Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct hlist_node *p;
662 struct net_device *dev;
663 struct hlist_head *head = dev_name_hash(net, name);
664
665 hlist_for_each_entry(dev, p, head, name_hlist)
666 if (!strncmp(dev->name, name, IFNAMSIZ))
667 return dev;
668
669 return NULL;
670 }
671 EXPORT_SYMBOL(__dev_get_by_name);
672
673 /**
674 * dev_get_by_name_rcu - find a device by its name
675 * @net: the applicable net namespace
676 * @name: name to find
677 *
678 * Find an interface by name.
679 * If the name is found a pointer to the device is returned.
680 * If the name is not found then %NULL is returned.
681 * The reference counters are not incremented so the caller must be
682 * careful with locks. The caller must hold RCU lock.
683 */
684
685 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
686 {
687 struct hlist_node *p;
688 struct net_device *dev;
689 struct hlist_head *head = dev_name_hash(net, name);
690
691 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
692 if (!strncmp(dev->name, name, IFNAMSIZ))
693 return dev;
694
695 return NULL;
696 }
697 EXPORT_SYMBOL(dev_get_by_name_rcu);
698
699 /**
700 * dev_get_by_name - find a device by its name
701 * @net: the applicable net namespace
702 * @name: name to find
703 *
704 * Find an interface by name. This can be called from any
705 * context and does its own locking. The returned handle has
706 * the usage count incremented and the caller must use dev_put() to
707 * release it when it is no longer needed. %NULL is returned if no
708 * matching device is found.
709 */
710
711 struct net_device *dev_get_by_name(struct net *net, const char *name)
712 {
713 struct net_device *dev;
714
715 rcu_read_lock();
716 dev = dev_get_by_name_rcu(net, name);
717 if (dev)
718 dev_hold(dev);
719 rcu_read_unlock();
720 return dev;
721 }
722 EXPORT_SYMBOL(dev_get_by_name);
723
724 /**
725 * __dev_get_by_index - find a device by its ifindex
726 * @net: the applicable net namespace
727 * @ifindex: index of device
728 *
729 * Search for an interface by index. Returns %NULL if the device
730 * is not found or a pointer to the device. The device has not
731 * had its reference counter increased so the caller must be careful
732 * about locking. The caller must hold either the RTNL semaphore
733 * or @dev_base_lock.
734 */
735
736 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
737 {
738 struct hlist_node *p;
739 struct net_device *dev;
740 struct hlist_head *head = dev_index_hash(net, ifindex);
741
742 hlist_for_each_entry(dev, p, head, index_hlist)
743 if (dev->ifindex == ifindex)
744 return dev;
745
746 return NULL;
747 }
748 EXPORT_SYMBOL(__dev_get_by_index);
749
750 /**
751 * dev_get_by_index_rcu - find a device by its ifindex
752 * @net: the applicable net namespace
753 * @ifindex: index of device
754 *
755 * Search for an interface by index. Returns %NULL if the device
756 * is not found or a pointer to the device. The device has not
757 * had its reference counter increased so the caller must be careful
758 * about locking. The caller must hold RCU lock.
759 */
760
761 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
762 {
763 struct hlist_node *p;
764 struct net_device *dev;
765 struct hlist_head *head = dev_index_hash(net, ifindex);
766
767 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
768 if (dev->ifindex == ifindex)
769 return dev;
770
771 return NULL;
772 }
773 EXPORT_SYMBOL(dev_get_by_index_rcu);
774
775
776 /**
777 * dev_get_by_index - find a device by its ifindex
778 * @net: the applicable net namespace
779 * @ifindex: index of device
780 *
781 * Search for an interface by index. Returns NULL if the device
782 * is not found or a pointer to the device. The device returned has
783 * had a reference added and the pointer is safe until the user calls
784 * dev_put to indicate they have finished with it.
785 */
786
787 struct net_device *dev_get_by_index(struct net *net, int ifindex)
788 {
789 struct net_device *dev;
790
791 rcu_read_lock();
792 dev = dev_get_by_index_rcu(net, ifindex);
793 if (dev)
794 dev_hold(dev);
795 rcu_read_unlock();
796 return dev;
797 }
798 EXPORT_SYMBOL(dev_get_by_index);
799
800 /**
801 * dev_getbyhwaddr_rcu - find a device by its hardware address
802 * @net: the applicable net namespace
803 * @type: media type of device
804 * @ha: hardware address
805 *
806 * Search for an interface by MAC address. Returns NULL if the device
807 * is not found or a pointer to the device.
808 * The caller must hold RCU or RTNL.
809 * The returned device has not had its ref count increased
810 * and the caller must therefore be careful about locking
811 *
812 */
813
814 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
815 const char *ha)
816 {
817 struct net_device *dev;
818
819 for_each_netdev_rcu(net, dev)
820 if (dev->type == type &&
821 !memcmp(dev->dev_addr, ha, dev->addr_len))
822 return dev;
823
824 return NULL;
825 }
826 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
827
828 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
829 {
830 struct net_device *dev;
831
832 ASSERT_RTNL();
833 for_each_netdev(net, dev)
834 if (dev->type == type)
835 return dev;
836
837 return NULL;
838 }
839 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
840
841 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
842 {
843 struct net_device *dev, *ret = NULL;
844
845 rcu_read_lock();
846 for_each_netdev_rcu(net, dev)
847 if (dev->type == type) {
848 dev_hold(dev);
849 ret = dev;
850 break;
851 }
852 rcu_read_unlock();
853 return ret;
854 }
855 EXPORT_SYMBOL(dev_getfirstbyhwtype);
856
857 /**
858 * dev_get_by_flags_rcu - find any device with given flags
859 * @net: the applicable net namespace
860 * @if_flags: IFF_* values
861 * @mask: bitmask of bits in if_flags to check
862 *
863 * Search for any interface with the given flags. Returns NULL if a device
864 * is not found or a pointer to the device. Must be called inside
865 * rcu_read_lock(), and result refcount is unchanged.
866 */
867
868 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
869 unsigned short mask)
870 {
871 struct net_device *dev, *ret;
872
873 ret = NULL;
874 for_each_netdev_rcu(net, dev) {
875 if (((dev->flags ^ if_flags) & mask) == 0) {
876 ret = dev;
877 break;
878 }
879 }
880 return ret;
881 }
882 EXPORT_SYMBOL(dev_get_by_flags_rcu);
883
884 /**
885 * dev_valid_name - check if name is okay for network device
886 * @name: name string
887 *
888 * Network device names need to be valid file names to
889 * to allow sysfs to work. We also disallow any kind of
890 * whitespace.
891 */
892 bool dev_valid_name(const char *name)
893 {
894 if (*name == '\0')
895 return false;
896 if (strlen(name) >= IFNAMSIZ)
897 return false;
898 if (!strcmp(name, ".") || !strcmp(name, ".."))
899 return false;
900
901 while (*name) {
902 if (*name == '/' || isspace(*name))
903 return false;
904 name++;
905 }
906 return true;
907 }
908 EXPORT_SYMBOL(dev_valid_name);
909
910 /**
911 * __dev_alloc_name - allocate a name for a device
912 * @net: network namespace to allocate the device name in
913 * @name: name format string
914 * @buf: scratch buffer and result name string
915 *
916 * Passed a format string - eg "lt%d" it will try and find a suitable
917 * id. It scans list of devices to build up a free map, then chooses
918 * the first empty slot. The caller must hold the dev_base or rtnl lock
919 * while allocating the name and adding the device in order to avoid
920 * duplicates.
921 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
922 * Returns the number of the unit assigned or a negative errno code.
923 */
924
925 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
926 {
927 int i = 0;
928 const char *p;
929 const int max_netdevices = 8*PAGE_SIZE;
930 unsigned long *inuse;
931 struct net_device *d;
932
933 p = strnchr(name, IFNAMSIZ-1, '%');
934 if (p) {
935 /*
936 * Verify the string as this thing may have come from
937 * the user. There must be either one "%d" and no other "%"
938 * characters.
939 */
940 if (p[1] != 'd' || strchr(p + 2, '%'))
941 return -EINVAL;
942
943 /* Use one page as a bit array of possible slots */
944 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
945 if (!inuse)
946 return -ENOMEM;
947
948 for_each_netdev(net, d) {
949 if (!sscanf(d->name, name, &i))
950 continue;
951 if (i < 0 || i >= max_netdevices)
952 continue;
953
954 /* avoid cases where sscanf is not exact inverse of printf */
955 snprintf(buf, IFNAMSIZ, name, i);
956 if (!strncmp(buf, d->name, IFNAMSIZ))
957 set_bit(i, inuse);
958 }
959
960 i = find_first_zero_bit(inuse, max_netdevices);
961 free_page((unsigned long) inuse);
962 }
963
964 if (buf != name)
965 snprintf(buf, IFNAMSIZ, name, i);
966 if (!__dev_get_by_name(net, buf))
967 return i;
968
969 /* It is possible to run out of possible slots
970 * when the name is long and there isn't enough space left
971 * for the digits, or if all bits are used.
972 */
973 return -ENFILE;
974 }
975
976 /**
977 * dev_alloc_name - allocate a name for a device
978 * @dev: device
979 * @name: name format string
980 *
981 * Passed a format string - eg "lt%d" it will try and find a suitable
982 * id. It scans list of devices to build up a free map, then chooses
983 * the first empty slot. The caller must hold the dev_base or rtnl lock
984 * while allocating the name and adding the device in order to avoid
985 * duplicates.
986 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
987 * Returns the number of the unit assigned or a negative errno code.
988 */
989
990 int dev_alloc_name(struct net_device *dev, const char *name)
991 {
992 char buf[IFNAMSIZ];
993 struct net *net;
994 int ret;
995
996 BUG_ON(!dev_net(dev));
997 net = dev_net(dev);
998 ret = __dev_alloc_name(net, name, buf);
999 if (ret >= 0)
1000 strlcpy(dev->name, buf, IFNAMSIZ);
1001 return ret;
1002 }
1003 EXPORT_SYMBOL(dev_alloc_name);
1004
1005 static int dev_alloc_name_ns(struct net *net,
1006 struct net_device *dev,
1007 const char *name)
1008 {
1009 char buf[IFNAMSIZ];
1010 int ret;
1011
1012 ret = __dev_alloc_name(net, name, buf);
1013 if (ret >= 0)
1014 strlcpy(dev->name, buf, IFNAMSIZ);
1015 return ret;
1016 }
1017
1018 static int dev_get_valid_name(struct net *net,
1019 struct net_device *dev,
1020 const char *name)
1021 {
1022 BUG_ON(!net);
1023
1024 if (!dev_valid_name(name))
1025 return -EINVAL;
1026
1027 if (strchr(name, '%'))
1028 return dev_alloc_name_ns(net, dev, name);
1029 else if (__dev_get_by_name(net, name))
1030 return -EEXIST;
1031 else if (dev->name != name)
1032 strlcpy(dev->name, name, IFNAMSIZ);
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * dev_change_name - change name of a device
1039 * @dev: device
1040 * @newname: name (or format string) must be at least IFNAMSIZ
1041 *
1042 * Change name of a device, can pass format strings "eth%d".
1043 * for wildcarding.
1044 */
1045 int dev_change_name(struct net_device *dev, const char *newname)
1046 {
1047 char oldname[IFNAMSIZ];
1048 int err = 0;
1049 int ret;
1050 struct net *net;
1051
1052 ASSERT_RTNL();
1053 BUG_ON(!dev_net(dev));
1054
1055 net = dev_net(dev);
1056 if (dev->flags & IFF_UP)
1057 return -EBUSY;
1058
1059 write_seqcount_begin(&devnet_rename_seq);
1060
1061 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1062 write_seqcount_end(&devnet_rename_seq);
1063 return 0;
1064 }
1065
1066 memcpy(oldname, dev->name, IFNAMSIZ);
1067
1068 err = dev_get_valid_name(net, dev, newname);
1069 if (err < 0) {
1070 write_seqcount_end(&devnet_rename_seq);
1071 return err;
1072 }
1073
1074 rollback:
1075 ret = device_rename(&dev->dev, dev->name);
1076 if (ret) {
1077 memcpy(dev->name, oldname, IFNAMSIZ);
1078 write_seqcount_end(&devnet_rename_seq);
1079 return ret;
1080 }
1081
1082 write_seqcount_end(&devnet_rename_seq);
1083
1084 write_lock_bh(&dev_base_lock);
1085 hlist_del_rcu(&dev->name_hlist);
1086 write_unlock_bh(&dev_base_lock);
1087
1088 synchronize_rcu();
1089
1090 write_lock_bh(&dev_base_lock);
1091 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1092 write_unlock_bh(&dev_base_lock);
1093
1094 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1095 ret = notifier_to_errno(ret);
1096
1097 if (ret) {
1098 /* err >= 0 after dev_alloc_name() or stores the first errno */
1099 if (err >= 0) {
1100 err = ret;
1101 write_seqcount_begin(&devnet_rename_seq);
1102 memcpy(dev->name, oldname, IFNAMSIZ);
1103 goto rollback;
1104 } else {
1105 pr_err("%s: name change rollback failed: %d\n",
1106 dev->name, ret);
1107 }
1108 }
1109
1110 return err;
1111 }
1112
1113 /**
1114 * dev_set_alias - change ifalias of a device
1115 * @dev: device
1116 * @alias: name up to IFALIASZ
1117 * @len: limit of bytes to copy from info
1118 *
1119 * Set ifalias for a device,
1120 */
1121 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1122 {
1123 char *new_ifalias;
1124
1125 ASSERT_RTNL();
1126
1127 if (len >= IFALIASZ)
1128 return -EINVAL;
1129
1130 if (!len) {
1131 kfree(dev->ifalias);
1132 dev->ifalias = NULL;
1133 return 0;
1134 }
1135
1136 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1137 if (!new_ifalias)
1138 return -ENOMEM;
1139 dev->ifalias = new_ifalias;
1140
1141 strlcpy(dev->ifalias, alias, len+1);
1142 return len;
1143 }
1144
1145
1146 /**
1147 * netdev_features_change - device changes features
1148 * @dev: device to cause notification
1149 *
1150 * Called to indicate a device has changed features.
1151 */
1152 void netdev_features_change(struct net_device *dev)
1153 {
1154 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1155 }
1156 EXPORT_SYMBOL(netdev_features_change);
1157
1158 /**
1159 * netdev_state_change - device changes state
1160 * @dev: device to cause notification
1161 *
1162 * Called to indicate a device has changed state. This function calls
1163 * the notifier chains for netdev_chain and sends a NEWLINK message
1164 * to the routing socket.
1165 */
1166 void netdev_state_change(struct net_device *dev)
1167 {
1168 if (dev->flags & IFF_UP) {
1169 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1170 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1171 }
1172 }
1173 EXPORT_SYMBOL(netdev_state_change);
1174
1175 /**
1176 * netdev_notify_peers - notify network peers about existence of @dev
1177 * @dev: network device
1178 *
1179 * Generate traffic such that interested network peers are aware of
1180 * @dev, such as by generating a gratuitous ARP. This may be used when
1181 * a device wants to inform the rest of the network about some sort of
1182 * reconfiguration such as a failover event or virtual machine
1183 * migration.
1184 */
1185 void netdev_notify_peers(struct net_device *dev)
1186 {
1187 rtnl_lock();
1188 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1189 rtnl_unlock();
1190 }
1191 EXPORT_SYMBOL(netdev_notify_peers);
1192
1193 static int __dev_open(struct net_device *dev)
1194 {
1195 const struct net_device_ops *ops = dev->netdev_ops;
1196 int ret;
1197
1198 ASSERT_RTNL();
1199
1200 if (!netif_device_present(dev))
1201 return -ENODEV;
1202
1203 /* Block netpoll from trying to do any rx path servicing.
1204 * If we don't do this there is a chance ndo_poll_controller
1205 * or ndo_poll may be running while we open the device
1206 */
1207 ret = netpoll_rx_disable(dev);
1208 if (ret)
1209 return ret;
1210
1211 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1212 ret = notifier_to_errno(ret);
1213 if (ret)
1214 return ret;
1215
1216 set_bit(__LINK_STATE_START, &dev->state);
1217
1218 if (ops->ndo_validate_addr)
1219 ret = ops->ndo_validate_addr(dev);
1220
1221 if (!ret && ops->ndo_open)
1222 ret = ops->ndo_open(dev);
1223
1224 netpoll_rx_enable(dev);
1225
1226 if (ret)
1227 clear_bit(__LINK_STATE_START, &dev->state);
1228 else {
1229 dev->flags |= IFF_UP;
1230 net_dmaengine_get();
1231 dev_set_rx_mode(dev);
1232 dev_activate(dev);
1233 add_device_randomness(dev->dev_addr, dev->addr_len);
1234 }
1235
1236 return ret;
1237 }
1238
1239 /**
1240 * dev_open - prepare an interface for use.
1241 * @dev: device to open
1242 *
1243 * Takes a device from down to up state. The device's private open
1244 * function is invoked and then the multicast lists are loaded. Finally
1245 * the device is moved into the up state and a %NETDEV_UP message is
1246 * sent to the netdev notifier chain.
1247 *
1248 * Calling this function on an active interface is a nop. On a failure
1249 * a negative errno code is returned.
1250 */
1251 int dev_open(struct net_device *dev)
1252 {
1253 int ret;
1254
1255 if (dev->flags & IFF_UP)
1256 return 0;
1257
1258 ret = __dev_open(dev);
1259 if (ret < 0)
1260 return ret;
1261
1262 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1263 call_netdevice_notifiers(NETDEV_UP, dev);
1264
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(dev_open);
1268
1269 static int __dev_close_many(struct list_head *head)
1270 {
1271 struct net_device *dev;
1272
1273 ASSERT_RTNL();
1274 might_sleep();
1275
1276 list_for_each_entry(dev, head, unreg_list) {
1277 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1278
1279 clear_bit(__LINK_STATE_START, &dev->state);
1280
1281 /* Synchronize to scheduled poll. We cannot touch poll list, it
1282 * can be even on different cpu. So just clear netif_running().
1283 *
1284 * dev->stop() will invoke napi_disable() on all of it's
1285 * napi_struct instances on this device.
1286 */
1287 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1288 }
1289
1290 dev_deactivate_many(head);
1291
1292 list_for_each_entry(dev, head, unreg_list) {
1293 const struct net_device_ops *ops = dev->netdev_ops;
1294
1295 /*
1296 * Call the device specific close. This cannot fail.
1297 * Only if device is UP
1298 *
1299 * We allow it to be called even after a DETACH hot-plug
1300 * event.
1301 */
1302 if (ops->ndo_stop)
1303 ops->ndo_stop(dev);
1304
1305 dev->flags &= ~IFF_UP;
1306 net_dmaengine_put();
1307 }
1308
1309 return 0;
1310 }
1311
1312 static int __dev_close(struct net_device *dev)
1313 {
1314 int retval;
1315 LIST_HEAD(single);
1316
1317 /* Temporarily disable netpoll until the interface is down */
1318 retval = netpoll_rx_disable(dev);
1319 if (retval)
1320 return retval;
1321
1322 list_add(&dev->unreg_list, &single);
1323 retval = __dev_close_many(&single);
1324 list_del(&single);
1325
1326 netpoll_rx_enable(dev);
1327 return retval;
1328 }
1329
1330 static int dev_close_many(struct list_head *head)
1331 {
1332 struct net_device *dev, *tmp;
1333 LIST_HEAD(tmp_list);
1334
1335 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1336 if (!(dev->flags & IFF_UP))
1337 list_move(&dev->unreg_list, &tmp_list);
1338
1339 __dev_close_many(head);
1340
1341 list_for_each_entry(dev, head, unreg_list) {
1342 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1343 call_netdevice_notifiers(NETDEV_DOWN, dev);
1344 }
1345
1346 /* rollback_registered_many needs the complete original list */
1347 list_splice(&tmp_list, head);
1348 return 0;
1349 }
1350
1351 /**
1352 * dev_close - shutdown an interface.
1353 * @dev: device to shutdown
1354 *
1355 * This function moves an active device into down state. A
1356 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1357 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1358 * chain.
1359 */
1360 int dev_close(struct net_device *dev)
1361 {
1362 int ret = 0;
1363 if (dev->flags & IFF_UP) {
1364 LIST_HEAD(single);
1365
1366 /* Block netpoll rx while the interface is going down */
1367 ret = netpoll_rx_disable(dev);
1368 if (ret)
1369 return ret;
1370
1371 list_add(&dev->unreg_list, &single);
1372 dev_close_many(&single);
1373 list_del(&single);
1374
1375 netpoll_rx_enable(dev);
1376 }
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_close);
1380
1381
1382 /**
1383 * dev_disable_lro - disable Large Receive Offload on a device
1384 * @dev: device
1385 *
1386 * Disable Large Receive Offload (LRO) on a net device. Must be
1387 * called under RTNL. This is needed if received packets may be
1388 * forwarded to another interface.
1389 */
1390 void dev_disable_lro(struct net_device *dev)
1391 {
1392 /*
1393 * If we're trying to disable lro on a vlan device
1394 * use the underlying physical device instead
1395 */
1396 if (is_vlan_dev(dev))
1397 dev = vlan_dev_real_dev(dev);
1398
1399 dev->wanted_features &= ~NETIF_F_LRO;
1400 netdev_update_features(dev);
1401
1402 if (unlikely(dev->features & NETIF_F_LRO))
1403 netdev_WARN(dev, "failed to disable LRO!\n");
1404 }
1405 EXPORT_SYMBOL(dev_disable_lro);
1406
1407
1408 static int dev_boot_phase = 1;
1409
1410 /**
1411 * register_netdevice_notifier - register a network notifier block
1412 * @nb: notifier
1413 *
1414 * Register a notifier to be called when network device events occur.
1415 * The notifier passed is linked into the kernel structures and must
1416 * not be reused until it has been unregistered. A negative errno code
1417 * is returned on a failure.
1418 *
1419 * When registered all registration and up events are replayed
1420 * to the new notifier to allow device to have a race free
1421 * view of the network device list.
1422 */
1423
1424 int register_netdevice_notifier(struct notifier_block *nb)
1425 {
1426 struct net_device *dev;
1427 struct net_device *last;
1428 struct net *net;
1429 int err;
1430
1431 rtnl_lock();
1432 err = raw_notifier_chain_register(&netdev_chain, nb);
1433 if (err)
1434 goto unlock;
1435 if (dev_boot_phase)
1436 goto unlock;
1437 for_each_net(net) {
1438 for_each_netdev(net, dev) {
1439 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1440 err = notifier_to_errno(err);
1441 if (err)
1442 goto rollback;
1443
1444 if (!(dev->flags & IFF_UP))
1445 continue;
1446
1447 nb->notifier_call(nb, NETDEV_UP, dev);
1448 }
1449 }
1450
1451 unlock:
1452 rtnl_unlock();
1453 return err;
1454
1455 rollback:
1456 last = dev;
1457 for_each_net(net) {
1458 for_each_netdev(net, dev) {
1459 if (dev == last)
1460 goto outroll;
1461
1462 if (dev->flags & IFF_UP) {
1463 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1464 nb->notifier_call(nb, NETDEV_DOWN, dev);
1465 }
1466 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1467 }
1468 }
1469
1470 outroll:
1471 raw_notifier_chain_unregister(&netdev_chain, nb);
1472 goto unlock;
1473 }
1474 EXPORT_SYMBOL(register_netdevice_notifier);
1475
1476 /**
1477 * unregister_netdevice_notifier - unregister a network notifier block
1478 * @nb: notifier
1479 *
1480 * Unregister a notifier previously registered by
1481 * register_netdevice_notifier(). The notifier is unlinked into the
1482 * kernel structures and may then be reused. A negative errno code
1483 * is returned on a failure.
1484 *
1485 * After unregistering unregister and down device events are synthesized
1486 * for all devices on the device list to the removed notifier to remove
1487 * the need for special case cleanup code.
1488 */
1489
1490 int unregister_netdevice_notifier(struct notifier_block *nb)
1491 {
1492 struct net_device *dev;
1493 struct net *net;
1494 int err;
1495
1496 rtnl_lock();
1497 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1498 if (err)
1499 goto unlock;
1500
1501 for_each_net(net) {
1502 for_each_netdev(net, dev) {
1503 if (dev->flags & IFF_UP) {
1504 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1505 nb->notifier_call(nb, NETDEV_DOWN, dev);
1506 }
1507 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510 unlock:
1511 rtnl_unlock();
1512 return err;
1513 }
1514 EXPORT_SYMBOL(unregister_netdevice_notifier);
1515
1516 /**
1517 * call_netdevice_notifiers - call all network notifier blocks
1518 * @val: value passed unmodified to notifier function
1519 * @dev: net_device pointer passed unmodified to notifier function
1520 *
1521 * Call all network notifier blocks. Parameters and return value
1522 * are as for raw_notifier_call_chain().
1523 */
1524
1525 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1526 {
1527 ASSERT_RTNL();
1528 return raw_notifier_call_chain(&netdev_chain, val, dev);
1529 }
1530 EXPORT_SYMBOL(call_netdevice_notifiers);
1531
1532 static struct static_key netstamp_needed __read_mostly;
1533 #ifdef HAVE_JUMP_LABEL
1534 /* We are not allowed to call static_key_slow_dec() from irq context
1535 * If net_disable_timestamp() is called from irq context, defer the
1536 * static_key_slow_dec() calls.
1537 */
1538 static atomic_t netstamp_needed_deferred;
1539 #endif
1540
1541 void net_enable_timestamp(void)
1542 {
1543 #ifdef HAVE_JUMP_LABEL
1544 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1545
1546 if (deferred) {
1547 while (--deferred)
1548 static_key_slow_dec(&netstamp_needed);
1549 return;
1550 }
1551 #endif
1552 WARN_ON(in_interrupt());
1553 static_key_slow_inc(&netstamp_needed);
1554 }
1555 EXPORT_SYMBOL(net_enable_timestamp);
1556
1557 void net_disable_timestamp(void)
1558 {
1559 #ifdef HAVE_JUMP_LABEL
1560 if (in_interrupt()) {
1561 atomic_inc(&netstamp_needed_deferred);
1562 return;
1563 }
1564 #endif
1565 static_key_slow_dec(&netstamp_needed);
1566 }
1567 EXPORT_SYMBOL(net_disable_timestamp);
1568
1569 static inline void net_timestamp_set(struct sk_buff *skb)
1570 {
1571 skb->tstamp.tv64 = 0;
1572 if (static_key_false(&netstamp_needed))
1573 __net_timestamp(skb);
1574 }
1575
1576 #define net_timestamp_check(COND, SKB) \
1577 if (static_key_false(&netstamp_needed)) { \
1578 if ((COND) && !(SKB)->tstamp.tv64) \
1579 __net_timestamp(SKB); \
1580 } \
1581
1582 static inline bool is_skb_forwardable(struct net_device *dev,
1583 struct sk_buff *skb)
1584 {
1585 unsigned int len;
1586
1587 if (!(dev->flags & IFF_UP))
1588 return false;
1589
1590 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1591 if (skb->len <= len)
1592 return true;
1593
1594 /* if TSO is enabled, we don't care about the length as the packet
1595 * could be forwarded without being segmented before
1596 */
1597 if (skb_is_gso(skb))
1598 return true;
1599
1600 return false;
1601 }
1602
1603 /**
1604 * dev_forward_skb - loopback an skb to another netif
1605 *
1606 * @dev: destination network device
1607 * @skb: buffer to forward
1608 *
1609 * return values:
1610 * NET_RX_SUCCESS (no congestion)
1611 * NET_RX_DROP (packet was dropped, but freed)
1612 *
1613 * dev_forward_skb can be used for injecting an skb from the
1614 * start_xmit function of one device into the receive queue
1615 * of another device.
1616 *
1617 * The receiving device may be in another namespace, so
1618 * we have to clear all information in the skb that could
1619 * impact namespace isolation.
1620 */
1621 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1622 {
1623 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1624 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1625 atomic_long_inc(&dev->rx_dropped);
1626 kfree_skb(skb);
1627 return NET_RX_DROP;
1628 }
1629 }
1630
1631 skb_orphan(skb);
1632 nf_reset(skb);
1633
1634 if (unlikely(!is_skb_forwardable(dev, skb))) {
1635 atomic_long_inc(&dev->rx_dropped);
1636 kfree_skb(skb);
1637 return NET_RX_DROP;
1638 }
1639 skb->skb_iif = 0;
1640 skb->dev = dev;
1641 skb_dst_drop(skb);
1642 skb->tstamp.tv64 = 0;
1643 skb->pkt_type = PACKET_HOST;
1644 skb->protocol = eth_type_trans(skb, dev);
1645 skb->mark = 0;
1646 secpath_reset(skb);
1647 nf_reset(skb);
1648 return netif_rx(skb);
1649 }
1650 EXPORT_SYMBOL_GPL(dev_forward_skb);
1651
1652 static inline int deliver_skb(struct sk_buff *skb,
1653 struct packet_type *pt_prev,
1654 struct net_device *orig_dev)
1655 {
1656 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1657 return -ENOMEM;
1658 atomic_inc(&skb->users);
1659 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1660 }
1661
1662 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1663 {
1664 if (!ptype->af_packet_priv || !skb->sk)
1665 return false;
1666
1667 if (ptype->id_match)
1668 return ptype->id_match(ptype, skb->sk);
1669 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1670 return true;
1671
1672 return false;
1673 }
1674
1675 /*
1676 * Support routine. Sends outgoing frames to any network
1677 * taps currently in use.
1678 */
1679
1680 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1681 {
1682 struct packet_type *ptype;
1683 struct sk_buff *skb2 = NULL;
1684 struct packet_type *pt_prev = NULL;
1685
1686 rcu_read_lock();
1687 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1688 /* Never send packets back to the socket
1689 * they originated from - MvS (miquels@drinkel.ow.org)
1690 */
1691 if ((ptype->dev == dev || !ptype->dev) &&
1692 (!skb_loop_sk(ptype, skb))) {
1693 if (pt_prev) {
1694 deliver_skb(skb2, pt_prev, skb->dev);
1695 pt_prev = ptype;
1696 continue;
1697 }
1698
1699 skb2 = skb_clone(skb, GFP_ATOMIC);
1700 if (!skb2)
1701 break;
1702
1703 net_timestamp_set(skb2);
1704
1705 /* skb->nh should be correctly
1706 set by sender, so that the second statement is
1707 just protection against buggy protocols.
1708 */
1709 skb_reset_mac_header(skb2);
1710
1711 if (skb_network_header(skb2) < skb2->data ||
1712 skb2->network_header > skb2->tail) {
1713 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1714 ntohs(skb2->protocol),
1715 dev->name);
1716 skb_reset_network_header(skb2);
1717 }
1718
1719 skb2->transport_header = skb2->network_header;
1720 skb2->pkt_type = PACKET_OUTGOING;
1721 pt_prev = ptype;
1722 }
1723 }
1724 if (pt_prev)
1725 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1726 rcu_read_unlock();
1727 }
1728
1729 /**
1730 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1731 * @dev: Network device
1732 * @txq: number of queues available
1733 *
1734 * If real_num_tx_queues is changed the tc mappings may no longer be
1735 * valid. To resolve this verify the tc mapping remains valid and if
1736 * not NULL the mapping. With no priorities mapping to this
1737 * offset/count pair it will no longer be used. In the worst case TC0
1738 * is invalid nothing can be done so disable priority mappings. If is
1739 * expected that drivers will fix this mapping if they can before
1740 * calling netif_set_real_num_tx_queues.
1741 */
1742 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1743 {
1744 int i;
1745 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1746
1747 /* If TC0 is invalidated disable TC mapping */
1748 if (tc->offset + tc->count > txq) {
1749 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1750 dev->num_tc = 0;
1751 return;
1752 }
1753
1754 /* Invalidated prio to tc mappings set to TC0 */
1755 for (i = 1; i < TC_BITMASK + 1; i++) {
1756 int q = netdev_get_prio_tc_map(dev, i);
1757
1758 tc = &dev->tc_to_txq[q];
1759 if (tc->offset + tc->count > txq) {
1760 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1761 i, q);
1762 netdev_set_prio_tc_map(dev, i, 0);
1763 }
1764 }
1765 }
1766
1767 #ifdef CONFIG_XPS
1768 static DEFINE_MUTEX(xps_map_mutex);
1769 #define xmap_dereference(P) \
1770 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1771
1772 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1773 int cpu, u16 index)
1774 {
1775 struct xps_map *map = NULL;
1776 int pos;
1777
1778 if (dev_maps)
1779 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1780
1781 for (pos = 0; map && pos < map->len; pos++) {
1782 if (map->queues[pos] == index) {
1783 if (map->len > 1) {
1784 map->queues[pos] = map->queues[--map->len];
1785 } else {
1786 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1787 kfree_rcu(map, rcu);
1788 map = NULL;
1789 }
1790 break;
1791 }
1792 }
1793
1794 return map;
1795 }
1796
1797 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1798 {
1799 struct xps_dev_maps *dev_maps;
1800 int cpu, i;
1801 bool active = false;
1802
1803 mutex_lock(&xps_map_mutex);
1804 dev_maps = xmap_dereference(dev->xps_maps);
1805
1806 if (!dev_maps)
1807 goto out_no_maps;
1808
1809 for_each_possible_cpu(cpu) {
1810 for (i = index; i < dev->num_tx_queues; i++) {
1811 if (!remove_xps_queue(dev_maps, cpu, i))
1812 break;
1813 }
1814 if (i == dev->num_tx_queues)
1815 active = true;
1816 }
1817
1818 if (!active) {
1819 RCU_INIT_POINTER(dev->xps_maps, NULL);
1820 kfree_rcu(dev_maps, rcu);
1821 }
1822
1823 for (i = index; i < dev->num_tx_queues; i++)
1824 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1825 NUMA_NO_NODE);
1826
1827 out_no_maps:
1828 mutex_unlock(&xps_map_mutex);
1829 }
1830
1831 static struct xps_map *expand_xps_map(struct xps_map *map,
1832 int cpu, u16 index)
1833 {
1834 struct xps_map *new_map;
1835 int alloc_len = XPS_MIN_MAP_ALLOC;
1836 int i, pos;
1837
1838 for (pos = 0; map && pos < map->len; pos++) {
1839 if (map->queues[pos] != index)
1840 continue;
1841 return map;
1842 }
1843
1844 /* Need to add queue to this CPU's existing map */
1845 if (map) {
1846 if (pos < map->alloc_len)
1847 return map;
1848
1849 alloc_len = map->alloc_len * 2;
1850 }
1851
1852 /* Need to allocate new map to store queue on this CPU's map */
1853 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1854 cpu_to_node(cpu));
1855 if (!new_map)
1856 return NULL;
1857
1858 for (i = 0; i < pos; i++)
1859 new_map->queues[i] = map->queues[i];
1860 new_map->alloc_len = alloc_len;
1861 new_map->len = pos;
1862
1863 return new_map;
1864 }
1865
1866 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1867 {
1868 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1869 struct xps_map *map, *new_map;
1870 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1871 int cpu, numa_node_id = -2;
1872 bool active = false;
1873
1874 mutex_lock(&xps_map_mutex);
1875
1876 dev_maps = xmap_dereference(dev->xps_maps);
1877
1878 /* allocate memory for queue storage */
1879 for_each_online_cpu(cpu) {
1880 if (!cpumask_test_cpu(cpu, mask))
1881 continue;
1882
1883 if (!new_dev_maps)
1884 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1885 if (!new_dev_maps) {
1886 mutex_unlock(&xps_map_mutex);
1887 return -ENOMEM;
1888 }
1889
1890 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1891 NULL;
1892
1893 map = expand_xps_map(map, cpu, index);
1894 if (!map)
1895 goto error;
1896
1897 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1898 }
1899
1900 if (!new_dev_maps)
1901 goto out_no_new_maps;
1902
1903 for_each_possible_cpu(cpu) {
1904 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1905 /* add queue to CPU maps */
1906 int pos = 0;
1907
1908 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1909 while ((pos < map->len) && (map->queues[pos] != index))
1910 pos++;
1911
1912 if (pos == map->len)
1913 map->queues[map->len++] = index;
1914 #ifdef CONFIG_NUMA
1915 if (numa_node_id == -2)
1916 numa_node_id = cpu_to_node(cpu);
1917 else if (numa_node_id != cpu_to_node(cpu))
1918 numa_node_id = -1;
1919 #endif
1920 } else if (dev_maps) {
1921 /* fill in the new device map from the old device map */
1922 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1923 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1924 }
1925
1926 }
1927
1928 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1929
1930 /* Cleanup old maps */
1931 if (dev_maps) {
1932 for_each_possible_cpu(cpu) {
1933 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1934 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1935 if (map && map != new_map)
1936 kfree_rcu(map, rcu);
1937 }
1938
1939 kfree_rcu(dev_maps, rcu);
1940 }
1941
1942 dev_maps = new_dev_maps;
1943 active = true;
1944
1945 out_no_new_maps:
1946 /* update Tx queue numa node */
1947 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1948 (numa_node_id >= 0) ? numa_node_id :
1949 NUMA_NO_NODE);
1950
1951 if (!dev_maps)
1952 goto out_no_maps;
1953
1954 /* removes queue from unused CPUs */
1955 for_each_possible_cpu(cpu) {
1956 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1957 continue;
1958
1959 if (remove_xps_queue(dev_maps, cpu, index))
1960 active = true;
1961 }
1962
1963 /* free map if not active */
1964 if (!active) {
1965 RCU_INIT_POINTER(dev->xps_maps, NULL);
1966 kfree_rcu(dev_maps, rcu);
1967 }
1968
1969 out_no_maps:
1970 mutex_unlock(&xps_map_mutex);
1971
1972 return 0;
1973 error:
1974 /* remove any maps that we added */
1975 for_each_possible_cpu(cpu) {
1976 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1977 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1978 NULL;
1979 if (new_map && new_map != map)
1980 kfree(new_map);
1981 }
1982
1983 mutex_unlock(&xps_map_mutex);
1984
1985 kfree(new_dev_maps);
1986 return -ENOMEM;
1987 }
1988 EXPORT_SYMBOL(netif_set_xps_queue);
1989
1990 #endif
1991 /*
1992 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1993 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1994 */
1995 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1996 {
1997 int rc;
1998
1999 if (txq < 1 || txq > dev->num_tx_queues)
2000 return -EINVAL;
2001
2002 if (dev->reg_state == NETREG_REGISTERED ||
2003 dev->reg_state == NETREG_UNREGISTERING) {
2004 ASSERT_RTNL();
2005
2006 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2007 txq);
2008 if (rc)
2009 return rc;
2010
2011 if (dev->num_tc)
2012 netif_setup_tc(dev, txq);
2013
2014 if (txq < dev->real_num_tx_queues) {
2015 qdisc_reset_all_tx_gt(dev, txq);
2016 #ifdef CONFIG_XPS
2017 netif_reset_xps_queues_gt(dev, txq);
2018 #endif
2019 }
2020 }
2021
2022 dev->real_num_tx_queues = txq;
2023 return 0;
2024 }
2025 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2026
2027 #ifdef CONFIG_RPS
2028 /**
2029 * netif_set_real_num_rx_queues - set actual number of RX queues used
2030 * @dev: Network device
2031 * @rxq: Actual number of RX queues
2032 *
2033 * This must be called either with the rtnl_lock held or before
2034 * registration of the net device. Returns 0 on success, or a
2035 * negative error code. If called before registration, it always
2036 * succeeds.
2037 */
2038 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2039 {
2040 int rc;
2041
2042 if (rxq < 1 || rxq > dev->num_rx_queues)
2043 return -EINVAL;
2044
2045 if (dev->reg_state == NETREG_REGISTERED) {
2046 ASSERT_RTNL();
2047
2048 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2049 rxq);
2050 if (rc)
2051 return rc;
2052 }
2053
2054 dev->real_num_rx_queues = rxq;
2055 return 0;
2056 }
2057 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2058 #endif
2059
2060 /**
2061 * netif_get_num_default_rss_queues - default number of RSS queues
2062 *
2063 * This routine should set an upper limit on the number of RSS queues
2064 * used by default by multiqueue devices.
2065 */
2066 int netif_get_num_default_rss_queues(void)
2067 {
2068 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2069 }
2070 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2071
2072 static inline void __netif_reschedule(struct Qdisc *q)
2073 {
2074 struct softnet_data *sd;
2075 unsigned long flags;
2076
2077 local_irq_save(flags);
2078 sd = &__get_cpu_var(softnet_data);
2079 q->next_sched = NULL;
2080 *sd->output_queue_tailp = q;
2081 sd->output_queue_tailp = &q->next_sched;
2082 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2083 local_irq_restore(flags);
2084 }
2085
2086 void __netif_schedule(struct Qdisc *q)
2087 {
2088 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2089 __netif_reschedule(q);
2090 }
2091 EXPORT_SYMBOL(__netif_schedule);
2092
2093 void dev_kfree_skb_irq(struct sk_buff *skb)
2094 {
2095 if (atomic_dec_and_test(&skb->users)) {
2096 struct softnet_data *sd;
2097 unsigned long flags;
2098
2099 local_irq_save(flags);
2100 sd = &__get_cpu_var(softnet_data);
2101 skb->next = sd->completion_queue;
2102 sd->completion_queue = skb;
2103 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2104 local_irq_restore(flags);
2105 }
2106 }
2107 EXPORT_SYMBOL(dev_kfree_skb_irq);
2108
2109 void dev_kfree_skb_any(struct sk_buff *skb)
2110 {
2111 if (in_irq() || irqs_disabled())
2112 dev_kfree_skb_irq(skb);
2113 else
2114 dev_kfree_skb(skb);
2115 }
2116 EXPORT_SYMBOL(dev_kfree_skb_any);
2117
2118
2119 /**
2120 * netif_device_detach - mark device as removed
2121 * @dev: network device
2122 *
2123 * Mark device as removed from system and therefore no longer available.
2124 */
2125 void netif_device_detach(struct net_device *dev)
2126 {
2127 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2128 netif_running(dev)) {
2129 netif_tx_stop_all_queues(dev);
2130 }
2131 }
2132 EXPORT_SYMBOL(netif_device_detach);
2133
2134 /**
2135 * netif_device_attach - mark device as attached
2136 * @dev: network device
2137 *
2138 * Mark device as attached from system and restart if needed.
2139 */
2140 void netif_device_attach(struct net_device *dev)
2141 {
2142 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2143 netif_running(dev)) {
2144 netif_tx_wake_all_queues(dev);
2145 __netdev_watchdog_up(dev);
2146 }
2147 }
2148 EXPORT_SYMBOL(netif_device_attach);
2149
2150 static void skb_warn_bad_offload(const struct sk_buff *skb)
2151 {
2152 static const netdev_features_t null_features = 0;
2153 struct net_device *dev = skb->dev;
2154 const char *driver = "";
2155
2156 if (dev && dev->dev.parent)
2157 driver = dev_driver_string(dev->dev.parent);
2158
2159 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2160 "gso_type=%d ip_summed=%d\n",
2161 driver, dev ? &dev->features : &null_features,
2162 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2163 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2164 skb_shinfo(skb)->gso_type, skb->ip_summed);
2165 }
2166
2167 /*
2168 * Invalidate hardware checksum when packet is to be mangled, and
2169 * complete checksum manually on outgoing path.
2170 */
2171 int skb_checksum_help(struct sk_buff *skb)
2172 {
2173 __wsum csum;
2174 int ret = 0, offset;
2175
2176 if (skb->ip_summed == CHECKSUM_COMPLETE)
2177 goto out_set_summed;
2178
2179 if (unlikely(skb_shinfo(skb)->gso_size)) {
2180 skb_warn_bad_offload(skb);
2181 return -EINVAL;
2182 }
2183
2184 /* Before computing a checksum, we should make sure no frag could
2185 * be modified by an external entity : checksum could be wrong.
2186 */
2187 if (skb_has_shared_frag(skb)) {
2188 ret = __skb_linearize(skb);
2189 if (ret)
2190 goto out;
2191 }
2192
2193 offset = skb_checksum_start_offset(skb);
2194 BUG_ON(offset >= skb_headlen(skb));
2195 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2196
2197 offset += skb->csum_offset;
2198 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2199
2200 if (skb_cloned(skb) &&
2201 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2202 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2203 if (ret)
2204 goto out;
2205 }
2206
2207 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2208 out_set_summed:
2209 skb->ip_summed = CHECKSUM_NONE;
2210 out:
2211 return ret;
2212 }
2213 EXPORT_SYMBOL(skb_checksum_help);
2214
2215 /**
2216 * skb_mac_gso_segment - mac layer segmentation handler.
2217 * @skb: buffer to segment
2218 * @features: features for the output path (see dev->features)
2219 */
2220 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2221 netdev_features_t features)
2222 {
2223 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2224 struct packet_offload *ptype;
2225 __be16 type = skb->protocol;
2226
2227 while (type == htons(ETH_P_8021Q)) {
2228 int vlan_depth = ETH_HLEN;
2229 struct vlan_hdr *vh;
2230
2231 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2232 return ERR_PTR(-EINVAL);
2233
2234 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2235 type = vh->h_vlan_encapsulated_proto;
2236 vlan_depth += VLAN_HLEN;
2237 }
2238
2239 __skb_pull(skb, skb->mac_len);
2240
2241 rcu_read_lock();
2242 list_for_each_entry_rcu(ptype, &offload_base, list) {
2243 if (ptype->type == type && ptype->callbacks.gso_segment) {
2244 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2245 int err;
2246
2247 err = ptype->callbacks.gso_send_check(skb);
2248 segs = ERR_PTR(err);
2249 if (err || skb_gso_ok(skb, features))
2250 break;
2251 __skb_push(skb, (skb->data -
2252 skb_network_header(skb)));
2253 }
2254 segs = ptype->callbacks.gso_segment(skb, features);
2255 break;
2256 }
2257 }
2258 rcu_read_unlock();
2259
2260 __skb_push(skb, skb->data - skb_mac_header(skb));
2261
2262 return segs;
2263 }
2264 EXPORT_SYMBOL(skb_mac_gso_segment);
2265
2266
2267 /* openvswitch calls this on rx path, so we need a different check.
2268 */
2269 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2270 {
2271 if (tx_path)
2272 return skb->ip_summed != CHECKSUM_PARTIAL;
2273 else
2274 return skb->ip_summed == CHECKSUM_NONE;
2275 }
2276
2277 /**
2278 * __skb_gso_segment - Perform segmentation on skb.
2279 * @skb: buffer to segment
2280 * @features: features for the output path (see dev->features)
2281 * @tx_path: whether it is called in TX path
2282 *
2283 * This function segments the given skb and returns a list of segments.
2284 *
2285 * It may return NULL if the skb requires no segmentation. This is
2286 * only possible when GSO is used for verifying header integrity.
2287 */
2288 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2289 netdev_features_t features, bool tx_path)
2290 {
2291 if (unlikely(skb_needs_check(skb, tx_path))) {
2292 int err;
2293
2294 skb_warn_bad_offload(skb);
2295
2296 if (skb_header_cloned(skb) &&
2297 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2298 return ERR_PTR(err);
2299 }
2300
2301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2302 skb_reset_mac_header(skb);
2303 skb_reset_mac_len(skb);
2304
2305 return skb_mac_gso_segment(skb, features);
2306 }
2307 EXPORT_SYMBOL(__skb_gso_segment);
2308
2309 /* Take action when hardware reception checksum errors are detected. */
2310 #ifdef CONFIG_BUG
2311 void netdev_rx_csum_fault(struct net_device *dev)
2312 {
2313 if (net_ratelimit()) {
2314 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2315 dump_stack();
2316 }
2317 }
2318 EXPORT_SYMBOL(netdev_rx_csum_fault);
2319 #endif
2320
2321 /* Actually, we should eliminate this check as soon as we know, that:
2322 * 1. IOMMU is present and allows to map all the memory.
2323 * 2. No high memory really exists on this machine.
2324 */
2325
2326 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2327 {
2328 #ifdef CONFIG_HIGHMEM
2329 int i;
2330 if (!(dev->features & NETIF_F_HIGHDMA)) {
2331 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2332 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2333 if (PageHighMem(skb_frag_page(frag)))
2334 return 1;
2335 }
2336 }
2337
2338 if (PCI_DMA_BUS_IS_PHYS) {
2339 struct device *pdev = dev->dev.parent;
2340
2341 if (!pdev)
2342 return 0;
2343 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2344 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2345 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2346 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2347 return 1;
2348 }
2349 }
2350 #endif
2351 return 0;
2352 }
2353
2354 struct dev_gso_cb {
2355 void (*destructor)(struct sk_buff *skb);
2356 };
2357
2358 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2359
2360 static void dev_gso_skb_destructor(struct sk_buff *skb)
2361 {
2362 struct dev_gso_cb *cb;
2363
2364 do {
2365 struct sk_buff *nskb = skb->next;
2366
2367 skb->next = nskb->next;
2368 nskb->next = NULL;
2369 kfree_skb(nskb);
2370 } while (skb->next);
2371
2372 cb = DEV_GSO_CB(skb);
2373 if (cb->destructor)
2374 cb->destructor(skb);
2375 }
2376
2377 /**
2378 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2379 * @skb: buffer to segment
2380 * @features: device features as applicable to this skb
2381 *
2382 * This function segments the given skb and stores the list of segments
2383 * in skb->next.
2384 */
2385 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2386 {
2387 struct sk_buff *segs;
2388
2389 segs = skb_gso_segment(skb, features);
2390
2391 /* Verifying header integrity only. */
2392 if (!segs)
2393 return 0;
2394
2395 if (IS_ERR(segs))
2396 return PTR_ERR(segs);
2397
2398 skb->next = segs;
2399 DEV_GSO_CB(skb)->destructor = skb->destructor;
2400 skb->destructor = dev_gso_skb_destructor;
2401
2402 return 0;
2403 }
2404
2405 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2406 {
2407 return ((features & NETIF_F_GEN_CSUM) ||
2408 ((features & NETIF_F_V4_CSUM) &&
2409 protocol == htons(ETH_P_IP)) ||
2410 ((features & NETIF_F_V6_CSUM) &&
2411 protocol == htons(ETH_P_IPV6)) ||
2412 ((features & NETIF_F_FCOE_CRC) &&
2413 protocol == htons(ETH_P_FCOE)));
2414 }
2415
2416 static netdev_features_t harmonize_features(struct sk_buff *skb,
2417 __be16 protocol, netdev_features_t features)
2418 {
2419 if (skb->ip_summed != CHECKSUM_NONE &&
2420 !can_checksum_protocol(features, protocol)) {
2421 features &= ~NETIF_F_ALL_CSUM;
2422 features &= ~NETIF_F_SG;
2423 } else if (illegal_highdma(skb->dev, skb)) {
2424 features &= ~NETIF_F_SG;
2425 }
2426
2427 return features;
2428 }
2429
2430 netdev_features_t netif_skb_features(struct sk_buff *skb)
2431 {
2432 __be16 protocol = skb->protocol;
2433 netdev_features_t features = skb->dev->features;
2434
2435 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2436 features &= ~NETIF_F_GSO_MASK;
2437
2438 if (protocol == htons(ETH_P_8021Q)) {
2439 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2440 protocol = veh->h_vlan_encapsulated_proto;
2441 } else if (!vlan_tx_tag_present(skb)) {
2442 return harmonize_features(skb, protocol, features);
2443 }
2444
2445 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2446
2447 if (protocol != htons(ETH_P_8021Q)) {
2448 return harmonize_features(skb, protocol, features);
2449 } else {
2450 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2451 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2452 return harmonize_features(skb, protocol, features);
2453 }
2454 }
2455 EXPORT_SYMBOL(netif_skb_features);
2456
2457 /*
2458 * Returns true if either:
2459 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2460 * 2. skb is fragmented and the device does not support SG.
2461 */
2462 static inline int skb_needs_linearize(struct sk_buff *skb,
2463 int features)
2464 {
2465 return skb_is_nonlinear(skb) &&
2466 ((skb_has_frag_list(skb) &&
2467 !(features & NETIF_F_FRAGLIST)) ||
2468 (skb_shinfo(skb)->nr_frags &&
2469 !(features & NETIF_F_SG)));
2470 }
2471
2472 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2473 struct netdev_queue *txq)
2474 {
2475 const struct net_device_ops *ops = dev->netdev_ops;
2476 int rc = NETDEV_TX_OK;
2477 unsigned int skb_len;
2478
2479 if (likely(!skb->next)) {
2480 netdev_features_t features;
2481
2482 /*
2483 * If device doesn't need skb->dst, release it right now while
2484 * its hot in this cpu cache
2485 */
2486 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2487 skb_dst_drop(skb);
2488
2489 features = netif_skb_features(skb);
2490
2491 if (vlan_tx_tag_present(skb) &&
2492 !(features & NETIF_F_HW_VLAN_TX)) {
2493 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2494 if (unlikely(!skb))
2495 goto out;
2496
2497 skb->vlan_tci = 0;
2498 }
2499
2500 /* If encapsulation offload request, verify we are testing
2501 * hardware encapsulation features instead of standard
2502 * features for the netdev
2503 */
2504 if (skb->encapsulation)
2505 features &= dev->hw_enc_features;
2506
2507 if (netif_needs_gso(skb, features)) {
2508 if (unlikely(dev_gso_segment(skb, features)))
2509 goto out_kfree_skb;
2510 if (skb->next)
2511 goto gso;
2512 } else {
2513 if (skb_needs_linearize(skb, features) &&
2514 __skb_linearize(skb))
2515 goto out_kfree_skb;
2516
2517 /* If packet is not checksummed and device does not
2518 * support checksumming for this protocol, complete
2519 * checksumming here.
2520 */
2521 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2522 if (skb->encapsulation)
2523 skb_set_inner_transport_header(skb,
2524 skb_checksum_start_offset(skb));
2525 else
2526 skb_set_transport_header(skb,
2527 skb_checksum_start_offset(skb));
2528 if (!(features & NETIF_F_ALL_CSUM) &&
2529 skb_checksum_help(skb))
2530 goto out_kfree_skb;
2531 }
2532 }
2533
2534 if (!list_empty(&ptype_all))
2535 dev_queue_xmit_nit(skb, dev);
2536
2537 skb_len = skb->len;
2538 rc = ops->ndo_start_xmit(skb, dev);
2539 trace_net_dev_xmit(skb, rc, dev, skb_len);
2540 if (rc == NETDEV_TX_OK)
2541 txq_trans_update(txq);
2542 return rc;
2543 }
2544
2545 gso:
2546 do {
2547 struct sk_buff *nskb = skb->next;
2548
2549 skb->next = nskb->next;
2550 nskb->next = NULL;
2551
2552 /*
2553 * If device doesn't need nskb->dst, release it right now while
2554 * its hot in this cpu cache
2555 */
2556 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2557 skb_dst_drop(nskb);
2558
2559 if (!list_empty(&ptype_all))
2560 dev_queue_xmit_nit(nskb, dev);
2561
2562 skb_len = nskb->len;
2563 rc = ops->ndo_start_xmit(nskb, dev);
2564 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2565 if (unlikely(rc != NETDEV_TX_OK)) {
2566 if (rc & ~NETDEV_TX_MASK)
2567 goto out_kfree_gso_skb;
2568 nskb->next = skb->next;
2569 skb->next = nskb;
2570 return rc;
2571 }
2572 txq_trans_update(txq);
2573 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2574 return NETDEV_TX_BUSY;
2575 } while (skb->next);
2576
2577 out_kfree_gso_skb:
2578 if (likely(skb->next == NULL))
2579 skb->destructor = DEV_GSO_CB(skb)->destructor;
2580 out_kfree_skb:
2581 kfree_skb(skb);
2582 out:
2583 return rc;
2584 }
2585
2586 static void qdisc_pkt_len_init(struct sk_buff *skb)
2587 {
2588 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2589
2590 qdisc_skb_cb(skb)->pkt_len = skb->len;
2591
2592 /* To get more precise estimation of bytes sent on wire,
2593 * we add to pkt_len the headers size of all segments
2594 */
2595 if (shinfo->gso_size) {
2596 unsigned int hdr_len;
2597
2598 /* mac layer + network layer */
2599 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2600
2601 /* + transport layer */
2602 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2603 hdr_len += tcp_hdrlen(skb);
2604 else
2605 hdr_len += sizeof(struct udphdr);
2606 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2607 }
2608 }
2609
2610 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2611 struct net_device *dev,
2612 struct netdev_queue *txq)
2613 {
2614 spinlock_t *root_lock = qdisc_lock(q);
2615 bool contended;
2616 int rc;
2617
2618 qdisc_pkt_len_init(skb);
2619 qdisc_calculate_pkt_len(skb, q);
2620 /*
2621 * Heuristic to force contended enqueues to serialize on a
2622 * separate lock before trying to get qdisc main lock.
2623 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2624 * and dequeue packets faster.
2625 */
2626 contended = qdisc_is_running(q);
2627 if (unlikely(contended))
2628 spin_lock(&q->busylock);
2629
2630 spin_lock(root_lock);
2631 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2632 kfree_skb(skb);
2633 rc = NET_XMIT_DROP;
2634 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2635 qdisc_run_begin(q)) {
2636 /*
2637 * This is a work-conserving queue; there are no old skbs
2638 * waiting to be sent out; and the qdisc is not running -
2639 * xmit the skb directly.
2640 */
2641 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2642 skb_dst_force(skb);
2643
2644 qdisc_bstats_update(q, skb);
2645
2646 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2647 if (unlikely(contended)) {
2648 spin_unlock(&q->busylock);
2649 contended = false;
2650 }
2651 __qdisc_run(q);
2652 } else
2653 qdisc_run_end(q);
2654
2655 rc = NET_XMIT_SUCCESS;
2656 } else {
2657 skb_dst_force(skb);
2658 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2659 if (qdisc_run_begin(q)) {
2660 if (unlikely(contended)) {
2661 spin_unlock(&q->busylock);
2662 contended = false;
2663 }
2664 __qdisc_run(q);
2665 }
2666 }
2667 spin_unlock(root_lock);
2668 if (unlikely(contended))
2669 spin_unlock(&q->busylock);
2670 return rc;
2671 }
2672
2673 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2674 static void skb_update_prio(struct sk_buff *skb)
2675 {
2676 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2677
2678 if (!skb->priority && skb->sk && map) {
2679 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2680
2681 if (prioidx < map->priomap_len)
2682 skb->priority = map->priomap[prioidx];
2683 }
2684 }
2685 #else
2686 #define skb_update_prio(skb)
2687 #endif
2688
2689 static DEFINE_PER_CPU(int, xmit_recursion);
2690 #define RECURSION_LIMIT 10
2691
2692 /**
2693 * dev_loopback_xmit - loop back @skb
2694 * @skb: buffer to transmit
2695 */
2696 int dev_loopback_xmit(struct sk_buff *skb)
2697 {
2698 skb_reset_mac_header(skb);
2699 __skb_pull(skb, skb_network_offset(skb));
2700 skb->pkt_type = PACKET_LOOPBACK;
2701 skb->ip_summed = CHECKSUM_UNNECESSARY;
2702 WARN_ON(!skb_dst(skb));
2703 skb_dst_force(skb);
2704 netif_rx_ni(skb);
2705 return 0;
2706 }
2707 EXPORT_SYMBOL(dev_loopback_xmit);
2708
2709 /**
2710 * dev_queue_xmit - transmit a buffer
2711 * @skb: buffer to transmit
2712 *
2713 * Queue a buffer for transmission to a network device. The caller must
2714 * have set the device and priority and built the buffer before calling
2715 * this function. The function can be called from an interrupt.
2716 *
2717 * A negative errno code is returned on a failure. A success does not
2718 * guarantee the frame will be transmitted as it may be dropped due
2719 * to congestion or traffic shaping.
2720 *
2721 * -----------------------------------------------------------------------------------
2722 * I notice this method can also return errors from the queue disciplines,
2723 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2724 * be positive.
2725 *
2726 * Regardless of the return value, the skb is consumed, so it is currently
2727 * difficult to retry a send to this method. (You can bump the ref count
2728 * before sending to hold a reference for retry if you are careful.)
2729 *
2730 * When calling this method, interrupts MUST be enabled. This is because
2731 * the BH enable code must have IRQs enabled so that it will not deadlock.
2732 * --BLG
2733 */
2734 int dev_queue_xmit(struct sk_buff *skb)
2735 {
2736 struct net_device *dev = skb->dev;
2737 struct netdev_queue *txq;
2738 struct Qdisc *q;
2739 int rc = -ENOMEM;
2740
2741 skb_reset_mac_header(skb);
2742
2743 /* Disable soft irqs for various locks below. Also
2744 * stops preemption for RCU.
2745 */
2746 rcu_read_lock_bh();
2747
2748 skb_update_prio(skb);
2749
2750 txq = netdev_pick_tx(dev, skb);
2751 q = rcu_dereference_bh(txq->qdisc);
2752
2753 #ifdef CONFIG_NET_CLS_ACT
2754 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2755 #endif
2756 trace_net_dev_queue(skb);
2757 if (q->enqueue) {
2758 rc = __dev_xmit_skb(skb, q, dev, txq);
2759 goto out;
2760 }
2761
2762 /* The device has no queue. Common case for software devices:
2763 loopback, all the sorts of tunnels...
2764
2765 Really, it is unlikely that netif_tx_lock protection is necessary
2766 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2767 counters.)
2768 However, it is possible, that they rely on protection
2769 made by us here.
2770
2771 Check this and shot the lock. It is not prone from deadlocks.
2772 Either shot noqueue qdisc, it is even simpler 8)
2773 */
2774 if (dev->flags & IFF_UP) {
2775 int cpu = smp_processor_id(); /* ok because BHs are off */
2776
2777 if (txq->xmit_lock_owner != cpu) {
2778
2779 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2780 goto recursion_alert;
2781
2782 HARD_TX_LOCK(dev, txq, cpu);
2783
2784 if (!netif_xmit_stopped(txq)) {
2785 __this_cpu_inc(xmit_recursion);
2786 rc = dev_hard_start_xmit(skb, dev, txq);
2787 __this_cpu_dec(xmit_recursion);
2788 if (dev_xmit_complete(rc)) {
2789 HARD_TX_UNLOCK(dev, txq);
2790 goto out;
2791 }
2792 }
2793 HARD_TX_UNLOCK(dev, txq);
2794 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2795 dev->name);
2796 } else {
2797 /* Recursion is detected! It is possible,
2798 * unfortunately
2799 */
2800 recursion_alert:
2801 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2802 dev->name);
2803 }
2804 }
2805
2806 rc = -ENETDOWN;
2807 rcu_read_unlock_bh();
2808
2809 kfree_skb(skb);
2810 return rc;
2811 out:
2812 rcu_read_unlock_bh();
2813 return rc;
2814 }
2815 EXPORT_SYMBOL(dev_queue_xmit);
2816
2817
2818 /*=======================================================================
2819 Receiver routines
2820 =======================================================================*/
2821
2822 int netdev_max_backlog __read_mostly = 1000;
2823 EXPORT_SYMBOL(netdev_max_backlog);
2824
2825 int netdev_tstamp_prequeue __read_mostly = 1;
2826 int netdev_budget __read_mostly = 300;
2827 int weight_p __read_mostly = 64; /* old backlog weight */
2828
2829 /* Called with irq disabled */
2830 static inline void ____napi_schedule(struct softnet_data *sd,
2831 struct napi_struct *napi)
2832 {
2833 list_add_tail(&napi->poll_list, &sd->poll_list);
2834 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2835 }
2836
2837 #ifdef CONFIG_RPS
2838
2839 /* One global table that all flow-based protocols share. */
2840 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2841 EXPORT_SYMBOL(rps_sock_flow_table);
2842
2843 struct static_key rps_needed __read_mostly;
2844
2845 static struct rps_dev_flow *
2846 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2847 struct rps_dev_flow *rflow, u16 next_cpu)
2848 {
2849 if (next_cpu != RPS_NO_CPU) {
2850 #ifdef CONFIG_RFS_ACCEL
2851 struct netdev_rx_queue *rxqueue;
2852 struct rps_dev_flow_table *flow_table;
2853 struct rps_dev_flow *old_rflow;
2854 u32 flow_id;
2855 u16 rxq_index;
2856 int rc;
2857
2858 /* Should we steer this flow to a different hardware queue? */
2859 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2860 !(dev->features & NETIF_F_NTUPLE))
2861 goto out;
2862 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2863 if (rxq_index == skb_get_rx_queue(skb))
2864 goto out;
2865
2866 rxqueue = dev->_rx + rxq_index;
2867 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2868 if (!flow_table)
2869 goto out;
2870 flow_id = skb->rxhash & flow_table->mask;
2871 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2872 rxq_index, flow_id);
2873 if (rc < 0)
2874 goto out;
2875 old_rflow = rflow;
2876 rflow = &flow_table->flows[flow_id];
2877 rflow->filter = rc;
2878 if (old_rflow->filter == rflow->filter)
2879 old_rflow->filter = RPS_NO_FILTER;
2880 out:
2881 #endif
2882 rflow->last_qtail =
2883 per_cpu(softnet_data, next_cpu).input_queue_head;
2884 }
2885
2886 rflow->cpu = next_cpu;
2887 return rflow;
2888 }
2889
2890 /*
2891 * get_rps_cpu is called from netif_receive_skb and returns the target
2892 * CPU from the RPS map of the receiving queue for a given skb.
2893 * rcu_read_lock must be held on entry.
2894 */
2895 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2896 struct rps_dev_flow **rflowp)
2897 {
2898 struct netdev_rx_queue *rxqueue;
2899 struct rps_map *map;
2900 struct rps_dev_flow_table *flow_table;
2901 struct rps_sock_flow_table *sock_flow_table;
2902 int cpu = -1;
2903 u16 tcpu;
2904
2905 if (skb_rx_queue_recorded(skb)) {
2906 u16 index = skb_get_rx_queue(skb);
2907 if (unlikely(index >= dev->real_num_rx_queues)) {
2908 WARN_ONCE(dev->real_num_rx_queues > 1,
2909 "%s received packet on queue %u, but number "
2910 "of RX queues is %u\n",
2911 dev->name, index, dev->real_num_rx_queues);
2912 goto done;
2913 }
2914 rxqueue = dev->_rx + index;
2915 } else
2916 rxqueue = dev->_rx;
2917
2918 map = rcu_dereference(rxqueue->rps_map);
2919 if (map) {
2920 if (map->len == 1 &&
2921 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2922 tcpu = map->cpus[0];
2923 if (cpu_online(tcpu))
2924 cpu = tcpu;
2925 goto done;
2926 }
2927 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2928 goto done;
2929 }
2930
2931 skb_reset_network_header(skb);
2932 if (!skb_get_rxhash(skb))
2933 goto done;
2934
2935 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2936 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2937 if (flow_table && sock_flow_table) {
2938 u16 next_cpu;
2939 struct rps_dev_flow *rflow;
2940
2941 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2942 tcpu = rflow->cpu;
2943
2944 next_cpu = sock_flow_table->ents[skb->rxhash &
2945 sock_flow_table->mask];
2946
2947 /*
2948 * If the desired CPU (where last recvmsg was done) is
2949 * different from current CPU (one in the rx-queue flow
2950 * table entry), switch if one of the following holds:
2951 * - Current CPU is unset (equal to RPS_NO_CPU).
2952 * - Current CPU is offline.
2953 * - The current CPU's queue tail has advanced beyond the
2954 * last packet that was enqueued using this table entry.
2955 * This guarantees that all previous packets for the flow
2956 * have been dequeued, thus preserving in order delivery.
2957 */
2958 if (unlikely(tcpu != next_cpu) &&
2959 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2960 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2961 rflow->last_qtail)) >= 0)) {
2962 tcpu = next_cpu;
2963 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2964 }
2965
2966 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2967 *rflowp = rflow;
2968 cpu = tcpu;
2969 goto done;
2970 }
2971 }
2972
2973 if (map) {
2974 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2975
2976 if (cpu_online(tcpu)) {
2977 cpu = tcpu;
2978 goto done;
2979 }
2980 }
2981
2982 done:
2983 return cpu;
2984 }
2985
2986 #ifdef CONFIG_RFS_ACCEL
2987
2988 /**
2989 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2990 * @dev: Device on which the filter was set
2991 * @rxq_index: RX queue index
2992 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2993 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2994 *
2995 * Drivers that implement ndo_rx_flow_steer() should periodically call
2996 * this function for each installed filter and remove the filters for
2997 * which it returns %true.
2998 */
2999 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3000 u32 flow_id, u16 filter_id)
3001 {
3002 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3003 struct rps_dev_flow_table *flow_table;
3004 struct rps_dev_flow *rflow;
3005 bool expire = true;
3006 int cpu;
3007
3008 rcu_read_lock();
3009 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3010 if (flow_table && flow_id <= flow_table->mask) {
3011 rflow = &flow_table->flows[flow_id];
3012 cpu = ACCESS_ONCE(rflow->cpu);
3013 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3014 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3015 rflow->last_qtail) <
3016 (int)(10 * flow_table->mask)))
3017 expire = false;
3018 }
3019 rcu_read_unlock();
3020 return expire;
3021 }
3022 EXPORT_SYMBOL(rps_may_expire_flow);
3023
3024 #endif /* CONFIG_RFS_ACCEL */
3025
3026 /* Called from hardirq (IPI) context */
3027 static void rps_trigger_softirq(void *data)
3028 {
3029 struct softnet_data *sd = data;
3030
3031 ____napi_schedule(sd, &sd->backlog);
3032 sd->received_rps++;
3033 }
3034
3035 #endif /* CONFIG_RPS */
3036
3037 /*
3038 * Check if this softnet_data structure is another cpu one
3039 * If yes, queue it to our IPI list and return 1
3040 * If no, return 0
3041 */
3042 static int rps_ipi_queued(struct softnet_data *sd)
3043 {
3044 #ifdef CONFIG_RPS
3045 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3046
3047 if (sd != mysd) {
3048 sd->rps_ipi_next = mysd->rps_ipi_list;
3049 mysd->rps_ipi_list = sd;
3050
3051 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3052 return 1;
3053 }
3054 #endif /* CONFIG_RPS */
3055 return 0;
3056 }
3057
3058 /*
3059 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3060 * queue (may be a remote CPU queue).
3061 */
3062 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3063 unsigned int *qtail)
3064 {
3065 struct softnet_data *sd;
3066 unsigned long flags;
3067
3068 sd = &per_cpu(softnet_data, cpu);
3069
3070 local_irq_save(flags);
3071
3072 rps_lock(sd);
3073 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3074 if (skb_queue_len(&sd->input_pkt_queue)) {
3075 enqueue:
3076 __skb_queue_tail(&sd->input_pkt_queue, skb);
3077 input_queue_tail_incr_save(sd, qtail);
3078 rps_unlock(sd);
3079 local_irq_restore(flags);
3080 return NET_RX_SUCCESS;
3081 }
3082
3083 /* Schedule NAPI for backlog device
3084 * We can use non atomic operation since we own the queue lock
3085 */
3086 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3087 if (!rps_ipi_queued(sd))
3088 ____napi_schedule(sd, &sd->backlog);
3089 }
3090 goto enqueue;
3091 }
3092
3093 sd->dropped++;
3094 rps_unlock(sd);
3095
3096 local_irq_restore(flags);
3097
3098 atomic_long_inc(&skb->dev->rx_dropped);
3099 kfree_skb(skb);
3100 return NET_RX_DROP;
3101 }
3102
3103 /**
3104 * netif_rx - post buffer to the network code
3105 * @skb: buffer to post
3106 *
3107 * This function receives a packet from a device driver and queues it for
3108 * the upper (protocol) levels to process. It always succeeds. The buffer
3109 * may be dropped during processing for congestion control or by the
3110 * protocol layers.
3111 *
3112 * return values:
3113 * NET_RX_SUCCESS (no congestion)
3114 * NET_RX_DROP (packet was dropped)
3115 *
3116 */
3117
3118 int netif_rx(struct sk_buff *skb)
3119 {
3120 int ret;
3121
3122 /* if netpoll wants it, pretend we never saw it */
3123 if (netpoll_rx(skb))
3124 return NET_RX_DROP;
3125
3126 net_timestamp_check(netdev_tstamp_prequeue, skb);
3127
3128 trace_netif_rx(skb);
3129 #ifdef CONFIG_RPS
3130 if (static_key_false(&rps_needed)) {
3131 struct rps_dev_flow voidflow, *rflow = &voidflow;
3132 int cpu;
3133
3134 preempt_disable();
3135 rcu_read_lock();
3136
3137 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3138 if (cpu < 0)
3139 cpu = smp_processor_id();
3140
3141 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3142
3143 rcu_read_unlock();
3144 preempt_enable();
3145 } else
3146 #endif
3147 {
3148 unsigned int qtail;
3149 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3150 put_cpu();
3151 }
3152 return ret;
3153 }
3154 EXPORT_SYMBOL(netif_rx);
3155
3156 int netif_rx_ni(struct sk_buff *skb)
3157 {
3158 int err;
3159
3160 preempt_disable();
3161 err = netif_rx(skb);
3162 if (local_softirq_pending())
3163 do_softirq();
3164 preempt_enable();
3165
3166 return err;
3167 }
3168 EXPORT_SYMBOL(netif_rx_ni);
3169
3170 static void net_tx_action(struct softirq_action *h)
3171 {
3172 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3173
3174 if (sd->completion_queue) {
3175 struct sk_buff *clist;
3176
3177 local_irq_disable();
3178 clist = sd->completion_queue;
3179 sd->completion_queue = NULL;
3180 local_irq_enable();
3181
3182 while (clist) {
3183 struct sk_buff *skb = clist;
3184 clist = clist->next;
3185
3186 WARN_ON(atomic_read(&skb->users));
3187 trace_kfree_skb(skb, net_tx_action);
3188 __kfree_skb(skb);
3189 }
3190 }
3191
3192 if (sd->output_queue) {
3193 struct Qdisc *head;
3194
3195 local_irq_disable();
3196 head = sd->output_queue;
3197 sd->output_queue = NULL;
3198 sd->output_queue_tailp = &sd->output_queue;
3199 local_irq_enable();
3200
3201 while (head) {
3202 struct Qdisc *q = head;
3203 spinlock_t *root_lock;
3204
3205 head = head->next_sched;
3206
3207 root_lock = qdisc_lock(q);
3208 if (spin_trylock(root_lock)) {
3209 smp_mb__before_clear_bit();
3210 clear_bit(__QDISC_STATE_SCHED,
3211 &q->state);
3212 qdisc_run(q);
3213 spin_unlock(root_lock);
3214 } else {
3215 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3216 &q->state)) {
3217 __netif_reschedule(q);
3218 } else {
3219 smp_mb__before_clear_bit();
3220 clear_bit(__QDISC_STATE_SCHED,
3221 &q->state);
3222 }
3223 }
3224 }
3225 }
3226 }
3227
3228 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3229 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3230 /* This hook is defined here for ATM LANE */
3231 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3232 unsigned char *addr) __read_mostly;
3233 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3234 #endif
3235
3236 #ifdef CONFIG_NET_CLS_ACT
3237 /* TODO: Maybe we should just force sch_ingress to be compiled in
3238 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3239 * a compare and 2 stores extra right now if we dont have it on
3240 * but have CONFIG_NET_CLS_ACT
3241 * NOTE: This doesn't stop any functionality; if you dont have
3242 * the ingress scheduler, you just can't add policies on ingress.
3243 *
3244 */
3245 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3246 {
3247 struct net_device *dev = skb->dev;
3248 u32 ttl = G_TC_RTTL(skb->tc_verd);
3249 int result = TC_ACT_OK;
3250 struct Qdisc *q;
3251
3252 if (unlikely(MAX_RED_LOOP < ttl++)) {
3253 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3254 skb->skb_iif, dev->ifindex);
3255 return TC_ACT_SHOT;
3256 }
3257
3258 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3259 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3260
3261 q = rxq->qdisc;
3262 if (q != &noop_qdisc) {
3263 spin_lock(qdisc_lock(q));
3264 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3265 result = qdisc_enqueue_root(skb, q);
3266 spin_unlock(qdisc_lock(q));
3267 }
3268
3269 return result;
3270 }
3271
3272 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3273 struct packet_type **pt_prev,
3274 int *ret, struct net_device *orig_dev)
3275 {
3276 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3277
3278 if (!rxq || rxq->qdisc == &noop_qdisc)
3279 goto out;
3280
3281 if (*pt_prev) {
3282 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3283 *pt_prev = NULL;
3284 }
3285
3286 switch (ing_filter(skb, rxq)) {
3287 case TC_ACT_SHOT:
3288 case TC_ACT_STOLEN:
3289 kfree_skb(skb);
3290 return NULL;
3291 }
3292
3293 out:
3294 skb->tc_verd = 0;
3295 return skb;
3296 }
3297 #endif
3298
3299 /**
3300 * netdev_rx_handler_register - register receive handler
3301 * @dev: device to register a handler for
3302 * @rx_handler: receive handler to register
3303 * @rx_handler_data: data pointer that is used by rx handler
3304 *
3305 * Register a receive hander for a device. This handler will then be
3306 * called from __netif_receive_skb. A negative errno code is returned
3307 * on a failure.
3308 *
3309 * The caller must hold the rtnl_mutex.
3310 *
3311 * For a general description of rx_handler, see enum rx_handler_result.
3312 */
3313 int netdev_rx_handler_register(struct net_device *dev,
3314 rx_handler_func_t *rx_handler,
3315 void *rx_handler_data)
3316 {
3317 ASSERT_RTNL();
3318
3319 if (dev->rx_handler)
3320 return -EBUSY;
3321
3322 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3323 rcu_assign_pointer(dev->rx_handler, rx_handler);
3324
3325 return 0;
3326 }
3327 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3328
3329 /**
3330 * netdev_rx_handler_unregister - unregister receive handler
3331 * @dev: device to unregister a handler from
3332 *
3333 * Unregister a receive hander from a device.
3334 *
3335 * The caller must hold the rtnl_mutex.
3336 */
3337 void netdev_rx_handler_unregister(struct net_device *dev)
3338 {
3339
3340 ASSERT_RTNL();
3341 RCU_INIT_POINTER(dev->rx_handler, NULL);
3342 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3343 }
3344 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3345
3346 /*
3347 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3348 * the special handling of PFMEMALLOC skbs.
3349 */
3350 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3351 {
3352 switch (skb->protocol) {
3353 case __constant_htons(ETH_P_ARP):
3354 case __constant_htons(ETH_P_IP):
3355 case __constant_htons(ETH_P_IPV6):
3356 case __constant_htons(ETH_P_8021Q):
3357 return true;
3358 default:
3359 return false;
3360 }
3361 }
3362
3363 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3364 {
3365 struct packet_type *ptype, *pt_prev;
3366 rx_handler_func_t *rx_handler;
3367 struct net_device *orig_dev;
3368 struct net_device *null_or_dev;
3369 bool deliver_exact = false;
3370 int ret = NET_RX_DROP;
3371 __be16 type;
3372
3373 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3374
3375 trace_netif_receive_skb(skb);
3376
3377 /* if we've gotten here through NAPI, check netpoll */
3378 if (netpoll_receive_skb(skb))
3379 goto out;
3380
3381 orig_dev = skb->dev;
3382
3383 skb_reset_network_header(skb);
3384 if (!skb_transport_header_was_set(skb))
3385 skb_reset_transport_header(skb);
3386 skb_reset_mac_len(skb);
3387
3388 pt_prev = NULL;
3389
3390 rcu_read_lock();
3391
3392 another_round:
3393 skb->skb_iif = skb->dev->ifindex;
3394
3395 __this_cpu_inc(softnet_data.processed);
3396
3397 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3398 skb = vlan_untag(skb);
3399 if (unlikely(!skb))
3400 goto unlock;
3401 }
3402
3403 #ifdef CONFIG_NET_CLS_ACT
3404 if (skb->tc_verd & TC_NCLS) {
3405 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3406 goto ncls;
3407 }
3408 #endif
3409
3410 if (pfmemalloc)
3411 goto skip_taps;
3412
3413 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3414 if (!ptype->dev || ptype->dev == skb->dev) {
3415 if (pt_prev)
3416 ret = deliver_skb(skb, pt_prev, orig_dev);
3417 pt_prev = ptype;
3418 }
3419 }
3420
3421 skip_taps:
3422 #ifdef CONFIG_NET_CLS_ACT
3423 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3424 if (!skb)
3425 goto unlock;
3426 ncls:
3427 #endif
3428
3429 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3430 goto drop;
3431
3432 if (vlan_tx_tag_present(skb)) {
3433 if (pt_prev) {
3434 ret = deliver_skb(skb, pt_prev, orig_dev);
3435 pt_prev = NULL;
3436 }
3437 if (vlan_do_receive(&skb))
3438 goto another_round;
3439 else if (unlikely(!skb))
3440 goto unlock;
3441 }
3442
3443 rx_handler = rcu_dereference(skb->dev->rx_handler);
3444 if (rx_handler) {
3445 if (pt_prev) {
3446 ret = deliver_skb(skb, pt_prev, orig_dev);
3447 pt_prev = NULL;
3448 }
3449 switch (rx_handler(&skb)) {
3450 case RX_HANDLER_CONSUMED:
3451 goto unlock;
3452 case RX_HANDLER_ANOTHER:
3453 goto another_round;
3454 case RX_HANDLER_EXACT:
3455 deliver_exact = true;
3456 case RX_HANDLER_PASS:
3457 break;
3458 default:
3459 BUG();
3460 }
3461 }
3462
3463 if (vlan_tx_nonzero_tag_present(skb))
3464 skb->pkt_type = PACKET_OTHERHOST;
3465
3466 /* deliver only exact match when indicated */
3467 null_or_dev = deliver_exact ? skb->dev : NULL;
3468
3469 type = skb->protocol;
3470 list_for_each_entry_rcu(ptype,
3471 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3472 if (ptype->type == type &&
3473 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3474 ptype->dev == orig_dev)) {
3475 if (pt_prev)
3476 ret = deliver_skb(skb, pt_prev, orig_dev);
3477 pt_prev = ptype;
3478 }
3479 }
3480
3481 if (pt_prev) {
3482 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3483 goto drop;
3484 else
3485 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3486 } else {
3487 drop:
3488 atomic_long_inc(&skb->dev->rx_dropped);
3489 kfree_skb(skb);
3490 /* Jamal, now you will not able to escape explaining
3491 * me how you were going to use this. :-)
3492 */
3493 ret = NET_RX_DROP;
3494 }
3495
3496 unlock:
3497 rcu_read_unlock();
3498 out:
3499 return ret;
3500 }
3501
3502 static int __netif_receive_skb(struct sk_buff *skb)
3503 {
3504 int ret;
3505
3506 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3507 unsigned long pflags = current->flags;
3508
3509 /*
3510 * PFMEMALLOC skbs are special, they should
3511 * - be delivered to SOCK_MEMALLOC sockets only
3512 * - stay away from userspace
3513 * - have bounded memory usage
3514 *
3515 * Use PF_MEMALLOC as this saves us from propagating the allocation
3516 * context down to all allocation sites.
3517 */
3518 current->flags |= PF_MEMALLOC;
3519 ret = __netif_receive_skb_core(skb, true);
3520 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3521 } else
3522 ret = __netif_receive_skb_core(skb, false);
3523
3524 return ret;
3525 }
3526
3527 /**
3528 * netif_receive_skb - process receive buffer from network
3529 * @skb: buffer to process
3530 *
3531 * netif_receive_skb() is the main receive data processing function.
3532 * It always succeeds. The buffer may be dropped during processing
3533 * for congestion control or by the protocol layers.
3534 *
3535 * This function may only be called from softirq context and interrupts
3536 * should be enabled.
3537 *
3538 * Return values (usually ignored):
3539 * NET_RX_SUCCESS: no congestion
3540 * NET_RX_DROP: packet was dropped
3541 */
3542 int netif_receive_skb(struct sk_buff *skb)
3543 {
3544 net_timestamp_check(netdev_tstamp_prequeue, skb);
3545
3546 if (skb_defer_rx_timestamp(skb))
3547 return NET_RX_SUCCESS;
3548
3549 #ifdef CONFIG_RPS
3550 if (static_key_false(&rps_needed)) {
3551 struct rps_dev_flow voidflow, *rflow = &voidflow;
3552 int cpu, ret;
3553
3554 rcu_read_lock();
3555
3556 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3557
3558 if (cpu >= 0) {
3559 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3560 rcu_read_unlock();
3561 return ret;
3562 }
3563 rcu_read_unlock();
3564 }
3565 #endif
3566 return __netif_receive_skb(skb);
3567 }
3568 EXPORT_SYMBOL(netif_receive_skb);
3569
3570 /* Network device is going away, flush any packets still pending
3571 * Called with irqs disabled.
3572 */
3573 static void flush_backlog(void *arg)
3574 {
3575 struct net_device *dev = arg;
3576 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3577 struct sk_buff *skb, *tmp;
3578
3579 rps_lock(sd);
3580 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3581 if (skb->dev == dev) {
3582 __skb_unlink(skb, &sd->input_pkt_queue);
3583 kfree_skb(skb);
3584 input_queue_head_incr(sd);
3585 }
3586 }
3587 rps_unlock(sd);
3588
3589 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3590 if (skb->dev == dev) {
3591 __skb_unlink(skb, &sd->process_queue);
3592 kfree_skb(skb);
3593 input_queue_head_incr(sd);
3594 }
3595 }
3596 }
3597
3598 static int napi_gro_complete(struct sk_buff *skb)
3599 {
3600 struct packet_offload *ptype;
3601 __be16 type = skb->protocol;
3602 struct list_head *head = &offload_base;
3603 int err = -ENOENT;
3604
3605 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3606
3607 if (NAPI_GRO_CB(skb)->count == 1) {
3608 skb_shinfo(skb)->gso_size = 0;
3609 goto out;
3610 }
3611
3612 rcu_read_lock();
3613 list_for_each_entry_rcu(ptype, head, list) {
3614 if (ptype->type != type || !ptype->callbacks.gro_complete)
3615 continue;
3616
3617 err = ptype->callbacks.gro_complete(skb);
3618 break;
3619 }
3620 rcu_read_unlock();
3621
3622 if (err) {
3623 WARN_ON(&ptype->list == head);
3624 kfree_skb(skb);
3625 return NET_RX_SUCCESS;
3626 }
3627
3628 out:
3629 return netif_receive_skb(skb);
3630 }
3631
3632 /* napi->gro_list contains packets ordered by age.
3633 * youngest packets at the head of it.
3634 * Complete skbs in reverse order to reduce latencies.
3635 */
3636 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3637 {
3638 struct sk_buff *skb, *prev = NULL;
3639
3640 /* scan list and build reverse chain */
3641 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3642 skb->prev = prev;
3643 prev = skb;
3644 }
3645
3646 for (skb = prev; skb; skb = prev) {
3647 skb->next = NULL;
3648
3649 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3650 return;
3651
3652 prev = skb->prev;
3653 napi_gro_complete(skb);
3654 napi->gro_count--;
3655 }
3656
3657 napi->gro_list = NULL;
3658 }
3659 EXPORT_SYMBOL(napi_gro_flush);
3660
3661 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3662 {
3663 struct sk_buff *p;
3664 unsigned int maclen = skb->dev->hard_header_len;
3665
3666 for (p = napi->gro_list; p; p = p->next) {
3667 unsigned long diffs;
3668
3669 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3670 diffs |= p->vlan_tci ^ skb->vlan_tci;
3671 if (maclen == ETH_HLEN)
3672 diffs |= compare_ether_header(skb_mac_header(p),
3673 skb_gro_mac_header(skb));
3674 else if (!diffs)
3675 diffs = memcmp(skb_mac_header(p),
3676 skb_gro_mac_header(skb),
3677 maclen);
3678 NAPI_GRO_CB(p)->same_flow = !diffs;
3679 NAPI_GRO_CB(p)->flush = 0;
3680 }
3681 }
3682
3683 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3684 {
3685 struct sk_buff **pp = NULL;
3686 struct packet_offload *ptype;
3687 __be16 type = skb->protocol;
3688 struct list_head *head = &offload_base;
3689 int same_flow;
3690 enum gro_result ret;
3691
3692 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3693 goto normal;
3694
3695 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3696 goto normal;
3697
3698 gro_list_prepare(napi, skb);
3699
3700 rcu_read_lock();
3701 list_for_each_entry_rcu(ptype, head, list) {
3702 if (ptype->type != type || !ptype->callbacks.gro_receive)
3703 continue;
3704
3705 skb_set_network_header(skb, skb_gro_offset(skb));
3706 skb_reset_mac_len(skb);
3707 NAPI_GRO_CB(skb)->same_flow = 0;
3708 NAPI_GRO_CB(skb)->flush = 0;
3709 NAPI_GRO_CB(skb)->free = 0;
3710
3711 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3712 break;
3713 }
3714 rcu_read_unlock();
3715
3716 if (&ptype->list == head)
3717 goto normal;
3718
3719 same_flow = NAPI_GRO_CB(skb)->same_flow;
3720 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3721
3722 if (pp) {
3723 struct sk_buff *nskb = *pp;
3724
3725 *pp = nskb->next;
3726 nskb->next = NULL;
3727 napi_gro_complete(nskb);
3728 napi->gro_count--;
3729 }
3730
3731 if (same_flow)
3732 goto ok;
3733
3734 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3735 goto normal;
3736
3737 napi->gro_count++;
3738 NAPI_GRO_CB(skb)->count = 1;
3739 NAPI_GRO_CB(skb)->age = jiffies;
3740 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3741 skb->next = napi->gro_list;
3742 napi->gro_list = skb;
3743 ret = GRO_HELD;
3744
3745 pull:
3746 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3747 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3748
3749 BUG_ON(skb->end - skb->tail < grow);
3750
3751 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3752
3753 skb->tail += grow;
3754 skb->data_len -= grow;
3755
3756 skb_shinfo(skb)->frags[0].page_offset += grow;
3757 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3758
3759 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3760 skb_frag_unref(skb, 0);
3761 memmove(skb_shinfo(skb)->frags,
3762 skb_shinfo(skb)->frags + 1,
3763 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3764 }
3765 }
3766
3767 ok:
3768 return ret;
3769
3770 normal:
3771 ret = GRO_NORMAL;
3772 goto pull;
3773 }
3774
3775
3776 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3777 {
3778 switch (ret) {
3779 case GRO_NORMAL:
3780 if (netif_receive_skb(skb))
3781 ret = GRO_DROP;
3782 break;
3783
3784 case GRO_DROP:
3785 kfree_skb(skb);
3786 break;
3787
3788 case GRO_MERGED_FREE:
3789 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3790 kmem_cache_free(skbuff_head_cache, skb);
3791 else
3792 __kfree_skb(skb);
3793 break;
3794
3795 case GRO_HELD:
3796 case GRO_MERGED:
3797 break;
3798 }
3799
3800 return ret;
3801 }
3802
3803 static void skb_gro_reset_offset(struct sk_buff *skb)
3804 {
3805 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3806 const skb_frag_t *frag0 = &pinfo->frags[0];
3807
3808 NAPI_GRO_CB(skb)->data_offset = 0;
3809 NAPI_GRO_CB(skb)->frag0 = NULL;
3810 NAPI_GRO_CB(skb)->frag0_len = 0;
3811
3812 if (skb->mac_header == skb->tail &&
3813 pinfo->nr_frags &&
3814 !PageHighMem(skb_frag_page(frag0))) {
3815 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3816 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3817 }
3818 }
3819
3820 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3821 {
3822 skb_gro_reset_offset(skb);
3823
3824 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3825 }
3826 EXPORT_SYMBOL(napi_gro_receive);
3827
3828 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3829 {
3830 __skb_pull(skb, skb_headlen(skb));
3831 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3832 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3833 skb->vlan_tci = 0;
3834 skb->dev = napi->dev;
3835 skb->skb_iif = 0;
3836
3837 napi->skb = skb;
3838 }
3839
3840 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3841 {
3842 struct sk_buff *skb = napi->skb;
3843
3844 if (!skb) {
3845 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3846 if (skb)
3847 napi->skb = skb;
3848 }
3849 return skb;
3850 }
3851 EXPORT_SYMBOL(napi_get_frags);
3852
3853 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3854 gro_result_t ret)
3855 {
3856 switch (ret) {
3857 case GRO_NORMAL:
3858 case GRO_HELD:
3859 skb->protocol = eth_type_trans(skb, skb->dev);
3860
3861 if (ret == GRO_HELD)
3862 skb_gro_pull(skb, -ETH_HLEN);
3863 else if (netif_receive_skb(skb))
3864 ret = GRO_DROP;
3865 break;
3866
3867 case GRO_DROP:
3868 case GRO_MERGED_FREE:
3869 napi_reuse_skb(napi, skb);
3870 break;
3871
3872 case GRO_MERGED:
3873 break;
3874 }
3875
3876 return ret;
3877 }
3878
3879 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3880 {
3881 struct sk_buff *skb = napi->skb;
3882 struct ethhdr *eth;
3883 unsigned int hlen;
3884 unsigned int off;
3885
3886 napi->skb = NULL;
3887
3888 skb_reset_mac_header(skb);
3889 skb_gro_reset_offset(skb);
3890
3891 off = skb_gro_offset(skb);
3892 hlen = off + sizeof(*eth);
3893 eth = skb_gro_header_fast(skb, off);
3894 if (skb_gro_header_hard(skb, hlen)) {
3895 eth = skb_gro_header_slow(skb, hlen, off);
3896 if (unlikely(!eth)) {
3897 napi_reuse_skb(napi, skb);
3898 skb = NULL;
3899 goto out;
3900 }
3901 }
3902
3903 skb_gro_pull(skb, sizeof(*eth));
3904
3905 /*
3906 * This works because the only protocols we care about don't require
3907 * special handling. We'll fix it up properly at the end.
3908 */
3909 skb->protocol = eth->h_proto;
3910
3911 out:
3912 return skb;
3913 }
3914
3915 gro_result_t napi_gro_frags(struct napi_struct *napi)
3916 {
3917 struct sk_buff *skb = napi_frags_skb(napi);
3918
3919 if (!skb)
3920 return GRO_DROP;
3921
3922 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3923 }
3924 EXPORT_SYMBOL(napi_gro_frags);
3925
3926 /*
3927 * net_rps_action sends any pending IPI's for rps.
3928 * Note: called with local irq disabled, but exits with local irq enabled.
3929 */
3930 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3931 {
3932 #ifdef CONFIG_RPS
3933 struct softnet_data *remsd = sd->rps_ipi_list;
3934
3935 if (remsd) {
3936 sd->rps_ipi_list = NULL;
3937
3938 local_irq_enable();
3939
3940 /* Send pending IPI's to kick RPS processing on remote cpus. */
3941 while (remsd) {
3942 struct softnet_data *next = remsd->rps_ipi_next;
3943
3944 if (cpu_online(remsd->cpu))
3945 __smp_call_function_single(remsd->cpu,
3946 &remsd->csd, 0);
3947 remsd = next;
3948 }
3949 } else
3950 #endif
3951 local_irq_enable();
3952 }
3953
3954 static int process_backlog(struct napi_struct *napi, int quota)
3955 {
3956 int work = 0;
3957 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3958
3959 #ifdef CONFIG_RPS
3960 /* Check if we have pending ipi, its better to send them now,
3961 * not waiting net_rx_action() end.
3962 */
3963 if (sd->rps_ipi_list) {
3964 local_irq_disable();
3965 net_rps_action_and_irq_enable(sd);
3966 }
3967 #endif
3968 napi->weight = weight_p;
3969 local_irq_disable();
3970 while (work < quota) {
3971 struct sk_buff *skb;
3972 unsigned int qlen;
3973
3974 while ((skb = __skb_dequeue(&sd->process_queue))) {
3975 local_irq_enable();
3976 __netif_receive_skb(skb);
3977 local_irq_disable();
3978 input_queue_head_incr(sd);
3979 if (++work >= quota) {
3980 local_irq_enable();
3981 return work;
3982 }
3983 }
3984
3985 rps_lock(sd);
3986 qlen = skb_queue_len(&sd->input_pkt_queue);
3987 if (qlen)
3988 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3989 &sd->process_queue);
3990
3991 if (qlen < quota - work) {
3992 /*
3993 * Inline a custom version of __napi_complete().
3994 * only current cpu owns and manipulates this napi,
3995 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3996 * we can use a plain write instead of clear_bit(),
3997 * and we dont need an smp_mb() memory barrier.
3998 */
3999 list_del(&napi->poll_list);
4000 napi->state = 0;
4001
4002 quota = work + qlen;
4003 }
4004 rps_unlock(sd);
4005 }
4006 local_irq_enable();
4007
4008 return work;
4009 }
4010
4011 /**
4012 * __napi_schedule - schedule for receive
4013 * @n: entry to schedule
4014 *
4015 * The entry's receive function will be scheduled to run
4016 */
4017 void __napi_schedule(struct napi_struct *n)
4018 {
4019 unsigned long flags;
4020
4021 local_irq_save(flags);
4022 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4023 local_irq_restore(flags);
4024 }
4025 EXPORT_SYMBOL(__napi_schedule);
4026
4027 void __napi_complete(struct napi_struct *n)
4028 {
4029 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4030 BUG_ON(n->gro_list);
4031
4032 list_del(&n->poll_list);
4033 smp_mb__before_clear_bit();
4034 clear_bit(NAPI_STATE_SCHED, &n->state);
4035 }
4036 EXPORT_SYMBOL(__napi_complete);
4037
4038 void napi_complete(struct napi_struct *n)
4039 {
4040 unsigned long flags;
4041
4042 /*
4043 * don't let napi dequeue from the cpu poll list
4044 * just in case its running on a different cpu
4045 */
4046 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4047 return;
4048
4049 napi_gro_flush(n, false);
4050 local_irq_save(flags);
4051 __napi_complete(n);
4052 local_irq_restore(flags);
4053 }
4054 EXPORT_SYMBOL(napi_complete);
4055
4056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4057 int (*poll)(struct napi_struct *, int), int weight)
4058 {
4059 INIT_LIST_HEAD(&napi->poll_list);
4060 napi->gro_count = 0;
4061 napi->gro_list = NULL;
4062 napi->skb = NULL;
4063 napi->poll = poll;
4064 napi->weight = weight;
4065 list_add(&napi->dev_list, &dev->napi_list);
4066 napi->dev = dev;
4067 #ifdef CONFIG_NETPOLL
4068 spin_lock_init(&napi->poll_lock);
4069 napi->poll_owner = -1;
4070 #endif
4071 set_bit(NAPI_STATE_SCHED, &napi->state);
4072 }
4073 EXPORT_SYMBOL(netif_napi_add);
4074
4075 void netif_napi_del(struct napi_struct *napi)
4076 {
4077 struct sk_buff *skb, *next;
4078
4079 list_del_init(&napi->dev_list);
4080 napi_free_frags(napi);
4081
4082 for (skb = napi->gro_list; skb; skb = next) {
4083 next = skb->next;
4084 skb->next = NULL;
4085 kfree_skb(skb);
4086 }
4087
4088 napi->gro_list = NULL;
4089 napi->gro_count = 0;
4090 }
4091 EXPORT_SYMBOL(netif_napi_del);
4092
4093 static void net_rx_action(struct softirq_action *h)
4094 {
4095 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4096 unsigned long time_limit = jiffies + 2;
4097 int budget = netdev_budget;
4098 void *have;
4099
4100 local_irq_disable();
4101
4102 while (!list_empty(&sd->poll_list)) {
4103 struct napi_struct *n;
4104 int work, weight;
4105
4106 /* If softirq window is exhuasted then punt.
4107 * Allow this to run for 2 jiffies since which will allow
4108 * an average latency of 1.5/HZ.
4109 */
4110 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4111 goto softnet_break;
4112
4113 local_irq_enable();
4114
4115 /* Even though interrupts have been re-enabled, this
4116 * access is safe because interrupts can only add new
4117 * entries to the tail of this list, and only ->poll()
4118 * calls can remove this head entry from the list.
4119 */
4120 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4121
4122 have = netpoll_poll_lock(n);
4123
4124 weight = n->weight;
4125
4126 /* This NAPI_STATE_SCHED test is for avoiding a race
4127 * with netpoll's poll_napi(). Only the entity which
4128 * obtains the lock and sees NAPI_STATE_SCHED set will
4129 * actually make the ->poll() call. Therefore we avoid
4130 * accidentally calling ->poll() when NAPI is not scheduled.
4131 */
4132 work = 0;
4133 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4134 work = n->poll(n, weight);
4135 trace_napi_poll(n);
4136 }
4137
4138 WARN_ON_ONCE(work > weight);
4139
4140 budget -= work;
4141
4142 local_irq_disable();
4143
4144 /* Drivers must not modify the NAPI state if they
4145 * consume the entire weight. In such cases this code
4146 * still "owns" the NAPI instance and therefore can
4147 * move the instance around on the list at-will.
4148 */
4149 if (unlikely(work == weight)) {
4150 if (unlikely(napi_disable_pending(n))) {
4151 local_irq_enable();
4152 napi_complete(n);
4153 local_irq_disable();
4154 } else {
4155 if (n->gro_list) {
4156 /* flush too old packets
4157 * If HZ < 1000, flush all packets.
4158 */
4159 local_irq_enable();
4160 napi_gro_flush(n, HZ >= 1000);
4161 local_irq_disable();
4162 }
4163 list_move_tail(&n->poll_list, &sd->poll_list);
4164 }
4165 }
4166
4167 netpoll_poll_unlock(have);
4168 }
4169 out:
4170 net_rps_action_and_irq_enable(sd);
4171
4172 #ifdef CONFIG_NET_DMA
4173 /*
4174 * There may not be any more sk_buffs coming right now, so push
4175 * any pending DMA copies to hardware
4176 */
4177 dma_issue_pending_all();
4178 #endif
4179
4180 return;
4181
4182 softnet_break:
4183 sd->time_squeeze++;
4184 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4185 goto out;
4186 }
4187
4188 struct netdev_upper {
4189 struct net_device *dev;
4190 bool master;
4191 struct list_head list;
4192 struct rcu_head rcu;
4193 struct list_head search_list;
4194 };
4195
4196 static void __append_search_uppers(struct list_head *search_list,
4197 struct net_device *dev)
4198 {
4199 struct netdev_upper *upper;
4200
4201 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4202 /* check if this upper is not already in search list */
4203 if (list_empty(&upper->search_list))
4204 list_add_tail(&upper->search_list, search_list);
4205 }
4206 }
4207
4208 static bool __netdev_search_upper_dev(struct net_device *dev,
4209 struct net_device *upper_dev)
4210 {
4211 LIST_HEAD(search_list);
4212 struct netdev_upper *upper;
4213 struct netdev_upper *tmp;
4214 bool ret = false;
4215
4216 __append_search_uppers(&search_list, dev);
4217 list_for_each_entry(upper, &search_list, search_list) {
4218 if (upper->dev == upper_dev) {
4219 ret = true;
4220 break;
4221 }
4222 __append_search_uppers(&search_list, upper->dev);
4223 }
4224 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4225 INIT_LIST_HEAD(&upper->search_list);
4226 return ret;
4227 }
4228
4229 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4230 struct net_device *upper_dev)
4231 {
4232 struct netdev_upper *upper;
4233
4234 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4235 if (upper->dev == upper_dev)
4236 return upper;
4237 }
4238 return NULL;
4239 }
4240
4241 /**
4242 * netdev_has_upper_dev - Check if device is linked to an upper device
4243 * @dev: device
4244 * @upper_dev: upper device to check
4245 *
4246 * Find out if a device is linked to specified upper device and return true
4247 * in case it is. Note that this checks only immediate upper device,
4248 * not through a complete stack of devices. The caller must hold the RTNL lock.
4249 */
4250 bool netdev_has_upper_dev(struct net_device *dev,
4251 struct net_device *upper_dev)
4252 {
4253 ASSERT_RTNL();
4254
4255 return __netdev_find_upper(dev, upper_dev);
4256 }
4257 EXPORT_SYMBOL(netdev_has_upper_dev);
4258
4259 /**
4260 * netdev_has_any_upper_dev - Check if device is linked to some device
4261 * @dev: device
4262 *
4263 * Find out if a device is linked to an upper device and return true in case
4264 * it is. The caller must hold the RTNL lock.
4265 */
4266 bool netdev_has_any_upper_dev(struct net_device *dev)
4267 {
4268 ASSERT_RTNL();
4269
4270 return !list_empty(&dev->upper_dev_list);
4271 }
4272 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4273
4274 /**
4275 * netdev_master_upper_dev_get - Get master upper device
4276 * @dev: device
4277 *
4278 * Find a master upper device and return pointer to it or NULL in case
4279 * it's not there. The caller must hold the RTNL lock.
4280 */
4281 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4282 {
4283 struct netdev_upper *upper;
4284
4285 ASSERT_RTNL();
4286
4287 if (list_empty(&dev->upper_dev_list))
4288 return NULL;
4289
4290 upper = list_first_entry(&dev->upper_dev_list,
4291 struct netdev_upper, list);
4292 if (likely(upper->master))
4293 return upper->dev;
4294 return NULL;
4295 }
4296 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4297
4298 /**
4299 * netdev_master_upper_dev_get_rcu - Get master upper device
4300 * @dev: device
4301 *
4302 * Find a master upper device and return pointer to it or NULL in case
4303 * it's not there. The caller must hold the RCU read lock.
4304 */
4305 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4306 {
4307 struct netdev_upper *upper;
4308
4309 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4310 struct netdev_upper, list);
4311 if (upper && likely(upper->master))
4312 return upper->dev;
4313 return NULL;
4314 }
4315 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4316
4317 static int __netdev_upper_dev_link(struct net_device *dev,
4318 struct net_device *upper_dev, bool master)
4319 {
4320 struct netdev_upper *upper;
4321
4322 ASSERT_RTNL();
4323
4324 if (dev == upper_dev)
4325 return -EBUSY;
4326
4327 /* To prevent loops, check if dev is not upper device to upper_dev. */
4328 if (__netdev_search_upper_dev(upper_dev, dev))
4329 return -EBUSY;
4330
4331 if (__netdev_find_upper(dev, upper_dev))
4332 return -EEXIST;
4333
4334 if (master && netdev_master_upper_dev_get(dev))
4335 return -EBUSY;
4336
4337 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4338 if (!upper)
4339 return -ENOMEM;
4340
4341 upper->dev = upper_dev;
4342 upper->master = master;
4343 INIT_LIST_HEAD(&upper->search_list);
4344
4345 /* Ensure that master upper link is always the first item in list. */
4346 if (master)
4347 list_add_rcu(&upper->list, &dev->upper_dev_list);
4348 else
4349 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4350 dev_hold(upper_dev);
4351
4352 return 0;
4353 }
4354
4355 /**
4356 * netdev_upper_dev_link - Add a link to the upper device
4357 * @dev: device
4358 * @upper_dev: new upper device
4359 *
4360 * Adds a link to device which is upper to this one. The caller must hold
4361 * the RTNL lock. On a failure a negative errno code is returned.
4362 * On success the reference counts are adjusted and the function
4363 * returns zero.
4364 */
4365 int netdev_upper_dev_link(struct net_device *dev,
4366 struct net_device *upper_dev)
4367 {
4368 return __netdev_upper_dev_link(dev, upper_dev, false);
4369 }
4370 EXPORT_SYMBOL(netdev_upper_dev_link);
4371
4372 /**
4373 * netdev_master_upper_dev_link - Add a master link to the upper device
4374 * @dev: device
4375 * @upper_dev: new upper device
4376 *
4377 * Adds a link to device which is upper to this one. In this case, only
4378 * one master upper device can be linked, although other non-master devices
4379 * might be linked as well. The caller must hold the RTNL lock.
4380 * On a failure a negative errno code is returned. On success the reference
4381 * counts are adjusted and the function returns zero.
4382 */
4383 int netdev_master_upper_dev_link(struct net_device *dev,
4384 struct net_device *upper_dev)
4385 {
4386 return __netdev_upper_dev_link(dev, upper_dev, true);
4387 }
4388 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4389
4390 /**
4391 * netdev_upper_dev_unlink - Removes a link to upper device
4392 * @dev: device
4393 * @upper_dev: new upper device
4394 *
4395 * Removes a link to device which is upper to this one. The caller must hold
4396 * the RTNL lock.
4397 */
4398 void netdev_upper_dev_unlink(struct net_device *dev,
4399 struct net_device *upper_dev)
4400 {
4401 struct netdev_upper *upper;
4402
4403 ASSERT_RTNL();
4404
4405 upper = __netdev_find_upper(dev, upper_dev);
4406 if (!upper)
4407 return;
4408 list_del_rcu(&upper->list);
4409 dev_put(upper_dev);
4410 kfree_rcu(upper, rcu);
4411 }
4412 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4413
4414 static void dev_change_rx_flags(struct net_device *dev, int flags)
4415 {
4416 const struct net_device_ops *ops = dev->netdev_ops;
4417
4418 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4419 ops->ndo_change_rx_flags(dev, flags);
4420 }
4421
4422 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4423 {
4424 unsigned int old_flags = dev->flags;
4425 kuid_t uid;
4426 kgid_t gid;
4427
4428 ASSERT_RTNL();
4429
4430 dev->flags |= IFF_PROMISC;
4431 dev->promiscuity += inc;
4432 if (dev->promiscuity == 0) {
4433 /*
4434 * Avoid overflow.
4435 * If inc causes overflow, untouch promisc and return error.
4436 */
4437 if (inc < 0)
4438 dev->flags &= ~IFF_PROMISC;
4439 else {
4440 dev->promiscuity -= inc;
4441 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4442 dev->name);
4443 return -EOVERFLOW;
4444 }
4445 }
4446 if (dev->flags != old_flags) {
4447 pr_info("device %s %s promiscuous mode\n",
4448 dev->name,
4449 dev->flags & IFF_PROMISC ? "entered" : "left");
4450 if (audit_enabled) {
4451 current_uid_gid(&uid, &gid);
4452 audit_log(current->audit_context, GFP_ATOMIC,
4453 AUDIT_ANOM_PROMISCUOUS,
4454 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4455 dev->name, (dev->flags & IFF_PROMISC),
4456 (old_flags & IFF_PROMISC),
4457 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4458 from_kuid(&init_user_ns, uid),
4459 from_kgid(&init_user_ns, gid),
4460 audit_get_sessionid(current));
4461 }
4462
4463 dev_change_rx_flags(dev, IFF_PROMISC);
4464 }
4465 return 0;
4466 }
4467
4468 /**
4469 * dev_set_promiscuity - update promiscuity count on a device
4470 * @dev: device
4471 * @inc: modifier
4472 *
4473 * Add or remove promiscuity from a device. While the count in the device
4474 * remains above zero the interface remains promiscuous. Once it hits zero
4475 * the device reverts back to normal filtering operation. A negative inc
4476 * value is used to drop promiscuity on the device.
4477 * Return 0 if successful or a negative errno code on error.
4478 */
4479 int dev_set_promiscuity(struct net_device *dev, int inc)
4480 {
4481 unsigned int old_flags = dev->flags;
4482 int err;
4483
4484 err = __dev_set_promiscuity(dev, inc);
4485 if (err < 0)
4486 return err;
4487 if (dev->flags != old_flags)
4488 dev_set_rx_mode(dev);
4489 return err;
4490 }
4491 EXPORT_SYMBOL(dev_set_promiscuity);
4492
4493 /**
4494 * dev_set_allmulti - update allmulti count on a device
4495 * @dev: device
4496 * @inc: modifier
4497 *
4498 * Add or remove reception of all multicast frames to a device. While the
4499 * count in the device remains above zero the interface remains listening
4500 * to all interfaces. Once it hits zero the device reverts back to normal
4501 * filtering operation. A negative @inc value is used to drop the counter
4502 * when releasing a resource needing all multicasts.
4503 * Return 0 if successful or a negative errno code on error.
4504 */
4505
4506 int dev_set_allmulti(struct net_device *dev, int inc)
4507 {
4508 unsigned int old_flags = dev->flags;
4509
4510 ASSERT_RTNL();
4511
4512 dev->flags |= IFF_ALLMULTI;
4513 dev->allmulti += inc;
4514 if (dev->allmulti == 0) {
4515 /*
4516 * Avoid overflow.
4517 * If inc causes overflow, untouch allmulti and return error.
4518 */
4519 if (inc < 0)
4520 dev->flags &= ~IFF_ALLMULTI;
4521 else {
4522 dev->allmulti -= inc;
4523 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4524 dev->name);
4525 return -EOVERFLOW;
4526 }
4527 }
4528 if (dev->flags ^ old_flags) {
4529 dev_change_rx_flags(dev, IFF_ALLMULTI);
4530 dev_set_rx_mode(dev);
4531 }
4532 return 0;
4533 }
4534 EXPORT_SYMBOL(dev_set_allmulti);
4535
4536 /*
4537 * Upload unicast and multicast address lists to device and
4538 * configure RX filtering. When the device doesn't support unicast
4539 * filtering it is put in promiscuous mode while unicast addresses
4540 * are present.
4541 */
4542 void __dev_set_rx_mode(struct net_device *dev)
4543 {
4544 const struct net_device_ops *ops = dev->netdev_ops;
4545
4546 /* dev_open will call this function so the list will stay sane. */
4547 if (!(dev->flags&IFF_UP))
4548 return;
4549
4550 if (!netif_device_present(dev))
4551 return;
4552
4553 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4554 /* Unicast addresses changes may only happen under the rtnl,
4555 * therefore calling __dev_set_promiscuity here is safe.
4556 */
4557 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4558 __dev_set_promiscuity(dev, 1);
4559 dev->uc_promisc = true;
4560 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4561 __dev_set_promiscuity(dev, -1);
4562 dev->uc_promisc = false;
4563 }
4564 }
4565
4566 if (ops->ndo_set_rx_mode)
4567 ops->ndo_set_rx_mode(dev);
4568 }
4569
4570 void dev_set_rx_mode(struct net_device *dev)
4571 {
4572 netif_addr_lock_bh(dev);
4573 __dev_set_rx_mode(dev);
4574 netif_addr_unlock_bh(dev);
4575 }
4576
4577 /**
4578 * dev_get_flags - get flags reported to userspace
4579 * @dev: device
4580 *
4581 * Get the combination of flag bits exported through APIs to userspace.
4582 */
4583 unsigned int dev_get_flags(const struct net_device *dev)
4584 {
4585 unsigned int flags;
4586
4587 flags = (dev->flags & ~(IFF_PROMISC |
4588 IFF_ALLMULTI |
4589 IFF_RUNNING |
4590 IFF_LOWER_UP |
4591 IFF_DORMANT)) |
4592 (dev->gflags & (IFF_PROMISC |
4593 IFF_ALLMULTI));
4594
4595 if (netif_running(dev)) {
4596 if (netif_oper_up(dev))
4597 flags |= IFF_RUNNING;
4598 if (netif_carrier_ok(dev))
4599 flags |= IFF_LOWER_UP;
4600 if (netif_dormant(dev))
4601 flags |= IFF_DORMANT;
4602 }
4603
4604 return flags;
4605 }
4606 EXPORT_SYMBOL(dev_get_flags);
4607
4608 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4609 {
4610 unsigned int old_flags = dev->flags;
4611 int ret;
4612
4613 ASSERT_RTNL();
4614
4615 /*
4616 * Set the flags on our device.
4617 */
4618
4619 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4620 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4621 IFF_AUTOMEDIA)) |
4622 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4623 IFF_ALLMULTI));
4624
4625 /*
4626 * Load in the correct multicast list now the flags have changed.
4627 */
4628
4629 if ((old_flags ^ flags) & IFF_MULTICAST)
4630 dev_change_rx_flags(dev, IFF_MULTICAST);
4631
4632 dev_set_rx_mode(dev);
4633
4634 /*
4635 * Have we downed the interface. We handle IFF_UP ourselves
4636 * according to user attempts to set it, rather than blindly
4637 * setting it.
4638 */
4639
4640 ret = 0;
4641 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4642 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4643
4644 if (!ret)
4645 dev_set_rx_mode(dev);
4646 }
4647
4648 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4649 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4650
4651 dev->gflags ^= IFF_PROMISC;
4652 dev_set_promiscuity(dev, inc);
4653 }
4654
4655 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4656 is important. Some (broken) drivers set IFF_PROMISC, when
4657 IFF_ALLMULTI is requested not asking us and not reporting.
4658 */
4659 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4660 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4661
4662 dev->gflags ^= IFF_ALLMULTI;
4663 dev_set_allmulti(dev, inc);
4664 }
4665
4666 return ret;
4667 }
4668
4669 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4670 {
4671 unsigned int changes = dev->flags ^ old_flags;
4672
4673 if (changes & IFF_UP) {
4674 if (dev->flags & IFF_UP)
4675 call_netdevice_notifiers(NETDEV_UP, dev);
4676 else
4677 call_netdevice_notifiers(NETDEV_DOWN, dev);
4678 }
4679
4680 if (dev->flags & IFF_UP &&
4681 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4682 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4683 }
4684
4685 /**
4686 * dev_change_flags - change device settings
4687 * @dev: device
4688 * @flags: device state flags
4689 *
4690 * Change settings on device based state flags. The flags are
4691 * in the userspace exported format.
4692 */
4693 int dev_change_flags(struct net_device *dev, unsigned int flags)
4694 {
4695 int ret;
4696 unsigned int changes, old_flags = dev->flags;
4697
4698 ret = __dev_change_flags(dev, flags);
4699 if (ret < 0)
4700 return ret;
4701
4702 changes = old_flags ^ dev->flags;
4703 if (changes)
4704 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4705
4706 __dev_notify_flags(dev, old_flags);
4707 return ret;
4708 }
4709 EXPORT_SYMBOL(dev_change_flags);
4710
4711 /**
4712 * dev_set_mtu - Change maximum transfer unit
4713 * @dev: device
4714 * @new_mtu: new transfer unit
4715 *
4716 * Change the maximum transfer size of the network device.
4717 */
4718 int dev_set_mtu(struct net_device *dev, int new_mtu)
4719 {
4720 const struct net_device_ops *ops = dev->netdev_ops;
4721 int err;
4722
4723 if (new_mtu == dev->mtu)
4724 return 0;
4725
4726 /* MTU must be positive. */
4727 if (new_mtu < 0)
4728 return -EINVAL;
4729
4730 if (!netif_device_present(dev))
4731 return -ENODEV;
4732
4733 err = 0;
4734 if (ops->ndo_change_mtu)
4735 err = ops->ndo_change_mtu(dev, new_mtu);
4736 else
4737 dev->mtu = new_mtu;
4738
4739 if (!err)
4740 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4741 return err;
4742 }
4743 EXPORT_SYMBOL(dev_set_mtu);
4744
4745 /**
4746 * dev_set_group - Change group this device belongs to
4747 * @dev: device
4748 * @new_group: group this device should belong to
4749 */
4750 void dev_set_group(struct net_device *dev, int new_group)
4751 {
4752 dev->group = new_group;
4753 }
4754 EXPORT_SYMBOL(dev_set_group);
4755
4756 /**
4757 * dev_set_mac_address - Change Media Access Control Address
4758 * @dev: device
4759 * @sa: new address
4760 *
4761 * Change the hardware (MAC) address of the device
4762 */
4763 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4764 {
4765 const struct net_device_ops *ops = dev->netdev_ops;
4766 int err;
4767
4768 if (!ops->ndo_set_mac_address)
4769 return -EOPNOTSUPP;
4770 if (sa->sa_family != dev->type)
4771 return -EINVAL;
4772 if (!netif_device_present(dev))
4773 return -ENODEV;
4774 err = ops->ndo_set_mac_address(dev, sa);
4775 if (err)
4776 return err;
4777 dev->addr_assign_type = NET_ADDR_SET;
4778 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4779 add_device_randomness(dev->dev_addr, dev->addr_len);
4780 return 0;
4781 }
4782 EXPORT_SYMBOL(dev_set_mac_address);
4783
4784 /**
4785 * dev_change_carrier - Change device carrier
4786 * @dev: device
4787 * @new_carries: new value
4788 *
4789 * Change device carrier
4790 */
4791 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4792 {
4793 const struct net_device_ops *ops = dev->netdev_ops;
4794
4795 if (!ops->ndo_change_carrier)
4796 return -EOPNOTSUPP;
4797 if (!netif_device_present(dev))
4798 return -ENODEV;
4799 return ops->ndo_change_carrier(dev, new_carrier);
4800 }
4801 EXPORT_SYMBOL(dev_change_carrier);
4802
4803 /**
4804 * dev_new_index - allocate an ifindex
4805 * @net: the applicable net namespace
4806 *
4807 * Returns a suitable unique value for a new device interface
4808 * number. The caller must hold the rtnl semaphore or the
4809 * dev_base_lock to be sure it remains unique.
4810 */
4811 static int dev_new_index(struct net *net)
4812 {
4813 int ifindex = net->ifindex;
4814 for (;;) {
4815 if (++ifindex <= 0)
4816 ifindex = 1;
4817 if (!__dev_get_by_index(net, ifindex))
4818 return net->ifindex = ifindex;
4819 }
4820 }
4821
4822 /* Delayed registration/unregisteration */
4823 static LIST_HEAD(net_todo_list);
4824
4825 static void net_set_todo(struct net_device *dev)
4826 {
4827 list_add_tail(&dev->todo_list, &net_todo_list);
4828 }
4829
4830 static void rollback_registered_many(struct list_head *head)
4831 {
4832 struct net_device *dev, *tmp;
4833
4834 BUG_ON(dev_boot_phase);
4835 ASSERT_RTNL();
4836
4837 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4838 /* Some devices call without registering
4839 * for initialization unwind. Remove those
4840 * devices and proceed with the remaining.
4841 */
4842 if (dev->reg_state == NETREG_UNINITIALIZED) {
4843 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4844 dev->name, dev);
4845
4846 WARN_ON(1);
4847 list_del(&dev->unreg_list);
4848 continue;
4849 }
4850 dev->dismantle = true;
4851 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4852 }
4853
4854 /* If device is running, close it first. */
4855 dev_close_many(head);
4856
4857 list_for_each_entry(dev, head, unreg_list) {
4858 /* And unlink it from device chain. */
4859 unlist_netdevice(dev);
4860
4861 dev->reg_state = NETREG_UNREGISTERING;
4862 }
4863
4864 synchronize_net();
4865
4866 list_for_each_entry(dev, head, unreg_list) {
4867 /* Shutdown queueing discipline. */
4868 dev_shutdown(dev);
4869
4870
4871 /* Notify protocols, that we are about to destroy
4872 this device. They should clean all the things.
4873 */
4874 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4875
4876 if (!dev->rtnl_link_ops ||
4877 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4878 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4879
4880 /*
4881 * Flush the unicast and multicast chains
4882 */
4883 dev_uc_flush(dev);
4884 dev_mc_flush(dev);
4885
4886 if (dev->netdev_ops->ndo_uninit)
4887 dev->netdev_ops->ndo_uninit(dev);
4888
4889 /* Notifier chain MUST detach us all upper devices. */
4890 WARN_ON(netdev_has_any_upper_dev(dev));
4891
4892 /* Remove entries from kobject tree */
4893 netdev_unregister_kobject(dev);
4894 #ifdef CONFIG_XPS
4895 /* Remove XPS queueing entries */
4896 netif_reset_xps_queues_gt(dev, 0);
4897 #endif
4898 }
4899
4900 synchronize_net();
4901
4902 list_for_each_entry(dev, head, unreg_list)
4903 dev_put(dev);
4904 }
4905
4906 static void rollback_registered(struct net_device *dev)
4907 {
4908 LIST_HEAD(single);
4909
4910 list_add(&dev->unreg_list, &single);
4911 rollback_registered_many(&single);
4912 list_del(&single);
4913 }
4914
4915 static netdev_features_t netdev_fix_features(struct net_device *dev,
4916 netdev_features_t features)
4917 {
4918 /* Fix illegal checksum combinations */
4919 if ((features & NETIF_F_HW_CSUM) &&
4920 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4921 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4922 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4923 }
4924
4925 /* Fix illegal SG+CSUM combinations. */
4926 if ((features & NETIF_F_SG) &&
4927 !(features & NETIF_F_ALL_CSUM)) {
4928 netdev_dbg(dev,
4929 "Dropping NETIF_F_SG since no checksum feature.\n");
4930 features &= ~NETIF_F_SG;
4931 }
4932
4933 /* TSO requires that SG is present as well. */
4934 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4935 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4936 features &= ~NETIF_F_ALL_TSO;
4937 }
4938
4939 /* TSO ECN requires that TSO is present as well. */
4940 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4941 features &= ~NETIF_F_TSO_ECN;
4942
4943 /* Software GSO depends on SG. */
4944 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4945 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4946 features &= ~NETIF_F_GSO;
4947 }
4948
4949 /* UFO needs SG and checksumming */
4950 if (features & NETIF_F_UFO) {
4951 /* maybe split UFO into V4 and V6? */
4952 if (!((features & NETIF_F_GEN_CSUM) ||
4953 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4954 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4955 netdev_dbg(dev,
4956 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4957 features &= ~NETIF_F_UFO;
4958 }
4959
4960 if (!(features & NETIF_F_SG)) {
4961 netdev_dbg(dev,
4962 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4963 features &= ~NETIF_F_UFO;
4964 }
4965 }
4966
4967 return features;
4968 }
4969
4970 int __netdev_update_features(struct net_device *dev)
4971 {
4972 netdev_features_t features;
4973 int err = 0;
4974
4975 ASSERT_RTNL();
4976
4977 features = netdev_get_wanted_features(dev);
4978
4979 if (dev->netdev_ops->ndo_fix_features)
4980 features = dev->netdev_ops->ndo_fix_features(dev, features);
4981
4982 /* driver might be less strict about feature dependencies */
4983 features = netdev_fix_features(dev, features);
4984
4985 if (dev->features == features)
4986 return 0;
4987
4988 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4989 &dev->features, &features);
4990
4991 if (dev->netdev_ops->ndo_set_features)
4992 err = dev->netdev_ops->ndo_set_features(dev, features);
4993
4994 if (unlikely(err < 0)) {
4995 netdev_err(dev,
4996 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4997 err, &features, &dev->features);
4998 return -1;
4999 }
5000
5001 if (!err)
5002 dev->features = features;
5003
5004 return 1;
5005 }
5006
5007 /**
5008 * netdev_update_features - recalculate device features
5009 * @dev: the device to check
5010 *
5011 * Recalculate dev->features set and send notifications if it
5012 * has changed. Should be called after driver or hardware dependent
5013 * conditions might have changed that influence the features.
5014 */
5015 void netdev_update_features(struct net_device *dev)
5016 {
5017 if (__netdev_update_features(dev))
5018 netdev_features_change(dev);
5019 }
5020 EXPORT_SYMBOL(netdev_update_features);
5021
5022 /**
5023 * netdev_change_features - recalculate device features
5024 * @dev: the device to check
5025 *
5026 * Recalculate dev->features set and send notifications even
5027 * if they have not changed. Should be called instead of
5028 * netdev_update_features() if also dev->vlan_features might
5029 * have changed to allow the changes to be propagated to stacked
5030 * VLAN devices.
5031 */
5032 void netdev_change_features(struct net_device *dev)
5033 {
5034 __netdev_update_features(dev);
5035 netdev_features_change(dev);
5036 }
5037 EXPORT_SYMBOL(netdev_change_features);
5038
5039 /**
5040 * netif_stacked_transfer_operstate - transfer operstate
5041 * @rootdev: the root or lower level device to transfer state from
5042 * @dev: the device to transfer operstate to
5043 *
5044 * Transfer operational state from root to device. This is normally
5045 * called when a stacking relationship exists between the root
5046 * device and the device(a leaf device).
5047 */
5048 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5049 struct net_device *dev)
5050 {
5051 if (rootdev->operstate == IF_OPER_DORMANT)
5052 netif_dormant_on(dev);
5053 else
5054 netif_dormant_off(dev);
5055
5056 if (netif_carrier_ok(rootdev)) {
5057 if (!netif_carrier_ok(dev))
5058 netif_carrier_on(dev);
5059 } else {
5060 if (netif_carrier_ok(dev))
5061 netif_carrier_off(dev);
5062 }
5063 }
5064 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5065
5066 #ifdef CONFIG_RPS
5067 static int netif_alloc_rx_queues(struct net_device *dev)
5068 {
5069 unsigned int i, count = dev->num_rx_queues;
5070 struct netdev_rx_queue *rx;
5071
5072 BUG_ON(count < 1);
5073
5074 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5075 if (!rx)
5076 return -ENOMEM;
5077
5078 dev->_rx = rx;
5079
5080 for (i = 0; i < count; i++)
5081 rx[i].dev = dev;
5082 return 0;
5083 }
5084 #endif
5085
5086 static void netdev_init_one_queue(struct net_device *dev,
5087 struct netdev_queue *queue, void *_unused)
5088 {
5089 /* Initialize queue lock */
5090 spin_lock_init(&queue->_xmit_lock);
5091 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5092 queue->xmit_lock_owner = -1;
5093 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5094 queue->dev = dev;
5095 #ifdef CONFIG_BQL
5096 dql_init(&queue->dql, HZ);
5097 #endif
5098 }
5099
5100 static int netif_alloc_netdev_queues(struct net_device *dev)
5101 {
5102 unsigned int count = dev->num_tx_queues;
5103 struct netdev_queue *tx;
5104
5105 BUG_ON(count < 1);
5106
5107 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5108 if (!tx)
5109 return -ENOMEM;
5110
5111 dev->_tx = tx;
5112
5113 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5114 spin_lock_init(&dev->tx_global_lock);
5115
5116 return 0;
5117 }
5118
5119 /**
5120 * register_netdevice - register a network device
5121 * @dev: device to register
5122 *
5123 * Take a completed network device structure and add it to the kernel
5124 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5125 * chain. 0 is returned on success. A negative errno code is returned
5126 * on a failure to set up the device, or if the name is a duplicate.
5127 *
5128 * Callers must hold the rtnl semaphore. You may want
5129 * register_netdev() instead of this.
5130 *
5131 * BUGS:
5132 * The locking appears insufficient to guarantee two parallel registers
5133 * will not get the same name.
5134 */
5135
5136 int register_netdevice(struct net_device *dev)
5137 {
5138 int ret;
5139 struct net *net = dev_net(dev);
5140
5141 BUG_ON(dev_boot_phase);
5142 ASSERT_RTNL();
5143
5144 might_sleep();
5145
5146 /* When net_device's are persistent, this will be fatal. */
5147 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5148 BUG_ON(!net);
5149
5150 spin_lock_init(&dev->addr_list_lock);
5151 netdev_set_addr_lockdep_class(dev);
5152
5153 dev->iflink = -1;
5154
5155 ret = dev_get_valid_name(net, dev, dev->name);
5156 if (ret < 0)
5157 goto out;
5158
5159 /* Init, if this function is available */
5160 if (dev->netdev_ops->ndo_init) {
5161 ret = dev->netdev_ops->ndo_init(dev);
5162 if (ret) {
5163 if (ret > 0)
5164 ret = -EIO;
5165 goto out;
5166 }
5167 }
5168
5169 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5170 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5171 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5172 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5173 ret = -EINVAL;
5174 goto err_uninit;
5175 }
5176
5177 ret = -EBUSY;
5178 if (!dev->ifindex)
5179 dev->ifindex = dev_new_index(net);
5180 else if (__dev_get_by_index(net, dev->ifindex))
5181 goto err_uninit;
5182
5183 if (dev->iflink == -1)
5184 dev->iflink = dev->ifindex;
5185
5186 /* Transfer changeable features to wanted_features and enable
5187 * software offloads (GSO and GRO).
5188 */
5189 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5190 dev->features |= NETIF_F_SOFT_FEATURES;
5191 dev->wanted_features = dev->features & dev->hw_features;
5192
5193 /* Turn on no cache copy if HW is doing checksum */
5194 if (!(dev->flags & IFF_LOOPBACK)) {
5195 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5196 if (dev->features & NETIF_F_ALL_CSUM) {
5197 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5198 dev->features |= NETIF_F_NOCACHE_COPY;
5199 }
5200 }
5201
5202 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5203 */
5204 dev->vlan_features |= NETIF_F_HIGHDMA;
5205
5206 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5207 ret = notifier_to_errno(ret);
5208 if (ret)
5209 goto err_uninit;
5210
5211 ret = netdev_register_kobject(dev);
5212 if (ret)
5213 goto err_uninit;
5214 dev->reg_state = NETREG_REGISTERED;
5215
5216 __netdev_update_features(dev);
5217
5218 /*
5219 * Default initial state at registry is that the
5220 * device is present.
5221 */
5222
5223 set_bit(__LINK_STATE_PRESENT, &dev->state);
5224
5225 linkwatch_init_dev(dev);
5226
5227 dev_init_scheduler(dev);
5228 dev_hold(dev);
5229 list_netdevice(dev);
5230 add_device_randomness(dev->dev_addr, dev->addr_len);
5231
5232 /* If the device has permanent device address, driver should
5233 * set dev_addr and also addr_assign_type should be set to
5234 * NET_ADDR_PERM (default value).
5235 */
5236 if (dev->addr_assign_type == NET_ADDR_PERM)
5237 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5238
5239 /* Notify protocols, that a new device appeared. */
5240 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5241 ret = notifier_to_errno(ret);
5242 if (ret) {
5243 rollback_registered(dev);
5244 dev->reg_state = NETREG_UNREGISTERED;
5245 }
5246 /*
5247 * Prevent userspace races by waiting until the network
5248 * device is fully setup before sending notifications.
5249 */
5250 if (!dev->rtnl_link_ops ||
5251 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5252 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5253
5254 out:
5255 return ret;
5256
5257 err_uninit:
5258 if (dev->netdev_ops->ndo_uninit)
5259 dev->netdev_ops->ndo_uninit(dev);
5260 goto out;
5261 }
5262 EXPORT_SYMBOL(register_netdevice);
5263
5264 /**
5265 * init_dummy_netdev - init a dummy network device for NAPI
5266 * @dev: device to init
5267 *
5268 * This takes a network device structure and initialize the minimum
5269 * amount of fields so it can be used to schedule NAPI polls without
5270 * registering a full blown interface. This is to be used by drivers
5271 * that need to tie several hardware interfaces to a single NAPI
5272 * poll scheduler due to HW limitations.
5273 */
5274 int init_dummy_netdev(struct net_device *dev)
5275 {
5276 /* Clear everything. Note we don't initialize spinlocks
5277 * are they aren't supposed to be taken by any of the
5278 * NAPI code and this dummy netdev is supposed to be
5279 * only ever used for NAPI polls
5280 */
5281 memset(dev, 0, sizeof(struct net_device));
5282
5283 /* make sure we BUG if trying to hit standard
5284 * register/unregister code path
5285 */
5286 dev->reg_state = NETREG_DUMMY;
5287
5288 /* NAPI wants this */
5289 INIT_LIST_HEAD(&dev->napi_list);
5290
5291 /* a dummy interface is started by default */
5292 set_bit(__LINK_STATE_PRESENT, &dev->state);
5293 set_bit(__LINK_STATE_START, &dev->state);
5294
5295 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5296 * because users of this 'device' dont need to change
5297 * its refcount.
5298 */
5299
5300 return 0;
5301 }
5302 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5303
5304
5305 /**
5306 * register_netdev - register a network device
5307 * @dev: device to register
5308 *
5309 * Take a completed network device structure and add it to the kernel
5310 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5311 * chain. 0 is returned on success. A negative errno code is returned
5312 * on a failure to set up the device, or if the name is a duplicate.
5313 *
5314 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5315 * and expands the device name if you passed a format string to
5316 * alloc_netdev.
5317 */
5318 int register_netdev(struct net_device *dev)
5319 {
5320 int err;
5321
5322 rtnl_lock();
5323 err = register_netdevice(dev);
5324 rtnl_unlock();
5325 return err;
5326 }
5327 EXPORT_SYMBOL(register_netdev);
5328
5329 int netdev_refcnt_read(const struct net_device *dev)
5330 {
5331 int i, refcnt = 0;
5332
5333 for_each_possible_cpu(i)
5334 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5335 return refcnt;
5336 }
5337 EXPORT_SYMBOL(netdev_refcnt_read);
5338
5339 /**
5340 * netdev_wait_allrefs - wait until all references are gone.
5341 * @dev: target net_device
5342 *
5343 * This is called when unregistering network devices.
5344 *
5345 * Any protocol or device that holds a reference should register
5346 * for netdevice notification, and cleanup and put back the
5347 * reference if they receive an UNREGISTER event.
5348 * We can get stuck here if buggy protocols don't correctly
5349 * call dev_put.
5350 */
5351 static void netdev_wait_allrefs(struct net_device *dev)
5352 {
5353 unsigned long rebroadcast_time, warning_time;
5354 int refcnt;
5355
5356 linkwatch_forget_dev(dev);
5357
5358 rebroadcast_time = warning_time = jiffies;
5359 refcnt = netdev_refcnt_read(dev);
5360
5361 while (refcnt != 0) {
5362 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5363 rtnl_lock();
5364
5365 /* Rebroadcast unregister notification */
5366 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5367
5368 __rtnl_unlock();
5369 rcu_barrier();
5370 rtnl_lock();
5371
5372 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5373 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5374 &dev->state)) {
5375 /* We must not have linkwatch events
5376 * pending on unregister. If this
5377 * happens, we simply run the queue
5378 * unscheduled, resulting in a noop
5379 * for this device.
5380 */
5381 linkwatch_run_queue();
5382 }
5383
5384 __rtnl_unlock();
5385
5386 rebroadcast_time = jiffies;
5387 }
5388
5389 msleep(250);
5390
5391 refcnt = netdev_refcnt_read(dev);
5392
5393 if (time_after(jiffies, warning_time + 10 * HZ)) {
5394 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5395 dev->name, refcnt);
5396 warning_time = jiffies;
5397 }
5398 }
5399 }
5400
5401 /* The sequence is:
5402 *
5403 * rtnl_lock();
5404 * ...
5405 * register_netdevice(x1);
5406 * register_netdevice(x2);
5407 * ...
5408 * unregister_netdevice(y1);
5409 * unregister_netdevice(y2);
5410 * ...
5411 * rtnl_unlock();
5412 * free_netdev(y1);
5413 * free_netdev(y2);
5414 *
5415 * We are invoked by rtnl_unlock().
5416 * This allows us to deal with problems:
5417 * 1) We can delete sysfs objects which invoke hotplug
5418 * without deadlocking with linkwatch via keventd.
5419 * 2) Since we run with the RTNL semaphore not held, we can sleep
5420 * safely in order to wait for the netdev refcnt to drop to zero.
5421 *
5422 * We must not return until all unregister events added during
5423 * the interval the lock was held have been completed.
5424 */
5425 void netdev_run_todo(void)
5426 {
5427 struct list_head list;
5428
5429 /* Snapshot list, allow later requests */
5430 list_replace_init(&net_todo_list, &list);
5431
5432 __rtnl_unlock();
5433
5434
5435 /* Wait for rcu callbacks to finish before next phase */
5436 if (!list_empty(&list))
5437 rcu_barrier();
5438
5439 while (!list_empty(&list)) {
5440 struct net_device *dev
5441 = list_first_entry(&list, struct net_device, todo_list);
5442 list_del(&dev->todo_list);
5443
5444 rtnl_lock();
5445 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5446 __rtnl_unlock();
5447
5448 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5449 pr_err("network todo '%s' but state %d\n",
5450 dev->name, dev->reg_state);
5451 dump_stack();
5452 continue;
5453 }
5454
5455 dev->reg_state = NETREG_UNREGISTERED;
5456
5457 on_each_cpu(flush_backlog, dev, 1);
5458
5459 netdev_wait_allrefs(dev);
5460
5461 /* paranoia */
5462 BUG_ON(netdev_refcnt_read(dev));
5463 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5464 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5465 WARN_ON(dev->dn_ptr);
5466
5467 if (dev->destructor)
5468 dev->destructor(dev);
5469
5470 /* Free network device */
5471 kobject_put(&dev->dev.kobj);
5472 }
5473 }
5474
5475 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5476 * fields in the same order, with only the type differing.
5477 */
5478 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5479 const struct net_device_stats *netdev_stats)
5480 {
5481 #if BITS_PER_LONG == 64
5482 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5483 memcpy(stats64, netdev_stats, sizeof(*stats64));
5484 #else
5485 size_t i, n = sizeof(*stats64) / sizeof(u64);
5486 const unsigned long *src = (const unsigned long *)netdev_stats;
5487 u64 *dst = (u64 *)stats64;
5488
5489 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5490 sizeof(*stats64) / sizeof(u64));
5491 for (i = 0; i < n; i++)
5492 dst[i] = src[i];
5493 #endif
5494 }
5495 EXPORT_SYMBOL(netdev_stats_to_stats64);
5496
5497 /**
5498 * dev_get_stats - get network device statistics
5499 * @dev: device to get statistics from
5500 * @storage: place to store stats
5501 *
5502 * Get network statistics from device. Return @storage.
5503 * The device driver may provide its own method by setting
5504 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5505 * otherwise the internal statistics structure is used.
5506 */
5507 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5508 struct rtnl_link_stats64 *storage)
5509 {
5510 const struct net_device_ops *ops = dev->netdev_ops;
5511
5512 if (ops->ndo_get_stats64) {
5513 memset(storage, 0, sizeof(*storage));
5514 ops->ndo_get_stats64(dev, storage);
5515 } else if (ops->ndo_get_stats) {
5516 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5517 } else {
5518 netdev_stats_to_stats64(storage, &dev->stats);
5519 }
5520 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5521 return storage;
5522 }
5523 EXPORT_SYMBOL(dev_get_stats);
5524
5525 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5526 {
5527 struct netdev_queue *queue = dev_ingress_queue(dev);
5528
5529 #ifdef CONFIG_NET_CLS_ACT
5530 if (queue)
5531 return queue;
5532 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5533 if (!queue)
5534 return NULL;
5535 netdev_init_one_queue(dev, queue, NULL);
5536 queue->qdisc = &noop_qdisc;
5537 queue->qdisc_sleeping = &noop_qdisc;
5538 rcu_assign_pointer(dev->ingress_queue, queue);
5539 #endif
5540 return queue;
5541 }
5542
5543 static const struct ethtool_ops default_ethtool_ops;
5544
5545 void netdev_set_default_ethtool_ops(struct net_device *dev,
5546 const struct ethtool_ops *ops)
5547 {
5548 if (dev->ethtool_ops == &default_ethtool_ops)
5549 dev->ethtool_ops = ops;
5550 }
5551 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5552
5553 /**
5554 * alloc_netdev_mqs - allocate network device
5555 * @sizeof_priv: size of private data to allocate space for
5556 * @name: device name format string
5557 * @setup: callback to initialize device
5558 * @txqs: the number of TX subqueues to allocate
5559 * @rxqs: the number of RX subqueues to allocate
5560 *
5561 * Allocates a struct net_device with private data area for driver use
5562 * and performs basic initialization. Also allocates subquue structs
5563 * for each queue on the device.
5564 */
5565 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5566 void (*setup)(struct net_device *),
5567 unsigned int txqs, unsigned int rxqs)
5568 {
5569 struct net_device *dev;
5570 size_t alloc_size;
5571 struct net_device *p;
5572
5573 BUG_ON(strlen(name) >= sizeof(dev->name));
5574
5575 if (txqs < 1) {
5576 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5577 return NULL;
5578 }
5579
5580 #ifdef CONFIG_RPS
5581 if (rxqs < 1) {
5582 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5583 return NULL;
5584 }
5585 #endif
5586
5587 alloc_size = sizeof(struct net_device);
5588 if (sizeof_priv) {
5589 /* ensure 32-byte alignment of private area */
5590 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5591 alloc_size += sizeof_priv;
5592 }
5593 /* ensure 32-byte alignment of whole construct */
5594 alloc_size += NETDEV_ALIGN - 1;
5595
5596 p = kzalloc(alloc_size, GFP_KERNEL);
5597 if (!p)
5598 return NULL;
5599
5600 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5601 dev->padded = (char *)dev - (char *)p;
5602
5603 dev->pcpu_refcnt = alloc_percpu(int);
5604 if (!dev->pcpu_refcnt)
5605 goto free_p;
5606
5607 if (dev_addr_init(dev))
5608 goto free_pcpu;
5609
5610 dev_mc_init(dev);
5611 dev_uc_init(dev);
5612
5613 dev_net_set(dev, &init_net);
5614
5615 dev->gso_max_size = GSO_MAX_SIZE;
5616 dev->gso_max_segs = GSO_MAX_SEGS;
5617
5618 INIT_LIST_HEAD(&dev->napi_list);
5619 INIT_LIST_HEAD(&dev->unreg_list);
5620 INIT_LIST_HEAD(&dev->link_watch_list);
5621 INIT_LIST_HEAD(&dev->upper_dev_list);
5622 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5623 setup(dev);
5624
5625 dev->num_tx_queues = txqs;
5626 dev->real_num_tx_queues = txqs;
5627 if (netif_alloc_netdev_queues(dev))
5628 goto free_all;
5629
5630 #ifdef CONFIG_RPS
5631 dev->num_rx_queues = rxqs;
5632 dev->real_num_rx_queues = rxqs;
5633 if (netif_alloc_rx_queues(dev))
5634 goto free_all;
5635 #endif
5636
5637 strcpy(dev->name, name);
5638 dev->group = INIT_NETDEV_GROUP;
5639 if (!dev->ethtool_ops)
5640 dev->ethtool_ops = &default_ethtool_ops;
5641 return dev;
5642
5643 free_all:
5644 free_netdev(dev);
5645 return NULL;
5646
5647 free_pcpu:
5648 free_percpu(dev->pcpu_refcnt);
5649 kfree(dev->_tx);
5650 #ifdef CONFIG_RPS
5651 kfree(dev->_rx);
5652 #endif
5653
5654 free_p:
5655 kfree(p);
5656 return NULL;
5657 }
5658 EXPORT_SYMBOL(alloc_netdev_mqs);
5659
5660 /**
5661 * free_netdev - free network device
5662 * @dev: device
5663 *
5664 * This function does the last stage of destroying an allocated device
5665 * interface. The reference to the device object is released.
5666 * If this is the last reference then it will be freed.
5667 */
5668 void free_netdev(struct net_device *dev)
5669 {
5670 struct napi_struct *p, *n;
5671
5672 release_net(dev_net(dev));
5673
5674 kfree(dev->_tx);
5675 #ifdef CONFIG_RPS
5676 kfree(dev->_rx);
5677 #endif
5678
5679 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5680
5681 /* Flush device addresses */
5682 dev_addr_flush(dev);
5683
5684 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5685 netif_napi_del(p);
5686
5687 free_percpu(dev->pcpu_refcnt);
5688 dev->pcpu_refcnt = NULL;
5689
5690 /* Compatibility with error handling in drivers */
5691 if (dev->reg_state == NETREG_UNINITIALIZED) {
5692 kfree((char *)dev - dev->padded);
5693 return;
5694 }
5695
5696 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5697 dev->reg_state = NETREG_RELEASED;
5698
5699 /* will free via device release */
5700 put_device(&dev->dev);
5701 }
5702 EXPORT_SYMBOL(free_netdev);
5703
5704 /**
5705 * synchronize_net - Synchronize with packet receive processing
5706 *
5707 * Wait for packets currently being received to be done.
5708 * Does not block later packets from starting.
5709 */
5710 void synchronize_net(void)
5711 {
5712 might_sleep();
5713 if (rtnl_is_locked())
5714 synchronize_rcu_expedited();
5715 else
5716 synchronize_rcu();
5717 }
5718 EXPORT_SYMBOL(synchronize_net);
5719
5720 /**
5721 * unregister_netdevice_queue - remove device from the kernel
5722 * @dev: device
5723 * @head: list
5724 *
5725 * This function shuts down a device interface and removes it
5726 * from the kernel tables.
5727 * If head not NULL, device is queued to be unregistered later.
5728 *
5729 * Callers must hold the rtnl semaphore. You may want
5730 * unregister_netdev() instead of this.
5731 */
5732
5733 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5734 {
5735 ASSERT_RTNL();
5736
5737 if (head) {
5738 list_move_tail(&dev->unreg_list, head);
5739 } else {
5740 rollback_registered(dev);
5741 /* Finish processing unregister after unlock */
5742 net_set_todo(dev);
5743 }
5744 }
5745 EXPORT_SYMBOL(unregister_netdevice_queue);
5746
5747 /**
5748 * unregister_netdevice_many - unregister many devices
5749 * @head: list of devices
5750 */
5751 void unregister_netdevice_many(struct list_head *head)
5752 {
5753 struct net_device *dev;
5754
5755 if (!list_empty(head)) {
5756 rollback_registered_many(head);
5757 list_for_each_entry(dev, head, unreg_list)
5758 net_set_todo(dev);
5759 }
5760 }
5761 EXPORT_SYMBOL(unregister_netdevice_many);
5762
5763 /**
5764 * unregister_netdev - remove device from the kernel
5765 * @dev: device
5766 *
5767 * This function shuts down a device interface and removes it
5768 * from the kernel tables.
5769 *
5770 * This is just a wrapper for unregister_netdevice that takes
5771 * the rtnl semaphore. In general you want to use this and not
5772 * unregister_netdevice.
5773 */
5774 void unregister_netdev(struct net_device *dev)
5775 {
5776 rtnl_lock();
5777 unregister_netdevice(dev);
5778 rtnl_unlock();
5779 }
5780 EXPORT_SYMBOL(unregister_netdev);
5781
5782 /**
5783 * dev_change_net_namespace - move device to different nethost namespace
5784 * @dev: device
5785 * @net: network namespace
5786 * @pat: If not NULL name pattern to try if the current device name
5787 * is already taken in the destination network namespace.
5788 *
5789 * This function shuts down a device interface and moves it
5790 * to a new network namespace. On success 0 is returned, on
5791 * a failure a netagive errno code is returned.
5792 *
5793 * Callers must hold the rtnl semaphore.
5794 */
5795
5796 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5797 {
5798 int err;
5799
5800 ASSERT_RTNL();
5801
5802 /* Don't allow namespace local devices to be moved. */
5803 err = -EINVAL;
5804 if (dev->features & NETIF_F_NETNS_LOCAL)
5805 goto out;
5806
5807 /* Ensure the device has been registrered */
5808 if (dev->reg_state != NETREG_REGISTERED)
5809 goto out;
5810
5811 /* Get out if there is nothing todo */
5812 err = 0;
5813 if (net_eq(dev_net(dev), net))
5814 goto out;
5815
5816 /* Pick the destination device name, and ensure
5817 * we can use it in the destination network namespace.
5818 */
5819 err = -EEXIST;
5820 if (__dev_get_by_name(net, dev->name)) {
5821 /* We get here if we can't use the current device name */
5822 if (!pat)
5823 goto out;
5824 if (dev_get_valid_name(net, dev, pat) < 0)
5825 goto out;
5826 }
5827
5828 /*
5829 * And now a mini version of register_netdevice unregister_netdevice.
5830 */
5831
5832 /* If device is running close it first. */
5833 dev_close(dev);
5834
5835 /* And unlink it from device chain */
5836 err = -ENODEV;
5837 unlist_netdevice(dev);
5838
5839 synchronize_net();
5840
5841 /* Shutdown queueing discipline. */
5842 dev_shutdown(dev);
5843
5844 /* Notify protocols, that we are about to destroy
5845 this device. They should clean all the things.
5846
5847 Note that dev->reg_state stays at NETREG_REGISTERED.
5848 This is wanted because this way 8021q and macvlan know
5849 the device is just moving and can keep their slaves up.
5850 */
5851 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5852 rcu_barrier();
5853 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5854 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5855
5856 /*
5857 * Flush the unicast and multicast chains
5858 */
5859 dev_uc_flush(dev);
5860 dev_mc_flush(dev);
5861
5862 /* Send a netdev-removed uevent to the old namespace */
5863 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5864
5865 /* Actually switch the network namespace */
5866 dev_net_set(dev, net);
5867
5868 /* If there is an ifindex conflict assign a new one */
5869 if (__dev_get_by_index(net, dev->ifindex)) {
5870 int iflink = (dev->iflink == dev->ifindex);
5871 dev->ifindex = dev_new_index(net);
5872 if (iflink)
5873 dev->iflink = dev->ifindex;
5874 }
5875
5876 /* Send a netdev-add uevent to the new namespace */
5877 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5878
5879 /* Fixup kobjects */
5880 err = device_rename(&dev->dev, dev->name);
5881 WARN_ON(err);
5882
5883 /* Add the device back in the hashes */
5884 list_netdevice(dev);
5885
5886 /* Notify protocols, that a new device appeared. */
5887 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5888
5889 /*
5890 * Prevent userspace races by waiting until the network
5891 * device is fully setup before sending notifications.
5892 */
5893 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5894
5895 synchronize_net();
5896 err = 0;
5897 out:
5898 return err;
5899 }
5900 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5901
5902 static int dev_cpu_callback(struct notifier_block *nfb,
5903 unsigned long action,
5904 void *ocpu)
5905 {
5906 struct sk_buff **list_skb;
5907 struct sk_buff *skb;
5908 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5909 struct softnet_data *sd, *oldsd;
5910
5911 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5912 return NOTIFY_OK;
5913
5914 local_irq_disable();
5915 cpu = smp_processor_id();
5916 sd = &per_cpu(softnet_data, cpu);
5917 oldsd = &per_cpu(softnet_data, oldcpu);
5918
5919 /* Find end of our completion_queue. */
5920 list_skb = &sd->completion_queue;
5921 while (*list_skb)
5922 list_skb = &(*list_skb)->next;
5923 /* Append completion queue from offline CPU. */
5924 *list_skb = oldsd->completion_queue;
5925 oldsd->completion_queue = NULL;
5926
5927 /* Append output queue from offline CPU. */
5928 if (oldsd->output_queue) {
5929 *sd->output_queue_tailp = oldsd->output_queue;
5930 sd->output_queue_tailp = oldsd->output_queue_tailp;
5931 oldsd->output_queue = NULL;
5932 oldsd->output_queue_tailp = &oldsd->output_queue;
5933 }
5934 /* Append NAPI poll list from offline CPU. */
5935 if (!list_empty(&oldsd->poll_list)) {
5936 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5937 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5938 }
5939
5940 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5941 local_irq_enable();
5942
5943 /* Process offline CPU's input_pkt_queue */
5944 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5945 netif_rx(skb);
5946 input_queue_head_incr(oldsd);
5947 }
5948 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5949 netif_rx(skb);
5950 input_queue_head_incr(oldsd);
5951 }
5952
5953 return NOTIFY_OK;
5954 }
5955
5956
5957 /**
5958 * netdev_increment_features - increment feature set by one
5959 * @all: current feature set
5960 * @one: new feature set
5961 * @mask: mask feature set
5962 *
5963 * Computes a new feature set after adding a device with feature set
5964 * @one to the master device with current feature set @all. Will not
5965 * enable anything that is off in @mask. Returns the new feature set.
5966 */
5967 netdev_features_t netdev_increment_features(netdev_features_t all,
5968 netdev_features_t one, netdev_features_t mask)
5969 {
5970 if (mask & NETIF_F_GEN_CSUM)
5971 mask |= NETIF_F_ALL_CSUM;
5972 mask |= NETIF_F_VLAN_CHALLENGED;
5973
5974 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5975 all &= one | ~NETIF_F_ALL_FOR_ALL;
5976
5977 /* If one device supports hw checksumming, set for all. */
5978 if (all & NETIF_F_GEN_CSUM)
5979 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5980
5981 return all;
5982 }
5983 EXPORT_SYMBOL(netdev_increment_features);
5984
5985 static struct hlist_head *netdev_create_hash(void)
5986 {
5987 int i;
5988 struct hlist_head *hash;
5989
5990 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5991 if (hash != NULL)
5992 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5993 INIT_HLIST_HEAD(&hash[i]);
5994
5995 return hash;
5996 }
5997
5998 /* Initialize per network namespace state */
5999 static int __net_init netdev_init(struct net *net)
6000 {
6001 if (net != &init_net)
6002 INIT_LIST_HEAD(&net->dev_base_head);
6003
6004 net->dev_name_head = netdev_create_hash();
6005 if (net->dev_name_head == NULL)
6006 goto err_name;
6007
6008 net->dev_index_head = netdev_create_hash();
6009 if (net->dev_index_head == NULL)
6010 goto err_idx;
6011
6012 return 0;
6013
6014 err_idx:
6015 kfree(net->dev_name_head);
6016 err_name:
6017 return -ENOMEM;
6018 }
6019
6020 /**
6021 * netdev_drivername - network driver for the device
6022 * @dev: network device
6023 *
6024 * Determine network driver for device.
6025 */
6026 const char *netdev_drivername(const struct net_device *dev)
6027 {
6028 const struct device_driver *driver;
6029 const struct device *parent;
6030 const char *empty = "";
6031
6032 parent = dev->dev.parent;
6033 if (!parent)
6034 return empty;
6035
6036 driver = parent->driver;
6037 if (driver && driver->name)
6038 return driver->name;
6039 return empty;
6040 }
6041
6042 static int __netdev_printk(const char *level, const struct net_device *dev,
6043 struct va_format *vaf)
6044 {
6045 int r;
6046
6047 if (dev && dev->dev.parent) {
6048 r = dev_printk_emit(level[1] - '0',
6049 dev->dev.parent,
6050 "%s %s %s: %pV",
6051 dev_driver_string(dev->dev.parent),
6052 dev_name(dev->dev.parent),
6053 netdev_name(dev), vaf);
6054 } else if (dev) {
6055 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6056 } else {
6057 r = printk("%s(NULL net_device): %pV", level, vaf);
6058 }
6059
6060 return r;
6061 }
6062
6063 int netdev_printk(const char *level, const struct net_device *dev,
6064 const char *format, ...)
6065 {
6066 struct va_format vaf;
6067 va_list args;
6068 int r;
6069
6070 va_start(args, format);
6071
6072 vaf.fmt = format;
6073 vaf.va = &args;
6074
6075 r = __netdev_printk(level, dev, &vaf);
6076
6077 va_end(args);
6078
6079 return r;
6080 }
6081 EXPORT_SYMBOL(netdev_printk);
6082
6083 #define define_netdev_printk_level(func, level) \
6084 int func(const struct net_device *dev, const char *fmt, ...) \
6085 { \
6086 int r; \
6087 struct va_format vaf; \
6088 va_list args; \
6089 \
6090 va_start(args, fmt); \
6091 \
6092 vaf.fmt = fmt; \
6093 vaf.va = &args; \
6094 \
6095 r = __netdev_printk(level, dev, &vaf); \
6096 \
6097 va_end(args); \
6098 \
6099 return r; \
6100 } \
6101 EXPORT_SYMBOL(func);
6102
6103 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6104 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6105 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6106 define_netdev_printk_level(netdev_err, KERN_ERR);
6107 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6108 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6109 define_netdev_printk_level(netdev_info, KERN_INFO);
6110
6111 static void __net_exit netdev_exit(struct net *net)
6112 {
6113 kfree(net->dev_name_head);
6114 kfree(net->dev_index_head);
6115 }
6116
6117 static struct pernet_operations __net_initdata netdev_net_ops = {
6118 .init = netdev_init,
6119 .exit = netdev_exit,
6120 };
6121
6122 static void __net_exit default_device_exit(struct net *net)
6123 {
6124 struct net_device *dev, *aux;
6125 /*
6126 * Push all migratable network devices back to the
6127 * initial network namespace
6128 */
6129 rtnl_lock();
6130 for_each_netdev_safe(net, dev, aux) {
6131 int err;
6132 char fb_name[IFNAMSIZ];
6133
6134 /* Ignore unmoveable devices (i.e. loopback) */
6135 if (dev->features & NETIF_F_NETNS_LOCAL)
6136 continue;
6137
6138 /* Leave virtual devices for the generic cleanup */
6139 if (dev->rtnl_link_ops)
6140 continue;
6141
6142 /* Push remaining network devices to init_net */
6143 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6144 err = dev_change_net_namespace(dev, &init_net, fb_name);
6145 if (err) {
6146 pr_emerg("%s: failed to move %s to init_net: %d\n",
6147 __func__, dev->name, err);
6148 BUG();
6149 }
6150 }
6151 rtnl_unlock();
6152 }
6153
6154 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6155 {
6156 /* At exit all network devices most be removed from a network
6157 * namespace. Do this in the reverse order of registration.
6158 * Do this across as many network namespaces as possible to
6159 * improve batching efficiency.
6160 */
6161 struct net_device *dev;
6162 struct net *net;
6163 LIST_HEAD(dev_kill_list);
6164
6165 rtnl_lock();
6166 list_for_each_entry(net, net_list, exit_list) {
6167 for_each_netdev_reverse(net, dev) {
6168 if (dev->rtnl_link_ops)
6169 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6170 else
6171 unregister_netdevice_queue(dev, &dev_kill_list);
6172 }
6173 }
6174 unregister_netdevice_many(&dev_kill_list);
6175 list_del(&dev_kill_list);
6176 rtnl_unlock();
6177 }
6178
6179 static struct pernet_operations __net_initdata default_device_ops = {
6180 .exit = default_device_exit,
6181 .exit_batch = default_device_exit_batch,
6182 };
6183
6184 /*
6185 * Initialize the DEV module. At boot time this walks the device list and
6186 * unhooks any devices that fail to initialise (normally hardware not
6187 * present) and leaves us with a valid list of present and active devices.
6188 *
6189 */
6190
6191 /*
6192 * This is called single threaded during boot, so no need
6193 * to take the rtnl semaphore.
6194 */
6195 static int __init net_dev_init(void)
6196 {
6197 int i, rc = -ENOMEM;
6198
6199 BUG_ON(!dev_boot_phase);
6200
6201 if (dev_proc_init())
6202 goto out;
6203
6204 if (netdev_kobject_init())
6205 goto out;
6206
6207 INIT_LIST_HEAD(&ptype_all);
6208 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6209 INIT_LIST_HEAD(&ptype_base[i]);
6210
6211 INIT_LIST_HEAD(&offload_base);
6212
6213 if (register_pernet_subsys(&netdev_net_ops))
6214 goto out;
6215
6216 /*
6217 * Initialise the packet receive queues.
6218 */
6219
6220 for_each_possible_cpu(i) {
6221 struct softnet_data *sd = &per_cpu(softnet_data, i);
6222
6223 memset(sd, 0, sizeof(*sd));
6224 skb_queue_head_init(&sd->input_pkt_queue);
6225 skb_queue_head_init(&sd->process_queue);
6226 sd->completion_queue = NULL;
6227 INIT_LIST_HEAD(&sd->poll_list);
6228 sd->output_queue = NULL;
6229 sd->output_queue_tailp = &sd->output_queue;
6230 #ifdef CONFIG_RPS
6231 sd->csd.func = rps_trigger_softirq;
6232 sd->csd.info = sd;
6233 sd->csd.flags = 0;
6234 sd->cpu = i;
6235 #endif
6236
6237 sd->backlog.poll = process_backlog;
6238 sd->backlog.weight = weight_p;
6239 sd->backlog.gro_list = NULL;
6240 sd->backlog.gro_count = 0;
6241 }
6242
6243 dev_boot_phase = 0;
6244
6245 /* The loopback device is special if any other network devices
6246 * is present in a network namespace the loopback device must
6247 * be present. Since we now dynamically allocate and free the
6248 * loopback device ensure this invariant is maintained by
6249 * keeping the loopback device as the first device on the
6250 * list of network devices. Ensuring the loopback devices
6251 * is the first device that appears and the last network device
6252 * that disappears.
6253 */
6254 if (register_pernet_device(&loopback_net_ops))
6255 goto out;
6256
6257 if (register_pernet_device(&default_device_ops))
6258 goto out;
6259
6260 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6261 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6262
6263 hotcpu_notifier(dev_cpu_callback, 0);
6264 dst_init();
6265 rc = 0;
6266 out:
6267 return rc;
6268 }
6269
6270 subsys_initcall(net_dev_init);
This page took 0.435492 seconds and 6 git commands to generate.