[SK_BUFF]: Introduce skb_mac_header()
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <linux/wireless.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119
120 /*
121 * The list of packet types we will receive (as opposed to discard)
122 * and the routines to invoke.
123 *
124 * Why 16. Because with 16 the only overlap we get on a hash of the
125 * low nibble of the protocol value is RARP/SNAP/X.25.
126 *
127 * NOTE: That is no longer true with the addition of VLAN tags. Not
128 * sure which should go first, but I bet it won't make much
129 * difference if we are running VLANs. The good news is that
130 * this protocol won't be in the list unless compiled in, so
131 * the average user (w/out VLANs) will not be adversely affected.
132 * --BLG
133 *
134 * 0800 IP
135 * 8100 802.1Q VLAN
136 * 0001 802.3
137 * 0002 AX.25
138 * 0004 802.2
139 * 8035 RARP
140 * 0005 SNAP
141 * 0805 X.25
142 * 0806 ARP
143 * 8137 IPX
144 * 0009 Localtalk
145 * 86DD IPv6
146 */
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static struct list_head ptype_base[16]; /* 16 way hashed list */
150 static struct list_head ptype_all; /* Taps */
151
152 #ifdef CONFIG_NET_DMA
153 static struct dma_client *net_dma_client;
154 static unsigned int net_dma_count;
155 static spinlock_t net_dma_event_lock;
156 #endif
157
158 /*
159 * The @dev_base list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading.
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 struct net_device *dev_base;
178 static struct net_device **dev_tail = &dev_base;
179 DEFINE_RWLOCK(dev_base_lock);
180
181 EXPORT_SYMBOL(dev_base);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 #define NETDEV_HASHBITS 8
185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
187
188 static inline struct hlist_head *dev_name_hash(const char *name)
189 {
190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(int ifindex)
195 {
196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
197 }
198
199 /*
200 * Our notifier list
201 */
202
203 static RAW_NOTIFIER_HEAD(netdev_chain);
204
205 /*
206 * Device drivers call our routines to queue packets here. We empty the
207 * queue in the local softnet handler.
208 */
209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
210
211 #ifdef CONFIG_SYSFS
212 extern int netdev_sysfs_init(void);
213 extern int netdev_register_sysfs(struct net_device *);
214 extern void netdev_unregister_sysfs(struct net_device *);
215 #else
216 #define netdev_sysfs_init() (0)
217 #define netdev_register_sysfs(dev) (0)
218 #define netdev_unregister_sysfs(dev) do { } while(0)
219 #endif
220
221
222 /*******************************************************************************
223
224 Protocol management and registration routines
225
226 *******************************************************************************/
227
228 /*
229 * For efficiency
230 */
231
232 static int netdev_nit;
233
234 /*
235 * Add a protocol ID to the list. Now that the input handler is
236 * smarter we can dispense with all the messy stuff that used to be
237 * here.
238 *
239 * BEWARE!!! Protocol handlers, mangling input packets,
240 * MUST BE last in hash buckets and checking protocol handlers
241 * MUST start from promiscuous ptype_all chain in net_bh.
242 * It is true now, do not change it.
243 * Explanation follows: if protocol handler, mangling packet, will
244 * be the first on list, it is not able to sense, that packet
245 * is cloned and should be copied-on-write, so that it will
246 * change it and subsequent readers will get broken packet.
247 * --ANK (980803)
248 */
249
250 /**
251 * dev_add_pack - add packet handler
252 * @pt: packet type declaration
253 *
254 * Add a protocol handler to the networking stack. The passed &packet_type
255 * is linked into kernel lists and may not be freed until it has been
256 * removed from the kernel lists.
257 *
258 * This call does not sleep therefore it can not
259 * guarantee all CPU's that are in middle of receiving packets
260 * will see the new packet type (until the next received packet).
261 */
262
263 void dev_add_pack(struct packet_type *pt)
264 {
265 int hash;
266
267 spin_lock_bh(&ptype_lock);
268 if (pt->type == htons(ETH_P_ALL)) {
269 netdev_nit++;
270 list_add_rcu(&pt->list, &ptype_all);
271 } else {
272 hash = ntohs(pt->type) & 15;
273 list_add_rcu(&pt->list, &ptype_base[hash]);
274 }
275 spin_unlock_bh(&ptype_lock);
276 }
277
278 /**
279 * __dev_remove_pack - remove packet handler
280 * @pt: packet type declaration
281 *
282 * Remove a protocol handler that was previously added to the kernel
283 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
284 * from the kernel lists and can be freed or reused once this function
285 * returns.
286 *
287 * The packet type might still be in use by receivers
288 * and must not be freed until after all the CPU's have gone
289 * through a quiescent state.
290 */
291 void __dev_remove_pack(struct packet_type *pt)
292 {
293 struct list_head *head;
294 struct packet_type *pt1;
295
296 spin_lock_bh(&ptype_lock);
297
298 if (pt->type == htons(ETH_P_ALL)) {
299 netdev_nit--;
300 head = &ptype_all;
301 } else
302 head = &ptype_base[ntohs(pt->type) & 15];
303
304 list_for_each_entry(pt1, head, list) {
305 if (pt == pt1) {
306 list_del_rcu(&pt->list);
307 goto out;
308 }
309 }
310
311 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
312 out:
313 spin_unlock_bh(&ptype_lock);
314 }
315 /**
316 * dev_remove_pack - remove packet handler
317 * @pt: packet type declaration
318 *
319 * Remove a protocol handler that was previously added to the kernel
320 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
321 * from the kernel lists and can be freed or reused once this function
322 * returns.
323 *
324 * This call sleeps to guarantee that no CPU is looking at the packet
325 * type after return.
326 */
327 void dev_remove_pack(struct packet_type *pt)
328 {
329 __dev_remove_pack(pt);
330
331 synchronize_net();
332 }
333
334 /******************************************************************************
335
336 Device Boot-time Settings Routines
337
338 *******************************************************************************/
339
340 /* Boot time configuration table */
341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
342
343 /**
344 * netdev_boot_setup_add - add new setup entry
345 * @name: name of the device
346 * @map: configured settings for the device
347 *
348 * Adds new setup entry to the dev_boot_setup list. The function
349 * returns 0 on error and 1 on success. This is a generic routine to
350 * all netdevices.
351 */
352 static int netdev_boot_setup_add(char *name, struct ifmap *map)
353 {
354 struct netdev_boot_setup *s;
355 int i;
356
357 s = dev_boot_setup;
358 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
359 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
360 memset(s[i].name, 0, sizeof(s[i].name));
361 strcpy(s[i].name, name);
362 memcpy(&s[i].map, map, sizeof(s[i].map));
363 break;
364 }
365 }
366
367 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
368 }
369
370 /**
371 * netdev_boot_setup_check - check boot time settings
372 * @dev: the netdevice
373 *
374 * Check boot time settings for the device.
375 * The found settings are set for the device to be used
376 * later in the device probing.
377 * Returns 0 if no settings found, 1 if they are.
378 */
379 int netdev_boot_setup_check(struct net_device *dev)
380 {
381 struct netdev_boot_setup *s = dev_boot_setup;
382 int i;
383
384 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
385 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
386 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
387 dev->irq = s[i].map.irq;
388 dev->base_addr = s[i].map.base_addr;
389 dev->mem_start = s[i].map.mem_start;
390 dev->mem_end = s[i].map.mem_end;
391 return 1;
392 }
393 }
394 return 0;
395 }
396
397
398 /**
399 * netdev_boot_base - get address from boot time settings
400 * @prefix: prefix for network device
401 * @unit: id for network device
402 *
403 * Check boot time settings for the base address of device.
404 * The found settings are set for the device to be used
405 * later in the device probing.
406 * Returns 0 if no settings found.
407 */
408 unsigned long netdev_boot_base(const char *prefix, int unit)
409 {
410 const struct netdev_boot_setup *s = dev_boot_setup;
411 char name[IFNAMSIZ];
412 int i;
413
414 sprintf(name, "%s%d", prefix, unit);
415
416 /*
417 * If device already registered then return base of 1
418 * to indicate not to probe for this interface
419 */
420 if (__dev_get_by_name(name))
421 return 1;
422
423 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
424 if (!strcmp(name, s[i].name))
425 return s[i].map.base_addr;
426 return 0;
427 }
428
429 /*
430 * Saves at boot time configured settings for any netdevice.
431 */
432 int __init netdev_boot_setup(char *str)
433 {
434 int ints[5];
435 struct ifmap map;
436
437 str = get_options(str, ARRAY_SIZE(ints), ints);
438 if (!str || !*str)
439 return 0;
440
441 /* Save settings */
442 memset(&map, 0, sizeof(map));
443 if (ints[0] > 0)
444 map.irq = ints[1];
445 if (ints[0] > 1)
446 map.base_addr = ints[2];
447 if (ints[0] > 2)
448 map.mem_start = ints[3];
449 if (ints[0] > 3)
450 map.mem_end = ints[4];
451
452 /* Add new entry to the list */
453 return netdev_boot_setup_add(str, &map);
454 }
455
456 __setup("netdev=", netdev_boot_setup);
457
458 /*******************************************************************************
459
460 Device Interface Subroutines
461
462 *******************************************************************************/
463
464 /**
465 * __dev_get_by_name - find a device by its name
466 * @name: name to find
467 *
468 * Find an interface by name. Must be called under RTNL semaphore
469 * or @dev_base_lock. If the name is found a pointer to the device
470 * is returned. If the name is not found then %NULL is returned. The
471 * reference counters are not incremented so the caller must be
472 * careful with locks.
473 */
474
475 struct net_device *__dev_get_by_name(const char *name)
476 {
477 struct hlist_node *p;
478
479 hlist_for_each(p, dev_name_hash(name)) {
480 struct net_device *dev
481 = hlist_entry(p, struct net_device, name_hlist);
482 if (!strncmp(dev->name, name, IFNAMSIZ))
483 return dev;
484 }
485 return NULL;
486 }
487
488 /**
489 * dev_get_by_name - find a device by its name
490 * @name: name to find
491 *
492 * Find an interface by name. This can be called from any
493 * context and does its own locking. The returned handle has
494 * the usage count incremented and the caller must use dev_put() to
495 * release it when it is no longer needed. %NULL is returned if no
496 * matching device is found.
497 */
498
499 struct net_device *dev_get_by_name(const char *name)
500 {
501 struct net_device *dev;
502
503 read_lock(&dev_base_lock);
504 dev = __dev_get_by_name(name);
505 if (dev)
506 dev_hold(dev);
507 read_unlock(&dev_base_lock);
508 return dev;
509 }
510
511 /**
512 * __dev_get_by_index - find a device by its ifindex
513 * @ifindex: index of device
514 *
515 * Search for an interface by index. Returns %NULL if the device
516 * is not found or a pointer to the device. The device has not
517 * had its reference counter increased so the caller must be careful
518 * about locking. The caller must hold either the RTNL semaphore
519 * or @dev_base_lock.
520 */
521
522 struct net_device *__dev_get_by_index(int ifindex)
523 {
524 struct hlist_node *p;
525
526 hlist_for_each(p, dev_index_hash(ifindex)) {
527 struct net_device *dev
528 = hlist_entry(p, struct net_device, index_hlist);
529 if (dev->ifindex == ifindex)
530 return dev;
531 }
532 return NULL;
533 }
534
535
536 /**
537 * dev_get_by_index - find a device by its ifindex
538 * @ifindex: index of device
539 *
540 * Search for an interface by index. Returns NULL if the device
541 * is not found or a pointer to the device. The device returned has
542 * had a reference added and the pointer is safe until the user calls
543 * dev_put to indicate they have finished with it.
544 */
545
546 struct net_device *dev_get_by_index(int ifindex)
547 {
548 struct net_device *dev;
549
550 read_lock(&dev_base_lock);
551 dev = __dev_get_by_index(ifindex);
552 if (dev)
553 dev_hold(dev);
554 read_unlock(&dev_base_lock);
555 return dev;
556 }
557
558 /**
559 * dev_getbyhwaddr - find a device by its hardware address
560 * @type: media type of device
561 * @ha: hardware address
562 *
563 * Search for an interface by MAC address. Returns NULL if the device
564 * is not found or a pointer to the device. The caller must hold the
565 * rtnl semaphore. The returned device has not had its ref count increased
566 * and the caller must therefore be careful about locking
567 *
568 * BUGS:
569 * If the API was consistent this would be __dev_get_by_hwaddr
570 */
571
572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
573 {
574 struct net_device *dev;
575
576 ASSERT_RTNL();
577
578 for (dev = dev_base; dev; dev = dev->next)
579 if (dev->type == type &&
580 !memcmp(dev->dev_addr, ha, dev->addr_len))
581 break;
582 return dev;
583 }
584
585 EXPORT_SYMBOL(dev_getbyhwaddr);
586
587 struct net_device *dev_getfirstbyhwtype(unsigned short type)
588 {
589 struct net_device *dev;
590
591 rtnl_lock();
592 for (dev = dev_base; dev; dev = dev->next) {
593 if (dev->type == type) {
594 dev_hold(dev);
595 break;
596 }
597 }
598 rtnl_unlock();
599 return dev;
600 }
601
602 EXPORT_SYMBOL(dev_getfirstbyhwtype);
603
604 /**
605 * dev_get_by_flags - find any device with given flags
606 * @if_flags: IFF_* values
607 * @mask: bitmask of bits in if_flags to check
608 *
609 * Search for any interface with the given flags. Returns NULL if a device
610 * is not found or a pointer to the device. The device returned has
611 * had a reference added and the pointer is safe until the user calls
612 * dev_put to indicate they have finished with it.
613 */
614
615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
616 {
617 struct net_device *dev;
618
619 read_lock(&dev_base_lock);
620 for (dev = dev_base; dev != NULL; dev = dev->next) {
621 if (((dev->flags ^ if_flags) & mask) == 0) {
622 dev_hold(dev);
623 break;
624 }
625 }
626 read_unlock(&dev_base_lock);
627 return dev;
628 }
629
630 /**
631 * dev_valid_name - check if name is okay for network device
632 * @name: name string
633 *
634 * Network device names need to be valid file names to
635 * to allow sysfs to work. We also disallow any kind of
636 * whitespace.
637 */
638 int dev_valid_name(const char *name)
639 {
640 if (*name == '\0')
641 return 0;
642 if (strlen(name) >= IFNAMSIZ)
643 return 0;
644 if (!strcmp(name, ".") || !strcmp(name, ".."))
645 return 0;
646
647 while (*name) {
648 if (*name == '/' || isspace(*name))
649 return 0;
650 name++;
651 }
652 return 1;
653 }
654
655 /**
656 * dev_alloc_name - allocate a name for a device
657 * @dev: device
658 * @name: name format string
659 *
660 * Passed a format string - eg "lt%d" it will try and find a suitable
661 * id. It scans list of devices to build up a free map, then chooses
662 * the first empty slot. The caller must hold the dev_base or rtnl lock
663 * while allocating the name and adding the device in order to avoid
664 * duplicates.
665 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
666 * Returns the number of the unit assigned or a negative errno code.
667 */
668
669 int dev_alloc_name(struct net_device *dev, const char *name)
670 {
671 int i = 0;
672 char buf[IFNAMSIZ];
673 const char *p;
674 const int max_netdevices = 8*PAGE_SIZE;
675 long *inuse;
676 struct net_device *d;
677
678 p = strnchr(name, IFNAMSIZ-1, '%');
679 if (p) {
680 /*
681 * Verify the string as this thing may have come from
682 * the user. There must be either one "%d" and no other "%"
683 * characters.
684 */
685 if (p[1] != 'd' || strchr(p + 2, '%'))
686 return -EINVAL;
687
688 /* Use one page as a bit array of possible slots */
689 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
690 if (!inuse)
691 return -ENOMEM;
692
693 for (d = dev_base; d; d = d->next) {
694 if (!sscanf(d->name, name, &i))
695 continue;
696 if (i < 0 || i >= max_netdevices)
697 continue;
698
699 /* avoid cases where sscanf is not exact inverse of printf */
700 snprintf(buf, sizeof(buf), name, i);
701 if (!strncmp(buf, d->name, IFNAMSIZ))
702 set_bit(i, inuse);
703 }
704
705 i = find_first_zero_bit(inuse, max_netdevices);
706 free_page((unsigned long) inuse);
707 }
708
709 snprintf(buf, sizeof(buf), name, i);
710 if (!__dev_get_by_name(buf)) {
711 strlcpy(dev->name, buf, IFNAMSIZ);
712 return i;
713 }
714
715 /* It is possible to run out of possible slots
716 * when the name is long and there isn't enough space left
717 * for the digits, or if all bits are used.
718 */
719 return -ENFILE;
720 }
721
722
723 /**
724 * dev_change_name - change name of a device
725 * @dev: device
726 * @newname: name (or format string) must be at least IFNAMSIZ
727 *
728 * Change name of a device, can pass format strings "eth%d".
729 * for wildcarding.
730 */
731 int dev_change_name(struct net_device *dev, char *newname)
732 {
733 int err = 0;
734
735 ASSERT_RTNL();
736
737 if (dev->flags & IFF_UP)
738 return -EBUSY;
739
740 if (!dev_valid_name(newname))
741 return -EINVAL;
742
743 if (strchr(newname, '%')) {
744 err = dev_alloc_name(dev, newname);
745 if (err < 0)
746 return err;
747 strcpy(newname, dev->name);
748 }
749 else if (__dev_get_by_name(newname))
750 return -EEXIST;
751 else
752 strlcpy(dev->name, newname, IFNAMSIZ);
753
754 device_rename(&dev->dev, dev->name);
755 hlist_del(&dev->name_hlist);
756 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
757 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
758
759 return err;
760 }
761
762 /**
763 * netdev_features_change - device changes features
764 * @dev: device to cause notification
765 *
766 * Called to indicate a device has changed features.
767 */
768 void netdev_features_change(struct net_device *dev)
769 {
770 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
771 }
772 EXPORT_SYMBOL(netdev_features_change);
773
774 /**
775 * netdev_state_change - device changes state
776 * @dev: device to cause notification
777 *
778 * Called to indicate a device has changed state. This function calls
779 * the notifier chains for netdev_chain and sends a NEWLINK message
780 * to the routing socket.
781 */
782 void netdev_state_change(struct net_device *dev)
783 {
784 if (dev->flags & IFF_UP) {
785 raw_notifier_call_chain(&netdev_chain,
786 NETDEV_CHANGE, dev);
787 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
788 }
789 }
790
791 /**
792 * dev_load - load a network module
793 * @name: name of interface
794 *
795 * If a network interface is not present and the process has suitable
796 * privileges this function loads the module. If module loading is not
797 * available in this kernel then it becomes a nop.
798 */
799
800 void dev_load(const char *name)
801 {
802 struct net_device *dev;
803
804 read_lock(&dev_base_lock);
805 dev = __dev_get_by_name(name);
806 read_unlock(&dev_base_lock);
807
808 if (!dev && capable(CAP_SYS_MODULE))
809 request_module("%s", name);
810 }
811
812 static int default_rebuild_header(struct sk_buff *skb)
813 {
814 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
815 skb->dev ? skb->dev->name : "NULL!!!");
816 kfree_skb(skb);
817 return 1;
818 }
819
820
821 /**
822 * dev_open - prepare an interface for use.
823 * @dev: device to open
824 *
825 * Takes a device from down to up state. The device's private open
826 * function is invoked and then the multicast lists are loaded. Finally
827 * the device is moved into the up state and a %NETDEV_UP message is
828 * sent to the netdev notifier chain.
829 *
830 * Calling this function on an active interface is a nop. On a failure
831 * a negative errno code is returned.
832 */
833 int dev_open(struct net_device *dev)
834 {
835 int ret = 0;
836
837 /*
838 * Is it already up?
839 */
840
841 if (dev->flags & IFF_UP)
842 return 0;
843
844 /*
845 * Is it even present?
846 */
847 if (!netif_device_present(dev))
848 return -ENODEV;
849
850 /*
851 * Call device private open method
852 */
853 set_bit(__LINK_STATE_START, &dev->state);
854 if (dev->open) {
855 ret = dev->open(dev);
856 if (ret)
857 clear_bit(__LINK_STATE_START, &dev->state);
858 }
859
860 /*
861 * If it went open OK then:
862 */
863
864 if (!ret) {
865 /*
866 * Set the flags.
867 */
868 dev->flags |= IFF_UP;
869
870 /*
871 * Initialize multicasting status
872 */
873 dev_mc_upload(dev);
874
875 /*
876 * Wakeup transmit queue engine
877 */
878 dev_activate(dev);
879
880 /*
881 * ... and announce new interface.
882 */
883 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
884 }
885 return ret;
886 }
887
888 /**
889 * dev_close - shutdown an interface.
890 * @dev: device to shutdown
891 *
892 * This function moves an active device into down state. A
893 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
894 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
895 * chain.
896 */
897 int dev_close(struct net_device *dev)
898 {
899 if (!(dev->flags & IFF_UP))
900 return 0;
901
902 /*
903 * Tell people we are going down, so that they can
904 * prepare to death, when device is still operating.
905 */
906 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
907
908 dev_deactivate(dev);
909
910 clear_bit(__LINK_STATE_START, &dev->state);
911
912 /* Synchronize to scheduled poll. We cannot touch poll list,
913 * it can be even on different cpu. So just clear netif_running(),
914 * and wait when poll really will happen. Actually, the best place
915 * for this is inside dev->stop() after device stopped its irq
916 * engine, but this requires more changes in devices. */
917
918 smp_mb__after_clear_bit(); /* Commit netif_running(). */
919 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
920 /* No hurry. */
921 msleep(1);
922 }
923
924 /*
925 * Call the device specific close. This cannot fail.
926 * Only if device is UP
927 *
928 * We allow it to be called even after a DETACH hot-plug
929 * event.
930 */
931 if (dev->stop)
932 dev->stop(dev);
933
934 /*
935 * Device is now down.
936 */
937
938 dev->flags &= ~IFF_UP;
939
940 /*
941 * Tell people we are down
942 */
943 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
944
945 return 0;
946 }
947
948
949 /*
950 * Device change register/unregister. These are not inline or static
951 * as we export them to the world.
952 */
953
954 /**
955 * register_netdevice_notifier - register a network notifier block
956 * @nb: notifier
957 *
958 * Register a notifier to be called when network device events occur.
959 * The notifier passed is linked into the kernel structures and must
960 * not be reused until it has been unregistered. A negative errno code
961 * is returned on a failure.
962 *
963 * When registered all registration and up events are replayed
964 * to the new notifier to allow device to have a race free
965 * view of the network device list.
966 */
967
968 int register_netdevice_notifier(struct notifier_block *nb)
969 {
970 struct net_device *dev;
971 int err;
972
973 rtnl_lock();
974 err = raw_notifier_chain_register(&netdev_chain, nb);
975 if (!err) {
976 for (dev = dev_base; dev; dev = dev->next) {
977 nb->notifier_call(nb, NETDEV_REGISTER, dev);
978
979 if (dev->flags & IFF_UP)
980 nb->notifier_call(nb, NETDEV_UP, dev);
981 }
982 }
983 rtnl_unlock();
984 return err;
985 }
986
987 /**
988 * unregister_netdevice_notifier - unregister a network notifier block
989 * @nb: notifier
990 *
991 * Unregister a notifier previously registered by
992 * register_netdevice_notifier(). The notifier is unlinked into the
993 * kernel structures and may then be reused. A negative errno code
994 * is returned on a failure.
995 */
996
997 int unregister_netdevice_notifier(struct notifier_block *nb)
998 {
999 int err;
1000
1001 rtnl_lock();
1002 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1003 rtnl_unlock();
1004 return err;
1005 }
1006
1007 /**
1008 * call_netdevice_notifiers - call all network notifier blocks
1009 * @val: value passed unmodified to notifier function
1010 * @v: pointer passed unmodified to notifier function
1011 *
1012 * Call all network notifier blocks. Parameters and return value
1013 * are as for raw_notifier_call_chain().
1014 */
1015
1016 int call_netdevice_notifiers(unsigned long val, void *v)
1017 {
1018 return raw_notifier_call_chain(&netdev_chain, val, v);
1019 }
1020
1021 /* When > 0 there are consumers of rx skb time stamps */
1022 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1023
1024 void net_enable_timestamp(void)
1025 {
1026 atomic_inc(&netstamp_needed);
1027 }
1028
1029 void net_disable_timestamp(void)
1030 {
1031 atomic_dec(&netstamp_needed);
1032 }
1033
1034 static inline void net_timestamp(struct sk_buff *skb)
1035 {
1036 if (atomic_read(&netstamp_needed))
1037 __net_timestamp(skb);
1038 else
1039 skb->tstamp.tv64 = 0;
1040 }
1041
1042 /*
1043 * Support routine. Sends outgoing frames to any network
1044 * taps currently in use.
1045 */
1046
1047 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1048 {
1049 struct packet_type *ptype;
1050
1051 net_timestamp(skb);
1052
1053 rcu_read_lock();
1054 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1055 /* Never send packets back to the socket
1056 * they originated from - MvS (miquels@drinkel.ow.org)
1057 */
1058 if ((ptype->dev == dev || !ptype->dev) &&
1059 (ptype->af_packet_priv == NULL ||
1060 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1061 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1062 if (!skb2)
1063 break;
1064
1065 /* skb->nh should be correctly
1066 set by sender, so that the second statement is
1067 just protection against buggy protocols.
1068 */
1069 skb_reset_mac_header(skb2);
1070
1071 if (skb2->nh.raw < skb2->data ||
1072 skb2->nh.raw > skb2->tail) {
1073 if (net_ratelimit())
1074 printk(KERN_CRIT "protocol %04x is "
1075 "buggy, dev %s\n",
1076 skb2->protocol, dev->name);
1077 skb2->nh.raw = skb2->data;
1078 }
1079
1080 skb2->h.raw = skb2->nh.raw;
1081 skb2->pkt_type = PACKET_OUTGOING;
1082 ptype->func(skb2, skb->dev, ptype, skb->dev);
1083 }
1084 }
1085 rcu_read_unlock();
1086 }
1087
1088
1089 void __netif_schedule(struct net_device *dev)
1090 {
1091 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1092 unsigned long flags;
1093 struct softnet_data *sd;
1094
1095 local_irq_save(flags);
1096 sd = &__get_cpu_var(softnet_data);
1097 dev->next_sched = sd->output_queue;
1098 sd->output_queue = dev;
1099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1100 local_irq_restore(flags);
1101 }
1102 }
1103 EXPORT_SYMBOL(__netif_schedule);
1104
1105 void __netif_rx_schedule(struct net_device *dev)
1106 {
1107 unsigned long flags;
1108
1109 local_irq_save(flags);
1110 dev_hold(dev);
1111 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1112 if (dev->quota < 0)
1113 dev->quota += dev->weight;
1114 else
1115 dev->quota = dev->weight;
1116 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1117 local_irq_restore(flags);
1118 }
1119 EXPORT_SYMBOL(__netif_rx_schedule);
1120
1121 void dev_kfree_skb_any(struct sk_buff *skb)
1122 {
1123 if (in_irq() || irqs_disabled())
1124 dev_kfree_skb_irq(skb);
1125 else
1126 dev_kfree_skb(skb);
1127 }
1128 EXPORT_SYMBOL(dev_kfree_skb_any);
1129
1130
1131 /* Hot-plugging. */
1132 void netif_device_detach(struct net_device *dev)
1133 {
1134 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1135 netif_running(dev)) {
1136 netif_stop_queue(dev);
1137 }
1138 }
1139 EXPORT_SYMBOL(netif_device_detach);
1140
1141 void netif_device_attach(struct net_device *dev)
1142 {
1143 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1144 netif_running(dev)) {
1145 netif_wake_queue(dev);
1146 __netdev_watchdog_up(dev);
1147 }
1148 }
1149 EXPORT_SYMBOL(netif_device_attach);
1150
1151
1152 /*
1153 * Invalidate hardware checksum when packet is to be mangled, and
1154 * complete checksum manually on outgoing path.
1155 */
1156 int skb_checksum_help(struct sk_buff *skb)
1157 {
1158 __wsum csum;
1159 int ret = 0, offset = skb->h.raw - skb->data;
1160
1161 if (skb->ip_summed == CHECKSUM_COMPLETE)
1162 goto out_set_summed;
1163
1164 if (unlikely(skb_shinfo(skb)->gso_size)) {
1165 /* Let GSO fix up the checksum. */
1166 goto out_set_summed;
1167 }
1168
1169 if (skb_cloned(skb)) {
1170 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1171 if (ret)
1172 goto out;
1173 }
1174
1175 BUG_ON(offset > (int)skb->len);
1176 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1177
1178 offset = skb->tail - skb->h.raw;
1179 BUG_ON(offset <= 0);
1180 BUG_ON(skb->csum_offset + 2 > offset);
1181
1182 *(__sum16*)(skb->h.raw + skb->csum_offset) = csum_fold(csum);
1183
1184 out_set_summed:
1185 skb->ip_summed = CHECKSUM_NONE;
1186 out:
1187 return ret;
1188 }
1189
1190 /**
1191 * skb_gso_segment - Perform segmentation on skb.
1192 * @skb: buffer to segment
1193 * @features: features for the output path (see dev->features)
1194 *
1195 * This function segments the given skb and returns a list of segments.
1196 *
1197 * It may return NULL if the skb requires no segmentation. This is
1198 * only possible when GSO is used for verifying header integrity.
1199 */
1200 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1201 {
1202 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1203 struct packet_type *ptype;
1204 __be16 type = skb->protocol;
1205 int err;
1206
1207 BUG_ON(skb_shinfo(skb)->frag_list);
1208
1209 skb_reset_mac_header(skb);
1210 skb->mac_len = skb->nh.raw - skb->data;
1211 __skb_pull(skb, skb->mac_len);
1212
1213 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1214 if (skb_header_cloned(skb) &&
1215 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1216 return ERR_PTR(err);
1217 }
1218
1219 rcu_read_lock();
1220 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1221 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1222 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1223 err = ptype->gso_send_check(skb);
1224 segs = ERR_PTR(err);
1225 if (err || skb_gso_ok(skb, features))
1226 break;
1227 __skb_push(skb, skb->data - skb->nh.raw);
1228 }
1229 segs = ptype->gso_segment(skb, features);
1230 break;
1231 }
1232 }
1233 rcu_read_unlock();
1234
1235 __skb_push(skb, skb->data - skb_mac_header(skb));
1236
1237 return segs;
1238 }
1239
1240 EXPORT_SYMBOL(skb_gso_segment);
1241
1242 /* Take action when hardware reception checksum errors are detected. */
1243 #ifdef CONFIG_BUG
1244 void netdev_rx_csum_fault(struct net_device *dev)
1245 {
1246 if (net_ratelimit()) {
1247 printk(KERN_ERR "%s: hw csum failure.\n",
1248 dev ? dev->name : "<unknown>");
1249 dump_stack();
1250 }
1251 }
1252 EXPORT_SYMBOL(netdev_rx_csum_fault);
1253 #endif
1254
1255 /* Actually, we should eliminate this check as soon as we know, that:
1256 * 1. IOMMU is present and allows to map all the memory.
1257 * 2. No high memory really exists on this machine.
1258 */
1259
1260 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1261 {
1262 #ifdef CONFIG_HIGHMEM
1263 int i;
1264
1265 if (dev->features & NETIF_F_HIGHDMA)
1266 return 0;
1267
1268 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1269 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1270 return 1;
1271
1272 #endif
1273 return 0;
1274 }
1275
1276 struct dev_gso_cb {
1277 void (*destructor)(struct sk_buff *skb);
1278 };
1279
1280 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1281
1282 static void dev_gso_skb_destructor(struct sk_buff *skb)
1283 {
1284 struct dev_gso_cb *cb;
1285
1286 do {
1287 struct sk_buff *nskb = skb->next;
1288
1289 skb->next = nskb->next;
1290 nskb->next = NULL;
1291 kfree_skb(nskb);
1292 } while (skb->next);
1293
1294 cb = DEV_GSO_CB(skb);
1295 if (cb->destructor)
1296 cb->destructor(skb);
1297 }
1298
1299 /**
1300 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1301 * @skb: buffer to segment
1302 *
1303 * This function segments the given skb and stores the list of segments
1304 * in skb->next.
1305 */
1306 static int dev_gso_segment(struct sk_buff *skb)
1307 {
1308 struct net_device *dev = skb->dev;
1309 struct sk_buff *segs;
1310 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1311 NETIF_F_SG : 0);
1312
1313 segs = skb_gso_segment(skb, features);
1314
1315 /* Verifying header integrity only. */
1316 if (!segs)
1317 return 0;
1318
1319 if (unlikely(IS_ERR(segs)))
1320 return PTR_ERR(segs);
1321
1322 skb->next = segs;
1323 DEV_GSO_CB(skb)->destructor = skb->destructor;
1324 skb->destructor = dev_gso_skb_destructor;
1325
1326 return 0;
1327 }
1328
1329 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1330 {
1331 if (likely(!skb->next)) {
1332 if (netdev_nit)
1333 dev_queue_xmit_nit(skb, dev);
1334
1335 if (netif_needs_gso(dev, skb)) {
1336 if (unlikely(dev_gso_segment(skb)))
1337 goto out_kfree_skb;
1338 if (skb->next)
1339 goto gso;
1340 }
1341
1342 return dev->hard_start_xmit(skb, dev);
1343 }
1344
1345 gso:
1346 do {
1347 struct sk_buff *nskb = skb->next;
1348 int rc;
1349
1350 skb->next = nskb->next;
1351 nskb->next = NULL;
1352 rc = dev->hard_start_xmit(nskb, dev);
1353 if (unlikely(rc)) {
1354 nskb->next = skb->next;
1355 skb->next = nskb;
1356 return rc;
1357 }
1358 if (unlikely(netif_queue_stopped(dev) && skb->next))
1359 return NETDEV_TX_BUSY;
1360 } while (skb->next);
1361
1362 skb->destructor = DEV_GSO_CB(skb)->destructor;
1363
1364 out_kfree_skb:
1365 kfree_skb(skb);
1366 return 0;
1367 }
1368
1369 #define HARD_TX_LOCK(dev, cpu) { \
1370 if ((dev->features & NETIF_F_LLTX) == 0) { \
1371 netif_tx_lock(dev); \
1372 } \
1373 }
1374
1375 #define HARD_TX_UNLOCK(dev) { \
1376 if ((dev->features & NETIF_F_LLTX) == 0) { \
1377 netif_tx_unlock(dev); \
1378 } \
1379 }
1380
1381 /**
1382 * dev_queue_xmit - transmit a buffer
1383 * @skb: buffer to transmit
1384 *
1385 * Queue a buffer for transmission to a network device. The caller must
1386 * have set the device and priority and built the buffer before calling
1387 * this function. The function can be called from an interrupt.
1388 *
1389 * A negative errno code is returned on a failure. A success does not
1390 * guarantee the frame will be transmitted as it may be dropped due
1391 * to congestion or traffic shaping.
1392 *
1393 * -----------------------------------------------------------------------------------
1394 * I notice this method can also return errors from the queue disciplines,
1395 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1396 * be positive.
1397 *
1398 * Regardless of the return value, the skb is consumed, so it is currently
1399 * difficult to retry a send to this method. (You can bump the ref count
1400 * before sending to hold a reference for retry if you are careful.)
1401 *
1402 * When calling this method, interrupts MUST be enabled. This is because
1403 * the BH enable code must have IRQs enabled so that it will not deadlock.
1404 * --BLG
1405 */
1406
1407 int dev_queue_xmit(struct sk_buff *skb)
1408 {
1409 struct net_device *dev = skb->dev;
1410 struct Qdisc *q;
1411 int rc = -ENOMEM;
1412
1413 /* GSO will handle the following emulations directly. */
1414 if (netif_needs_gso(dev, skb))
1415 goto gso;
1416
1417 if (skb_shinfo(skb)->frag_list &&
1418 !(dev->features & NETIF_F_FRAGLIST) &&
1419 __skb_linearize(skb))
1420 goto out_kfree_skb;
1421
1422 /* Fragmented skb is linearized if device does not support SG,
1423 * or if at least one of fragments is in highmem and device
1424 * does not support DMA from it.
1425 */
1426 if (skb_shinfo(skb)->nr_frags &&
1427 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1428 __skb_linearize(skb))
1429 goto out_kfree_skb;
1430
1431 /* If packet is not checksummed and device does not support
1432 * checksumming for this protocol, complete checksumming here.
1433 */
1434 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1435 (!(dev->features & NETIF_F_GEN_CSUM) &&
1436 (!(dev->features & NETIF_F_IP_CSUM) ||
1437 skb->protocol != htons(ETH_P_IP))))
1438 if (skb_checksum_help(skb))
1439 goto out_kfree_skb;
1440
1441 gso:
1442 spin_lock_prefetch(&dev->queue_lock);
1443
1444 /* Disable soft irqs for various locks below. Also
1445 * stops preemption for RCU.
1446 */
1447 rcu_read_lock_bh();
1448
1449 /* Updates of qdisc are serialized by queue_lock.
1450 * The struct Qdisc which is pointed to by qdisc is now a
1451 * rcu structure - it may be accessed without acquiring
1452 * a lock (but the structure may be stale.) The freeing of the
1453 * qdisc will be deferred until it's known that there are no
1454 * more references to it.
1455 *
1456 * If the qdisc has an enqueue function, we still need to
1457 * hold the queue_lock before calling it, since queue_lock
1458 * also serializes access to the device queue.
1459 */
1460
1461 q = rcu_dereference(dev->qdisc);
1462 #ifdef CONFIG_NET_CLS_ACT
1463 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1464 #endif
1465 if (q->enqueue) {
1466 /* Grab device queue */
1467 spin_lock(&dev->queue_lock);
1468 q = dev->qdisc;
1469 if (q->enqueue) {
1470 rc = q->enqueue(skb, q);
1471 qdisc_run(dev);
1472 spin_unlock(&dev->queue_lock);
1473
1474 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1475 goto out;
1476 }
1477 spin_unlock(&dev->queue_lock);
1478 }
1479
1480 /* The device has no queue. Common case for software devices:
1481 loopback, all the sorts of tunnels...
1482
1483 Really, it is unlikely that netif_tx_lock protection is necessary
1484 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1485 counters.)
1486 However, it is possible, that they rely on protection
1487 made by us here.
1488
1489 Check this and shot the lock. It is not prone from deadlocks.
1490 Either shot noqueue qdisc, it is even simpler 8)
1491 */
1492 if (dev->flags & IFF_UP) {
1493 int cpu = smp_processor_id(); /* ok because BHs are off */
1494
1495 if (dev->xmit_lock_owner != cpu) {
1496
1497 HARD_TX_LOCK(dev, cpu);
1498
1499 if (!netif_queue_stopped(dev)) {
1500 rc = 0;
1501 if (!dev_hard_start_xmit(skb, dev)) {
1502 HARD_TX_UNLOCK(dev);
1503 goto out;
1504 }
1505 }
1506 HARD_TX_UNLOCK(dev);
1507 if (net_ratelimit())
1508 printk(KERN_CRIT "Virtual device %s asks to "
1509 "queue packet!\n", dev->name);
1510 } else {
1511 /* Recursion is detected! It is possible,
1512 * unfortunately */
1513 if (net_ratelimit())
1514 printk(KERN_CRIT "Dead loop on virtual device "
1515 "%s, fix it urgently!\n", dev->name);
1516 }
1517 }
1518
1519 rc = -ENETDOWN;
1520 rcu_read_unlock_bh();
1521
1522 out_kfree_skb:
1523 kfree_skb(skb);
1524 return rc;
1525 out:
1526 rcu_read_unlock_bh();
1527 return rc;
1528 }
1529
1530
1531 /*=======================================================================
1532 Receiver routines
1533 =======================================================================*/
1534
1535 int netdev_max_backlog = 1000;
1536 int netdev_budget = 300;
1537 int weight_p = 64; /* old backlog weight */
1538
1539 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1540
1541
1542 /**
1543 * netif_rx - post buffer to the network code
1544 * @skb: buffer to post
1545 *
1546 * This function receives a packet from a device driver and queues it for
1547 * the upper (protocol) levels to process. It always succeeds. The buffer
1548 * may be dropped during processing for congestion control or by the
1549 * protocol layers.
1550 *
1551 * return values:
1552 * NET_RX_SUCCESS (no congestion)
1553 * NET_RX_CN_LOW (low congestion)
1554 * NET_RX_CN_MOD (moderate congestion)
1555 * NET_RX_CN_HIGH (high congestion)
1556 * NET_RX_DROP (packet was dropped)
1557 *
1558 */
1559
1560 int netif_rx(struct sk_buff *skb)
1561 {
1562 struct softnet_data *queue;
1563 unsigned long flags;
1564
1565 /* if netpoll wants it, pretend we never saw it */
1566 if (netpoll_rx(skb))
1567 return NET_RX_DROP;
1568
1569 if (!skb->tstamp.tv64)
1570 net_timestamp(skb);
1571
1572 /*
1573 * The code is rearranged so that the path is the most
1574 * short when CPU is congested, but is still operating.
1575 */
1576 local_irq_save(flags);
1577 queue = &__get_cpu_var(softnet_data);
1578
1579 __get_cpu_var(netdev_rx_stat).total++;
1580 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1581 if (queue->input_pkt_queue.qlen) {
1582 enqueue:
1583 dev_hold(skb->dev);
1584 __skb_queue_tail(&queue->input_pkt_queue, skb);
1585 local_irq_restore(flags);
1586 return NET_RX_SUCCESS;
1587 }
1588
1589 netif_rx_schedule(&queue->backlog_dev);
1590 goto enqueue;
1591 }
1592
1593 __get_cpu_var(netdev_rx_stat).dropped++;
1594 local_irq_restore(flags);
1595
1596 kfree_skb(skb);
1597 return NET_RX_DROP;
1598 }
1599
1600 int netif_rx_ni(struct sk_buff *skb)
1601 {
1602 int err;
1603
1604 preempt_disable();
1605 err = netif_rx(skb);
1606 if (local_softirq_pending())
1607 do_softirq();
1608 preempt_enable();
1609
1610 return err;
1611 }
1612
1613 EXPORT_SYMBOL(netif_rx_ni);
1614
1615 static inline struct net_device *skb_bond(struct sk_buff *skb)
1616 {
1617 struct net_device *dev = skb->dev;
1618
1619 if (dev->master) {
1620 if (skb_bond_should_drop(skb)) {
1621 kfree_skb(skb);
1622 return NULL;
1623 }
1624 skb->dev = dev->master;
1625 }
1626
1627 return dev;
1628 }
1629
1630 static void net_tx_action(struct softirq_action *h)
1631 {
1632 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1633
1634 if (sd->completion_queue) {
1635 struct sk_buff *clist;
1636
1637 local_irq_disable();
1638 clist = sd->completion_queue;
1639 sd->completion_queue = NULL;
1640 local_irq_enable();
1641
1642 while (clist) {
1643 struct sk_buff *skb = clist;
1644 clist = clist->next;
1645
1646 BUG_TRAP(!atomic_read(&skb->users));
1647 __kfree_skb(skb);
1648 }
1649 }
1650
1651 if (sd->output_queue) {
1652 struct net_device *head;
1653
1654 local_irq_disable();
1655 head = sd->output_queue;
1656 sd->output_queue = NULL;
1657 local_irq_enable();
1658
1659 while (head) {
1660 struct net_device *dev = head;
1661 head = head->next_sched;
1662
1663 smp_mb__before_clear_bit();
1664 clear_bit(__LINK_STATE_SCHED, &dev->state);
1665
1666 if (spin_trylock(&dev->queue_lock)) {
1667 qdisc_run(dev);
1668 spin_unlock(&dev->queue_lock);
1669 } else {
1670 netif_schedule(dev);
1671 }
1672 }
1673 }
1674 }
1675
1676 static inline int deliver_skb(struct sk_buff *skb,
1677 struct packet_type *pt_prev,
1678 struct net_device *orig_dev)
1679 {
1680 atomic_inc(&skb->users);
1681 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1682 }
1683
1684 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1685 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb);
1686 struct net_bridge;
1687 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1688 unsigned char *addr);
1689 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent);
1690
1691 static __inline__ int handle_bridge(struct sk_buff **pskb,
1692 struct packet_type **pt_prev, int *ret,
1693 struct net_device *orig_dev)
1694 {
1695 struct net_bridge_port *port;
1696
1697 if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
1698 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
1699 return 0;
1700
1701 if (*pt_prev) {
1702 *ret = deliver_skb(*pskb, *pt_prev, orig_dev);
1703 *pt_prev = NULL;
1704 }
1705
1706 return br_handle_frame_hook(port, pskb);
1707 }
1708 #else
1709 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0)
1710 #endif
1711
1712 #ifdef CONFIG_NET_CLS_ACT
1713 /* TODO: Maybe we should just force sch_ingress to be compiled in
1714 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1715 * a compare and 2 stores extra right now if we dont have it on
1716 * but have CONFIG_NET_CLS_ACT
1717 * NOTE: This doesnt stop any functionality; if you dont have
1718 * the ingress scheduler, you just cant add policies on ingress.
1719 *
1720 */
1721 static int ing_filter(struct sk_buff *skb)
1722 {
1723 struct Qdisc *q;
1724 struct net_device *dev = skb->dev;
1725 int result = TC_ACT_OK;
1726
1727 if (dev->qdisc_ingress) {
1728 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1729 if (MAX_RED_LOOP < ttl++) {
1730 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1731 skb->iif, skb->dev->ifindex);
1732 return TC_ACT_SHOT;
1733 }
1734
1735 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1736
1737 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1738
1739 spin_lock(&dev->queue_lock);
1740 if ((q = dev->qdisc_ingress) != NULL)
1741 result = q->enqueue(skb, q);
1742 spin_unlock(&dev->queue_lock);
1743
1744 }
1745
1746 return result;
1747 }
1748 #endif
1749
1750 int netif_receive_skb(struct sk_buff *skb)
1751 {
1752 struct packet_type *ptype, *pt_prev;
1753 struct net_device *orig_dev;
1754 int ret = NET_RX_DROP;
1755 __be16 type;
1756
1757 /* if we've gotten here through NAPI, check netpoll */
1758 if (skb->dev->poll && netpoll_rx(skb))
1759 return NET_RX_DROP;
1760
1761 if (!skb->tstamp.tv64)
1762 net_timestamp(skb);
1763
1764 if (!skb->iif)
1765 skb->iif = skb->dev->ifindex;
1766
1767 orig_dev = skb_bond(skb);
1768
1769 if (!orig_dev)
1770 return NET_RX_DROP;
1771
1772 __get_cpu_var(netdev_rx_stat).total++;
1773
1774 skb->h.raw = skb->nh.raw = skb->data;
1775 skb->mac_len = skb->nh.raw - skb->mac.raw;
1776
1777 pt_prev = NULL;
1778
1779 rcu_read_lock();
1780
1781 #ifdef CONFIG_NET_CLS_ACT
1782 if (skb->tc_verd & TC_NCLS) {
1783 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1784 goto ncls;
1785 }
1786 #endif
1787
1788 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1789 if (!ptype->dev || ptype->dev == skb->dev) {
1790 if (pt_prev)
1791 ret = deliver_skb(skb, pt_prev, orig_dev);
1792 pt_prev = ptype;
1793 }
1794 }
1795
1796 #ifdef CONFIG_NET_CLS_ACT
1797 if (pt_prev) {
1798 ret = deliver_skb(skb, pt_prev, orig_dev);
1799 pt_prev = NULL; /* noone else should process this after*/
1800 } else {
1801 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1802 }
1803
1804 ret = ing_filter(skb);
1805
1806 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1807 kfree_skb(skb);
1808 goto out;
1809 }
1810
1811 skb->tc_verd = 0;
1812 ncls:
1813 #endif
1814
1815 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev))
1816 goto out;
1817
1818 type = skb->protocol;
1819 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1820 if (ptype->type == type &&
1821 (!ptype->dev || ptype->dev == skb->dev)) {
1822 if (pt_prev)
1823 ret = deliver_skb(skb, pt_prev, orig_dev);
1824 pt_prev = ptype;
1825 }
1826 }
1827
1828 if (pt_prev) {
1829 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1830 } else {
1831 kfree_skb(skb);
1832 /* Jamal, now you will not able to escape explaining
1833 * me how you were going to use this. :-)
1834 */
1835 ret = NET_RX_DROP;
1836 }
1837
1838 out:
1839 rcu_read_unlock();
1840 return ret;
1841 }
1842
1843 static int process_backlog(struct net_device *backlog_dev, int *budget)
1844 {
1845 int work = 0;
1846 int quota = min(backlog_dev->quota, *budget);
1847 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1848 unsigned long start_time = jiffies;
1849
1850 backlog_dev->weight = weight_p;
1851 for (;;) {
1852 struct sk_buff *skb;
1853 struct net_device *dev;
1854
1855 local_irq_disable();
1856 skb = __skb_dequeue(&queue->input_pkt_queue);
1857 if (!skb)
1858 goto job_done;
1859 local_irq_enable();
1860
1861 dev = skb->dev;
1862
1863 netif_receive_skb(skb);
1864
1865 dev_put(dev);
1866
1867 work++;
1868
1869 if (work >= quota || jiffies - start_time > 1)
1870 break;
1871
1872 }
1873
1874 backlog_dev->quota -= work;
1875 *budget -= work;
1876 return -1;
1877
1878 job_done:
1879 backlog_dev->quota -= work;
1880 *budget -= work;
1881
1882 list_del(&backlog_dev->poll_list);
1883 smp_mb__before_clear_bit();
1884 netif_poll_enable(backlog_dev);
1885
1886 local_irq_enable();
1887 return 0;
1888 }
1889
1890 static void net_rx_action(struct softirq_action *h)
1891 {
1892 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1893 unsigned long start_time = jiffies;
1894 int budget = netdev_budget;
1895 void *have;
1896
1897 local_irq_disable();
1898
1899 while (!list_empty(&queue->poll_list)) {
1900 struct net_device *dev;
1901
1902 if (budget <= 0 || jiffies - start_time > 1)
1903 goto softnet_break;
1904
1905 local_irq_enable();
1906
1907 dev = list_entry(queue->poll_list.next,
1908 struct net_device, poll_list);
1909 have = netpoll_poll_lock(dev);
1910
1911 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1912 netpoll_poll_unlock(have);
1913 local_irq_disable();
1914 list_move_tail(&dev->poll_list, &queue->poll_list);
1915 if (dev->quota < 0)
1916 dev->quota += dev->weight;
1917 else
1918 dev->quota = dev->weight;
1919 } else {
1920 netpoll_poll_unlock(have);
1921 dev_put(dev);
1922 local_irq_disable();
1923 }
1924 }
1925 out:
1926 #ifdef CONFIG_NET_DMA
1927 /*
1928 * There may not be any more sk_buffs coming right now, so push
1929 * any pending DMA copies to hardware
1930 */
1931 if (net_dma_client) {
1932 struct dma_chan *chan;
1933 rcu_read_lock();
1934 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
1935 dma_async_memcpy_issue_pending(chan);
1936 rcu_read_unlock();
1937 }
1938 #endif
1939 local_irq_enable();
1940 return;
1941
1942 softnet_break:
1943 __get_cpu_var(netdev_rx_stat).time_squeeze++;
1944 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1945 goto out;
1946 }
1947
1948 static gifconf_func_t * gifconf_list [NPROTO];
1949
1950 /**
1951 * register_gifconf - register a SIOCGIF handler
1952 * @family: Address family
1953 * @gifconf: Function handler
1954 *
1955 * Register protocol dependent address dumping routines. The handler
1956 * that is passed must not be freed or reused until it has been replaced
1957 * by another handler.
1958 */
1959 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1960 {
1961 if (family >= NPROTO)
1962 return -EINVAL;
1963 gifconf_list[family] = gifconf;
1964 return 0;
1965 }
1966
1967
1968 /*
1969 * Map an interface index to its name (SIOCGIFNAME)
1970 */
1971
1972 /*
1973 * We need this ioctl for efficient implementation of the
1974 * if_indextoname() function required by the IPv6 API. Without
1975 * it, we would have to search all the interfaces to find a
1976 * match. --pb
1977 */
1978
1979 static int dev_ifname(struct ifreq __user *arg)
1980 {
1981 struct net_device *dev;
1982 struct ifreq ifr;
1983
1984 /*
1985 * Fetch the caller's info block.
1986 */
1987
1988 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
1989 return -EFAULT;
1990
1991 read_lock(&dev_base_lock);
1992 dev = __dev_get_by_index(ifr.ifr_ifindex);
1993 if (!dev) {
1994 read_unlock(&dev_base_lock);
1995 return -ENODEV;
1996 }
1997
1998 strcpy(ifr.ifr_name, dev->name);
1999 read_unlock(&dev_base_lock);
2000
2001 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2002 return -EFAULT;
2003 return 0;
2004 }
2005
2006 /*
2007 * Perform a SIOCGIFCONF call. This structure will change
2008 * size eventually, and there is nothing I can do about it.
2009 * Thus we will need a 'compatibility mode'.
2010 */
2011
2012 static int dev_ifconf(char __user *arg)
2013 {
2014 struct ifconf ifc;
2015 struct net_device *dev;
2016 char __user *pos;
2017 int len;
2018 int total;
2019 int i;
2020
2021 /*
2022 * Fetch the caller's info block.
2023 */
2024
2025 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2026 return -EFAULT;
2027
2028 pos = ifc.ifc_buf;
2029 len = ifc.ifc_len;
2030
2031 /*
2032 * Loop over the interfaces, and write an info block for each.
2033 */
2034
2035 total = 0;
2036 for (dev = dev_base; dev; dev = dev->next) {
2037 for (i = 0; i < NPROTO; i++) {
2038 if (gifconf_list[i]) {
2039 int done;
2040 if (!pos)
2041 done = gifconf_list[i](dev, NULL, 0);
2042 else
2043 done = gifconf_list[i](dev, pos + total,
2044 len - total);
2045 if (done < 0)
2046 return -EFAULT;
2047 total += done;
2048 }
2049 }
2050 }
2051
2052 /*
2053 * All done. Write the updated control block back to the caller.
2054 */
2055 ifc.ifc_len = total;
2056
2057 /*
2058 * Both BSD and Solaris return 0 here, so we do too.
2059 */
2060 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2061 }
2062
2063 #ifdef CONFIG_PROC_FS
2064 /*
2065 * This is invoked by the /proc filesystem handler to display a device
2066 * in detail.
2067 */
2068 static struct net_device *dev_get_idx(loff_t pos)
2069 {
2070 struct net_device *dev;
2071 loff_t i;
2072
2073 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next);
2074
2075 return i == pos ? dev : NULL;
2076 }
2077
2078 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2079 {
2080 read_lock(&dev_base_lock);
2081 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN;
2082 }
2083
2084 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2085 {
2086 ++*pos;
2087 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next;
2088 }
2089
2090 void dev_seq_stop(struct seq_file *seq, void *v)
2091 {
2092 read_unlock(&dev_base_lock);
2093 }
2094
2095 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2096 {
2097 if (dev->get_stats) {
2098 struct net_device_stats *stats = dev->get_stats(dev);
2099
2100 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2101 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2102 dev->name, stats->rx_bytes, stats->rx_packets,
2103 stats->rx_errors,
2104 stats->rx_dropped + stats->rx_missed_errors,
2105 stats->rx_fifo_errors,
2106 stats->rx_length_errors + stats->rx_over_errors +
2107 stats->rx_crc_errors + stats->rx_frame_errors,
2108 stats->rx_compressed, stats->multicast,
2109 stats->tx_bytes, stats->tx_packets,
2110 stats->tx_errors, stats->tx_dropped,
2111 stats->tx_fifo_errors, stats->collisions,
2112 stats->tx_carrier_errors +
2113 stats->tx_aborted_errors +
2114 stats->tx_window_errors +
2115 stats->tx_heartbeat_errors,
2116 stats->tx_compressed);
2117 } else
2118 seq_printf(seq, "%6s: No statistics available.\n", dev->name);
2119 }
2120
2121 /*
2122 * Called from the PROCfs module. This now uses the new arbitrary sized
2123 * /proc/net interface to create /proc/net/dev
2124 */
2125 static int dev_seq_show(struct seq_file *seq, void *v)
2126 {
2127 if (v == SEQ_START_TOKEN)
2128 seq_puts(seq, "Inter-| Receive "
2129 " | Transmit\n"
2130 " face |bytes packets errs drop fifo frame "
2131 "compressed multicast|bytes packets errs "
2132 "drop fifo colls carrier compressed\n");
2133 else
2134 dev_seq_printf_stats(seq, v);
2135 return 0;
2136 }
2137
2138 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2139 {
2140 struct netif_rx_stats *rc = NULL;
2141
2142 while (*pos < NR_CPUS)
2143 if (cpu_online(*pos)) {
2144 rc = &per_cpu(netdev_rx_stat, *pos);
2145 break;
2146 } else
2147 ++*pos;
2148 return rc;
2149 }
2150
2151 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2152 {
2153 return softnet_get_online(pos);
2154 }
2155
2156 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2157 {
2158 ++*pos;
2159 return softnet_get_online(pos);
2160 }
2161
2162 static void softnet_seq_stop(struct seq_file *seq, void *v)
2163 {
2164 }
2165
2166 static int softnet_seq_show(struct seq_file *seq, void *v)
2167 {
2168 struct netif_rx_stats *s = v;
2169
2170 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2171 s->total, s->dropped, s->time_squeeze, 0,
2172 0, 0, 0, 0, /* was fastroute */
2173 s->cpu_collision );
2174 return 0;
2175 }
2176
2177 static struct seq_operations dev_seq_ops = {
2178 .start = dev_seq_start,
2179 .next = dev_seq_next,
2180 .stop = dev_seq_stop,
2181 .show = dev_seq_show,
2182 };
2183
2184 static int dev_seq_open(struct inode *inode, struct file *file)
2185 {
2186 return seq_open(file, &dev_seq_ops);
2187 }
2188
2189 static const struct file_operations dev_seq_fops = {
2190 .owner = THIS_MODULE,
2191 .open = dev_seq_open,
2192 .read = seq_read,
2193 .llseek = seq_lseek,
2194 .release = seq_release,
2195 };
2196
2197 static struct seq_operations softnet_seq_ops = {
2198 .start = softnet_seq_start,
2199 .next = softnet_seq_next,
2200 .stop = softnet_seq_stop,
2201 .show = softnet_seq_show,
2202 };
2203
2204 static int softnet_seq_open(struct inode *inode, struct file *file)
2205 {
2206 return seq_open(file, &softnet_seq_ops);
2207 }
2208
2209 static const struct file_operations softnet_seq_fops = {
2210 .owner = THIS_MODULE,
2211 .open = softnet_seq_open,
2212 .read = seq_read,
2213 .llseek = seq_lseek,
2214 .release = seq_release,
2215 };
2216
2217 #ifdef CONFIG_WIRELESS_EXT
2218 extern int wireless_proc_init(void);
2219 #else
2220 #define wireless_proc_init() 0
2221 #endif
2222
2223 static int __init dev_proc_init(void)
2224 {
2225 int rc = -ENOMEM;
2226
2227 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2228 goto out;
2229 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2230 goto out_dev;
2231 if (wireless_proc_init())
2232 goto out_softnet;
2233 rc = 0;
2234 out:
2235 return rc;
2236 out_softnet:
2237 proc_net_remove("softnet_stat");
2238 out_dev:
2239 proc_net_remove("dev");
2240 goto out;
2241 }
2242 #else
2243 #define dev_proc_init() 0
2244 #endif /* CONFIG_PROC_FS */
2245
2246
2247 /**
2248 * netdev_set_master - set up master/slave pair
2249 * @slave: slave device
2250 * @master: new master device
2251 *
2252 * Changes the master device of the slave. Pass %NULL to break the
2253 * bonding. The caller must hold the RTNL semaphore. On a failure
2254 * a negative errno code is returned. On success the reference counts
2255 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2256 * function returns zero.
2257 */
2258 int netdev_set_master(struct net_device *slave, struct net_device *master)
2259 {
2260 struct net_device *old = slave->master;
2261
2262 ASSERT_RTNL();
2263
2264 if (master) {
2265 if (old)
2266 return -EBUSY;
2267 dev_hold(master);
2268 }
2269
2270 slave->master = master;
2271
2272 synchronize_net();
2273
2274 if (old)
2275 dev_put(old);
2276
2277 if (master)
2278 slave->flags |= IFF_SLAVE;
2279 else
2280 slave->flags &= ~IFF_SLAVE;
2281
2282 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2283 return 0;
2284 }
2285
2286 /**
2287 * dev_set_promiscuity - update promiscuity count on a device
2288 * @dev: device
2289 * @inc: modifier
2290 *
2291 * Add or remove promiscuity from a device. While the count in the device
2292 * remains above zero the interface remains promiscuous. Once it hits zero
2293 * the device reverts back to normal filtering operation. A negative inc
2294 * value is used to drop promiscuity on the device.
2295 */
2296 void dev_set_promiscuity(struct net_device *dev, int inc)
2297 {
2298 unsigned short old_flags = dev->flags;
2299
2300 if ((dev->promiscuity += inc) == 0)
2301 dev->flags &= ~IFF_PROMISC;
2302 else
2303 dev->flags |= IFF_PROMISC;
2304 if (dev->flags != old_flags) {
2305 dev_mc_upload(dev);
2306 printk(KERN_INFO "device %s %s promiscuous mode\n",
2307 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2308 "left");
2309 audit_log(current->audit_context, GFP_ATOMIC,
2310 AUDIT_ANOM_PROMISCUOUS,
2311 "dev=%s prom=%d old_prom=%d auid=%u",
2312 dev->name, (dev->flags & IFF_PROMISC),
2313 (old_flags & IFF_PROMISC),
2314 audit_get_loginuid(current->audit_context));
2315 }
2316 }
2317
2318 /**
2319 * dev_set_allmulti - update allmulti count on a device
2320 * @dev: device
2321 * @inc: modifier
2322 *
2323 * Add or remove reception of all multicast frames to a device. While the
2324 * count in the device remains above zero the interface remains listening
2325 * to all interfaces. Once it hits zero the device reverts back to normal
2326 * filtering operation. A negative @inc value is used to drop the counter
2327 * when releasing a resource needing all multicasts.
2328 */
2329
2330 void dev_set_allmulti(struct net_device *dev, int inc)
2331 {
2332 unsigned short old_flags = dev->flags;
2333
2334 dev->flags |= IFF_ALLMULTI;
2335 if ((dev->allmulti += inc) == 0)
2336 dev->flags &= ~IFF_ALLMULTI;
2337 if (dev->flags ^ old_flags)
2338 dev_mc_upload(dev);
2339 }
2340
2341 unsigned dev_get_flags(const struct net_device *dev)
2342 {
2343 unsigned flags;
2344
2345 flags = (dev->flags & ~(IFF_PROMISC |
2346 IFF_ALLMULTI |
2347 IFF_RUNNING |
2348 IFF_LOWER_UP |
2349 IFF_DORMANT)) |
2350 (dev->gflags & (IFF_PROMISC |
2351 IFF_ALLMULTI));
2352
2353 if (netif_running(dev)) {
2354 if (netif_oper_up(dev))
2355 flags |= IFF_RUNNING;
2356 if (netif_carrier_ok(dev))
2357 flags |= IFF_LOWER_UP;
2358 if (netif_dormant(dev))
2359 flags |= IFF_DORMANT;
2360 }
2361
2362 return flags;
2363 }
2364
2365 int dev_change_flags(struct net_device *dev, unsigned flags)
2366 {
2367 int ret;
2368 int old_flags = dev->flags;
2369
2370 /*
2371 * Set the flags on our device.
2372 */
2373
2374 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2375 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2376 IFF_AUTOMEDIA)) |
2377 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2378 IFF_ALLMULTI));
2379
2380 /*
2381 * Load in the correct multicast list now the flags have changed.
2382 */
2383
2384 dev_mc_upload(dev);
2385
2386 /*
2387 * Have we downed the interface. We handle IFF_UP ourselves
2388 * according to user attempts to set it, rather than blindly
2389 * setting it.
2390 */
2391
2392 ret = 0;
2393 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2394 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2395
2396 if (!ret)
2397 dev_mc_upload(dev);
2398 }
2399
2400 if (dev->flags & IFF_UP &&
2401 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2402 IFF_VOLATILE)))
2403 raw_notifier_call_chain(&netdev_chain,
2404 NETDEV_CHANGE, dev);
2405
2406 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2407 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2408 dev->gflags ^= IFF_PROMISC;
2409 dev_set_promiscuity(dev, inc);
2410 }
2411
2412 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2413 is important. Some (broken) drivers set IFF_PROMISC, when
2414 IFF_ALLMULTI is requested not asking us and not reporting.
2415 */
2416 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2417 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2418 dev->gflags ^= IFF_ALLMULTI;
2419 dev_set_allmulti(dev, inc);
2420 }
2421
2422 if (old_flags ^ dev->flags)
2423 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2424
2425 return ret;
2426 }
2427
2428 int dev_set_mtu(struct net_device *dev, int new_mtu)
2429 {
2430 int err;
2431
2432 if (new_mtu == dev->mtu)
2433 return 0;
2434
2435 /* MTU must be positive. */
2436 if (new_mtu < 0)
2437 return -EINVAL;
2438
2439 if (!netif_device_present(dev))
2440 return -ENODEV;
2441
2442 err = 0;
2443 if (dev->change_mtu)
2444 err = dev->change_mtu(dev, new_mtu);
2445 else
2446 dev->mtu = new_mtu;
2447 if (!err && dev->flags & IFF_UP)
2448 raw_notifier_call_chain(&netdev_chain,
2449 NETDEV_CHANGEMTU, dev);
2450 return err;
2451 }
2452
2453 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2454 {
2455 int err;
2456
2457 if (!dev->set_mac_address)
2458 return -EOPNOTSUPP;
2459 if (sa->sa_family != dev->type)
2460 return -EINVAL;
2461 if (!netif_device_present(dev))
2462 return -ENODEV;
2463 err = dev->set_mac_address(dev, sa);
2464 if (!err)
2465 raw_notifier_call_chain(&netdev_chain,
2466 NETDEV_CHANGEADDR, dev);
2467 return err;
2468 }
2469
2470 /*
2471 * Perform the SIOCxIFxxx calls.
2472 */
2473 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2474 {
2475 int err;
2476 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2477
2478 if (!dev)
2479 return -ENODEV;
2480
2481 switch (cmd) {
2482 case SIOCGIFFLAGS: /* Get interface flags */
2483 ifr->ifr_flags = dev_get_flags(dev);
2484 return 0;
2485
2486 case SIOCSIFFLAGS: /* Set interface flags */
2487 return dev_change_flags(dev, ifr->ifr_flags);
2488
2489 case SIOCGIFMETRIC: /* Get the metric on the interface
2490 (currently unused) */
2491 ifr->ifr_metric = 0;
2492 return 0;
2493
2494 case SIOCSIFMETRIC: /* Set the metric on the interface
2495 (currently unused) */
2496 return -EOPNOTSUPP;
2497
2498 case SIOCGIFMTU: /* Get the MTU of a device */
2499 ifr->ifr_mtu = dev->mtu;
2500 return 0;
2501
2502 case SIOCSIFMTU: /* Set the MTU of a device */
2503 return dev_set_mtu(dev, ifr->ifr_mtu);
2504
2505 case SIOCGIFHWADDR:
2506 if (!dev->addr_len)
2507 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2508 else
2509 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2510 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2511 ifr->ifr_hwaddr.sa_family = dev->type;
2512 return 0;
2513
2514 case SIOCSIFHWADDR:
2515 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2516
2517 case SIOCSIFHWBROADCAST:
2518 if (ifr->ifr_hwaddr.sa_family != dev->type)
2519 return -EINVAL;
2520 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2521 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2522 raw_notifier_call_chain(&netdev_chain,
2523 NETDEV_CHANGEADDR, dev);
2524 return 0;
2525
2526 case SIOCGIFMAP:
2527 ifr->ifr_map.mem_start = dev->mem_start;
2528 ifr->ifr_map.mem_end = dev->mem_end;
2529 ifr->ifr_map.base_addr = dev->base_addr;
2530 ifr->ifr_map.irq = dev->irq;
2531 ifr->ifr_map.dma = dev->dma;
2532 ifr->ifr_map.port = dev->if_port;
2533 return 0;
2534
2535 case SIOCSIFMAP:
2536 if (dev->set_config) {
2537 if (!netif_device_present(dev))
2538 return -ENODEV;
2539 return dev->set_config(dev, &ifr->ifr_map);
2540 }
2541 return -EOPNOTSUPP;
2542
2543 case SIOCADDMULTI:
2544 if (!dev->set_multicast_list ||
2545 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2546 return -EINVAL;
2547 if (!netif_device_present(dev))
2548 return -ENODEV;
2549 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2550 dev->addr_len, 1);
2551
2552 case SIOCDELMULTI:
2553 if (!dev->set_multicast_list ||
2554 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2555 return -EINVAL;
2556 if (!netif_device_present(dev))
2557 return -ENODEV;
2558 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2559 dev->addr_len, 1);
2560
2561 case SIOCGIFINDEX:
2562 ifr->ifr_ifindex = dev->ifindex;
2563 return 0;
2564
2565 case SIOCGIFTXQLEN:
2566 ifr->ifr_qlen = dev->tx_queue_len;
2567 return 0;
2568
2569 case SIOCSIFTXQLEN:
2570 if (ifr->ifr_qlen < 0)
2571 return -EINVAL;
2572 dev->tx_queue_len = ifr->ifr_qlen;
2573 return 0;
2574
2575 case SIOCSIFNAME:
2576 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2577 return dev_change_name(dev, ifr->ifr_newname);
2578
2579 /*
2580 * Unknown or private ioctl
2581 */
2582
2583 default:
2584 if ((cmd >= SIOCDEVPRIVATE &&
2585 cmd <= SIOCDEVPRIVATE + 15) ||
2586 cmd == SIOCBONDENSLAVE ||
2587 cmd == SIOCBONDRELEASE ||
2588 cmd == SIOCBONDSETHWADDR ||
2589 cmd == SIOCBONDSLAVEINFOQUERY ||
2590 cmd == SIOCBONDINFOQUERY ||
2591 cmd == SIOCBONDCHANGEACTIVE ||
2592 cmd == SIOCGMIIPHY ||
2593 cmd == SIOCGMIIREG ||
2594 cmd == SIOCSMIIREG ||
2595 cmd == SIOCBRADDIF ||
2596 cmd == SIOCBRDELIF ||
2597 cmd == SIOCWANDEV) {
2598 err = -EOPNOTSUPP;
2599 if (dev->do_ioctl) {
2600 if (netif_device_present(dev))
2601 err = dev->do_ioctl(dev, ifr,
2602 cmd);
2603 else
2604 err = -ENODEV;
2605 }
2606 } else
2607 err = -EINVAL;
2608
2609 }
2610 return err;
2611 }
2612
2613 /*
2614 * This function handles all "interface"-type I/O control requests. The actual
2615 * 'doing' part of this is dev_ifsioc above.
2616 */
2617
2618 /**
2619 * dev_ioctl - network device ioctl
2620 * @cmd: command to issue
2621 * @arg: pointer to a struct ifreq in user space
2622 *
2623 * Issue ioctl functions to devices. This is normally called by the
2624 * user space syscall interfaces but can sometimes be useful for
2625 * other purposes. The return value is the return from the syscall if
2626 * positive or a negative errno code on error.
2627 */
2628
2629 int dev_ioctl(unsigned int cmd, void __user *arg)
2630 {
2631 struct ifreq ifr;
2632 int ret;
2633 char *colon;
2634
2635 /* One special case: SIOCGIFCONF takes ifconf argument
2636 and requires shared lock, because it sleeps writing
2637 to user space.
2638 */
2639
2640 if (cmd == SIOCGIFCONF) {
2641 rtnl_lock();
2642 ret = dev_ifconf((char __user *) arg);
2643 rtnl_unlock();
2644 return ret;
2645 }
2646 if (cmd == SIOCGIFNAME)
2647 return dev_ifname((struct ifreq __user *)arg);
2648
2649 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2650 return -EFAULT;
2651
2652 ifr.ifr_name[IFNAMSIZ-1] = 0;
2653
2654 colon = strchr(ifr.ifr_name, ':');
2655 if (colon)
2656 *colon = 0;
2657
2658 /*
2659 * See which interface the caller is talking about.
2660 */
2661
2662 switch (cmd) {
2663 /*
2664 * These ioctl calls:
2665 * - can be done by all.
2666 * - atomic and do not require locking.
2667 * - return a value
2668 */
2669 case SIOCGIFFLAGS:
2670 case SIOCGIFMETRIC:
2671 case SIOCGIFMTU:
2672 case SIOCGIFHWADDR:
2673 case SIOCGIFSLAVE:
2674 case SIOCGIFMAP:
2675 case SIOCGIFINDEX:
2676 case SIOCGIFTXQLEN:
2677 dev_load(ifr.ifr_name);
2678 read_lock(&dev_base_lock);
2679 ret = dev_ifsioc(&ifr, cmd);
2680 read_unlock(&dev_base_lock);
2681 if (!ret) {
2682 if (colon)
2683 *colon = ':';
2684 if (copy_to_user(arg, &ifr,
2685 sizeof(struct ifreq)))
2686 ret = -EFAULT;
2687 }
2688 return ret;
2689
2690 case SIOCETHTOOL:
2691 dev_load(ifr.ifr_name);
2692 rtnl_lock();
2693 ret = dev_ethtool(&ifr);
2694 rtnl_unlock();
2695 if (!ret) {
2696 if (colon)
2697 *colon = ':';
2698 if (copy_to_user(arg, &ifr,
2699 sizeof(struct ifreq)))
2700 ret = -EFAULT;
2701 }
2702 return ret;
2703
2704 /*
2705 * These ioctl calls:
2706 * - require superuser power.
2707 * - require strict serialization.
2708 * - return a value
2709 */
2710 case SIOCGMIIPHY:
2711 case SIOCGMIIREG:
2712 case SIOCSIFNAME:
2713 if (!capable(CAP_NET_ADMIN))
2714 return -EPERM;
2715 dev_load(ifr.ifr_name);
2716 rtnl_lock();
2717 ret = dev_ifsioc(&ifr, cmd);
2718 rtnl_unlock();
2719 if (!ret) {
2720 if (colon)
2721 *colon = ':';
2722 if (copy_to_user(arg, &ifr,
2723 sizeof(struct ifreq)))
2724 ret = -EFAULT;
2725 }
2726 return ret;
2727
2728 /*
2729 * These ioctl calls:
2730 * - require superuser power.
2731 * - require strict serialization.
2732 * - do not return a value
2733 */
2734 case SIOCSIFFLAGS:
2735 case SIOCSIFMETRIC:
2736 case SIOCSIFMTU:
2737 case SIOCSIFMAP:
2738 case SIOCSIFHWADDR:
2739 case SIOCSIFSLAVE:
2740 case SIOCADDMULTI:
2741 case SIOCDELMULTI:
2742 case SIOCSIFHWBROADCAST:
2743 case SIOCSIFTXQLEN:
2744 case SIOCSMIIREG:
2745 case SIOCBONDENSLAVE:
2746 case SIOCBONDRELEASE:
2747 case SIOCBONDSETHWADDR:
2748 case SIOCBONDCHANGEACTIVE:
2749 case SIOCBRADDIF:
2750 case SIOCBRDELIF:
2751 if (!capable(CAP_NET_ADMIN))
2752 return -EPERM;
2753 /* fall through */
2754 case SIOCBONDSLAVEINFOQUERY:
2755 case SIOCBONDINFOQUERY:
2756 dev_load(ifr.ifr_name);
2757 rtnl_lock();
2758 ret = dev_ifsioc(&ifr, cmd);
2759 rtnl_unlock();
2760 return ret;
2761
2762 case SIOCGIFMEM:
2763 /* Get the per device memory space. We can add this but
2764 * currently do not support it */
2765 case SIOCSIFMEM:
2766 /* Set the per device memory buffer space.
2767 * Not applicable in our case */
2768 case SIOCSIFLINK:
2769 return -EINVAL;
2770
2771 /*
2772 * Unknown or private ioctl.
2773 */
2774 default:
2775 if (cmd == SIOCWANDEV ||
2776 (cmd >= SIOCDEVPRIVATE &&
2777 cmd <= SIOCDEVPRIVATE + 15)) {
2778 dev_load(ifr.ifr_name);
2779 rtnl_lock();
2780 ret = dev_ifsioc(&ifr, cmd);
2781 rtnl_unlock();
2782 if (!ret && copy_to_user(arg, &ifr,
2783 sizeof(struct ifreq)))
2784 ret = -EFAULT;
2785 return ret;
2786 }
2787 #ifdef CONFIG_WIRELESS_EXT
2788 /* Take care of Wireless Extensions */
2789 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
2790 /* If command is `set a parameter', or
2791 * `get the encoding parameters', check if
2792 * the user has the right to do it */
2793 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE
2794 || cmd == SIOCGIWENCODEEXT) {
2795 if (!capable(CAP_NET_ADMIN))
2796 return -EPERM;
2797 }
2798 dev_load(ifr.ifr_name);
2799 rtnl_lock();
2800 /* Follow me in net/core/wireless.c */
2801 ret = wireless_process_ioctl(&ifr, cmd);
2802 rtnl_unlock();
2803 if (IW_IS_GET(cmd) &&
2804 copy_to_user(arg, &ifr,
2805 sizeof(struct ifreq)))
2806 ret = -EFAULT;
2807 return ret;
2808 }
2809 #endif /* CONFIG_WIRELESS_EXT */
2810 return -EINVAL;
2811 }
2812 }
2813
2814
2815 /**
2816 * dev_new_index - allocate an ifindex
2817 *
2818 * Returns a suitable unique value for a new device interface
2819 * number. The caller must hold the rtnl semaphore or the
2820 * dev_base_lock to be sure it remains unique.
2821 */
2822 static int dev_new_index(void)
2823 {
2824 static int ifindex;
2825 for (;;) {
2826 if (++ifindex <= 0)
2827 ifindex = 1;
2828 if (!__dev_get_by_index(ifindex))
2829 return ifindex;
2830 }
2831 }
2832
2833 static int dev_boot_phase = 1;
2834
2835 /* Delayed registration/unregisteration */
2836 static DEFINE_SPINLOCK(net_todo_list_lock);
2837 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2838
2839 static void net_set_todo(struct net_device *dev)
2840 {
2841 spin_lock(&net_todo_list_lock);
2842 list_add_tail(&dev->todo_list, &net_todo_list);
2843 spin_unlock(&net_todo_list_lock);
2844 }
2845
2846 /**
2847 * register_netdevice - register a network device
2848 * @dev: device to register
2849 *
2850 * Take a completed network device structure and add it to the kernel
2851 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2852 * chain. 0 is returned on success. A negative errno code is returned
2853 * on a failure to set up the device, or if the name is a duplicate.
2854 *
2855 * Callers must hold the rtnl semaphore. You may want
2856 * register_netdev() instead of this.
2857 *
2858 * BUGS:
2859 * The locking appears insufficient to guarantee two parallel registers
2860 * will not get the same name.
2861 */
2862
2863 int register_netdevice(struct net_device *dev)
2864 {
2865 struct hlist_head *head;
2866 struct hlist_node *p;
2867 int ret;
2868
2869 BUG_ON(dev_boot_phase);
2870 ASSERT_RTNL();
2871
2872 might_sleep();
2873
2874 /* When net_device's are persistent, this will be fatal. */
2875 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
2876
2877 spin_lock_init(&dev->queue_lock);
2878 spin_lock_init(&dev->_xmit_lock);
2879 dev->xmit_lock_owner = -1;
2880 #ifdef CONFIG_NET_CLS_ACT
2881 spin_lock_init(&dev->ingress_lock);
2882 #endif
2883
2884 dev->iflink = -1;
2885
2886 /* Init, if this function is available */
2887 if (dev->init) {
2888 ret = dev->init(dev);
2889 if (ret) {
2890 if (ret > 0)
2891 ret = -EIO;
2892 goto out;
2893 }
2894 }
2895
2896 if (!dev_valid_name(dev->name)) {
2897 ret = -EINVAL;
2898 goto out;
2899 }
2900
2901 dev->ifindex = dev_new_index();
2902 if (dev->iflink == -1)
2903 dev->iflink = dev->ifindex;
2904
2905 /* Check for existence of name */
2906 head = dev_name_hash(dev->name);
2907 hlist_for_each(p, head) {
2908 struct net_device *d
2909 = hlist_entry(p, struct net_device, name_hlist);
2910 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
2911 ret = -EEXIST;
2912 goto out;
2913 }
2914 }
2915
2916 /* Fix illegal SG+CSUM combinations. */
2917 if ((dev->features & NETIF_F_SG) &&
2918 !(dev->features & NETIF_F_ALL_CSUM)) {
2919 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
2920 dev->name);
2921 dev->features &= ~NETIF_F_SG;
2922 }
2923
2924 /* TSO requires that SG is present as well. */
2925 if ((dev->features & NETIF_F_TSO) &&
2926 !(dev->features & NETIF_F_SG)) {
2927 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
2928 dev->name);
2929 dev->features &= ~NETIF_F_TSO;
2930 }
2931 if (dev->features & NETIF_F_UFO) {
2932 if (!(dev->features & NETIF_F_HW_CSUM)) {
2933 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2934 "NETIF_F_HW_CSUM feature.\n",
2935 dev->name);
2936 dev->features &= ~NETIF_F_UFO;
2937 }
2938 if (!(dev->features & NETIF_F_SG)) {
2939 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2940 "NETIF_F_SG feature.\n",
2941 dev->name);
2942 dev->features &= ~NETIF_F_UFO;
2943 }
2944 }
2945
2946 /*
2947 * nil rebuild_header routine,
2948 * that should be never called and used as just bug trap.
2949 */
2950
2951 if (!dev->rebuild_header)
2952 dev->rebuild_header = default_rebuild_header;
2953
2954 ret = netdev_register_sysfs(dev);
2955 if (ret)
2956 goto out;
2957 dev->reg_state = NETREG_REGISTERED;
2958
2959 /*
2960 * Default initial state at registry is that the
2961 * device is present.
2962 */
2963
2964 set_bit(__LINK_STATE_PRESENT, &dev->state);
2965
2966 dev->next = NULL;
2967 dev_init_scheduler(dev);
2968 write_lock_bh(&dev_base_lock);
2969 *dev_tail = dev;
2970 dev_tail = &dev->next;
2971 hlist_add_head(&dev->name_hlist, head);
2972 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
2973 dev_hold(dev);
2974 write_unlock_bh(&dev_base_lock);
2975
2976 /* Notify protocols, that a new device appeared. */
2977 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
2978
2979 ret = 0;
2980
2981 out:
2982 return ret;
2983 }
2984
2985 /**
2986 * register_netdev - register a network device
2987 * @dev: device to register
2988 *
2989 * Take a completed network device structure and add it to the kernel
2990 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2991 * chain. 0 is returned on success. A negative errno code is returned
2992 * on a failure to set up the device, or if the name is a duplicate.
2993 *
2994 * This is a wrapper around register_netdev that takes the rtnl semaphore
2995 * and expands the device name if you passed a format string to
2996 * alloc_netdev.
2997 */
2998 int register_netdev(struct net_device *dev)
2999 {
3000 int err;
3001
3002 rtnl_lock();
3003
3004 /*
3005 * If the name is a format string the caller wants us to do a
3006 * name allocation.
3007 */
3008 if (strchr(dev->name, '%')) {
3009 err = dev_alloc_name(dev, dev->name);
3010 if (err < 0)
3011 goto out;
3012 }
3013
3014 err = register_netdevice(dev);
3015 out:
3016 rtnl_unlock();
3017 return err;
3018 }
3019 EXPORT_SYMBOL(register_netdev);
3020
3021 /*
3022 * netdev_wait_allrefs - wait until all references are gone.
3023 *
3024 * This is called when unregistering network devices.
3025 *
3026 * Any protocol or device that holds a reference should register
3027 * for netdevice notification, and cleanup and put back the
3028 * reference if they receive an UNREGISTER event.
3029 * We can get stuck here if buggy protocols don't correctly
3030 * call dev_put.
3031 */
3032 static void netdev_wait_allrefs(struct net_device *dev)
3033 {
3034 unsigned long rebroadcast_time, warning_time;
3035
3036 rebroadcast_time = warning_time = jiffies;
3037 while (atomic_read(&dev->refcnt) != 0) {
3038 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3039 rtnl_lock();
3040
3041 /* Rebroadcast unregister notification */
3042 raw_notifier_call_chain(&netdev_chain,
3043 NETDEV_UNREGISTER, dev);
3044
3045 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3046 &dev->state)) {
3047 /* We must not have linkwatch events
3048 * pending on unregister. If this
3049 * happens, we simply run the queue
3050 * unscheduled, resulting in a noop
3051 * for this device.
3052 */
3053 linkwatch_run_queue();
3054 }
3055
3056 __rtnl_unlock();
3057
3058 rebroadcast_time = jiffies;
3059 }
3060
3061 msleep(250);
3062
3063 if (time_after(jiffies, warning_time + 10 * HZ)) {
3064 printk(KERN_EMERG "unregister_netdevice: "
3065 "waiting for %s to become free. Usage "
3066 "count = %d\n",
3067 dev->name, atomic_read(&dev->refcnt));
3068 warning_time = jiffies;
3069 }
3070 }
3071 }
3072
3073 /* The sequence is:
3074 *
3075 * rtnl_lock();
3076 * ...
3077 * register_netdevice(x1);
3078 * register_netdevice(x2);
3079 * ...
3080 * unregister_netdevice(y1);
3081 * unregister_netdevice(y2);
3082 * ...
3083 * rtnl_unlock();
3084 * free_netdev(y1);
3085 * free_netdev(y2);
3086 *
3087 * We are invoked by rtnl_unlock() after it drops the semaphore.
3088 * This allows us to deal with problems:
3089 * 1) We can delete sysfs objects which invoke hotplug
3090 * without deadlocking with linkwatch via keventd.
3091 * 2) Since we run with the RTNL semaphore not held, we can sleep
3092 * safely in order to wait for the netdev refcnt to drop to zero.
3093 */
3094 static DEFINE_MUTEX(net_todo_run_mutex);
3095 void netdev_run_todo(void)
3096 {
3097 struct list_head list;
3098
3099 /* Need to guard against multiple cpu's getting out of order. */
3100 mutex_lock(&net_todo_run_mutex);
3101
3102 /* Not safe to do outside the semaphore. We must not return
3103 * until all unregister events invoked by the local processor
3104 * have been completed (either by this todo run, or one on
3105 * another cpu).
3106 */
3107 if (list_empty(&net_todo_list))
3108 goto out;
3109
3110 /* Snapshot list, allow later requests */
3111 spin_lock(&net_todo_list_lock);
3112 list_replace_init(&net_todo_list, &list);
3113 spin_unlock(&net_todo_list_lock);
3114
3115 while (!list_empty(&list)) {
3116 struct net_device *dev
3117 = list_entry(list.next, struct net_device, todo_list);
3118 list_del(&dev->todo_list);
3119
3120 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3121 printk(KERN_ERR "network todo '%s' but state %d\n",
3122 dev->name, dev->reg_state);
3123 dump_stack();
3124 continue;
3125 }
3126
3127 netdev_unregister_sysfs(dev);
3128 dev->reg_state = NETREG_UNREGISTERED;
3129
3130 netdev_wait_allrefs(dev);
3131
3132 /* paranoia */
3133 BUG_ON(atomic_read(&dev->refcnt));
3134 BUG_TRAP(!dev->ip_ptr);
3135 BUG_TRAP(!dev->ip6_ptr);
3136 BUG_TRAP(!dev->dn_ptr);
3137
3138 /* It must be the very last action,
3139 * after this 'dev' may point to freed up memory.
3140 */
3141 if (dev->destructor)
3142 dev->destructor(dev);
3143 }
3144
3145 out:
3146 mutex_unlock(&net_todo_run_mutex);
3147 }
3148
3149 /**
3150 * alloc_netdev - allocate network device
3151 * @sizeof_priv: size of private data to allocate space for
3152 * @name: device name format string
3153 * @setup: callback to initialize device
3154 *
3155 * Allocates a struct net_device with private data area for driver use
3156 * and performs basic initialization.
3157 */
3158 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3159 void (*setup)(struct net_device *))
3160 {
3161 void *p;
3162 struct net_device *dev;
3163 int alloc_size;
3164
3165 BUG_ON(strlen(name) >= sizeof(dev->name));
3166
3167 /* ensure 32-byte alignment of both the device and private area */
3168 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3169 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3170
3171 p = kzalloc(alloc_size, GFP_KERNEL);
3172 if (!p) {
3173 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3174 return NULL;
3175 }
3176
3177 dev = (struct net_device *)
3178 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3179 dev->padded = (char *)dev - (char *)p;
3180
3181 if (sizeof_priv)
3182 dev->priv = netdev_priv(dev);
3183
3184 setup(dev);
3185 strcpy(dev->name, name);
3186 return dev;
3187 }
3188 EXPORT_SYMBOL(alloc_netdev);
3189
3190 /**
3191 * free_netdev - free network device
3192 * @dev: device
3193 *
3194 * This function does the last stage of destroying an allocated device
3195 * interface. The reference to the device object is released.
3196 * If this is the last reference then it will be freed.
3197 */
3198 void free_netdev(struct net_device *dev)
3199 {
3200 #ifdef CONFIG_SYSFS
3201 /* Compatibility with error handling in drivers */
3202 if (dev->reg_state == NETREG_UNINITIALIZED) {
3203 kfree((char *)dev - dev->padded);
3204 return;
3205 }
3206
3207 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3208 dev->reg_state = NETREG_RELEASED;
3209
3210 /* will free via device release */
3211 put_device(&dev->dev);
3212 #else
3213 kfree((char *)dev - dev->padded);
3214 #endif
3215 }
3216
3217 /* Synchronize with packet receive processing. */
3218 void synchronize_net(void)
3219 {
3220 might_sleep();
3221 synchronize_rcu();
3222 }
3223
3224 /**
3225 * unregister_netdevice - remove device from the kernel
3226 * @dev: device
3227 *
3228 * This function shuts down a device interface and removes it
3229 * from the kernel tables. On success 0 is returned, on a failure
3230 * a negative errno code is returned.
3231 *
3232 * Callers must hold the rtnl semaphore. You may want
3233 * unregister_netdev() instead of this.
3234 */
3235
3236 void unregister_netdevice(struct net_device *dev)
3237 {
3238 struct net_device *d, **dp;
3239
3240 BUG_ON(dev_boot_phase);
3241 ASSERT_RTNL();
3242
3243 /* Some devices call without registering for initialization unwind. */
3244 if (dev->reg_state == NETREG_UNINITIALIZED) {
3245 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3246 "was registered\n", dev->name, dev);
3247
3248 WARN_ON(1);
3249 return;
3250 }
3251
3252 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3253
3254 /* If device is running, close it first. */
3255 if (dev->flags & IFF_UP)
3256 dev_close(dev);
3257
3258 /* And unlink it from device chain. */
3259 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) {
3260 if (d == dev) {
3261 write_lock_bh(&dev_base_lock);
3262 hlist_del(&dev->name_hlist);
3263 hlist_del(&dev->index_hlist);
3264 if (dev_tail == &dev->next)
3265 dev_tail = dp;
3266 *dp = d->next;
3267 write_unlock_bh(&dev_base_lock);
3268 break;
3269 }
3270 }
3271 BUG_ON(!d);
3272
3273 dev->reg_state = NETREG_UNREGISTERING;
3274
3275 synchronize_net();
3276
3277 /* Shutdown queueing discipline. */
3278 dev_shutdown(dev);
3279
3280
3281 /* Notify protocols, that we are about to destroy
3282 this device. They should clean all the things.
3283 */
3284 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3285
3286 /*
3287 * Flush the multicast chain
3288 */
3289 dev_mc_discard(dev);
3290
3291 if (dev->uninit)
3292 dev->uninit(dev);
3293
3294 /* Notifier chain MUST detach us from master device. */
3295 BUG_TRAP(!dev->master);
3296
3297 /* Finish processing unregister after unlock */
3298 net_set_todo(dev);
3299
3300 synchronize_net();
3301
3302 dev_put(dev);
3303 }
3304
3305 /**
3306 * unregister_netdev - remove device from the kernel
3307 * @dev: device
3308 *
3309 * This function shuts down a device interface and removes it
3310 * from the kernel tables. On success 0 is returned, on a failure
3311 * a negative errno code is returned.
3312 *
3313 * This is just a wrapper for unregister_netdevice that takes
3314 * the rtnl semaphore. In general you want to use this and not
3315 * unregister_netdevice.
3316 */
3317 void unregister_netdev(struct net_device *dev)
3318 {
3319 rtnl_lock();
3320 unregister_netdevice(dev);
3321 rtnl_unlock();
3322 }
3323
3324 EXPORT_SYMBOL(unregister_netdev);
3325
3326 static int dev_cpu_callback(struct notifier_block *nfb,
3327 unsigned long action,
3328 void *ocpu)
3329 {
3330 struct sk_buff **list_skb;
3331 struct net_device **list_net;
3332 struct sk_buff *skb;
3333 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3334 struct softnet_data *sd, *oldsd;
3335
3336 if (action != CPU_DEAD)
3337 return NOTIFY_OK;
3338
3339 local_irq_disable();
3340 cpu = smp_processor_id();
3341 sd = &per_cpu(softnet_data, cpu);
3342 oldsd = &per_cpu(softnet_data, oldcpu);
3343
3344 /* Find end of our completion_queue. */
3345 list_skb = &sd->completion_queue;
3346 while (*list_skb)
3347 list_skb = &(*list_skb)->next;
3348 /* Append completion queue from offline CPU. */
3349 *list_skb = oldsd->completion_queue;
3350 oldsd->completion_queue = NULL;
3351
3352 /* Find end of our output_queue. */
3353 list_net = &sd->output_queue;
3354 while (*list_net)
3355 list_net = &(*list_net)->next_sched;
3356 /* Append output queue from offline CPU. */
3357 *list_net = oldsd->output_queue;
3358 oldsd->output_queue = NULL;
3359
3360 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3361 local_irq_enable();
3362
3363 /* Process offline CPU's input_pkt_queue */
3364 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3365 netif_rx(skb);
3366
3367 return NOTIFY_OK;
3368 }
3369
3370 #ifdef CONFIG_NET_DMA
3371 /**
3372 * net_dma_rebalance -
3373 * This is called when the number of channels allocated to the net_dma_client
3374 * changes. The net_dma_client tries to have one DMA channel per CPU.
3375 */
3376 static void net_dma_rebalance(void)
3377 {
3378 unsigned int cpu, i, n;
3379 struct dma_chan *chan;
3380
3381 if (net_dma_count == 0) {
3382 for_each_online_cpu(cpu)
3383 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
3384 return;
3385 }
3386
3387 i = 0;
3388 cpu = first_cpu(cpu_online_map);
3389
3390 rcu_read_lock();
3391 list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3392 n = ((num_online_cpus() / net_dma_count)
3393 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3394
3395 while(n) {
3396 per_cpu(softnet_data, cpu).net_dma = chan;
3397 cpu = next_cpu(cpu, cpu_online_map);
3398 n--;
3399 }
3400 i++;
3401 }
3402 rcu_read_unlock();
3403 }
3404
3405 /**
3406 * netdev_dma_event - event callback for the net_dma_client
3407 * @client: should always be net_dma_client
3408 * @chan: DMA channel for the event
3409 * @event: event type
3410 */
3411 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3412 enum dma_event event)
3413 {
3414 spin_lock(&net_dma_event_lock);
3415 switch (event) {
3416 case DMA_RESOURCE_ADDED:
3417 net_dma_count++;
3418 net_dma_rebalance();
3419 break;
3420 case DMA_RESOURCE_REMOVED:
3421 net_dma_count--;
3422 net_dma_rebalance();
3423 break;
3424 default:
3425 break;
3426 }
3427 spin_unlock(&net_dma_event_lock);
3428 }
3429
3430 /**
3431 * netdev_dma_regiser - register the networking subsystem as a DMA client
3432 */
3433 static int __init netdev_dma_register(void)
3434 {
3435 spin_lock_init(&net_dma_event_lock);
3436 net_dma_client = dma_async_client_register(netdev_dma_event);
3437 if (net_dma_client == NULL)
3438 return -ENOMEM;
3439
3440 dma_async_client_chan_request(net_dma_client, num_online_cpus());
3441 return 0;
3442 }
3443
3444 #else
3445 static int __init netdev_dma_register(void) { return -ENODEV; }
3446 #endif /* CONFIG_NET_DMA */
3447
3448 /*
3449 * Initialize the DEV module. At boot time this walks the device list and
3450 * unhooks any devices that fail to initialise (normally hardware not
3451 * present) and leaves us with a valid list of present and active devices.
3452 *
3453 */
3454
3455 /*
3456 * This is called single threaded during boot, so no need
3457 * to take the rtnl semaphore.
3458 */
3459 static int __init net_dev_init(void)
3460 {
3461 int i, rc = -ENOMEM;
3462
3463 BUG_ON(!dev_boot_phase);
3464
3465 if (dev_proc_init())
3466 goto out;
3467
3468 if (netdev_sysfs_init())
3469 goto out;
3470
3471 INIT_LIST_HEAD(&ptype_all);
3472 for (i = 0; i < 16; i++)
3473 INIT_LIST_HEAD(&ptype_base[i]);
3474
3475 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3476 INIT_HLIST_HEAD(&dev_name_head[i]);
3477
3478 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3479 INIT_HLIST_HEAD(&dev_index_head[i]);
3480
3481 /*
3482 * Initialise the packet receive queues.
3483 */
3484
3485 for_each_possible_cpu(i) {
3486 struct softnet_data *queue;
3487
3488 queue = &per_cpu(softnet_data, i);
3489 skb_queue_head_init(&queue->input_pkt_queue);
3490 queue->completion_queue = NULL;
3491 INIT_LIST_HEAD(&queue->poll_list);
3492 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3493 queue->backlog_dev.weight = weight_p;
3494 queue->backlog_dev.poll = process_backlog;
3495 atomic_set(&queue->backlog_dev.refcnt, 1);
3496 }
3497
3498 netdev_dma_register();
3499
3500 dev_boot_phase = 0;
3501
3502 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3503 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3504
3505 hotcpu_notifier(dev_cpu_callback, 0);
3506 dst_init();
3507 dev_mcast_init();
3508 rc = 0;
3509 out:
3510 return rc;
3511 }
3512
3513 subsys_initcall(net_dev_init);
3514
3515 EXPORT_SYMBOL(__dev_get_by_index);
3516 EXPORT_SYMBOL(__dev_get_by_name);
3517 EXPORT_SYMBOL(__dev_remove_pack);
3518 EXPORT_SYMBOL(dev_valid_name);
3519 EXPORT_SYMBOL(dev_add_pack);
3520 EXPORT_SYMBOL(dev_alloc_name);
3521 EXPORT_SYMBOL(dev_close);
3522 EXPORT_SYMBOL(dev_get_by_flags);
3523 EXPORT_SYMBOL(dev_get_by_index);
3524 EXPORT_SYMBOL(dev_get_by_name);
3525 EXPORT_SYMBOL(dev_open);
3526 EXPORT_SYMBOL(dev_queue_xmit);
3527 EXPORT_SYMBOL(dev_remove_pack);
3528 EXPORT_SYMBOL(dev_set_allmulti);
3529 EXPORT_SYMBOL(dev_set_promiscuity);
3530 EXPORT_SYMBOL(dev_change_flags);
3531 EXPORT_SYMBOL(dev_set_mtu);
3532 EXPORT_SYMBOL(dev_set_mac_address);
3533 EXPORT_SYMBOL(free_netdev);
3534 EXPORT_SYMBOL(netdev_boot_setup_check);
3535 EXPORT_SYMBOL(netdev_set_master);
3536 EXPORT_SYMBOL(netdev_state_change);
3537 EXPORT_SYMBOL(netif_receive_skb);
3538 EXPORT_SYMBOL(netif_rx);
3539 EXPORT_SYMBOL(register_gifconf);
3540 EXPORT_SYMBOL(register_netdevice);
3541 EXPORT_SYMBOL(register_netdevice_notifier);
3542 EXPORT_SYMBOL(skb_checksum_help);
3543 EXPORT_SYMBOL(synchronize_net);
3544 EXPORT_SYMBOL(unregister_netdevice);
3545 EXPORT_SYMBOL(unregister_netdevice_notifier);
3546 EXPORT_SYMBOL(net_enable_timestamp);
3547 EXPORT_SYMBOL(net_disable_timestamp);
3548 EXPORT_SYMBOL(dev_get_flags);
3549
3550 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3551 EXPORT_SYMBOL(br_handle_frame_hook);
3552 EXPORT_SYMBOL(br_fdb_get_hook);
3553 EXPORT_SYMBOL(br_fdb_put_hook);
3554 #endif
3555
3556 #ifdef CONFIG_KMOD
3557 EXPORT_SYMBOL(dev_load);
3558 #endif
3559
3560 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.162569 seconds and 6 git commands to generate.