
2513 __get_cpu_var(netdev_rx_stat).total++;
2514
2515 skb_reset_network_header(skb);
2516 skb_reset_transport_header(skb);
2517 skb->mac_len = skb->network_header - skb->mac_header;
2518
2519 pt_prev = NULL;
2520
2521 rcu_read_lock();
2522
2523 #ifdef CONFIG_NET_CLS_ACT
2524 if (skb->tc_verd & TC_NCLS) {
2525 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2526 goto ncls;
2527 }
2528 #endif
2529
2530 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2531 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2532 ptype->dev == orig_dev) {
2533 if (pt_prev)
2534 ret = deliver_skb(skb, pt_prev, orig_dev);
2535 pt_prev = ptype;
2536 }
2537 }
2538
2539 #ifdef CONFIG_NET_CLS_ACT
2540 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2541 if (!skb)
2542 goto out;
2543 ncls:
2544 #endif
2545
2546 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2547 if (!skb)
2548 goto out;
2549 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2550 if (!skb)
2551 goto out;
2552
2553 /*
2554 * Make sure frames received on VLAN interfaces stacked on
2555 * bonding interfaces still make their way to any base bonding
2556 * device that may have registered for a specific ptype. The
2557 * handler may have to adjust skb->dev and orig_dev.
2558 */
2559 null_or_bond = NULL;
2560 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2561 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2562 null_or_bond = vlan_dev_real_dev(skb->dev);
2563 }
2564
2565 type = skb->protocol;
2566 list_for_each_entry_rcu(ptype,
2567 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2568 if (ptype->type == type && (ptype->dev == null_or_orig ||
2569 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2570 ptype->dev == null_or_bond)) {
2571 if (pt_prev)
2572 ret = deliver_skb(skb, pt_prev, orig_dev);
2573 pt_prev = ptype;
2574 }
2575 }
2576
2577 if (pt_prev) {
2578 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2579 } else {
2580 kfree_skb(skb);
2581 /* Jamal, now you will not able to escape explaining
2582 * me how you were going to use this. :-)
2583 */
2584 ret = NET_RX_DROP;
2585 }
2586
2587 out:
2588 rcu_read_unlock();
2589 return ret;
2590 }
2591 EXPORT_SYMBOL(netif_receive_skb);
2592
2593 /* Network device is going away, flush any packets still pending */
2594 static void flush_backlog(void *arg)
2595 {
2596 struct net_device *dev = arg;
2597 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2598 struct sk_buff *skb, *tmp;
2599
2600 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2601 if (skb->dev == dev) {
2602 __skb_unlink(skb, &queue->input_pkt_queue);
2603 kfree_skb(skb);
2604 }
2605 }
2606
2607 static int napi_gro_complete(struct sk_buff *skb)
2608 {
2609 struct packet_type *ptype;
2610 __be16 type = skb->protocol;
2611 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2612 int err = -ENOENT;
2613
2614 if (NAPI_GRO_CB(skb)->count == 1) {
2615 skb_shinfo(skb)->gso_size = 0;
2616 goto out;
2617 }
2618
2619 rcu_read_lock();
2620 list_for_each_entry_rcu(ptype, head, list) {
2621 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2622 continue;
2623
2624 err = ptype->gro_complete(skb);
2625 break;
2626 }
2627 rcu_read_unlock();
2628
2629 if (err) {
2630 WARN_ON(&ptype->list == head);
2631 kfree_skb(skb);
2632 return NET_RX_SUCCESS;
2633 }
2634
2635 out:
2636 return netif_receive_skb(skb);
2637 }
2638
2639 static void napi_gro_flush(struct napi_struct *napi)
2640 {
2641 struct sk_buff *skb, *next;
2642
2643 for (skb = napi->gro_list; skb; skb = next) {
2644 next = skb->next;
2645 skb->next = NULL;
2646 napi_gro_complete(skb);
2647 }
2648
2649 napi->gro_count = 0;
2650 napi->gro_list = NULL;
2651 }
2652
2653 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2654 {
2655 struct sk_buff **pp = NULL;
2656 struct packet_type *ptype;
2657 __be16 type = skb->protocol;
2658 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2659 int same_flow;
2660 int mac_len;
2661 enum gro_result ret;
2662
2663 if (!(skb->dev->features & NETIF_F_GRO))
2664 goto normal;
2665
2666 if (skb_is_gso(skb) || skb_has_frags(skb))
2667 goto normal;
2668
2669 rcu_read_lock();
2670 list_for_each_entry_rcu(ptype, head, list) {
2671 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2672 continue;
2673
2674 skb_set_network_header(skb, skb_gro_offset(skb));
2675 mac_len = skb->network_header - skb->mac_header;
2676 skb->mac_len = mac_len;
2677 NAPI_GRO_CB(skb)->same_flow = 0;
2678 NAPI_GRO_CB(skb)->flush = 0;
2679 NAPI_GRO_CB(skb)->free = 0;
2680
2681 pp = ptype->gro_receive(&napi->gro_list, skb);
2682 break;
2683 }
2684 rcu_read_unlock();
2685
2686 if (&ptype->list == head)
2687 goto normal;
2688
2689 same_flow = NAPI_GRO_CB(skb)->same_flow;
2690 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2691
2692 if (pp) {
2693 struct sk_buff *nskb = *pp;
2694
2695 *pp = nskb->next;
2696 nskb->next = NULL;
2697 napi_gro_complete(nskb);
2698 napi->gro_count--;
2699 }
2700
2701 if (same_flow)
2702 goto ok;
2703
2704 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2705 goto normal;
2706
2707 napi->gro_count++;
2708 NAPI_GRO_CB(skb)->count = 1;
2709 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2710 skb->next = napi->gro_list;
2711 napi->gro_list = skb;
2712 ret = GRO_HELD;
2713
2714 pull:
2715 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2716 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2717
2718 BUG_ON(skb->end - skb->tail < grow);
2719
2720 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2721
2722 skb->tail += grow;
2723 skb->data_len -= grow;
2724
2725 skb_shinfo(skb)->frags[0].page_offset += grow;
2726 skb_shinfo(skb)->frags[0].size -= grow;
2727
2728 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2729 put_page(skb_shinfo(skb)->frags[0].page);
2730 memmove(skb_shinfo(skb)->frags,
2731 skb_shinfo(skb)->frags + 1,
2732 --skb_shinfo(skb)->nr_frags);
2733 }
2734 }
2735
2736 ok:
2737 return ret;
2738
2739 normal:
2740 ret = GRO_NORMAL;
2741 goto pull;
2742 }
2743 EXPORT_SYMBOL(dev_gro_receive);
2744
2745 static gro_result_t
2746 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2747 {
2748 struct sk_buff *p;
2749
2750 if (netpoll_rx_on(skb))
2751 return GRO_NORMAL;
2752
2753 for (p = napi->gro_list; p; p = p->next) {
2754 NAPI_GRO_CB(p)->same_flow =
2755 (p->dev == skb->dev) &&
2756 !compare_ether_header(skb_mac_header(p),
2757 skb_gro_mac_header(skb));
2758 NAPI_GRO_CB(p)->flush = 0;
2759 }
2760
2761 return dev_gro_receive(napi, skb);
2762 }
2763
2764 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2765 {
2766 switch (ret) {
2767 case GRO_NORMAL:
2768 if (netif_receive_skb(skb))
2769 ret = GRO_DROP;
2770 break;
2771
2772 case GRO_DROP:
2773 case GRO_MERGED_FREE:
2774 kfree_skb(skb);
2775 break;
2776
2777 case GRO_HELD:
2778 case GRO_MERGED:
2779 break;
2780 }
2781
2782 return ret;
2783 }
2784 EXPORT_SYMBOL(napi_skb_finish);
2785
2786 void skb_gro_reset_offset(struct sk_buff *skb)
2787 {
2788 NAPI_GRO_CB(skb)->data_offset = 0;
2789 NAPI_GRO_CB(skb)->frag0 = NULL;
2790 NAPI_GRO_CB(skb)->frag0_len = 0;
2791
2792 if (skb->mac_header == skb->tail &&
2793 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2794 NAPI_GRO_CB(skb)->frag0 =
2795 page_address(skb_shinfo(skb)->frags[0].page) +
2796 skb_shinfo(skb)->frags[0].page_offset;
2797 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2798 }
2799 }
2800 EXPORT_SYMBOL(skb_gro_reset_offset);
2801
2802 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2803 {
2804 skb_gro_reset_offset(skb);
2805
2806 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2807 }
2808 EXPORT_SYMBOL(napi_gro_receive);
2809
2810 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2811 {
2812 __skb_pull(skb, skb_headlen(skb));
2813 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2814
2815 napi->skb = skb;
2816 }
2817 EXPORT_SYMBOL(napi_reuse_skb);
2818
2819 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2820 {
2821 struct sk_buff *skb = napi->skb;
2822
2823 if (!skb) {
2824 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2825 if (skb)
2826 napi->skb = skb;
2827 }
2828 return skb;
2829 }
2830 EXPORT_SYMBOL(napi_get_frags);
2831
2832 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2833 gro_result_t ret)
2834 {
2835 switch (ret) {
2836 case GRO_NORMAL:
2837 case GRO_HELD:
2838 skb->protocol = eth_type_trans(skb, skb->dev);
2839
2840 if (ret == GRO_HELD)
2841 skb_gro_pull(skb, -ETH_HLEN);
2842 else if (netif_receive_skb(skb))
2843 ret = GRO_DROP;
2844 break;
2845
2846 case GRO_DROP:
2847 case GRO_MERGED_FREE:
2848 napi_reuse_skb(napi, skb);
2849 break;
2850
2851 case GRO_MERGED:
2852 break;
2853 }
2854
2855 return ret;
2856 }
2857 EXPORT_SYMBOL(napi_frags_finish);
2858
2859 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2860 {
2861 struct sk_buff *skb = napi->skb;
2862 struct ethhdr *eth;
2863 unsigned int hlen;
2864 unsigned int off;
2865
2866 napi->skb = NULL;
2867
2868 skb_reset_mac_header(skb);
2869 skb_gro_reset_offset(skb);
2870
2871 off = skb_gro_offset(skb);
2872 hlen = off + sizeof(*eth);
2873 eth = skb_gro_header_fast(skb, off);
2874 if (skb_gro_header_hard(skb, hlen)) {
2875 eth = skb_gro_header_slow(skb, hlen, off);
2876 if (unlikely(!eth)) {
2877 napi_reuse_skb(napi, skb);
2878 skb = NULL;
2879 goto out;
2880 }
2881 }
2882
2883 skb_gro_pull(skb, sizeof(*eth));
2884
2885 /*
2886 * This works because the only protocols we care about don't require
2887 * special handling. We'll fix it up properly at the end.
2888 */
2889 skb->protocol = eth->h_proto;
2890
2891 out:
2892 return skb;
2893 }
2894 EXPORT_SYMBOL(napi_frags_skb);
2895
2896 gro_result_t napi_gro_frags(struct napi_struct *napi)
2897 {
2898 struct sk_buff *skb = napi_frags_skb(napi);
2899
2900 if (!skb)
2901 return GRO_DROP;
2902
2903 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2904 }
2905 EXPORT_SYMBOL(napi_gro_frags);
2906
2907 static int process_backlog(struct napi_struct *napi, int quota)
2908 {
2909 int work = 0;
2910 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2911 unsigned long start_time = jiffies;
2912
2913 napi->weight = weight_p;
2914 do {
2915 struct sk_buff *skb;
2916
2917 local_irq_disable();
2918 skb = __skb_dequeue(&queue->input_pkt_queue);
2919 if (!skb) {
2920 __napi_complete(napi);
2921 local_irq_enable();
2922 break;
2923 }
2924 local_irq_enable();
2925
2926 netif_receive_skb(skb);
2927 } while (++work < quota && jiffies == start_time);
2928
2929 return work;
2930 }
2931
2932 /**
2933 * __napi_schedule - schedule for receive
2934 * @n: entry to schedule
2935 *
2936 * The entry's receive function will be scheduled to run
2937 */
2938 void __napi_schedule(struct napi_struct *n)
2939 {
2940 unsigned long flags;
2941
2942 local_irq_save(flags);
2943 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2944 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2945 local_irq_restore(flags);
2946 }
2947 EXPORT_SYMBOL(__napi_schedule);
2948
2949 void __napi_complete(struct napi_struct *n)
2950 {
2951 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2952 BUG_ON(n->gro_list);
2953
2954 list_del(&n->poll_list);
2955 smp_mb__before_clear_bit();
2956 clear_bit(NAPI_STATE_SCHED, &n->state);
2957 }
2958 EXPORT_SYMBOL(__napi_complete);
2959
2960 void napi_complete(struct napi_struct *n)
2961 {
2962 unsigned long flags;
2963
2964 /*
2965 * don't let napi dequeue from the cpu poll list
2966 * just in case its running on a different cpu
2967 */
2968 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2969 return;
2970
2971 napi_gro_flush(n);
2972 local_irq_save(flags);
2973 __napi_complete(n);
2974 local_irq_restore(flags);
2975 }
2976 EXPORT_SYMBOL(napi_complete);
2977
2978 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2979 int (*poll)(struct napi_struct *, int), int weight)
2980 {
2981 INIT_LIST_HEAD(&napi->poll_list);
2982 napi->gro_count = 0;
2983 napi->gro_list = NULL;
2984 napi->skb = NULL;
2985 napi->poll = poll;
2986 napi->weight = weight;
2987 list_add(&napi->dev_list, &dev->napi_list);
2988 napi->dev = dev;
2989 #ifdef CONFIG_NETPOLL
2990 spin_lock_init(&napi->poll_lock);
2991 napi->poll_owner = -1;
2992 #endif
2993 set_bit(NAPI_STATE_SCHED, &napi->state);
2994 }
2995 EXPORT_SYMBOL(netif_napi_add);
2996
2997 void netif_napi_del(struct napi_struct *napi)
2998 {
2999 struct sk_buff *skb, *next;
3000
3001 list_del_init(&napi->dev_list);
3002 napi_free_frags(napi);
3003
3004 for (skb = napi->gro_list; skb; skb = next) {
3005 next = skb->next;
3006 skb->next = NULL;
3007 kfree_skb(skb);
3008 }
3009
3010 napi->gro_list = NULL;
3011 napi->gro_count = 0;
3012 }
3013 EXPORT_SYMBOL(netif_napi_del);
3014
3015
3016 static void net_rx_action(struct softirq_action *h)
3017 {
3018 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3019 unsigned long time_limit = jiffies + 2;
3020 int budget = netdev_budget;
3021 void *have;
3022
3023 local_irq_disable();
3024
3025 while (!list_empty(list)) {
3026 struct napi_struct *n;
3027 int work, weight;
3028
3029 /* If softirq window is exhuasted then punt.
3030 * Allow this to run for 2 jiffies since which will allow
3031 * an average latency of 1.5/HZ.
3032 */
3033 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3034 goto softnet_break;
3035
3036 local_irq_enable();
3037
3038 /* Even though interrupts have been re-enabled, this
3039 * access is safe because interrupts can only add new
3040 * entries to the tail of this list, and only ->poll()
3041 * calls can remove this head entry from the list.
3042 */
3043 n = list_first_entry(list, struct napi_struct, poll_list);
3044
3045 have = netpoll_poll_lock(n);
3046
3047 weight = n->weight;
3048
3049 /* This NAPI_STATE_SCHED test is for avoiding a race
3050 * with netpoll's poll_napi(). Only the entity which
3051 * obtains the lock and sees NAPI_STATE_SCHED set will
3052 * actually make the ->poll() call. Therefore we avoid
3053 * accidently calling ->poll() when NAPI is not scheduled.
3054 */
3055 work = 0;
3056 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3057 work = n->poll(n, weight);
3058 trace_napi_poll(n);
3059 }
3060
3061 WARN_ON_ONCE(work > weight);
3062
3063 budget -= work;
3064
3065 local_irq_disable();
3066
3067 /* Drivers must not modify the NAPI state if they
3068 * consume the entire weight. In such cases this code
3069 * still "owns" the NAPI instance and therefore can
3070 * move the instance around on the list at-will.
3071 */
3072 if (unlikely(work == weight)) {
3073 if (unlikely(napi_disable_pending(n))) {
3074 local_irq_enable();
3075 napi_complete(n);
3076 local_irq_disable();
3077 } else
3078 list_move_tail(&n->poll_list, list);
3079 }
3080
3081 netpoll_poll_unlock(have);
3082 }
3083 out:
3084 local_irq_enable();
3085
3086 #ifdef CONFIG_NET_DMA
3087 /*
3088 * There may not be any more sk_buffs coming right now, so push
3089 * any pending DMA copies to hardware
3090 */
3091 dma_issue_pending_all();
3092 #endif
3093
3094 return;
3095
3096 softnet_break:
3097 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3098 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3099 goto out;
3100 }
3101
3102 static gifconf_func_t *gifconf_list[NPROTO];
3103
3104 /**
3105 * register_gifconf - register a SIOCGIF handler
3106 * @family: Address family
3107 * @gifconf: Function handler
3108 *
3109 * Register protocol dependent address dumping routines. The handler
3110 * that is passed must not be freed or reused until it has been replaced
3111 * by another handler.
3112 */
3113 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3114 {
3115 if (family >= NPROTO)
3116 return -EINVAL;
3117 gifconf_list[family] = gifconf;
3118 return 0;
3119 }
3120 EXPORT_SYMBOL(register_gifconf);
3121
3122
3123 /*
3124 * Map an interface index to its name (SIOCGIFNAME)
3125 */
3126
3127 /*
3128 * We need this ioctl for efficient implementation of the
3129 * if_indextoname() function required by the IPv6 API. Without
3130 * it, we would have to search all the interfaces to find a
3131 * match. --pb
3132 */
3133
3134 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3135 {
3136 struct net_device *dev;
3137 struct ifreq ifr;
3138
3139 /*
3140 * Fetch the caller's info block.
3141 */
3142
3143 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3144 return -EFAULT;
3145
3146 rcu_read_lock();
3147 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3148 if (!dev) {
3149 rcu_read_unlock();
3150 return -ENODEV;
3151 }
3152
3153 strcpy(ifr.ifr_name, dev->name);
3154 rcu_read_unlock();
3155
3156 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3157 return -EFAULT;
3158 return 0;
3159 }
3160
3161 /*
3162 * Perform a SIOCGIFCONF call. This structure will change
3163 * size eventually, and there is nothing I can do about it.
3164 * Thus we will need a 'compatibility mode'.
3165 */
3166
3167 static int dev_ifconf(struct net *net, char __user *arg)
3168 {
3169 struct ifconf ifc;
3170 struct net_device *dev;
3171 char __user *pos;
3172 int len;
3173 int total;
3174 int i;
3175
3176 /*
3177 * Fetch the caller's info block.
3178 */
3179
3180 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3181 return -EFAULT;
3182
3183 pos = ifc.ifc_buf;
3184 len = ifc.ifc_len;
3185
3186 /*
3187 * Loop over the interfaces, and write an info block for each.
3188 */
3189
3190 total = 0;
3191 for_each_netdev(net, dev) {
3192 for (i = 0; i < NPROTO; i++) {
3193 if (gifconf_list[i]) {
3194 int done;
3195 if (!pos)
3196 done = gifconf_list[i](dev, NULL, 0);
3197 else
3198 done = gifconf_list[i](dev, pos + total,
3199 len - total);
3200 if (done < 0)
3201 return -EFAULT;
3202 total += done;
3203 }
3204 }
3205 }
3206
3207 /*
3208 * All done. Write the updated control block back to the caller.
3209 */
3210 ifc.ifc_len = total;
3211
3212 /*
3213 * Both BSD and Solaris return 0 here, so we do too.
3214 */
3215 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3216 }
3217
3218 #ifdef CONFIG_PROC_FS
3219 /*
3220 * This is invoked by the /proc filesystem handler to display a device
3221 * in detail.
3222 */
3223 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3224 __acquires(RCU)
3225 {
3226 struct net *net = seq_file_net(seq);
3227 loff_t off;
3228 struct net_device *dev;
3229
3230 rcu_read_lock();
3231 if (!*pos)
3232 return SEQ_START_TOKEN;
3233
3234 off = 1;
3235 for_each_netdev_rcu(net, dev)
3236 if (off++ == *pos)
3237 return dev;
3238
3239 return NULL;
3240 }
3241
3242 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3243 {
3244 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3245 first_net_device(seq_file_net(seq)) :
3246 next_net_device((struct net_device *)v);
3247
3248 ++*pos;
3249 return rcu_dereference(dev);
3250 }
3251
3252 void dev_seq_stop(struct seq_file *seq, void *v)
3253 __releases(RCU)
3254 {
3255 rcu_read_unlock();
3256 }
3257
3258 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3259 {
3260 const struct net_device_stats *stats = dev_get_stats(dev);
3261
3262 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3263 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3264 dev->name, stats->rx_bytes, stats->rx_packets,
3265 stats->rx_errors,
3266 stats->rx_dropped + stats->rx_missed_errors,
3267 stats->rx_fifo_errors,
3268 stats->rx_length_errors + stats->rx_over_errors +
3269 stats->rx_crc_errors + stats->rx_frame_errors,
3270 stats->rx_compressed, stats->multicast,
3271 stats->tx_bytes, stats->tx_packets,
3272 stats->tx_errors, stats->tx_dropped,
3273 stats->tx_fifo_errors, stats->collisions,
3274 stats->tx_carrier_errors +
3275 stats->tx_aborted_errors +
3276 stats->tx_window_errors +
3277 stats->tx_heartbeat_errors,
3278 stats->tx_compressed);
3279 }
3280
3281 /*
3282 * Called from the PROCfs module. This now uses the new arbitrary sized
3283 * /proc/net interface to create /proc/net/dev
3284 */
3285 static int dev_seq_show(struct seq_file *seq, void *v)
3286 {
3287 if (v == SEQ_START_TOKEN)
3288 seq_puts(seq, "Inter-| Receive "
3289 " | Transmit\n"
3290 " face |bytes packets errs drop fifo frame "
3291 "compressed multicast|bytes packets errs "
3292 "drop fifo colls carrier compressed\n");
3293 else
3294 dev_seq_printf_stats(seq, v);
3295 return 0;
3296 }
3297
3298 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3299 {
3300 struct netif_rx_stats *rc = NULL;
3301
3302 while (*pos < nr_cpu_ids)
3303 if (cpu_online(*pos)) {
3304 rc = &per_cpu(netdev_rx_stat, *pos);
3305 break;
3306 } else
3307 ++*pos;
3308 return rc;
3309 }
3310
3311 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3312 {
3313 return softnet_get_online(pos);
3314 }
3315
3316 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3317 {
3318 ++*pos;
3319 return softnet_get_online(pos);
3320 }
3321
3322 static void softnet_seq_stop(struct seq_file *seq, void *v)
3323 {
3324 }
3325
3326 static int softnet_seq_show(struct seq_file *seq, void *v)
3327 {
3328 struct netif_rx_stats *s = v;
3329
3330 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3331 s->total, s->dropped, s->time_squeeze, 0,
3332 0, 0, 0, 0, /* was fastroute */
3333 s->cpu_collision);
3334 return 0;
3335 }
3336
3337 static const struct seq_operations dev_seq_ops = {
3338 .start = dev_seq_start,
3339 .next = dev_seq_next,
3340 .stop = dev_seq_stop,
3341 .show = dev_seq_show,
3342 };
3343
3344 static int dev_seq_open(struct inode *inode, struct file *file)
3345 {
3346 return seq_open_net(inode, file, &dev_seq_ops,
3347 sizeof(struct seq_net_private));
3348 }
3349
3350 static const struct file_operations dev_seq_fops = {
3351 .owner = THIS_MODULE,
3352 .open = dev_seq_open,
3353 .read = seq_read,
3354 .llseek = seq_lseek,
3355 .release = seq_release_net,
3356 };
3357
3358 static const struct seq_operations softnet_seq_ops = {
3359 .start = softnet_seq_start,
3360 .next = softnet_seq_next,
3361 .stop = softnet_seq_stop,
3362 .show = softnet_seq_show,
3363 };
3364
3365 static int softnet_seq_open(struct inode *inode, struct file *file)
3366 {
3367 return seq_open(file, &softnet_seq_ops);
3368 }
3369
3370 static const struct file_operations softnet_seq_fops = {
3371 .owner = THIS_MODULE,
3372 .open = softnet_seq_open,
3373 .read = seq_read,
3374 .llseek = seq_lseek,
3375 .release = seq_release,
3376 };
3377
3378 static void *ptype_get_idx(loff_t pos)
3379 {
3380 struct packet_type *pt = NULL;
3381 loff_t i = 0;
3382 int t;
3383
3384 list_for_each_entry_rcu(pt, &ptype_all, list) {
3385 if (i == pos)
3386 return pt;
3387 ++i;
3388 }
3389
3390 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3391 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3392 if (i == pos)
3393 return pt;
3394 ++i;
3395 }
3396 }
3397 return NULL;
3398 }
3399
3400 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3401 __acquires(RCU)
3402 {
3403 rcu_read_lock();
3404 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3405 }
3406
3407 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3408 {
3409 struct packet_type *pt;
3410 struct list_head *nxt;
3411 int hash;
3412
3413 ++*pos;
3414 if (v == SEQ_START_TOKEN)
3415 return ptype_get_idx(0);
3416
3417 pt = v;
3418 nxt = pt->list.next;
3419 if (pt->type == htons(ETH_P_ALL)) {
3420 if (nxt != &ptype_all)
3421 goto found;
3422 hash = 0;
3423 nxt = ptype_base[0].next;
3424 } else
3425 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3426
3427 while (nxt == &ptype_base[hash]) {
3428 if (++hash >= PTYPE_HASH_SIZE)
3429 return NULL;
3430 nxt = ptype_base[hash].next;
3431 }
3432 found:
3433 return list_entry(nxt, struct packet_type, list);
3434 }
3435
3436 static void ptype_seq_stop(struct seq_file *seq, void *v)
3437 __releases(RCU)
3438 {
3439 rcu_read_unlock();
3440 }
3441
3442 static int ptype_seq_show(struct seq_file *seq, void *v)
3443 {
3444 struct packet_type *pt = v;
3445
3446 if (v == SEQ_START_TOKEN)
3447 seq_puts(seq, "Type Device Function\n");
3448 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3449 if (pt->type == htons(ETH_P_ALL))
3450 seq_puts(seq, "ALL ");
3451 else
3452 seq_printf(seq, "%04x", ntohs(pt->type));
3453
3454 seq_printf(seq, " %-8s %pF\n",
3455 pt->dev ? pt->dev->name : "", pt->func);
3456 }
3457
3458 return 0;
3459 }
3460
3461 static const struct seq_operations ptype_seq_ops = {
3462 .start = ptype_seq_start,
3463 .next = ptype_seq_next,
3464 .stop = ptype_seq_stop,
3465 .show = ptype_seq_show,
3466 };
3467
3468 static int ptype_seq_open(struct inode *inode, struct file *file)
3469 {
3470 return seq_open_net(inode, file, &ptype_seq_ops,
3471 sizeof(struct seq_net_private));
3472 }
3473
3474 static const struct file_operations ptype_seq_fops = {
3475 .owner = THIS_MODULE,
3476 .open = ptype_seq_open,
3477 .read = seq_read,
3478 .llseek = seq_lseek,
3479 .release = seq_release_net,
3480 };
3481
3482
3483 static int __net_init dev_proc_net_init(struct net *net)
3484 {
3485 int rc = -ENOMEM;
3486
3487 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3488 goto out;
3489 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3490 goto out_dev;
3491 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3492 goto out_softnet;
3493
3494 if (wext_proc_init(net))
3495 goto out_ptype;
3496 rc = 0;
3497 out:
3498 return rc;
3499 out_ptype:
3500 proc_net_remove(net, "ptype");
3501 out_softnet:
3502 proc_net_remove(net, "softnet_stat");
3503 out_dev:
3504 proc_net_remove(net, "dev");
3505 goto out;
3506 }
3507
3508 static void __net_exit dev_proc_net_exit(struct net *net)
3509 {
3510 wext_proc_exit(net);
3511
3512 proc_net_remove(net, "ptype");
3513 proc_net_remove(net, "softnet_stat");
3514 proc_net_remove(net, "dev");
3515 }
3516
3517 static struct pernet_operations __net_initdata dev_proc_ops = {
3518 .init = dev_proc_net_init,
3519 .exit = dev_proc_net_exit,
3520 };
3521
3522 static int __init dev_proc_init(void)
3523 {
3524 return register_pernet_subsys(&dev_proc_ops);
3525 }
3526 #else
3527 #define dev_proc_init() 0
3528 #endif /* CONFIG_PROC_FS */
3529
3530
3531 /**
3532 * netdev_set_master - set up master/slave pair
3533 * @slave: slave device
3534 * @master: new master device
3535 *
3536 * Changes the master device of the slave. Pass %NULL to break the
3537 * bonding. The caller must hold the RTNL semaphore. On a failure
3538 * a negative errno code is returned. On success the reference counts
3539 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3540 * function returns zero.
3541 */
3542 int netdev_set_master(struct net_device *slave, struct net_device *master)
3543 {
3544 struct net_device *old = slave->master;
3545
3546 ASSERT_RTNL();
3547
3548 if (master) {
3549 if (old)
3550 return -EBUSY;
3551 dev_hold(master);
3552 }
3553
3554 slave->master = master;
3555
3556 synchronize_net();
3557
3558 if (old)
3559 dev_put(old);
3560
3561 if (master)
3562 slave->flags |= IFF_SLAVE;
3563 else
3564 slave->flags &= ~IFF_SLAVE;
3565
3566 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3567 return 0;
3568 }
3569 EXPORT_SYMBOL(netdev_set_master);
3570
3571 static void dev_change_rx_flags(struct net_device *dev, int flags)
3572 {
3573 const struct net_device_ops *ops = dev->netdev_ops;
3574
3575 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3576 ops->ndo_change_rx_flags(dev, flags);
3577 }
3578
3579 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3580 {
3581 unsigned short old_flags = dev->flags;
3582 uid_t uid;
3583 gid_t gid;
3584
3585 ASSERT_RTNL();
3586
3587 dev->flags |= IFF_PROMISC;
3588 dev->promiscuity += inc;
3589 if (dev->promiscuity == 0) {
3590 /*
3591 * Avoid overflow.
3592 * If inc causes overflow, untouch promisc and return error.
3593 */
3594 if (inc < 0)
3595 dev->flags &= ~IFF_PROMISC;
3596 else {
3597 dev->promiscuity -= inc;
3598 printk(KERN_WARNING "%s: promiscuity touches roof, "
3599 "set promiscuity failed, promiscuity feature "
3600 "of device might be broken.\n", dev->name);
3601 return -EOVERFLOW;
3602 }
3603 }
3604 if (dev->flags != old_flags) {
3605 printk(KERN_INFO "device %s %s promiscuous mode\n",
3606 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3607 "left");
3608 if (audit_enabled) {
3609 current_uid_gid(&uid, &gid);
3610 audit_log(current->audit_context, GFP_ATOMIC,
3611 AUDIT_ANOM_PROMISCUOUS,
3612 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3613 dev->name, (dev->flags & IFF_PROMISC),
3614 (old_flags & IFF_PROMISC),
3615 audit_get_loginuid(current),
3616 uid, gid,
3617 audit_get_sessionid(current));
3618 }
3619
3620 dev_change_rx_flags(dev, IFF_PROMISC);
3621 }
3622 return 0;
3623 }
3624
3625 /**
3626 * dev_set_promiscuity - update promiscuity count on a device
3627 * @dev: device
3628 * @inc: modifier
3629 *
3630 * Add or remove promiscuity from a device. While the count in the device
3631 * remains above zero the interface remains promiscuous. Once it hits zero
3632 * the device reverts back to normal filtering operation. A negative inc
3633 * value is used to drop promiscuity on the device.
3634 * Return 0 if successful or a negative errno code on error.
3635 */
3636 int dev_set_promiscuity(struct net_device *dev, int inc)
3637 {
3638 unsigned short old_flags = dev->flags;
3639 int err;
3640
3641 err = __dev_set_promiscuity(dev, inc);
3642 if (err < 0)
3643 return err;
3644 if (dev->flags != old_flags)
3645 dev_set_rx_mode(dev);
3646 return err;
3647 }
3648 EXPORT_SYMBOL(dev_set_promiscuity);
3649
3650 /**
3651 * dev_set_allmulti - update allmulti count on a device
3652 * @dev: device
3653 * @inc: modifier
3654 *
3655 * Add or remove reception of all multicast frames to a device. While the
3656 * count in the device remains above zero the interface remains listening
3657 * to all interfaces. Once it hits zero the device reverts back to normal
3658 * filtering operation. A negative @inc value is used to drop the counter
3659 * when releasing a resource needing all multicasts.
3660 * Return 0 if successful or a negative errno code on error.
3661 */
3662
3663 int dev_set_allmulti(struct net_device *dev, int inc)
3664 {
3665 unsigned short old_flags = dev->flags;
3666
3667 ASSERT_RTNL();
3668
3669 dev->flags |= IFF_ALLMULTI;
3670 dev->allmulti += inc;
3671 if (dev->allmulti == 0) {
3672 /*
3673 * Avoid overflow.
3674 * If inc causes overflow, untouch allmulti and return error.
3675 */
3676 if (inc < 0)
3677 dev->flags &= ~IFF_ALLMULTI;
3678 else {
3679 dev->allmulti -= inc;
3680 printk(KERN_WARNING "%s: allmulti touches roof, "
3681 "set allmulti failed, allmulti feature of "
3682 "device might be broken.\n", dev->name);
3683 return -EOVERFLOW;
3684 }
3685 }
3686 if (dev->flags ^ old_flags) {
3687 dev_change_rx_flags(dev, IFF_ALLMULTI);
3688 dev_set_rx_mode(dev);
3689 }
3690 return 0;
3691 }
3692 EXPORT_SYMBOL(dev_set_allmulti);
3693
3694 /*
3695 * Upload unicast and multicast address lists to device and
3696 * configure RX filtering. When the device doesn't support unicast
3697 * filtering it is put in promiscuous mode while unicast addresses
3698 * are present.
3699 */
3700 void __dev_set_rx_mode(struct net_device *dev)
3701 {
3702 const struct net_device_ops *ops = dev->netdev_ops;
3703
3704 /* dev_open will call this function so the list will stay sane. */
3705 if (!(dev->flags&IFF_UP))
3706 return;
3707
3708 if (!netif_device_present(dev))
3709 return;
3710
3711 if (ops->ndo_set_rx_mode)
3712 ops->ndo_set_rx_mode(dev);
3713 else {
3714 /* Unicast addresses changes may only happen under the rtnl,
3715 * therefore calling __dev_set_promiscuity here is safe.
3716 */
3717 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3718 __dev_set_promiscuity(dev, 1);
3719 dev->uc_promisc = 1;
3720 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3721 __dev_set_promiscuity(dev, -1);
3722 dev->uc_promisc = 0;
3723 }
3724
3725 if (ops->ndo_set_multicast_list)
3726 ops->ndo_set_multicast_list(dev);
3727 }
3728 }
3729
3730 void dev_set_rx_mode(struct net_device *dev)
3731 {
3732 netif_addr_lock_bh(dev);
3733 __dev_set_rx_mode(dev);
3734 netif_addr_unlock_bh(dev);
3735 }
3736
3737 /* hw addresses list handling functions */
3738
3739 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3740 int addr_len, unsigned char addr_type)
3741 {
3742 struct netdev_hw_addr *ha;
3743 int alloc_size;
3744
3745 if (addr_len > MAX_ADDR_LEN)
3746 return -EINVAL;
3747
3748 list_for_each_entry(ha, &list->list, list) {
3749 if (!memcmp(ha->addr, addr, addr_len) &&
3750 ha->type == addr_type) {
3751 ha->refcount++;
3752 return 0;
3753 }
3754 }
3755
3756
3757 alloc_size = sizeof(*ha);
3758 if (alloc_size < L1_CACHE_BYTES)
3759 alloc_size = L1_CACHE_BYTES;
3760 ha = kmalloc(alloc_size, GFP_ATOMIC);
3761 if (!ha)
3762 return -ENOMEM;
3763 memcpy(ha->addr, addr, addr_len);
3764 ha->type = addr_type;
3765 ha->refcount = 1;
3766 ha->synced = false;
3767 list_add_tail_rcu(&ha->list, &list->list);
3768 list->count++;
3769 return 0;
3770 }
3771
3772 static void ha_rcu_free(struct rcu_head *head)
3773 {
3774 struct netdev_hw_addr *ha;
3775
3776 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3777 kfree(ha);
3778 }
3779
3780 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3781 int addr_len, unsigned char addr_type)
3782 {
3783 struct netdev_hw_addr *ha;
3784
3785 list_for_each_entry(ha, &list->list, list) {
3786 if (!memcmp(ha->addr, addr, addr_len) &&
3787 (ha->type == addr_type || !addr_type)) {
3788 if (--ha->refcount)
3789 return 0;
3790 list_del_rcu(&ha->list);
3791 call_rcu(&ha->rcu_head, ha_rcu_free);
3792 list->count--;
3793 return 0;
3794 }
3795 }
3796 return -ENOENT;
3797 }
3798
3799 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3800 struct netdev_hw_addr_list *from_list,
3801 int addr_len,
3802 unsigned char addr_type)
3803 {
3804 int err;
3805 struct netdev_hw_addr *ha, *ha2;
3806 unsigned char type;
3807
3808 list_for_each_entry(ha, &from_list->list, list) {
3809 type = addr_type ? addr_type : ha->type;
3810 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3811 if (err)
3812 goto unroll;
3813 }
3814 return 0;
3815
3816 unroll:
3817 list_for_each_entry(ha2, &from_list->list, list) {
3818 if (ha2 == ha)
3819 break;
3820 type = addr_type ? addr_type : ha2->type;
3821 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3822 }
3823 return err;
3824 }
3825
3826 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3827 struct netdev_hw_addr_list *from_list,
3828 int addr_len,
3829 unsigned char addr_type)
3830 {
3831 struct netdev_hw_addr *ha;
3832 unsigned char type;
3833
3834 list_for_each_entry(ha, &from_list->list, list) {
3835 type = addr_type ? addr_type : ha->type;
3836 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3837 }
3838 }
3839
3840 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3841 struct netdev_hw_addr_list *from_list,
3842 int addr_len)
3843 {
3844 int err = 0;
3845 struct netdev_hw_addr *ha, *tmp;
3846
3847 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3848 if (!ha->synced) {
3849 err = __hw_addr_add(to_list, ha->addr,
3850 addr_len, ha->type);
3851 if (err)
3852 break;
3853 ha->synced = true;
3854 ha->refcount++;
3855 } else if (ha->refcount == 1) {
3856 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3857 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3858 }
3859 }
3860 return err;
3861 }
3862
3863 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3864 struct netdev_hw_addr_list *from_list,
3865 int addr_len)
3866 {
3867 struct netdev_hw_addr *ha, *tmp;
3868
3869 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3870 if (ha->synced) {
3871 __hw_addr_del(to_list, ha->addr,
3872 addr_len, ha->type);
3873 ha->synced = false;
3874 __hw_addr_del(from_list, ha->addr,
3875 addr_len, ha->type);
3876 }
3877 }
3878 }
3879
3880 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3881 {
3882 struct netdev_hw_addr *ha, *tmp;
3883
3884 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3885 list_del_rcu(&ha->list);
3886 call_rcu(&ha->rcu_head, ha_rcu_free);
3887 }
3888 list->count = 0;
3889 }
3890
3891 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3892 {
3893 INIT_LIST_HEAD(&list->list);
3894 list->count = 0;
3895 }
3896
3897 /* Device addresses handling functions */
3898
3899 static void dev_addr_flush(struct net_device *dev)
3900 {
3901 /* rtnl_mutex must be held here */
3902
3903 __hw_addr_flush(&dev->dev_addrs);
3904 dev->dev_addr = NULL;
3905 }
3906
3907 static int dev_addr_init(struct net_device *dev)
3908 {
3909 unsigned char addr[MAX_ADDR_LEN];
3910 struct netdev_hw_addr *ha;
3911 int err;
3912
3913 /* rtnl_mutex must be held here */
3914
3915 __hw_addr_init(&dev->dev_addrs);
3916 memset(addr, 0, sizeof(addr));
3917 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3918 NETDEV_HW_ADDR_T_LAN);
3919 if (!err) {
3920 /*
3921 * Get the first (previously created) address from the list
3922 * and set dev_addr pointer to this location.
3923 */
3924 ha = list_first_entry(&dev->dev_addrs.list,
3925 struct netdev_hw_addr, list);
3926 dev->dev_addr = ha->addr;
3927 }
3928 return err;
3929 }
3930
3931 /**
3932 * dev_addr_add - Add a device address
3933 * @dev: device
3934 * @addr: address to add
3935 * @addr_type: address type
3936 *
3937 * Add a device address to the device or increase the reference count if
3938 * it already exists.
3939 *
3940 * The caller must hold the rtnl_mutex.
3941 */
3942 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3943 unsigned char addr_type)
3944 {
3945 int err;
3946
3947 ASSERT_RTNL();
3948
3949 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3950 if (!err)
3951 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3952 return err;
3953 }
3954 EXPORT_SYMBOL(dev_addr_add);
3955
3956 /**
3957 * dev_addr_del - Release a device address.
3958 * @dev: device
3959 * @addr: address to delete
3960 * @addr_type: address type
3961 *
3962 * Release reference to a device address and remove it from the device
3963 * if the reference count drops to zero.
3964 *
3965 * The caller must hold the rtnl_mutex.
3966 */
3967 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3968 unsigned char addr_type)
3969 {
3970 int err;
3971 struct netdev_hw_addr *ha;
3972
3973 ASSERT_RTNL();
3974
3975 /*
3976 * We can not remove the first address from the list because
3977 * dev->dev_addr points to that.
3978 */
3979 ha = list_first_entry(&dev->dev_addrs.list,
3980 struct netdev_hw_addr, list);
3981 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3982 return -ENOENT;
3983
3984 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3985 addr_type);
3986 if (!err)
3987 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3988 return err;
3989 }
3990 EXPORT_SYMBOL(dev_addr_del);
3991
3992 /**
3993 * dev_addr_add_multiple - Add device addresses from another device
3994 * @to_dev: device to which addresses will be added
3995 * @from_dev: device from which addresses will be added
3996 * @addr_type: address type - 0 means type will be used from from_dev
3997 *
3998 * Add device addresses of the one device to another.
3999 **
4000 * The caller must hold the rtnl_mutex.
4001 */
4002 int dev_addr_add_multiple(struct net_device *to_dev,
4003 struct net_device *from_dev,
4004 unsigned char addr_type)
4005 {
4006 int err;
4007
4008 ASSERT_RTNL();
4009
4010 if (from_dev->addr_len != to_dev->addr_len)
4011 return -EINVAL;
4012 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4013 to_dev->addr_len, addr_type);
4014 if (!err)
4015 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4016 return err;
4017 }
4018 EXPORT_SYMBOL(dev_addr_add_multiple);
4019
4020 /**
4021 * dev_addr_del_multiple - Delete device addresses by another device
4022 * @to_dev: device where the addresses will be deleted
4023 * @from_dev: device by which addresses the addresses will be deleted
4024 * @addr_type: address type - 0 means type will used from from_dev
4025 *
4026 * Deletes addresses in to device by the list of addresses in from device.
4027 *
4028 * The caller must hold the rtnl_mutex.
4029 */
4030 int dev_addr_del_multiple(struct net_device *to_dev,
4031 struct net_device *from_dev,
4032 unsigned char addr_type)
4033 {
4034 ASSERT_RTNL();
4035
4036 if (from_dev->addr_len != to_dev->addr_len)
4037 return -EINVAL;
4038 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4039 to_dev->addr_len, addr_type);
4040 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4041 return 0;
4042 }
4043 EXPORT_SYMBOL(dev_addr_del_multiple);
4044
4045 /* multicast addresses handling functions */
4046
4047 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4048 void *addr, int alen, int glbl)
4049 {
4050 struct dev_addr_list *da;
4051
4052 for (; (da = *list) != NULL; list = &da->next) {
4053 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4054 alen == da->da_addrlen) {
4055 if (glbl) {
4056 int old_glbl = da->da_gusers;
4057 da->da_gusers = 0;
4058 if (old_glbl == 0)
4059 break;
4060 }
4061 if (--da->da_users)
4062 return 0;
4063
4064 *list = da->next;
4065 kfree(da);
4066 (*count)--;
4067 return 0;
4068 }
4069 }
4070 return -ENOENT;
4071 }
4072
4073 int __dev_addr_add(struct dev_addr_list **list, int *count,
4074 void *addr, int alen, int glbl)
4075 {
4076 struct dev_addr_list *da;
4077
4078 for (da = *list; da != NULL; da = da->next) {
4079 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4080 da->da_addrlen == alen) {
4081 if (glbl) {
4082 int old_glbl = da->da_gusers;
4083 da->da_gusers = 1;
4084 if (old_glbl)
4085 return 0;
4086 }
4087 da->da_users++;
4088 return 0;
4089 }
4090 }
4091
4092 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4093 if (da == NULL)
4094 return -ENOMEM;
4095 memcpy(da->da_addr, addr, alen);
4096 da->da_addrlen = alen;
4097 da->da_users = 1;
4098 da->da_gusers = glbl ? 1 : 0;
4099 da->next = *list;
4100 *list = da;
4101 (*count)++;
4102 return 0;
4103 }
4104
4105 /**
4106 * dev_unicast_delete - Release secondary unicast address.
4107 * @dev: device
4108 * @addr: address to delete
4109 *
4110 * Release reference to a secondary unicast address and remove it
4111 * from the device if the reference count drops to zero.
4112 *
4113 * The caller must hold the rtnl_mutex.
4114 */
4115 int dev_unicast_delete(struct net_device *dev, void *addr)
4116 {
4117 int err;
4118
4119 ASSERT_RTNL();
4120
4121 netif_addr_lock_bh(dev);
4122 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4123 NETDEV_HW_ADDR_T_UNICAST);
4124 if (!err)
4125 __dev_set_rx_mode(dev);
4126 netif_addr_unlock_bh(dev);
4127 return err;
4128 }
4129 EXPORT_SYMBOL(dev_unicast_delete);
4130
4131 /**
4132 * dev_unicast_add - add a secondary unicast address
4133 * @dev: device
4134 * @addr: address to add
4135 *
4136 * Add a secondary unicast address to the device or increase
4137 * the reference count if it already exists.
4138 *
4139 * The caller must hold the rtnl_mutex.
4140 */
4141 int dev_unicast_add(struct net_device *dev, void *addr)
4142 {
4143 int err;
4144
4145 ASSERT_RTNL();
4146
4147 netif_addr_lock_bh(dev);
4148 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4149 NETDEV_HW_ADDR_T_UNICAST);
4150 if (!err)
4151 __dev_set_rx_mode(dev);
4152 netif_addr_unlock_bh(dev);
4153 return err;
4154 }
4155 EXPORT_SYMBOL(dev_unicast_add);
4156
4157 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4158 struct dev_addr_list **from, int *from_count)
4159 {
4160 struct dev_addr_list *da, *next;
4161 int err = 0;
4162
4163 da = *from;
4164 while (da != NULL) {
4165 next = da->next;
4166 if (!da->da_synced) {
4167 err = __dev_addr_add(to, to_count,
4168 da->da_addr, da->da_addrlen, 0);
4169 if (err < 0)
4170 break;
4171 da->da_synced = 1;
4172 da->da_users++;
4173 } else if (da->da_users == 1) {
4174 __dev_addr_delete(to, to_count,
4175 da->da_addr, da->da_addrlen, 0);
4176 __dev_addr_delete(from, from_count,
4177 da->da_addr, da->da_addrlen, 0);
4178 }
4179 da = next;
4180 }
4181 return err;
4182 }
4183 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4184
4185 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4186 struct dev_addr_list **from, int *from_count)
4187 {
4188 struct dev_addr_list *da, *next;
4189
4190 da = *from;
4191 while (da != NULL) {
4192 next = da->next;
4193 if (da->da_synced) {
4194 __dev_addr_delete(to, to_count,
4195 da->da_addr, da->da_addrlen, 0);
4196 da->da_synced = 0;
4197 __dev_addr_delete(from, from_count,
4198 da->da_addr, da->da_addrlen, 0);
4199 }
4200 da = next;
4201 }
4202 }
4203 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4204
4205 /**
4206 * dev_unicast_sync - Synchronize device's unicast list to another device
4207 * @to: destination device
4208 * @from: source device
4209 *
4210 * Add newly added addresses to the destination device and release
4211 * addresses that have no users left. The source device must be
4212 * locked by netif_tx_lock_bh.
4213 *
4214 * This function is intended to be called from the dev->set_rx_mode
4215 * function of layered software devices.
4216 */
4217 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4218 {
4219 int err = 0;
4220
4221 if (to->addr_len != from->addr_len)
4222 return -EINVAL;
4223
4224 netif_addr_lock_bh(to);
4225 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4226 if (!err)
4227 __dev_set_rx_mode(to);
4228 netif_addr_unlock_bh(to);
4229 return err;
4230 }
4231 EXPORT_SYMBOL(dev_unicast_sync);
4232
4233 /**
4234 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4235 * @to: destination device
4236 * @from: source device
4237 *
4238 * Remove all addresses that were added to the destination device by
4239 * dev_unicast_sync(). This function is intended to be called from the
4240 * dev->stop function of layered software devices.
4241 */
4242 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4243 {
4244 if (to->addr_len != from->addr_len)
4245 return;
4246
4247 netif_addr_lock_bh(from);
4248 netif_addr_lock(to);
4249 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4250 __dev_set_rx_mode(to);
4251 netif_addr_unlock(to);
4252 netif_addr_unlock_bh(from);
4253 }
4254 EXPORT_SYMBOL(dev_unicast_unsync);
4255
4256 static void dev_unicast_flush(struct net_device *dev)
4257 {
4258 netif_addr_lock_bh(dev);
4259 __hw_addr_flush(&dev->uc);
4260 netif_addr_unlock_bh(dev);
4261 }
4262
4263 static void dev_unicast_init(struct net_device *dev)
4264 {
4265 __hw_addr_init(&dev->uc);
4266 }
4267
4268
4269 static void __dev_addr_discard(struct dev_addr_list **list)
4270 {
4271 struct dev_addr_list *tmp;
4272
4273 while (*list != NULL) {
4274 tmp = *list;
4275 *list = tmp->next;
4276 if (tmp->da_users > tmp->da_gusers)
4277 printk("__dev_addr_discard: address leakage! "
4278 "da_users=%d\n", tmp->da_users);
4279 kfree(tmp);
4280 }
4281 }
4282
4283 static void dev_addr_discard(struct net_device *dev)
4284 {
4285 netif_addr_lock_bh(dev);
4286
4287 __dev_addr_discard(&dev->mc_list);
4288 netdev_mc_count(dev) = 0;
4289
4290 netif_addr_unlock_bh(dev);
4291 }
4292
4293 /**
4294 * dev_get_flags - get flags reported to userspace
4295 * @dev: device
4296 *
4297 * Get the combination of flag bits exported through APIs to userspace.
4298 */
4299 unsigned dev_get_flags(const struct net_device *dev)
4300 {
4301 unsigned flags;
4302
4303 flags = (dev->flags & ~(IFF_PROMISC |
4304 IFF_ALLMULTI |
4305 IFF_RUNNING |
4306 IFF_LOWER_UP |
4307 IFF_DORMANT)) |
4308 (dev->gflags & (IFF_PROMISC |
4309 IFF_ALLMULTI));
4310
4311 if (netif_running(dev)) {
4312 if (netif_oper_up(dev))
4313 flags |= IFF_RUNNING;
4314 if (netif_carrier_ok(dev))
4315 flags |= IFF_LOWER_UP;
4316 if (netif_dormant(dev))
4317 flags |= IFF_DORMANT;
4318 }
4319
4320 return flags;
4321 }
4322 EXPORT_SYMBOL(dev_get_flags);
4323
4324 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4325 {
4326 int old_flags = dev->flags;
4327 int ret;
4328
4329 ASSERT_RTNL();
4330
4331 /*
4332 * Set the flags on our device.
4333 */
4334
4335 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4336 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4337 IFF_AUTOMEDIA)) |
4338 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4339 IFF_ALLMULTI));
4340
4341 /*
4342 * Load in the correct multicast list now the flags have changed.
4343 */
4344
4345 if ((old_flags ^ flags) & IFF_MULTICAST)
4346 dev_change_rx_flags(dev, IFF_MULTICAST);
4347
4348 dev_set_rx_mode(dev);
4349
4350 /*
4351 * Have we downed the interface. We handle IFF_UP ourselves
4352 * according to user attempts to set it, rather than blindly
4353 * setting it.
4354 */
4355
4356 ret = 0;
4357 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4358 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4359
4360 if (!ret)
4361 dev_set_rx_mode(dev);
4362 }
4363
4364 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4365 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4366
4367 dev->gflags ^= IFF_PROMISC;
4368 dev_set_promiscuity(dev, inc);
4369 }
4370
4371 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4372 is important. Some (broken) drivers set IFF_PROMISC, when
4373 IFF_ALLMULTI is requested not asking us and not reporting.
4374 */
4375 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4376 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4377
4378 dev->gflags ^= IFF_ALLMULTI;
4379 dev_set_allmulti(dev, inc);
4380 }
4381
4382 return ret;
4383 }
4384
4385 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4386 {
4387 unsigned int changes = dev->flags ^ old_flags;
4388
4389 if (changes & IFF_UP) {
4390 if (dev->flags & IFF_UP)
4391 call_netdevice_notifiers(NETDEV_UP, dev);
4392 else
4393 call_netdevice_notifiers(NETDEV_DOWN, dev);
4394 }
4395
4396 if (dev->flags & IFF_UP &&
4397 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4398 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4399 }
4400
4401 /**
4402 * dev_change_flags - change device settings
4403 * @dev: device
4404 * @flags: device state flags
4405 *
4406 * Change settings on device based state flags. The flags are
4407 * in the userspace exported format.
4408 */
4409 int dev_change_flags(struct net_device *dev, unsigned flags)
4410 {
4411 int ret, changes;
4412 int old_flags = dev->flags;
4413
4414 ret = __dev_change_flags(dev, flags);
4415 if (ret < 0)
4416 return ret;
4417
4418 changes = old_flags ^ dev->flags;
4419 if (changes)
4420 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4421
4422 __dev_notify_flags(dev, old_flags);
4423 return ret;
4424 }
4425 EXPORT_SYMBOL(dev_change_flags);
4426
4427 /**
4428 * dev_set_mtu - Change maximum transfer unit
4429 * @dev: device
4430 * @new_mtu: new transfer unit
4431 *
4432 * Change the maximum transfer size of the network device.
4433 */
4434 int dev_set_mtu(struct net_device *dev, int new_mtu)
4435 {
4436 const struct net_device_ops *ops = dev->netdev_ops;
4437 int err;
4438
4439 if (new_mtu == dev->mtu)
4440 return 0;
4441
4442 /* MTU must be positive. */
4443 if (new_mtu < 0)
4444 return -EINVAL;
4445
4446 if (!netif_device_present(dev))
4447 return -ENODEV;
4448
4449 err = 0;
4450 if (ops->ndo_change_mtu)
4451 err = ops->ndo_change_mtu(dev, new_mtu);
4452 else
4453 dev->mtu = new_mtu;
4454
4455 if (!err && dev->flags & IFF_UP)
4456 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4457 return err;
4458 }
4459 EXPORT_SYMBOL(dev_set_mtu);
4460
4461 /**
4462 * dev_set_mac_address - Change Media Access Control Address
4463 * @dev: device
4464 * @sa: new address
4465 *
4466 * Change the hardware (MAC) address of the device
4467 */
4468 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4469 {
4470 const struct net_device_ops *ops = dev->netdev_ops;
4471 int err;
4472
4473 if (!ops->ndo_set_mac_address)
4474 return -EOPNOTSUPP;
4475 if (sa->sa_family != dev->type)
4476 return -EINVAL;
4477 if (!netif_device_present(dev))
4478 return -ENODEV;
4479 err = ops->ndo_set_mac_address(dev, sa);
4480 if (!err)
4481 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4482 return err;
4483 }
4484 EXPORT_SYMBOL(dev_set_mac_address);
4485
4486 /*
4487 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4488 */
4489 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4490 {
4491 int err;
4492 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4493
4494 if (!dev)
4495 return -ENODEV;
4496
4497 switch (cmd) {
4498 case SIOCGIFFLAGS: /* Get interface flags */
4499 ifr->ifr_flags = (short) dev_get_flags(dev);
4500 return 0;
4501
4502 case SIOCGIFMETRIC: /* Get the metric on the interface
4503 (currently unused) */
4504 ifr->ifr_metric = 0;
4505 return 0;
4506
4507 case SIOCGIFMTU: /* Get the MTU of a device */
4508 ifr->ifr_mtu = dev->mtu;
4509 return 0;
4510
4511 case SIOCGIFHWADDR:
4512 if (!dev->addr_len)
4513 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4514 else
4515 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4516 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4517 ifr->ifr_hwaddr.sa_family = dev->type;
4518 return 0;
4519
4520 case SIOCGIFSLAVE:
4521 err = -EINVAL;
4522 break;
4523
4524 case SIOCGIFMAP:
4525 ifr->ifr_map.mem_start = dev->mem_start;
4526 ifr->ifr_map.mem_end = dev->mem_end;
4527 ifr->ifr_map.base_addr = dev->base_addr;
4528 ifr->ifr_map.irq = dev->irq;
4529 ifr->ifr_map.dma = dev->dma;
4530 ifr->ifr_map.port = dev->if_port;
4531 return 0;
4532
4533 case SIOCGIFINDEX:
4534 ifr->ifr_ifindex = dev->ifindex;
4535 return 0;
4536
4537 case SIOCGIFTXQLEN:
4538 ifr->ifr_qlen = dev->tx_queue_len;
4539 return 0;
4540
4541 default:
4542 /* dev_ioctl() should ensure this case
4543 * is never reached
4544 */
4545 WARN_ON(1);
4546 err = -EINVAL;
4547 break;
4548
4549 }
4550 return err;
4551 }
4552
4553 /*
4554 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4555 */
4556 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4557 {
4558 int err;
4559 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4560 const struct net_device_ops *ops;
4561
4562 if (!dev)
4563 return -ENODEV;
4564
4565 ops = dev->netdev_ops;
4566
4567 switch (cmd) {
4568 case SIOCSIFFLAGS: /* Set interface flags */
4569 return dev_change_flags(dev, ifr->ifr_flags);
4570
4571 case SIOCSIFMETRIC: /* Set the metric on the interface
4572 (currently unused) */
4573 return -EOPNOTSUPP;
4574
4575 case SIOCSIFMTU: /* Set the MTU of a device */
4576 return dev_set_mtu(dev, ifr->ifr_mtu);
4577
4578 case SIOCSIFHWADDR:
4579 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4580
4581 case SIOCSIFHWBROADCAST:
4582 if (ifr->ifr_hwaddr.sa_family != dev->type)
4583 return -EINVAL;
4584 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4585 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4586 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4587 return 0;
4588
4589 case SIOCSIFMAP:
4590 if (ops->ndo_set_config) {
4591 if (!netif_device_present(dev))
4592 return -ENODEV;
4593 return ops->ndo_set_config(dev, &ifr->ifr_map);
4594 }
4595 return -EOPNOTSUPP;
4596
4597 case SIOCADDMULTI:
4598 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4599 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4600 return -EINVAL;
4601 if (!netif_device_present(dev))
4602 return -ENODEV;
4603 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4604 dev->addr_len, 1);
4605
4606 case SIOCDELMULTI:
4607 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4608 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4609 return -EINVAL;
4610 if (!netif_device_present(dev))
4611 return -ENODEV;
4612 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4613 dev->addr_len, 1);
4614
4615 case SIOCSIFTXQLEN:
4616 if (ifr->ifr_qlen < 0)
4617 return -EINVAL;
4618 dev->tx_queue_len = ifr->ifr_qlen;
4619 return 0;
4620
4621 case SIOCSIFNAME:
4622 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4623 return dev_change_name(dev, ifr->ifr_newname);
4624
4625 /*
4626 * Unknown or private ioctl
4627 */
4628 default:
4629 if ((cmd >= SIOCDEVPRIVATE &&
4630 cmd <= SIOCDEVPRIVATE + 15) ||
4631 cmd == SIOCBONDENSLAVE ||
4632 cmd == SIOCBONDRELEASE ||
4633 cmd == SIOCBONDSETHWADDR ||
4634 cmd == SIOCBONDSLAVEINFOQUERY ||
4635 cmd == SIOCBONDINFOQUERY ||
4636 cmd == SIOCBONDCHANGEACTIVE ||
4637 cmd == SIOCGMIIPHY ||
4638 cmd == SIOCGMIIREG ||
4639 cmd == SIOCSMIIREG ||
4640 cmd == SIOCBRADDIF ||
4641 cmd == SIOCBRDELIF ||
4642 cmd == SIOCSHWTSTAMP ||
4643 cmd == SIOCWANDEV) {
4644 err = -EOPNOTSUPP;
4645 if (ops->ndo_do_ioctl) {
4646 if (netif_device_present(dev))
4647 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4648 else
4649 err = -ENODEV;
4650 }
4651 } else
4652 err = -EINVAL;
4653
4654 }
4655 return err;
4656 }
4657
4658 /*
4659 * This function handles all "interface"-type I/O control requests. The actual
4660 * 'doing' part of this is dev_ifsioc above.
4661 */
4662
4663 /**
4664 * dev_ioctl - network device ioctl
4665 * @net: the applicable net namespace
4666 * @cmd: command to issue
4667 * @arg: pointer to a struct ifreq in user space
4668 *
4669 * Issue ioctl functions to devices. This is normally called by the
4670 * user space syscall interfaces but can sometimes be useful for
4671 * other purposes. The return value is the return from the syscall if
4672 * positive or a negative errno code on error.
4673 */
4674
4675 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4676 {
4677 struct ifreq ifr;
4678 int ret;
4679 char *colon;
4680
4681 /* One special case: SIOCGIFCONF takes ifconf argument
4682 and requires shared lock, because it sleeps writing
4683 to user space.
4684 */
4685
4686 if (cmd == SIOCGIFCONF) {
4687 rtnl_lock();
4688 ret = dev_ifconf(net, (char __user *) arg);
4689 rtnl_unlock();
4690 return ret;
4691 }
4692 if (cmd == SIOCGIFNAME)
4693 return dev_ifname(net, (struct ifreq __user *)arg);
4694
4695 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4696 return -EFAULT;
4697
4698 ifr.ifr_name[IFNAMSIZ-1] = 0;
4699
4700 colon = strchr(ifr.ifr_name, ':');
4701 if (colon)
4702 *colon = 0;
4703
4704 /*
4705 * See which interface the caller is talking about.
4706 */
4707
4708 switch (cmd) {
4709 /*
4710 * These ioctl calls:
4711 * - can be done by all.
4712 * - atomic and do not require locking.
4713 * - return a value
4714 */
4715 case SIOCGIFFLAGS:
4716 case SIOCGIFMETRIC:
4717 case SIOCGIFMTU:
4718 case SIOCGIFHWADDR:
4719 case SIOCGIFSLAVE:
4720 case SIOCGIFMAP:
4721 case SIOCGIFINDEX:
4722 case SIOCGIFTXQLEN:
4723 dev_load(net, ifr.ifr_name);
4724 rcu_read_lock();
4725 ret = dev_ifsioc_locked(net, &ifr, cmd);
4726 rcu_read_unlock();
4727 if (!ret) {
4728 if (colon)
4729 *colon = ':';
4730 if (copy_to_user(arg, &ifr,
4731 sizeof(struct ifreq)))
4732 ret = -EFAULT;
4733 }
4734 return ret;
4735
4736 case SIOCETHTOOL:
4737 dev_load(net, ifr.ifr_name);
4738 rtnl_lock();
4739 ret = dev_ethtool(net, &ifr);
4740 rtnl_unlock();
4741 if (!ret) {
4742 if (colon)
4743 *colon = ':';
4744 if (copy_to_user(arg, &ifr,
4745 sizeof(struct ifreq)))
4746 ret = -EFAULT;
4747 }
4748 return ret;
4749
4750 /*
4751 * These ioctl calls:
4752 * - require superuser power.
4753 * - require strict serialization.
4754 * - return a value
4755 */
4756 case SIOCGMIIPHY:
4757 case SIOCGMIIREG:
4758 case SIOCSIFNAME:
4759 if (!capable(CAP_NET_ADMIN))
4760 return -EPERM;
4761 dev_load(net, ifr.ifr_name);
4762 rtnl_lock();
4763 ret = dev_ifsioc(net, &ifr, cmd);
4764 rtnl_unlock();
4765 if (!ret) {
4766 if (colon)
4767 *colon = ':';
4768 if (copy_to_user(arg, &ifr,
4769 sizeof(struct ifreq)))
4770 ret = -EFAULT;
4771 }
4772 return ret;
4773
4774 /*
4775 * These ioctl calls:
4776 * - require superuser power.
4777 * - require strict serialization.
4778 * - do not return a value
4779 */
4780 case SIOCSIFFLAGS:
4781 case SIOCSIFMETRIC:
4782 case SIOCSIFMTU:
4783 case SIOCSIFMAP:
4784 case SIOCSIFHWADDR:
4785 case SIOCSIFSLAVE:
4786 case SIOCADDMULTI:
4787 case SIOCDELMULTI:
4788 case SIOCSIFHWBROADCAST:
4789 case SIOCSIFTXQLEN:
4790 case SIOCSMIIREG:
4791 case SIOCBONDENSLAVE:
4792 case SIOCBONDRELEASE:
4793 case SIOCBONDSETHWADDR:
4794 case SIOCBONDCHANGEACTIVE:
4795 case SIOCBRADDIF:
4796 case SIOCBRDELIF:
4797 case SIOCSHWTSTAMP:
4798 if (!capable(CAP_NET_ADMIN))
4799 return -EPERM;
4800 /* fall through */
4801 case SIOCBONDSLAVEINFOQUERY:
4802 case SIOCBONDINFOQUERY:
4803 dev_load(net, ifr.ifr_name);
4804 rtnl_lock();
4805 ret = dev_ifsioc(net, &ifr, cmd);
4806 rtnl_unlock();
4807 return ret;
4808
4809 case SIOCGIFMEM:
4810 /* Get the per device memory space. We can add this but
4811 * currently do not support it */
4812 case SIOCSIFMEM:
4813 /* Set the per device memory buffer space.
4814 * Not applicable in our case */
4815 case SIOCSIFLINK:
4816 return -EINVAL;
4817
4818 /*
4819 * Unknown or private ioctl.
4820 */
4821 default:
4822 if (cmd == SIOCWANDEV ||
4823 (cmd >= SIOCDEVPRIVATE &&
4824 cmd <= SIOCDEVPRIVATE + 15)) {
4825 dev_load(net, ifr.ifr_name);
4826 rtnl_lock();
4827 ret = dev_ifsioc(net, &ifr, cmd);
4828 rtnl_unlock();
4829 if (!ret && copy_to_user(arg, &ifr,
4830 sizeof(struct ifreq)))
4831 ret = -EFAULT;
4832 return ret;
4833 }
4834 /* Take care of Wireless Extensions */
4835 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4836 return wext_handle_ioctl(net, &ifr, cmd, arg);
4837 return -EINVAL;
4838 }
4839 }
4840
4841
4842 /**
4843 * dev_new_index - allocate an ifindex
4844 * @net: the applicable net namespace
4845 *
4846 * Returns a suitable unique value for a new device interface
4847 * number. The caller must hold the rtnl semaphore or the
4848 * dev_base_lock to be sure it remains unique.
4849 */
4850 static int dev_new_index(struct net *net)
4851 {
4852 static int ifindex;
4853 for (;;) {
4854 if (++ifindex <= 0)
4855 ifindex = 1;
4856 if (!__dev_get_by_index(net, ifindex))
4857 return ifindex;
4858 }
4859 }
4860
4861 /* Delayed registration/unregisteration */
4862 static LIST_HEAD(net_todo_list);
4863
4864 static void net_set_todo(struct net_device *dev)
4865 {
4866 list_add_tail(&dev->todo_list, &net_todo_list);
4867 }
4868
4869 static void rollback_registered_many(struct list_head *head)
4870 {
4871 struct net_device *dev, *tmp;
4872
4873 BUG_ON(dev_boot_phase);
4874 ASSERT_RTNL();
4875
4876 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4877 /* Some devices call without registering
4878 * for initialization unwind. Remove those
4879 * devices and proceed with the remaining.
4880 */
4881 if (dev->reg_state == NETREG_UNINITIALIZED) {
4882 pr_debug("unregister_netdevice: device %s/%p never "
4883 "was registered\n", dev->name, dev);
4884
4885 WARN_ON(1);
4886 list_del(&dev->unreg_list);
4887 continue;
4888 }
4889
4890 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4891
4892 /* If device is running, close it first. */
4893 dev_close(dev);
4894
4895 /* And unlink it from device chain. */
4896 unlist_netdevice(dev);
4897
4898 dev->reg_state = NETREG_UNREGISTERING;
4899 }
4900
4901 synchronize_net();
4902
4903 list_for_each_entry(dev, head, unreg_list) {
4904 /* Shutdown queueing discipline. */
4905 dev_shutdown(dev);
4906
4907
4908 /* Notify protocols, that we are about to destroy
4909 this device. They should clean all the things.
4910 */
4911 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4912
4913 if (!dev->rtnl_link_ops ||
4914 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4915 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4916
4917 /*
4918 * Flush the unicast and multicast chains
4919 */
4920 dev_unicast_flush(dev);
4921 dev_addr_discard(dev);
4922
4923 if (dev->netdev_ops->ndo_uninit)
4924 dev->netdev_ops->ndo_uninit(dev);
4925
4926 /* Notifier chain MUST detach us from master device. */
4927 WARN_ON(dev->master);
4928
4929 /* Remove entries from kobject tree */
4930 netdev_unregister_kobject(dev);
4931 }
4932
4933 /* Process any work delayed until the end of the batch */
4934 dev = list_first_entry(head, struct net_device, unreg_list);
4935 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4936
4937 synchronize_net();
4938
4939 list_for_each_entry(dev, head, unreg_list)
4940 dev_put(dev);
4941 }
4942
4943 static void rollback_registered(struct net_device *dev)
4944 {
4945 LIST_HEAD(single);
4946
4947 list_add(&dev->unreg_list, &single);
4948 rollback_registered_many(&single);
4949 }
4950
4951 static void __netdev_init_queue_locks_one(struct net_device *dev,
4952 struct netdev_queue *dev_queue,
4953 void *_unused)
4954 {
4955 spin_lock_init(&dev_queue->_xmit_lock);
4956 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4957 dev_queue->xmit_lock_owner = -1;
4958 }
4959
4960 static void netdev_init_queue_locks(struct net_device *dev)
4961 {
4962 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4963 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4964 }
4965
4966 unsigned long netdev_fix_features(unsigned long features, const char *name)
4967 {
4968 /* Fix illegal SG+CSUM combinations. */
4969 if ((features & NETIF_F_SG) &&
4970 !(features & NETIF_F_ALL_CSUM)) {
4971 if (name)
4972 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4973 "checksum feature.\n", name);
4974 features &= ~NETIF_F_SG;
4975 }
4976
4977 /* TSO requires that SG is present as well. */
4978 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4979 if (name)
4980 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4981 "SG feature.\n", name);
4982 features &= ~NETIF_F_TSO;
4983 }
4984
4985 if (features & NETIF_F_UFO) {
4986 if (!(features & NETIF_F_GEN_CSUM)) {
4987 if (name)
4988 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4989 "since no NETIF_F_HW_CSUM feature.\n",
4990 name);
4991 features &= ~NETIF_F_UFO;
4992 }
4993
4994 if (!(features & NETIF_F_SG)) {
4995 if (name)
4996 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4997 "since no NETIF_F_SG feature.\n", name);
4998 features &= ~NETIF_F_UFO;
4999 }
5000 }
5001
5002 return features;
5003 }
5004 EXPORT_SYMBOL(netdev_fix_features);
5005
5006 /**
5007 * netif_stacked_transfer_operstate - transfer operstate
5008 * @rootdev: the root or lower level device to transfer state from
5009 * @dev: the device to transfer operstate to
5010 *
5011 * Transfer operational state from root to device. This is normally
5012 * called when a stacking relationship exists between the root
5013 * device and the device(a leaf device).
5014 */
5015 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5016 struct net_device *dev)
5017 {
5018 if (rootdev->operstate == IF_OPER_DORMANT)
5019 netif_dormant_on(dev);
5020 else
5021 netif_dormant_off(dev);
5022
5023 if (netif_carrier_ok(rootdev)) {
5024 if (!netif_carrier_ok(dev))
5025 netif_carrier_on(dev);
5026 } else {
5027 if (netif_carrier_ok(dev))
5028 netif_carrier_off(dev);
5029 }
5030 }
5031 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5032
5033 /**
5034 * register_netdevice - register a network device
5035 * @dev: device to register
5036 *
5037 * Take a completed network device structure and add it to the kernel
5038 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5039 * chain. 0 is returned on success. A negative errno code is returned
5040 * on a failure to set up the device, or if the name is a duplicate.
5041 *
5042 * Callers must hold the rtnl semaphore. You may want
5043 * register_netdev() instead of this.
5044 *
5045 * BUGS:
5046 * The locking appears insufficient to guarantee two parallel registers
5047 * will not get the same name.
5048 */
5049
5050 int register_netdevice(struct net_device *dev)
5051 {
5052 int ret;
5053 struct net *net = dev_net(dev);
5054
5055 BUG_ON(dev_boot_phase);
5056 ASSERT_RTNL();
5057
5058 might_sleep();
5059
5060 /* When net_device's are persistent, this will be fatal. */
5061 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5062 BUG_ON(!net);
5063
5064 spin_lock_init(&dev->addr_list_lock);
5065 netdev_set_addr_lockdep_class(dev);
5066 netdev_init_queue_locks(dev);
5067
5068 dev->iflink = -1;
5069
5070 /* Init, if this function is available */
5071 if (dev->netdev_ops->ndo_init) {
5072 ret = dev->netdev_ops->ndo_init(dev);
5073 if (ret) {
5074 if (ret > 0)
5075 ret = -EIO;
5076 goto out;
5077 }
5078 }
5079
5080 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5081 if (ret)
5082 goto err_uninit;
5083
5084 dev->ifindex = dev_new_index(net);
5085 if (dev->iflink == -1)
5086 dev->iflink = dev->ifindex;
5087
5088 /* Fix illegal checksum combinations */
5089 if ((dev->features & NETIF_F_HW_CSUM) &&
5090 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5091 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5092 dev->name);
5093 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5094 }
5095
5096 if ((dev->features & NETIF_F_NO_CSUM) &&
5097 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5098 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5099 dev->name);
5100 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5101 }
5102
5103 dev->features = netdev_fix_features(dev->features, dev->name);
5104
5105 /* Enable software GSO if SG is supported. */
5106 if (dev->features & NETIF_F_SG)
5107 dev->features |= NETIF_F_GSO;
5108
5109 netdev_initialize_kobject(dev);
5110
5111 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5112 ret = notifier_to_errno(ret);
5113 if (ret)
5114 goto err_uninit;
5115
5116 ret = netdev_register_kobject(dev);
5117 if (ret)
5118 goto err_uninit;
5119 dev->reg_state = NETREG_REGISTERED;
5120
5121 /*
5122 * Default initial state at registry is that the
5123 * device is present.
5124 */
5125
5126 set_bit(__LINK_STATE_PRESENT, &dev->state);
5127
5128 dev_init_scheduler(dev);
5129 dev_hold(dev);
5130 list_netdevice(dev);
5131
5132 /* Notify protocols, that a new device appeared. */
5133 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5134 ret = notifier_to_errno(ret);
5135 if (ret) {
5136 rollback_registered(dev);
5137 dev->reg_state = NETREG_UNREGISTERED;
5138 }
5139 /*
5140 * Prevent userspace races by waiting until the network
5141 * device is fully setup before sending notifications.
5142 */
5143 if (!dev->rtnl_link_ops ||
5144 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5145 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5146
5147 out:
5148 return ret;
5149
5150 err_uninit:
5151 if (dev->netdev_ops->ndo_uninit)
5152 dev->netdev_ops->ndo_uninit(dev);
5153 goto out;
5154 }
5155 EXPORT_SYMBOL(register_netdevice);
5156
5157 /**
5158 * init_dummy_netdev - init a dummy network device for NAPI
5159 * @dev: device to init
5160 *
5161 * This takes a network device structure and initialize the minimum
5162 * amount of fields so it can be used to schedule NAPI polls without
5163 * registering a full blown interface. This is to be used by drivers
5164 * that need to tie several hardware interfaces to a single NAPI
5165 * poll scheduler due to HW limitations.
5166 */
5167 int init_dummy_netdev(struct net_device *dev)
5168 {
5169 /* Clear everything. Note we don't initialize spinlocks
5170 * are they aren't supposed to be taken by any of the
5171 * NAPI code and this dummy netdev is supposed to be
5172 * only ever used for NAPI polls
5173 */
5174 memset(dev, 0, sizeof(struct net_device));
5175
5176 /* make sure we BUG if trying to hit standard
5177 * register/unregister code path
5178 */
5179 dev->reg_state = NETREG_DUMMY;
5180
5181 /* initialize the ref count */
5182 atomic_set(&dev->refcnt, 1);
5183
5184 /* NAPI wants this */
5185 INIT_LIST_HEAD(&dev->napi_list);
5186
5187 /* a dummy interface is started by default */
5188 set_bit(__LINK_STATE_PRESENT, &dev->state);
5189 set_bit(__LINK_STATE_START, &dev->state);
5190
5191 return 0;
5192 }
5193 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5194
5195
5196 /**
5197 * register_netdev - register a network device
5198 * @dev: device to register
5199 *
5200 * Take a completed network device structure and add it to the kernel
5201 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5202 * chain. 0 is returned on success. A negative errno code is returned
5203 * on a failure to set up the device, or if the name is a duplicate.
5204 *
5205 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5206 * and expands the device name if you passed a format string to
5207 * alloc_netdev.
5208 */
5209 int register_netdev(struct net_device *dev)
5210 {
5211 int err;
5212
5213 rtnl_lock();
5214
5215 /*
5216 * If the name is a format string the caller wants us to do a
5217 * name allocation.
5218 */
5219 if (strchr(dev->name, '%')) {
5220 err = dev_alloc_name(dev, dev->name);
5221 if (err < 0)
5222 goto out;
5223 }
5224
5225 err = register_netdevice(dev);
5226 out:
5227 rtnl_unlock();
5228 return err;
5229 }
5230 EXPORT_SYMBOL(register_netdev);
5231
5232 /*
5233 * netdev_wait_allrefs - wait until all references are gone.
5234 *
5235 * This is called when unregistering network devices.
5236 *
5237 * Any protocol or device that holds a reference should register
5238 * for netdevice notification, and cleanup and put back the
5239 * reference if they receive an UNREGISTER event.
5240 * We can get stuck here if buggy protocols don't correctly
5241 * call dev_put.
5242 */
5243 static void netdev_wait_allrefs(struct net_device *dev)
5244 {
5245 unsigned long rebroadcast_time, warning_time;
5246
5247 linkwatch_forget_dev(dev);
5248
5249 rebroadcast_time = warning_time = jiffies;
5250 while (atomic_read(&dev->refcnt) != 0) {
5251 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5252 rtnl_lock();
5253
5254 /* Rebroadcast unregister notification */
5255 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5256 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5257 * should have already handle it the first time */
5258
5259 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5260 &dev->state)) {
5261 /* We must not have linkwatch events
5262 * pending on unregister. If this
5263 * happens, we simply run the queue
5264 * unscheduled, resulting in a noop
5265 * for this device.
5266 */
5267 linkwatch_run_queue();
5268 }
5269
5270 __rtnl_unlock();
5271
5272 rebroadcast_time = jiffies;
5273 }
5274
5275 msleep(250);
5276
5277 if (time_after(jiffies, warning_time + 10 * HZ)) {
5278 printk(KERN_EMERG "unregister_netdevice: "
5279 "waiting for %s to become free. Usage "
5280 "count = %d\n",
5281 dev->name, atomic_read(&dev->refcnt));
5282 warning_time = jiffies;
5283 }
5284 }
5285 }
5286
5287 /* The sequence is:
5288 *
5289 * rtnl_lock();
5290 * ...
5291 * register_netdevice(x1);
5292 * register_netdevice(x2);
5293 * ...
5294 * unregister_netdevice(y1);
5295 * unregister_netdevice(y2);
5296 * ...
5297 * rtnl_unlock();
5298 * free_netdev(y1);
5299 * free_netdev(y2);
5300 *
5301 * We are invoked by rtnl_unlock().
5302 * This allows us to deal with problems:
5303 * 1) We can delete sysfs objects which invoke hotplug
5304 * without deadlocking with linkwatch via keventd.
5305 * 2) Since we run with the RTNL semaphore not held, we can sleep
5306 * safely in order to wait for the netdev refcnt to drop to zero.
5307 *
5308 * We must not return until all unregister events added during
5309 * the interval the lock was held have been completed.
5310 */
5311 void netdev_run_todo(void)
5312 {
5313 struct list_head list;
5314
5315 /* Snapshot list, allow later requests */
5316 list_replace_init(&net_todo_list, &list);
5317
5318 __rtnl_unlock();
5319
5320 while (!list_empty(&list)) {
5321 struct net_device *dev
5322 = list_first_entry(&list, struct net_device, todo_list);
5323 list_del(&dev->todo_list);
5324
5325 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5326 printk(KERN_ERR "network todo '%s' but state %d\n",
5327 dev->name, dev->reg_state);
5328 dump_stack();
5329 continue;
5330 }
5331
5332 dev->reg_state = NETREG_UNREGISTERED;
5333
5334 on_each_cpu(flush_backlog, dev, 1);
5335
5336 netdev_wait_allrefs(dev);
5337
5338 /* paranoia */
5339 BUG_ON(atomic_read(&dev->refcnt));
5340 WARN_ON(dev->ip_ptr);
5341 WARN_ON(dev->ip6_ptr);
5342 WARN_ON(dev->dn_ptr);
5343
5344 if (dev->destructor)
5345 dev->destructor(dev);
5346
5347 /* Free network device */
5348 kobject_put(&dev->dev.kobj);
5349 }
5350 }
5351
5352 /**
5353 * dev_txq_stats_fold - fold tx_queues stats
5354 * @dev: device to get statistics from
5355 * @stats: struct net_device_stats to hold results
5356 */
5357 void dev_txq_stats_fold(const struct net_device *dev,
5358 struct net_device_stats *stats)
5359 {
5360 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5361 unsigned int i;
5362 struct netdev_queue *txq;
5363
5364 for (i = 0; i < dev->num_tx_queues; i++) {
5365 txq = netdev_get_tx_queue(dev, i);
5366 tx_bytes += txq->tx_bytes;
5367 tx_packets += txq->tx_packets;
5368 tx_dropped += txq->tx_dropped;
5369 }
5370 if (tx_bytes || tx_packets || tx_dropped) {
5371 stats->tx_bytes = tx_bytes;
5372 stats->tx_packets = tx_packets;
5373 stats->tx_dropped = tx_dropped;
5374 }
5375 }
5376 EXPORT_SYMBOL(dev_txq_stats_fold);
5377
5378 /**
5379 * dev_get_stats - get network device statistics
5380 * @dev: device to get statistics from
5381 *
5382 * Get network statistics from device. The device driver may provide
5383 * its own method by setting dev->netdev_ops->get_stats; otherwise
5384 * the internal statistics structure is used.
5385 */
5386 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5387 {
5388 const struct net_device_ops *ops = dev->netdev_ops;
5389
5390 if (ops->ndo_get_stats)
5391 return ops->ndo_get_stats(dev);
5392
5393 dev_txq_stats_fold(dev, &dev->stats);
5394 return &dev->stats;
5395 }
5396 EXPORT_SYMBOL(dev_get_stats);
5397
5398 static void netdev_init_one_queue(struct net_device *dev,
5399 struct netdev_queue *queue,
5400 void *_unused)
5401 {
5402 queue->dev = dev;
5403 }
5404
5405 static void netdev_init_queues(struct net_device *dev)
5406 {
5407 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5408 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5409 spin_lock_init(&dev->tx_global_lock);
5410 }
5411
5412 /**
5413 * alloc_netdev_mq - allocate network device
5414 * @sizeof_priv: size of private data to allocate space for
5415 * @name: device name format string
5416 * @setup: callback to initialize device
5417 * @queue_count: the number of subqueues to allocate
5418 *
5419 * Allocates a struct net_device with private data area for driver use
5420 * and performs basic initialization. Also allocates subquue structs
5421 * for each queue on the device at the end of the netdevice.
5422 */
5423 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5424 void (*setup)(struct net_device *), unsigned int queue_count)
5425 {
5426 struct netdev_queue *tx;
5427 struct net_device *dev;
5428 size_t alloc_size;
5429 struct net_device *p;
5430
5431 BUG_ON(strlen(name) >= sizeof(dev->name));
5432
5433 alloc_size = sizeof(struct net_device);
5434 if (sizeof_priv) {
5435 /* ensure 32-byte alignment of private area */
5436 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5437 alloc_size += sizeof_priv;
5438 }
5439 /* ensure 32-byte alignment of whole construct */
5440 alloc_size += NETDEV_ALIGN - 1;
5441
5442 p = kzalloc(alloc_size, GFP_KERNEL);
5443 if (!p) {
5444 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5445 return NULL;
5446 }
5447
5448 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5449 if (!tx) {
5450 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5451 "tx qdiscs.\n");
5452 goto free_p;
5453 }
5454
5455 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5456 dev->padded = (char *)dev - (char *)p;
5457
5458 if (dev_addr_init(dev))
5459 goto free_tx;
5460
5461 dev_unicast_init(dev);
5462
5463 dev_net_set(dev, &init_net);
5464
5465 dev->_tx = tx;
5466 dev->num_tx_queues = queue_count;
5467 dev->real_num_tx_queues = queue_count;
5468
5469 dev->gso_max_size = GSO_MAX_SIZE;
5470
5471 netdev_init_queues(dev);
5472
5473 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5474 dev->ethtool_ntuple_list.count = 0;
5475 INIT_LIST_HEAD(&dev->napi_list);
5476 INIT_LIST_HEAD(&dev->unreg_list);
5477 INIT_LIST_HEAD(&dev->link_watch_list);
5478 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5479 setup(dev);
5480 strcpy(dev->name, name);
5481 return dev;
5482
5483 free_tx:
5484 kfree(tx);
5485
5486 free_p:
5487 kfree(p);
5488 return NULL;
5489 }
5490 EXPORT_SYMBOL(alloc_netdev_mq);
5491
5492 /**
5493 * free_netdev - free network device
5494 * @dev: device
5495 *
5496 * This function does the last stage of destroying an allocated device
5497 * interface. The reference to the device object is released.
5498 * If this is the last reference then it will be freed.
5499 */
5500 void free_netdev(struct net_device *dev)
5501 {
5502 struct napi_struct *p, *n;
5503
5504 release_net(dev_net(dev));
5505
5506 kfree(dev->_tx);
5507
5508 /* Flush device addresses */
5509 dev_addr_flush(dev);
5510
5511 /* Clear ethtool n-tuple list */
5512 ethtool_ntuple_flush(dev);
5513
5514 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5515 netif_napi_del(p);
5516
5517 /* Compatibility with error handling in drivers */
5518 if (dev->reg_state == NETREG_UNINITIALIZED) {
5519 kfree((char *)dev - dev->padded);
5520 return;
5521 }
5522
5523 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5524 dev->reg_state = NETREG_RELEASED;
5525
5526 /* will free via device release */
5527 put_device(&dev->dev);
5528 }
5529 EXPORT_SYMBOL(free_netdev);
5530
5531 /**
5532 * synchronize_net - Synchronize with packet receive processing
5533 *
5534 * Wait for packets currently being received to be done.
5535 * Does not block later packets from starting.
5536 */
5537 void synchronize_net(void)
5538 {
5539 might_sleep();
5540 synchronize_rcu();
5541 }
5542 EXPORT_SYMBOL(synchronize_net);
5543
5544 /**
5545 * unregister_netdevice_queue - remove device from the kernel
5546 * @dev: device
5547 * @head: list
5548 *
5549 * This function shuts down a device interface and removes it
5550 * from the kernel tables.
5551 * If head not NULL, device is queued to be unregistered later.
5552 *
5553 * Callers must hold the rtnl semaphore. You may want
5554 * unregister_netdev() instead of this.
5555 */
5556
5557 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5558 {
5559 ASSERT_RTNL();
5560
5561 if (head) {
5562 list_move_tail(&dev->unreg_list, head);
5563 } else {
5564 rollback_registered(dev);
5565 /* Finish processing unregister after unlock */
5566 net_set_todo(dev);
5567 }
5568 }
5569 EXPORT_SYMBOL(unregister_netdevice_queue);
5570
5571 /**
5572 * unregister_netdevice_many - unregister many devices
5573 * @head: list of devices
5574 */
5575 void unregister_netdevice_many(struct list_head *head)
5576 {
5577 struct net_device *dev;
5578
5579 if (!list_empty(head)) {
5580 rollback_registered_many(head);
5581 list_for_each_entry(dev, head, unreg_list)
5582 net_set_todo(dev);
5583 }
5584 }
5585 EXPORT_SYMBOL(unregister_netdevice_many);
5586
5587 /**
5588 * unregister_netdev - remove device from the kernel
5589 * @dev: device
5590 *
5591 * This function shuts down a device interface and removes it
5592 * from the kernel tables.
5593 *
5594 * This is just a wrapper for unregister_netdevice that takes
5595 * the rtnl semaphore. In general you want to use this and not
5596 * unregister_netdevice.
5597 */
5598 void unregister_netdev(struct net_device *dev)
5599 {
5600 rtnl_lock();
5601 unregister_netdevice(dev);
5602 rtnl_unlock();
5603 }
5604 EXPORT_SYMBOL(unregister_netdev);
5605
5606 /**
5607 * dev_change_net_namespace - move device to different nethost namespace
5608 * @dev: device
5609 * @net: network namespace
5610 * @pat: If not NULL name pattern to try if the current device name
5611 * is already taken in the destination network namespace.
5612 *
5613 * This function shuts down a device interface and moves it
5614 * to a new network namespace. On success 0 is returned, on
5615 * a failure a netagive errno code is returned.
5616 *
5617 * Callers must hold the rtnl semaphore.
5618 */
5619
5620 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5621 {
5622 int err;
5623
5624 ASSERT_RTNL();
5625
5626 /* Don't allow namespace local devices to be moved. */
5627 err = -EINVAL;
5628 if (dev->features & NETIF_F_NETNS_LOCAL)
5629 goto out;
5630
5631 #ifdef CONFIG_SYSFS
5632 /* Don't allow real devices to be moved when sysfs
5633 * is enabled.
5634 */
5635 err = -EINVAL;
5636 if (dev->dev.parent)
5637 goto out;
5638 #endif
5639
5640 /* Ensure the device has been registrered */
5641 err = -EINVAL;
5642 if (dev->reg_state != NETREG_REGISTERED)
5643 goto out;
5644
5645 /* Get out if there is nothing todo */
5646 err = 0;
5647 if (net_eq(dev_net(dev), net))
5648 goto out;
5649
5650 /* Pick the destination device name, and ensure
5651 * we can use it in the destination network namespace.
5652 */
5653 err = -EEXIST;
5654 if (__dev_get_by_name(net, dev->name)) {
5655 /* We get here if we can't use the current device name */
5656 if (!pat)
5657 goto out;
5658 if (dev_get_valid_name(net, pat, dev->name, 1))
5659 goto out;
5660 }
5661
5662 /*
5663 * And now a mini version of register_netdevice unregister_netdevice.
5664 */
5665
5666 /* If device is running close it first. */
5667 dev_close(dev);
5668
5669 /* And unlink it from device chain */
5670 err = -ENODEV;
5671 unlist_netdevice(dev);
5672
5673 synchronize_net();
5674
5675 /* Shutdown queueing discipline. */
5676 dev_shutdown(dev);
5677
5678 /* Notify protocols, that we are about to destroy
5679 this device. They should clean all the things.
5680 */
5681 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5682 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5683
5684 /*
5685 * Flush the unicast and multicast chains
5686 */
5687 dev_unicast_flush(dev);
5688 dev_addr_discard(dev);
5689
5690 netdev_unregister_kobject(dev);
5691
5692 /* Actually switch the network namespace */
5693 dev_net_set(dev, net);
5694
5695 /* If there is an ifindex conflict assign a new one */
5696 if (__dev_get_by_index(net, dev->ifindex)) {
5697 int iflink = (dev->iflink == dev->ifindex);
5698 dev->ifindex = dev_new_index(net);
5699 if (iflink)
5700 dev->iflink = dev->ifindex;
5701 }
5702
5703 /* Fixup kobjects */
5704 err = netdev_register_kobject(dev);
5705 WARN_ON(err);
5706
5707 /* Add the device back in the hashes */
5708 list_netdevice(dev);
5709
5710 /* Notify protocols, that a new device appeared. */
5711 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5712
5713 /*
5714 * Prevent userspace races by waiting until the network
5715 * device is fully setup before sending notifications.
5716 */
5717 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5718
5719 synchronize_net();
5720 err = 0;
5721 out:
5722 return err;
5723 }
5724 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5725
5726 static int dev_cpu_callback(struct notifier_block *nfb,
5727 unsigned long action,
5728 void *ocpu)
5729 {
5730 struct sk_buff **list_skb;
5731 struct Qdisc **list_net;
5732 struct sk_buff *skb;
5733 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5734 struct softnet_data *sd, *oldsd;
5735
5736 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5737 return NOTIFY_OK;
5738
5739 local_irq_disable();
5740 cpu = smp_processor_id();
5741 sd = &per_cpu(softnet_data, cpu);
5742 oldsd = &per_cpu(softnet_data, oldcpu);
5743
5744 /* Find end of our completion_queue. */
5745 list_skb = &sd->completion_queue;
5746 while (*list_skb)
5747 list_skb = &(*list_skb)->next;
5748 /* Append completion queue from offline CPU. */
5749 *list_skb = oldsd->completion_queue;
5750 oldsd->completion_queue = NULL;
5751
5752 /* Find end of our output_queue. */
5753 list_net = &sd->output_queue;
5754 while (*list_net)
5755 list_net = &(*list_net)->next_sched;
5756 /* Append output queue from offline CPU. */
5757 *list_net = oldsd->output_queue;
5758 oldsd->output_queue = NULL;
5759
5760 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5761 local_irq_enable();
5762
5763 /* Process offline CPU's input_pkt_queue */
5764 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5765 netif_rx(skb);
5766
5767 return NOTIFY_OK;
5768 }
5769
5770
5771 /**
5772 * netdev_increment_features - increment feature set by one
5773 * @all: current feature set
5774 * @one: new feature set
5775 * @mask: mask feature set
5776 *
5777 * Computes a new feature set after adding a device with feature set
5778 * @one to the master device with current feature set @all. Will not
5779 * enable anything that is off in @mask. Returns the new feature set.
5780 */
5781 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5782 unsigned long mask)
5783 {
5784 /* If device needs checksumming, downgrade to it. */
5785 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5786 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5787 else if (mask & NETIF_F_ALL_CSUM) {
5788 /* If one device supports v4/v6 checksumming, set for all. */
5789 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5790 !(all & NETIF_F_GEN_CSUM)) {
5791 all &= ~NETIF_F_ALL_CSUM;
5792 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5793 }
5794
5795 /* If one device supports hw checksumming, set for all. */
5796 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5797 all &= ~NETIF_F_ALL_CSUM;
5798 all |= NETIF_F_HW_CSUM;
5799 }
5800 }
5801
5802 one |= NETIF_F_ALL_CSUM;
5803
5804 one |= all & NETIF_F_ONE_FOR_ALL;
5805 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5806 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5807
5808 return all;
5809 }
5810 EXPORT_SYMBOL(netdev_increment_features);
5811
5812 static struct hlist_head *netdev_create_hash(void)
5813 {
5814 int i;
5815 struct hlist_head *hash;
5816
5817 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5818 if (hash != NULL)
5819 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5820 INIT_HLIST_HEAD(&hash[i]);
5821
5822 return hash;
5823 }
5824
5825 /* Initialize per network namespace state */
5826 static int __net_init netdev_init(struct net *net)
5827 {
5828 INIT_LIST_HEAD(&net->dev_base_head);
5829
5830 net->dev_name_head = netdev_create_hash();
5831 if (net->dev_name_head == NULL)
5832 goto err_name;
5833
5834 net->dev_index_head = netdev_create_hash();
5835 if (net->dev_index_head == NULL)
5836 goto err_idx;
5837
5838 return 0;
5839
5840 err_idx:
5841 kfree(net->dev_name_head);
5842 err_name:
5843 return -ENOMEM;
5844 }
5845
5846 /**
5847 * netdev_drivername - network driver for the device
5848 * @dev: network device
5849 * @buffer: buffer for resulting name
5850 * @len: size of buffer
5851 *
5852 * Determine network driver for device.
5853 */
5854 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5855 {
5856 const struct device_driver *driver;
5857 const struct device *parent;
5858
5859 if (len <= 0 || !buffer)
5860 return buffer;
5861 buffer[0] = 0;
5862
5863 parent = dev->dev.parent;
5864
5865 if (!parent)
5866 return buffer;
5867
5868 driver = parent->driver;
5869 if (driver && driver->name)
5870 strlcpy(buffer, driver->name, len);
5871 return buffer;
5872 }
5873
5874 static void __net_exit netdev_exit(struct net *net)
5875 {
5876 kfree(net->dev_name_head);
5877 kfree(net->dev_index_head);
5878 }
5879
5880 static struct pernet_operations __net_initdata netdev_net_ops = {
5881 .init = netdev_init,
5882 .exit = netdev_exit,
5883 };
5884
5885 static void __net_exit default_device_exit(struct net *net)
5886 {
5887 struct net_device *dev, *aux;
5888 /*
5889 * Push all migratable network devices back to the
5890 * initial network namespace
5891 */
5892 rtnl_lock();
5893 for_each_netdev_safe(net, dev, aux) {
5894 int err;
5895 char fb_name[IFNAMSIZ];
5896
5897 /* Ignore unmoveable devices (i.e. loopback) */
5898 if (dev->features & NETIF_F_NETNS_LOCAL)
5899 continue;
5900
5901 /* Leave virtual devices for the generic cleanup */
5902 if (dev->rtnl_link_ops)
5903 continue;
5904
5905 /* Push remaing network devices to init_net */
5906 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5907 err = dev_change_net_namespace(dev, &init_net, fb_name);
5908 if (err) {
5909 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5910 __func__, dev->name, err);
5911 BUG();
5912 }
5913 }
5914 rtnl_unlock();
5915 }
5916
5917 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5918 {
5919 /* At exit all network devices most be removed from a network
5920 * namespace. Do this in the reverse order of registeration.
5921 * Do this across as many network namespaces as possible to
5922 * improve batching efficiency.
5923 */
5924 struct net_device *dev;
5925 struct net *net;
5926 LIST_HEAD(dev_kill_list);
5927
5928 rtnl_lock();
5929 list_for_each_entry(net, net_list, exit_list) {
5930 for_each_netdev_reverse(net, dev) {
5931 if (dev->rtnl_link_ops)
5932 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5933 else
5934 unregister_netdevice_queue(dev, &dev_kill_list);
5935 }
5936 }
5937 unregister_netdevice_many(&dev_kill_list);
5938 rtnl_unlock();
5939 }
5940
5941 static struct pernet_operations __net_initdata default_device_ops = {
5942 .exit = default_device_exit,
5943 .exit_batch = default_device_exit_batch,
5944 };
5945
5946 /*
5947 * Initialize the DEV module. At boot time this walks the device list and
5948 * unhooks any devices that fail to initialise (normally hardware not
5949 * present) and leaves us with a valid list of present and active devices.
5950 *
5951 */
5952
5953 /*
5954 * This is called single threaded during boot, so no need
5955 * to take the rtnl semaphore.
5956 */
5957 static int __init net_dev_init(void)
5958 {
5959 int i, rc = -ENOMEM;
5960
5961 BUG_ON(!dev_boot_phase);
5962
5963 if (dev_proc_init())
5964 goto out;
5965
5966 if (netdev_kobject_init())
5967 goto out;
5968
5969 INIT_LIST_HEAD(&ptype_all);
5970 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5971 INIT_LIST_HEAD(&ptype_base[i]);
5972
5973 if (register_pernet_subsys(&netdev_net_ops))
5974 goto out;
5975
5976 /*
5977 * Initialise the packet receive queues.
5978 */
5979
5980 for_each_possible_cpu(i) {
5981 struct softnet_data *queue;
5982
5983 queue = &per_cpu(softnet_data, i);
5984 skb_queue_head_init(&queue->input_pkt_queue);
5985 queue->completion_queue = NULL;
5986 INIT_LIST_HEAD(&queue->poll_list);
5987
5988 queue->backlog.poll = process_backlog;
5989 queue->backlog.weight = weight_p;
5990 queue->backlog.gro_list = NULL;
5991 queue->backlog.gro_count = 0;
5992 }
5993
5994 dev_boot_phase = 0;
5995
5996 /* The loopback device is special if any other network devices
5997 * is present in a network namespace the loopback device must
5998 * be present. Since we now dynamically allocate and free the
5999 * loopback device ensure this invariant is maintained by
6000 * keeping the loopback device as the first device on the
6001 * list of network devices. Ensuring the loopback devices
6002 * is the first device that appears and the last network device
6003 * that disappears.
6004 */
6005 if (register_pernet_device(&loopback_net_ops))
6006 goto out;
6007
6008 if (register_pernet_device(&default_device_ops))
6009 goto out;
6010
6011 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6012 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6013
6014 hotcpu_notifier(dev_cpu_callback, 0);
6015 dst_init();
6016 dev_mcast_init();
6017 rc = 0;
6018 out:
6019 return rc;
6020 }
6021
6022 subsys_initcall(net_dev_init);
6023
6024 static int __init initialize_hashrnd(void)
6025 {
6026 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6027 return 0;
6028 }
6029
6030 late_initcall_sync(initialize_hashrnd);
6031
This page took 0.267516 seconds and 6 git commands to generate.