Merge branch 'dccp' of git://eden-feed.erg.abdn.ac.uk/net-next-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold the
753 * rtnl semaphore. The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 * BUGS:
757 * If the API was consistent this would be __dev_get_by_hwaddr
758 */
759
760 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765
766 for_each_netdev(net, dev)
767 if (dev->type == type &&
768 !memcmp(dev->dev_addr, ha, dev->addr_len))
769 return dev;
770
771 return NULL;
772 }
773 EXPORT_SYMBOL(dev_getbyhwaddr);
774
775 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 {
777 struct net_device *dev;
778
779 ASSERT_RTNL();
780 for_each_netdev(net, dev)
781 if (dev->type == type)
782 return dev;
783
784 return NULL;
785 }
786 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787
788 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 {
790 struct net_device *dev, *ret = NULL;
791
792 rcu_read_lock();
793 for_each_netdev_rcu(net, dev)
794 if (dev->type == type) {
795 dev_hold(dev);
796 ret = dev;
797 break;
798 }
799 rcu_read_unlock();
800 return ret;
801 }
802 EXPORT_SYMBOL(dev_getfirstbyhwtype);
803
804 /**
805 * dev_get_by_flags_rcu - find any device with given flags
806 * @net: the applicable net namespace
807 * @if_flags: IFF_* values
808 * @mask: bitmask of bits in if_flags to check
809 *
810 * Search for any interface with the given flags. Returns NULL if a device
811 * is not found or a pointer to the device. Must be called inside
812 * rcu_read_lock(), and result refcount is unchanged.
813 */
814
815 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
816 unsigned short mask)
817 {
818 struct net_device *dev, *ret;
819
820 ret = NULL;
821 for_each_netdev_rcu(net, dev) {
822 if (((dev->flags ^ if_flags) & mask) == 0) {
823 ret = dev;
824 break;
825 }
826 }
827 return ret;
828 }
829 EXPORT_SYMBOL(dev_get_by_flags_rcu);
830
831 /**
832 * dev_valid_name - check if name is okay for network device
833 * @name: name string
834 *
835 * Network device names need to be valid file names to
836 * to allow sysfs to work. We also disallow any kind of
837 * whitespace.
838 */
839 int dev_valid_name(const char *name)
840 {
841 if (*name == '\0')
842 return 0;
843 if (strlen(name) >= IFNAMSIZ)
844 return 0;
845 if (!strcmp(name, ".") || !strcmp(name, ".."))
846 return 0;
847
848 while (*name) {
849 if (*name == '/' || isspace(*name))
850 return 0;
851 name++;
852 }
853 return 1;
854 }
855 EXPORT_SYMBOL(dev_valid_name);
856
857 /**
858 * __dev_alloc_name - allocate a name for a device
859 * @net: network namespace to allocate the device name in
860 * @name: name format string
861 * @buf: scratch buffer and result name string
862 *
863 * Passed a format string - eg "lt%d" it will try and find a suitable
864 * id. It scans list of devices to build up a free map, then chooses
865 * the first empty slot. The caller must hold the dev_base or rtnl lock
866 * while allocating the name and adding the device in order to avoid
867 * duplicates.
868 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869 * Returns the number of the unit assigned or a negative errno code.
870 */
871
872 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873 {
874 int i = 0;
875 const char *p;
876 const int max_netdevices = 8*PAGE_SIZE;
877 unsigned long *inuse;
878 struct net_device *d;
879
880 p = strnchr(name, IFNAMSIZ-1, '%');
881 if (p) {
882 /*
883 * Verify the string as this thing may have come from
884 * the user. There must be either one "%d" and no other "%"
885 * characters.
886 */
887 if (p[1] != 'd' || strchr(p + 2, '%'))
888 return -EINVAL;
889
890 /* Use one page as a bit array of possible slots */
891 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
892 if (!inuse)
893 return -ENOMEM;
894
895 for_each_netdev(net, d) {
896 if (!sscanf(d->name, name, &i))
897 continue;
898 if (i < 0 || i >= max_netdevices)
899 continue;
900
901 /* avoid cases where sscanf is not exact inverse of printf */
902 snprintf(buf, IFNAMSIZ, name, i);
903 if (!strncmp(buf, d->name, IFNAMSIZ))
904 set_bit(i, inuse);
905 }
906
907 i = find_first_zero_bit(inuse, max_netdevices);
908 free_page((unsigned long) inuse);
909 }
910
911 if (buf != name)
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!__dev_get_by_name(net, buf))
914 return i;
915
916 /* It is possible to run out of possible slots
917 * when the name is long and there isn't enough space left
918 * for the digits, or if all bits are used.
919 */
920 return -ENFILE;
921 }
922
923 /**
924 * dev_alloc_name - allocate a name for a device
925 * @dev: device
926 * @name: name format string
927 *
928 * Passed a format string - eg "lt%d" it will try and find a suitable
929 * id. It scans list of devices to build up a free map, then chooses
930 * the first empty slot. The caller must hold the dev_base or rtnl lock
931 * while allocating the name and adding the device in order to avoid
932 * duplicates.
933 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
934 * Returns the number of the unit assigned or a negative errno code.
935 */
936
937 int dev_alloc_name(struct net_device *dev, const char *name)
938 {
939 char buf[IFNAMSIZ];
940 struct net *net;
941 int ret;
942
943 BUG_ON(!dev_net(dev));
944 net = dev_net(dev);
945 ret = __dev_alloc_name(net, name, buf);
946 if (ret >= 0)
947 strlcpy(dev->name, buf, IFNAMSIZ);
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_alloc_name);
951
952 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953 {
954 struct net *net;
955
956 BUG_ON(!dev_net(dev));
957 net = dev_net(dev);
958
959 if (!dev_valid_name(name))
960 return -EINVAL;
961
962 if (fmt && strchr(name, '%'))
963 return dev_alloc_name(dev, name);
964 else if (__dev_get_by_name(net, name))
965 return -EEXIST;
966 else if (dev->name != name)
967 strlcpy(dev->name, name, IFNAMSIZ);
968
969 return 0;
970 }
971
972 /**
973 * dev_change_name - change name of a device
974 * @dev: device
975 * @newname: name (or format string) must be at least IFNAMSIZ
976 *
977 * Change name of a device, can pass format strings "eth%d".
978 * for wildcarding.
979 */
980 int dev_change_name(struct net_device *dev, const char *newname)
981 {
982 char oldname[IFNAMSIZ];
983 int err = 0;
984 int ret;
985 struct net *net;
986
987 ASSERT_RTNL();
988 BUG_ON(!dev_net(dev));
989
990 net = dev_net(dev);
991 if (dev->flags & IFF_UP)
992 return -EBUSY;
993
994 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
995 return 0;
996
997 memcpy(oldname, dev->name, IFNAMSIZ);
998
999 err = dev_get_valid_name(dev, newname, 1);
1000 if (err < 0)
1001 return err;
1002
1003 rollback:
1004 ret = device_rename(&dev->dev, dev->name);
1005 if (ret) {
1006 memcpy(dev->name, oldname, IFNAMSIZ);
1007 return ret;
1008 }
1009
1010 write_lock_bh(&dev_base_lock);
1011 hlist_del(&dev->name_hlist);
1012 write_unlock_bh(&dev_base_lock);
1013
1014 synchronize_rcu();
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1018 write_unlock_bh(&dev_base_lock);
1019
1020 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1021 ret = notifier_to_errno(ret);
1022
1023 if (ret) {
1024 /* err >= 0 after dev_alloc_name() or stores the first errno */
1025 if (err >= 0) {
1026 err = ret;
1027 memcpy(dev->name, oldname, IFNAMSIZ);
1028 goto rollback;
1029 } else {
1030 printk(KERN_ERR
1031 "%s: name change rollback failed: %d.\n",
1032 dev->name, ret);
1033 }
1034 }
1035
1036 return err;
1037 }
1038
1039 /**
1040 * dev_set_alias - change ifalias of a device
1041 * @dev: device
1042 * @alias: name up to IFALIASZ
1043 * @len: limit of bytes to copy from info
1044 *
1045 * Set ifalias for a device,
1046 */
1047 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048 {
1049 ASSERT_RTNL();
1050
1051 if (len >= IFALIASZ)
1052 return -EINVAL;
1053
1054 if (!len) {
1055 if (dev->ifalias) {
1056 kfree(dev->ifalias);
1057 dev->ifalias = NULL;
1058 }
1059 return 0;
1060 }
1061
1062 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1063 if (!dev->ifalias)
1064 return -ENOMEM;
1065
1066 strlcpy(dev->ifalias, alias, len+1);
1067 return len;
1068 }
1069
1070
1071 /**
1072 * netdev_features_change - device changes features
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed features.
1076 */
1077 void netdev_features_change(struct net_device *dev)
1078 {
1079 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 }
1081 EXPORT_SYMBOL(netdev_features_change);
1082
1083 /**
1084 * netdev_state_change - device changes state
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed state. This function calls
1088 * the notifier chains for netdev_chain and sends a NEWLINK message
1089 * to the routing socket.
1090 */
1091 void netdev_state_change(struct net_device *dev)
1092 {
1093 if (dev->flags & IFF_UP) {
1094 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1095 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 }
1097 }
1098 EXPORT_SYMBOL(netdev_state_change);
1099
1100 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 {
1102 return call_netdevice_notifiers(event, dev);
1103 }
1104 EXPORT_SYMBOL(netdev_bonding_change);
1105
1106 /**
1107 * dev_load - load a network module
1108 * @net: the applicable net namespace
1109 * @name: name of interface
1110 *
1111 * If a network interface is not present and the process has suitable
1112 * privileges this function loads the module. If module loading is not
1113 * available in this kernel then it becomes a nop.
1114 */
1115
1116 void dev_load(struct net *net, const char *name)
1117 {
1118 struct net_device *dev;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 if (!dev && capable(CAP_NET_ADMIN))
1125 request_module("%s", name);
1126 }
1127 EXPORT_SYMBOL(dev_load);
1128
1129 static int __dev_open(struct net_device *dev)
1130 {
1131 const struct net_device_ops *ops = dev->netdev_ops;
1132 int ret;
1133
1134 ASSERT_RTNL();
1135
1136 /*
1137 * Is it even present?
1138 */
1139 if (!netif_device_present(dev))
1140 return -ENODEV;
1141
1142 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1143 ret = notifier_to_errno(ret);
1144 if (ret)
1145 return ret;
1146
1147 /*
1148 * Call device private open method
1149 */
1150 set_bit(__LINK_STATE_START, &dev->state);
1151
1152 if (ops->ndo_validate_addr)
1153 ret = ops->ndo_validate_addr(dev);
1154
1155 if (!ret && ops->ndo_open)
1156 ret = ops->ndo_open(dev);
1157
1158 /*
1159 * If it went open OK then:
1160 */
1161
1162 if (ret)
1163 clear_bit(__LINK_STATE_START, &dev->state);
1164 else {
1165 /*
1166 * Set the flags.
1167 */
1168 dev->flags |= IFF_UP;
1169
1170 /*
1171 * Enable NET_DMA
1172 */
1173 net_dmaengine_get();
1174
1175 /*
1176 * Initialize multicasting status
1177 */
1178 dev_set_rx_mode(dev);
1179
1180 /*
1181 * Wakeup transmit queue engine
1182 */
1183 dev_activate(dev);
1184 }
1185
1186 return ret;
1187 }
1188
1189 /**
1190 * dev_open - prepare an interface for use.
1191 * @dev: device to open
1192 *
1193 * Takes a device from down to up state. The device's private open
1194 * function is invoked and then the multicast lists are loaded. Finally
1195 * the device is moved into the up state and a %NETDEV_UP message is
1196 * sent to the netdev notifier chain.
1197 *
1198 * Calling this function on an active interface is a nop. On a failure
1199 * a negative errno code is returned.
1200 */
1201 int dev_open(struct net_device *dev)
1202 {
1203 int ret;
1204
1205 /*
1206 * Is it already up?
1207 */
1208 if (dev->flags & IFF_UP)
1209 return 0;
1210
1211 /*
1212 * Open device
1213 */
1214 ret = __dev_open(dev);
1215 if (ret < 0)
1216 return ret;
1217
1218 /*
1219 * ... and announce new interface.
1220 */
1221 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1222 call_netdevice_notifiers(NETDEV_UP, dev);
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(dev_open);
1227
1228 static int __dev_close(struct net_device *dev)
1229 {
1230 const struct net_device_ops *ops = dev->netdev_ops;
1231
1232 ASSERT_RTNL();
1233 might_sleep();
1234
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list,
1244 * it can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250
1251 dev_deactivate(dev);
1252
1253 /*
1254 * Call the device specific close. This cannot fail.
1255 * Only if device is UP
1256 *
1257 * We allow it to be called even after a DETACH hot-plug
1258 * event.
1259 */
1260 if (ops->ndo_stop)
1261 ops->ndo_stop(dev);
1262
1263 /*
1264 * Device is now down.
1265 */
1266
1267 dev->flags &= ~IFF_UP;
1268
1269 /*
1270 * Shutdown NET_DMA
1271 */
1272 net_dmaengine_put();
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * dev_close - shutdown an interface.
1279 * @dev: device to shutdown
1280 *
1281 * This function moves an active device into down state. A
1282 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1283 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1284 * chain.
1285 */
1286 int dev_close(struct net_device *dev)
1287 {
1288 if (!(dev->flags & IFF_UP))
1289 return 0;
1290
1291 __dev_close(dev);
1292
1293 /*
1294 * Tell people we are down
1295 */
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_DOWN, dev);
1298
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(dev_close);
1302
1303
1304 /**
1305 * dev_disable_lro - disable Large Receive Offload on a device
1306 * @dev: device
1307 *
1308 * Disable Large Receive Offload (LRO) on a net device. Must be
1309 * called under RTNL. This is needed if received packets may be
1310 * forwarded to another interface.
1311 */
1312 void dev_disable_lro(struct net_device *dev)
1313 {
1314 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1315 dev->ethtool_ops->set_flags) {
1316 u32 flags = dev->ethtool_ops->get_flags(dev);
1317 if (flags & ETH_FLAG_LRO) {
1318 flags &= ~ETH_FLAG_LRO;
1319 dev->ethtool_ops->set_flags(dev, flags);
1320 }
1321 }
1322 WARN_ON(dev->features & NETIF_F_LRO);
1323 }
1324 EXPORT_SYMBOL(dev_disable_lro);
1325
1326
1327 static int dev_boot_phase = 1;
1328
1329 /*
1330 * Device change register/unregister. These are not inline or static
1331 * as we export them to the world.
1332 */
1333
1334 /**
1335 * register_netdevice_notifier - register a network notifier block
1336 * @nb: notifier
1337 *
1338 * Register a notifier to be called when network device events occur.
1339 * The notifier passed is linked into the kernel structures and must
1340 * not be reused until it has been unregistered. A negative errno code
1341 * is returned on a failure.
1342 *
1343 * When registered all registration and up events are replayed
1344 * to the new notifier to allow device to have a race free
1345 * view of the network device list.
1346 */
1347
1348 int register_netdevice_notifier(struct notifier_block *nb)
1349 {
1350 struct net_device *dev;
1351 struct net_device *last;
1352 struct net *net;
1353 int err;
1354
1355 rtnl_lock();
1356 err = raw_notifier_chain_register(&netdev_chain, nb);
1357 if (err)
1358 goto unlock;
1359 if (dev_boot_phase)
1360 goto unlock;
1361 for_each_net(net) {
1362 for_each_netdev(net, dev) {
1363 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1364 err = notifier_to_errno(err);
1365 if (err)
1366 goto rollback;
1367
1368 if (!(dev->flags & IFF_UP))
1369 continue;
1370
1371 nb->notifier_call(nb, NETDEV_UP, dev);
1372 }
1373 }
1374
1375 unlock:
1376 rtnl_unlock();
1377 return err;
1378
1379 rollback:
1380 last = dev;
1381 for_each_net(net) {
1382 for_each_netdev(net, dev) {
1383 if (dev == last)
1384 break;
1385
1386 if (dev->flags & IFF_UP) {
1387 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1388 nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 }
1390 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1392 }
1393 }
1394
1395 raw_notifier_chain_unregister(&netdev_chain, nb);
1396 goto unlock;
1397 }
1398 EXPORT_SYMBOL(register_netdevice_notifier);
1399
1400 /**
1401 * unregister_netdevice_notifier - unregister a network notifier block
1402 * @nb: notifier
1403 *
1404 * Unregister a notifier previously registered by
1405 * register_netdevice_notifier(). The notifier is unlinked into the
1406 * kernel structures and may then be reused. A negative errno code
1407 * is returned on a failure.
1408 */
1409
1410 int unregister_netdevice_notifier(struct notifier_block *nb)
1411 {
1412 int err;
1413
1414 rtnl_lock();
1415 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1416 rtnl_unlock();
1417 return err;
1418 }
1419 EXPORT_SYMBOL(unregister_netdevice_notifier);
1420
1421 /**
1422 * call_netdevice_notifiers - call all network notifier blocks
1423 * @val: value passed unmodified to notifier function
1424 * @dev: net_device pointer passed unmodified to notifier function
1425 *
1426 * Call all network notifier blocks. Parameters and return value
1427 * are as for raw_notifier_call_chain().
1428 */
1429
1430 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431 {
1432 ASSERT_RTNL();
1433 return raw_notifier_call_chain(&netdev_chain, val, dev);
1434 }
1435
1436 /* When > 0 there are consumers of rx skb time stamps */
1437 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438
1439 void net_enable_timestamp(void)
1440 {
1441 atomic_inc(&netstamp_needed);
1442 }
1443 EXPORT_SYMBOL(net_enable_timestamp);
1444
1445 void net_disable_timestamp(void)
1446 {
1447 atomic_dec(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_disable_timestamp);
1450
1451 static inline void net_timestamp_set(struct sk_buff *skb)
1452 {
1453 if (atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 else
1456 skb->tstamp.tv64 = 0;
1457 }
1458
1459 static inline void net_timestamp_check(struct sk_buff *skb)
1460 {
1461 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1462 __net_timestamp(skb);
1463 }
1464
1465 /**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped, but freed)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 skb_orphan(skb);
1486 nf_reset(skb);
1487
1488 if (unlikely(!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1490 atomic_long_inc(&dev->rx_dropped);
1491 kfree_skb(skb);
1492 return NET_RX_DROP;
1493 }
1494 skb_set_dev(skb, dev);
1495 skb->tstamp.tv64 = 0;
1496 skb->pkt_type = PACKET_HOST;
1497 skb->protocol = eth_type_trans(skb, dev);
1498 return netif_rx(skb);
1499 }
1500 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501
1502 /*
1503 * Support routine. Sends outgoing frames to any network
1504 * taps currently in use.
1505 */
1506
1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 {
1509 struct packet_type *ptype;
1510
1511 #ifdef CONFIG_NET_CLS_ACT
1512 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1513 net_timestamp_set(skb);
1514 #else
1515 net_timestamp_set(skb);
1516 #endif
1517
1518 rcu_read_lock();
1519 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1520 /* Never send packets back to the socket
1521 * they originated from - MvS (miquels@drinkel.ow.org)
1522 */
1523 if ((ptype->dev == dev || !ptype->dev) &&
1524 (ptype->af_packet_priv == NULL ||
1525 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1526 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1527 if (!skb2)
1528 break;
1529
1530 /* skb->nh should be correctly
1531 set by sender, so that the second statement is
1532 just protection against buggy protocols.
1533 */
1534 skb_reset_mac_header(skb2);
1535
1536 if (skb_network_header(skb2) < skb2->data ||
1537 skb2->network_header > skb2->tail) {
1538 if (net_ratelimit())
1539 printk(KERN_CRIT "protocol %04x is "
1540 "buggy, dev %s\n",
1541 ntohs(skb2->protocol),
1542 dev->name);
1543 skb_reset_network_header(skb2);
1544 }
1545
1546 skb2->transport_header = skb2->network_header;
1547 skb2->pkt_type = PACKET_OUTGOING;
1548 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 }
1550 }
1551 rcu_read_unlock();
1552 }
1553
1554 /*
1555 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1556 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1557 */
1558 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1559 {
1560 int rc;
1561
1562 if (txq < 1 || txq > dev->num_tx_queues)
1563 return -EINVAL;
1564
1565 if (dev->reg_state == NETREG_REGISTERED) {
1566 ASSERT_RTNL();
1567
1568 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1569 txq);
1570 if (rc)
1571 return rc;
1572
1573 if (txq < dev->real_num_tx_queues)
1574 qdisc_reset_all_tx_gt(dev, txq);
1575 }
1576
1577 dev->real_num_tx_queues = txq;
1578 return 0;
1579 }
1580 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1581
1582 #ifdef CONFIG_RPS
1583 /**
1584 * netif_set_real_num_rx_queues - set actual number of RX queues used
1585 * @dev: Network device
1586 * @rxq: Actual number of RX queues
1587 *
1588 * This must be called either with the rtnl_lock held or before
1589 * registration of the net device. Returns 0 on success, or a
1590 * negative error code. If called before registration, it always
1591 * succeeds.
1592 */
1593 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1594 {
1595 int rc;
1596
1597 if (rxq < 1 || rxq > dev->num_rx_queues)
1598 return -EINVAL;
1599
1600 if (dev->reg_state == NETREG_REGISTERED) {
1601 ASSERT_RTNL();
1602
1603 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1604 rxq);
1605 if (rc)
1606 return rc;
1607 }
1608
1609 dev->real_num_rx_queues = rxq;
1610 return 0;
1611 }
1612 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1613 #endif
1614
1615 static inline void __netif_reschedule(struct Qdisc *q)
1616 {
1617 struct softnet_data *sd;
1618 unsigned long flags;
1619
1620 local_irq_save(flags);
1621 sd = &__get_cpu_var(softnet_data);
1622 q->next_sched = NULL;
1623 *sd->output_queue_tailp = q;
1624 sd->output_queue_tailp = &q->next_sched;
1625 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1626 local_irq_restore(flags);
1627 }
1628
1629 void __netif_schedule(struct Qdisc *q)
1630 {
1631 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1632 __netif_reschedule(q);
1633 }
1634 EXPORT_SYMBOL(__netif_schedule);
1635
1636 void dev_kfree_skb_irq(struct sk_buff *skb)
1637 {
1638 if (atomic_dec_and_test(&skb->users)) {
1639 struct softnet_data *sd;
1640 unsigned long flags;
1641
1642 local_irq_save(flags);
1643 sd = &__get_cpu_var(softnet_data);
1644 skb->next = sd->completion_queue;
1645 sd->completion_queue = skb;
1646 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1647 local_irq_restore(flags);
1648 }
1649 }
1650 EXPORT_SYMBOL(dev_kfree_skb_irq);
1651
1652 void dev_kfree_skb_any(struct sk_buff *skb)
1653 {
1654 if (in_irq() || irqs_disabled())
1655 dev_kfree_skb_irq(skb);
1656 else
1657 dev_kfree_skb(skb);
1658 }
1659 EXPORT_SYMBOL(dev_kfree_skb_any);
1660
1661
1662 /**
1663 * netif_device_detach - mark device as removed
1664 * @dev: network device
1665 *
1666 * Mark device as removed from system and therefore no longer available.
1667 */
1668 void netif_device_detach(struct net_device *dev)
1669 {
1670 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1671 netif_running(dev)) {
1672 netif_tx_stop_all_queues(dev);
1673 }
1674 }
1675 EXPORT_SYMBOL(netif_device_detach);
1676
1677 /**
1678 * netif_device_attach - mark device as attached
1679 * @dev: network device
1680 *
1681 * Mark device as attached from system and restart if needed.
1682 */
1683 void netif_device_attach(struct net_device *dev)
1684 {
1685 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1686 netif_running(dev)) {
1687 netif_tx_wake_all_queues(dev);
1688 __netdev_watchdog_up(dev);
1689 }
1690 }
1691 EXPORT_SYMBOL(netif_device_attach);
1692
1693 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1694 {
1695 return ((features & NETIF_F_NO_CSUM) ||
1696 ((features & NETIF_F_V4_CSUM) &&
1697 protocol == htons(ETH_P_IP)) ||
1698 ((features & NETIF_F_V6_CSUM) &&
1699 protocol == htons(ETH_P_IPV6)) ||
1700 ((features & NETIF_F_FCOE_CRC) &&
1701 protocol == htons(ETH_P_FCOE)));
1702 }
1703
1704 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1705 {
1706 __be16 protocol = skb->protocol;
1707 int features = dev->features;
1708
1709 if (vlan_tx_tag_present(skb)) {
1710 features &= dev->vlan_features;
1711 } else if (protocol == htons(ETH_P_8021Q)) {
1712 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1713 protocol = veh->h_vlan_encapsulated_proto;
1714 features &= dev->vlan_features;
1715 }
1716
1717 return can_checksum_protocol(features, protocol);
1718 }
1719
1720 /**
1721 * skb_dev_set -- assign a new device to a buffer
1722 * @skb: buffer for the new device
1723 * @dev: network device
1724 *
1725 * If an skb is owned by a device already, we have to reset
1726 * all data private to the namespace a device belongs to
1727 * before assigning it a new device.
1728 */
1729 #ifdef CONFIG_NET_NS
1730 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1731 {
1732 skb_dst_drop(skb);
1733 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1734 secpath_reset(skb);
1735 nf_reset(skb);
1736 skb_init_secmark(skb);
1737 skb->mark = 0;
1738 skb->priority = 0;
1739 skb->nf_trace = 0;
1740 skb->ipvs_property = 0;
1741 #ifdef CONFIG_NET_SCHED
1742 skb->tc_index = 0;
1743 #endif
1744 }
1745 skb->dev = dev;
1746 }
1747 EXPORT_SYMBOL(skb_set_dev);
1748 #endif /* CONFIG_NET_NS */
1749
1750 /*
1751 * Invalidate hardware checksum when packet is to be mangled, and
1752 * complete checksum manually on outgoing path.
1753 */
1754 int skb_checksum_help(struct sk_buff *skb)
1755 {
1756 __wsum csum;
1757 int ret = 0, offset;
1758
1759 if (skb->ip_summed == CHECKSUM_COMPLETE)
1760 goto out_set_summed;
1761
1762 if (unlikely(skb_shinfo(skb)->gso_size)) {
1763 /* Let GSO fix up the checksum. */
1764 goto out_set_summed;
1765 }
1766
1767 offset = skb->csum_start - skb_headroom(skb);
1768 BUG_ON(offset >= skb_headlen(skb));
1769 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1770
1771 offset += skb->csum_offset;
1772 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1773
1774 if (skb_cloned(skb) &&
1775 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1776 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1777 if (ret)
1778 goto out;
1779 }
1780
1781 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1782 out_set_summed:
1783 skb->ip_summed = CHECKSUM_NONE;
1784 out:
1785 return ret;
1786 }
1787 EXPORT_SYMBOL(skb_checksum_help);
1788
1789 /**
1790 * skb_gso_segment - Perform segmentation on skb.
1791 * @skb: buffer to segment
1792 * @features: features for the output path (see dev->features)
1793 *
1794 * This function segments the given skb and returns a list of segments.
1795 *
1796 * It may return NULL if the skb requires no segmentation. This is
1797 * only possible when GSO is used for verifying header integrity.
1798 */
1799 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1800 {
1801 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1802 struct packet_type *ptype;
1803 __be16 type = skb->protocol;
1804 int vlan_depth = ETH_HLEN;
1805 int err;
1806
1807 while (type == htons(ETH_P_8021Q)) {
1808 struct vlan_hdr *vh;
1809
1810 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1811 return ERR_PTR(-EINVAL);
1812
1813 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1814 type = vh->h_vlan_encapsulated_proto;
1815 vlan_depth += VLAN_HLEN;
1816 }
1817
1818 skb_reset_mac_header(skb);
1819 skb->mac_len = skb->network_header - skb->mac_header;
1820 __skb_pull(skb, skb->mac_len);
1821
1822 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1823 struct net_device *dev = skb->dev;
1824 struct ethtool_drvinfo info = {};
1825
1826 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1827 dev->ethtool_ops->get_drvinfo(dev, &info);
1828
1829 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1830 info.driver, dev ? dev->features : 0L,
1831 skb->sk ? skb->sk->sk_route_caps : 0L,
1832 skb->len, skb->data_len, skb->ip_summed);
1833
1834 if (skb_header_cloned(skb) &&
1835 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1836 return ERR_PTR(err);
1837 }
1838
1839 rcu_read_lock();
1840 list_for_each_entry_rcu(ptype,
1841 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1842 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1843 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1844 err = ptype->gso_send_check(skb);
1845 segs = ERR_PTR(err);
1846 if (err || skb_gso_ok(skb, features))
1847 break;
1848 __skb_push(skb, (skb->data -
1849 skb_network_header(skb)));
1850 }
1851 segs = ptype->gso_segment(skb, features);
1852 break;
1853 }
1854 }
1855 rcu_read_unlock();
1856
1857 __skb_push(skb, skb->data - skb_mac_header(skb));
1858
1859 return segs;
1860 }
1861 EXPORT_SYMBOL(skb_gso_segment);
1862
1863 /* Take action when hardware reception checksum errors are detected. */
1864 #ifdef CONFIG_BUG
1865 void netdev_rx_csum_fault(struct net_device *dev)
1866 {
1867 if (net_ratelimit()) {
1868 printk(KERN_ERR "%s: hw csum failure.\n",
1869 dev ? dev->name : "<unknown>");
1870 dump_stack();
1871 }
1872 }
1873 EXPORT_SYMBOL(netdev_rx_csum_fault);
1874 #endif
1875
1876 /* Actually, we should eliminate this check as soon as we know, that:
1877 * 1. IOMMU is present and allows to map all the memory.
1878 * 2. No high memory really exists on this machine.
1879 */
1880
1881 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 #ifdef CONFIG_HIGHMEM
1884 int i;
1885 if (!(dev->features & NETIF_F_HIGHDMA)) {
1886 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1887 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1888 return 1;
1889 }
1890
1891 if (PCI_DMA_BUS_IS_PHYS) {
1892 struct device *pdev = dev->dev.parent;
1893
1894 if (!pdev)
1895 return 0;
1896 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1897 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1898 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1899 return 1;
1900 }
1901 }
1902 #endif
1903 return 0;
1904 }
1905
1906 struct dev_gso_cb {
1907 void (*destructor)(struct sk_buff *skb);
1908 };
1909
1910 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1911
1912 static void dev_gso_skb_destructor(struct sk_buff *skb)
1913 {
1914 struct dev_gso_cb *cb;
1915
1916 do {
1917 struct sk_buff *nskb = skb->next;
1918
1919 skb->next = nskb->next;
1920 nskb->next = NULL;
1921 kfree_skb(nskb);
1922 } while (skb->next);
1923
1924 cb = DEV_GSO_CB(skb);
1925 if (cb->destructor)
1926 cb->destructor(skb);
1927 }
1928
1929 /**
1930 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1931 * @skb: buffer to segment
1932 *
1933 * This function segments the given skb and stores the list of segments
1934 * in skb->next.
1935 */
1936 static int dev_gso_segment(struct sk_buff *skb)
1937 {
1938 struct net_device *dev = skb->dev;
1939 struct sk_buff *segs;
1940 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1941 NETIF_F_SG : 0);
1942
1943 segs = skb_gso_segment(skb, features);
1944
1945 /* Verifying header integrity only. */
1946 if (!segs)
1947 return 0;
1948
1949 if (IS_ERR(segs))
1950 return PTR_ERR(segs);
1951
1952 skb->next = segs;
1953 DEV_GSO_CB(skb)->destructor = skb->destructor;
1954 skb->destructor = dev_gso_skb_destructor;
1955
1956 return 0;
1957 }
1958
1959 /*
1960 * Try to orphan skb early, right before transmission by the device.
1961 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1962 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1963 */
1964 static inline void skb_orphan_try(struct sk_buff *skb)
1965 {
1966 struct sock *sk = skb->sk;
1967
1968 if (sk && !skb_shinfo(skb)->tx_flags) {
1969 /* skb_tx_hash() wont be able to get sk.
1970 * We copy sk_hash into skb->rxhash
1971 */
1972 if (!skb->rxhash)
1973 skb->rxhash = sk->sk_hash;
1974 skb_orphan(skb);
1975 }
1976 }
1977
1978 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
1979 {
1980 __be16 protocol = skb->protocol;
1981
1982 if (protocol == htons(ETH_P_8021Q)) {
1983 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1984 protocol = veh->h_vlan_encapsulated_proto;
1985 } else if (!skb->vlan_tci)
1986 return dev->features;
1987
1988 if (protocol != htons(ETH_P_8021Q))
1989 return dev->features & dev->vlan_features;
1990 else
1991 return 0;
1992 }
1993 EXPORT_SYMBOL(netif_get_vlan_features);
1994
1995 /*
1996 * Returns true if either:
1997 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1998 * 2. skb is fragmented and the device does not support SG, or if
1999 * at least one of fragments is in highmem and device does not
2000 * support DMA from it.
2001 */
2002 static inline int skb_needs_linearize(struct sk_buff *skb,
2003 struct net_device *dev)
2004 {
2005 if (skb_is_nonlinear(skb)) {
2006 int features = dev->features;
2007
2008 if (vlan_tx_tag_present(skb))
2009 features &= dev->vlan_features;
2010
2011 return (skb_has_frag_list(skb) &&
2012 !(features & NETIF_F_FRAGLIST)) ||
2013 (skb_shinfo(skb)->nr_frags &&
2014 (!(features & NETIF_F_SG) ||
2015 illegal_highdma(dev, skb)));
2016 }
2017
2018 return 0;
2019 }
2020
2021 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2022 struct netdev_queue *txq)
2023 {
2024 const struct net_device_ops *ops = dev->netdev_ops;
2025 int rc = NETDEV_TX_OK;
2026
2027 if (likely(!skb->next)) {
2028 if (!list_empty(&ptype_all))
2029 dev_queue_xmit_nit(skb, dev);
2030
2031 /*
2032 * If device doesnt need skb->dst, release it right now while
2033 * its hot in this cpu cache
2034 */
2035 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2036 skb_dst_drop(skb);
2037
2038 skb_orphan_try(skb);
2039
2040 if (vlan_tx_tag_present(skb) &&
2041 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2042 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2043 if (unlikely(!skb))
2044 goto out;
2045
2046 skb->vlan_tci = 0;
2047 }
2048
2049 if (netif_needs_gso(dev, skb)) {
2050 if (unlikely(dev_gso_segment(skb)))
2051 goto out_kfree_skb;
2052 if (skb->next)
2053 goto gso;
2054 } else {
2055 if (skb_needs_linearize(skb, dev) &&
2056 __skb_linearize(skb))
2057 goto out_kfree_skb;
2058
2059 /* If packet is not checksummed and device does not
2060 * support checksumming for this protocol, complete
2061 * checksumming here.
2062 */
2063 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2064 skb_set_transport_header(skb, skb->csum_start -
2065 skb_headroom(skb));
2066 if (!dev_can_checksum(dev, skb) &&
2067 skb_checksum_help(skb))
2068 goto out_kfree_skb;
2069 }
2070 }
2071
2072 rc = ops->ndo_start_xmit(skb, dev);
2073 trace_net_dev_xmit(skb, rc);
2074 if (rc == NETDEV_TX_OK)
2075 txq_trans_update(txq);
2076 return rc;
2077 }
2078
2079 gso:
2080 do {
2081 struct sk_buff *nskb = skb->next;
2082
2083 skb->next = nskb->next;
2084 nskb->next = NULL;
2085
2086 /*
2087 * If device doesnt need nskb->dst, release it right now while
2088 * its hot in this cpu cache
2089 */
2090 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2091 skb_dst_drop(nskb);
2092
2093 rc = ops->ndo_start_xmit(nskb, dev);
2094 trace_net_dev_xmit(nskb, rc);
2095 if (unlikely(rc != NETDEV_TX_OK)) {
2096 if (rc & ~NETDEV_TX_MASK)
2097 goto out_kfree_gso_skb;
2098 nskb->next = skb->next;
2099 skb->next = nskb;
2100 return rc;
2101 }
2102 txq_trans_update(txq);
2103 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2104 return NETDEV_TX_BUSY;
2105 } while (skb->next);
2106
2107 out_kfree_gso_skb:
2108 if (likely(skb->next == NULL))
2109 skb->destructor = DEV_GSO_CB(skb)->destructor;
2110 out_kfree_skb:
2111 kfree_skb(skb);
2112 out:
2113 return rc;
2114 }
2115
2116 static u32 hashrnd __read_mostly;
2117
2118 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2119 {
2120 u32 hash;
2121
2122 if (skb_rx_queue_recorded(skb)) {
2123 hash = skb_get_rx_queue(skb);
2124 while (unlikely(hash >= dev->real_num_tx_queues))
2125 hash -= dev->real_num_tx_queues;
2126 return hash;
2127 }
2128
2129 if (skb->sk && skb->sk->sk_hash)
2130 hash = skb->sk->sk_hash;
2131 else
2132 hash = (__force u16) skb->protocol ^ skb->rxhash;
2133 hash = jhash_1word(hash, hashrnd);
2134
2135 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2136 }
2137 EXPORT_SYMBOL(skb_tx_hash);
2138
2139 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2140 {
2141 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2142 if (net_ratelimit()) {
2143 pr_warning("%s selects TX queue %d, but "
2144 "real number of TX queues is %d\n",
2145 dev->name, queue_index, dev->real_num_tx_queues);
2146 }
2147 return 0;
2148 }
2149 return queue_index;
2150 }
2151
2152 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2153 {
2154 #ifdef CONFIG_XPS
2155 struct xps_dev_maps *dev_maps;
2156 struct xps_map *map;
2157 int queue_index = -1;
2158
2159 rcu_read_lock();
2160 dev_maps = rcu_dereference(dev->xps_maps);
2161 if (dev_maps) {
2162 map = rcu_dereference(
2163 dev_maps->cpu_map[raw_smp_processor_id()]);
2164 if (map) {
2165 if (map->len == 1)
2166 queue_index = map->queues[0];
2167 else {
2168 u32 hash;
2169 if (skb->sk && skb->sk->sk_hash)
2170 hash = skb->sk->sk_hash;
2171 else
2172 hash = (__force u16) skb->protocol ^
2173 skb->rxhash;
2174 hash = jhash_1word(hash, hashrnd);
2175 queue_index = map->queues[
2176 ((u64)hash * map->len) >> 32];
2177 }
2178 if (unlikely(queue_index >= dev->real_num_tx_queues))
2179 queue_index = -1;
2180 }
2181 }
2182 rcu_read_unlock();
2183
2184 return queue_index;
2185 #else
2186 return -1;
2187 #endif
2188 }
2189
2190 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2191 struct sk_buff *skb)
2192 {
2193 int queue_index;
2194 const struct net_device_ops *ops = dev->netdev_ops;
2195
2196 if (dev->real_num_tx_queues == 1)
2197 queue_index = 0;
2198 else if (ops->ndo_select_queue) {
2199 queue_index = ops->ndo_select_queue(dev, skb);
2200 queue_index = dev_cap_txqueue(dev, queue_index);
2201 } else {
2202 struct sock *sk = skb->sk;
2203 queue_index = sk_tx_queue_get(sk);
2204
2205 if (queue_index < 0 || skb->ooo_okay ||
2206 queue_index >= dev->real_num_tx_queues) {
2207 int old_index = queue_index;
2208
2209 queue_index = get_xps_queue(dev, skb);
2210 if (queue_index < 0)
2211 queue_index = skb_tx_hash(dev, skb);
2212
2213 if (queue_index != old_index && sk) {
2214 struct dst_entry *dst =
2215 rcu_dereference_check(sk->sk_dst_cache, 1);
2216
2217 if (dst && skb_dst(skb) == dst)
2218 sk_tx_queue_set(sk, queue_index);
2219 }
2220 }
2221 }
2222
2223 skb_set_queue_mapping(skb, queue_index);
2224 return netdev_get_tx_queue(dev, queue_index);
2225 }
2226
2227 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2228 struct net_device *dev,
2229 struct netdev_queue *txq)
2230 {
2231 spinlock_t *root_lock = qdisc_lock(q);
2232 bool contended = qdisc_is_running(q);
2233 int rc;
2234
2235 /*
2236 * Heuristic to force contended enqueues to serialize on a
2237 * separate lock before trying to get qdisc main lock.
2238 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2239 * and dequeue packets faster.
2240 */
2241 if (unlikely(contended))
2242 spin_lock(&q->busylock);
2243
2244 spin_lock(root_lock);
2245 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2246 kfree_skb(skb);
2247 rc = NET_XMIT_DROP;
2248 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2249 qdisc_run_begin(q)) {
2250 /*
2251 * This is a work-conserving queue; there are no old skbs
2252 * waiting to be sent out; and the qdisc is not running -
2253 * xmit the skb directly.
2254 */
2255 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2256 skb_dst_force(skb);
2257 __qdisc_update_bstats(q, skb->len);
2258 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2259 if (unlikely(contended)) {
2260 spin_unlock(&q->busylock);
2261 contended = false;
2262 }
2263 __qdisc_run(q);
2264 } else
2265 qdisc_run_end(q);
2266
2267 rc = NET_XMIT_SUCCESS;
2268 } else {
2269 skb_dst_force(skb);
2270 rc = qdisc_enqueue_root(skb, q);
2271 if (qdisc_run_begin(q)) {
2272 if (unlikely(contended)) {
2273 spin_unlock(&q->busylock);
2274 contended = false;
2275 }
2276 __qdisc_run(q);
2277 }
2278 }
2279 spin_unlock(root_lock);
2280 if (unlikely(contended))
2281 spin_unlock(&q->busylock);
2282 return rc;
2283 }
2284
2285 static DEFINE_PER_CPU(int, xmit_recursion);
2286 #define RECURSION_LIMIT 10
2287
2288 /**
2289 * dev_queue_xmit - transmit a buffer
2290 * @skb: buffer to transmit
2291 *
2292 * Queue a buffer for transmission to a network device. The caller must
2293 * have set the device and priority and built the buffer before calling
2294 * this function. The function can be called from an interrupt.
2295 *
2296 * A negative errno code is returned on a failure. A success does not
2297 * guarantee the frame will be transmitted as it may be dropped due
2298 * to congestion or traffic shaping.
2299 *
2300 * -----------------------------------------------------------------------------------
2301 * I notice this method can also return errors from the queue disciplines,
2302 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2303 * be positive.
2304 *
2305 * Regardless of the return value, the skb is consumed, so it is currently
2306 * difficult to retry a send to this method. (You can bump the ref count
2307 * before sending to hold a reference for retry if you are careful.)
2308 *
2309 * When calling this method, interrupts MUST be enabled. This is because
2310 * the BH enable code must have IRQs enabled so that it will not deadlock.
2311 * --BLG
2312 */
2313 int dev_queue_xmit(struct sk_buff *skb)
2314 {
2315 struct net_device *dev = skb->dev;
2316 struct netdev_queue *txq;
2317 struct Qdisc *q;
2318 int rc = -ENOMEM;
2319
2320 /* Disable soft irqs for various locks below. Also
2321 * stops preemption for RCU.
2322 */
2323 rcu_read_lock_bh();
2324
2325 txq = dev_pick_tx(dev, skb);
2326 q = rcu_dereference_bh(txq->qdisc);
2327
2328 #ifdef CONFIG_NET_CLS_ACT
2329 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2330 #endif
2331 trace_net_dev_queue(skb);
2332 if (q->enqueue) {
2333 rc = __dev_xmit_skb(skb, q, dev, txq);
2334 goto out;
2335 }
2336
2337 /* The device has no queue. Common case for software devices:
2338 loopback, all the sorts of tunnels...
2339
2340 Really, it is unlikely that netif_tx_lock protection is necessary
2341 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2342 counters.)
2343 However, it is possible, that they rely on protection
2344 made by us here.
2345
2346 Check this and shot the lock. It is not prone from deadlocks.
2347 Either shot noqueue qdisc, it is even simpler 8)
2348 */
2349 if (dev->flags & IFF_UP) {
2350 int cpu = smp_processor_id(); /* ok because BHs are off */
2351
2352 if (txq->xmit_lock_owner != cpu) {
2353
2354 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2355 goto recursion_alert;
2356
2357 HARD_TX_LOCK(dev, txq, cpu);
2358
2359 if (!netif_tx_queue_stopped(txq)) {
2360 __this_cpu_inc(xmit_recursion);
2361 rc = dev_hard_start_xmit(skb, dev, txq);
2362 __this_cpu_dec(xmit_recursion);
2363 if (dev_xmit_complete(rc)) {
2364 HARD_TX_UNLOCK(dev, txq);
2365 goto out;
2366 }
2367 }
2368 HARD_TX_UNLOCK(dev, txq);
2369 if (net_ratelimit())
2370 printk(KERN_CRIT "Virtual device %s asks to "
2371 "queue packet!\n", dev->name);
2372 } else {
2373 /* Recursion is detected! It is possible,
2374 * unfortunately
2375 */
2376 recursion_alert:
2377 if (net_ratelimit())
2378 printk(KERN_CRIT "Dead loop on virtual device "
2379 "%s, fix it urgently!\n", dev->name);
2380 }
2381 }
2382
2383 rc = -ENETDOWN;
2384 rcu_read_unlock_bh();
2385
2386 kfree_skb(skb);
2387 return rc;
2388 out:
2389 rcu_read_unlock_bh();
2390 return rc;
2391 }
2392 EXPORT_SYMBOL(dev_queue_xmit);
2393
2394
2395 /*=======================================================================
2396 Receiver routines
2397 =======================================================================*/
2398
2399 int netdev_max_backlog __read_mostly = 1000;
2400 int netdev_tstamp_prequeue __read_mostly = 1;
2401 int netdev_budget __read_mostly = 300;
2402 int weight_p __read_mostly = 64; /* old backlog weight */
2403
2404 /* Called with irq disabled */
2405 static inline void ____napi_schedule(struct softnet_data *sd,
2406 struct napi_struct *napi)
2407 {
2408 list_add_tail(&napi->poll_list, &sd->poll_list);
2409 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2410 }
2411
2412 /*
2413 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2414 * and src/dst port numbers. Returns a non-zero hash number on success
2415 * and 0 on failure.
2416 */
2417 __u32 __skb_get_rxhash(struct sk_buff *skb)
2418 {
2419 int nhoff, hash = 0, poff;
2420 struct ipv6hdr *ip6;
2421 struct iphdr *ip;
2422 u8 ip_proto;
2423 u32 addr1, addr2, ihl;
2424 union {
2425 u32 v32;
2426 u16 v16[2];
2427 } ports;
2428
2429 nhoff = skb_network_offset(skb);
2430
2431 switch (skb->protocol) {
2432 case __constant_htons(ETH_P_IP):
2433 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2434 goto done;
2435
2436 ip = (struct iphdr *) (skb->data + nhoff);
2437 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2438 ip_proto = 0;
2439 else
2440 ip_proto = ip->protocol;
2441 addr1 = (__force u32) ip->saddr;
2442 addr2 = (__force u32) ip->daddr;
2443 ihl = ip->ihl;
2444 break;
2445 case __constant_htons(ETH_P_IPV6):
2446 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2447 goto done;
2448
2449 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2450 ip_proto = ip6->nexthdr;
2451 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2452 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2453 ihl = (40 >> 2);
2454 break;
2455 default:
2456 goto done;
2457 }
2458
2459 ports.v32 = 0;
2460 poff = proto_ports_offset(ip_proto);
2461 if (poff >= 0) {
2462 nhoff += ihl * 4 + poff;
2463 if (pskb_may_pull(skb, nhoff + 4)) {
2464 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2465 if (ports.v16[1] < ports.v16[0])
2466 swap(ports.v16[0], ports.v16[1]);
2467 }
2468 }
2469
2470 /* get a consistent hash (same value on both flow directions) */
2471 if (addr2 < addr1)
2472 swap(addr1, addr2);
2473
2474 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2475 if (!hash)
2476 hash = 1;
2477
2478 done:
2479 return hash;
2480 }
2481 EXPORT_SYMBOL(__skb_get_rxhash);
2482
2483 #ifdef CONFIG_RPS
2484
2485 /* One global table that all flow-based protocols share. */
2486 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2487 EXPORT_SYMBOL(rps_sock_flow_table);
2488
2489 /*
2490 * get_rps_cpu is called from netif_receive_skb and returns the target
2491 * CPU from the RPS map of the receiving queue for a given skb.
2492 * rcu_read_lock must be held on entry.
2493 */
2494 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2495 struct rps_dev_flow **rflowp)
2496 {
2497 struct netdev_rx_queue *rxqueue;
2498 struct rps_map *map;
2499 struct rps_dev_flow_table *flow_table;
2500 struct rps_sock_flow_table *sock_flow_table;
2501 int cpu = -1;
2502 u16 tcpu;
2503
2504 if (skb_rx_queue_recorded(skb)) {
2505 u16 index = skb_get_rx_queue(skb);
2506 if (unlikely(index >= dev->real_num_rx_queues)) {
2507 WARN_ONCE(dev->real_num_rx_queues > 1,
2508 "%s received packet on queue %u, but number "
2509 "of RX queues is %u\n",
2510 dev->name, index, dev->real_num_rx_queues);
2511 goto done;
2512 }
2513 rxqueue = dev->_rx + index;
2514 } else
2515 rxqueue = dev->_rx;
2516
2517 map = rcu_dereference(rxqueue->rps_map);
2518 if (map) {
2519 if (map->len == 1) {
2520 tcpu = map->cpus[0];
2521 if (cpu_online(tcpu))
2522 cpu = tcpu;
2523 goto done;
2524 }
2525 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2526 goto done;
2527 }
2528
2529 skb_reset_network_header(skb);
2530 if (!skb_get_rxhash(skb))
2531 goto done;
2532
2533 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2534 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2535 if (flow_table && sock_flow_table) {
2536 u16 next_cpu;
2537 struct rps_dev_flow *rflow;
2538
2539 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2540 tcpu = rflow->cpu;
2541
2542 next_cpu = sock_flow_table->ents[skb->rxhash &
2543 sock_flow_table->mask];
2544
2545 /*
2546 * If the desired CPU (where last recvmsg was done) is
2547 * different from current CPU (one in the rx-queue flow
2548 * table entry), switch if one of the following holds:
2549 * - Current CPU is unset (equal to RPS_NO_CPU).
2550 * - Current CPU is offline.
2551 * - The current CPU's queue tail has advanced beyond the
2552 * last packet that was enqueued using this table entry.
2553 * This guarantees that all previous packets for the flow
2554 * have been dequeued, thus preserving in order delivery.
2555 */
2556 if (unlikely(tcpu != next_cpu) &&
2557 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2558 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2559 rflow->last_qtail)) >= 0)) {
2560 tcpu = rflow->cpu = next_cpu;
2561 if (tcpu != RPS_NO_CPU)
2562 rflow->last_qtail = per_cpu(softnet_data,
2563 tcpu).input_queue_head;
2564 }
2565 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2566 *rflowp = rflow;
2567 cpu = tcpu;
2568 goto done;
2569 }
2570 }
2571
2572 if (map) {
2573 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2574
2575 if (cpu_online(tcpu)) {
2576 cpu = tcpu;
2577 goto done;
2578 }
2579 }
2580
2581 done:
2582 return cpu;
2583 }
2584
2585 /* Called from hardirq (IPI) context */
2586 static void rps_trigger_softirq(void *data)
2587 {
2588 struct softnet_data *sd = data;
2589
2590 ____napi_schedule(sd, &sd->backlog);
2591 sd->received_rps++;
2592 }
2593
2594 #endif /* CONFIG_RPS */
2595
2596 /*
2597 * Check if this softnet_data structure is another cpu one
2598 * If yes, queue it to our IPI list and return 1
2599 * If no, return 0
2600 */
2601 static int rps_ipi_queued(struct softnet_data *sd)
2602 {
2603 #ifdef CONFIG_RPS
2604 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2605
2606 if (sd != mysd) {
2607 sd->rps_ipi_next = mysd->rps_ipi_list;
2608 mysd->rps_ipi_list = sd;
2609
2610 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2611 return 1;
2612 }
2613 #endif /* CONFIG_RPS */
2614 return 0;
2615 }
2616
2617 /*
2618 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2619 * queue (may be a remote CPU queue).
2620 */
2621 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2622 unsigned int *qtail)
2623 {
2624 struct softnet_data *sd;
2625 unsigned long flags;
2626
2627 sd = &per_cpu(softnet_data, cpu);
2628
2629 local_irq_save(flags);
2630
2631 rps_lock(sd);
2632 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2633 if (skb_queue_len(&sd->input_pkt_queue)) {
2634 enqueue:
2635 __skb_queue_tail(&sd->input_pkt_queue, skb);
2636 input_queue_tail_incr_save(sd, qtail);
2637 rps_unlock(sd);
2638 local_irq_restore(flags);
2639 return NET_RX_SUCCESS;
2640 }
2641
2642 /* Schedule NAPI for backlog device
2643 * We can use non atomic operation since we own the queue lock
2644 */
2645 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2646 if (!rps_ipi_queued(sd))
2647 ____napi_schedule(sd, &sd->backlog);
2648 }
2649 goto enqueue;
2650 }
2651
2652 sd->dropped++;
2653 rps_unlock(sd);
2654
2655 local_irq_restore(flags);
2656
2657 atomic_long_inc(&skb->dev->rx_dropped);
2658 kfree_skb(skb);
2659 return NET_RX_DROP;
2660 }
2661
2662 /**
2663 * netif_rx - post buffer to the network code
2664 * @skb: buffer to post
2665 *
2666 * This function receives a packet from a device driver and queues it for
2667 * the upper (protocol) levels to process. It always succeeds. The buffer
2668 * may be dropped during processing for congestion control or by the
2669 * protocol layers.
2670 *
2671 * return values:
2672 * NET_RX_SUCCESS (no congestion)
2673 * NET_RX_DROP (packet was dropped)
2674 *
2675 */
2676
2677 int netif_rx(struct sk_buff *skb)
2678 {
2679 int ret;
2680
2681 /* if netpoll wants it, pretend we never saw it */
2682 if (netpoll_rx(skb))
2683 return NET_RX_DROP;
2684
2685 if (netdev_tstamp_prequeue)
2686 net_timestamp_check(skb);
2687
2688 trace_netif_rx(skb);
2689 #ifdef CONFIG_RPS
2690 {
2691 struct rps_dev_flow voidflow, *rflow = &voidflow;
2692 int cpu;
2693
2694 preempt_disable();
2695 rcu_read_lock();
2696
2697 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2698 if (cpu < 0)
2699 cpu = smp_processor_id();
2700
2701 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2702
2703 rcu_read_unlock();
2704 preempt_enable();
2705 }
2706 #else
2707 {
2708 unsigned int qtail;
2709 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2710 put_cpu();
2711 }
2712 #endif
2713 return ret;
2714 }
2715 EXPORT_SYMBOL(netif_rx);
2716
2717 int netif_rx_ni(struct sk_buff *skb)
2718 {
2719 int err;
2720
2721 preempt_disable();
2722 err = netif_rx(skb);
2723 if (local_softirq_pending())
2724 do_softirq();
2725 preempt_enable();
2726
2727 return err;
2728 }
2729 EXPORT_SYMBOL(netif_rx_ni);
2730
2731 static void net_tx_action(struct softirq_action *h)
2732 {
2733 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2734
2735 if (sd->completion_queue) {
2736 struct sk_buff *clist;
2737
2738 local_irq_disable();
2739 clist = sd->completion_queue;
2740 sd->completion_queue = NULL;
2741 local_irq_enable();
2742
2743 while (clist) {
2744 struct sk_buff *skb = clist;
2745 clist = clist->next;
2746
2747 WARN_ON(atomic_read(&skb->users));
2748 trace_kfree_skb(skb, net_tx_action);
2749 __kfree_skb(skb);
2750 }
2751 }
2752
2753 if (sd->output_queue) {
2754 struct Qdisc *head;
2755
2756 local_irq_disable();
2757 head = sd->output_queue;
2758 sd->output_queue = NULL;
2759 sd->output_queue_tailp = &sd->output_queue;
2760 local_irq_enable();
2761
2762 while (head) {
2763 struct Qdisc *q = head;
2764 spinlock_t *root_lock;
2765
2766 head = head->next_sched;
2767
2768 root_lock = qdisc_lock(q);
2769 if (spin_trylock(root_lock)) {
2770 smp_mb__before_clear_bit();
2771 clear_bit(__QDISC_STATE_SCHED,
2772 &q->state);
2773 qdisc_run(q);
2774 spin_unlock(root_lock);
2775 } else {
2776 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2777 &q->state)) {
2778 __netif_reschedule(q);
2779 } else {
2780 smp_mb__before_clear_bit();
2781 clear_bit(__QDISC_STATE_SCHED,
2782 &q->state);
2783 }
2784 }
2785 }
2786 }
2787 }
2788
2789 static inline int deliver_skb(struct sk_buff *skb,
2790 struct packet_type *pt_prev,
2791 struct net_device *orig_dev)
2792 {
2793 atomic_inc(&skb->users);
2794 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2795 }
2796
2797 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2798 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2799 /* This hook is defined here for ATM LANE */
2800 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2801 unsigned char *addr) __read_mostly;
2802 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2803 #endif
2804
2805 #ifdef CONFIG_NET_CLS_ACT
2806 /* TODO: Maybe we should just force sch_ingress to be compiled in
2807 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2808 * a compare and 2 stores extra right now if we dont have it on
2809 * but have CONFIG_NET_CLS_ACT
2810 * NOTE: This doesnt stop any functionality; if you dont have
2811 * the ingress scheduler, you just cant add policies on ingress.
2812 *
2813 */
2814 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2815 {
2816 struct net_device *dev = skb->dev;
2817 u32 ttl = G_TC_RTTL(skb->tc_verd);
2818 int result = TC_ACT_OK;
2819 struct Qdisc *q;
2820
2821 if (unlikely(MAX_RED_LOOP < ttl++)) {
2822 if (net_ratelimit())
2823 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2824 skb->skb_iif, dev->ifindex);
2825 return TC_ACT_SHOT;
2826 }
2827
2828 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2829 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2830
2831 q = rxq->qdisc;
2832 if (q != &noop_qdisc) {
2833 spin_lock(qdisc_lock(q));
2834 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2835 result = qdisc_enqueue_root(skb, q);
2836 spin_unlock(qdisc_lock(q));
2837 }
2838
2839 return result;
2840 }
2841
2842 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2843 struct packet_type **pt_prev,
2844 int *ret, struct net_device *orig_dev)
2845 {
2846 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2847
2848 if (!rxq || rxq->qdisc == &noop_qdisc)
2849 goto out;
2850
2851 if (*pt_prev) {
2852 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2853 *pt_prev = NULL;
2854 }
2855
2856 switch (ing_filter(skb, rxq)) {
2857 case TC_ACT_SHOT:
2858 case TC_ACT_STOLEN:
2859 kfree_skb(skb);
2860 return NULL;
2861 }
2862
2863 out:
2864 skb->tc_verd = 0;
2865 return skb;
2866 }
2867 #endif
2868
2869 /**
2870 * netdev_rx_handler_register - register receive handler
2871 * @dev: device to register a handler for
2872 * @rx_handler: receive handler to register
2873 * @rx_handler_data: data pointer that is used by rx handler
2874 *
2875 * Register a receive hander for a device. This handler will then be
2876 * called from __netif_receive_skb. A negative errno code is returned
2877 * on a failure.
2878 *
2879 * The caller must hold the rtnl_mutex.
2880 */
2881 int netdev_rx_handler_register(struct net_device *dev,
2882 rx_handler_func_t *rx_handler,
2883 void *rx_handler_data)
2884 {
2885 ASSERT_RTNL();
2886
2887 if (dev->rx_handler)
2888 return -EBUSY;
2889
2890 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2891 rcu_assign_pointer(dev->rx_handler, rx_handler);
2892
2893 return 0;
2894 }
2895 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2896
2897 /**
2898 * netdev_rx_handler_unregister - unregister receive handler
2899 * @dev: device to unregister a handler from
2900 *
2901 * Unregister a receive hander from a device.
2902 *
2903 * The caller must hold the rtnl_mutex.
2904 */
2905 void netdev_rx_handler_unregister(struct net_device *dev)
2906 {
2907
2908 ASSERT_RTNL();
2909 rcu_assign_pointer(dev->rx_handler, NULL);
2910 rcu_assign_pointer(dev->rx_handler_data, NULL);
2911 }
2912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2913
2914 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2915 struct net_device *master)
2916 {
2917 if (skb->pkt_type == PACKET_HOST) {
2918 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2919
2920 memcpy(dest, master->dev_addr, ETH_ALEN);
2921 }
2922 }
2923
2924 /* On bonding slaves other than the currently active slave, suppress
2925 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2926 * ARP on active-backup slaves with arp_validate enabled.
2927 */
2928 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2929 {
2930 struct net_device *dev = skb->dev;
2931
2932 if (master->priv_flags & IFF_MASTER_ARPMON)
2933 dev->last_rx = jiffies;
2934
2935 if ((master->priv_flags & IFF_MASTER_ALB) &&
2936 (master->priv_flags & IFF_BRIDGE_PORT)) {
2937 /* Do address unmangle. The local destination address
2938 * will be always the one master has. Provides the right
2939 * functionality in a bridge.
2940 */
2941 skb_bond_set_mac_by_master(skb, master);
2942 }
2943
2944 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2945 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2946 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2947 return 0;
2948
2949 if (master->priv_flags & IFF_MASTER_ALB) {
2950 if (skb->pkt_type != PACKET_BROADCAST &&
2951 skb->pkt_type != PACKET_MULTICAST)
2952 return 0;
2953 }
2954 if (master->priv_flags & IFF_MASTER_8023AD &&
2955 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2956 return 0;
2957
2958 return 1;
2959 }
2960 return 0;
2961 }
2962 EXPORT_SYMBOL(__skb_bond_should_drop);
2963
2964 static int __netif_receive_skb(struct sk_buff *skb)
2965 {
2966 struct packet_type *ptype, *pt_prev;
2967 rx_handler_func_t *rx_handler;
2968 struct net_device *orig_dev;
2969 struct net_device *master;
2970 struct net_device *null_or_orig;
2971 struct net_device *orig_or_bond;
2972 int ret = NET_RX_DROP;
2973 __be16 type;
2974
2975 if (!netdev_tstamp_prequeue)
2976 net_timestamp_check(skb);
2977
2978 trace_netif_receive_skb(skb);
2979
2980 /* if we've gotten here through NAPI, check netpoll */
2981 if (netpoll_receive_skb(skb))
2982 return NET_RX_DROP;
2983
2984 if (!skb->skb_iif)
2985 skb->skb_iif = skb->dev->ifindex;
2986
2987 /*
2988 * bonding note: skbs received on inactive slaves should only
2989 * be delivered to pkt handlers that are exact matches. Also
2990 * the deliver_no_wcard flag will be set. If packet handlers
2991 * are sensitive to duplicate packets these skbs will need to
2992 * be dropped at the handler.
2993 */
2994 null_or_orig = NULL;
2995 orig_dev = skb->dev;
2996 master = ACCESS_ONCE(orig_dev->master);
2997 if (skb->deliver_no_wcard)
2998 null_or_orig = orig_dev;
2999 else if (master) {
3000 if (skb_bond_should_drop(skb, master)) {
3001 skb->deliver_no_wcard = 1;
3002 null_or_orig = orig_dev; /* deliver only exact match */
3003 } else
3004 skb->dev = master;
3005 }
3006
3007 __this_cpu_inc(softnet_data.processed);
3008 skb_reset_network_header(skb);
3009 skb_reset_transport_header(skb);
3010 skb->mac_len = skb->network_header - skb->mac_header;
3011
3012 pt_prev = NULL;
3013
3014 rcu_read_lock();
3015
3016 #ifdef CONFIG_NET_CLS_ACT
3017 if (skb->tc_verd & TC_NCLS) {
3018 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3019 goto ncls;
3020 }
3021 #endif
3022
3023 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3024 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3025 ptype->dev == orig_dev) {
3026 if (pt_prev)
3027 ret = deliver_skb(skb, pt_prev, orig_dev);
3028 pt_prev = ptype;
3029 }
3030 }
3031
3032 #ifdef CONFIG_NET_CLS_ACT
3033 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3034 if (!skb)
3035 goto out;
3036 ncls:
3037 #endif
3038
3039 /* Handle special case of bridge or macvlan */
3040 rx_handler = rcu_dereference(skb->dev->rx_handler);
3041 if (rx_handler) {
3042 if (pt_prev) {
3043 ret = deliver_skb(skb, pt_prev, orig_dev);
3044 pt_prev = NULL;
3045 }
3046 skb = rx_handler(skb);
3047 if (!skb)
3048 goto out;
3049 }
3050
3051 if (vlan_tx_tag_present(skb)) {
3052 if (pt_prev) {
3053 ret = deliver_skb(skb, pt_prev, orig_dev);
3054 pt_prev = NULL;
3055 }
3056 if (vlan_hwaccel_do_receive(&skb)) {
3057 ret = __netif_receive_skb(skb);
3058 goto out;
3059 } else if (unlikely(!skb))
3060 goto out;
3061 }
3062
3063 /*
3064 * Make sure frames received on VLAN interfaces stacked on
3065 * bonding interfaces still make their way to any base bonding
3066 * device that may have registered for a specific ptype. The
3067 * handler may have to adjust skb->dev and orig_dev.
3068 */
3069 orig_or_bond = orig_dev;
3070 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3071 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3072 orig_or_bond = vlan_dev_real_dev(skb->dev);
3073 }
3074
3075 type = skb->protocol;
3076 list_for_each_entry_rcu(ptype,
3077 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3078 if (ptype->type == type && (ptype->dev == null_or_orig ||
3079 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3080 ptype->dev == orig_or_bond)) {
3081 if (pt_prev)
3082 ret = deliver_skb(skb, pt_prev, orig_dev);
3083 pt_prev = ptype;
3084 }
3085 }
3086
3087 if (pt_prev) {
3088 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3089 } else {
3090 atomic_long_inc(&skb->dev->rx_dropped);
3091 kfree_skb(skb);
3092 /* Jamal, now you will not able to escape explaining
3093 * me how you were going to use this. :-)
3094 */
3095 ret = NET_RX_DROP;
3096 }
3097
3098 out:
3099 rcu_read_unlock();
3100 return ret;
3101 }
3102
3103 /**
3104 * netif_receive_skb - process receive buffer from network
3105 * @skb: buffer to process
3106 *
3107 * netif_receive_skb() is the main receive data processing function.
3108 * It always succeeds. The buffer may be dropped during processing
3109 * for congestion control or by the protocol layers.
3110 *
3111 * This function may only be called from softirq context and interrupts
3112 * should be enabled.
3113 *
3114 * Return values (usually ignored):
3115 * NET_RX_SUCCESS: no congestion
3116 * NET_RX_DROP: packet was dropped
3117 */
3118 int netif_receive_skb(struct sk_buff *skb)
3119 {
3120 if (netdev_tstamp_prequeue)
3121 net_timestamp_check(skb);
3122
3123 if (skb_defer_rx_timestamp(skb))
3124 return NET_RX_SUCCESS;
3125
3126 #ifdef CONFIG_RPS
3127 {
3128 struct rps_dev_flow voidflow, *rflow = &voidflow;
3129 int cpu, ret;
3130
3131 rcu_read_lock();
3132
3133 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3134
3135 if (cpu >= 0) {
3136 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3137 rcu_read_unlock();
3138 } else {
3139 rcu_read_unlock();
3140 ret = __netif_receive_skb(skb);
3141 }
3142
3143 return ret;
3144 }
3145 #else
3146 return __netif_receive_skb(skb);
3147 #endif
3148 }
3149 EXPORT_SYMBOL(netif_receive_skb);
3150
3151 /* Network device is going away, flush any packets still pending
3152 * Called with irqs disabled.
3153 */
3154 static void flush_backlog(void *arg)
3155 {
3156 struct net_device *dev = arg;
3157 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3158 struct sk_buff *skb, *tmp;
3159
3160 rps_lock(sd);
3161 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3162 if (skb->dev == dev) {
3163 __skb_unlink(skb, &sd->input_pkt_queue);
3164 kfree_skb(skb);
3165 input_queue_head_incr(sd);
3166 }
3167 }
3168 rps_unlock(sd);
3169
3170 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3171 if (skb->dev == dev) {
3172 __skb_unlink(skb, &sd->process_queue);
3173 kfree_skb(skb);
3174 input_queue_head_incr(sd);
3175 }
3176 }
3177 }
3178
3179 static int napi_gro_complete(struct sk_buff *skb)
3180 {
3181 struct packet_type *ptype;
3182 __be16 type = skb->protocol;
3183 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3184 int err = -ENOENT;
3185
3186 if (NAPI_GRO_CB(skb)->count == 1) {
3187 skb_shinfo(skb)->gso_size = 0;
3188 goto out;
3189 }
3190
3191 rcu_read_lock();
3192 list_for_each_entry_rcu(ptype, head, list) {
3193 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3194 continue;
3195
3196 err = ptype->gro_complete(skb);
3197 break;
3198 }
3199 rcu_read_unlock();
3200
3201 if (err) {
3202 WARN_ON(&ptype->list == head);
3203 kfree_skb(skb);
3204 return NET_RX_SUCCESS;
3205 }
3206
3207 out:
3208 return netif_receive_skb(skb);
3209 }
3210
3211 inline void napi_gro_flush(struct napi_struct *napi)
3212 {
3213 struct sk_buff *skb, *next;
3214
3215 for (skb = napi->gro_list; skb; skb = next) {
3216 next = skb->next;
3217 skb->next = NULL;
3218 napi_gro_complete(skb);
3219 }
3220
3221 napi->gro_count = 0;
3222 napi->gro_list = NULL;
3223 }
3224 EXPORT_SYMBOL(napi_gro_flush);
3225
3226 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3227 {
3228 struct sk_buff **pp = NULL;
3229 struct packet_type *ptype;
3230 __be16 type = skb->protocol;
3231 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3232 int same_flow;
3233 int mac_len;
3234 enum gro_result ret;
3235
3236 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3237 goto normal;
3238
3239 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3240 goto normal;
3241
3242 rcu_read_lock();
3243 list_for_each_entry_rcu(ptype, head, list) {
3244 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3245 continue;
3246
3247 skb_set_network_header(skb, skb_gro_offset(skb));
3248 mac_len = skb->network_header - skb->mac_header;
3249 skb->mac_len = mac_len;
3250 NAPI_GRO_CB(skb)->same_flow = 0;
3251 NAPI_GRO_CB(skb)->flush = 0;
3252 NAPI_GRO_CB(skb)->free = 0;
3253
3254 pp = ptype->gro_receive(&napi->gro_list, skb);
3255 break;
3256 }
3257 rcu_read_unlock();
3258
3259 if (&ptype->list == head)
3260 goto normal;
3261
3262 same_flow = NAPI_GRO_CB(skb)->same_flow;
3263 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3264
3265 if (pp) {
3266 struct sk_buff *nskb = *pp;
3267
3268 *pp = nskb->next;
3269 nskb->next = NULL;
3270 napi_gro_complete(nskb);
3271 napi->gro_count--;
3272 }
3273
3274 if (same_flow)
3275 goto ok;
3276
3277 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3278 goto normal;
3279
3280 napi->gro_count++;
3281 NAPI_GRO_CB(skb)->count = 1;
3282 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3283 skb->next = napi->gro_list;
3284 napi->gro_list = skb;
3285 ret = GRO_HELD;
3286
3287 pull:
3288 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3289 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3290
3291 BUG_ON(skb->end - skb->tail < grow);
3292
3293 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3294
3295 skb->tail += grow;
3296 skb->data_len -= grow;
3297
3298 skb_shinfo(skb)->frags[0].page_offset += grow;
3299 skb_shinfo(skb)->frags[0].size -= grow;
3300
3301 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3302 put_page(skb_shinfo(skb)->frags[0].page);
3303 memmove(skb_shinfo(skb)->frags,
3304 skb_shinfo(skb)->frags + 1,
3305 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3306 }
3307 }
3308
3309 ok:
3310 return ret;
3311
3312 normal:
3313 ret = GRO_NORMAL;
3314 goto pull;
3315 }
3316 EXPORT_SYMBOL(dev_gro_receive);
3317
3318 static inline gro_result_t
3319 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3320 {
3321 struct sk_buff *p;
3322
3323 for (p = napi->gro_list; p; p = p->next) {
3324 unsigned long diffs;
3325
3326 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3327 diffs |= p->vlan_tci ^ skb->vlan_tci;
3328 diffs |= compare_ether_header(skb_mac_header(p),
3329 skb_gro_mac_header(skb));
3330 NAPI_GRO_CB(p)->same_flow = !diffs;
3331 NAPI_GRO_CB(p)->flush = 0;
3332 }
3333
3334 return dev_gro_receive(napi, skb);
3335 }
3336
3337 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3338 {
3339 switch (ret) {
3340 case GRO_NORMAL:
3341 if (netif_receive_skb(skb))
3342 ret = GRO_DROP;
3343 break;
3344
3345 case GRO_DROP:
3346 case GRO_MERGED_FREE:
3347 kfree_skb(skb);
3348 break;
3349
3350 case GRO_HELD:
3351 case GRO_MERGED:
3352 break;
3353 }
3354
3355 return ret;
3356 }
3357 EXPORT_SYMBOL(napi_skb_finish);
3358
3359 void skb_gro_reset_offset(struct sk_buff *skb)
3360 {
3361 NAPI_GRO_CB(skb)->data_offset = 0;
3362 NAPI_GRO_CB(skb)->frag0 = NULL;
3363 NAPI_GRO_CB(skb)->frag0_len = 0;
3364
3365 if (skb->mac_header == skb->tail &&
3366 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3367 NAPI_GRO_CB(skb)->frag0 =
3368 page_address(skb_shinfo(skb)->frags[0].page) +
3369 skb_shinfo(skb)->frags[0].page_offset;
3370 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3371 }
3372 }
3373 EXPORT_SYMBOL(skb_gro_reset_offset);
3374
3375 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3376 {
3377 skb_gro_reset_offset(skb);
3378
3379 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3380 }
3381 EXPORT_SYMBOL(napi_gro_receive);
3382
3383 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3384 {
3385 __skb_pull(skb, skb_headlen(skb));
3386 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3387 skb->vlan_tci = 0;
3388
3389 napi->skb = skb;
3390 }
3391
3392 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3393 {
3394 struct sk_buff *skb = napi->skb;
3395
3396 if (!skb) {
3397 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3398 if (skb)
3399 napi->skb = skb;
3400 }
3401 return skb;
3402 }
3403 EXPORT_SYMBOL(napi_get_frags);
3404
3405 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3406 gro_result_t ret)
3407 {
3408 switch (ret) {
3409 case GRO_NORMAL:
3410 case GRO_HELD:
3411 skb->protocol = eth_type_trans(skb, skb->dev);
3412
3413 if (ret == GRO_HELD)
3414 skb_gro_pull(skb, -ETH_HLEN);
3415 else if (netif_receive_skb(skb))
3416 ret = GRO_DROP;
3417 break;
3418
3419 case GRO_DROP:
3420 case GRO_MERGED_FREE:
3421 napi_reuse_skb(napi, skb);
3422 break;
3423
3424 case GRO_MERGED:
3425 break;
3426 }
3427
3428 return ret;
3429 }
3430 EXPORT_SYMBOL(napi_frags_finish);
3431
3432 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3433 {
3434 struct sk_buff *skb = napi->skb;
3435 struct ethhdr *eth;
3436 unsigned int hlen;
3437 unsigned int off;
3438
3439 napi->skb = NULL;
3440
3441 skb_reset_mac_header(skb);
3442 skb_gro_reset_offset(skb);
3443
3444 off = skb_gro_offset(skb);
3445 hlen = off + sizeof(*eth);
3446 eth = skb_gro_header_fast(skb, off);
3447 if (skb_gro_header_hard(skb, hlen)) {
3448 eth = skb_gro_header_slow(skb, hlen, off);
3449 if (unlikely(!eth)) {
3450 napi_reuse_skb(napi, skb);
3451 skb = NULL;
3452 goto out;
3453 }
3454 }
3455
3456 skb_gro_pull(skb, sizeof(*eth));
3457
3458 /*
3459 * This works because the only protocols we care about don't require
3460 * special handling. We'll fix it up properly at the end.
3461 */
3462 skb->protocol = eth->h_proto;
3463
3464 out:
3465 return skb;
3466 }
3467 EXPORT_SYMBOL(napi_frags_skb);
3468
3469 gro_result_t napi_gro_frags(struct napi_struct *napi)
3470 {
3471 struct sk_buff *skb = napi_frags_skb(napi);
3472
3473 if (!skb)
3474 return GRO_DROP;
3475
3476 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3477 }
3478 EXPORT_SYMBOL(napi_gro_frags);
3479
3480 /*
3481 * net_rps_action sends any pending IPI's for rps.
3482 * Note: called with local irq disabled, but exits with local irq enabled.
3483 */
3484 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3485 {
3486 #ifdef CONFIG_RPS
3487 struct softnet_data *remsd = sd->rps_ipi_list;
3488
3489 if (remsd) {
3490 sd->rps_ipi_list = NULL;
3491
3492 local_irq_enable();
3493
3494 /* Send pending IPI's to kick RPS processing on remote cpus. */
3495 while (remsd) {
3496 struct softnet_data *next = remsd->rps_ipi_next;
3497
3498 if (cpu_online(remsd->cpu))
3499 __smp_call_function_single(remsd->cpu,
3500 &remsd->csd, 0);
3501 remsd = next;
3502 }
3503 } else
3504 #endif
3505 local_irq_enable();
3506 }
3507
3508 static int process_backlog(struct napi_struct *napi, int quota)
3509 {
3510 int work = 0;
3511 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3512
3513 #ifdef CONFIG_RPS
3514 /* Check if we have pending ipi, its better to send them now,
3515 * not waiting net_rx_action() end.
3516 */
3517 if (sd->rps_ipi_list) {
3518 local_irq_disable();
3519 net_rps_action_and_irq_enable(sd);
3520 }
3521 #endif
3522 napi->weight = weight_p;
3523 local_irq_disable();
3524 while (work < quota) {
3525 struct sk_buff *skb;
3526 unsigned int qlen;
3527
3528 while ((skb = __skb_dequeue(&sd->process_queue))) {
3529 local_irq_enable();
3530 __netif_receive_skb(skb);
3531 local_irq_disable();
3532 input_queue_head_incr(sd);
3533 if (++work >= quota) {
3534 local_irq_enable();
3535 return work;
3536 }
3537 }
3538
3539 rps_lock(sd);
3540 qlen = skb_queue_len(&sd->input_pkt_queue);
3541 if (qlen)
3542 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3543 &sd->process_queue);
3544
3545 if (qlen < quota - work) {
3546 /*
3547 * Inline a custom version of __napi_complete().
3548 * only current cpu owns and manipulates this napi,
3549 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3550 * we can use a plain write instead of clear_bit(),
3551 * and we dont need an smp_mb() memory barrier.
3552 */
3553 list_del(&napi->poll_list);
3554 napi->state = 0;
3555
3556 quota = work + qlen;
3557 }
3558 rps_unlock(sd);
3559 }
3560 local_irq_enable();
3561
3562 return work;
3563 }
3564
3565 /**
3566 * __napi_schedule - schedule for receive
3567 * @n: entry to schedule
3568 *
3569 * The entry's receive function will be scheduled to run
3570 */
3571 void __napi_schedule(struct napi_struct *n)
3572 {
3573 unsigned long flags;
3574
3575 local_irq_save(flags);
3576 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3577 local_irq_restore(flags);
3578 }
3579 EXPORT_SYMBOL(__napi_schedule);
3580
3581 void __napi_complete(struct napi_struct *n)
3582 {
3583 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3584 BUG_ON(n->gro_list);
3585
3586 list_del(&n->poll_list);
3587 smp_mb__before_clear_bit();
3588 clear_bit(NAPI_STATE_SCHED, &n->state);
3589 }
3590 EXPORT_SYMBOL(__napi_complete);
3591
3592 void napi_complete(struct napi_struct *n)
3593 {
3594 unsigned long flags;
3595
3596 /*
3597 * don't let napi dequeue from the cpu poll list
3598 * just in case its running on a different cpu
3599 */
3600 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3601 return;
3602
3603 napi_gro_flush(n);
3604 local_irq_save(flags);
3605 __napi_complete(n);
3606 local_irq_restore(flags);
3607 }
3608 EXPORT_SYMBOL(napi_complete);
3609
3610 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3611 int (*poll)(struct napi_struct *, int), int weight)
3612 {
3613 INIT_LIST_HEAD(&napi->poll_list);
3614 napi->gro_count = 0;
3615 napi->gro_list = NULL;
3616 napi->skb = NULL;
3617 napi->poll = poll;
3618 napi->weight = weight;
3619 list_add(&napi->dev_list, &dev->napi_list);
3620 napi->dev = dev;
3621 #ifdef CONFIG_NETPOLL
3622 spin_lock_init(&napi->poll_lock);
3623 napi->poll_owner = -1;
3624 #endif
3625 set_bit(NAPI_STATE_SCHED, &napi->state);
3626 }
3627 EXPORT_SYMBOL(netif_napi_add);
3628
3629 void netif_napi_del(struct napi_struct *napi)
3630 {
3631 struct sk_buff *skb, *next;
3632
3633 list_del_init(&napi->dev_list);
3634 napi_free_frags(napi);
3635
3636 for (skb = napi->gro_list; skb; skb = next) {
3637 next = skb->next;
3638 skb->next = NULL;
3639 kfree_skb(skb);
3640 }
3641
3642 napi->gro_list = NULL;
3643 napi->gro_count = 0;
3644 }
3645 EXPORT_SYMBOL(netif_napi_del);
3646
3647 static void net_rx_action(struct softirq_action *h)
3648 {
3649 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3650 unsigned long time_limit = jiffies + 2;
3651 int budget = netdev_budget;
3652 void *have;
3653
3654 local_irq_disable();
3655
3656 while (!list_empty(&sd->poll_list)) {
3657 struct napi_struct *n;
3658 int work, weight;
3659
3660 /* If softirq window is exhuasted then punt.
3661 * Allow this to run for 2 jiffies since which will allow
3662 * an average latency of 1.5/HZ.
3663 */
3664 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3665 goto softnet_break;
3666
3667 local_irq_enable();
3668
3669 /* Even though interrupts have been re-enabled, this
3670 * access is safe because interrupts can only add new
3671 * entries to the tail of this list, and only ->poll()
3672 * calls can remove this head entry from the list.
3673 */
3674 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3675
3676 have = netpoll_poll_lock(n);
3677
3678 weight = n->weight;
3679
3680 /* This NAPI_STATE_SCHED test is for avoiding a race
3681 * with netpoll's poll_napi(). Only the entity which
3682 * obtains the lock and sees NAPI_STATE_SCHED set will
3683 * actually make the ->poll() call. Therefore we avoid
3684 * accidently calling ->poll() when NAPI is not scheduled.
3685 */
3686 work = 0;
3687 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3688 work = n->poll(n, weight);
3689 trace_napi_poll(n);
3690 }
3691
3692 WARN_ON_ONCE(work > weight);
3693
3694 budget -= work;
3695
3696 local_irq_disable();
3697
3698 /* Drivers must not modify the NAPI state if they
3699 * consume the entire weight. In such cases this code
3700 * still "owns" the NAPI instance and therefore can
3701 * move the instance around on the list at-will.
3702 */
3703 if (unlikely(work == weight)) {
3704 if (unlikely(napi_disable_pending(n))) {
3705 local_irq_enable();
3706 napi_complete(n);
3707 local_irq_disable();
3708 } else
3709 list_move_tail(&n->poll_list, &sd->poll_list);
3710 }
3711
3712 netpoll_poll_unlock(have);
3713 }
3714 out:
3715 net_rps_action_and_irq_enable(sd);
3716
3717 #ifdef CONFIG_NET_DMA
3718 /*
3719 * There may not be any more sk_buffs coming right now, so push
3720 * any pending DMA copies to hardware
3721 */
3722 dma_issue_pending_all();
3723 #endif
3724
3725 return;
3726
3727 softnet_break:
3728 sd->time_squeeze++;
3729 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3730 goto out;
3731 }
3732
3733 static gifconf_func_t *gifconf_list[NPROTO];
3734
3735 /**
3736 * register_gifconf - register a SIOCGIF handler
3737 * @family: Address family
3738 * @gifconf: Function handler
3739 *
3740 * Register protocol dependent address dumping routines. The handler
3741 * that is passed must not be freed or reused until it has been replaced
3742 * by another handler.
3743 */
3744 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3745 {
3746 if (family >= NPROTO)
3747 return -EINVAL;
3748 gifconf_list[family] = gifconf;
3749 return 0;
3750 }
3751 EXPORT_SYMBOL(register_gifconf);
3752
3753
3754 /*
3755 * Map an interface index to its name (SIOCGIFNAME)
3756 */
3757
3758 /*
3759 * We need this ioctl for efficient implementation of the
3760 * if_indextoname() function required by the IPv6 API. Without
3761 * it, we would have to search all the interfaces to find a
3762 * match. --pb
3763 */
3764
3765 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3766 {
3767 struct net_device *dev;
3768 struct ifreq ifr;
3769
3770 /*
3771 * Fetch the caller's info block.
3772 */
3773
3774 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3775 return -EFAULT;
3776
3777 rcu_read_lock();
3778 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3779 if (!dev) {
3780 rcu_read_unlock();
3781 return -ENODEV;
3782 }
3783
3784 strcpy(ifr.ifr_name, dev->name);
3785 rcu_read_unlock();
3786
3787 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3788 return -EFAULT;
3789 return 0;
3790 }
3791
3792 /*
3793 * Perform a SIOCGIFCONF call. This structure will change
3794 * size eventually, and there is nothing I can do about it.
3795 * Thus we will need a 'compatibility mode'.
3796 */
3797
3798 static int dev_ifconf(struct net *net, char __user *arg)
3799 {
3800 struct ifconf ifc;
3801 struct net_device *dev;
3802 char __user *pos;
3803 int len;
3804 int total;
3805 int i;
3806
3807 /*
3808 * Fetch the caller's info block.
3809 */
3810
3811 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3812 return -EFAULT;
3813
3814 pos = ifc.ifc_buf;
3815 len = ifc.ifc_len;
3816
3817 /*
3818 * Loop over the interfaces, and write an info block for each.
3819 */
3820
3821 total = 0;
3822 for_each_netdev(net, dev) {
3823 for (i = 0; i < NPROTO; i++) {
3824 if (gifconf_list[i]) {
3825 int done;
3826 if (!pos)
3827 done = gifconf_list[i](dev, NULL, 0);
3828 else
3829 done = gifconf_list[i](dev, pos + total,
3830 len - total);
3831 if (done < 0)
3832 return -EFAULT;
3833 total += done;
3834 }
3835 }
3836 }
3837
3838 /*
3839 * All done. Write the updated control block back to the caller.
3840 */
3841 ifc.ifc_len = total;
3842
3843 /*
3844 * Both BSD and Solaris return 0 here, so we do too.
3845 */
3846 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3847 }
3848
3849 #ifdef CONFIG_PROC_FS
3850 /*
3851 * This is invoked by the /proc filesystem handler to display a device
3852 * in detail.
3853 */
3854 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3855 __acquires(RCU)
3856 {
3857 struct net *net = seq_file_net(seq);
3858 loff_t off;
3859 struct net_device *dev;
3860
3861 rcu_read_lock();
3862 if (!*pos)
3863 return SEQ_START_TOKEN;
3864
3865 off = 1;
3866 for_each_netdev_rcu(net, dev)
3867 if (off++ == *pos)
3868 return dev;
3869
3870 return NULL;
3871 }
3872
3873 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3874 {
3875 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3876 first_net_device(seq_file_net(seq)) :
3877 next_net_device((struct net_device *)v);
3878
3879 ++*pos;
3880 return rcu_dereference(dev);
3881 }
3882
3883 void dev_seq_stop(struct seq_file *seq, void *v)
3884 __releases(RCU)
3885 {
3886 rcu_read_unlock();
3887 }
3888
3889 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3890 {
3891 struct rtnl_link_stats64 temp;
3892 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3893
3894 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3895 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3896 dev->name, stats->rx_bytes, stats->rx_packets,
3897 stats->rx_errors,
3898 stats->rx_dropped + stats->rx_missed_errors,
3899 stats->rx_fifo_errors,
3900 stats->rx_length_errors + stats->rx_over_errors +
3901 stats->rx_crc_errors + stats->rx_frame_errors,
3902 stats->rx_compressed, stats->multicast,
3903 stats->tx_bytes, stats->tx_packets,
3904 stats->tx_errors, stats->tx_dropped,
3905 stats->tx_fifo_errors, stats->collisions,
3906 stats->tx_carrier_errors +
3907 stats->tx_aborted_errors +
3908 stats->tx_window_errors +
3909 stats->tx_heartbeat_errors,
3910 stats->tx_compressed);
3911 }
3912
3913 /*
3914 * Called from the PROCfs module. This now uses the new arbitrary sized
3915 * /proc/net interface to create /proc/net/dev
3916 */
3917 static int dev_seq_show(struct seq_file *seq, void *v)
3918 {
3919 if (v == SEQ_START_TOKEN)
3920 seq_puts(seq, "Inter-| Receive "
3921 " | Transmit\n"
3922 " face |bytes packets errs drop fifo frame "
3923 "compressed multicast|bytes packets errs "
3924 "drop fifo colls carrier compressed\n");
3925 else
3926 dev_seq_printf_stats(seq, v);
3927 return 0;
3928 }
3929
3930 static struct softnet_data *softnet_get_online(loff_t *pos)
3931 {
3932 struct softnet_data *sd = NULL;
3933
3934 while (*pos < nr_cpu_ids)
3935 if (cpu_online(*pos)) {
3936 sd = &per_cpu(softnet_data, *pos);
3937 break;
3938 } else
3939 ++*pos;
3940 return sd;
3941 }
3942
3943 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3944 {
3945 return softnet_get_online(pos);
3946 }
3947
3948 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3949 {
3950 ++*pos;
3951 return softnet_get_online(pos);
3952 }
3953
3954 static void softnet_seq_stop(struct seq_file *seq, void *v)
3955 {
3956 }
3957
3958 static int softnet_seq_show(struct seq_file *seq, void *v)
3959 {
3960 struct softnet_data *sd = v;
3961
3962 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3963 sd->processed, sd->dropped, sd->time_squeeze, 0,
3964 0, 0, 0, 0, /* was fastroute */
3965 sd->cpu_collision, sd->received_rps);
3966 return 0;
3967 }
3968
3969 static const struct seq_operations dev_seq_ops = {
3970 .start = dev_seq_start,
3971 .next = dev_seq_next,
3972 .stop = dev_seq_stop,
3973 .show = dev_seq_show,
3974 };
3975
3976 static int dev_seq_open(struct inode *inode, struct file *file)
3977 {
3978 return seq_open_net(inode, file, &dev_seq_ops,
3979 sizeof(struct seq_net_private));
3980 }
3981
3982 static const struct file_operations dev_seq_fops = {
3983 .owner = THIS_MODULE,
3984 .open = dev_seq_open,
3985 .read = seq_read,
3986 .llseek = seq_lseek,
3987 .release = seq_release_net,
3988 };
3989
3990 static const struct seq_operations softnet_seq_ops = {
3991 .start = softnet_seq_start,
3992 .next = softnet_seq_next,
3993 .stop = softnet_seq_stop,
3994 .show = softnet_seq_show,
3995 };
3996
3997 static int softnet_seq_open(struct inode *inode, struct file *file)
3998 {
3999 return seq_open(file, &softnet_seq_ops);
4000 }
4001
4002 static const struct file_operations softnet_seq_fops = {
4003 .owner = THIS_MODULE,
4004 .open = softnet_seq_open,
4005 .read = seq_read,
4006 .llseek = seq_lseek,
4007 .release = seq_release,
4008 };
4009
4010 static void *ptype_get_idx(loff_t pos)
4011 {
4012 struct packet_type *pt = NULL;
4013 loff_t i = 0;
4014 int t;
4015
4016 list_for_each_entry_rcu(pt, &ptype_all, list) {
4017 if (i == pos)
4018 return pt;
4019 ++i;
4020 }
4021
4022 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4023 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4024 if (i == pos)
4025 return pt;
4026 ++i;
4027 }
4028 }
4029 return NULL;
4030 }
4031
4032 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4033 __acquires(RCU)
4034 {
4035 rcu_read_lock();
4036 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4037 }
4038
4039 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4040 {
4041 struct packet_type *pt;
4042 struct list_head *nxt;
4043 int hash;
4044
4045 ++*pos;
4046 if (v == SEQ_START_TOKEN)
4047 return ptype_get_idx(0);
4048
4049 pt = v;
4050 nxt = pt->list.next;
4051 if (pt->type == htons(ETH_P_ALL)) {
4052 if (nxt != &ptype_all)
4053 goto found;
4054 hash = 0;
4055 nxt = ptype_base[0].next;
4056 } else
4057 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4058
4059 while (nxt == &ptype_base[hash]) {
4060 if (++hash >= PTYPE_HASH_SIZE)
4061 return NULL;
4062 nxt = ptype_base[hash].next;
4063 }
4064 found:
4065 return list_entry(nxt, struct packet_type, list);
4066 }
4067
4068 static void ptype_seq_stop(struct seq_file *seq, void *v)
4069 __releases(RCU)
4070 {
4071 rcu_read_unlock();
4072 }
4073
4074 static int ptype_seq_show(struct seq_file *seq, void *v)
4075 {
4076 struct packet_type *pt = v;
4077
4078 if (v == SEQ_START_TOKEN)
4079 seq_puts(seq, "Type Device Function\n");
4080 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4081 if (pt->type == htons(ETH_P_ALL))
4082 seq_puts(seq, "ALL ");
4083 else
4084 seq_printf(seq, "%04x", ntohs(pt->type));
4085
4086 seq_printf(seq, " %-8s %pF\n",
4087 pt->dev ? pt->dev->name : "", pt->func);
4088 }
4089
4090 return 0;
4091 }
4092
4093 static const struct seq_operations ptype_seq_ops = {
4094 .start = ptype_seq_start,
4095 .next = ptype_seq_next,
4096 .stop = ptype_seq_stop,
4097 .show = ptype_seq_show,
4098 };
4099
4100 static int ptype_seq_open(struct inode *inode, struct file *file)
4101 {
4102 return seq_open_net(inode, file, &ptype_seq_ops,
4103 sizeof(struct seq_net_private));
4104 }
4105
4106 static const struct file_operations ptype_seq_fops = {
4107 .owner = THIS_MODULE,
4108 .open = ptype_seq_open,
4109 .read = seq_read,
4110 .llseek = seq_lseek,
4111 .release = seq_release_net,
4112 };
4113
4114
4115 static int __net_init dev_proc_net_init(struct net *net)
4116 {
4117 int rc = -ENOMEM;
4118
4119 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4120 goto out;
4121 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4122 goto out_dev;
4123 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4124 goto out_softnet;
4125
4126 if (wext_proc_init(net))
4127 goto out_ptype;
4128 rc = 0;
4129 out:
4130 return rc;
4131 out_ptype:
4132 proc_net_remove(net, "ptype");
4133 out_softnet:
4134 proc_net_remove(net, "softnet_stat");
4135 out_dev:
4136 proc_net_remove(net, "dev");
4137 goto out;
4138 }
4139
4140 static void __net_exit dev_proc_net_exit(struct net *net)
4141 {
4142 wext_proc_exit(net);
4143
4144 proc_net_remove(net, "ptype");
4145 proc_net_remove(net, "softnet_stat");
4146 proc_net_remove(net, "dev");
4147 }
4148
4149 static struct pernet_operations __net_initdata dev_proc_ops = {
4150 .init = dev_proc_net_init,
4151 .exit = dev_proc_net_exit,
4152 };
4153
4154 static int __init dev_proc_init(void)
4155 {
4156 return register_pernet_subsys(&dev_proc_ops);
4157 }
4158 #else
4159 #define dev_proc_init() 0
4160 #endif /* CONFIG_PROC_FS */
4161
4162
4163 /**
4164 * netdev_set_master - set up master/slave pair
4165 * @slave: slave device
4166 * @master: new master device
4167 *
4168 * Changes the master device of the slave. Pass %NULL to break the
4169 * bonding. The caller must hold the RTNL semaphore. On a failure
4170 * a negative errno code is returned. On success the reference counts
4171 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4172 * function returns zero.
4173 */
4174 int netdev_set_master(struct net_device *slave, struct net_device *master)
4175 {
4176 struct net_device *old = slave->master;
4177
4178 ASSERT_RTNL();
4179
4180 if (master) {
4181 if (old)
4182 return -EBUSY;
4183 dev_hold(master);
4184 }
4185
4186 slave->master = master;
4187
4188 if (old) {
4189 synchronize_net();
4190 dev_put(old);
4191 }
4192 if (master)
4193 slave->flags |= IFF_SLAVE;
4194 else
4195 slave->flags &= ~IFF_SLAVE;
4196
4197 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4198 return 0;
4199 }
4200 EXPORT_SYMBOL(netdev_set_master);
4201
4202 static void dev_change_rx_flags(struct net_device *dev, int flags)
4203 {
4204 const struct net_device_ops *ops = dev->netdev_ops;
4205
4206 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4207 ops->ndo_change_rx_flags(dev, flags);
4208 }
4209
4210 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4211 {
4212 unsigned short old_flags = dev->flags;
4213 uid_t uid;
4214 gid_t gid;
4215
4216 ASSERT_RTNL();
4217
4218 dev->flags |= IFF_PROMISC;
4219 dev->promiscuity += inc;
4220 if (dev->promiscuity == 0) {
4221 /*
4222 * Avoid overflow.
4223 * If inc causes overflow, untouch promisc and return error.
4224 */
4225 if (inc < 0)
4226 dev->flags &= ~IFF_PROMISC;
4227 else {
4228 dev->promiscuity -= inc;
4229 printk(KERN_WARNING "%s: promiscuity touches roof, "
4230 "set promiscuity failed, promiscuity feature "
4231 "of device might be broken.\n", dev->name);
4232 return -EOVERFLOW;
4233 }
4234 }
4235 if (dev->flags != old_flags) {
4236 printk(KERN_INFO "device %s %s promiscuous mode\n",
4237 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4238 "left");
4239 if (audit_enabled) {
4240 current_uid_gid(&uid, &gid);
4241 audit_log(current->audit_context, GFP_ATOMIC,
4242 AUDIT_ANOM_PROMISCUOUS,
4243 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4244 dev->name, (dev->flags & IFF_PROMISC),
4245 (old_flags & IFF_PROMISC),
4246 audit_get_loginuid(current),
4247 uid, gid,
4248 audit_get_sessionid(current));
4249 }
4250
4251 dev_change_rx_flags(dev, IFF_PROMISC);
4252 }
4253 return 0;
4254 }
4255
4256 /**
4257 * dev_set_promiscuity - update promiscuity count on a device
4258 * @dev: device
4259 * @inc: modifier
4260 *
4261 * Add or remove promiscuity from a device. While the count in the device
4262 * remains above zero the interface remains promiscuous. Once it hits zero
4263 * the device reverts back to normal filtering operation. A negative inc
4264 * value is used to drop promiscuity on the device.
4265 * Return 0 if successful or a negative errno code on error.
4266 */
4267 int dev_set_promiscuity(struct net_device *dev, int inc)
4268 {
4269 unsigned short old_flags = dev->flags;
4270 int err;
4271
4272 err = __dev_set_promiscuity(dev, inc);
4273 if (err < 0)
4274 return err;
4275 if (dev->flags != old_flags)
4276 dev_set_rx_mode(dev);
4277 return err;
4278 }
4279 EXPORT_SYMBOL(dev_set_promiscuity);
4280
4281 /**
4282 * dev_set_allmulti - update allmulti count on a device
4283 * @dev: device
4284 * @inc: modifier
4285 *
4286 * Add or remove reception of all multicast frames to a device. While the
4287 * count in the device remains above zero the interface remains listening
4288 * to all interfaces. Once it hits zero the device reverts back to normal
4289 * filtering operation. A negative @inc value is used to drop the counter
4290 * when releasing a resource needing all multicasts.
4291 * Return 0 if successful or a negative errno code on error.
4292 */
4293
4294 int dev_set_allmulti(struct net_device *dev, int inc)
4295 {
4296 unsigned short old_flags = dev->flags;
4297
4298 ASSERT_RTNL();
4299
4300 dev->flags |= IFF_ALLMULTI;
4301 dev->allmulti += inc;
4302 if (dev->allmulti == 0) {
4303 /*
4304 * Avoid overflow.
4305 * If inc causes overflow, untouch allmulti and return error.
4306 */
4307 if (inc < 0)
4308 dev->flags &= ~IFF_ALLMULTI;
4309 else {
4310 dev->allmulti -= inc;
4311 printk(KERN_WARNING "%s: allmulti touches roof, "
4312 "set allmulti failed, allmulti feature of "
4313 "device might be broken.\n", dev->name);
4314 return -EOVERFLOW;
4315 }
4316 }
4317 if (dev->flags ^ old_flags) {
4318 dev_change_rx_flags(dev, IFF_ALLMULTI);
4319 dev_set_rx_mode(dev);
4320 }
4321 return 0;
4322 }
4323 EXPORT_SYMBOL(dev_set_allmulti);
4324
4325 /*
4326 * Upload unicast and multicast address lists to device and
4327 * configure RX filtering. When the device doesn't support unicast
4328 * filtering it is put in promiscuous mode while unicast addresses
4329 * are present.
4330 */
4331 void __dev_set_rx_mode(struct net_device *dev)
4332 {
4333 const struct net_device_ops *ops = dev->netdev_ops;
4334
4335 /* dev_open will call this function so the list will stay sane. */
4336 if (!(dev->flags&IFF_UP))
4337 return;
4338
4339 if (!netif_device_present(dev))
4340 return;
4341
4342 if (ops->ndo_set_rx_mode)
4343 ops->ndo_set_rx_mode(dev);
4344 else {
4345 /* Unicast addresses changes may only happen under the rtnl,
4346 * therefore calling __dev_set_promiscuity here is safe.
4347 */
4348 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4349 __dev_set_promiscuity(dev, 1);
4350 dev->uc_promisc = 1;
4351 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4352 __dev_set_promiscuity(dev, -1);
4353 dev->uc_promisc = 0;
4354 }
4355
4356 if (ops->ndo_set_multicast_list)
4357 ops->ndo_set_multicast_list(dev);
4358 }
4359 }
4360
4361 void dev_set_rx_mode(struct net_device *dev)
4362 {
4363 netif_addr_lock_bh(dev);
4364 __dev_set_rx_mode(dev);
4365 netif_addr_unlock_bh(dev);
4366 }
4367
4368 /**
4369 * dev_get_flags - get flags reported to userspace
4370 * @dev: device
4371 *
4372 * Get the combination of flag bits exported through APIs to userspace.
4373 */
4374 unsigned dev_get_flags(const struct net_device *dev)
4375 {
4376 unsigned flags;
4377
4378 flags = (dev->flags & ~(IFF_PROMISC |
4379 IFF_ALLMULTI |
4380 IFF_RUNNING |
4381 IFF_LOWER_UP |
4382 IFF_DORMANT)) |
4383 (dev->gflags & (IFF_PROMISC |
4384 IFF_ALLMULTI));
4385
4386 if (netif_running(dev)) {
4387 if (netif_oper_up(dev))
4388 flags |= IFF_RUNNING;
4389 if (netif_carrier_ok(dev))
4390 flags |= IFF_LOWER_UP;
4391 if (netif_dormant(dev))
4392 flags |= IFF_DORMANT;
4393 }
4394
4395 return flags;
4396 }
4397 EXPORT_SYMBOL(dev_get_flags);
4398
4399 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4400 {
4401 int old_flags = dev->flags;
4402 int ret;
4403
4404 ASSERT_RTNL();
4405
4406 /*
4407 * Set the flags on our device.
4408 */
4409
4410 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4411 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4412 IFF_AUTOMEDIA)) |
4413 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4414 IFF_ALLMULTI));
4415
4416 /*
4417 * Load in the correct multicast list now the flags have changed.
4418 */
4419
4420 if ((old_flags ^ flags) & IFF_MULTICAST)
4421 dev_change_rx_flags(dev, IFF_MULTICAST);
4422
4423 dev_set_rx_mode(dev);
4424
4425 /*
4426 * Have we downed the interface. We handle IFF_UP ourselves
4427 * according to user attempts to set it, rather than blindly
4428 * setting it.
4429 */
4430
4431 ret = 0;
4432 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4433 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4434
4435 if (!ret)
4436 dev_set_rx_mode(dev);
4437 }
4438
4439 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4440 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4441
4442 dev->gflags ^= IFF_PROMISC;
4443 dev_set_promiscuity(dev, inc);
4444 }
4445
4446 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4447 is important. Some (broken) drivers set IFF_PROMISC, when
4448 IFF_ALLMULTI is requested not asking us and not reporting.
4449 */
4450 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4451 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4452
4453 dev->gflags ^= IFF_ALLMULTI;
4454 dev_set_allmulti(dev, inc);
4455 }
4456
4457 return ret;
4458 }
4459
4460 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4461 {
4462 unsigned int changes = dev->flags ^ old_flags;
4463
4464 if (changes & IFF_UP) {
4465 if (dev->flags & IFF_UP)
4466 call_netdevice_notifiers(NETDEV_UP, dev);
4467 else
4468 call_netdevice_notifiers(NETDEV_DOWN, dev);
4469 }
4470
4471 if (dev->flags & IFF_UP &&
4472 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4473 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4474 }
4475
4476 /**
4477 * dev_change_flags - change device settings
4478 * @dev: device
4479 * @flags: device state flags
4480 *
4481 * Change settings on device based state flags. The flags are
4482 * in the userspace exported format.
4483 */
4484 int dev_change_flags(struct net_device *dev, unsigned flags)
4485 {
4486 int ret, changes;
4487 int old_flags = dev->flags;
4488
4489 ret = __dev_change_flags(dev, flags);
4490 if (ret < 0)
4491 return ret;
4492
4493 changes = old_flags ^ dev->flags;
4494 if (changes)
4495 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4496
4497 __dev_notify_flags(dev, old_flags);
4498 return ret;
4499 }
4500 EXPORT_SYMBOL(dev_change_flags);
4501
4502 /**
4503 * dev_set_mtu - Change maximum transfer unit
4504 * @dev: device
4505 * @new_mtu: new transfer unit
4506 *
4507 * Change the maximum transfer size of the network device.
4508 */
4509 int dev_set_mtu(struct net_device *dev, int new_mtu)
4510 {
4511 const struct net_device_ops *ops = dev->netdev_ops;
4512 int err;
4513
4514 if (new_mtu == dev->mtu)
4515 return 0;
4516
4517 /* MTU must be positive. */
4518 if (new_mtu < 0)
4519 return -EINVAL;
4520
4521 if (!netif_device_present(dev))
4522 return -ENODEV;
4523
4524 err = 0;
4525 if (ops->ndo_change_mtu)
4526 err = ops->ndo_change_mtu(dev, new_mtu);
4527 else
4528 dev->mtu = new_mtu;
4529
4530 if (!err && dev->flags & IFF_UP)
4531 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4532 return err;
4533 }
4534 EXPORT_SYMBOL(dev_set_mtu);
4535
4536 /**
4537 * dev_set_mac_address - Change Media Access Control Address
4538 * @dev: device
4539 * @sa: new address
4540 *
4541 * Change the hardware (MAC) address of the device
4542 */
4543 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4544 {
4545 const struct net_device_ops *ops = dev->netdev_ops;
4546 int err;
4547
4548 if (!ops->ndo_set_mac_address)
4549 return -EOPNOTSUPP;
4550 if (sa->sa_family != dev->type)
4551 return -EINVAL;
4552 if (!netif_device_present(dev))
4553 return -ENODEV;
4554 err = ops->ndo_set_mac_address(dev, sa);
4555 if (!err)
4556 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4557 return err;
4558 }
4559 EXPORT_SYMBOL(dev_set_mac_address);
4560
4561 /*
4562 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4563 */
4564 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4565 {
4566 int err;
4567 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4568
4569 if (!dev)
4570 return -ENODEV;
4571
4572 switch (cmd) {
4573 case SIOCGIFFLAGS: /* Get interface flags */
4574 ifr->ifr_flags = (short) dev_get_flags(dev);
4575 return 0;
4576
4577 case SIOCGIFMETRIC: /* Get the metric on the interface
4578 (currently unused) */
4579 ifr->ifr_metric = 0;
4580 return 0;
4581
4582 case SIOCGIFMTU: /* Get the MTU of a device */
4583 ifr->ifr_mtu = dev->mtu;
4584 return 0;
4585
4586 case SIOCGIFHWADDR:
4587 if (!dev->addr_len)
4588 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4589 else
4590 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4591 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4592 ifr->ifr_hwaddr.sa_family = dev->type;
4593 return 0;
4594
4595 case SIOCGIFSLAVE:
4596 err = -EINVAL;
4597 break;
4598
4599 case SIOCGIFMAP:
4600 ifr->ifr_map.mem_start = dev->mem_start;
4601 ifr->ifr_map.mem_end = dev->mem_end;
4602 ifr->ifr_map.base_addr = dev->base_addr;
4603 ifr->ifr_map.irq = dev->irq;
4604 ifr->ifr_map.dma = dev->dma;
4605 ifr->ifr_map.port = dev->if_port;
4606 return 0;
4607
4608 case SIOCGIFINDEX:
4609 ifr->ifr_ifindex = dev->ifindex;
4610 return 0;
4611
4612 case SIOCGIFTXQLEN:
4613 ifr->ifr_qlen = dev->tx_queue_len;
4614 return 0;
4615
4616 default:
4617 /* dev_ioctl() should ensure this case
4618 * is never reached
4619 */
4620 WARN_ON(1);
4621 err = -EINVAL;
4622 break;
4623
4624 }
4625 return err;
4626 }
4627
4628 /*
4629 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4630 */
4631 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4632 {
4633 int err;
4634 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4635 const struct net_device_ops *ops;
4636
4637 if (!dev)
4638 return -ENODEV;
4639
4640 ops = dev->netdev_ops;
4641
4642 switch (cmd) {
4643 case SIOCSIFFLAGS: /* Set interface flags */
4644 return dev_change_flags(dev, ifr->ifr_flags);
4645
4646 case SIOCSIFMETRIC: /* Set the metric on the interface
4647 (currently unused) */
4648 return -EOPNOTSUPP;
4649
4650 case SIOCSIFMTU: /* Set the MTU of a device */
4651 return dev_set_mtu(dev, ifr->ifr_mtu);
4652
4653 case SIOCSIFHWADDR:
4654 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4655
4656 case SIOCSIFHWBROADCAST:
4657 if (ifr->ifr_hwaddr.sa_family != dev->type)
4658 return -EINVAL;
4659 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4660 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4661 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4662 return 0;
4663
4664 case SIOCSIFMAP:
4665 if (ops->ndo_set_config) {
4666 if (!netif_device_present(dev))
4667 return -ENODEV;
4668 return ops->ndo_set_config(dev, &ifr->ifr_map);
4669 }
4670 return -EOPNOTSUPP;
4671
4672 case SIOCADDMULTI:
4673 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4674 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4675 return -EINVAL;
4676 if (!netif_device_present(dev))
4677 return -ENODEV;
4678 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4679
4680 case SIOCDELMULTI:
4681 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4682 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4683 return -EINVAL;
4684 if (!netif_device_present(dev))
4685 return -ENODEV;
4686 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4687
4688 case SIOCSIFTXQLEN:
4689 if (ifr->ifr_qlen < 0)
4690 return -EINVAL;
4691 dev->tx_queue_len = ifr->ifr_qlen;
4692 return 0;
4693
4694 case SIOCSIFNAME:
4695 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4696 return dev_change_name(dev, ifr->ifr_newname);
4697
4698 /*
4699 * Unknown or private ioctl
4700 */
4701 default:
4702 if ((cmd >= SIOCDEVPRIVATE &&
4703 cmd <= SIOCDEVPRIVATE + 15) ||
4704 cmd == SIOCBONDENSLAVE ||
4705 cmd == SIOCBONDRELEASE ||
4706 cmd == SIOCBONDSETHWADDR ||
4707 cmd == SIOCBONDSLAVEINFOQUERY ||
4708 cmd == SIOCBONDINFOQUERY ||
4709 cmd == SIOCBONDCHANGEACTIVE ||
4710 cmd == SIOCGMIIPHY ||
4711 cmd == SIOCGMIIREG ||
4712 cmd == SIOCSMIIREG ||
4713 cmd == SIOCBRADDIF ||
4714 cmd == SIOCBRDELIF ||
4715 cmd == SIOCSHWTSTAMP ||
4716 cmd == SIOCWANDEV) {
4717 err = -EOPNOTSUPP;
4718 if (ops->ndo_do_ioctl) {
4719 if (netif_device_present(dev))
4720 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4721 else
4722 err = -ENODEV;
4723 }
4724 } else
4725 err = -EINVAL;
4726
4727 }
4728 return err;
4729 }
4730
4731 /*
4732 * This function handles all "interface"-type I/O control requests. The actual
4733 * 'doing' part of this is dev_ifsioc above.
4734 */
4735
4736 /**
4737 * dev_ioctl - network device ioctl
4738 * @net: the applicable net namespace
4739 * @cmd: command to issue
4740 * @arg: pointer to a struct ifreq in user space
4741 *
4742 * Issue ioctl functions to devices. This is normally called by the
4743 * user space syscall interfaces but can sometimes be useful for
4744 * other purposes. The return value is the return from the syscall if
4745 * positive or a negative errno code on error.
4746 */
4747
4748 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4749 {
4750 struct ifreq ifr;
4751 int ret;
4752 char *colon;
4753
4754 /* One special case: SIOCGIFCONF takes ifconf argument
4755 and requires shared lock, because it sleeps writing
4756 to user space.
4757 */
4758
4759 if (cmd == SIOCGIFCONF) {
4760 rtnl_lock();
4761 ret = dev_ifconf(net, (char __user *) arg);
4762 rtnl_unlock();
4763 return ret;
4764 }
4765 if (cmd == SIOCGIFNAME)
4766 return dev_ifname(net, (struct ifreq __user *)arg);
4767
4768 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4769 return -EFAULT;
4770
4771 ifr.ifr_name[IFNAMSIZ-1] = 0;
4772
4773 colon = strchr(ifr.ifr_name, ':');
4774 if (colon)
4775 *colon = 0;
4776
4777 /*
4778 * See which interface the caller is talking about.
4779 */
4780
4781 switch (cmd) {
4782 /*
4783 * These ioctl calls:
4784 * - can be done by all.
4785 * - atomic and do not require locking.
4786 * - return a value
4787 */
4788 case SIOCGIFFLAGS:
4789 case SIOCGIFMETRIC:
4790 case SIOCGIFMTU:
4791 case SIOCGIFHWADDR:
4792 case SIOCGIFSLAVE:
4793 case SIOCGIFMAP:
4794 case SIOCGIFINDEX:
4795 case SIOCGIFTXQLEN:
4796 dev_load(net, ifr.ifr_name);
4797 rcu_read_lock();
4798 ret = dev_ifsioc_locked(net, &ifr, cmd);
4799 rcu_read_unlock();
4800 if (!ret) {
4801 if (colon)
4802 *colon = ':';
4803 if (copy_to_user(arg, &ifr,
4804 sizeof(struct ifreq)))
4805 ret = -EFAULT;
4806 }
4807 return ret;
4808
4809 case SIOCETHTOOL:
4810 dev_load(net, ifr.ifr_name);
4811 rtnl_lock();
4812 ret = dev_ethtool(net, &ifr);
4813 rtnl_unlock();
4814 if (!ret) {
4815 if (colon)
4816 *colon = ':';
4817 if (copy_to_user(arg, &ifr,
4818 sizeof(struct ifreq)))
4819 ret = -EFAULT;
4820 }
4821 return ret;
4822
4823 /*
4824 * These ioctl calls:
4825 * - require superuser power.
4826 * - require strict serialization.
4827 * - return a value
4828 */
4829 case SIOCGMIIPHY:
4830 case SIOCGMIIREG:
4831 case SIOCSIFNAME:
4832 if (!capable(CAP_NET_ADMIN))
4833 return -EPERM;
4834 dev_load(net, ifr.ifr_name);
4835 rtnl_lock();
4836 ret = dev_ifsioc(net, &ifr, cmd);
4837 rtnl_unlock();
4838 if (!ret) {
4839 if (colon)
4840 *colon = ':';
4841 if (copy_to_user(arg, &ifr,
4842 sizeof(struct ifreq)))
4843 ret = -EFAULT;
4844 }
4845 return ret;
4846
4847 /*
4848 * These ioctl calls:
4849 * - require superuser power.
4850 * - require strict serialization.
4851 * - do not return a value
4852 */
4853 case SIOCSIFFLAGS:
4854 case SIOCSIFMETRIC:
4855 case SIOCSIFMTU:
4856 case SIOCSIFMAP:
4857 case SIOCSIFHWADDR:
4858 case SIOCSIFSLAVE:
4859 case SIOCADDMULTI:
4860 case SIOCDELMULTI:
4861 case SIOCSIFHWBROADCAST:
4862 case SIOCSIFTXQLEN:
4863 case SIOCSMIIREG:
4864 case SIOCBONDENSLAVE:
4865 case SIOCBONDRELEASE:
4866 case SIOCBONDSETHWADDR:
4867 case SIOCBONDCHANGEACTIVE:
4868 case SIOCBRADDIF:
4869 case SIOCBRDELIF:
4870 case SIOCSHWTSTAMP:
4871 if (!capable(CAP_NET_ADMIN))
4872 return -EPERM;
4873 /* fall through */
4874 case SIOCBONDSLAVEINFOQUERY:
4875 case SIOCBONDINFOQUERY:
4876 dev_load(net, ifr.ifr_name);
4877 rtnl_lock();
4878 ret = dev_ifsioc(net, &ifr, cmd);
4879 rtnl_unlock();
4880 return ret;
4881
4882 case SIOCGIFMEM:
4883 /* Get the per device memory space. We can add this but
4884 * currently do not support it */
4885 case SIOCSIFMEM:
4886 /* Set the per device memory buffer space.
4887 * Not applicable in our case */
4888 case SIOCSIFLINK:
4889 return -EINVAL;
4890
4891 /*
4892 * Unknown or private ioctl.
4893 */
4894 default:
4895 if (cmd == SIOCWANDEV ||
4896 (cmd >= SIOCDEVPRIVATE &&
4897 cmd <= SIOCDEVPRIVATE + 15)) {
4898 dev_load(net, ifr.ifr_name);
4899 rtnl_lock();
4900 ret = dev_ifsioc(net, &ifr, cmd);
4901 rtnl_unlock();
4902 if (!ret && copy_to_user(arg, &ifr,
4903 sizeof(struct ifreq)))
4904 ret = -EFAULT;
4905 return ret;
4906 }
4907 /* Take care of Wireless Extensions */
4908 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4909 return wext_handle_ioctl(net, &ifr, cmd, arg);
4910 return -EINVAL;
4911 }
4912 }
4913
4914
4915 /**
4916 * dev_new_index - allocate an ifindex
4917 * @net: the applicable net namespace
4918 *
4919 * Returns a suitable unique value for a new device interface
4920 * number. The caller must hold the rtnl semaphore or the
4921 * dev_base_lock to be sure it remains unique.
4922 */
4923 static int dev_new_index(struct net *net)
4924 {
4925 static int ifindex;
4926 for (;;) {
4927 if (++ifindex <= 0)
4928 ifindex = 1;
4929 if (!__dev_get_by_index(net, ifindex))
4930 return ifindex;
4931 }
4932 }
4933
4934 /* Delayed registration/unregisteration */
4935 static LIST_HEAD(net_todo_list);
4936
4937 static void net_set_todo(struct net_device *dev)
4938 {
4939 list_add_tail(&dev->todo_list, &net_todo_list);
4940 }
4941
4942 static void rollback_registered_many(struct list_head *head)
4943 {
4944 struct net_device *dev, *tmp;
4945
4946 BUG_ON(dev_boot_phase);
4947 ASSERT_RTNL();
4948
4949 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4950 /* Some devices call without registering
4951 * for initialization unwind. Remove those
4952 * devices and proceed with the remaining.
4953 */
4954 if (dev->reg_state == NETREG_UNINITIALIZED) {
4955 pr_debug("unregister_netdevice: device %s/%p never "
4956 "was registered\n", dev->name, dev);
4957
4958 WARN_ON(1);
4959 list_del(&dev->unreg_list);
4960 continue;
4961 }
4962
4963 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4964
4965 /* If device is running, close it first. */
4966 dev_close(dev);
4967
4968 /* And unlink it from device chain. */
4969 unlist_netdevice(dev);
4970
4971 dev->reg_state = NETREG_UNREGISTERING;
4972 }
4973
4974 synchronize_net();
4975
4976 list_for_each_entry(dev, head, unreg_list) {
4977 /* Shutdown queueing discipline. */
4978 dev_shutdown(dev);
4979
4980
4981 /* Notify protocols, that we are about to destroy
4982 this device. They should clean all the things.
4983 */
4984 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4985
4986 if (!dev->rtnl_link_ops ||
4987 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4988 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4989
4990 /*
4991 * Flush the unicast and multicast chains
4992 */
4993 dev_uc_flush(dev);
4994 dev_mc_flush(dev);
4995
4996 if (dev->netdev_ops->ndo_uninit)
4997 dev->netdev_ops->ndo_uninit(dev);
4998
4999 /* Notifier chain MUST detach us from master device. */
5000 WARN_ON(dev->master);
5001
5002 /* Remove entries from kobject tree */
5003 netdev_unregister_kobject(dev);
5004 }
5005
5006 /* Process any work delayed until the end of the batch */
5007 dev = list_first_entry(head, struct net_device, unreg_list);
5008 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5009
5010 rcu_barrier();
5011
5012 list_for_each_entry(dev, head, unreg_list)
5013 dev_put(dev);
5014 }
5015
5016 static void rollback_registered(struct net_device *dev)
5017 {
5018 LIST_HEAD(single);
5019
5020 list_add(&dev->unreg_list, &single);
5021 rollback_registered_many(&single);
5022 }
5023
5024 unsigned long netdev_fix_features(unsigned long features, const char *name)
5025 {
5026 /* Fix illegal SG+CSUM combinations. */
5027 if ((features & NETIF_F_SG) &&
5028 !(features & NETIF_F_ALL_CSUM)) {
5029 if (name)
5030 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5031 "checksum feature.\n", name);
5032 features &= ~NETIF_F_SG;
5033 }
5034
5035 /* TSO requires that SG is present as well. */
5036 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5037 if (name)
5038 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5039 "SG feature.\n", name);
5040 features &= ~NETIF_F_TSO;
5041 }
5042
5043 if (features & NETIF_F_UFO) {
5044 /* maybe split UFO into V4 and V6? */
5045 if (!((features & NETIF_F_GEN_CSUM) ||
5046 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5047 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5048 if (name)
5049 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5050 "since no checksum offload features.\n",
5051 name);
5052 features &= ~NETIF_F_UFO;
5053 }
5054
5055 if (!(features & NETIF_F_SG)) {
5056 if (name)
5057 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5058 "since no NETIF_F_SG feature.\n", name);
5059 features &= ~NETIF_F_UFO;
5060 }
5061 }
5062
5063 return features;
5064 }
5065 EXPORT_SYMBOL(netdev_fix_features);
5066
5067 /**
5068 * netif_stacked_transfer_operstate - transfer operstate
5069 * @rootdev: the root or lower level device to transfer state from
5070 * @dev: the device to transfer operstate to
5071 *
5072 * Transfer operational state from root to device. This is normally
5073 * called when a stacking relationship exists between the root
5074 * device and the device(a leaf device).
5075 */
5076 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5077 struct net_device *dev)
5078 {
5079 if (rootdev->operstate == IF_OPER_DORMANT)
5080 netif_dormant_on(dev);
5081 else
5082 netif_dormant_off(dev);
5083
5084 if (netif_carrier_ok(rootdev)) {
5085 if (!netif_carrier_ok(dev))
5086 netif_carrier_on(dev);
5087 } else {
5088 if (netif_carrier_ok(dev))
5089 netif_carrier_off(dev);
5090 }
5091 }
5092 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5093
5094 #ifdef CONFIG_RPS
5095 static int netif_alloc_rx_queues(struct net_device *dev)
5096 {
5097 unsigned int i, count = dev->num_rx_queues;
5098 struct netdev_rx_queue *rx;
5099
5100 BUG_ON(count < 1);
5101
5102 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5103 if (!rx) {
5104 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5105 return -ENOMEM;
5106 }
5107 dev->_rx = rx;
5108
5109 for (i = 0; i < count; i++)
5110 rx[i].dev = dev;
5111 return 0;
5112 }
5113 #endif
5114
5115 static void netdev_init_one_queue(struct net_device *dev,
5116 struct netdev_queue *queue, void *_unused)
5117 {
5118 /* Initialize queue lock */
5119 spin_lock_init(&queue->_xmit_lock);
5120 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5121 queue->xmit_lock_owner = -1;
5122 netdev_queue_numa_node_write(queue, -1);
5123 queue->dev = dev;
5124 }
5125
5126 static int netif_alloc_netdev_queues(struct net_device *dev)
5127 {
5128 unsigned int count = dev->num_tx_queues;
5129 struct netdev_queue *tx;
5130
5131 BUG_ON(count < 1);
5132
5133 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5134 if (!tx) {
5135 pr_err("netdev: Unable to allocate %u tx queues.\n",
5136 count);
5137 return -ENOMEM;
5138 }
5139 dev->_tx = tx;
5140
5141 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5142 spin_lock_init(&dev->tx_global_lock);
5143
5144 return 0;
5145 }
5146
5147 /**
5148 * register_netdevice - register a network device
5149 * @dev: device to register
5150 *
5151 * Take a completed network device structure and add it to the kernel
5152 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5153 * chain. 0 is returned on success. A negative errno code is returned
5154 * on a failure to set up the device, or if the name is a duplicate.
5155 *
5156 * Callers must hold the rtnl semaphore. You may want
5157 * register_netdev() instead of this.
5158 *
5159 * BUGS:
5160 * The locking appears insufficient to guarantee two parallel registers
5161 * will not get the same name.
5162 */
5163
5164 int register_netdevice(struct net_device *dev)
5165 {
5166 int ret;
5167 struct net *net = dev_net(dev);
5168
5169 BUG_ON(dev_boot_phase);
5170 ASSERT_RTNL();
5171
5172 might_sleep();
5173
5174 /* When net_device's are persistent, this will be fatal. */
5175 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5176 BUG_ON(!net);
5177
5178 spin_lock_init(&dev->addr_list_lock);
5179 netdev_set_addr_lockdep_class(dev);
5180
5181 dev->iflink = -1;
5182
5183 /* Init, if this function is available */
5184 if (dev->netdev_ops->ndo_init) {
5185 ret = dev->netdev_ops->ndo_init(dev);
5186 if (ret) {
5187 if (ret > 0)
5188 ret = -EIO;
5189 goto out;
5190 }
5191 }
5192
5193 ret = dev_get_valid_name(dev, dev->name, 0);
5194 if (ret)
5195 goto err_uninit;
5196
5197 dev->ifindex = dev_new_index(net);
5198 if (dev->iflink == -1)
5199 dev->iflink = dev->ifindex;
5200
5201 /* Fix illegal checksum combinations */
5202 if ((dev->features & NETIF_F_HW_CSUM) &&
5203 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5204 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5205 dev->name);
5206 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5207 }
5208
5209 if ((dev->features & NETIF_F_NO_CSUM) &&
5210 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5211 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5212 dev->name);
5213 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5214 }
5215
5216 dev->features = netdev_fix_features(dev->features, dev->name);
5217
5218 /* Enable software GSO if SG is supported. */
5219 if (dev->features & NETIF_F_SG)
5220 dev->features |= NETIF_F_GSO;
5221
5222 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5223 * vlan_dev_init() will do the dev->features check, so these features
5224 * are enabled only if supported by underlying device.
5225 */
5226 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5227
5228 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5229 ret = notifier_to_errno(ret);
5230 if (ret)
5231 goto err_uninit;
5232
5233 ret = netdev_register_kobject(dev);
5234 if (ret)
5235 goto err_uninit;
5236 dev->reg_state = NETREG_REGISTERED;
5237
5238 /*
5239 * Default initial state at registry is that the
5240 * device is present.
5241 */
5242
5243 set_bit(__LINK_STATE_PRESENT, &dev->state);
5244
5245 dev_init_scheduler(dev);
5246 dev_hold(dev);
5247 list_netdevice(dev);
5248
5249 /* Notify protocols, that a new device appeared. */
5250 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5251 ret = notifier_to_errno(ret);
5252 if (ret) {
5253 rollback_registered(dev);
5254 dev->reg_state = NETREG_UNREGISTERED;
5255 }
5256 /*
5257 * Prevent userspace races by waiting until the network
5258 * device is fully setup before sending notifications.
5259 */
5260 if (!dev->rtnl_link_ops ||
5261 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5262 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5263
5264 out:
5265 return ret;
5266
5267 err_uninit:
5268 if (dev->netdev_ops->ndo_uninit)
5269 dev->netdev_ops->ndo_uninit(dev);
5270 goto out;
5271 }
5272 EXPORT_SYMBOL(register_netdevice);
5273
5274 /**
5275 * init_dummy_netdev - init a dummy network device for NAPI
5276 * @dev: device to init
5277 *
5278 * This takes a network device structure and initialize the minimum
5279 * amount of fields so it can be used to schedule NAPI polls without
5280 * registering a full blown interface. This is to be used by drivers
5281 * that need to tie several hardware interfaces to a single NAPI
5282 * poll scheduler due to HW limitations.
5283 */
5284 int init_dummy_netdev(struct net_device *dev)
5285 {
5286 /* Clear everything. Note we don't initialize spinlocks
5287 * are they aren't supposed to be taken by any of the
5288 * NAPI code and this dummy netdev is supposed to be
5289 * only ever used for NAPI polls
5290 */
5291 memset(dev, 0, sizeof(struct net_device));
5292
5293 /* make sure we BUG if trying to hit standard
5294 * register/unregister code path
5295 */
5296 dev->reg_state = NETREG_DUMMY;
5297
5298 /* NAPI wants this */
5299 INIT_LIST_HEAD(&dev->napi_list);
5300
5301 /* a dummy interface is started by default */
5302 set_bit(__LINK_STATE_PRESENT, &dev->state);
5303 set_bit(__LINK_STATE_START, &dev->state);
5304
5305 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5306 * because users of this 'device' dont need to change
5307 * its refcount.
5308 */
5309
5310 return 0;
5311 }
5312 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5313
5314
5315 /**
5316 * register_netdev - register a network device
5317 * @dev: device to register
5318 *
5319 * Take a completed network device structure and add it to the kernel
5320 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5321 * chain. 0 is returned on success. A negative errno code is returned
5322 * on a failure to set up the device, or if the name is a duplicate.
5323 *
5324 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5325 * and expands the device name if you passed a format string to
5326 * alloc_netdev.
5327 */
5328 int register_netdev(struct net_device *dev)
5329 {
5330 int err;
5331
5332 rtnl_lock();
5333
5334 /*
5335 * If the name is a format string the caller wants us to do a
5336 * name allocation.
5337 */
5338 if (strchr(dev->name, '%')) {
5339 err = dev_alloc_name(dev, dev->name);
5340 if (err < 0)
5341 goto out;
5342 }
5343
5344 err = register_netdevice(dev);
5345 out:
5346 rtnl_unlock();
5347 return err;
5348 }
5349 EXPORT_SYMBOL(register_netdev);
5350
5351 int netdev_refcnt_read(const struct net_device *dev)
5352 {
5353 int i, refcnt = 0;
5354
5355 for_each_possible_cpu(i)
5356 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5357 return refcnt;
5358 }
5359 EXPORT_SYMBOL(netdev_refcnt_read);
5360
5361 /*
5362 * netdev_wait_allrefs - wait until all references are gone.
5363 *
5364 * This is called when unregistering network devices.
5365 *
5366 * Any protocol or device that holds a reference should register
5367 * for netdevice notification, and cleanup and put back the
5368 * reference if they receive an UNREGISTER event.
5369 * We can get stuck here if buggy protocols don't correctly
5370 * call dev_put.
5371 */
5372 static void netdev_wait_allrefs(struct net_device *dev)
5373 {
5374 unsigned long rebroadcast_time, warning_time;
5375 int refcnt;
5376
5377 linkwatch_forget_dev(dev);
5378
5379 rebroadcast_time = warning_time = jiffies;
5380 refcnt = netdev_refcnt_read(dev);
5381
5382 while (refcnt != 0) {
5383 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5384 rtnl_lock();
5385
5386 /* Rebroadcast unregister notification */
5387 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5388 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5389 * should have already handle it the first time */
5390
5391 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5392 &dev->state)) {
5393 /* We must not have linkwatch events
5394 * pending on unregister. If this
5395 * happens, we simply run the queue
5396 * unscheduled, resulting in a noop
5397 * for this device.
5398 */
5399 linkwatch_run_queue();
5400 }
5401
5402 __rtnl_unlock();
5403
5404 rebroadcast_time = jiffies;
5405 }
5406
5407 msleep(250);
5408
5409 refcnt = netdev_refcnt_read(dev);
5410
5411 if (time_after(jiffies, warning_time + 10 * HZ)) {
5412 printk(KERN_EMERG "unregister_netdevice: "
5413 "waiting for %s to become free. Usage "
5414 "count = %d\n",
5415 dev->name, refcnt);
5416 warning_time = jiffies;
5417 }
5418 }
5419 }
5420
5421 /* The sequence is:
5422 *
5423 * rtnl_lock();
5424 * ...
5425 * register_netdevice(x1);
5426 * register_netdevice(x2);
5427 * ...
5428 * unregister_netdevice(y1);
5429 * unregister_netdevice(y2);
5430 * ...
5431 * rtnl_unlock();
5432 * free_netdev(y1);
5433 * free_netdev(y2);
5434 *
5435 * We are invoked by rtnl_unlock().
5436 * This allows us to deal with problems:
5437 * 1) We can delete sysfs objects which invoke hotplug
5438 * without deadlocking with linkwatch via keventd.
5439 * 2) Since we run with the RTNL semaphore not held, we can sleep
5440 * safely in order to wait for the netdev refcnt to drop to zero.
5441 *
5442 * We must not return until all unregister events added during
5443 * the interval the lock was held have been completed.
5444 */
5445 void netdev_run_todo(void)
5446 {
5447 struct list_head list;
5448
5449 /* Snapshot list, allow later requests */
5450 list_replace_init(&net_todo_list, &list);
5451
5452 __rtnl_unlock();
5453
5454 while (!list_empty(&list)) {
5455 struct net_device *dev
5456 = list_first_entry(&list, struct net_device, todo_list);
5457 list_del(&dev->todo_list);
5458
5459 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5460 printk(KERN_ERR "network todo '%s' but state %d\n",
5461 dev->name, dev->reg_state);
5462 dump_stack();
5463 continue;
5464 }
5465
5466 dev->reg_state = NETREG_UNREGISTERED;
5467
5468 on_each_cpu(flush_backlog, dev, 1);
5469
5470 netdev_wait_allrefs(dev);
5471
5472 /* paranoia */
5473 BUG_ON(netdev_refcnt_read(dev));
5474 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5475 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5476 WARN_ON(dev->dn_ptr);
5477
5478 if (dev->destructor)
5479 dev->destructor(dev);
5480
5481 /* Free network device */
5482 kobject_put(&dev->dev.kobj);
5483 }
5484 }
5485
5486 /**
5487 * dev_txq_stats_fold - fold tx_queues stats
5488 * @dev: device to get statistics from
5489 * @stats: struct rtnl_link_stats64 to hold results
5490 */
5491 void dev_txq_stats_fold(const struct net_device *dev,
5492 struct rtnl_link_stats64 *stats)
5493 {
5494 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5495 unsigned int i;
5496 struct netdev_queue *txq;
5497
5498 for (i = 0; i < dev->num_tx_queues; i++) {
5499 txq = netdev_get_tx_queue(dev, i);
5500 spin_lock_bh(&txq->_xmit_lock);
5501 tx_bytes += txq->tx_bytes;
5502 tx_packets += txq->tx_packets;
5503 tx_dropped += txq->tx_dropped;
5504 spin_unlock_bh(&txq->_xmit_lock);
5505 }
5506 if (tx_bytes || tx_packets || tx_dropped) {
5507 stats->tx_bytes = tx_bytes;
5508 stats->tx_packets = tx_packets;
5509 stats->tx_dropped = tx_dropped;
5510 }
5511 }
5512 EXPORT_SYMBOL(dev_txq_stats_fold);
5513
5514 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5515 * fields in the same order, with only the type differing.
5516 */
5517 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5518 const struct net_device_stats *netdev_stats)
5519 {
5520 #if BITS_PER_LONG == 64
5521 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5522 memcpy(stats64, netdev_stats, sizeof(*stats64));
5523 #else
5524 size_t i, n = sizeof(*stats64) / sizeof(u64);
5525 const unsigned long *src = (const unsigned long *)netdev_stats;
5526 u64 *dst = (u64 *)stats64;
5527
5528 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5529 sizeof(*stats64) / sizeof(u64));
5530 for (i = 0; i < n; i++)
5531 dst[i] = src[i];
5532 #endif
5533 }
5534
5535 /**
5536 * dev_get_stats - get network device statistics
5537 * @dev: device to get statistics from
5538 * @storage: place to store stats
5539 *
5540 * Get network statistics from device. Return @storage.
5541 * The device driver may provide its own method by setting
5542 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5543 * otherwise the internal statistics structure is used.
5544 */
5545 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5546 struct rtnl_link_stats64 *storage)
5547 {
5548 const struct net_device_ops *ops = dev->netdev_ops;
5549
5550 if (ops->ndo_get_stats64) {
5551 memset(storage, 0, sizeof(*storage));
5552 ops->ndo_get_stats64(dev, storage);
5553 } else if (ops->ndo_get_stats) {
5554 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5555 } else {
5556 netdev_stats_to_stats64(storage, &dev->stats);
5557 dev_txq_stats_fold(dev, storage);
5558 }
5559 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5560 return storage;
5561 }
5562 EXPORT_SYMBOL(dev_get_stats);
5563
5564 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5565 {
5566 struct netdev_queue *queue = dev_ingress_queue(dev);
5567
5568 #ifdef CONFIG_NET_CLS_ACT
5569 if (queue)
5570 return queue;
5571 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5572 if (!queue)
5573 return NULL;
5574 netdev_init_one_queue(dev, queue, NULL);
5575 queue->qdisc = &noop_qdisc;
5576 queue->qdisc_sleeping = &noop_qdisc;
5577 rcu_assign_pointer(dev->ingress_queue, queue);
5578 #endif
5579 return queue;
5580 }
5581
5582 /**
5583 * alloc_netdev_mq - allocate network device
5584 * @sizeof_priv: size of private data to allocate space for
5585 * @name: device name format string
5586 * @setup: callback to initialize device
5587 * @queue_count: the number of subqueues to allocate
5588 *
5589 * Allocates a struct net_device with private data area for driver use
5590 * and performs basic initialization. Also allocates subquue structs
5591 * for each queue on the device at the end of the netdevice.
5592 */
5593 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5594 void (*setup)(struct net_device *), unsigned int queue_count)
5595 {
5596 struct net_device *dev;
5597 size_t alloc_size;
5598 struct net_device *p;
5599
5600 BUG_ON(strlen(name) >= sizeof(dev->name));
5601
5602 if (queue_count < 1) {
5603 pr_err("alloc_netdev: Unable to allocate device "
5604 "with zero queues.\n");
5605 return NULL;
5606 }
5607
5608 alloc_size = sizeof(struct net_device);
5609 if (sizeof_priv) {
5610 /* ensure 32-byte alignment of private area */
5611 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5612 alloc_size += sizeof_priv;
5613 }
5614 /* ensure 32-byte alignment of whole construct */
5615 alloc_size += NETDEV_ALIGN - 1;
5616
5617 p = kzalloc(alloc_size, GFP_KERNEL);
5618 if (!p) {
5619 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5620 return NULL;
5621 }
5622
5623 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5624 dev->padded = (char *)dev - (char *)p;
5625
5626 dev->pcpu_refcnt = alloc_percpu(int);
5627 if (!dev->pcpu_refcnt)
5628 goto free_p;
5629
5630 if (dev_addr_init(dev))
5631 goto free_pcpu;
5632
5633 dev_mc_init(dev);
5634 dev_uc_init(dev);
5635
5636 dev_net_set(dev, &init_net);
5637
5638 dev->num_tx_queues = queue_count;
5639 dev->real_num_tx_queues = queue_count;
5640 if (netif_alloc_netdev_queues(dev))
5641 goto free_pcpu;
5642
5643 #ifdef CONFIG_RPS
5644 dev->num_rx_queues = queue_count;
5645 dev->real_num_rx_queues = queue_count;
5646 if (netif_alloc_rx_queues(dev))
5647 goto free_pcpu;
5648 #endif
5649
5650 dev->gso_max_size = GSO_MAX_SIZE;
5651
5652 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5653 dev->ethtool_ntuple_list.count = 0;
5654 INIT_LIST_HEAD(&dev->napi_list);
5655 INIT_LIST_HEAD(&dev->unreg_list);
5656 INIT_LIST_HEAD(&dev->link_watch_list);
5657 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5658 setup(dev);
5659 strcpy(dev->name, name);
5660 return dev;
5661
5662 free_pcpu:
5663 free_percpu(dev->pcpu_refcnt);
5664 kfree(dev->_tx);
5665 #ifdef CONFIG_RPS
5666 kfree(dev->_rx);
5667 #endif
5668
5669 free_p:
5670 kfree(p);
5671 return NULL;
5672 }
5673 EXPORT_SYMBOL(alloc_netdev_mq);
5674
5675 /**
5676 * free_netdev - free network device
5677 * @dev: device
5678 *
5679 * This function does the last stage of destroying an allocated device
5680 * interface. The reference to the device object is released.
5681 * If this is the last reference then it will be freed.
5682 */
5683 void free_netdev(struct net_device *dev)
5684 {
5685 struct napi_struct *p, *n;
5686
5687 release_net(dev_net(dev));
5688
5689 kfree(dev->_tx);
5690 #ifdef CONFIG_RPS
5691 kfree(dev->_rx);
5692 #endif
5693
5694 kfree(rcu_dereference_raw(dev->ingress_queue));
5695
5696 /* Flush device addresses */
5697 dev_addr_flush(dev);
5698
5699 /* Clear ethtool n-tuple list */
5700 ethtool_ntuple_flush(dev);
5701
5702 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5703 netif_napi_del(p);
5704
5705 free_percpu(dev->pcpu_refcnt);
5706 dev->pcpu_refcnt = NULL;
5707
5708 /* Compatibility with error handling in drivers */
5709 if (dev->reg_state == NETREG_UNINITIALIZED) {
5710 kfree((char *)dev - dev->padded);
5711 return;
5712 }
5713
5714 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5715 dev->reg_state = NETREG_RELEASED;
5716
5717 /* will free via device release */
5718 put_device(&dev->dev);
5719 }
5720 EXPORT_SYMBOL(free_netdev);
5721
5722 /**
5723 * synchronize_net - Synchronize with packet receive processing
5724 *
5725 * Wait for packets currently being received to be done.
5726 * Does not block later packets from starting.
5727 */
5728 void synchronize_net(void)
5729 {
5730 might_sleep();
5731 synchronize_rcu();
5732 }
5733 EXPORT_SYMBOL(synchronize_net);
5734
5735 /**
5736 * unregister_netdevice_queue - remove device from the kernel
5737 * @dev: device
5738 * @head: list
5739 *
5740 * This function shuts down a device interface and removes it
5741 * from the kernel tables.
5742 * If head not NULL, device is queued to be unregistered later.
5743 *
5744 * Callers must hold the rtnl semaphore. You may want
5745 * unregister_netdev() instead of this.
5746 */
5747
5748 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5749 {
5750 ASSERT_RTNL();
5751
5752 if (head) {
5753 list_move_tail(&dev->unreg_list, head);
5754 } else {
5755 rollback_registered(dev);
5756 /* Finish processing unregister after unlock */
5757 net_set_todo(dev);
5758 }
5759 }
5760 EXPORT_SYMBOL(unregister_netdevice_queue);
5761
5762 /**
5763 * unregister_netdevice_many - unregister many devices
5764 * @head: list of devices
5765 */
5766 void unregister_netdevice_many(struct list_head *head)
5767 {
5768 struct net_device *dev;
5769
5770 if (!list_empty(head)) {
5771 rollback_registered_many(head);
5772 list_for_each_entry(dev, head, unreg_list)
5773 net_set_todo(dev);
5774 }
5775 }
5776 EXPORT_SYMBOL(unregister_netdevice_many);
5777
5778 /**
5779 * unregister_netdev - remove device from the kernel
5780 * @dev: device
5781 *
5782 * This function shuts down a device interface and removes it
5783 * from the kernel tables.
5784 *
5785 * This is just a wrapper for unregister_netdevice that takes
5786 * the rtnl semaphore. In general you want to use this and not
5787 * unregister_netdevice.
5788 */
5789 void unregister_netdev(struct net_device *dev)
5790 {
5791 rtnl_lock();
5792 unregister_netdevice(dev);
5793 rtnl_unlock();
5794 }
5795 EXPORT_SYMBOL(unregister_netdev);
5796
5797 /**
5798 * dev_change_net_namespace - move device to different nethost namespace
5799 * @dev: device
5800 * @net: network namespace
5801 * @pat: If not NULL name pattern to try if the current device name
5802 * is already taken in the destination network namespace.
5803 *
5804 * This function shuts down a device interface and moves it
5805 * to a new network namespace. On success 0 is returned, on
5806 * a failure a netagive errno code is returned.
5807 *
5808 * Callers must hold the rtnl semaphore.
5809 */
5810
5811 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5812 {
5813 int err;
5814
5815 ASSERT_RTNL();
5816
5817 /* Don't allow namespace local devices to be moved. */
5818 err = -EINVAL;
5819 if (dev->features & NETIF_F_NETNS_LOCAL)
5820 goto out;
5821
5822 /* Ensure the device has been registrered */
5823 err = -EINVAL;
5824 if (dev->reg_state != NETREG_REGISTERED)
5825 goto out;
5826
5827 /* Get out if there is nothing todo */
5828 err = 0;
5829 if (net_eq(dev_net(dev), net))
5830 goto out;
5831
5832 /* Pick the destination device name, and ensure
5833 * we can use it in the destination network namespace.
5834 */
5835 err = -EEXIST;
5836 if (__dev_get_by_name(net, dev->name)) {
5837 /* We get here if we can't use the current device name */
5838 if (!pat)
5839 goto out;
5840 if (dev_get_valid_name(dev, pat, 1))
5841 goto out;
5842 }
5843
5844 /*
5845 * And now a mini version of register_netdevice unregister_netdevice.
5846 */
5847
5848 /* If device is running close it first. */
5849 dev_close(dev);
5850
5851 /* And unlink it from device chain */
5852 err = -ENODEV;
5853 unlist_netdevice(dev);
5854
5855 synchronize_net();
5856
5857 /* Shutdown queueing discipline. */
5858 dev_shutdown(dev);
5859
5860 /* Notify protocols, that we are about to destroy
5861 this device. They should clean all the things.
5862
5863 Note that dev->reg_state stays at NETREG_REGISTERED.
5864 This is wanted because this way 8021q and macvlan know
5865 the device is just moving and can keep their slaves up.
5866 */
5867 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5868 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5869
5870 /*
5871 * Flush the unicast and multicast chains
5872 */
5873 dev_uc_flush(dev);
5874 dev_mc_flush(dev);
5875
5876 /* Actually switch the network namespace */
5877 dev_net_set(dev, net);
5878
5879 /* If there is an ifindex conflict assign a new one */
5880 if (__dev_get_by_index(net, dev->ifindex)) {
5881 int iflink = (dev->iflink == dev->ifindex);
5882 dev->ifindex = dev_new_index(net);
5883 if (iflink)
5884 dev->iflink = dev->ifindex;
5885 }
5886
5887 /* Fixup kobjects */
5888 err = device_rename(&dev->dev, dev->name);
5889 WARN_ON(err);
5890
5891 /* Add the device back in the hashes */
5892 list_netdevice(dev);
5893
5894 /* Notify protocols, that a new device appeared. */
5895 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5896
5897 /*
5898 * Prevent userspace races by waiting until the network
5899 * device is fully setup before sending notifications.
5900 */
5901 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5902
5903 synchronize_net();
5904 err = 0;
5905 out:
5906 return err;
5907 }
5908 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5909
5910 static int dev_cpu_callback(struct notifier_block *nfb,
5911 unsigned long action,
5912 void *ocpu)
5913 {
5914 struct sk_buff **list_skb;
5915 struct sk_buff *skb;
5916 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5917 struct softnet_data *sd, *oldsd;
5918
5919 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5920 return NOTIFY_OK;
5921
5922 local_irq_disable();
5923 cpu = smp_processor_id();
5924 sd = &per_cpu(softnet_data, cpu);
5925 oldsd = &per_cpu(softnet_data, oldcpu);
5926
5927 /* Find end of our completion_queue. */
5928 list_skb = &sd->completion_queue;
5929 while (*list_skb)
5930 list_skb = &(*list_skb)->next;
5931 /* Append completion queue from offline CPU. */
5932 *list_skb = oldsd->completion_queue;
5933 oldsd->completion_queue = NULL;
5934
5935 /* Append output queue from offline CPU. */
5936 if (oldsd->output_queue) {
5937 *sd->output_queue_tailp = oldsd->output_queue;
5938 sd->output_queue_tailp = oldsd->output_queue_tailp;
5939 oldsd->output_queue = NULL;
5940 oldsd->output_queue_tailp = &oldsd->output_queue;
5941 }
5942
5943 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5944 local_irq_enable();
5945
5946 /* Process offline CPU's input_pkt_queue */
5947 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5948 netif_rx(skb);
5949 input_queue_head_incr(oldsd);
5950 }
5951 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5952 netif_rx(skb);
5953 input_queue_head_incr(oldsd);
5954 }
5955
5956 return NOTIFY_OK;
5957 }
5958
5959
5960 /**
5961 * netdev_increment_features - increment feature set by one
5962 * @all: current feature set
5963 * @one: new feature set
5964 * @mask: mask feature set
5965 *
5966 * Computes a new feature set after adding a device with feature set
5967 * @one to the master device with current feature set @all. Will not
5968 * enable anything that is off in @mask. Returns the new feature set.
5969 */
5970 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5971 unsigned long mask)
5972 {
5973 /* If device needs checksumming, downgrade to it. */
5974 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5975 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5976 else if (mask & NETIF_F_ALL_CSUM) {
5977 /* If one device supports v4/v6 checksumming, set for all. */
5978 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5979 !(all & NETIF_F_GEN_CSUM)) {
5980 all &= ~NETIF_F_ALL_CSUM;
5981 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5982 }
5983
5984 /* If one device supports hw checksumming, set for all. */
5985 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5986 all &= ~NETIF_F_ALL_CSUM;
5987 all |= NETIF_F_HW_CSUM;
5988 }
5989 }
5990
5991 one |= NETIF_F_ALL_CSUM;
5992
5993 one |= all & NETIF_F_ONE_FOR_ALL;
5994 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5995 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5996
5997 return all;
5998 }
5999 EXPORT_SYMBOL(netdev_increment_features);
6000
6001 static struct hlist_head *netdev_create_hash(void)
6002 {
6003 int i;
6004 struct hlist_head *hash;
6005
6006 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6007 if (hash != NULL)
6008 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6009 INIT_HLIST_HEAD(&hash[i]);
6010
6011 return hash;
6012 }
6013
6014 /* Initialize per network namespace state */
6015 static int __net_init netdev_init(struct net *net)
6016 {
6017 INIT_LIST_HEAD(&net->dev_base_head);
6018
6019 net->dev_name_head = netdev_create_hash();
6020 if (net->dev_name_head == NULL)
6021 goto err_name;
6022
6023 net->dev_index_head = netdev_create_hash();
6024 if (net->dev_index_head == NULL)
6025 goto err_idx;
6026
6027 return 0;
6028
6029 err_idx:
6030 kfree(net->dev_name_head);
6031 err_name:
6032 return -ENOMEM;
6033 }
6034
6035 /**
6036 * netdev_drivername - network driver for the device
6037 * @dev: network device
6038 * @buffer: buffer for resulting name
6039 * @len: size of buffer
6040 *
6041 * Determine network driver for device.
6042 */
6043 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6044 {
6045 const struct device_driver *driver;
6046 const struct device *parent;
6047
6048 if (len <= 0 || !buffer)
6049 return buffer;
6050 buffer[0] = 0;
6051
6052 parent = dev->dev.parent;
6053
6054 if (!parent)
6055 return buffer;
6056
6057 driver = parent->driver;
6058 if (driver && driver->name)
6059 strlcpy(buffer, driver->name, len);
6060 return buffer;
6061 }
6062
6063 static int __netdev_printk(const char *level, const struct net_device *dev,
6064 struct va_format *vaf)
6065 {
6066 int r;
6067
6068 if (dev && dev->dev.parent)
6069 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6070 netdev_name(dev), vaf);
6071 else if (dev)
6072 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6073 else
6074 r = printk("%s(NULL net_device): %pV", level, vaf);
6075
6076 return r;
6077 }
6078
6079 int netdev_printk(const char *level, const struct net_device *dev,
6080 const char *format, ...)
6081 {
6082 struct va_format vaf;
6083 va_list args;
6084 int r;
6085
6086 va_start(args, format);
6087
6088 vaf.fmt = format;
6089 vaf.va = &args;
6090
6091 r = __netdev_printk(level, dev, &vaf);
6092 va_end(args);
6093
6094 return r;
6095 }
6096 EXPORT_SYMBOL(netdev_printk);
6097
6098 #define define_netdev_printk_level(func, level) \
6099 int func(const struct net_device *dev, const char *fmt, ...) \
6100 { \
6101 int r; \
6102 struct va_format vaf; \
6103 va_list args; \
6104 \
6105 va_start(args, fmt); \
6106 \
6107 vaf.fmt = fmt; \
6108 vaf.va = &args; \
6109 \
6110 r = __netdev_printk(level, dev, &vaf); \
6111 va_end(args); \
6112 \
6113 return r; \
6114 } \
6115 EXPORT_SYMBOL(func);
6116
6117 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6118 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6119 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6120 define_netdev_printk_level(netdev_err, KERN_ERR);
6121 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6122 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6123 define_netdev_printk_level(netdev_info, KERN_INFO);
6124
6125 static void __net_exit netdev_exit(struct net *net)
6126 {
6127 kfree(net->dev_name_head);
6128 kfree(net->dev_index_head);
6129 }
6130
6131 static struct pernet_operations __net_initdata netdev_net_ops = {
6132 .init = netdev_init,
6133 .exit = netdev_exit,
6134 };
6135
6136 static void __net_exit default_device_exit(struct net *net)
6137 {
6138 struct net_device *dev, *aux;
6139 /*
6140 * Push all migratable network devices back to the
6141 * initial network namespace
6142 */
6143 rtnl_lock();
6144 for_each_netdev_safe(net, dev, aux) {
6145 int err;
6146 char fb_name[IFNAMSIZ];
6147
6148 /* Ignore unmoveable devices (i.e. loopback) */
6149 if (dev->features & NETIF_F_NETNS_LOCAL)
6150 continue;
6151
6152 /* Leave virtual devices for the generic cleanup */
6153 if (dev->rtnl_link_ops)
6154 continue;
6155
6156 /* Push remaing network devices to init_net */
6157 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6158 err = dev_change_net_namespace(dev, &init_net, fb_name);
6159 if (err) {
6160 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6161 __func__, dev->name, err);
6162 BUG();
6163 }
6164 }
6165 rtnl_unlock();
6166 }
6167
6168 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6169 {
6170 /* At exit all network devices most be removed from a network
6171 * namespace. Do this in the reverse order of registeration.
6172 * Do this across as many network namespaces as possible to
6173 * improve batching efficiency.
6174 */
6175 struct net_device *dev;
6176 struct net *net;
6177 LIST_HEAD(dev_kill_list);
6178
6179 rtnl_lock();
6180 list_for_each_entry(net, net_list, exit_list) {
6181 for_each_netdev_reverse(net, dev) {
6182 if (dev->rtnl_link_ops)
6183 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6184 else
6185 unregister_netdevice_queue(dev, &dev_kill_list);
6186 }
6187 }
6188 unregister_netdevice_many(&dev_kill_list);
6189 rtnl_unlock();
6190 }
6191
6192 static struct pernet_operations __net_initdata default_device_ops = {
6193 .exit = default_device_exit,
6194 .exit_batch = default_device_exit_batch,
6195 };
6196
6197 /*
6198 * Initialize the DEV module. At boot time this walks the device list and
6199 * unhooks any devices that fail to initialise (normally hardware not
6200 * present) and leaves us with a valid list of present and active devices.
6201 *
6202 */
6203
6204 /*
6205 * This is called single threaded during boot, so no need
6206 * to take the rtnl semaphore.
6207 */
6208 static int __init net_dev_init(void)
6209 {
6210 int i, rc = -ENOMEM;
6211
6212 BUG_ON(!dev_boot_phase);
6213
6214 if (dev_proc_init())
6215 goto out;
6216
6217 if (netdev_kobject_init())
6218 goto out;
6219
6220 INIT_LIST_HEAD(&ptype_all);
6221 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6222 INIT_LIST_HEAD(&ptype_base[i]);
6223
6224 if (register_pernet_subsys(&netdev_net_ops))
6225 goto out;
6226
6227 /*
6228 * Initialise the packet receive queues.
6229 */
6230
6231 for_each_possible_cpu(i) {
6232 struct softnet_data *sd = &per_cpu(softnet_data, i);
6233
6234 memset(sd, 0, sizeof(*sd));
6235 skb_queue_head_init(&sd->input_pkt_queue);
6236 skb_queue_head_init(&sd->process_queue);
6237 sd->completion_queue = NULL;
6238 INIT_LIST_HEAD(&sd->poll_list);
6239 sd->output_queue = NULL;
6240 sd->output_queue_tailp = &sd->output_queue;
6241 #ifdef CONFIG_RPS
6242 sd->csd.func = rps_trigger_softirq;
6243 sd->csd.info = sd;
6244 sd->csd.flags = 0;
6245 sd->cpu = i;
6246 #endif
6247
6248 sd->backlog.poll = process_backlog;
6249 sd->backlog.weight = weight_p;
6250 sd->backlog.gro_list = NULL;
6251 sd->backlog.gro_count = 0;
6252 }
6253
6254 dev_boot_phase = 0;
6255
6256 /* The loopback device is special if any other network devices
6257 * is present in a network namespace the loopback device must
6258 * be present. Since we now dynamically allocate and free the
6259 * loopback device ensure this invariant is maintained by
6260 * keeping the loopback device as the first device on the
6261 * list of network devices. Ensuring the loopback devices
6262 * is the first device that appears and the last network device
6263 * that disappears.
6264 */
6265 if (register_pernet_device(&loopback_net_ops))
6266 goto out;
6267
6268 if (register_pernet_device(&default_device_ops))
6269 goto out;
6270
6271 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6272 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6273
6274 hotcpu_notifier(dev_cpu_callback, 0);
6275 dst_init();
6276 dev_mcast_init();
6277 rc = 0;
6278 out:
6279 return rc;
6280 }
6281
6282 subsys_initcall(net_dev_init);
6283
6284 static int __init initialize_hashrnd(void)
6285 {
6286 get_random_bytes(&hashrnd, sizeof(hashrnd));
6287 return 0;
6288 }
6289
6290 late_initcall_sync(initialize_hashrnd);
6291
This page took 0.299393 seconds and 6 git commands to generate.