gro: Use gso_size to store MSS
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /*
136 * The list of packet types we will receive (as opposed to discard)
137 * and the routines to invoke.
138 *
139 * Why 16. Because with 16 the only overlap we get on a hash of the
140 * low nibble of the protocol value is RARP/SNAP/X.25.
141 *
142 * NOTE: That is no longer true with the addition of VLAN tags. Not
143 * sure which should go first, but I bet it won't make much
144 * difference if we are running VLANs. The good news is that
145 * this protocol won't be in the list unless compiled in, so
146 * the average user (w/out VLANs) will not be adversely affected.
147 * --BLG
148 *
149 * 0800 IP
150 * 8100 802.1Q VLAN
151 * 0001 802.3
152 * 0002 AX.25
153 * 0004 802.2
154 * 8035 RARP
155 * 0005 SNAP
156 * 0805 X.25
157 * 0806 ARP
158 * 8137 IPX
159 * 0009 Localtalk
160 * 86DD IPv6
161 */
162
163 #define PTYPE_HASH_SIZE (16)
164 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
165
166 static DEFINE_SPINLOCK(ptype_lock);
167 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168 static struct list_head ptype_all __read_mostly; /* Taps */
169
170 #ifdef CONFIG_NET_DMA
171 struct net_dma {
172 struct dma_client client;
173 spinlock_t lock;
174 cpumask_t channel_mask;
175 struct dma_chan **channels;
176 };
177
178 static enum dma_state_client
179 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
180 enum dma_state state);
181
182 static struct net_dma net_dma = {
183 .client = {
184 .event_callback = netdev_dma_event,
185 },
186 };
187 #endif
188
189 /*
190 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
191 * semaphore.
192 *
193 * Pure readers hold dev_base_lock for reading.
194 *
195 * Writers must hold the rtnl semaphore while they loop through the
196 * dev_base_head list, and hold dev_base_lock for writing when they do the
197 * actual updates. This allows pure readers to access the list even
198 * while a writer is preparing to update it.
199 *
200 * To put it another way, dev_base_lock is held for writing only to
201 * protect against pure readers; the rtnl semaphore provides the
202 * protection against other writers.
203 *
204 * See, for example usages, register_netdevice() and
205 * unregister_netdevice(), which must be called with the rtnl
206 * semaphore held.
207 */
208 DEFINE_RWLOCK(dev_base_lock);
209
210 EXPORT_SYMBOL(dev_base_lock);
211
212 #define NETDEV_HASHBITS 8
213 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
214
215 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
216 {
217 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
218 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
219 }
220
221 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
222 {
223 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del(&dev->dev_list);
249 hlist_del(&dev->name_hlist);
250 hlist_del(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU(struct softnet_data, softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
286 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
287 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
303 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
304 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 /**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384 void dev_add_pack(struct packet_type *pt)
385 {
386 int hash;
387
388 spin_lock_bh(&ptype_lock);
389 if (pt->type == htons(ETH_P_ALL))
390 list_add_rcu(&pt->list, &ptype_all);
391 else {
392 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
393 list_add_rcu(&pt->list, &ptype_base[hash]);
394 }
395 spin_unlock_bh(&ptype_lock);
396 }
397
398 /**
399 * __dev_remove_pack - remove packet handler
400 * @pt: packet type declaration
401 *
402 * Remove a protocol handler that was previously added to the kernel
403 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
404 * from the kernel lists and can be freed or reused once this function
405 * returns.
406 *
407 * The packet type might still be in use by receivers
408 * and must not be freed until after all the CPU's have gone
409 * through a quiescent state.
410 */
411 void __dev_remove_pack(struct packet_type *pt)
412 {
413 struct list_head *head;
414 struct packet_type *pt1;
415
416 spin_lock_bh(&ptype_lock);
417
418 if (pt->type == htons(ETH_P_ALL))
419 head = &ptype_all;
420 else
421 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
431 out:
432 spin_unlock_bh(&ptype_lock);
433 }
434 /**
435 * dev_remove_pack - remove packet handler
436 * @pt: packet type declaration
437 *
438 * Remove a protocol handler that was previously added to the kernel
439 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
440 * from the kernel lists and can be freed or reused once this function
441 * returns.
442 *
443 * This call sleeps to guarantee that no CPU is looking at the packet
444 * type after return.
445 */
446 void dev_remove_pack(struct packet_type *pt)
447 {
448 __dev_remove_pack(pt);
449
450 synchronize_net();
451 }
452
453 /******************************************************************************
454
455 Device Boot-time Settings Routines
456
457 *******************************************************************************/
458
459 /* Boot time configuration table */
460 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
461
462 /**
463 * netdev_boot_setup_add - add new setup entry
464 * @name: name of the device
465 * @map: configured settings for the device
466 *
467 * Adds new setup entry to the dev_boot_setup list. The function
468 * returns 0 on error and 1 on success. This is a generic routine to
469 * all netdevices.
470 */
471 static int netdev_boot_setup_add(char *name, struct ifmap *map)
472 {
473 struct netdev_boot_setup *s;
474 int i;
475
476 s = dev_boot_setup;
477 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
478 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
479 memset(s[i].name, 0, sizeof(s[i].name));
480 strlcpy(s[i].name, name, IFNAMSIZ);
481 memcpy(&s[i].map, map, sizeof(s[i].map));
482 break;
483 }
484 }
485
486 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
487 }
488
489 /**
490 * netdev_boot_setup_check - check boot time settings
491 * @dev: the netdevice
492 *
493 * Check boot time settings for the device.
494 * The found settings are set for the device to be used
495 * later in the device probing.
496 * Returns 0 if no settings found, 1 if they are.
497 */
498 int netdev_boot_setup_check(struct net_device *dev)
499 {
500 struct netdev_boot_setup *s = dev_boot_setup;
501 int i;
502
503 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
504 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
505 !strcmp(dev->name, s[i].name)) {
506 dev->irq = s[i].map.irq;
507 dev->base_addr = s[i].map.base_addr;
508 dev->mem_start = s[i].map.mem_start;
509 dev->mem_end = s[i].map.mem_end;
510 return 1;
511 }
512 }
513 return 0;
514 }
515
516
517 /**
518 * netdev_boot_base - get address from boot time settings
519 * @prefix: prefix for network device
520 * @unit: id for network device
521 *
522 * Check boot time settings for the base address of device.
523 * The found settings are set for the device to be used
524 * later in the device probing.
525 * Returns 0 if no settings found.
526 */
527 unsigned long netdev_boot_base(const char *prefix, int unit)
528 {
529 const struct netdev_boot_setup *s = dev_boot_setup;
530 char name[IFNAMSIZ];
531 int i;
532
533 sprintf(name, "%s%d", prefix, unit);
534
535 /*
536 * If device already registered then return base of 1
537 * to indicate not to probe for this interface
538 */
539 if (__dev_get_by_name(&init_net, name))
540 return 1;
541
542 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
543 if (!strcmp(name, s[i].name))
544 return s[i].map.base_addr;
545 return 0;
546 }
547
548 /*
549 * Saves at boot time configured settings for any netdevice.
550 */
551 int __init netdev_boot_setup(char *str)
552 {
553 int ints[5];
554 struct ifmap map;
555
556 str = get_options(str, ARRAY_SIZE(ints), ints);
557 if (!str || !*str)
558 return 0;
559
560 /* Save settings */
561 memset(&map, 0, sizeof(map));
562 if (ints[0] > 0)
563 map.irq = ints[1];
564 if (ints[0] > 1)
565 map.base_addr = ints[2];
566 if (ints[0] > 2)
567 map.mem_start = ints[3];
568 if (ints[0] > 3)
569 map.mem_end = ints[4];
570
571 /* Add new entry to the list */
572 return netdev_boot_setup_add(str, &map);
573 }
574
575 __setup("netdev=", netdev_boot_setup);
576
577 /*******************************************************************************
578
579 Device Interface Subroutines
580
581 *******************************************************************************/
582
583 /**
584 * __dev_get_by_name - find a device by its name
585 * @net: the applicable net namespace
586 * @name: name to find
587 *
588 * Find an interface by name. Must be called under RTNL semaphore
589 * or @dev_base_lock. If the name is found a pointer to the device
590 * is returned. If the name is not found then %NULL is returned. The
591 * reference counters are not incremented so the caller must be
592 * careful with locks.
593 */
594
595 struct net_device *__dev_get_by_name(struct net *net, const char *name)
596 {
597 struct hlist_node *p;
598
599 hlist_for_each(p, dev_name_hash(net, name)) {
600 struct net_device *dev
601 = hlist_entry(p, struct net_device, name_hlist);
602 if (!strncmp(dev->name, name, IFNAMSIZ))
603 return dev;
604 }
605 return NULL;
606 }
607
608 /**
609 * dev_get_by_name - find a device by its name
610 * @net: the applicable net namespace
611 * @name: name to find
612 *
613 * Find an interface by name. This can be called from any
614 * context and does its own locking. The returned handle has
615 * the usage count incremented and the caller must use dev_put() to
616 * release it when it is no longer needed. %NULL is returned if no
617 * matching device is found.
618 */
619
620 struct net_device *dev_get_by_name(struct net *net, const char *name)
621 {
622 struct net_device *dev;
623
624 read_lock(&dev_base_lock);
625 dev = __dev_get_by_name(net, name);
626 if (dev)
627 dev_hold(dev);
628 read_unlock(&dev_base_lock);
629 return dev;
630 }
631
632 /**
633 * __dev_get_by_index - find a device by its ifindex
634 * @net: the applicable net namespace
635 * @ifindex: index of device
636 *
637 * Search for an interface by index. Returns %NULL if the device
638 * is not found or a pointer to the device. The device has not
639 * had its reference counter increased so the caller must be careful
640 * about locking. The caller must hold either the RTNL semaphore
641 * or @dev_base_lock.
642 */
643
644 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
645 {
646 struct hlist_node *p;
647
648 hlist_for_each(p, dev_index_hash(net, ifindex)) {
649 struct net_device *dev
650 = hlist_entry(p, struct net_device, index_hlist);
651 if (dev->ifindex == ifindex)
652 return dev;
653 }
654 return NULL;
655 }
656
657
658 /**
659 * dev_get_by_index - find a device by its ifindex
660 * @net: the applicable net namespace
661 * @ifindex: index of device
662 *
663 * Search for an interface by index. Returns NULL if the device
664 * is not found or a pointer to the device. The device returned has
665 * had a reference added and the pointer is safe until the user calls
666 * dev_put to indicate they have finished with it.
667 */
668
669 struct net_device *dev_get_by_index(struct net *net, int ifindex)
670 {
671 struct net_device *dev;
672
673 read_lock(&dev_base_lock);
674 dev = __dev_get_by_index(net, ifindex);
675 if (dev)
676 dev_hold(dev);
677 read_unlock(&dev_base_lock);
678 return dev;
679 }
680
681 /**
682 * dev_getbyhwaddr - find a device by its hardware address
683 * @net: the applicable net namespace
684 * @type: media type of device
685 * @ha: hardware address
686 *
687 * Search for an interface by MAC address. Returns NULL if the device
688 * is not found or a pointer to the device. The caller must hold the
689 * rtnl semaphore. The returned device has not had its ref count increased
690 * and the caller must therefore be careful about locking
691 *
692 * BUGS:
693 * If the API was consistent this would be __dev_get_by_hwaddr
694 */
695
696 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701
702 for_each_netdev(net, dev)
703 if (dev->type == type &&
704 !memcmp(dev->dev_addr, ha, dev->addr_len))
705 return dev;
706
707 return NULL;
708 }
709
710 EXPORT_SYMBOL(dev_getbyhwaddr);
711
712 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
713 {
714 struct net_device *dev;
715
716 ASSERT_RTNL();
717 for_each_netdev(net, dev)
718 if (dev->type == type)
719 return dev;
720
721 return NULL;
722 }
723
724 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
725
726 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
727 {
728 struct net_device *dev;
729
730 rtnl_lock();
731 dev = __dev_getfirstbyhwtype(net, type);
732 if (dev)
733 dev_hold(dev);
734 rtnl_unlock();
735 return dev;
736 }
737
738 EXPORT_SYMBOL(dev_getfirstbyhwtype);
739
740 /**
741 * dev_get_by_flags - find any device with given flags
742 * @net: the applicable net namespace
743 * @if_flags: IFF_* values
744 * @mask: bitmask of bits in if_flags to check
745 *
746 * Search for any interface with the given flags. Returns NULL if a device
747 * is not found or a pointer to the device. The device returned has
748 * had a reference added and the pointer is safe until the user calls
749 * dev_put to indicate they have finished with it.
750 */
751
752 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
753 {
754 struct net_device *dev, *ret;
755
756 ret = NULL;
757 read_lock(&dev_base_lock);
758 for_each_netdev(net, dev) {
759 if (((dev->flags ^ if_flags) & mask) == 0) {
760 dev_hold(dev);
761 ret = dev;
762 break;
763 }
764 }
765 read_unlock(&dev_base_lock);
766 return ret;
767 }
768
769 /**
770 * dev_valid_name - check if name is okay for network device
771 * @name: name string
772 *
773 * Network device names need to be valid file names to
774 * to allow sysfs to work. We also disallow any kind of
775 * whitespace.
776 */
777 int dev_valid_name(const char *name)
778 {
779 if (*name == '\0')
780 return 0;
781 if (strlen(name) >= IFNAMSIZ)
782 return 0;
783 if (!strcmp(name, ".") || !strcmp(name, ".."))
784 return 0;
785
786 while (*name) {
787 if (*name == '/' || isspace(*name))
788 return 0;
789 name++;
790 }
791 return 1;
792 }
793
794 /**
795 * __dev_alloc_name - allocate a name for a device
796 * @net: network namespace to allocate the device name in
797 * @name: name format string
798 * @buf: scratch buffer and result name string
799 *
800 * Passed a format string - eg "lt%d" it will try and find a suitable
801 * id. It scans list of devices to build up a free map, then chooses
802 * the first empty slot. The caller must hold the dev_base or rtnl lock
803 * while allocating the name and adding the device in order to avoid
804 * duplicates.
805 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
806 * Returns the number of the unit assigned or a negative errno code.
807 */
808
809 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
810 {
811 int i = 0;
812 const char *p;
813 const int max_netdevices = 8*PAGE_SIZE;
814 unsigned long *inuse;
815 struct net_device *d;
816
817 p = strnchr(name, IFNAMSIZ-1, '%');
818 if (p) {
819 /*
820 * Verify the string as this thing may have come from
821 * the user. There must be either one "%d" and no other "%"
822 * characters.
823 */
824 if (p[1] != 'd' || strchr(p + 2, '%'))
825 return -EINVAL;
826
827 /* Use one page as a bit array of possible slots */
828 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
829 if (!inuse)
830 return -ENOMEM;
831
832 for_each_netdev(net, d) {
833 if (!sscanf(d->name, name, &i))
834 continue;
835 if (i < 0 || i >= max_netdevices)
836 continue;
837
838 /* avoid cases where sscanf is not exact inverse of printf */
839 snprintf(buf, IFNAMSIZ, name, i);
840 if (!strncmp(buf, d->name, IFNAMSIZ))
841 set_bit(i, inuse);
842 }
843
844 i = find_first_zero_bit(inuse, max_netdevices);
845 free_page((unsigned long) inuse);
846 }
847
848 snprintf(buf, IFNAMSIZ, name, i);
849 if (!__dev_get_by_name(net, buf))
850 return i;
851
852 /* It is possible to run out of possible slots
853 * when the name is long and there isn't enough space left
854 * for the digits, or if all bits are used.
855 */
856 return -ENFILE;
857 }
858
859 /**
860 * dev_alloc_name - allocate a name for a device
861 * @dev: device
862 * @name: name format string
863 *
864 * Passed a format string - eg "lt%d" it will try and find a suitable
865 * id. It scans list of devices to build up a free map, then chooses
866 * the first empty slot. The caller must hold the dev_base or rtnl lock
867 * while allocating the name and adding the device in order to avoid
868 * duplicates.
869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
870 * Returns the number of the unit assigned or a negative errno code.
871 */
872
873 int dev_alloc_name(struct net_device *dev, const char *name)
874 {
875 char buf[IFNAMSIZ];
876 struct net *net;
877 int ret;
878
879 BUG_ON(!dev_net(dev));
880 net = dev_net(dev);
881 ret = __dev_alloc_name(net, name, buf);
882 if (ret >= 0)
883 strlcpy(dev->name, buf, IFNAMSIZ);
884 return ret;
885 }
886
887
888 /**
889 * dev_change_name - change name of a device
890 * @dev: device
891 * @newname: name (or format string) must be at least IFNAMSIZ
892 *
893 * Change name of a device, can pass format strings "eth%d".
894 * for wildcarding.
895 */
896 int dev_change_name(struct net_device *dev, const char *newname)
897 {
898 char oldname[IFNAMSIZ];
899 int err = 0;
900 int ret;
901 struct net *net;
902
903 ASSERT_RTNL();
904 BUG_ON(!dev_net(dev));
905
906 net = dev_net(dev);
907 if (dev->flags & IFF_UP)
908 return -EBUSY;
909
910 if (!dev_valid_name(newname))
911 return -EINVAL;
912
913 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
914 return 0;
915
916 memcpy(oldname, dev->name, IFNAMSIZ);
917
918 if (strchr(newname, '%')) {
919 err = dev_alloc_name(dev, newname);
920 if (err < 0)
921 return err;
922 }
923 else if (__dev_get_by_name(net, newname))
924 return -EEXIST;
925 else
926 strlcpy(dev->name, newname, IFNAMSIZ);
927
928 rollback:
929 /* For now only devices in the initial network namespace
930 * are in sysfs.
931 */
932 if (net == &init_net) {
933 ret = device_rename(&dev->dev, dev->name);
934 if (ret) {
935 memcpy(dev->name, oldname, IFNAMSIZ);
936 return ret;
937 }
938 }
939
940 write_lock_bh(&dev_base_lock);
941 hlist_del(&dev->name_hlist);
942 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
943 write_unlock_bh(&dev_base_lock);
944
945 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
946 ret = notifier_to_errno(ret);
947
948 if (ret) {
949 if (err) {
950 printk(KERN_ERR
951 "%s: name change rollback failed: %d.\n",
952 dev->name, ret);
953 } else {
954 err = ret;
955 memcpy(dev->name, oldname, IFNAMSIZ);
956 goto rollback;
957 }
958 }
959
960 return err;
961 }
962
963 /**
964 * dev_set_alias - change ifalias of a device
965 * @dev: device
966 * @alias: name up to IFALIASZ
967 * @len: limit of bytes to copy from info
968 *
969 * Set ifalias for a device,
970 */
971 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
972 {
973 ASSERT_RTNL();
974
975 if (len >= IFALIASZ)
976 return -EINVAL;
977
978 if (!len) {
979 if (dev->ifalias) {
980 kfree(dev->ifalias);
981 dev->ifalias = NULL;
982 }
983 return 0;
984 }
985
986 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
987 if (!dev->ifalias)
988 return -ENOMEM;
989
990 strlcpy(dev->ifalias, alias, len+1);
991 return len;
992 }
993
994
995 /**
996 * netdev_features_change - device changes features
997 * @dev: device to cause notification
998 *
999 * Called to indicate a device has changed features.
1000 */
1001 void netdev_features_change(struct net_device *dev)
1002 {
1003 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1004 }
1005 EXPORT_SYMBOL(netdev_features_change);
1006
1007 /**
1008 * netdev_state_change - device changes state
1009 * @dev: device to cause notification
1010 *
1011 * Called to indicate a device has changed state. This function calls
1012 * the notifier chains for netdev_chain and sends a NEWLINK message
1013 * to the routing socket.
1014 */
1015 void netdev_state_change(struct net_device *dev)
1016 {
1017 if (dev->flags & IFF_UP) {
1018 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1019 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1020 }
1021 }
1022
1023 void netdev_bonding_change(struct net_device *dev)
1024 {
1025 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1026 }
1027 EXPORT_SYMBOL(netdev_bonding_change);
1028
1029 /**
1030 * dev_load - load a network module
1031 * @net: the applicable net namespace
1032 * @name: name of interface
1033 *
1034 * If a network interface is not present and the process has suitable
1035 * privileges this function loads the module. If module loading is not
1036 * available in this kernel then it becomes a nop.
1037 */
1038
1039 void dev_load(struct net *net, const char *name)
1040 {
1041 struct net_device *dev;
1042
1043 read_lock(&dev_base_lock);
1044 dev = __dev_get_by_name(net, name);
1045 read_unlock(&dev_base_lock);
1046
1047 if (!dev && capable(CAP_SYS_MODULE))
1048 request_module("%s", name);
1049 }
1050
1051 /**
1052 * dev_open - prepare an interface for use.
1053 * @dev: device to open
1054 *
1055 * Takes a device from down to up state. The device's private open
1056 * function is invoked and then the multicast lists are loaded. Finally
1057 * the device is moved into the up state and a %NETDEV_UP message is
1058 * sent to the netdev notifier chain.
1059 *
1060 * Calling this function on an active interface is a nop. On a failure
1061 * a negative errno code is returned.
1062 */
1063 int dev_open(struct net_device *dev)
1064 {
1065 const struct net_device_ops *ops = dev->netdev_ops;
1066 int ret = 0;
1067
1068 ASSERT_RTNL();
1069
1070 /*
1071 * Is it already up?
1072 */
1073
1074 if (dev->flags & IFF_UP)
1075 return 0;
1076
1077 /*
1078 * Is it even present?
1079 */
1080 if (!netif_device_present(dev))
1081 return -ENODEV;
1082
1083 /*
1084 * Call device private open method
1085 */
1086 set_bit(__LINK_STATE_START, &dev->state);
1087
1088 if (ops->ndo_validate_addr)
1089 ret = ops->ndo_validate_addr(dev);
1090
1091 if (!ret && ops->ndo_open)
1092 ret = ops->ndo_open(dev);
1093
1094 /*
1095 * If it went open OK then:
1096 */
1097
1098 if (ret)
1099 clear_bit(__LINK_STATE_START, &dev->state);
1100 else {
1101 /*
1102 * Set the flags.
1103 */
1104 dev->flags |= IFF_UP;
1105
1106 /*
1107 * Initialize multicasting status
1108 */
1109 dev_set_rx_mode(dev);
1110
1111 /*
1112 * Wakeup transmit queue engine
1113 */
1114 dev_activate(dev);
1115
1116 /*
1117 * ... and announce new interface.
1118 */
1119 call_netdevice_notifiers(NETDEV_UP, dev);
1120 }
1121
1122 return ret;
1123 }
1124
1125 /**
1126 * dev_close - shutdown an interface.
1127 * @dev: device to shutdown
1128 *
1129 * This function moves an active device into down state. A
1130 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1131 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1132 * chain.
1133 */
1134 int dev_close(struct net_device *dev)
1135 {
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 ASSERT_RTNL();
1138
1139 might_sleep();
1140
1141 if (!(dev->flags & IFF_UP))
1142 return 0;
1143
1144 /*
1145 * Tell people we are going down, so that they can
1146 * prepare to death, when device is still operating.
1147 */
1148 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1149
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151
1152 /* Synchronize to scheduled poll. We cannot touch poll list,
1153 * it can be even on different cpu. So just clear netif_running().
1154 *
1155 * dev->stop() will invoke napi_disable() on all of it's
1156 * napi_struct instances on this device.
1157 */
1158 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1159
1160 dev_deactivate(dev);
1161
1162 /*
1163 * Call the device specific close. This cannot fail.
1164 * Only if device is UP
1165 *
1166 * We allow it to be called even after a DETACH hot-plug
1167 * event.
1168 */
1169 if (ops->ndo_stop)
1170 ops->ndo_stop(dev);
1171
1172 /*
1173 * Device is now down.
1174 */
1175
1176 dev->flags &= ~IFF_UP;
1177
1178 /*
1179 * Tell people we are down
1180 */
1181 call_netdevice_notifiers(NETDEV_DOWN, dev);
1182
1183 return 0;
1184 }
1185
1186
1187 /**
1188 * dev_disable_lro - disable Large Receive Offload on a device
1189 * @dev: device
1190 *
1191 * Disable Large Receive Offload (LRO) on a net device. Must be
1192 * called under RTNL. This is needed if received packets may be
1193 * forwarded to another interface.
1194 */
1195 void dev_disable_lro(struct net_device *dev)
1196 {
1197 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1198 dev->ethtool_ops->set_flags) {
1199 u32 flags = dev->ethtool_ops->get_flags(dev);
1200 if (flags & ETH_FLAG_LRO) {
1201 flags &= ~ETH_FLAG_LRO;
1202 dev->ethtool_ops->set_flags(dev, flags);
1203 }
1204 }
1205 WARN_ON(dev->features & NETIF_F_LRO);
1206 }
1207 EXPORT_SYMBOL(dev_disable_lro);
1208
1209
1210 static int dev_boot_phase = 1;
1211
1212 /*
1213 * Device change register/unregister. These are not inline or static
1214 * as we export them to the world.
1215 */
1216
1217 /**
1218 * register_netdevice_notifier - register a network notifier block
1219 * @nb: notifier
1220 *
1221 * Register a notifier to be called when network device events occur.
1222 * The notifier passed is linked into the kernel structures and must
1223 * not be reused until it has been unregistered. A negative errno code
1224 * is returned on a failure.
1225 *
1226 * When registered all registration and up events are replayed
1227 * to the new notifier to allow device to have a race free
1228 * view of the network device list.
1229 */
1230
1231 int register_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 struct net_device *dev;
1234 struct net_device *last;
1235 struct net *net;
1236 int err;
1237
1238 rtnl_lock();
1239 err = raw_notifier_chain_register(&netdev_chain, nb);
1240 if (err)
1241 goto unlock;
1242 if (dev_boot_phase)
1243 goto unlock;
1244 for_each_net(net) {
1245 for_each_netdev(net, dev) {
1246 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1247 err = notifier_to_errno(err);
1248 if (err)
1249 goto rollback;
1250
1251 if (!(dev->flags & IFF_UP))
1252 continue;
1253
1254 nb->notifier_call(nb, NETDEV_UP, dev);
1255 }
1256 }
1257
1258 unlock:
1259 rtnl_unlock();
1260 return err;
1261
1262 rollback:
1263 last = dev;
1264 for_each_net(net) {
1265 for_each_netdev(net, dev) {
1266 if (dev == last)
1267 break;
1268
1269 if (dev->flags & IFF_UP) {
1270 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1271 nb->notifier_call(nb, NETDEV_DOWN, dev);
1272 }
1273 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1274 }
1275 }
1276
1277 raw_notifier_chain_unregister(&netdev_chain, nb);
1278 goto unlock;
1279 }
1280
1281 /**
1282 * unregister_netdevice_notifier - unregister a network notifier block
1283 * @nb: notifier
1284 *
1285 * Unregister a notifier previously registered by
1286 * register_netdevice_notifier(). The notifier is unlinked into the
1287 * kernel structures and may then be reused. A negative errno code
1288 * is returned on a failure.
1289 */
1290
1291 int unregister_netdevice_notifier(struct notifier_block *nb)
1292 {
1293 int err;
1294
1295 rtnl_lock();
1296 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1297 rtnl_unlock();
1298 return err;
1299 }
1300
1301 /**
1302 * call_netdevice_notifiers - call all network notifier blocks
1303 * @val: value passed unmodified to notifier function
1304 * @dev: net_device pointer passed unmodified to notifier function
1305 *
1306 * Call all network notifier blocks. Parameters and return value
1307 * are as for raw_notifier_call_chain().
1308 */
1309
1310 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1311 {
1312 return raw_notifier_call_chain(&netdev_chain, val, dev);
1313 }
1314
1315 /* When > 0 there are consumers of rx skb time stamps */
1316 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1317
1318 void net_enable_timestamp(void)
1319 {
1320 atomic_inc(&netstamp_needed);
1321 }
1322
1323 void net_disable_timestamp(void)
1324 {
1325 atomic_dec(&netstamp_needed);
1326 }
1327
1328 static inline void net_timestamp(struct sk_buff *skb)
1329 {
1330 if (atomic_read(&netstamp_needed))
1331 __net_timestamp(skb);
1332 else
1333 skb->tstamp.tv64 = 0;
1334 }
1335
1336 /*
1337 * Support routine. Sends outgoing frames to any network
1338 * taps currently in use.
1339 */
1340
1341 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1342 {
1343 struct packet_type *ptype;
1344
1345 net_timestamp(skb);
1346
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1349 /* Never send packets back to the socket
1350 * they originated from - MvS (miquels@drinkel.ow.org)
1351 */
1352 if ((ptype->dev == dev || !ptype->dev) &&
1353 (ptype->af_packet_priv == NULL ||
1354 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1355 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1356 if (!skb2)
1357 break;
1358
1359 /* skb->nh should be correctly
1360 set by sender, so that the second statement is
1361 just protection against buggy protocols.
1362 */
1363 skb_reset_mac_header(skb2);
1364
1365 if (skb_network_header(skb2) < skb2->data ||
1366 skb2->network_header > skb2->tail) {
1367 if (net_ratelimit())
1368 printk(KERN_CRIT "protocol %04x is "
1369 "buggy, dev %s\n",
1370 skb2->protocol, dev->name);
1371 skb_reset_network_header(skb2);
1372 }
1373
1374 skb2->transport_header = skb2->network_header;
1375 skb2->pkt_type = PACKET_OUTGOING;
1376 ptype->func(skb2, skb->dev, ptype, skb->dev);
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382
1383 static inline void __netif_reschedule(struct Qdisc *q)
1384 {
1385 struct softnet_data *sd;
1386 unsigned long flags;
1387
1388 local_irq_save(flags);
1389 sd = &__get_cpu_var(softnet_data);
1390 q->next_sched = sd->output_queue;
1391 sd->output_queue = q;
1392 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1393 local_irq_restore(flags);
1394 }
1395
1396 void __netif_schedule(struct Qdisc *q)
1397 {
1398 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1399 __netif_reschedule(q);
1400 }
1401 EXPORT_SYMBOL(__netif_schedule);
1402
1403 void dev_kfree_skb_irq(struct sk_buff *skb)
1404 {
1405 if (atomic_dec_and_test(&skb->users)) {
1406 struct softnet_data *sd;
1407 unsigned long flags;
1408
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 skb->next = sd->completion_queue;
1412 sd->completion_queue = skb;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1415 }
1416 }
1417 EXPORT_SYMBOL(dev_kfree_skb_irq);
1418
1419 void dev_kfree_skb_any(struct sk_buff *skb)
1420 {
1421 if (in_irq() || irqs_disabled())
1422 dev_kfree_skb_irq(skb);
1423 else
1424 dev_kfree_skb(skb);
1425 }
1426 EXPORT_SYMBOL(dev_kfree_skb_any);
1427
1428
1429 /**
1430 * netif_device_detach - mark device as removed
1431 * @dev: network device
1432 *
1433 * Mark device as removed from system and therefore no longer available.
1434 */
1435 void netif_device_detach(struct net_device *dev)
1436 {
1437 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1438 netif_running(dev)) {
1439 netif_stop_queue(dev);
1440 }
1441 }
1442 EXPORT_SYMBOL(netif_device_detach);
1443
1444 /**
1445 * netif_device_attach - mark device as attached
1446 * @dev: network device
1447 *
1448 * Mark device as attached from system and restart if needed.
1449 */
1450 void netif_device_attach(struct net_device *dev)
1451 {
1452 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1453 netif_running(dev)) {
1454 netif_wake_queue(dev);
1455 __netdev_watchdog_up(dev);
1456 }
1457 }
1458 EXPORT_SYMBOL(netif_device_attach);
1459
1460 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1461 {
1462 return ((features & NETIF_F_GEN_CSUM) ||
1463 ((features & NETIF_F_IP_CSUM) &&
1464 protocol == htons(ETH_P_IP)) ||
1465 ((features & NETIF_F_IPV6_CSUM) &&
1466 protocol == htons(ETH_P_IPV6)));
1467 }
1468
1469 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1470 {
1471 if (can_checksum_protocol(dev->features, skb->protocol))
1472 return true;
1473
1474 if (skb->protocol == htons(ETH_P_8021Q)) {
1475 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1476 if (can_checksum_protocol(dev->features & dev->vlan_features,
1477 veh->h_vlan_encapsulated_proto))
1478 return true;
1479 }
1480
1481 return false;
1482 }
1483
1484 /*
1485 * Invalidate hardware checksum when packet is to be mangled, and
1486 * complete checksum manually on outgoing path.
1487 */
1488 int skb_checksum_help(struct sk_buff *skb)
1489 {
1490 __wsum csum;
1491 int ret = 0, offset;
1492
1493 if (skb->ip_summed == CHECKSUM_COMPLETE)
1494 goto out_set_summed;
1495
1496 if (unlikely(skb_shinfo(skb)->gso_size)) {
1497 /* Let GSO fix up the checksum. */
1498 goto out_set_summed;
1499 }
1500
1501 offset = skb->csum_start - skb_headroom(skb);
1502 BUG_ON(offset >= skb_headlen(skb));
1503 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1504
1505 offset += skb->csum_offset;
1506 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1507
1508 if (skb_cloned(skb) &&
1509 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1510 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1511 if (ret)
1512 goto out;
1513 }
1514
1515 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1516 out_set_summed:
1517 skb->ip_summed = CHECKSUM_NONE;
1518 out:
1519 return ret;
1520 }
1521
1522 /**
1523 * skb_gso_segment - Perform segmentation on skb.
1524 * @skb: buffer to segment
1525 * @features: features for the output path (see dev->features)
1526 *
1527 * This function segments the given skb and returns a list of segments.
1528 *
1529 * It may return NULL if the skb requires no segmentation. This is
1530 * only possible when GSO is used for verifying header integrity.
1531 */
1532 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1533 {
1534 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1535 struct packet_type *ptype;
1536 __be16 type = skb->protocol;
1537 int err;
1538
1539 skb_reset_mac_header(skb);
1540 skb->mac_len = skb->network_header - skb->mac_header;
1541 __skb_pull(skb, skb->mac_len);
1542
1543 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1544 if (skb_header_cloned(skb) &&
1545 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1546 return ERR_PTR(err);
1547 }
1548
1549 rcu_read_lock();
1550 list_for_each_entry_rcu(ptype,
1551 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1552 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1553 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1554 err = ptype->gso_send_check(skb);
1555 segs = ERR_PTR(err);
1556 if (err || skb_gso_ok(skb, features))
1557 break;
1558 __skb_push(skb, (skb->data -
1559 skb_network_header(skb)));
1560 }
1561 segs = ptype->gso_segment(skb, features);
1562 break;
1563 }
1564 }
1565 rcu_read_unlock();
1566
1567 __skb_push(skb, skb->data - skb_mac_header(skb));
1568
1569 return segs;
1570 }
1571
1572 EXPORT_SYMBOL(skb_gso_segment);
1573
1574 /* Take action when hardware reception checksum errors are detected. */
1575 #ifdef CONFIG_BUG
1576 void netdev_rx_csum_fault(struct net_device *dev)
1577 {
1578 if (net_ratelimit()) {
1579 printk(KERN_ERR "%s: hw csum failure.\n",
1580 dev ? dev->name : "<unknown>");
1581 dump_stack();
1582 }
1583 }
1584 EXPORT_SYMBOL(netdev_rx_csum_fault);
1585 #endif
1586
1587 /* Actually, we should eliminate this check as soon as we know, that:
1588 * 1. IOMMU is present and allows to map all the memory.
1589 * 2. No high memory really exists on this machine.
1590 */
1591
1592 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1593 {
1594 #ifdef CONFIG_HIGHMEM
1595 int i;
1596
1597 if (dev->features & NETIF_F_HIGHDMA)
1598 return 0;
1599
1600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1601 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1602 return 1;
1603
1604 #endif
1605 return 0;
1606 }
1607
1608 struct dev_gso_cb {
1609 void (*destructor)(struct sk_buff *skb);
1610 };
1611
1612 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1613
1614 static void dev_gso_skb_destructor(struct sk_buff *skb)
1615 {
1616 struct dev_gso_cb *cb;
1617
1618 do {
1619 struct sk_buff *nskb = skb->next;
1620
1621 skb->next = nskb->next;
1622 nskb->next = NULL;
1623 kfree_skb(nskb);
1624 } while (skb->next);
1625
1626 cb = DEV_GSO_CB(skb);
1627 if (cb->destructor)
1628 cb->destructor(skb);
1629 }
1630
1631 /**
1632 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1633 * @skb: buffer to segment
1634 *
1635 * This function segments the given skb and stores the list of segments
1636 * in skb->next.
1637 */
1638 static int dev_gso_segment(struct sk_buff *skb)
1639 {
1640 struct net_device *dev = skb->dev;
1641 struct sk_buff *segs;
1642 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1643 NETIF_F_SG : 0);
1644
1645 segs = skb_gso_segment(skb, features);
1646
1647 /* Verifying header integrity only. */
1648 if (!segs)
1649 return 0;
1650
1651 if (IS_ERR(segs))
1652 return PTR_ERR(segs);
1653
1654 skb->next = segs;
1655 DEV_GSO_CB(skb)->destructor = skb->destructor;
1656 skb->destructor = dev_gso_skb_destructor;
1657
1658 return 0;
1659 }
1660
1661 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1662 struct netdev_queue *txq)
1663 {
1664 const struct net_device_ops *ops = dev->netdev_ops;
1665
1666 prefetch(&dev->netdev_ops->ndo_start_xmit);
1667 if (likely(!skb->next)) {
1668 if (!list_empty(&ptype_all))
1669 dev_queue_xmit_nit(skb, dev);
1670
1671 if (netif_needs_gso(dev, skb)) {
1672 if (unlikely(dev_gso_segment(skb)))
1673 goto out_kfree_skb;
1674 if (skb->next)
1675 goto gso;
1676 }
1677
1678 return ops->ndo_start_xmit(skb, dev);
1679 }
1680
1681 gso:
1682 do {
1683 struct sk_buff *nskb = skb->next;
1684 int rc;
1685
1686 skb->next = nskb->next;
1687 nskb->next = NULL;
1688 rc = ops->ndo_start_xmit(nskb, dev);
1689 if (unlikely(rc)) {
1690 nskb->next = skb->next;
1691 skb->next = nskb;
1692 return rc;
1693 }
1694 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1695 return NETDEV_TX_BUSY;
1696 } while (skb->next);
1697
1698 skb->destructor = DEV_GSO_CB(skb)->destructor;
1699
1700 out_kfree_skb:
1701 kfree_skb(skb);
1702 return 0;
1703 }
1704
1705 static u32 simple_tx_hashrnd;
1706 static int simple_tx_hashrnd_initialized = 0;
1707
1708 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1709 {
1710 u32 addr1, addr2, ports;
1711 u32 hash, ihl;
1712 u8 ip_proto = 0;
1713
1714 if (unlikely(!simple_tx_hashrnd_initialized)) {
1715 get_random_bytes(&simple_tx_hashrnd, 4);
1716 simple_tx_hashrnd_initialized = 1;
1717 }
1718
1719 switch (skb->protocol) {
1720 case htons(ETH_P_IP):
1721 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1722 ip_proto = ip_hdr(skb)->protocol;
1723 addr1 = ip_hdr(skb)->saddr;
1724 addr2 = ip_hdr(skb)->daddr;
1725 ihl = ip_hdr(skb)->ihl;
1726 break;
1727 case htons(ETH_P_IPV6):
1728 ip_proto = ipv6_hdr(skb)->nexthdr;
1729 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1730 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1731 ihl = (40 >> 2);
1732 break;
1733 default:
1734 return 0;
1735 }
1736
1737
1738 switch (ip_proto) {
1739 case IPPROTO_TCP:
1740 case IPPROTO_UDP:
1741 case IPPROTO_DCCP:
1742 case IPPROTO_ESP:
1743 case IPPROTO_AH:
1744 case IPPROTO_SCTP:
1745 case IPPROTO_UDPLITE:
1746 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1747 break;
1748
1749 default:
1750 ports = 0;
1751 break;
1752 }
1753
1754 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1755
1756 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1757 }
1758
1759 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1760 struct sk_buff *skb)
1761 {
1762 const struct net_device_ops *ops = dev->netdev_ops;
1763 u16 queue_index = 0;
1764
1765 if (ops->ndo_select_queue)
1766 queue_index = ops->ndo_select_queue(dev, skb);
1767 else if (dev->real_num_tx_queues > 1)
1768 queue_index = simple_tx_hash(dev, skb);
1769
1770 skb_set_queue_mapping(skb, queue_index);
1771 return netdev_get_tx_queue(dev, queue_index);
1772 }
1773
1774 /**
1775 * dev_queue_xmit - transmit a buffer
1776 * @skb: buffer to transmit
1777 *
1778 * Queue a buffer for transmission to a network device. The caller must
1779 * have set the device and priority and built the buffer before calling
1780 * this function. The function can be called from an interrupt.
1781 *
1782 * A negative errno code is returned on a failure. A success does not
1783 * guarantee the frame will be transmitted as it may be dropped due
1784 * to congestion or traffic shaping.
1785 *
1786 * -----------------------------------------------------------------------------------
1787 * I notice this method can also return errors from the queue disciplines,
1788 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1789 * be positive.
1790 *
1791 * Regardless of the return value, the skb is consumed, so it is currently
1792 * difficult to retry a send to this method. (You can bump the ref count
1793 * before sending to hold a reference for retry if you are careful.)
1794 *
1795 * When calling this method, interrupts MUST be enabled. This is because
1796 * the BH enable code must have IRQs enabled so that it will not deadlock.
1797 * --BLG
1798 */
1799 int dev_queue_xmit(struct sk_buff *skb)
1800 {
1801 struct net_device *dev = skb->dev;
1802 struct netdev_queue *txq;
1803 struct Qdisc *q;
1804 int rc = -ENOMEM;
1805
1806 /* GSO will handle the following emulations directly. */
1807 if (netif_needs_gso(dev, skb))
1808 goto gso;
1809
1810 if (skb_shinfo(skb)->frag_list &&
1811 !(dev->features & NETIF_F_FRAGLIST) &&
1812 __skb_linearize(skb))
1813 goto out_kfree_skb;
1814
1815 /* Fragmented skb is linearized if device does not support SG,
1816 * or if at least one of fragments is in highmem and device
1817 * does not support DMA from it.
1818 */
1819 if (skb_shinfo(skb)->nr_frags &&
1820 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1821 __skb_linearize(skb))
1822 goto out_kfree_skb;
1823
1824 /* If packet is not checksummed and device does not support
1825 * checksumming for this protocol, complete checksumming here.
1826 */
1827 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1828 skb_set_transport_header(skb, skb->csum_start -
1829 skb_headroom(skb));
1830 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1831 goto out_kfree_skb;
1832 }
1833
1834 gso:
1835 /* Disable soft irqs for various locks below. Also
1836 * stops preemption for RCU.
1837 */
1838 rcu_read_lock_bh();
1839
1840 txq = dev_pick_tx(dev, skb);
1841 q = rcu_dereference(txq->qdisc);
1842
1843 #ifdef CONFIG_NET_CLS_ACT
1844 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1845 #endif
1846 if (q->enqueue) {
1847 spinlock_t *root_lock = qdisc_lock(q);
1848
1849 spin_lock(root_lock);
1850
1851 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1852 kfree_skb(skb);
1853 rc = NET_XMIT_DROP;
1854 } else {
1855 rc = qdisc_enqueue_root(skb, q);
1856 qdisc_run(q);
1857 }
1858 spin_unlock(root_lock);
1859
1860 goto out;
1861 }
1862
1863 /* The device has no queue. Common case for software devices:
1864 loopback, all the sorts of tunnels...
1865
1866 Really, it is unlikely that netif_tx_lock protection is necessary
1867 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1868 counters.)
1869 However, it is possible, that they rely on protection
1870 made by us here.
1871
1872 Check this and shot the lock. It is not prone from deadlocks.
1873 Either shot noqueue qdisc, it is even simpler 8)
1874 */
1875 if (dev->flags & IFF_UP) {
1876 int cpu = smp_processor_id(); /* ok because BHs are off */
1877
1878 if (txq->xmit_lock_owner != cpu) {
1879
1880 HARD_TX_LOCK(dev, txq, cpu);
1881
1882 if (!netif_tx_queue_stopped(txq)) {
1883 rc = 0;
1884 if (!dev_hard_start_xmit(skb, dev, txq)) {
1885 HARD_TX_UNLOCK(dev, txq);
1886 goto out;
1887 }
1888 }
1889 HARD_TX_UNLOCK(dev, txq);
1890 if (net_ratelimit())
1891 printk(KERN_CRIT "Virtual device %s asks to "
1892 "queue packet!\n", dev->name);
1893 } else {
1894 /* Recursion is detected! It is possible,
1895 * unfortunately */
1896 if (net_ratelimit())
1897 printk(KERN_CRIT "Dead loop on virtual device "
1898 "%s, fix it urgently!\n", dev->name);
1899 }
1900 }
1901
1902 rc = -ENETDOWN;
1903 rcu_read_unlock_bh();
1904
1905 out_kfree_skb:
1906 kfree_skb(skb);
1907 return rc;
1908 out:
1909 rcu_read_unlock_bh();
1910 return rc;
1911 }
1912
1913
1914 /*=======================================================================
1915 Receiver routines
1916 =======================================================================*/
1917
1918 int netdev_max_backlog __read_mostly = 1000;
1919 int netdev_budget __read_mostly = 300;
1920 int weight_p __read_mostly = 64; /* old backlog weight */
1921
1922 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1923
1924
1925 /**
1926 * netif_rx - post buffer to the network code
1927 * @skb: buffer to post
1928 *
1929 * This function receives a packet from a device driver and queues it for
1930 * the upper (protocol) levels to process. It always succeeds. The buffer
1931 * may be dropped during processing for congestion control or by the
1932 * protocol layers.
1933 *
1934 * return values:
1935 * NET_RX_SUCCESS (no congestion)
1936 * NET_RX_DROP (packet was dropped)
1937 *
1938 */
1939
1940 int netif_rx(struct sk_buff *skb)
1941 {
1942 struct softnet_data *queue;
1943 unsigned long flags;
1944
1945 /* if netpoll wants it, pretend we never saw it */
1946 if (netpoll_rx(skb))
1947 return NET_RX_DROP;
1948
1949 if (!skb->tstamp.tv64)
1950 net_timestamp(skb);
1951
1952 /*
1953 * The code is rearranged so that the path is the most
1954 * short when CPU is congested, but is still operating.
1955 */
1956 local_irq_save(flags);
1957 queue = &__get_cpu_var(softnet_data);
1958
1959 __get_cpu_var(netdev_rx_stat).total++;
1960 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1961 if (queue->input_pkt_queue.qlen) {
1962 enqueue:
1963 __skb_queue_tail(&queue->input_pkt_queue, skb);
1964 local_irq_restore(flags);
1965 return NET_RX_SUCCESS;
1966 }
1967
1968 napi_schedule(&queue->backlog);
1969 goto enqueue;
1970 }
1971
1972 __get_cpu_var(netdev_rx_stat).dropped++;
1973 local_irq_restore(flags);
1974
1975 kfree_skb(skb);
1976 return NET_RX_DROP;
1977 }
1978
1979 int netif_rx_ni(struct sk_buff *skb)
1980 {
1981 int err;
1982
1983 preempt_disable();
1984 err = netif_rx(skb);
1985 if (local_softirq_pending())
1986 do_softirq();
1987 preempt_enable();
1988
1989 return err;
1990 }
1991
1992 EXPORT_SYMBOL(netif_rx_ni);
1993
1994 static void net_tx_action(struct softirq_action *h)
1995 {
1996 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1997
1998 if (sd->completion_queue) {
1999 struct sk_buff *clist;
2000
2001 local_irq_disable();
2002 clist = sd->completion_queue;
2003 sd->completion_queue = NULL;
2004 local_irq_enable();
2005
2006 while (clist) {
2007 struct sk_buff *skb = clist;
2008 clist = clist->next;
2009
2010 WARN_ON(atomic_read(&skb->users));
2011 __kfree_skb(skb);
2012 }
2013 }
2014
2015 if (sd->output_queue) {
2016 struct Qdisc *head;
2017
2018 local_irq_disable();
2019 head = sd->output_queue;
2020 sd->output_queue = NULL;
2021 local_irq_enable();
2022
2023 while (head) {
2024 struct Qdisc *q = head;
2025 spinlock_t *root_lock;
2026
2027 head = head->next_sched;
2028
2029 root_lock = qdisc_lock(q);
2030 if (spin_trylock(root_lock)) {
2031 smp_mb__before_clear_bit();
2032 clear_bit(__QDISC_STATE_SCHED,
2033 &q->state);
2034 qdisc_run(q);
2035 spin_unlock(root_lock);
2036 } else {
2037 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2038 &q->state)) {
2039 __netif_reschedule(q);
2040 } else {
2041 smp_mb__before_clear_bit();
2042 clear_bit(__QDISC_STATE_SCHED,
2043 &q->state);
2044 }
2045 }
2046 }
2047 }
2048 }
2049
2050 static inline int deliver_skb(struct sk_buff *skb,
2051 struct packet_type *pt_prev,
2052 struct net_device *orig_dev)
2053 {
2054 atomic_inc(&skb->users);
2055 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2056 }
2057
2058 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2059 /* These hooks defined here for ATM */
2060 struct net_bridge;
2061 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2062 unsigned char *addr);
2063 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2064
2065 /*
2066 * If bridge module is loaded call bridging hook.
2067 * returns NULL if packet was consumed.
2068 */
2069 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2070 struct sk_buff *skb) __read_mostly;
2071 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2072 struct packet_type **pt_prev, int *ret,
2073 struct net_device *orig_dev)
2074 {
2075 struct net_bridge_port *port;
2076
2077 if (skb->pkt_type == PACKET_LOOPBACK ||
2078 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2079 return skb;
2080
2081 if (*pt_prev) {
2082 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2083 *pt_prev = NULL;
2084 }
2085
2086 return br_handle_frame_hook(port, skb);
2087 }
2088 #else
2089 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2090 #endif
2091
2092 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2093 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2094 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2095
2096 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2097 struct packet_type **pt_prev,
2098 int *ret,
2099 struct net_device *orig_dev)
2100 {
2101 if (skb->dev->macvlan_port == NULL)
2102 return skb;
2103
2104 if (*pt_prev) {
2105 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2106 *pt_prev = NULL;
2107 }
2108 return macvlan_handle_frame_hook(skb);
2109 }
2110 #else
2111 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2112 #endif
2113
2114 #ifdef CONFIG_NET_CLS_ACT
2115 /* TODO: Maybe we should just force sch_ingress to be compiled in
2116 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2117 * a compare and 2 stores extra right now if we dont have it on
2118 * but have CONFIG_NET_CLS_ACT
2119 * NOTE: This doesnt stop any functionality; if you dont have
2120 * the ingress scheduler, you just cant add policies on ingress.
2121 *
2122 */
2123 static int ing_filter(struct sk_buff *skb)
2124 {
2125 struct net_device *dev = skb->dev;
2126 u32 ttl = G_TC_RTTL(skb->tc_verd);
2127 struct netdev_queue *rxq;
2128 int result = TC_ACT_OK;
2129 struct Qdisc *q;
2130
2131 if (MAX_RED_LOOP < ttl++) {
2132 printk(KERN_WARNING
2133 "Redir loop detected Dropping packet (%d->%d)\n",
2134 skb->iif, dev->ifindex);
2135 return TC_ACT_SHOT;
2136 }
2137
2138 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2139 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2140
2141 rxq = &dev->rx_queue;
2142
2143 q = rxq->qdisc;
2144 if (q != &noop_qdisc) {
2145 spin_lock(qdisc_lock(q));
2146 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2147 result = qdisc_enqueue_root(skb, q);
2148 spin_unlock(qdisc_lock(q));
2149 }
2150
2151 return result;
2152 }
2153
2154 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2155 struct packet_type **pt_prev,
2156 int *ret, struct net_device *orig_dev)
2157 {
2158 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2159 goto out;
2160
2161 if (*pt_prev) {
2162 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2163 *pt_prev = NULL;
2164 } else {
2165 /* Huh? Why does turning on AF_PACKET affect this? */
2166 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2167 }
2168
2169 switch (ing_filter(skb)) {
2170 case TC_ACT_SHOT:
2171 case TC_ACT_STOLEN:
2172 kfree_skb(skb);
2173 return NULL;
2174 }
2175
2176 out:
2177 skb->tc_verd = 0;
2178 return skb;
2179 }
2180 #endif
2181
2182 /*
2183 * netif_nit_deliver - deliver received packets to network taps
2184 * @skb: buffer
2185 *
2186 * This function is used to deliver incoming packets to network
2187 * taps. It should be used when the normal netif_receive_skb path
2188 * is bypassed, for example because of VLAN acceleration.
2189 */
2190 void netif_nit_deliver(struct sk_buff *skb)
2191 {
2192 struct packet_type *ptype;
2193
2194 if (list_empty(&ptype_all))
2195 return;
2196
2197 skb_reset_network_header(skb);
2198 skb_reset_transport_header(skb);
2199 skb->mac_len = skb->network_header - skb->mac_header;
2200
2201 rcu_read_lock();
2202 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2203 if (!ptype->dev || ptype->dev == skb->dev)
2204 deliver_skb(skb, ptype, skb->dev);
2205 }
2206 rcu_read_unlock();
2207 }
2208
2209 /**
2210 * netif_receive_skb - process receive buffer from network
2211 * @skb: buffer to process
2212 *
2213 * netif_receive_skb() is the main receive data processing function.
2214 * It always succeeds. The buffer may be dropped during processing
2215 * for congestion control or by the protocol layers.
2216 *
2217 * This function may only be called from softirq context and interrupts
2218 * should be enabled.
2219 *
2220 * Return values (usually ignored):
2221 * NET_RX_SUCCESS: no congestion
2222 * NET_RX_DROP: packet was dropped
2223 */
2224 int netif_receive_skb(struct sk_buff *skb)
2225 {
2226 struct packet_type *ptype, *pt_prev;
2227 struct net_device *orig_dev;
2228 struct net_device *null_or_orig;
2229 int ret = NET_RX_DROP;
2230 __be16 type;
2231
2232 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2233 return NET_RX_SUCCESS;
2234
2235 /* if we've gotten here through NAPI, check netpoll */
2236 if (netpoll_receive_skb(skb))
2237 return NET_RX_DROP;
2238
2239 if (!skb->tstamp.tv64)
2240 net_timestamp(skb);
2241
2242 if (!skb->iif)
2243 skb->iif = skb->dev->ifindex;
2244
2245 null_or_orig = NULL;
2246 orig_dev = skb->dev;
2247 if (orig_dev->master) {
2248 if (skb_bond_should_drop(skb))
2249 null_or_orig = orig_dev; /* deliver only exact match */
2250 else
2251 skb->dev = orig_dev->master;
2252 }
2253
2254 __get_cpu_var(netdev_rx_stat).total++;
2255
2256 skb_reset_network_header(skb);
2257 skb_reset_transport_header(skb);
2258 skb->mac_len = skb->network_header - skb->mac_header;
2259
2260 pt_prev = NULL;
2261
2262 rcu_read_lock();
2263
2264 /* Don't receive packets in an exiting network namespace */
2265 if (!net_alive(dev_net(skb->dev))) {
2266 kfree_skb(skb);
2267 goto out;
2268 }
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 if (skb->tc_verd & TC_NCLS) {
2272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2273 goto ncls;
2274 }
2275 #endif
2276
2277 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2278 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2279 ptype->dev == orig_dev) {
2280 if (pt_prev)
2281 ret = deliver_skb(skb, pt_prev, orig_dev);
2282 pt_prev = ptype;
2283 }
2284 }
2285
2286 #ifdef CONFIG_NET_CLS_ACT
2287 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 ncls:
2291 #endif
2292
2293 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2294 if (!skb)
2295 goto out;
2296 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299
2300 type = skb->protocol;
2301 list_for_each_entry_rcu(ptype,
2302 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2303 if (ptype->type == type &&
2304 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2305 ptype->dev == orig_dev)) {
2306 if (pt_prev)
2307 ret = deliver_skb(skb, pt_prev, orig_dev);
2308 pt_prev = ptype;
2309 }
2310 }
2311
2312 if (pt_prev) {
2313 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2314 } else {
2315 kfree_skb(skb);
2316 /* Jamal, now you will not able to escape explaining
2317 * me how you were going to use this. :-)
2318 */
2319 ret = NET_RX_DROP;
2320 }
2321
2322 out:
2323 rcu_read_unlock();
2324 return ret;
2325 }
2326
2327 /* Network device is going away, flush any packets still pending */
2328 static void flush_backlog(void *arg)
2329 {
2330 struct net_device *dev = arg;
2331 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2332 struct sk_buff *skb, *tmp;
2333
2334 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2335 if (skb->dev == dev) {
2336 __skb_unlink(skb, &queue->input_pkt_queue);
2337 kfree_skb(skb);
2338 }
2339 }
2340
2341 static int napi_gro_complete(struct sk_buff *skb)
2342 {
2343 struct packet_type *ptype;
2344 __be16 type = skb->protocol;
2345 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2346 int err = -ENOENT;
2347
2348 if (!skb_shinfo(skb)->frag_list)
2349 goto out;
2350
2351 rcu_read_lock();
2352 list_for_each_entry_rcu(ptype, head, list) {
2353 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2354 continue;
2355
2356 err = ptype->gro_complete(skb);
2357 break;
2358 }
2359 rcu_read_unlock();
2360
2361 if (err) {
2362 WARN_ON(&ptype->list == head);
2363 kfree_skb(skb);
2364 return NET_RX_SUCCESS;
2365 }
2366
2367 out:
2368 skb_shinfo(skb)->gso_size = 0;
2369 __skb_push(skb, -skb_network_offset(skb));
2370 return netif_receive_skb(skb);
2371 }
2372
2373 void napi_gro_flush(struct napi_struct *napi)
2374 {
2375 struct sk_buff *skb, *next;
2376
2377 for (skb = napi->gro_list; skb; skb = next) {
2378 next = skb->next;
2379 skb->next = NULL;
2380 napi_gro_complete(skb);
2381 }
2382
2383 napi->gro_list = NULL;
2384 }
2385 EXPORT_SYMBOL(napi_gro_flush);
2386
2387 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2388 {
2389 struct sk_buff **pp = NULL;
2390 struct packet_type *ptype;
2391 __be16 type = skb->protocol;
2392 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2393 int count = 0;
2394 int same_flow;
2395 int mac_len;
2396
2397 if (!(skb->dev->features & NETIF_F_GRO))
2398 goto normal;
2399
2400 rcu_read_lock();
2401 list_for_each_entry_rcu(ptype, head, list) {
2402 struct sk_buff *p;
2403
2404 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2405 continue;
2406
2407 skb_reset_network_header(skb);
2408 mac_len = skb->network_header - skb->mac_header;
2409 skb->mac_len = mac_len;
2410 NAPI_GRO_CB(skb)->same_flow = 0;
2411 NAPI_GRO_CB(skb)->flush = 0;
2412
2413 for (p = napi->gro_list; p; p = p->next) {
2414 count++;
2415 NAPI_GRO_CB(p)->same_flow =
2416 p->mac_len == mac_len &&
2417 !memcmp(skb_mac_header(p), skb_mac_header(skb),
2418 mac_len);
2419 NAPI_GRO_CB(p)->flush = 0;
2420 }
2421
2422 pp = ptype->gro_receive(&napi->gro_list, skb);
2423 break;
2424 }
2425 rcu_read_unlock();
2426
2427 if (&ptype->list == head)
2428 goto normal;
2429
2430 same_flow = NAPI_GRO_CB(skb)->same_flow;
2431
2432 if (pp) {
2433 struct sk_buff *nskb = *pp;
2434
2435 *pp = nskb->next;
2436 nskb->next = NULL;
2437 napi_gro_complete(nskb);
2438 count--;
2439 }
2440
2441 if (same_flow)
2442 goto ok;
2443
2444 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2445 __skb_push(skb, -skb_network_offset(skb));
2446 goto normal;
2447 }
2448
2449 NAPI_GRO_CB(skb)->count = 1;
2450 skb_shinfo(skb)->gso_size = skb->len;
2451 skb->next = napi->gro_list;
2452 napi->gro_list = skb;
2453
2454 ok:
2455 return NET_RX_SUCCESS;
2456
2457 normal:
2458 return netif_receive_skb(skb);
2459 }
2460 EXPORT_SYMBOL(napi_gro_receive);
2461
2462 static int process_backlog(struct napi_struct *napi, int quota)
2463 {
2464 int work = 0;
2465 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2466 unsigned long start_time = jiffies;
2467
2468 napi->weight = weight_p;
2469 do {
2470 struct sk_buff *skb;
2471
2472 local_irq_disable();
2473 skb = __skb_dequeue(&queue->input_pkt_queue);
2474 if (!skb) {
2475 __napi_complete(napi);
2476 local_irq_enable();
2477 break;
2478 }
2479 local_irq_enable();
2480
2481 napi_gro_receive(napi, skb);
2482 } while (++work < quota && jiffies == start_time);
2483
2484 napi_gro_flush(napi);
2485
2486 return work;
2487 }
2488
2489 /**
2490 * __napi_schedule - schedule for receive
2491 * @n: entry to schedule
2492 *
2493 * The entry's receive function will be scheduled to run
2494 */
2495 void __napi_schedule(struct napi_struct *n)
2496 {
2497 unsigned long flags;
2498
2499 local_irq_save(flags);
2500 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2501 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2502 local_irq_restore(flags);
2503 }
2504 EXPORT_SYMBOL(__napi_schedule);
2505
2506 void __napi_complete(struct napi_struct *n)
2507 {
2508 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2509 BUG_ON(n->gro_list);
2510
2511 list_del(&n->poll_list);
2512 smp_mb__before_clear_bit();
2513 clear_bit(NAPI_STATE_SCHED, &n->state);
2514 }
2515 EXPORT_SYMBOL(__napi_complete);
2516
2517 void napi_complete(struct napi_struct *n)
2518 {
2519 unsigned long flags;
2520
2521 /*
2522 * don't let napi dequeue from the cpu poll list
2523 * just in case its running on a different cpu
2524 */
2525 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2526 return;
2527
2528 napi_gro_flush(n);
2529 local_irq_save(flags);
2530 __napi_complete(n);
2531 local_irq_restore(flags);
2532 }
2533 EXPORT_SYMBOL(napi_complete);
2534
2535 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2536 int (*poll)(struct napi_struct *, int), int weight)
2537 {
2538 INIT_LIST_HEAD(&napi->poll_list);
2539 napi->gro_list = NULL;
2540 napi->poll = poll;
2541 napi->weight = weight;
2542 list_add(&napi->dev_list, &dev->napi_list);
2543 #ifdef CONFIG_NETPOLL
2544 napi->dev = dev;
2545 spin_lock_init(&napi->poll_lock);
2546 napi->poll_owner = -1;
2547 #endif
2548 set_bit(NAPI_STATE_SCHED, &napi->state);
2549 }
2550 EXPORT_SYMBOL(netif_napi_add);
2551
2552 void netif_napi_del(struct napi_struct *napi)
2553 {
2554 struct sk_buff *skb, *next;
2555
2556 list_del_init(&napi->dev_list);
2557
2558 for (skb = napi->gro_list; skb; skb = next) {
2559 next = skb->next;
2560 skb->next = NULL;
2561 kfree_skb(skb);
2562 }
2563
2564 napi->gro_list = NULL;
2565 }
2566 EXPORT_SYMBOL(netif_napi_del);
2567
2568
2569 static void net_rx_action(struct softirq_action *h)
2570 {
2571 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2572 unsigned long time_limit = jiffies + 2;
2573 int budget = netdev_budget;
2574 void *have;
2575
2576 local_irq_disable();
2577
2578 while (!list_empty(list)) {
2579 struct napi_struct *n;
2580 int work, weight;
2581
2582 /* If softirq window is exhuasted then punt.
2583 * Allow this to run for 2 jiffies since which will allow
2584 * an average latency of 1.5/HZ.
2585 */
2586 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2587 goto softnet_break;
2588
2589 local_irq_enable();
2590
2591 /* Even though interrupts have been re-enabled, this
2592 * access is safe because interrupts can only add new
2593 * entries to the tail of this list, and only ->poll()
2594 * calls can remove this head entry from the list.
2595 */
2596 n = list_entry(list->next, struct napi_struct, poll_list);
2597
2598 have = netpoll_poll_lock(n);
2599
2600 weight = n->weight;
2601
2602 /* This NAPI_STATE_SCHED test is for avoiding a race
2603 * with netpoll's poll_napi(). Only the entity which
2604 * obtains the lock and sees NAPI_STATE_SCHED set will
2605 * actually make the ->poll() call. Therefore we avoid
2606 * accidently calling ->poll() when NAPI is not scheduled.
2607 */
2608 work = 0;
2609 if (test_bit(NAPI_STATE_SCHED, &n->state))
2610 work = n->poll(n, weight);
2611
2612 WARN_ON_ONCE(work > weight);
2613
2614 budget -= work;
2615
2616 local_irq_disable();
2617
2618 /* Drivers must not modify the NAPI state if they
2619 * consume the entire weight. In such cases this code
2620 * still "owns" the NAPI instance and therefore can
2621 * move the instance around on the list at-will.
2622 */
2623 if (unlikely(work == weight)) {
2624 if (unlikely(napi_disable_pending(n)))
2625 __napi_complete(n);
2626 else
2627 list_move_tail(&n->poll_list, list);
2628 }
2629
2630 netpoll_poll_unlock(have);
2631 }
2632 out:
2633 local_irq_enable();
2634
2635 #ifdef CONFIG_NET_DMA
2636 /*
2637 * There may not be any more sk_buffs coming right now, so push
2638 * any pending DMA copies to hardware
2639 */
2640 if (!cpus_empty(net_dma.channel_mask)) {
2641 int chan_idx;
2642 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2643 struct dma_chan *chan = net_dma.channels[chan_idx];
2644 if (chan)
2645 dma_async_memcpy_issue_pending(chan);
2646 }
2647 }
2648 #endif
2649
2650 return;
2651
2652 softnet_break:
2653 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2654 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2655 goto out;
2656 }
2657
2658 static gifconf_func_t * gifconf_list [NPROTO];
2659
2660 /**
2661 * register_gifconf - register a SIOCGIF handler
2662 * @family: Address family
2663 * @gifconf: Function handler
2664 *
2665 * Register protocol dependent address dumping routines. The handler
2666 * that is passed must not be freed or reused until it has been replaced
2667 * by another handler.
2668 */
2669 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2670 {
2671 if (family >= NPROTO)
2672 return -EINVAL;
2673 gifconf_list[family] = gifconf;
2674 return 0;
2675 }
2676
2677
2678 /*
2679 * Map an interface index to its name (SIOCGIFNAME)
2680 */
2681
2682 /*
2683 * We need this ioctl for efficient implementation of the
2684 * if_indextoname() function required by the IPv6 API. Without
2685 * it, we would have to search all the interfaces to find a
2686 * match. --pb
2687 */
2688
2689 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2690 {
2691 struct net_device *dev;
2692 struct ifreq ifr;
2693
2694 /*
2695 * Fetch the caller's info block.
2696 */
2697
2698 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2699 return -EFAULT;
2700
2701 read_lock(&dev_base_lock);
2702 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2703 if (!dev) {
2704 read_unlock(&dev_base_lock);
2705 return -ENODEV;
2706 }
2707
2708 strcpy(ifr.ifr_name, dev->name);
2709 read_unlock(&dev_base_lock);
2710
2711 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2712 return -EFAULT;
2713 return 0;
2714 }
2715
2716 /*
2717 * Perform a SIOCGIFCONF call. This structure will change
2718 * size eventually, and there is nothing I can do about it.
2719 * Thus we will need a 'compatibility mode'.
2720 */
2721
2722 static int dev_ifconf(struct net *net, char __user *arg)
2723 {
2724 struct ifconf ifc;
2725 struct net_device *dev;
2726 char __user *pos;
2727 int len;
2728 int total;
2729 int i;
2730
2731 /*
2732 * Fetch the caller's info block.
2733 */
2734
2735 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2736 return -EFAULT;
2737
2738 pos = ifc.ifc_buf;
2739 len = ifc.ifc_len;
2740
2741 /*
2742 * Loop over the interfaces, and write an info block for each.
2743 */
2744
2745 total = 0;
2746 for_each_netdev(net, dev) {
2747 for (i = 0; i < NPROTO; i++) {
2748 if (gifconf_list[i]) {
2749 int done;
2750 if (!pos)
2751 done = gifconf_list[i](dev, NULL, 0);
2752 else
2753 done = gifconf_list[i](dev, pos + total,
2754 len - total);
2755 if (done < 0)
2756 return -EFAULT;
2757 total += done;
2758 }
2759 }
2760 }
2761
2762 /*
2763 * All done. Write the updated control block back to the caller.
2764 */
2765 ifc.ifc_len = total;
2766
2767 /*
2768 * Both BSD and Solaris return 0 here, so we do too.
2769 */
2770 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2771 }
2772
2773 #ifdef CONFIG_PROC_FS
2774 /*
2775 * This is invoked by the /proc filesystem handler to display a device
2776 * in detail.
2777 */
2778 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2779 __acquires(dev_base_lock)
2780 {
2781 struct net *net = seq_file_net(seq);
2782 loff_t off;
2783 struct net_device *dev;
2784
2785 read_lock(&dev_base_lock);
2786 if (!*pos)
2787 return SEQ_START_TOKEN;
2788
2789 off = 1;
2790 for_each_netdev(net, dev)
2791 if (off++ == *pos)
2792 return dev;
2793
2794 return NULL;
2795 }
2796
2797 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2798 {
2799 struct net *net = seq_file_net(seq);
2800 ++*pos;
2801 return v == SEQ_START_TOKEN ?
2802 first_net_device(net) : next_net_device((struct net_device *)v);
2803 }
2804
2805 void dev_seq_stop(struct seq_file *seq, void *v)
2806 __releases(dev_base_lock)
2807 {
2808 read_unlock(&dev_base_lock);
2809 }
2810
2811 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2812 {
2813 const struct net_device_stats *stats = dev_get_stats(dev);
2814
2815 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2816 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2817 dev->name, stats->rx_bytes, stats->rx_packets,
2818 stats->rx_errors,
2819 stats->rx_dropped + stats->rx_missed_errors,
2820 stats->rx_fifo_errors,
2821 stats->rx_length_errors + stats->rx_over_errors +
2822 stats->rx_crc_errors + stats->rx_frame_errors,
2823 stats->rx_compressed, stats->multicast,
2824 stats->tx_bytes, stats->tx_packets,
2825 stats->tx_errors, stats->tx_dropped,
2826 stats->tx_fifo_errors, stats->collisions,
2827 stats->tx_carrier_errors +
2828 stats->tx_aborted_errors +
2829 stats->tx_window_errors +
2830 stats->tx_heartbeat_errors,
2831 stats->tx_compressed);
2832 }
2833
2834 /*
2835 * Called from the PROCfs module. This now uses the new arbitrary sized
2836 * /proc/net interface to create /proc/net/dev
2837 */
2838 static int dev_seq_show(struct seq_file *seq, void *v)
2839 {
2840 if (v == SEQ_START_TOKEN)
2841 seq_puts(seq, "Inter-| Receive "
2842 " | Transmit\n"
2843 " face |bytes packets errs drop fifo frame "
2844 "compressed multicast|bytes packets errs "
2845 "drop fifo colls carrier compressed\n");
2846 else
2847 dev_seq_printf_stats(seq, v);
2848 return 0;
2849 }
2850
2851 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2852 {
2853 struct netif_rx_stats *rc = NULL;
2854
2855 while (*pos < nr_cpu_ids)
2856 if (cpu_online(*pos)) {
2857 rc = &per_cpu(netdev_rx_stat, *pos);
2858 break;
2859 } else
2860 ++*pos;
2861 return rc;
2862 }
2863
2864 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2865 {
2866 return softnet_get_online(pos);
2867 }
2868
2869 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2870 {
2871 ++*pos;
2872 return softnet_get_online(pos);
2873 }
2874
2875 static void softnet_seq_stop(struct seq_file *seq, void *v)
2876 {
2877 }
2878
2879 static int softnet_seq_show(struct seq_file *seq, void *v)
2880 {
2881 struct netif_rx_stats *s = v;
2882
2883 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2884 s->total, s->dropped, s->time_squeeze, 0,
2885 0, 0, 0, 0, /* was fastroute */
2886 s->cpu_collision );
2887 return 0;
2888 }
2889
2890 static const struct seq_operations dev_seq_ops = {
2891 .start = dev_seq_start,
2892 .next = dev_seq_next,
2893 .stop = dev_seq_stop,
2894 .show = dev_seq_show,
2895 };
2896
2897 static int dev_seq_open(struct inode *inode, struct file *file)
2898 {
2899 return seq_open_net(inode, file, &dev_seq_ops,
2900 sizeof(struct seq_net_private));
2901 }
2902
2903 static const struct file_operations dev_seq_fops = {
2904 .owner = THIS_MODULE,
2905 .open = dev_seq_open,
2906 .read = seq_read,
2907 .llseek = seq_lseek,
2908 .release = seq_release_net,
2909 };
2910
2911 static const struct seq_operations softnet_seq_ops = {
2912 .start = softnet_seq_start,
2913 .next = softnet_seq_next,
2914 .stop = softnet_seq_stop,
2915 .show = softnet_seq_show,
2916 };
2917
2918 static int softnet_seq_open(struct inode *inode, struct file *file)
2919 {
2920 return seq_open(file, &softnet_seq_ops);
2921 }
2922
2923 static const struct file_operations softnet_seq_fops = {
2924 .owner = THIS_MODULE,
2925 .open = softnet_seq_open,
2926 .read = seq_read,
2927 .llseek = seq_lseek,
2928 .release = seq_release,
2929 };
2930
2931 static void *ptype_get_idx(loff_t pos)
2932 {
2933 struct packet_type *pt = NULL;
2934 loff_t i = 0;
2935 int t;
2936
2937 list_for_each_entry_rcu(pt, &ptype_all, list) {
2938 if (i == pos)
2939 return pt;
2940 ++i;
2941 }
2942
2943 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2944 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2945 if (i == pos)
2946 return pt;
2947 ++i;
2948 }
2949 }
2950 return NULL;
2951 }
2952
2953 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2954 __acquires(RCU)
2955 {
2956 rcu_read_lock();
2957 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2958 }
2959
2960 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2961 {
2962 struct packet_type *pt;
2963 struct list_head *nxt;
2964 int hash;
2965
2966 ++*pos;
2967 if (v == SEQ_START_TOKEN)
2968 return ptype_get_idx(0);
2969
2970 pt = v;
2971 nxt = pt->list.next;
2972 if (pt->type == htons(ETH_P_ALL)) {
2973 if (nxt != &ptype_all)
2974 goto found;
2975 hash = 0;
2976 nxt = ptype_base[0].next;
2977 } else
2978 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2979
2980 while (nxt == &ptype_base[hash]) {
2981 if (++hash >= PTYPE_HASH_SIZE)
2982 return NULL;
2983 nxt = ptype_base[hash].next;
2984 }
2985 found:
2986 return list_entry(nxt, struct packet_type, list);
2987 }
2988
2989 static void ptype_seq_stop(struct seq_file *seq, void *v)
2990 __releases(RCU)
2991 {
2992 rcu_read_unlock();
2993 }
2994
2995 static int ptype_seq_show(struct seq_file *seq, void *v)
2996 {
2997 struct packet_type *pt = v;
2998
2999 if (v == SEQ_START_TOKEN)
3000 seq_puts(seq, "Type Device Function\n");
3001 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3002 if (pt->type == htons(ETH_P_ALL))
3003 seq_puts(seq, "ALL ");
3004 else
3005 seq_printf(seq, "%04x", ntohs(pt->type));
3006
3007 seq_printf(seq, " %-8s %pF\n",
3008 pt->dev ? pt->dev->name : "", pt->func);
3009 }
3010
3011 return 0;
3012 }
3013
3014 static const struct seq_operations ptype_seq_ops = {
3015 .start = ptype_seq_start,
3016 .next = ptype_seq_next,
3017 .stop = ptype_seq_stop,
3018 .show = ptype_seq_show,
3019 };
3020
3021 static int ptype_seq_open(struct inode *inode, struct file *file)
3022 {
3023 return seq_open_net(inode, file, &ptype_seq_ops,
3024 sizeof(struct seq_net_private));
3025 }
3026
3027 static const struct file_operations ptype_seq_fops = {
3028 .owner = THIS_MODULE,
3029 .open = ptype_seq_open,
3030 .read = seq_read,
3031 .llseek = seq_lseek,
3032 .release = seq_release_net,
3033 };
3034
3035
3036 static int __net_init dev_proc_net_init(struct net *net)
3037 {
3038 int rc = -ENOMEM;
3039
3040 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3041 goto out;
3042 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3043 goto out_dev;
3044 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3045 goto out_softnet;
3046
3047 if (wext_proc_init(net))
3048 goto out_ptype;
3049 rc = 0;
3050 out:
3051 return rc;
3052 out_ptype:
3053 proc_net_remove(net, "ptype");
3054 out_softnet:
3055 proc_net_remove(net, "softnet_stat");
3056 out_dev:
3057 proc_net_remove(net, "dev");
3058 goto out;
3059 }
3060
3061 static void __net_exit dev_proc_net_exit(struct net *net)
3062 {
3063 wext_proc_exit(net);
3064
3065 proc_net_remove(net, "ptype");
3066 proc_net_remove(net, "softnet_stat");
3067 proc_net_remove(net, "dev");
3068 }
3069
3070 static struct pernet_operations __net_initdata dev_proc_ops = {
3071 .init = dev_proc_net_init,
3072 .exit = dev_proc_net_exit,
3073 };
3074
3075 static int __init dev_proc_init(void)
3076 {
3077 return register_pernet_subsys(&dev_proc_ops);
3078 }
3079 #else
3080 #define dev_proc_init() 0
3081 #endif /* CONFIG_PROC_FS */
3082
3083
3084 /**
3085 * netdev_set_master - set up master/slave pair
3086 * @slave: slave device
3087 * @master: new master device
3088 *
3089 * Changes the master device of the slave. Pass %NULL to break the
3090 * bonding. The caller must hold the RTNL semaphore. On a failure
3091 * a negative errno code is returned. On success the reference counts
3092 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3093 * function returns zero.
3094 */
3095 int netdev_set_master(struct net_device *slave, struct net_device *master)
3096 {
3097 struct net_device *old = slave->master;
3098
3099 ASSERT_RTNL();
3100
3101 if (master) {
3102 if (old)
3103 return -EBUSY;
3104 dev_hold(master);
3105 }
3106
3107 slave->master = master;
3108
3109 synchronize_net();
3110
3111 if (old)
3112 dev_put(old);
3113
3114 if (master)
3115 slave->flags |= IFF_SLAVE;
3116 else
3117 slave->flags &= ~IFF_SLAVE;
3118
3119 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3120 return 0;
3121 }
3122
3123 static void dev_change_rx_flags(struct net_device *dev, int flags)
3124 {
3125 const struct net_device_ops *ops = dev->netdev_ops;
3126
3127 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3128 ops->ndo_change_rx_flags(dev, flags);
3129 }
3130
3131 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3132 {
3133 unsigned short old_flags = dev->flags;
3134 uid_t uid;
3135 gid_t gid;
3136
3137 ASSERT_RTNL();
3138
3139 dev->flags |= IFF_PROMISC;
3140 dev->promiscuity += inc;
3141 if (dev->promiscuity == 0) {
3142 /*
3143 * Avoid overflow.
3144 * If inc causes overflow, untouch promisc and return error.
3145 */
3146 if (inc < 0)
3147 dev->flags &= ~IFF_PROMISC;
3148 else {
3149 dev->promiscuity -= inc;
3150 printk(KERN_WARNING "%s: promiscuity touches roof, "
3151 "set promiscuity failed, promiscuity feature "
3152 "of device might be broken.\n", dev->name);
3153 return -EOVERFLOW;
3154 }
3155 }
3156 if (dev->flags != old_flags) {
3157 printk(KERN_INFO "device %s %s promiscuous mode\n",
3158 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3159 "left");
3160 if (audit_enabled) {
3161 current_uid_gid(&uid, &gid);
3162 audit_log(current->audit_context, GFP_ATOMIC,
3163 AUDIT_ANOM_PROMISCUOUS,
3164 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3165 dev->name, (dev->flags & IFF_PROMISC),
3166 (old_flags & IFF_PROMISC),
3167 audit_get_loginuid(current),
3168 uid, gid,
3169 audit_get_sessionid(current));
3170 }
3171
3172 dev_change_rx_flags(dev, IFF_PROMISC);
3173 }
3174 return 0;
3175 }
3176
3177 /**
3178 * dev_set_promiscuity - update promiscuity count on a device
3179 * @dev: device
3180 * @inc: modifier
3181 *
3182 * Add or remove promiscuity from a device. While the count in the device
3183 * remains above zero the interface remains promiscuous. Once it hits zero
3184 * the device reverts back to normal filtering operation. A negative inc
3185 * value is used to drop promiscuity on the device.
3186 * Return 0 if successful or a negative errno code on error.
3187 */
3188 int dev_set_promiscuity(struct net_device *dev, int inc)
3189 {
3190 unsigned short old_flags = dev->flags;
3191 int err;
3192
3193 err = __dev_set_promiscuity(dev, inc);
3194 if (err < 0)
3195 return err;
3196 if (dev->flags != old_flags)
3197 dev_set_rx_mode(dev);
3198 return err;
3199 }
3200
3201 /**
3202 * dev_set_allmulti - update allmulti count on a device
3203 * @dev: device
3204 * @inc: modifier
3205 *
3206 * Add or remove reception of all multicast frames to a device. While the
3207 * count in the device remains above zero the interface remains listening
3208 * to all interfaces. Once it hits zero the device reverts back to normal
3209 * filtering operation. A negative @inc value is used to drop the counter
3210 * when releasing a resource needing all multicasts.
3211 * Return 0 if successful or a negative errno code on error.
3212 */
3213
3214 int dev_set_allmulti(struct net_device *dev, int inc)
3215 {
3216 unsigned short old_flags = dev->flags;
3217
3218 ASSERT_RTNL();
3219
3220 dev->flags |= IFF_ALLMULTI;
3221 dev->allmulti += inc;
3222 if (dev->allmulti == 0) {
3223 /*
3224 * Avoid overflow.
3225 * If inc causes overflow, untouch allmulti and return error.
3226 */
3227 if (inc < 0)
3228 dev->flags &= ~IFF_ALLMULTI;
3229 else {
3230 dev->allmulti -= inc;
3231 printk(KERN_WARNING "%s: allmulti touches roof, "
3232 "set allmulti failed, allmulti feature of "
3233 "device might be broken.\n", dev->name);
3234 return -EOVERFLOW;
3235 }
3236 }
3237 if (dev->flags ^ old_flags) {
3238 dev_change_rx_flags(dev, IFF_ALLMULTI);
3239 dev_set_rx_mode(dev);
3240 }
3241 return 0;
3242 }
3243
3244 /*
3245 * Upload unicast and multicast address lists to device and
3246 * configure RX filtering. When the device doesn't support unicast
3247 * filtering it is put in promiscuous mode while unicast addresses
3248 * are present.
3249 */
3250 void __dev_set_rx_mode(struct net_device *dev)
3251 {
3252 const struct net_device_ops *ops = dev->netdev_ops;
3253
3254 /* dev_open will call this function so the list will stay sane. */
3255 if (!(dev->flags&IFF_UP))
3256 return;
3257
3258 if (!netif_device_present(dev))
3259 return;
3260
3261 if (ops->ndo_set_rx_mode)
3262 ops->ndo_set_rx_mode(dev);
3263 else {
3264 /* Unicast addresses changes may only happen under the rtnl,
3265 * therefore calling __dev_set_promiscuity here is safe.
3266 */
3267 if (dev->uc_count > 0 && !dev->uc_promisc) {
3268 __dev_set_promiscuity(dev, 1);
3269 dev->uc_promisc = 1;
3270 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3271 __dev_set_promiscuity(dev, -1);
3272 dev->uc_promisc = 0;
3273 }
3274
3275 if (ops->ndo_set_multicast_list)
3276 ops->ndo_set_multicast_list(dev);
3277 }
3278 }
3279
3280 void dev_set_rx_mode(struct net_device *dev)
3281 {
3282 netif_addr_lock_bh(dev);
3283 __dev_set_rx_mode(dev);
3284 netif_addr_unlock_bh(dev);
3285 }
3286
3287 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3288 void *addr, int alen, int glbl)
3289 {
3290 struct dev_addr_list *da;
3291
3292 for (; (da = *list) != NULL; list = &da->next) {
3293 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3294 alen == da->da_addrlen) {
3295 if (glbl) {
3296 int old_glbl = da->da_gusers;
3297 da->da_gusers = 0;
3298 if (old_glbl == 0)
3299 break;
3300 }
3301 if (--da->da_users)
3302 return 0;
3303
3304 *list = da->next;
3305 kfree(da);
3306 (*count)--;
3307 return 0;
3308 }
3309 }
3310 return -ENOENT;
3311 }
3312
3313 int __dev_addr_add(struct dev_addr_list **list, int *count,
3314 void *addr, int alen, int glbl)
3315 {
3316 struct dev_addr_list *da;
3317
3318 for (da = *list; da != NULL; da = da->next) {
3319 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3320 da->da_addrlen == alen) {
3321 if (glbl) {
3322 int old_glbl = da->da_gusers;
3323 da->da_gusers = 1;
3324 if (old_glbl)
3325 return 0;
3326 }
3327 da->da_users++;
3328 return 0;
3329 }
3330 }
3331
3332 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3333 if (da == NULL)
3334 return -ENOMEM;
3335 memcpy(da->da_addr, addr, alen);
3336 da->da_addrlen = alen;
3337 da->da_users = 1;
3338 da->da_gusers = glbl ? 1 : 0;
3339 da->next = *list;
3340 *list = da;
3341 (*count)++;
3342 return 0;
3343 }
3344
3345 /**
3346 * dev_unicast_delete - Release secondary unicast address.
3347 * @dev: device
3348 * @addr: address to delete
3349 * @alen: length of @addr
3350 *
3351 * Release reference to a secondary unicast address and remove it
3352 * from the device if the reference count drops to zero.
3353 *
3354 * The caller must hold the rtnl_mutex.
3355 */
3356 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3357 {
3358 int err;
3359
3360 ASSERT_RTNL();
3361
3362 netif_addr_lock_bh(dev);
3363 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3364 if (!err)
3365 __dev_set_rx_mode(dev);
3366 netif_addr_unlock_bh(dev);
3367 return err;
3368 }
3369 EXPORT_SYMBOL(dev_unicast_delete);
3370
3371 /**
3372 * dev_unicast_add - add a secondary unicast address
3373 * @dev: device
3374 * @addr: address to add
3375 * @alen: length of @addr
3376 *
3377 * Add a secondary unicast address to the device or increase
3378 * the reference count if it already exists.
3379 *
3380 * The caller must hold the rtnl_mutex.
3381 */
3382 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3383 {
3384 int err;
3385
3386 ASSERT_RTNL();
3387
3388 netif_addr_lock_bh(dev);
3389 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3390 if (!err)
3391 __dev_set_rx_mode(dev);
3392 netif_addr_unlock_bh(dev);
3393 return err;
3394 }
3395 EXPORT_SYMBOL(dev_unicast_add);
3396
3397 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3398 struct dev_addr_list **from, int *from_count)
3399 {
3400 struct dev_addr_list *da, *next;
3401 int err = 0;
3402
3403 da = *from;
3404 while (da != NULL) {
3405 next = da->next;
3406 if (!da->da_synced) {
3407 err = __dev_addr_add(to, to_count,
3408 da->da_addr, da->da_addrlen, 0);
3409 if (err < 0)
3410 break;
3411 da->da_synced = 1;
3412 da->da_users++;
3413 } else if (da->da_users == 1) {
3414 __dev_addr_delete(to, to_count,
3415 da->da_addr, da->da_addrlen, 0);
3416 __dev_addr_delete(from, from_count,
3417 da->da_addr, da->da_addrlen, 0);
3418 }
3419 da = next;
3420 }
3421 return err;
3422 }
3423
3424 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3425 struct dev_addr_list **from, int *from_count)
3426 {
3427 struct dev_addr_list *da, *next;
3428
3429 da = *from;
3430 while (da != NULL) {
3431 next = da->next;
3432 if (da->da_synced) {
3433 __dev_addr_delete(to, to_count,
3434 da->da_addr, da->da_addrlen, 0);
3435 da->da_synced = 0;
3436 __dev_addr_delete(from, from_count,
3437 da->da_addr, da->da_addrlen, 0);
3438 }
3439 da = next;
3440 }
3441 }
3442
3443 /**
3444 * dev_unicast_sync - Synchronize device's unicast list to another device
3445 * @to: destination device
3446 * @from: source device
3447 *
3448 * Add newly added addresses to the destination device and release
3449 * addresses that have no users left. The source device must be
3450 * locked by netif_tx_lock_bh.
3451 *
3452 * This function is intended to be called from the dev->set_rx_mode
3453 * function of layered software devices.
3454 */
3455 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3456 {
3457 int err = 0;
3458
3459 netif_addr_lock_bh(to);
3460 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3461 &from->uc_list, &from->uc_count);
3462 if (!err)
3463 __dev_set_rx_mode(to);
3464 netif_addr_unlock_bh(to);
3465 return err;
3466 }
3467 EXPORT_SYMBOL(dev_unicast_sync);
3468
3469 /**
3470 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3471 * @to: destination device
3472 * @from: source device
3473 *
3474 * Remove all addresses that were added to the destination device by
3475 * dev_unicast_sync(). This function is intended to be called from the
3476 * dev->stop function of layered software devices.
3477 */
3478 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3479 {
3480 netif_addr_lock_bh(from);
3481 netif_addr_lock(to);
3482
3483 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3484 &from->uc_list, &from->uc_count);
3485 __dev_set_rx_mode(to);
3486
3487 netif_addr_unlock(to);
3488 netif_addr_unlock_bh(from);
3489 }
3490 EXPORT_SYMBOL(dev_unicast_unsync);
3491
3492 static void __dev_addr_discard(struct dev_addr_list **list)
3493 {
3494 struct dev_addr_list *tmp;
3495
3496 while (*list != NULL) {
3497 tmp = *list;
3498 *list = tmp->next;
3499 if (tmp->da_users > tmp->da_gusers)
3500 printk("__dev_addr_discard: address leakage! "
3501 "da_users=%d\n", tmp->da_users);
3502 kfree(tmp);
3503 }
3504 }
3505
3506 static void dev_addr_discard(struct net_device *dev)
3507 {
3508 netif_addr_lock_bh(dev);
3509
3510 __dev_addr_discard(&dev->uc_list);
3511 dev->uc_count = 0;
3512
3513 __dev_addr_discard(&dev->mc_list);
3514 dev->mc_count = 0;
3515
3516 netif_addr_unlock_bh(dev);
3517 }
3518
3519 /**
3520 * dev_get_flags - get flags reported to userspace
3521 * @dev: device
3522 *
3523 * Get the combination of flag bits exported through APIs to userspace.
3524 */
3525 unsigned dev_get_flags(const struct net_device *dev)
3526 {
3527 unsigned flags;
3528
3529 flags = (dev->flags & ~(IFF_PROMISC |
3530 IFF_ALLMULTI |
3531 IFF_RUNNING |
3532 IFF_LOWER_UP |
3533 IFF_DORMANT)) |
3534 (dev->gflags & (IFF_PROMISC |
3535 IFF_ALLMULTI));
3536
3537 if (netif_running(dev)) {
3538 if (netif_oper_up(dev))
3539 flags |= IFF_RUNNING;
3540 if (netif_carrier_ok(dev))
3541 flags |= IFF_LOWER_UP;
3542 if (netif_dormant(dev))
3543 flags |= IFF_DORMANT;
3544 }
3545
3546 return flags;
3547 }
3548
3549 /**
3550 * dev_change_flags - change device settings
3551 * @dev: device
3552 * @flags: device state flags
3553 *
3554 * Change settings on device based state flags. The flags are
3555 * in the userspace exported format.
3556 */
3557 int dev_change_flags(struct net_device *dev, unsigned flags)
3558 {
3559 int ret, changes;
3560 int old_flags = dev->flags;
3561
3562 ASSERT_RTNL();
3563
3564 /*
3565 * Set the flags on our device.
3566 */
3567
3568 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3569 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3570 IFF_AUTOMEDIA)) |
3571 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3572 IFF_ALLMULTI));
3573
3574 /*
3575 * Load in the correct multicast list now the flags have changed.
3576 */
3577
3578 if ((old_flags ^ flags) & IFF_MULTICAST)
3579 dev_change_rx_flags(dev, IFF_MULTICAST);
3580
3581 dev_set_rx_mode(dev);
3582
3583 /*
3584 * Have we downed the interface. We handle IFF_UP ourselves
3585 * according to user attempts to set it, rather than blindly
3586 * setting it.
3587 */
3588
3589 ret = 0;
3590 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3591 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3592
3593 if (!ret)
3594 dev_set_rx_mode(dev);
3595 }
3596
3597 if (dev->flags & IFF_UP &&
3598 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3599 IFF_VOLATILE)))
3600 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3601
3602 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3603 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3604 dev->gflags ^= IFF_PROMISC;
3605 dev_set_promiscuity(dev, inc);
3606 }
3607
3608 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3609 is important. Some (broken) drivers set IFF_PROMISC, when
3610 IFF_ALLMULTI is requested not asking us and not reporting.
3611 */
3612 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3613 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3614 dev->gflags ^= IFF_ALLMULTI;
3615 dev_set_allmulti(dev, inc);
3616 }
3617
3618 /* Exclude state transition flags, already notified */
3619 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3620 if (changes)
3621 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3622
3623 return ret;
3624 }
3625
3626 /**
3627 * dev_set_mtu - Change maximum transfer unit
3628 * @dev: device
3629 * @new_mtu: new transfer unit
3630 *
3631 * Change the maximum transfer size of the network device.
3632 */
3633 int dev_set_mtu(struct net_device *dev, int new_mtu)
3634 {
3635 const struct net_device_ops *ops = dev->netdev_ops;
3636 int err;
3637
3638 if (new_mtu == dev->mtu)
3639 return 0;
3640
3641 /* MTU must be positive. */
3642 if (new_mtu < 0)
3643 return -EINVAL;
3644
3645 if (!netif_device_present(dev))
3646 return -ENODEV;
3647
3648 err = 0;
3649 if (ops->ndo_change_mtu)
3650 err = ops->ndo_change_mtu(dev, new_mtu);
3651 else
3652 dev->mtu = new_mtu;
3653
3654 if (!err && dev->flags & IFF_UP)
3655 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3656 return err;
3657 }
3658
3659 /**
3660 * dev_set_mac_address - Change Media Access Control Address
3661 * @dev: device
3662 * @sa: new address
3663 *
3664 * Change the hardware (MAC) address of the device
3665 */
3666 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3667 {
3668 const struct net_device_ops *ops = dev->netdev_ops;
3669 int err;
3670
3671 if (!ops->ndo_set_mac_address)
3672 return -EOPNOTSUPP;
3673 if (sa->sa_family != dev->type)
3674 return -EINVAL;
3675 if (!netif_device_present(dev))
3676 return -ENODEV;
3677 err = ops->ndo_set_mac_address(dev, sa);
3678 if (!err)
3679 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3680 return err;
3681 }
3682
3683 /*
3684 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3685 */
3686 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3687 {
3688 int err;
3689 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3690
3691 if (!dev)
3692 return -ENODEV;
3693
3694 switch (cmd) {
3695 case SIOCGIFFLAGS: /* Get interface flags */
3696 ifr->ifr_flags = dev_get_flags(dev);
3697 return 0;
3698
3699 case SIOCGIFMETRIC: /* Get the metric on the interface
3700 (currently unused) */
3701 ifr->ifr_metric = 0;
3702 return 0;
3703
3704 case SIOCGIFMTU: /* Get the MTU of a device */
3705 ifr->ifr_mtu = dev->mtu;
3706 return 0;
3707
3708 case SIOCGIFHWADDR:
3709 if (!dev->addr_len)
3710 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3711 else
3712 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3713 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3714 ifr->ifr_hwaddr.sa_family = dev->type;
3715 return 0;
3716
3717 case SIOCGIFSLAVE:
3718 err = -EINVAL;
3719 break;
3720
3721 case SIOCGIFMAP:
3722 ifr->ifr_map.mem_start = dev->mem_start;
3723 ifr->ifr_map.mem_end = dev->mem_end;
3724 ifr->ifr_map.base_addr = dev->base_addr;
3725 ifr->ifr_map.irq = dev->irq;
3726 ifr->ifr_map.dma = dev->dma;
3727 ifr->ifr_map.port = dev->if_port;
3728 return 0;
3729
3730 case SIOCGIFINDEX:
3731 ifr->ifr_ifindex = dev->ifindex;
3732 return 0;
3733
3734 case SIOCGIFTXQLEN:
3735 ifr->ifr_qlen = dev->tx_queue_len;
3736 return 0;
3737
3738 default:
3739 /* dev_ioctl() should ensure this case
3740 * is never reached
3741 */
3742 WARN_ON(1);
3743 err = -EINVAL;
3744 break;
3745
3746 }
3747 return err;
3748 }
3749
3750 /*
3751 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3752 */
3753 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3754 {
3755 int err;
3756 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3757 const struct net_device_ops *ops;
3758
3759 if (!dev)
3760 return -ENODEV;
3761
3762 ops = dev->netdev_ops;
3763
3764 switch (cmd) {
3765 case SIOCSIFFLAGS: /* Set interface flags */
3766 return dev_change_flags(dev, ifr->ifr_flags);
3767
3768 case SIOCSIFMETRIC: /* Set the metric on the interface
3769 (currently unused) */
3770 return -EOPNOTSUPP;
3771
3772 case SIOCSIFMTU: /* Set the MTU of a device */
3773 return dev_set_mtu(dev, ifr->ifr_mtu);
3774
3775 case SIOCSIFHWADDR:
3776 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3777
3778 case SIOCSIFHWBROADCAST:
3779 if (ifr->ifr_hwaddr.sa_family != dev->type)
3780 return -EINVAL;
3781 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3782 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3783 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3784 return 0;
3785
3786 case SIOCSIFMAP:
3787 if (ops->ndo_set_config) {
3788 if (!netif_device_present(dev))
3789 return -ENODEV;
3790 return ops->ndo_set_config(dev, &ifr->ifr_map);
3791 }
3792 return -EOPNOTSUPP;
3793
3794 case SIOCADDMULTI:
3795 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3796 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3797 return -EINVAL;
3798 if (!netif_device_present(dev))
3799 return -ENODEV;
3800 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3801 dev->addr_len, 1);
3802
3803 case SIOCDELMULTI:
3804 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3805 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3806 return -EINVAL;
3807 if (!netif_device_present(dev))
3808 return -ENODEV;
3809 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3810 dev->addr_len, 1);
3811
3812 case SIOCSIFTXQLEN:
3813 if (ifr->ifr_qlen < 0)
3814 return -EINVAL;
3815 dev->tx_queue_len = ifr->ifr_qlen;
3816 return 0;
3817
3818 case SIOCSIFNAME:
3819 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3820 return dev_change_name(dev, ifr->ifr_newname);
3821
3822 /*
3823 * Unknown or private ioctl
3824 */
3825
3826 default:
3827 if ((cmd >= SIOCDEVPRIVATE &&
3828 cmd <= SIOCDEVPRIVATE + 15) ||
3829 cmd == SIOCBONDENSLAVE ||
3830 cmd == SIOCBONDRELEASE ||
3831 cmd == SIOCBONDSETHWADDR ||
3832 cmd == SIOCBONDSLAVEINFOQUERY ||
3833 cmd == SIOCBONDINFOQUERY ||
3834 cmd == SIOCBONDCHANGEACTIVE ||
3835 cmd == SIOCGMIIPHY ||
3836 cmd == SIOCGMIIREG ||
3837 cmd == SIOCSMIIREG ||
3838 cmd == SIOCBRADDIF ||
3839 cmd == SIOCBRDELIF ||
3840 cmd == SIOCWANDEV) {
3841 err = -EOPNOTSUPP;
3842 if (ops->ndo_do_ioctl) {
3843 if (netif_device_present(dev))
3844 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3845 else
3846 err = -ENODEV;
3847 }
3848 } else
3849 err = -EINVAL;
3850
3851 }
3852 return err;
3853 }
3854
3855 /*
3856 * This function handles all "interface"-type I/O control requests. The actual
3857 * 'doing' part of this is dev_ifsioc above.
3858 */
3859
3860 /**
3861 * dev_ioctl - network device ioctl
3862 * @net: the applicable net namespace
3863 * @cmd: command to issue
3864 * @arg: pointer to a struct ifreq in user space
3865 *
3866 * Issue ioctl functions to devices. This is normally called by the
3867 * user space syscall interfaces but can sometimes be useful for
3868 * other purposes. The return value is the return from the syscall if
3869 * positive or a negative errno code on error.
3870 */
3871
3872 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3873 {
3874 struct ifreq ifr;
3875 int ret;
3876 char *colon;
3877
3878 /* One special case: SIOCGIFCONF takes ifconf argument
3879 and requires shared lock, because it sleeps writing
3880 to user space.
3881 */
3882
3883 if (cmd == SIOCGIFCONF) {
3884 rtnl_lock();
3885 ret = dev_ifconf(net, (char __user *) arg);
3886 rtnl_unlock();
3887 return ret;
3888 }
3889 if (cmd == SIOCGIFNAME)
3890 return dev_ifname(net, (struct ifreq __user *)arg);
3891
3892 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3893 return -EFAULT;
3894
3895 ifr.ifr_name[IFNAMSIZ-1] = 0;
3896
3897 colon = strchr(ifr.ifr_name, ':');
3898 if (colon)
3899 *colon = 0;
3900
3901 /*
3902 * See which interface the caller is talking about.
3903 */
3904
3905 switch (cmd) {
3906 /*
3907 * These ioctl calls:
3908 * - can be done by all.
3909 * - atomic and do not require locking.
3910 * - return a value
3911 */
3912 case SIOCGIFFLAGS:
3913 case SIOCGIFMETRIC:
3914 case SIOCGIFMTU:
3915 case SIOCGIFHWADDR:
3916 case SIOCGIFSLAVE:
3917 case SIOCGIFMAP:
3918 case SIOCGIFINDEX:
3919 case SIOCGIFTXQLEN:
3920 dev_load(net, ifr.ifr_name);
3921 read_lock(&dev_base_lock);
3922 ret = dev_ifsioc_locked(net, &ifr, cmd);
3923 read_unlock(&dev_base_lock);
3924 if (!ret) {
3925 if (colon)
3926 *colon = ':';
3927 if (copy_to_user(arg, &ifr,
3928 sizeof(struct ifreq)))
3929 ret = -EFAULT;
3930 }
3931 return ret;
3932
3933 case SIOCETHTOOL:
3934 dev_load(net, ifr.ifr_name);
3935 rtnl_lock();
3936 ret = dev_ethtool(net, &ifr);
3937 rtnl_unlock();
3938 if (!ret) {
3939 if (colon)
3940 *colon = ':';
3941 if (copy_to_user(arg, &ifr,
3942 sizeof(struct ifreq)))
3943 ret = -EFAULT;
3944 }
3945 return ret;
3946
3947 /*
3948 * These ioctl calls:
3949 * - require superuser power.
3950 * - require strict serialization.
3951 * - return a value
3952 */
3953 case SIOCGMIIPHY:
3954 case SIOCGMIIREG:
3955 case SIOCSIFNAME:
3956 if (!capable(CAP_NET_ADMIN))
3957 return -EPERM;
3958 dev_load(net, ifr.ifr_name);
3959 rtnl_lock();
3960 ret = dev_ifsioc(net, &ifr, cmd);
3961 rtnl_unlock();
3962 if (!ret) {
3963 if (colon)
3964 *colon = ':';
3965 if (copy_to_user(arg, &ifr,
3966 sizeof(struct ifreq)))
3967 ret = -EFAULT;
3968 }
3969 return ret;
3970
3971 /*
3972 * These ioctl calls:
3973 * - require superuser power.
3974 * - require strict serialization.
3975 * - do not return a value
3976 */
3977 case SIOCSIFFLAGS:
3978 case SIOCSIFMETRIC:
3979 case SIOCSIFMTU:
3980 case SIOCSIFMAP:
3981 case SIOCSIFHWADDR:
3982 case SIOCSIFSLAVE:
3983 case SIOCADDMULTI:
3984 case SIOCDELMULTI:
3985 case SIOCSIFHWBROADCAST:
3986 case SIOCSIFTXQLEN:
3987 case SIOCSMIIREG:
3988 case SIOCBONDENSLAVE:
3989 case SIOCBONDRELEASE:
3990 case SIOCBONDSETHWADDR:
3991 case SIOCBONDCHANGEACTIVE:
3992 case SIOCBRADDIF:
3993 case SIOCBRDELIF:
3994 if (!capable(CAP_NET_ADMIN))
3995 return -EPERM;
3996 /* fall through */
3997 case SIOCBONDSLAVEINFOQUERY:
3998 case SIOCBONDINFOQUERY:
3999 dev_load(net, ifr.ifr_name);
4000 rtnl_lock();
4001 ret = dev_ifsioc(net, &ifr, cmd);
4002 rtnl_unlock();
4003 return ret;
4004
4005 case SIOCGIFMEM:
4006 /* Get the per device memory space. We can add this but
4007 * currently do not support it */
4008 case SIOCSIFMEM:
4009 /* Set the per device memory buffer space.
4010 * Not applicable in our case */
4011 case SIOCSIFLINK:
4012 return -EINVAL;
4013
4014 /*
4015 * Unknown or private ioctl.
4016 */
4017 default:
4018 if (cmd == SIOCWANDEV ||
4019 (cmd >= SIOCDEVPRIVATE &&
4020 cmd <= SIOCDEVPRIVATE + 15)) {
4021 dev_load(net, ifr.ifr_name);
4022 rtnl_lock();
4023 ret = dev_ifsioc(net, &ifr, cmd);
4024 rtnl_unlock();
4025 if (!ret && copy_to_user(arg, &ifr,
4026 sizeof(struct ifreq)))
4027 ret = -EFAULT;
4028 return ret;
4029 }
4030 /* Take care of Wireless Extensions */
4031 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4032 return wext_handle_ioctl(net, &ifr, cmd, arg);
4033 return -EINVAL;
4034 }
4035 }
4036
4037
4038 /**
4039 * dev_new_index - allocate an ifindex
4040 * @net: the applicable net namespace
4041 *
4042 * Returns a suitable unique value for a new device interface
4043 * number. The caller must hold the rtnl semaphore or the
4044 * dev_base_lock to be sure it remains unique.
4045 */
4046 static int dev_new_index(struct net *net)
4047 {
4048 static int ifindex;
4049 for (;;) {
4050 if (++ifindex <= 0)
4051 ifindex = 1;
4052 if (!__dev_get_by_index(net, ifindex))
4053 return ifindex;
4054 }
4055 }
4056
4057 /* Delayed registration/unregisteration */
4058 static LIST_HEAD(net_todo_list);
4059
4060 static void net_set_todo(struct net_device *dev)
4061 {
4062 list_add_tail(&dev->todo_list, &net_todo_list);
4063 }
4064
4065 static void rollback_registered(struct net_device *dev)
4066 {
4067 BUG_ON(dev_boot_phase);
4068 ASSERT_RTNL();
4069
4070 /* Some devices call without registering for initialization unwind. */
4071 if (dev->reg_state == NETREG_UNINITIALIZED) {
4072 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4073 "was registered\n", dev->name, dev);
4074
4075 WARN_ON(1);
4076 return;
4077 }
4078
4079 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4080
4081 /* If device is running, close it first. */
4082 dev_close(dev);
4083
4084 /* And unlink it from device chain. */
4085 unlist_netdevice(dev);
4086
4087 dev->reg_state = NETREG_UNREGISTERING;
4088
4089 synchronize_net();
4090
4091 /* Shutdown queueing discipline. */
4092 dev_shutdown(dev);
4093
4094
4095 /* Notify protocols, that we are about to destroy
4096 this device. They should clean all the things.
4097 */
4098 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4099
4100 /*
4101 * Flush the unicast and multicast chains
4102 */
4103 dev_addr_discard(dev);
4104
4105 if (dev->netdev_ops->ndo_uninit)
4106 dev->netdev_ops->ndo_uninit(dev);
4107
4108 /* Notifier chain MUST detach us from master device. */
4109 WARN_ON(dev->master);
4110
4111 /* Remove entries from kobject tree */
4112 netdev_unregister_kobject(dev);
4113
4114 synchronize_net();
4115
4116 dev_put(dev);
4117 }
4118
4119 static void __netdev_init_queue_locks_one(struct net_device *dev,
4120 struct netdev_queue *dev_queue,
4121 void *_unused)
4122 {
4123 spin_lock_init(&dev_queue->_xmit_lock);
4124 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4125 dev_queue->xmit_lock_owner = -1;
4126 }
4127
4128 static void netdev_init_queue_locks(struct net_device *dev)
4129 {
4130 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4131 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4132 }
4133
4134 unsigned long netdev_fix_features(unsigned long features, const char *name)
4135 {
4136 /* Fix illegal SG+CSUM combinations. */
4137 if ((features & NETIF_F_SG) &&
4138 !(features & NETIF_F_ALL_CSUM)) {
4139 if (name)
4140 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4141 "checksum feature.\n", name);
4142 features &= ~NETIF_F_SG;
4143 }
4144
4145 /* TSO requires that SG is present as well. */
4146 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4147 if (name)
4148 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4149 "SG feature.\n", name);
4150 features &= ~NETIF_F_TSO;
4151 }
4152
4153 if (features & NETIF_F_UFO) {
4154 if (!(features & NETIF_F_GEN_CSUM)) {
4155 if (name)
4156 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4157 "since no NETIF_F_HW_CSUM feature.\n",
4158 name);
4159 features &= ~NETIF_F_UFO;
4160 }
4161
4162 if (!(features & NETIF_F_SG)) {
4163 if (name)
4164 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4165 "since no NETIF_F_SG feature.\n", name);
4166 features &= ~NETIF_F_UFO;
4167 }
4168 }
4169
4170 return features;
4171 }
4172 EXPORT_SYMBOL(netdev_fix_features);
4173
4174 /**
4175 * register_netdevice - register a network device
4176 * @dev: device to register
4177 *
4178 * Take a completed network device structure and add it to the kernel
4179 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4180 * chain. 0 is returned on success. A negative errno code is returned
4181 * on a failure to set up the device, or if the name is a duplicate.
4182 *
4183 * Callers must hold the rtnl semaphore. You may want
4184 * register_netdev() instead of this.
4185 *
4186 * BUGS:
4187 * The locking appears insufficient to guarantee two parallel registers
4188 * will not get the same name.
4189 */
4190
4191 int register_netdevice(struct net_device *dev)
4192 {
4193 struct hlist_head *head;
4194 struct hlist_node *p;
4195 int ret;
4196 struct net *net = dev_net(dev);
4197
4198 BUG_ON(dev_boot_phase);
4199 ASSERT_RTNL();
4200
4201 might_sleep();
4202
4203 /* When net_device's are persistent, this will be fatal. */
4204 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4205 BUG_ON(!net);
4206
4207 spin_lock_init(&dev->addr_list_lock);
4208 netdev_set_addr_lockdep_class(dev);
4209 netdev_init_queue_locks(dev);
4210
4211 dev->iflink = -1;
4212
4213 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4214 /* Netdevice_ops API compatiability support.
4215 * This is temporary until all network devices are converted.
4216 */
4217 if (dev->netdev_ops) {
4218 const struct net_device_ops *ops = dev->netdev_ops;
4219
4220 dev->init = ops->ndo_init;
4221 dev->uninit = ops->ndo_uninit;
4222 dev->open = ops->ndo_open;
4223 dev->change_rx_flags = ops->ndo_change_rx_flags;
4224 dev->set_rx_mode = ops->ndo_set_rx_mode;
4225 dev->set_multicast_list = ops->ndo_set_multicast_list;
4226 dev->set_mac_address = ops->ndo_set_mac_address;
4227 dev->validate_addr = ops->ndo_validate_addr;
4228 dev->do_ioctl = ops->ndo_do_ioctl;
4229 dev->set_config = ops->ndo_set_config;
4230 dev->change_mtu = ops->ndo_change_mtu;
4231 dev->tx_timeout = ops->ndo_tx_timeout;
4232 dev->get_stats = ops->ndo_get_stats;
4233 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4234 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4235 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4236 #ifdef CONFIG_NET_POLL_CONTROLLER
4237 dev->poll_controller = ops->ndo_poll_controller;
4238 #endif
4239 } else {
4240 char drivername[64];
4241 pr_info("%s (%s): not using net_device_ops yet\n",
4242 dev->name, netdev_drivername(dev, drivername, 64));
4243
4244 /* This works only because net_device_ops and the
4245 compatiablity structure are the same. */
4246 dev->netdev_ops = (void *) &(dev->init);
4247 }
4248 #endif
4249
4250 /* Init, if this function is available */
4251 if (dev->netdev_ops->ndo_init) {
4252 ret = dev->netdev_ops->ndo_init(dev);
4253 if (ret) {
4254 if (ret > 0)
4255 ret = -EIO;
4256 goto out;
4257 }
4258 }
4259
4260 if (!dev_valid_name(dev->name)) {
4261 ret = -EINVAL;
4262 goto err_uninit;
4263 }
4264
4265 dev->ifindex = dev_new_index(net);
4266 if (dev->iflink == -1)
4267 dev->iflink = dev->ifindex;
4268
4269 /* Check for existence of name */
4270 head = dev_name_hash(net, dev->name);
4271 hlist_for_each(p, head) {
4272 struct net_device *d
4273 = hlist_entry(p, struct net_device, name_hlist);
4274 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4275 ret = -EEXIST;
4276 goto err_uninit;
4277 }
4278 }
4279
4280 /* Fix illegal checksum combinations */
4281 if ((dev->features & NETIF_F_HW_CSUM) &&
4282 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4283 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4284 dev->name);
4285 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4286 }
4287
4288 if ((dev->features & NETIF_F_NO_CSUM) &&
4289 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4290 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4291 dev->name);
4292 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4293 }
4294
4295 dev->features = netdev_fix_features(dev->features, dev->name);
4296
4297 /* Enable software GSO if SG is supported. */
4298 if (dev->features & NETIF_F_SG)
4299 dev->features |= NETIF_F_GSO;
4300
4301 netdev_initialize_kobject(dev);
4302 ret = netdev_register_kobject(dev);
4303 if (ret)
4304 goto err_uninit;
4305 dev->reg_state = NETREG_REGISTERED;
4306
4307 /*
4308 * Default initial state at registry is that the
4309 * device is present.
4310 */
4311
4312 set_bit(__LINK_STATE_PRESENT, &dev->state);
4313
4314 dev_init_scheduler(dev);
4315 dev_hold(dev);
4316 list_netdevice(dev);
4317
4318 /* Notify protocols, that a new device appeared. */
4319 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4320 ret = notifier_to_errno(ret);
4321 if (ret) {
4322 rollback_registered(dev);
4323 dev->reg_state = NETREG_UNREGISTERED;
4324 }
4325
4326 out:
4327 return ret;
4328
4329 err_uninit:
4330 if (dev->netdev_ops->ndo_uninit)
4331 dev->netdev_ops->ndo_uninit(dev);
4332 goto out;
4333 }
4334
4335 /**
4336 * register_netdev - register a network device
4337 * @dev: device to register
4338 *
4339 * Take a completed network device structure and add it to the kernel
4340 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4341 * chain. 0 is returned on success. A negative errno code is returned
4342 * on a failure to set up the device, or if the name is a duplicate.
4343 *
4344 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4345 * and expands the device name if you passed a format string to
4346 * alloc_netdev.
4347 */
4348 int register_netdev(struct net_device *dev)
4349 {
4350 int err;
4351
4352 rtnl_lock();
4353
4354 /*
4355 * If the name is a format string the caller wants us to do a
4356 * name allocation.
4357 */
4358 if (strchr(dev->name, '%')) {
4359 err = dev_alloc_name(dev, dev->name);
4360 if (err < 0)
4361 goto out;
4362 }
4363
4364 err = register_netdevice(dev);
4365 out:
4366 rtnl_unlock();
4367 return err;
4368 }
4369 EXPORT_SYMBOL(register_netdev);
4370
4371 /*
4372 * netdev_wait_allrefs - wait until all references are gone.
4373 *
4374 * This is called when unregistering network devices.
4375 *
4376 * Any protocol or device that holds a reference should register
4377 * for netdevice notification, and cleanup and put back the
4378 * reference if they receive an UNREGISTER event.
4379 * We can get stuck here if buggy protocols don't correctly
4380 * call dev_put.
4381 */
4382 static void netdev_wait_allrefs(struct net_device *dev)
4383 {
4384 unsigned long rebroadcast_time, warning_time;
4385
4386 rebroadcast_time = warning_time = jiffies;
4387 while (atomic_read(&dev->refcnt) != 0) {
4388 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4389 rtnl_lock();
4390
4391 /* Rebroadcast unregister notification */
4392 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4393
4394 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4395 &dev->state)) {
4396 /* We must not have linkwatch events
4397 * pending on unregister. If this
4398 * happens, we simply run the queue
4399 * unscheduled, resulting in a noop
4400 * for this device.
4401 */
4402 linkwatch_run_queue();
4403 }
4404
4405 __rtnl_unlock();
4406
4407 rebroadcast_time = jiffies;
4408 }
4409
4410 msleep(250);
4411
4412 if (time_after(jiffies, warning_time + 10 * HZ)) {
4413 printk(KERN_EMERG "unregister_netdevice: "
4414 "waiting for %s to become free. Usage "
4415 "count = %d\n",
4416 dev->name, atomic_read(&dev->refcnt));
4417 warning_time = jiffies;
4418 }
4419 }
4420 }
4421
4422 /* The sequence is:
4423 *
4424 * rtnl_lock();
4425 * ...
4426 * register_netdevice(x1);
4427 * register_netdevice(x2);
4428 * ...
4429 * unregister_netdevice(y1);
4430 * unregister_netdevice(y2);
4431 * ...
4432 * rtnl_unlock();
4433 * free_netdev(y1);
4434 * free_netdev(y2);
4435 *
4436 * We are invoked by rtnl_unlock().
4437 * This allows us to deal with problems:
4438 * 1) We can delete sysfs objects which invoke hotplug
4439 * without deadlocking with linkwatch via keventd.
4440 * 2) Since we run with the RTNL semaphore not held, we can sleep
4441 * safely in order to wait for the netdev refcnt to drop to zero.
4442 *
4443 * We must not return until all unregister events added during
4444 * the interval the lock was held have been completed.
4445 */
4446 void netdev_run_todo(void)
4447 {
4448 struct list_head list;
4449
4450 /* Snapshot list, allow later requests */
4451 list_replace_init(&net_todo_list, &list);
4452
4453 __rtnl_unlock();
4454
4455 while (!list_empty(&list)) {
4456 struct net_device *dev
4457 = list_entry(list.next, struct net_device, todo_list);
4458 list_del(&dev->todo_list);
4459
4460 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4461 printk(KERN_ERR "network todo '%s' but state %d\n",
4462 dev->name, dev->reg_state);
4463 dump_stack();
4464 continue;
4465 }
4466
4467 dev->reg_state = NETREG_UNREGISTERED;
4468
4469 on_each_cpu(flush_backlog, dev, 1);
4470
4471 netdev_wait_allrefs(dev);
4472
4473 /* paranoia */
4474 BUG_ON(atomic_read(&dev->refcnt));
4475 WARN_ON(dev->ip_ptr);
4476 WARN_ON(dev->ip6_ptr);
4477 WARN_ON(dev->dn_ptr);
4478
4479 if (dev->destructor)
4480 dev->destructor(dev);
4481
4482 /* Free network device */
4483 kobject_put(&dev->dev.kobj);
4484 }
4485 }
4486
4487 /**
4488 * dev_get_stats - get network device statistics
4489 * @dev: device to get statistics from
4490 *
4491 * Get network statistics from device. The device driver may provide
4492 * its own method by setting dev->netdev_ops->get_stats; otherwise
4493 * the internal statistics structure is used.
4494 */
4495 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4496 {
4497 const struct net_device_ops *ops = dev->netdev_ops;
4498
4499 if (ops->ndo_get_stats)
4500 return ops->ndo_get_stats(dev);
4501 else
4502 return &dev->stats;
4503 }
4504 EXPORT_SYMBOL(dev_get_stats);
4505
4506 static void netdev_init_one_queue(struct net_device *dev,
4507 struct netdev_queue *queue,
4508 void *_unused)
4509 {
4510 queue->dev = dev;
4511 }
4512
4513 static void netdev_init_queues(struct net_device *dev)
4514 {
4515 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4516 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4517 spin_lock_init(&dev->tx_global_lock);
4518 }
4519
4520 /**
4521 * alloc_netdev_mq - allocate network device
4522 * @sizeof_priv: size of private data to allocate space for
4523 * @name: device name format string
4524 * @setup: callback to initialize device
4525 * @queue_count: the number of subqueues to allocate
4526 *
4527 * Allocates a struct net_device with private data area for driver use
4528 * and performs basic initialization. Also allocates subquue structs
4529 * for each queue on the device at the end of the netdevice.
4530 */
4531 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4532 void (*setup)(struct net_device *), unsigned int queue_count)
4533 {
4534 struct netdev_queue *tx;
4535 struct net_device *dev;
4536 size_t alloc_size;
4537 void *p;
4538
4539 BUG_ON(strlen(name) >= sizeof(dev->name));
4540
4541 alloc_size = sizeof(struct net_device);
4542 if (sizeof_priv) {
4543 /* ensure 32-byte alignment of private area */
4544 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4545 alloc_size += sizeof_priv;
4546 }
4547 /* ensure 32-byte alignment of whole construct */
4548 alloc_size += NETDEV_ALIGN_CONST;
4549
4550 p = kzalloc(alloc_size, GFP_KERNEL);
4551 if (!p) {
4552 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4553 return NULL;
4554 }
4555
4556 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4557 if (!tx) {
4558 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4559 "tx qdiscs.\n");
4560 kfree(p);
4561 return NULL;
4562 }
4563
4564 dev = (struct net_device *)
4565 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4566 dev->padded = (char *)dev - (char *)p;
4567 dev_net_set(dev, &init_net);
4568
4569 dev->_tx = tx;
4570 dev->num_tx_queues = queue_count;
4571 dev->real_num_tx_queues = queue_count;
4572
4573 dev->gso_max_size = GSO_MAX_SIZE;
4574
4575 netdev_init_queues(dev);
4576
4577 INIT_LIST_HEAD(&dev->napi_list);
4578 setup(dev);
4579 strcpy(dev->name, name);
4580 return dev;
4581 }
4582 EXPORT_SYMBOL(alloc_netdev_mq);
4583
4584 /**
4585 * free_netdev - free network device
4586 * @dev: device
4587 *
4588 * This function does the last stage of destroying an allocated device
4589 * interface. The reference to the device object is released.
4590 * If this is the last reference then it will be freed.
4591 */
4592 void free_netdev(struct net_device *dev)
4593 {
4594 struct napi_struct *p, *n;
4595
4596 release_net(dev_net(dev));
4597
4598 kfree(dev->_tx);
4599
4600 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4601 netif_napi_del(p);
4602
4603 /* Compatibility with error handling in drivers */
4604 if (dev->reg_state == NETREG_UNINITIALIZED) {
4605 kfree((char *)dev - dev->padded);
4606 return;
4607 }
4608
4609 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4610 dev->reg_state = NETREG_RELEASED;
4611
4612 /* will free via device release */
4613 put_device(&dev->dev);
4614 }
4615
4616 /**
4617 * synchronize_net - Synchronize with packet receive processing
4618 *
4619 * Wait for packets currently being received to be done.
4620 * Does not block later packets from starting.
4621 */
4622 void synchronize_net(void)
4623 {
4624 might_sleep();
4625 synchronize_rcu();
4626 }
4627
4628 /**
4629 * unregister_netdevice - remove device from the kernel
4630 * @dev: device
4631 *
4632 * This function shuts down a device interface and removes it
4633 * from the kernel tables.
4634 *
4635 * Callers must hold the rtnl semaphore. You may want
4636 * unregister_netdev() instead of this.
4637 */
4638
4639 void unregister_netdevice(struct net_device *dev)
4640 {
4641 ASSERT_RTNL();
4642
4643 rollback_registered(dev);
4644 /* Finish processing unregister after unlock */
4645 net_set_todo(dev);
4646 }
4647
4648 /**
4649 * unregister_netdev - remove device from the kernel
4650 * @dev: device
4651 *
4652 * This function shuts down a device interface and removes it
4653 * from the kernel tables.
4654 *
4655 * This is just a wrapper for unregister_netdevice that takes
4656 * the rtnl semaphore. In general you want to use this and not
4657 * unregister_netdevice.
4658 */
4659 void unregister_netdev(struct net_device *dev)
4660 {
4661 rtnl_lock();
4662 unregister_netdevice(dev);
4663 rtnl_unlock();
4664 }
4665
4666 EXPORT_SYMBOL(unregister_netdev);
4667
4668 /**
4669 * dev_change_net_namespace - move device to different nethost namespace
4670 * @dev: device
4671 * @net: network namespace
4672 * @pat: If not NULL name pattern to try if the current device name
4673 * is already taken in the destination network namespace.
4674 *
4675 * This function shuts down a device interface and moves it
4676 * to a new network namespace. On success 0 is returned, on
4677 * a failure a netagive errno code is returned.
4678 *
4679 * Callers must hold the rtnl semaphore.
4680 */
4681
4682 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4683 {
4684 char buf[IFNAMSIZ];
4685 const char *destname;
4686 int err;
4687
4688 ASSERT_RTNL();
4689
4690 /* Don't allow namespace local devices to be moved. */
4691 err = -EINVAL;
4692 if (dev->features & NETIF_F_NETNS_LOCAL)
4693 goto out;
4694
4695 #ifdef CONFIG_SYSFS
4696 /* Don't allow real devices to be moved when sysfs
4697 * is enabled.
4698 */
4699 err = -EINVAL;
4700 if (dev->dev.parent)
4701 goto out;
4702 #endif
4703
4704 /* Ensure the device has been registrered */
4705 err = -EINVAL;
4706 if (dev->reg_state != NETREG_REGISTERED)
4707 goto out;
4708
4709 /* Get out if there is nothing todo */
4710 err = 0;
4711 if (net_eq(dev_net(dev), net))
4712 goto out;
4713
4714 /* Pick the destination device name, and ensure
4715 * we can use it in the destination network namespace.
4716 */
4717 err = -EEXIST;
4718 destname = dev->name;
4719 if (__dev_get_by_name(net, destname)) {
4720 /* We get here if we can't use the current device name */
4721 if (!pat)
4722 goto out;
4723 if (!dev_valid_name(pat))
4724 goto out;
4725 if (strchr(pat, '%')) {
4726 if (__dev_alloc_name(net, pat, buf) < 0)
4727 goto out;
4728 destname = buf;
4729 } else
4730 destname = pat;
4731 if (__dev_get_by_name(net, destname))
4732 goto out;
4733 }
4734
4735 /*
4736 * And now a mini version of register_netdevice unregister_netdevice.
4737 */
4738
4739 /* If device is running close it first. */
4740 dev_close(dev);
4741
4742 /* And unlink it from device chain */
4743 err = -ENODEV;
4744 unlist_netdevice(dev);
4745
4746 synchronize_net();
4747
4748 /* Shutdown queueing discipline. */
4749 dev_shutdown(dev);
4750
4751 /* Notify protocols, that we are about to destroy
4752 this device. They should clean all the things.
4753 */
4754 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4755
4756 /*
4757 * Flush the unicast and multicast chains
4758 */
4759 dev_addr_discard(dev);
4760
4761 netdev_unregister_kobject(dev);
4762
4763 /* Actually switch the network namespace */
4764 dev_net_set(dev, net);
4765
4766 /* Assign the new device name */
4767 if (destname != dev->name)
4768 strcpy(dev->name, destname);
4769
4770 /* If there is an ifindex conflict assign a new one */
4771 if (__dev_get_by_index(net, dev->ifindex)) {
4772 int iflink = (dev->iflink == dev->ifindex);
4773 dev->ifindex = dev_new_index(net);
4774 if (iflink)
4775 dev->iflink = dev->ifindex;
4776 }
4777
4778 /* Fixup kobjects */
4779 err = netdev_register_kobject(dev);
4780 WARN_ON(err);
4781
4782 /* Add the device back in the hashes */
4783 list_netdevice(dev);
4784
4785 /* Notify protocols, that a new device appeared. */
4786 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4787
4788 synchronize_net();
4789 err = 0;
4790 out:
4791 return err;
4792 }
4793
4794 static int dev_cpu_callback(struct notifier_block *nfb,
4795 unsigned long action,
4796 void *ocpu)
4797 {
4798 struct sk_buff **list_skb;
4799 struct Qdisc **list_net;
4800 struct sk_buff *skb;
4801 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4802 struct softnet_data *sd, *oldsd;
4803
4804 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4805 return NOTIFY_OK;
4806
4807 local_irq_disable();
4808 cpu = smp_processor_id();
4809 sd = &per_cpu(softnet_data, cpu);
4810 oldsd = &per_cpu(softnet_data, oldcpu);
4811
4812 /* Find end of our completion_queue. */
4813 list_skb = &sd->completion_queue;
4814 while (*list_skb)
4815 list_skb = &(*list_skb)->next;
4816 /* Append completion queue from offline CPU. */
4817 *list_skb = oldsd->completion_queue;
4818 oldsd->completion_queue = NULL;
4819
4820 /* Find end of our output_queue. */
4821 list_net = &sd->output_queue;
4822 while (*list_net)
4823 list_net = &(*list_net)->next_sched;
4824 /* Append output queue from offline CPU. */
4825 *list_net = oldsd->output_queue;
4826 oldsd->output_queue = NULL;
4827
4828 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4829 local_irq_enable();
4830
4831 /* Process offline CPU's input_pkt_queue */
4832 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4833 netif_rx(skb);
4834
4835 return NOTIFY_OK;
4836 }
4837
4838 #ifdef CONFIG_NET_DMA
4839 /**
4840 * net_dma_rebalance - try to maintain one DMA channel per CPU
4841 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4842 *
4843 * This is called when the number of channels allocated to the net_dma client
4844 * changes. The net_dma client tries to have one DMA channel per CPU.
4845 */
4846
4847 static void net_dma_rebalance(struct net_dma *net_dma)
4848 {
4849 unsigned int cpu, i, n, chan_idx;
4850 struct dma_chan *chan;
4851
4852 if (cpus_empty(net_dma->channel_mask)) {
4853 for_each_online_cpu(cpu)
4854 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4855 return;
4856 }
4857
4858 i = 0;
4859 cpu = first_cpu(cpu_online_map);
4860
4861 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4862 chan = net_dma->channels[chan_idx];
4863
4864 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4865 + (i < (num_online_cpus() %
4866 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4867
4868 while(n) {
4869 per_cpu(softnet_data, cpu).net_dma = chan;
4870 cpu = next_cpu(cpu, cpu_online_map);
4871 n--;
4872 }
4873 i++;
4874 }
4875 }
4876
4877 /**
4878 * netdev_dma_event - event callback for the net_dma_client
4879 * @client: should always be net_dma_client
4880 * @chan: DMA channel for the event
4881 * @state: DMA state to be handled
4882 */
4883 static enum dma_state_client
4884 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4885 enum dma_state state)
4886 {
4887 int i, found = 0, pos = -1;
4888 struct net_dma *net_dma =
4889 container_of(client, struct net_dma, client);
4890 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4891
4892 spin_lock(&net_dma->lock);
4893 switch (state) {
4894 case DMA_RESOURCE_AVAILABLE:
4895 for (i = 0; i < nr_cpu_ids; i++)
4896 if (net_dma->channels[i] == chan) {
4897 found = 1;
4898 break;
4899 } else if (net_dma->channels[i] == NULL && pos < 0)
4900 pos = i;
4901
4902 if (!found && pos >= 0) {
4903 ack = DMA_ACK;
4904 net_dma->channels[pos] = chan;
4905 cpu_set(pos, net_dma->channel_mask);
4906 net_dma_rebalance(net_dma);
4907 }
4908 break;
4909 case DMA_RESOURCE_REMOVED:
4910 for (i = 0; i < nr_cpu_ids; i++)
4911 if (net_dma->channels[i] == chan) {
4912 found = 1;
4913 pos = i;
4914 break;
4915 }
4916
4917 if (found) {
4918 ack = DMA_ACK;
4919 cpu_clear(pos, net_dma->channel_mask);
4920 net_dma->channels[i] = NULL;
4921 net_dma_rebalance(net_dma);
4922 }
4923 break;
4924 default:
4925 break;
4926 }
4927 spin_unlock(&net_dma->lock);
4928
4929 return ack;
4930 }
4931
4932 /**
4933 * netdev_dma_register - register the networking subsystem as a DMA client
4934 */
4935 static int __init netdev_dma_register(void)
4936 {
4937 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4938 GFP_KERNEL);
4939 if (unlikely(!net_dma.channels)) {
4940 printk(KERN_NOTICE
4941 "netdev_dma: no memory for net_dma.channels\n");
4942 return -ENOMEM;
4943 }
4944 spin_lock_init(&net_dma.lock);
4945 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4946 dma_async_client_register(&net_dma.client);
4947 dma_async_client_chan_request(&net_dma.client);
4948 return 0;
4949 }
4950
4951 #else
4952 static int __init netdev_dma_register(void) { return -ENODEV; }
4953 #endif /* CONFIG_NET_DMA */
4954
4955 /**
4956 * netdev_increment_features - increment feature set by one
4957 * @all: current feature set
4958 * @one: new feature set
4959 * @mask: mask feature set
4960 *
4961 * Computes a new feature set after adding a device with feature set
4962 * @one to the master device with current feature set @all. Will not
4963 * enable anything that is off in @mask. Returns the new feature set.
4964 */
4965 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4966 unsigned long mask)
4967 {
4968 /* If device needs checksumming, downgrade to it. */
4969 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4970 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4971 else if (mask & NETIF_F_ALL_CSUM) {
4972 /* If one device supports v4/v6 checksumming, set for all. */
4973 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4974 !(all & NETIF_F_GEN_CSUM)) {
4975 all &= ~NETIF_F_ALL_CSUM;
4976 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4977 }
4978
4979 /* If one device supports hw checksumming, set for all. */
4980 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4981 all &= ~NETIF_F_ALL_CSUM;
4982 all |= NETIF_F_HW_CSUM;
4983 }
4984 }
4985
4986 one |= NETIF_F_ALL_CSUM;
4987
4988 one |= all & NETIF_F_ONE_FOR_ALL;
4989 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4990 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4991
4992 return all;
4993 }
4994 EXPORT_SYMBOL(netdev_increment_features);
4995
4996 static struct hlist_head *netdev_create_hash(void)
4997 {
4998 int i;
4999 struct hlist_head *hash;
5000
5001 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5002 if (hash != NULL)
5003 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5004 INIT_HLIST_HEAD(&hash[i]);
5005
5006 return hash;
5007 }
5008
5009 /* Initialize per network namespace state */
5010 static int __net_init netdev_init(struct net *net)
5011 {
5012 INIT_LIST_HEAD(&net->dev_base_head);
5013
5014 net->dev_name_head = netdev_create_hash();
5015 if (net->dev_name_head == NULL)
5016 goto err_name;
5017
5018 net->dev_index_head = netdev_create_hash();
5019 if (net->dev_index_head == NULL)
5020 goto err_idx;
5021
5022 return 0;
5023
5024 err_idx:
5025 kfree(net->dev_name_head);
5026 err_name:
5027 return -ENOMEM;
5028 }
5029
5030 /**
5031 * netdev_drivername - network driver for the device
5032 * @dev: network device
5033 * @buffer: buffer for resulting name
5034 * @len: size of buffer
5035 *
5036 * Determine network driver for device.
5037 */
5038 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5039 {
5040 const struct device_driver *driver;
5041 const struct device *parent;
5042
5043 if (len <= 0 || !buffer)
5044 return buffer;
5045 buffer[0] = 0;
5046
5047 parent = dev->dev.parent;
5048
5049 if (!parent)
5050 return buffer;
5051
5052 driver = parent->driver;
5053 if (driver && driver->name)
5054 strlcpy(buffer, driver->name, len);
5055 return buffer;
5056 }
5057
5058 static void __net_exit netdev_exit(struct net *net)
5059 {
5060 kfree(net->dev_name_head);
5061 kfree(net->dev_index_head);
5062 }
5063
5064 static struct pernet_operations __net_initdata netdev_net_ops = {
5065 .init = netdev_init,
5066 .exit = netdev_exit,
5067 };
5068
5069 static void __net_exit default_device_exit(struct net *net)
5070 {
5071 struct net_device *dev;
5072 /*
5073 * Push all migratable of the network devices back to the
5074 * initial network namespace
5075 */
5076 rtnl_lock();
5077 restart:
5078 for_each_netdev(net, dev) {
5079 int err;
5080 char fb_name[IFNAMSIZ];
5081
5082 /* Ignore unmoveable devices (i.e. loopback) */
5083 if (dev->features & NETIF_F_NETNS_LOCAL)
5084 continue;
5085
5086 /* Delete virtual devices */
5087 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5088 dev->rtnl_link_ops->dellink(dev);
5089 goto restart;
5090 }
5091
5092 /* Push remaing network devices to init_net */
5093 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5094 err = dev_change_net_namespace(dev, &init_net, fb_name);
5095 if (err) {
5096 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5097 __func__, dev->name, err);
5098 BUG();
5099 }
5100 goto restart;
5101 }
5102 rtnl_unlock();
5103 }
5104
5105 static struct pernet_operations __net_initdata default_device_ops = {
5106 .exit = default_device_exit,
5107 };
5108
5109 /*
5110 * Initialize the DEV module. At boot time this walks the device list and
5111 * unhooks any devices that fail to initialise (normally hardware not
5112 * present) and leaves us with a valid list of present and active devices.
5113 *
5114 */
5115
5116 /*
5117 * This is called single threaded during boot, so no need
5118 * to take the rtnl semaphore.
5119 */
5120 static int __init net_dev_init(void)
5121 {
5122 int i, rc = -ENOMEM;
5123
5124 BUG_ON(!dev_boot_phase);
5125
5126 if (dev_proc_init())
5127 goto out;
5128
5129 if (netdev_kobject_init())
5130 goto out;
5131
5132 INIT_LIST_HEAD(&ptype_all);
5133 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5134 INIT_LIST_HEAD(&ptype_base[i]);
5135
5136 if (register_pernet_subsys(&netdev_net_ops))
5137 goto out;
5138
5139 /*
5140 * Initialise the packet receive queues.
5141 */
5142
5143 for_each_possible_cpu(i) {
5144 struct softnet_data *queue;
5145
5146 queue = &per_cpu(softnet_data, i);
5147 skb_queue_head_init(&queue->input_pkt_queue);
5148 queue->completion_queue = NULL;
5149 INIT_LIST_HEAD(&queue->poll_list);
5150
5151 queue->backlog.poll = process_backlog;
5152 queue->backlog.weight = weight_p;
5153 queue->backlog.gro_list = NULL;
5154 }
5155
5156 dev_boot_phase = 0;
5157
5158 /* The loopback device is special if any other network devices
5159 * is present in a network namespace the loopback device must
5160 * be present. Since we now dynamically allocate and free the
5161 * loopback device ensure this invariant is maintained by
5162 * keeping the loopback device as the first device on the
5163 * list of network devices. Ensuring the loopback devices
5164 * is the first device that appears and the last network device
5165 * that disappears.
5166 */
5167 if (register_pernet_device(&loopback_net_ops))
5168 goto out;
5169
5170 if (register_pernet_device(&default_device_ops))
5171 goto out;
5172
5173 netdev_dma_register();
5174
5175 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5176 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5177
5178 hotcpu_notifier(dev_cpu_callback, 0);
5179 dst_init();
5180 dev_mcast_init();
5181 rc = 0;
5182 out:
5183 return rc;
5184 }
5185
5186 subsys_initcall(net_dev_init);
5187
5188 EXPORT_SYMBOL(__dev_get_by_index);
5189 EXPORT_SYMBOL(__dev_get_by_name);
5190 EXPORT_SYMBOL(__dev_remove_pack);
5191 EXPORT_SYMBOL(dev_valid_name);
5192 EXPORT_SYMBOL(dev_add_pack);
5193 EXPORT_SYMBOL(dev_alloc_name);
5194 EXPORT_SYMBOL(dev_close);
5195 EXPORT_SYMBOL(dev_get_by_flags);
5196 EXPORT_SYMBOL(dev_get_by_index);
5197 EXPORT_SYMBOL(dev_get_by_name);
5198 EXPORT_SYMBOL(dev_open);
5199 EXPORT_SYMBOL(dev_queue_xmit);
5200 EXPORT_SYMBOL(dev_remove_pack);
5201 EXPORT_SYMBOL(dev_set_allmulti);
5202 EXPORT_SYMBOL(dev_set_promiscuity);
5203 EXPORT_SYMBOL(dev_change_flags);
5204 EXPORT_SYMBOL(dev_set_mtu);
5205 EXPORT_SYMBOL(dev_set_mac_address);
5206 EXPORT_SYMBOL(free_netdev);
5207 EXPORT_SYMBOL(netdev_boot_setup_check);
5208 EXPORT_SYMBOL(netdev_set_master);
5209 EXPORT_SYMBOL(netdev_state_change);
5210 EXPORT_SYMBOL(netif_receive_skb);
5211 EXPORT_SYMBOL(netif_rx);
5212 EXPORT_SYMBOL(register_gifconf);
5213 EXPORT_SYMBOL(register_netdevice);
5214 EXPORT_SYMBOL(register_netdevice_notifier);
5215 EXPORT_SYMBOL(skb_checksum_help);
5216 EXPORT_SYMBOL(synchronize_net);
5217 EXPORT_SYMBOL(unregister_netdevice);
5218 EXPORT_SYMBOL(unregister_netdevice_notifier);
5219 EXPORT_SYMBOL(net_enable_timestamp);
5220 EXPORT_SYMBOL(net_disable_timestamp);
5221 EXPORT_SYMBOL(dev_get_flags);
5222
5223 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5224 EXPORT_SYMBOL(br_handle_frame_hook);
5225 EXPORT_SYMBOL(br_fdb_get_hook);
5226 EXPORT_SYMBOL(br_fdb_put_hook);
5227 #endif
5228
5229 EXPORT_SYMBOL(dev_load);
5230
5231 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.13335 seconds and 6 git commands to generate.