Merge git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-nommu
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Initialize multicasting status
1092 */
1093 dev_set_rx_mode(dev);
1094
1095 /*
1096 * Wakeup transmit queue engine
1097 */
1098 dev_activate(dev);
1099
1100 /*
1101 * ... and announce new interface.
1102 */
1103 call_netdevice_notifiers(NETDEV_UP, dev);
1104 }
1105
1106 return ret;
1107 }
1108
1109 /**
1110 * dev_close - shutdown an interface.
1111 * @dev: device to shutdown
1112 *
1113 * This function moves an active device into down state. A
1114 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1115 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1116 * chain.
1117 */
1118 int dev_close(struct net_device *dev)
1119 {
1120 const struct net_device_ops *ops = dev->netdev_ops;
1121 ASSERT_RTNL();
1122
1123 might_sleep();
1124
1125 if (!(dev->flags & IFF_UP))
1126 return 0;
1127
1128 /*
1129 * Tell people we are going down, so that they can
1130 * prepare to death, when device is still operating.
1131 */
1132 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1133
1134 clear_bit(__LINK_STATE_START, &dev->state);
1135
1136 /* Synchronize to scheduled poll. We cannot touch poll list,
1137 * it can be even on different cpu. So just clear netif_running().
1138 *
1139 * dev->stop() will invoke napi_disable() on all of it's
1140 * napi_struct instances on this device.
1141 */
1142 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1143
1144 dev_deactivate(dev);
1145
1146 /*
1147 * Call the device specific close. This cannot fail.
1148 * Only if device is UP
1149 *
1150 * We allow it to be called even after a DETACH hot-plug
1151 * event.
1152 */
1153 if (ops->ndo_stop)
1154 ops->ndo_stop(dev);
1155
1156 /*
1157 * Device is now down.
1158 */
1159
1160 dev->flags &= ~IFF_UP;
1161
1162 /*
1163 * Tell people we are down
1164 */
1165 call_netdevice_notifiers(NETDEV_DOWN, dev);
1166
1167 return 0;
1168 }
1169
1170
1171 /**
1172 * dev_disable_lro - disable Large Receive Offload on a device
1173 * @dev: device
1174 *
1175 * Disable Large Receive Offload (LRO) on a net device. Must be
1176 * called under RTNL. This is needed if received packets may be
1177 * forwarded to another interface.
1178 */
1179 void dev_disable_lro(struct net_device *dev)
1180 {
1181 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1182 dev->ethtool_ops->set_flags) {
1183 u32 flags = dev->ethtool_ops->get_flags(dev);
1184 if (flags & ETH_FLAG_LRO) {
1185 flags &= ~ETH_FLAG_LRO;
1186 dev->ethtool_ops->set_flags(dev, flags);
1187 }
1188 }
1189 WARN_ON(dev->features & NETIF_F_LRO);
1190 }
1191 EXPORT_SYMBOL(dev_disable_lro);
1192
1193
1194 static int dev_boot_phase = 1;
1195
1196 /*
1197 * Device change register/unregister. These are not inline or static
1198 * as we export them to the world.
1199 */
1200
1201 /**
1202 * register_netdevice_notifier - register a network notifier block
1203 * @nb: notifier
1204 *
1205 * Register a notifier to be called when network device events occur.
1206 * The notifier passed is linked into the kernel structures and must
1207 * not be reused until it has been unregistered. A negative errno code
1208 * is returned on a failure.
1209 *
1210 * When registered all registration and up events are replayed
1211 * to the new notifier to allow device to have a race free
1212 * view of the network device list.
1213 */
1214
1215 int register_netdevice_notifier(struct notifier_block *nb)
1216 {
1217 struct net_device *dev;
1218 struct net_device *last;
1219 struct net *net;
1220 int err;
1221
1222 rtnl_lock();
1223 err = raw_notifier_chain_register(&netdev_chain, nb);
1224 if (err)
1225 goto unlock;
1226 if (dev_boot_phase)
1227 goto unlock;
1228 for_each_net(net) {
1229 for_each_netdev(net, dev) {
1230 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1231 err = notifier_to_errno(err);
1232 if (err)
1233 goto rollback;
1234
1235 if (!(dev->flags & IFF_UP))
1236 continue;
1237
1238 nb->notifier_call(nb, NETDEV_UP, dev);
1239 }
1240 }
1241
1242 unlock:
1243 rtnl_unlock();
1244 return err;
1245
1246 rollback:
1247 last = dev;
1248 for_each_net(net) {
1249 for_each_netdev(net, dev) {
1250 if (dev == last)
1251 break;
1252
1253 if (dev->flags & IFF_UP) {
1254 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1255 nb->notifier_call(nb, NETDEV_DOWN, dev);
1256 }
1257 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1258 }
1259 }
1260
1261 raw_notifier_chain_unregister(&netdev_chain, nb);
1262 goto unlock;
1263 }
1264
1265 /**
1266 * unregister_netdevice_notifier - unregister a network notifier block
1267 * @nb: notifier
1268 *
1269 * Unregister a notifier previously registered by
1270 * register_netdevice_notifier(). The notifier is unlinked into the
1271 * kernel structures and may then be reused. A negative errno code
1272 * is returned on a failure.
1273 */
1274
1275 int unregister_netdevice_notifier(struct notifier_block *nb)
1276 {
1277 int err;
1278
1279 rtnl_lock();
1280 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1281 rtnl_unlock();
1282 return err;
1283 }
1284
1285 /**
1286 * call_netdevice_notifiers - call all network notifier blocks
1287 * @val: value passed unmodified to notifier function
1288 * @dev: net_device pointer passed unmodified to notifier function
1289 *
1290 * Call all network notifier blocks. Parameters and return value
1291 * are as for raw_notifier_call_chain().
1292 */
1293
1294 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1295 {
1296 return raw_notifier_call_chain(&netdev_chain, val, dev);
1297 }
1298
1299 /* When > 0 there are consumers of rx skb time stamps */
1300 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1301
1302 void net_enable_timestamp(void)
1303 {
1304 atomic_inc(&netstamp_needed);
1305 }
1306
1307 void net_disable_timestamp(void)
1308 {
1309 atomic_dec(&netstamp_needed);
1310 }
1311
1312 static inline void net_timestamp(struct sk_buff *skb)
1313 {
1314 if (atomic_read(&netstamp_needed))
1315 __net_timestamp(skb);
1316 else
1317 skb->tstamp.tv64 = 0;
1318 }
1319
1320 /*
1321 * Support routine. Sends outgoing frames to any network
1322 * taps currently in use.
1323 */
1324
1325 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1326 {
1327 struct packet_type *ptype;
1328
1329 net_timestamp(skb);
1330
1331 rcu_read_lock();
1332 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1333 /* Never send packets back to the socket
1334 * they originated from - MvS (miquels@drinkel.ow.org)
1335 */
1336 if ((ptype->dev == dev || !ptype->dev) &&
1337 (ptype->af_packet_priv == NULL ||
1338 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1339 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1340 if (!skb2)
1341 break;
1342
1343 /* skb->nh should be correctly
1344 set by sender, so that the second statement is
1345 just protection against buggy protocols.
1346 */
1347 skb_reset_mac_header(skb2);
1348
1349 if (skb_network_header(skb2) < skb2->data ||
1350 skb2->network_header > skb2->tail) {
1351 if (net_ratelimit())
1352 printk(KERN_CRIT "protocol %04x is "
1353 "buggy, dev %s\n",
1354 skb2->protocol, dev->name);
1355 skb_reset_network_header(skb2);
1356 }
1357
1358 skb2->transport_header = skb2->network_header;
1359 skb2->pkt_type = PACKET_OUTGOING;
1360 ptype->func(skb2, skb->dev, ptype, skb->dev);
1361 }
1362 }
1363 rcu_read_unlock();
1364 }
1365
1366
1367 static inline void __netif_reschedule(struct Qdisc *q)
1368 {
1369 struct softnet_data *sd;
1370 unsigned long flags;
1371
1372 local_irq_save(flags);
1373 sd = &__get_cpu_var(softnet_data);
1374 q->next_sched = sd->output_queue;
1375 sd->output_queue = q;
1376 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1377 local_irq_restore(flags);
1378 }
1379
1380 void __netif_schedule(struct Qdisc *q)
1381 {
1382 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1383 __netif_reschedule(q);
1384 }
1385 EXPORT_SYMBOL(__netif_schedule);
1386
1387 void dev_kfree_skb_irq(struct sk_buff *skb)
1388 {
1389 if (atomic_dec_and_test(&skb->users)) {
1390 struct softnet_data *sd;
1391 unsigned long flags;
1392
1393 local_irq_save(flags);
1394 sd = &__get_cpu_var(softnet_data);
1395 skb->next = sd->completion_queue;
1396 sd->completion_queue = skb;
1397 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1398 local_irq_restore(flags);
1399 }
1400 }
1401 EXPORT_SYMBOL(dev_kfree_skb_irq);
1402
1403 void dev_kfree_skb_any(struct sk_buff *skb)
1404 {
1405 if (in_irq() || irqs_disabled())
1406 dev_kfree_skb_irq(skb);
1407 else
1408 dev_kfree_skb(skb);
1409 }
1410 EXPORT_SYMBOL(dev_kfree_skb_any);
1411
1412
1413 /**
1414 * netif_device_detach - mark device as removed
1415 * @dev: network device
1416 *
1417 * Mark device as removed from system and therefore no longer available.
1418 */
1419 void netif_device_detach(struct net_device *dev)
1420 {
1421 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1422 netif_running(dev)) {
1423 netif_stop_queue(dev);
1424 }
1425 }
1426 EXPORT_SYMBOL(netif_device_detach);
1427
1428 /**
1429 * netif_device_attach - mark device as attached
1430 * @dev: network device
1431 *
1432 * Mark device as attached from system and restart if needed.
1433 */
1434 void netif_device_attach(struct net_device *dev)
1435 {
1436 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1437 netif_running(dev)) {
1438 netif_wake_queue(dev);
1439 __netdev_watchdog_up(dev);
1440 }
1441 }
1442 EXPORT_SYMBOL(netif_device_attach);
1443
1444 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1445 {
1446 return ((features & NETIF_F_GEN_CSUM) ||
1447 ((features & NETIF_F_IP_CSUM) &&
1448 protocol == htons(ETH_P_IP)) ||
1449 ((features & NETIF_F_IPV6_CSUM) &&
1450 protocol == htons(ETH_P_IPV6)));
1451 }
1452
1453 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1454 {
1455 if (can_checksum_protocol(dev->features, skb->protocol))
1456 return true;
1457
1458 if (skb->protocol == htons(ETH_P_8021Q)) {
1459 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1460 if (can_checksum_protocol(dev->features & dev->vlan_features,
1461 veh->h_vlan_encapsulated_proto))
1462 return true;
1463 }
1464
1465 return false;
1466 }
1467
1468 /*
1469 * Invalidate hardware checksum when packet is to be mangled, and
1470 * complete checksum manually on outgoing path.
1471 */
1472 int skb_checksum_help(struct sk_buff *skb)
1473 {
1474 __wsum csum;
1475 int ret = 0, offset;
1476
1477 if (skb->ip_summed == CHECKSUM_COMPLETE)
1478 goto out_set_summed;
1479
1480 if (unlikely(skb_shinfo(skb)->gso_size)) {
1481 /* Let GSO fix up the checksum. */
1482 goto out_set_summed;
1483 }
1484
1485 offset = skb->csum_start - skb_headroom(skb);
1486 BUG_ON(offset >= skb_headlen(skb));
1487 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1488
1489 offset += skb->csum_offset;
1490 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1491
1492 if (skb_cloned(skb) &&
1493 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1494 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1495 if (ret)
1496 goto out;
1497 }
1498
1499 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1500 out_set_summed:
1501 skb->ip_summed = CHECKSUM_NONE;
1502 out:
1503 return ret;
1504 }
1505
1506 /**
1507 * skb_gso_segment - Perform segmentation on skb.
1508 * @skb: buffer to segment
1509 * @features: features for the output path (see dev->features)
1510 *
1511 * This function segments the given skb and returns a list of segments.
1512 *
1513 * It may return NULL if the skb requires no segmentation. This is
1514 * only possible when GSO is used for verifying header integrity.
1515 */
1516 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1517 {
1518 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1519 struct packet_type *ptype;
1520 __be16 type = skb->protocol;
1521 int err;
1522
1523 skb_reset_mac_header(skb);
1524 skb->mac_len = skb->network_header - skb->mac_header;
1525 __skb_pull(skb, skb->mac_len);
1526
1527 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1528 if (skb_header_cloned(skb) &&
1529 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1530 return ERR_PTR(err);
1531 }
1532
1533 rcu_read_lock();
1534 list_for_each_entry_rcu(ptype,
1535 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1536 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1537 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1538 err = ptype->gso_send_check(skb);
1539 segs = ERR_PTR(err);
1540 if (err || skb_gso_ok(skb, features))
1541 break;
1542 __skb_push(skb, (skb->data -
1543 skb_network_header(skb)));
1544 }
1545 segs = ptype->gso_segment(skb, features);
1546 break;
1547 }
1548 }
1549 rcu_read_unlock();
1550
1551 __skb_push(skb, skb->data - skb_mac_header(skb));
1552
1553 return segs;
1554 }
1555
1556 EXPORT_SYMBOL(skb_gso_segment);
1557
1558 /* Take action when hardware reception checksum errors are detected. */
1559 #ifdef CONFIG_BUG
1560 void netdev_rx_csum_fault(struct net_device *dev)
1561 {
1562 if (net_ratelimit()) {
1563 printk(KERN_ERR "%s: hw csum failure.\n",
1564 dev ? dev->name : "<unknown>");
1565 dump_stack();
1566 }
1567 }
1568 EXPORT_SYMBOL(netdev_rx_csum_fault);
1569 #endif
1570
1571 /* Actually, we should eliminate this check as soon as we know, that:
1572 * 1. IOMMU is present and allows to map all the memory.
1573 * 2. No high memory really exists on this machine.
1574 */
1575
1576 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1577 {
1578 #ifdef CONFIG_HIGHMEM
1579 int i;
1580
1581 if (dev->features & NETIF_F_HIGHDMA)
1582 return 0;
1583
1584 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1585 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1586 return 1;
1587
1588 #endif
1589 return 0;
1590 }
1591
1592 struct dev_gso_cb {
1593 void (*destructor)(struct sk_buff *skb);
1594 };
1595
1596 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1597
1598 static void dev_gso_skb_destructor(struct sk_buff *skb)
1599 {
1600 struct dev_gso_cb *cb;
1601
1602 do {
1603 struct sk_buff *nskb = skb->next;
1604
1605 skb->next = nskb->next;
1606 nskb->next = NULL;
1607 kfree_skb(nskb);
1608 } while (skb->next);
1609
1610 cb = DEV_GSO_CB(skb);
1611 if (cb->destructor)
1612 cb->destructor(skb);
1613 }
1614
1615 /**
1616 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1617 * @skb: buffer to segment
1618 *
1619 * This function segments the given skb and stores the list of segments
1620 * in skb->next.
1621 */
1622 static int dev_gso_segment(struct sk_buff *skb)
1623 {
1624 struct net_device *dev = skb->dev;
1625 struct sk_buff *segs;
1626 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1627 NETIF_F_SG : 0);
1628
1629 segs = skb_gso_segment(skb, features);
1630
1631 /* Verifying header integrity only. */
1632 if (!segs)
1633 return 0;
1634
1635 if (IS_ERR(segs))
1636 return PTR_ERR(segs);
1637
1638 skb->next = segs;
1639 DEV_GSO_CB(skb)->destructor = skb->destructor;
1640 skb->destructor = dev_gso_skb_destructor;
1641
1642 return 0;
1643 }
1644
1645 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1646 struct netdev_queue *txq)
1647 {
1648 const struct net_device_ops *ops = dev->netdev_ops;
1649
1650 prefetch(&dev->netdev_ops->ndo_start_xmit);
1651 if (likely(!skb->next)) {
1652 if (!list_empty(&ptype_all))
1653 dev_queue_xmit_nit(skb, dev);
1654
1655 if (netif_needs_gso(dev, skb)) {
1656 if (unlikely(dev_gso_segment(skb)))
1657 goto out_kfree_skb;
1658 if (skb->next)
1659 goto gso;
1660 }
1661
1662 return ops->ndo_start_xmit(skb, dev);
1663 }
1664
1665 gso:
1666 do {
1667 struct sk_buff *nskb = skb->next;
1668 int rc;
1669
1670 skb->next = nskb->next;
1671 nskb->next = NULL;
1672 rc = ops->ndo_start_xmit(nskb, dev);
1673 if (unlikely(rc)) {
1674 nskb->next = skb->next;
1675 skb->next = nskb;
1676 return rc;
1677 }
1678 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1679 return NETDEV_TX_BUSY;
1680 } while (skb->next);
1681
1682 skb->destructor = DEV_GSO_CB(skb)->destructor;
1683
1684 out_kfree_skb:
1685 kfree_skb(skb);
1686 return 0;
1687 }
1688
1689 static u32 simple_tx_hashrnd;
1690 static int simple_tx_hashrnd_initialized = 0;
1691
1692 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1693 {
1694 u32 addr1, addr2, ports;
1695 u32 hash, ihl;
1696 u8 ip_proto = 0;
1697
1698 if (unlikely(!simple_tx_hashrnd_initialized)) {
1699 get_random_bytes(&simple_tx_hashrnd, 4);
1700 simple_tx_hashrnd_initialized = 1;
1701 }
1702
1703 switch (skb->protocol) {
1704 case htons(ETH_P_IP):
1705 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1706 ip_proto = ip_hdr(skb)->protocol;
1707 addr1 = ip_hdr(skb)->saddr;
1708 addr2 = ip_hdr(skb)->daddr;
1709 ihl = ip_hdr(skb)->ihl;
1710 break;
1711 case htons(ETH_P_IPV6):
1712 ip_proto = ipv6_hdr(skb)->nexthdr;
1713 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1714 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1715 ihl = (40 >> 2);
1716 break;
1717 default:
1718 return 0;
1719 }
1720
1721
1722 switch (ip_proto) {
1723 case IPPROTO_TCP:
1724 case IPPROTO_UDP:
1725 case IPPROTO_DCCP:
1726 case IPPROTO_ESP:
1727 case IPPROTO_AH:
1728 case IPPROTO_SCTP:
1729 case IPPROTO_UDPLITE:
1730 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1731 break;
1732
1733 default:
1734 ports = 0;
1735 break;
1736 }
1737
1738 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1739
1740 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1741 }
1742
1743 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1744 struct sk_buff *skb)
1745 {
1746 const struct net_device_ops *ops = dev->netdev_ops;
1747 u16 queue_index = 0;
1748
1749 if (ops->ndo_select_queue)
1750 queue_index = ops->ndo_select_queue(dev, skb);
1751 else if (dev->real_num_tx_queues > 1)
1752 queue_index = simple_tx_hash(dev, skb);
1753
1754 skb_set_queue_mapping(skb, queue_index);
1755 return netdev_get_tx_queue(dev, queue_index);
1756 }
1757
1758 /**
1759 * dev_queue_xmit - transmit a buffer
1760 * @skb: buffer to transmit
1761 *
1762 * Queue a buffer for transmission to a network device. The caller must
1763 * have set the device and priority and built the buffer before calling
1764 * this function. The function can be called from an interrupt.
1765 *
1766 * A negative errno code is returned on a failure. A success does not
1767 * guarantee the frame will be transmitted as it may be dropped due
1768 * to congestion or traffic shaping.
1769 *
1770 * -----------------------------------------------------------------------------------
1771 * I notice this method can also return errors from the queue disciplines,
1772 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1773 * be positive.
1774 *
1775 * Regardless of the return value, the skb is consumed, so it is currently
1776 * difficult to retry a send to this method. (You can bump the ref count
1777 * before sending to hold a reference for retry if you are careful.)
1778 *
1779 * When calling this method, interrupts MUST be enabled. This is because
1780 * the BH enable code must have IRQs enabled so that it will not deadlock.
1781 * --BLG
1782 */
1783 int dev_queue_xmit(struct sk_buff *skb)
1784 {
1785 struct net_device *dev = skb->dev;
1786 struct netdev_queue *txq;
1787 struct Qdisc *q;
1788 int rc = -ENOMEM;
1789
1790 /* GSO will handle the following emulations directly. */
1791 if (netif_needs_gso(dev, skb))
1792 goto gso;
1793
1794 if (skb_shinfo(skb)->frag_list &&
1795 !(dev->features & NETIF_F_FRAGLIST) &&
1796 __skb_linearize(skb))
1797 goto out_kfree_skb;
1798
1799 /* Fragmented skb is linearized if device does not support SG,
1800 * or if at least one of fragments is in highmem and device
1801 * does not support DMA from it.
1802 */
1803 if (skb_shinfo(skb)->nr_frags &&
1804 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1805 __skb_linearize(skb))
1806 goto out_kfree_skb;
1807
1808 /* If packet is not checksummed and device does not support
1809 * checksumming for this protocol, complete checksumming here.
1810 */
1811 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1812 skb_set_transport_header(skb, skb->csum_start -
1813 skb_headroom(skb));
1814 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1815 goto out_kfree_skb;
1816 }
1817
1818 gso:
1819 /* Disable soft irqs for various locks below. Also
1820 * stops preemption for RCU.
1821 */
1822 rcu_read_lock_bh();
1823
1824 txq = dev_pick_tx(dev, skb);
1825 q = rcu_dereference(txq->qdisc);
1826
1827 #ifdef CONFIG_NET_CLS_ACT
1828 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1829 #endif
1830 if (q->enqueue) {
1831 spinlock_t *root_lock = qdisc_lock(q);
1832
1833 spin_lock(root_lock);
1834
1835 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1836 kfree_skb(skb);
1837 rc = NET_XMIT_DROP;
1838 } else {
1839 rc = qdisc_enqueue_root(skb, q);
1840 qdisc_run(q);
1841 }
1842 spin_unlock(root_lock);
1843
1844 goto out;
1845 }
1846
1847 /* The device has no queue. Common case for software devices:
1848 loopback, all the sorts of tunnels...
1849
1850 Really, it is unlikely that netif_tx_lock protection is necessary
1851 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1852 counters.)
1853 However, it is possible, that they rely on protection
1854 made by us here.
1855
1856 Check this and shot the lock. It is not prone from deadlocks.
1857 Either shot noqueue qdisc, it is even simpler 8)
1858 */
1859 if (dev->flags & IFF_UP) {
1860 int cpu = smp_processor_id(); /* ok because BHs are off */
1861
1862 if (txq->xmit_lock_owner != cpu) {
1863
1864 HARD_TX_LOCK(dev, txq, cpu);
1865
1866 if (!netif_tx_queue_stopped(txq)) {
1867 rc = 0;
1868 if (!dev_hard_start_xmit(skb, dev, txq)) {
1869 HARD_TX_UNLOCK(dev, txq);
1870 goto out;
1871 }
1872 }
1873 HARD_TX_UNLOCK(dev, txq);
1874 if (net_ratelimit())
1875 printk(KERN_CRIT "Virtual device %s asks to "
1876 "queue packet!\n", dev->name);
1877 } else {
1878 /* Recursion is detected! It is possible,
1879 * unfortunately */
1880 if (net_ratelimit())
1881 printk(KERN_CRIT "Dead loop on virtual device "
1882 "%s, fix it urgently!\n", dev->name);
1883 }
1884 }
1885
1886 rc = -ENETDOWN;
1887 rcu_read_unlock_bh();
1888
1889 out_kfree_skb:
1890 kfree_skb(skb);
1891 return rc;
1892 out:
1893 rcu_read_unlock_bh();
1894 return rc;
1895 }
1896
1897
1898 /*=======================================================================
1899 Receiver routines
1900 =======================================================================*/
1901
1902 int netdev_max_backlog __read_mostly = 1000;
1903 int netdev_budget __read_mostly = 300;
1904 int weight_p __read_mostly = 64; /* old backlog weight */
1905
1906 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1907
1908
1909 /**
1910 * netif_rx - post buffer to the network code
1911 * @skb: buffer to post
1912 *
1913 * This function receives a packet from a device driver and queues it for
1914 * the upper (protocol) levels to process. It always succeeds. The buffer
1915 * may be dropped during processing for congestion control or by the
1916 * protocol layers.
1917 *
1918 * return values:
1919 * NET_RX_SUCCESS (no congestion)
1920 * NET_RX_DROP (packet was dropped)
1921 *
1922 */
1923
1924 int netif_rx(struct sk_buff *skb)
1925 {
1926 struct softnet_data *queue;
1927 unsigned long flags;
1928
1929 /* if netpoll wants it, pretend we never saw it */
1930 if (netpoll_rx(skb))
1931 return NET_RX_DROP;
1932
1933 if (!skb->tstamp.tv64)
1934 net_timestamp(skb);
1935
1936 /*
1937 * The code is rearranged so that the path is the most
1938 * short when CPU is congested, but is still operating.
1939 */
1940 local_irq_save(flags);
1941 queue = &__get_cpu_var(softnet_data);
1942
1943 __get_cpu_var(netdev_rx_stat).total++;
1944 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1945 if (queue->input_pkt_queue.qlen) {
1946 enqueue:
1947 __skb_queue_tail(&queue->input_pkt_queue, skb);
1948 local_irq_restore(flags);
1949 return NET_RX_SUCCESS;
1950 }
1951
1952 napi_schedule(&queue->backlog);
1953 goto enqueue;
1954 }
1955
1956 __get_cpu_var(netdev_rx_stat).dropped++;
1957 local_irq_restore(flags);
1958
1959 kfree_skb(skb);
1960 return NET_RX_DROP;
1961 }
1962
1963 int netif_rx_ni(struct sk_buff *skb)
1964 {
1965 int err;
1966
1967 preempt_disable();
1968 err = netif_rx(skb);
1969 if (local_softirq_pending())
1970 do_softirq();
1971 preempt_enable();
1972
1973 return err;
1974 }
1975
1976 EXPORT_SYMBOL(netif_rx_ni);
1977
1978 static void net_tx_action(struct softirq_action *h)
1979 {
1980 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1981
1982 if (sd->completion_queue) {
1983 struct sk_buff *clist;
1984
1985 local_irq_disable();
1986 clist = sd->completion_queue;
1987 sd->completion_queue = NULL;
1988 local_irq_enable();
1989
1990 while (clist) {
1991 struct sk_buff *skb = clist;
1992 clist = clist->next;
1993
1994 WARN_ON(atomic_read(&skb->users));
1995 __kfree_skb(skb);
1996 }
1997 }
1998
1999 if (sd->output_queue) {
2000 struct Qdisc *head;
2001
2002 local_irq_disable();
2003 head = sd->output_queue;
2004 sd->output_queue = NULL;
2005 local_irq_enable();
2006
2007 while (head) {
2008 struct Qdisc *q = head;
2009 spinlock_t *root_lock;
2010
2011 head = head->next_sched;
2012
2013 root_lock = qdisc_lock(q);
2014 if (spin_trylock(root_lock)) {
2015 smp_mb__before_clear_bit();
2016 clear_bit(__QDISC_STATE_SCHED,
2017 &q->state);
2018 qdisc_run(q);
2019 spin_unlock(root_lock);
2020 } else {
2021 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2022 &q->state)) {
2023 __netif_reschedule(q);
2024 } else {
2025 smp_mb__before_clear_bit();
2026 clear_bit(__QDISC_STATE_SCHED,
2027 &q->state);
2028 }
2029 }
2030 }
2031 }
2032 }
2033
2034 static inline int deliver_skb(struct sk_buff *skb,
2035 struct packet_type *pt_prev,
2036 struct net_device *orig_dev)
2037 {
2038 atomic_inc(&skb->users);
2039 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2040 }
2041
2042 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2043 /* These hooks defined here for ATM */
2044 struct net_bridge;
2045 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2046 unsigned char *addr);
2047 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2048
2049 /*
2050 * If bridge module is loaded call bridging hook.
2051 * returns NULL if packet was consumed.
2052 */
2053 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2054 struct sk_buff *skb) __read_mostly;
2055 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2056 struct packet_type **pt_prev, int *ret,
2057 struct net_device *orig_dev)
2058 {
2059 struct net_bridge_port *port;
2060
2061 if (skb->pkt_type == PACKET_LOOPBACK ||
2062 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2063 return skb;
2064
2065 if (*pt_prev) {
2066 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2067 *pt_prev = NULL;
2068 }
2069
2070 return br_handle_frame_hook(port, skb);
2071 }
2072 #else
2073 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2074 #endif
2075
2076 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2077 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2078 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2079
2080 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2081 struct packet_type **pt_prev,
2082 int *ret,
2083 struct net_device *orig_dev)
2084 {
2085 if (skb->dev->macvlan_port == NULL)
2086 return skb;
2087
2088 if (*pt_prev) {
2089 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2090 *pt_prev = NULL;
2091 }
2092 return macvlan_handle_frame_hook(skb);
2093 }
2094 #else
2095 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2096 #endif
2097
2098 #ifdef CONFIG_NET_CLS_ACT
2099 /* TODO: Maybe we should just force sch_ingress to be compiled in
2100 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2101 * a compare and 2 stores extra right now if we dont have it on
2102 * but have CONFIG_NET_CLS_ACT
2103 * NOTE: This doesnt stop any functionality; if you dont have
2104 * the ingress scheduler, you just cant add policies on ingress.
2105 *
2106 */
2107 static int ing_filter(struct sk_buff *skb)
2108 {
2109 struct net_device *dev = skb->dev;
2110 u32 ttl = G_TC_RTTL(skb->tc_verd);
2111 struct netdev_queue *rxq;
2112 int result = TC_ACT_OK;
2113 struct Qdisc *q;
2114
2115 if (MAX_RED_LOOP < ttl++) {
2116 printk(KERN_WARNING
2117 "Redir loop detected Dropping packet (%d->%d)\n",
2118 skb->iif, dev->ifindex);
2119 return TC_ACT_SHOT;
2120 }
2121
2122 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2123 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2124
2125 rxq = &dev->rx_queue;
2126
2127 q = rxq->qdisc;
2128 if (q != &noop_qdisc) {
2129 spin_lock(qdisc_lock(q));
2130 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2131 result = qdisc_enqueue_root(skb, q);
2132 spin_unlock(qdisc_lock(q));
2133 }
2134
2135 return result;
2136 }
2137
2138 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2139 struct packet_type **pt_prev,
2140 int *ret, struct net_device *orig_dev)
2141 {
2142 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2143 goto out;
2144
2145 if (*pt_prev) {
2146 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2147 *pt_prev = NULL;
2148 } else {
2149 /* Huh? Why does turning on AF_PACKET affect this? */
2150 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2151 }
2152
2153 switch (ing_filter(skb)) {
2154 case TC_ACT_SHOT:
2155 case TC_ACT_STOLEN:
2156 kfree_skb(skb);
2157 return NULL;
2158 }
2159
2160 out:
2161 skb->tc_verd = 0;
2162 return skb;
2163 }
2164 #endif
2165
2166 /*
2167 * netif_nit_deliver - deliver received packets to network taps
2168 * @skb: buffer
2169 *
2170 * This function is used to deliver incoming packets to network
2171 * taps. It should be used when the normal netif_receive_skb path
2172 * is bypassed, for example because of VLAN acceleration.
2173 */
2174 void netif_nit_deliver(struct sk_buff *skb)
2175 {
2176 struct packet_type *ptype;
2177
2178 if (list_empty(&ptype_all))
2179 return;
2180
2181 skb_reset_network_header(skb);
2182 skb_reset_transport_header(skb);
2183 skb->mac_len = skb->network_header - skb->mac_header;
2184
2185 rcu_read_lock();
2186 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2187 if (!ptype->dev || ptype->dev == skb->dev)
2188 deliver_skb(skb, ptype, skb->dev);
2189 }
2190 rcu_read_unlock();
2191 }
2192
2193 /**
2194 * netif_receive_skb - process receive buffer from network
2195 * @skb: buffer to process
2196 *
2197 * netif_receive_skb() is the main receive data processing function.
2198 * It always succeeds. The buffer may be dropped during processing
2199 * for congestion control or by the protocol layers.
2200 *
2201 * This function may only be called from softirq context and interrupts
2202 * should be enabled.
2203 *
2204 * Return values (usually ignored):
2205 * NET_RX_SUCCESS: no congestion
2206 * NET_RX_DROP: packet was dropped
2207 */
2208 int netif_receive_skb(struct sk_buff *skb)
2209 {
2210 struct packet_type *ptype, *pt_prev;
2211 struct net_device *orig_dev;
2212 struct net_device *null_or_orig;
2213 int ret = NET_RX_DROP;
2214 __be16 type;
2215
2216 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2217 return NET_RX_SUCCESS;
2218
2219 /* if we've gotten here through NAPI, check netpoll */
2220 if (netpoll_receive_skb(skb))
2221 return NET_RX_DROP;
2222
2223 if (!skb->tstamp.tv64)
2224 net_timestamp(skb);
2225
2226 if (!skb->iif)
2227 skb->iif = skb->dev->ifindex;
2228
2229 null_or_orig = NULL;
2230 orig_dev = skb->dev;
2231 if (orig_dev->master) {
2232 if (skb_bond_should_drop(skb))
2233 null_or_orig = orig_dev; /* deliver only exact match */
2234 else
2235 skb->dev = orig_dev->master;
2236 }
2237
2238 __get_cpu_var(netdev_rx_stat).total++;
2239
2240 skb_reset_network_header(skb);
2241 skb_reset_transport_header(skb);
2242 skb->mac_len = skb->network_header - skb->mac_header;
2243
2244 pt_prev = NULL;
2245
2246 rcu_read_lock();
2247
2248 /* Don't receive packets in an exiting network namespace */
2249 if (!net_alive(dev_net(skb->dev))) {
2250 kfree_skb(skb);
2251 goto out;
2252 }
2253
2254 #ifdef CONFIG_NET_CLS_ACT
2255 if (skb->tc_verd & TC_NCLS) {
2256 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2257 goto ncls;
2258 }
2259 #endif
2260
2261 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2262 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2263 ptype->dev == orig_dev) {
2264 if (pt_prev)
2265 ret = deliver_skb(skb, pt_prev, orig_dev);
2266 pt_prev = ptype;
2267 }
2268 }
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2272 if (!skb)
2273 goto out;
2274 ncls:
2275 #endif
2276
2277 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2278 if (!skb)
2279 goto out;
2280 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2281 if (!skb)
2282 goto out;
2283
2284 type = skb->protocol;
2285 list_for_each_entry_rcu(ptype,
2286 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2287 if (ptype->type == type &&
2288 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2289 ptype->dev == orig_dev)) {
2290 if (pt_prev)
2291 ret = deliver_skb(skb, pt_prev, orig_dev);
2292 pt_prev = ptype;
2293 }
2294 }
2295
2296 if (pt_prev) {
2297 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2298 } else {
2299 kfree_skb(skb);
2300 /* Jamal, now you will not able to escape explaining
2301 * me how you were going to use this. :-)
2302 */
2303 ret = NET_RX_DROP;
2304 }
2305
2306 out:
2307 rcu_read_unlock();
2308 return ret;
2309 }
2310
2311 /* Network device is going away, flush any packets still pending */
2312 static void flush_backlog(void *arg)
2313 {
2314 struct net_device *dev = arg;
2315 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2316 struct sk_buff *skb, *tmp;
2317
2318 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2319 if (skb->dev == dev) {
2320 __skb_unlink(skb, &queue->input_pkt_queue);
2321 kfree_skb(skb);
2322 }
2323 }
2324
2325 static int napi_gro_complete(struct sk_buff *skb)
2326 {
2327 struct packet_type *ptype;
2328 __be16 type = skb->protocol;
2329 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2330 int err = -ENOENT;
2331
2332 if (NAPI_GRO_CB(skb)->count == 1)
2333 goto out;
2334
2335 rcu_read_lock();
2336 list_for_each_entry_rcu(ptype, head, list) {
2337 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2338 continue;
2339
2340 err = ptype->gro_complete(skb);
2341 break;
2342 }
2343 rcu_read_unlock();
2344
2345 if (err) {
2346 WARN_ON(&ptype->list == head);
2347 kfree_skb(skb);
2348 return NET_RX_SUCCESS;
2349 }
2350
2351 out:
2352 skb_shinfo(skb)->gso_size = 0;
2353 __skb_push(skb, -skb_network_offset(skb));
2354 return netif_receive_skb(skb);
2355 }
2356
2357 void napi_gro_flush(struct napi_struct *napi)
2358 {
2359 struct sk_buff *skb, *next;
2360
2361 for (skb = napi->gro_list; skb; skb = next) {
2362 next = skb->next;
2363 skb->next = NULL;
2364 napi_gro_complete(skb);
2365 }
2366
2367 napi->gro_list = NULL;
2368 }
2369 EXPORT_SYMBOL(napi_gro_flush);
2370
2371 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2372 {
2373 struct sk_buff **pp = NULL;
2374 struct packet_type *ptype;
2375 __be16 type = skb->protocol;
2376 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2377 int count = 0;
2378 int same_flow;
2379 int mac_len;
2380 int free;
2381
2382 if (!(skb->dev->features & NETIF_F_GRO))
2383 goto normal;
2384
2385 rcu_read_lock();
2386 list_for_each_entry_rcu(ptype, head, list) {
2387 struct sk_buff *p;
2388
2389 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2390 continue;
2391
2392 skb_reset_network_header(skb);
2393 mac_len = skb->network_header - skb->mac_header;
2394 skb->mac_len = mac_len;
2395 NAPI_GRO_CB(skb)->same_flow = 0;
2396 NAPI_GRO_CB(skb)->flush = 0;
2397 NAPI_GRO_CB(skb)->free = 0;
2398
2399 for (p = napi->gro_list; p; p = p->next) {
2400 count++;
2401
2402 if (!NAPI_GRO_CB(p)->same_flow)
2403 continue;
2404
2405 if (p->mac_len != mac_len ||
2406 memcmp(skb_mac_header(p), skb_mac_header(skb),
2407 mac_len))
2408 NAPI_GRO_CB(p)->same_flow = 0;
2409 }
2410
2411 pp = ptype->gro_receive(&napi->gro_list, skb);
2412 break;
2413 }
2414 rcu_read_unlock();
2415
2416 if (&ptype->list == head)
2417 goto normal;
2418
2419 same_flow = NAPI_GRO_CB(skb)->same_flow;
2420 free = NAPI_GRO_CB(skb)->free;
2421
2422 if (pp) {
2423 struct sk_buff *nskb = *pp;
2424
2425 *pp = nskb->next;
2426 nskb->next = NULL;
2427 napi_gro_complete(nskb);
2428 count--;
2429 }
2430
2431 if (same_flow)
2432 goto ok;
2433
2434 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2435 __skb_push(skb, -skb_network_offset(skb));
2436 goto normal;
2437 }
2438
2439 NAPI_GRO_CB(skb)->count = 1;
2440 skb_shinfo(skb)->gso_size = skb->len;
2441 skb->next = napi->gro_list;
2442 napi->gro_list = skb;
2443
2444 ok:
2445 return free;
2446
2447 normal:
2448 return -1;
2449 }
2450 EXPORT_SYMBOL(dev_gro_receive);
2451
2452 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2453 {
2454 struct sk_buff *p;
2455
2456 for (p = napi->gro_list; p; p = p->next) {
2457 NAPI_GRO_CB(p)->same_flow = 1;
2458 NAPI_GRO_CB(p)->flush = 0;
2459 }
2460
2461 return dev_gro_receive(napi, skb);
2462 }
2463
2464 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2465 {
2466 switch (__napi_gro_receive(napi, skb)) {
2467 case -1:
2468 return netif_receive_skb(skb);
2469
2470 case 1:
2471 kfree_skb(skb);
2472 break;
2473 }
2474
2475 return NET_RX_SUCCESS;
2476 }
2477 EXPORT_SYMBOL(napi_gro_receive);
2478
2479 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2480 {
2481 skb_shinfo(skb)->nr_frags = 0;
2482
2483 skb->len -= skb->data_len;
2484 skb->truesize -= skb->data_len;
2485 skb->data_len = 0;
2486
2487 __skb_pull(skb, skb_headlen(skb));
2488 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2489
2490 napi->skb = skb;
2491 }
2492 EXPORT_SYMBOL(napi_reuse_skb);
2493
2494 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2495 struct napi_gro_fraginfo *info)
2496 {
2497 struct net_device *dev = napi->dev;
2498 struct sk_buff *skb = napi->skb;
2499
2500 napi->skb = NULL;
2501
2502 if (!skb) {
2503 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2504 if (!skb)
2505 goto out;
2506
2507 skb_reserve(skb, NET_IP_ALIGN);
2508 }
2509
2510 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2511 skb_shinfo(skb)->nr_frags = info->nr_frags;
2512 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2513
2514 skb->data_len = info->len;
2515 skb->len += info->len;
2516 skb->truesize += info->len;
2517
2518 if (!pskb_may_pull(skb, ETH_HLEN)) {
2519 napi_reuse_skb(napi, skb);
2520 goto out;
2521 }
2522
2523 skb->protocol = eth_type_trans(skb, dev);
2524
2525 skb->ip_summed = info->ip_summed;
2526 skb->csum = info->csum;
2527
2528 out:
2529 return skb;
2530 }
2531 EXPORT_SYMBOL(napi_fraginfo_skb);
2532
2533 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2534 {
2535 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2536 int err = NET_RX_DROP;
2537
2538 if (!skb)
2539 goto out;
2540
2541 err = NET_RX_SUCCESS;
2542
2543 switch (__napi_gro_receive(napi, skb)) {
2544 case -1:
2545 return netif_receive_skb(skb);
2546
2547 case 0:
2548 goto out;
2549 }
2550
2551 napi_reuse_skb(napi, skb);
2552
2553 out:
2554 return err;
2555 }
2556 EXPORT_SYMBOL(napi_gro_frags);
2557
2558 static int process_backlog(struct napi_struct *napi, int quota)
2559 {
2560 int work = 0;
2561 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2562 unsigned long start_time = jiffies;
2563
2564 napi->weight = weight_p;
2565 do {
2566 struct sk_buff *skb;
2567
2568 local_irq_disable();
2569 skb = __skb_dequeue(&queue->input_pkt_queue);
2570 if (!skb) {
2571 __napi_complete(napi);
2572 local_irq_enable();
2573 break;
2574 }
2575 local_irq_enable();
2576
2577 napi_gro_receive(napi, skb);
2578 } while (++work < quota && jiffies == start_time);
2579
2580 napi_gro_flush(napi);
2581
2582 return work;
2583 }
2584
2585 /**
2586 * __napi_schedule - schedule for receive
2587 * @n: entry to schedule
2588 *
2589 * The entry's receive function will be scheduled to run
2590 */
2591 void __napi_schedule(struct napi_struct *n)
2592 {
2593 unsigned long flags;
2594
2595 local_irq_save(flags);
2596 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2597 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2598 local_irq_restore(flags);
2599 }
2600 EXPORT_SYMBOL(__napi_schedule);
2601
2602 void __napi_complete(struct napi_struct *n)
2603 {
2604 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2605 BUG_ON(n->gro_list);
2606
2607 list_del(&n->poll_list);
2608 smp_mb__before_clear_bit();
2609 clear_bit(NAPI_STATE_SCHED, &n->state);
2610 }
2611 EXPORT_SYMBOL(__napi_complete);
2612
2613 void napi_complete(struct napi_struct *n)
2614 {
2615 unsigned long flags;
2616
2617 /*
2618 * don't let napi dequeue from the cpu poll list
2619 * just in case its running on a different cpu
2620 */
2621 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2622 return;
2623
2624 napi_gro_flush(n);
2625 local_irq_save(flags);
2626 __napi_complete(n);
2627 local_irq_restore(flags);
2628 }
2629 EXPORT_SYMBOL(napi_complete);
2630
2631 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2632 int (*poll)(struct napi_struct *, int), int weight)
2633 {
2634 INIT_LIST_HEAD(&napi->poll_list);
2635 napi->gro_list = NULL;
2636 napi->skb = NULL;
2637 napi->poll = poll;
2638 napi->weight = weight;
2639 list_add(&napi->dev_list, &dev->napi_list);
2640 napi->dev = dev;
2641 #ifdef CONFIG_NETPOLL
2642 spin_lock_init(&napi->poll_lock);
2643 napi->poll_owner = -1;
2644 #endif
2645 set_bit(NAPI_STATE_SCHED, &napi->state);
2646 }
2647 EXPORT_SYMBOL(netif_napi_add);
2648
2649 void netif_napi_del(struct napi_struct *napi)
2650 {
2651 struct sk_buff *skb, *next;
2652
2653 list_del_init(&napi->dev_list);
2654 kfree(napi->skb);
2655
2656 for (skb = napi->gro_list; skb; skb = next) {
2657 next = skb->next;
2658 skb->next = NULL;
2659 kfree_skb(skb);
2660 }
2661
2662 napi->gro_list = NULL;
2663 }
2664 EXPORT_SYMBOL(netif_napi_del);
2665
2666
2667 static void net_rx_action(struct softirq_action *h)
2668 {
2669 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2670 unsigned long time_limit = jiffies + 2;
2671 int budget = netdev_budget;
2672 void *have;
2673
2674 local_irq_disable();
2675
2676 while (!list_empty(list)) {
2677 struct napi_struct *n;
2678 int work, weight;
2679
2680 /* If softirq window is exhuasted then punt.
2681 * Allow this to run for 2 jiffies since which will allow
2682 * an average latency of 1.5/HZ.
2683 */
2684 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2685 goto softnet_break;
2686
2687 local_irq_enable();
2688
2689 /* Even though interrupts have been re-enabled, this
2690 * access is safe because interrupts can only add new
2691 * entries to the tail of this list, and only ->poll()
2692 * calls can remove this head entry from the list.
2693 */
2694 n = list_entry(list->next, struct napi_struct, poll_list);
2695
2696 have = netpoll_poll_lock(n);
2697
2698 weight = n->weight;
2699
2700 /* This NAPI_STATE_SCHED test is for avoiding a race
2701 * with netpoll's poll_napi(). Only the entity which
2702 * obtains the lock and sees NAPI_STATE_SCHED set will
2703 * actually make the ->poll() call. Therefore we avoid
2704 * accidently calling ->poll() when NAPI is not scheduled.
2705 */
2706 work = 0;
2707 if (test_bit(NAPI_STATE_SCHED, &n->state))
2708 work = n->poll(n, weight);
2709
2710 WARN_ON_ONCE(work > weight);
2711
2712 budget -= work;
2713
2714 local_irq_disable();
2715
2716 /* Drivers must not modify the NAPI state if they
2717 * consume the entire weight. In such cases this code
2718 * still "owns" the NAPI instance and therefore can
2719 * move the instance around on the list at-will.
2720 */
2721 if (unlikely(work == weight)) {
2722 if (unlikely(napi_disable_pending(n)))
2723 __napi_complete(n);
2724 else
2725 list_move_tail(&n->poll_list, list);
2726 }
2727
2728 netpoll_poll_unlock(have);
2729 }
2730 out:
2731 local_irq_enable();
2732
2733 #ifdef CONFIG_NET_DMA
2734 /*
2735 * There may not be any more sk_buffs coming right now, so push
2736 * any pending DMA copies to hardware
2737 */
2738 dma_issue_pending_all();
2739 #endif
2740
2741 return;
2742
2743 softnet_break:
2744 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2745 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2746 goto out;
2747 }
2748
2749 static gifconf_func_t * gifconf_list [NPROTO];
2750
2751 /**
2752 * register_gifconf - register a SIOCGIF handler
2753 * @family: Address family
2754 * @gifconf: Function handler
2755 *
2756 * Register protocol dependent address dumping routines. The handler
2757 * that is passed must not be freed or reused until it has been replaced
2758 * by another handler.
2759 */
2760 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2761 {
2762 if (family >= NPROTO)
2763 return -EINVAL;
2764 gifconf_list[family] = gifconf;
2765 return 0;
2766 }
2767
2768
2769 /*
2770 * Map an interface index to its name (SIOCGIFNAME)
2771 */
2772
2773 /*
2774 * We need this ioctl for efficient implementation of the
2775 * if_indextoname() function required by the IPv6 API. Without
2776 * it, we would have to search all the interfaces to find a
2777 * match. --pb
2778 */
2779
2780 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2781 {
2782 struct net_device *dev;
2783 struct ifreq ifr;
2784
2785 /*
2786 * Fetch the caller's info block.
2787 */
2788
2789 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2790 return -EFAULT;
2791
2792 read_lock(&dev_base_lock);
2793 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2794 if (!dev) {
2795 read_unlock(&dev_base_lock);
2796 return -ENODEV;
2797 }
2798
2799 strcpy(ifr.ifr_name, dev->name);
2800 read_unlock(&dev_base_lock);
2801
2802 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2803 return -EFAULT;
2804 return 0;
2805 }
2806
2807 /*
2808 * Perform a SIOCGIFCONF call. This structure will change
2809 * size eventually, and there is nothing I can do about it.
2810 * Thus we will need a 'compatibility mode'.
2811 */
2812
2813 static int dev_ifconf(struct net *net, char __user *arg)
2814 {
2815 struct ifconf ifc;
2816 struct net_device *dev;
2817 char __user *pos;
2818 int len;
2819 int total;
2820 int i;
2821
2822 /*
2823 * Fetch the caller's info block.
2824 */
2825
2826 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2827 return -EFAULT;
2828
2829 pos = ifc.ifc_buf;
2830 len = ifc.ifc_len;
2831
2832 /*
2833 * Loop over the interfaces, and write an info block for each.
2834 */
2835
2836 total = 0;
2837 for_each_netdev(net, dev) {
2838 for (i = 0; i < NPROTO; i++) {
2839 if (gifconf_list[i]) {
2840 int done;
2841 if (!pos)
2842 done = gifconf_list[i](dev, NULL, 0);
2843 else
2844 done = gifconf_list[i](dev, pos + total,
2845 len - total);
2846 if (done < 0)
2847 return -EFAULT;
2848 total += done;
2849 }
2850 }
2851 }
2852
2853 /*
2854 * All done. Write the updated control block back to the caller.
2855 */
2856 ifc.ifc_len = total;
2857
2858 /*
2859 * Both BSD and Solaris return 0 here, so we do too.
2860 */
2861 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2862 }
2863
2864 #ifdef CONFIG_PROC_FS
2865 /*
2866 * This is invoked by the /proc filesystem handler to display a device
2867 * in detail.
2868 */
2869 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2870 __acquires(dev_base_lock)
2871 {
2872 struct net *net = seq_file_net(seq);
2873 loff_t off;
2874 struct net_device *dev;
2875
2876 read_lock(&dev_base_lock);
2877 if (!*pos)
2878 return SEQ_START_TOKEN;
2879
2880 off = 1;
2881 for_each_netdev(net, dev)
2882 if (off++ == *pos)
2883 return dev;
2884
2885 return NULL;
2886 }
2887
2888 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2889 {
2890 struct net *net = seq_file_net(seq);
2891 ++*pos;
2892 return v == SEQ_START_TOKEN ?
2893 first_net_device(net) : next_net_device((struct net_device *)v);
2894 }
2895
2896 void dev_seq_stop(struct seq_file *seq, void *v)
2897 __releases(dev_base_lock)
2898 {
2899 read_unlock(&dev_base_lock);
2900 }
2901
2902 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2903 {
2904 const struct net_device_stats *stats = dev_get_stats(dev);
2905
2906 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2907 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2908 dev->name, stats->rx_bytes, stats->rx_packets,
2909 stats->rx_errors,
2910 stats->rx_dropped + stats->rx_missed_errors,
2911 stats->rx_fifo_errors,
2912 stats->rx_length_errors + stats->rx_over_errors +
2913 stats->rx_crc_errors + stats->rx_frame_errors,
2914 stats->rx_compressed, stats->multicast,
2915 stats->tx_bytes, stats->tx_packets,
2916 stats->tx_errors, stats->tx_dropped,
2917 stats->tx_fifo_errors, stats->collisions,
2918 stats->tx_carrier_errors +
2919 stats->tx_aborted_errors +
2920 stats->tx_window_errors +
2921 stats->tx_heartbeat_errors,
2922 stats->tx_compressed);
2923 }
2924
2925 /*
2926 * Called from the PROCfs module. This now uses the new arbitrary sized
2927 * /proc/net interface to create /proc/net/dev
2928 */
2929 static int dev_seq_show(struct seq_file *seq, void *v)
2930 {
2931 if (v == SEQ_START_TOKEN)
2932 seq_puts(seq, "Inter-| Receive "
2933 " | Transmit\n"
2934 " face |bytes packets errs drop fifo frame "
2935 "compressed multicast|bytes packets errs "
2936 "drop fifo colls carrier compressed\n");
2937 else
2938 dev_seq_printf_stats(seq, v);
2939 return 0;
2940 }
2941
2942 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2943 {
2944 struct netif_rx_stats *rc = NULL;
2945
2946 while (*pos < nr_cpu_ids)
2947 if (cpu_online(*pos)) {
2948 rc = &per_cpu(netdev_rx_stat, *pos);
2949 break;
2950 } else
2951 ++*pos;
2952 return rc;
2953 }
2954
2955 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2956 {
2957 return softnet_get_online(pos);
2958 }
2959
2960 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2961 {
2962 ++*pos;
2963 return softnet_get_online(pos);
2964 }
2965
2966 static void softnet_seq_stop(struct seq_file *seq, void *v)
2967 {
2968 }
2969
2970 static int softnet_seq_show(struct seq_file *seq, void *v)
2971 {
2972 struct netif_rx_stats *s = v;
2973
2974 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2975 s->total, s->dropped, s->time_squeeze, 0,
2976 0, 0, 0, 0, /* was fastroute */
2977 s->cpu_collision );
2978 return 0;
2979 }
2980
2981 static const struct seq_operations dev_seq_ops = {
2982 .start = dev_seq_start,
2983 .next = dev_seq_next,
2984 .stop = dev_seq_stop,
2985 .show = dev_seq_show,
2986 };
2987
2988 static int dev_seq_open(struct inode *inode, struct file *file)
2989 {
2990 return seq_open_net(inode, file, &dev_seq_ops,
2991 sizeof(struct seq_net_private));
2992 }
2993
2994 static const struct file_operations dev_seq_fops = {
2995 .owner = THIS_MODULE,
2996 .open = dev_seq_open,
2997 .read = seq_read,
2998 .llseek = seq_lseek,
2999 .release = seq_release_net,
3000 };
3001
3002 static const struct seq_operations softnet_seq_ops = {
3003 .start = softnet_seq_start,
3004 .next = softnet_seq_next,
3005 .stop = softnet_seq_stop,
3006 .show = softnet_seq_show,
3007 };
3008
3009 static int softnet_seq_open(struct inode *inode, struct file *file)
3010 {
3011 return seq_open(file, &softnet_seq_ops);
3012 }
3013
3014 static const struct file_operations softnet_seq_fops = {
3015 .owner = THIS_MODULE,
3016 .open = softnet_seq_open,
3017 .read = seq_read,
3018 .llseek = seq_lseek,
3019 .release = seq_release,
3020 };
3021
3022 static void *ptype_get_idx(loff_t pos)
3023 {
3024 struct packet_type *pt = NULL;
3025 loff_t i = 0;
3026 int t;
3027
3028 list_for_each_entry_rcu(pt, &ptype_all, list) {
3029 if (i == pos)
3030 return pt;
3031 ++i;
3032 }
3033
3034 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3035 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3036 if (i == pos)
3037 return pt;
3038 ++i;
3039 }
3040 }
3041 return NULL;
3042 }
3043
3044 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3045 __acquires(RCU)
3046 {
3047 rcu_read_lock();
3048 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3049 }
3050
3051 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3052 {
3053 struct packet_type *pt;
3054 struct list_head *nxt;
3055 int hash;
3056
3057 ++*pos;
3058 if (v == SEQ_START_TOKEN)
3059 return ptype_get_idx(0);
3060
3061 pt = v;
3062 nxt = pt->list.next;
3063 if (pt->type == htons(ETH_P_ALL)) {
3064 if (nxt != &ptype_all)
3065 goto found;
3066 hash = 0;
3067 nxt = ptype_base[0].next;
3068 } else
3069 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3070
3071 while (nxt == &ptype_base[hash]) {
3072 if (++hash >= PTYPE_HASH_SIZE)
3073 return NULL;
3074 nxt = ptype_base[hash].next;
3075 }
3076 found:
3077 return list_entry(nxt, struct packet_type, list);
3078 }
3079
3080 static void ptype_seq_stop(struct seq_file *seq, void *v)
3081 __releases(RCU)
3082 {
3083 rcu_read_unlock();
3084 }
3085
3086 static int ptype_seq_show(struct seq_file *seq, void *v)
3087 {
3088 struct packet_type *pt = v;
3089
3090 if (v == SEQ_START_TOKEN)
3091 seq_puts(seq, "Type Device Function\n");
3092 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3093 if (pt->type == htons(ETH_P_ALL))
3094 seq_puts(seq, "ALL ");
3095 else
3096 seq_printf(seq, "%04x", ntohs(pt->type));
3097
3098 seq_printf(seq, " %-8s %pF\n",
3099 pt->dev ? pt->dev->name : "", pt->func);
3100 }
3101
3102 return 0;
3103 }
3104
3105 static const struct seq_operations ptype_seq_ops = {
3106 .start = ptype_seq_start,
3107 .next = ptype_seq_next,
3108 .stop = ptype_seq_stop,
3109 .show = ptype_seq_show,
3110 };
3111
3112 static int ptype_seq_open(struct inode *inode, struct file *file)
3113 {
3114 return seq_open_net(inode, file, &ptype_seq_ops,
3115 sizeof(struct seq_net_private));
3116 }
3117
3118 static const struct file_operations ptype_seq_fops = {
3119 .owner = THIS_MODULE,
3120 .open = ptype_seq_open,
3121 .read = seq_read,
3122 .llseek = seq_lseek,
3123 .release = seq_release_net,
3124 };
3125
3126
3127 static int __net_init dev_proc_net_init(struct net *net)
3128 {
3129 int rc = -ENOMEM;
3130
3131 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3132 goto out;
3133 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3134 goto out_dev;
3135 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3136 goto out_softnet;
3137
3138 if (wext_proc_init(net))
3139 goto out_ptype;
3140 rc = 0;
3141 out:
3142 return rc;
3143 out_ptype:
3144 proc_net_remove(net, "ptype");
3145 out_softnet:
3146 proc_net_remove(net, "softnet_stat");
3147 out_dev:
3148 proc_net_remove(net, "dev");
3149 goto out;
3150 }
3151
3152 static void __net_exit dev_proc_net_exit(struct net *net)
3153 {
3154 wext_proc_exit(net);
3155
3156 proc_net_remove(net, "ptype");
3157 proc_net_remove(net, "softnet_stat");
3158 proc_net_remove(net, "dev");
3159 }
3160
3161 static struct pernet_operations __net_initdata dev_proc_ops = {
3162 .init = dev_proc_net_init,
3163 .exit = dev_proc_net_exit,
3164 };
3165
3166 static int __init dev_proc_init(void)
3167 {
3168 return register_pernet_subsys(&dev_proc_ops);
3169 }
3170 #else
3171 #define dev_proc_init() 0
3172 #endif /* CONFIG_PROC_FS */
3173
3174
3175 /**
3176 * netdev_set_master - set up master/slave pair
3177 * @slave: slave device
3178 * @master: new master device
3179 *
3180 * Changes the master device of the slave. Pass %NULL to break the
3181 * bonding. The caller must hold the RTNL semaphore. On a failure
3182 * a negative errno code is returned. On success the reference counts
3183 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3184 * function returns zero.
3185 */
3186 int netdev_set_master(struct net_device *slave, struct net_device *master)
3187 {
3188 struct net_device *old = slave->master;
3189
3190 ASSERT_RTNL();
3191
3192 if (master) {
3193 if (old)
3194 return -EBUSY;
3195 dev_hold(master);
3196 }
3197
3198 slave->master = master;
3199
3200 synchronize_net();
3201
3202 if (old)
3203 dev_put(old);
3204
3205 if (master)
3206 slave->flags |= IFF_SLAVE;
3207 else
3208 slave->flags &= ~IFF_SLAVE;
3209
3210 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3211 return 0;
3212 }
3213
3214 static void dev_change_rx_flags(struct net_device *dev, int flags)
3215 {
3216 const struct net_device_ops *ops = dev->netdev_ops;
3217
3218 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3219 ops->ndo_change_rx_flags(dev, flags);
3220 }
3221
3222 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3223 {
3224 unsigned short old_flags = dev->flags;
3225 uid_t uid;
3226 gid_t gid;
3227
3228 ASSERT_RTNL();
3229
3230 dev->flags |= IFF_PROMISC;
3231 dev->promiscuity += inc;
3232 if (dev->promiscuity == 0) {
3233 /*
3234 * Avoid overflow.
3235 * If inc causes overflow, untouch promisc and return error.
3236 */
3237 if (inc < 0)
3238 dev->flags &= ~IFF_PROMISC;
3239 else {
3240 dev->promiscuity -= inc;
3241 printk(KERN_WARNING "%s: promiscuity touches roof, "
3242 "set promiscuity failed, promiscuity feature "
3243 "of device might be broken.\n", dev->name);
3244 return -EOVERFLOW;
3245 }
3246 }
3247 if (dev->flags != old_flags) {
3248 printk(KERN_INFO "device %s %s promiscuous mode\n",
3249 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3250 "left");
3251 if (audit_enabled) {
3252 current_uid_gid(&uid, &gid);
3253 audit_log(current->audit_context, GFP_ATOMIC,
3254 AUDIT_ANOM_PROMISCUOUS,
3255 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3256 dev->name, (dev->flags & IFF_PROMISC),
3257 (old_flags & IFF_PROMISC),
3258 audit_get_loginuid(current),
3259 uid, gid,
3260 audit_get_sessionid(current));
3261 }
3262
3263 dev_change_rx_flags(dev, IFF_PROMISC);
3264 }
3265 return 0;
3266 }
3267
3268 /**
3269 * dev_set_promiscuity - update promiscuity count on a device
3270 * @dev: device
3271 * @inc: modifier
3272 *
3273 * Add or remove promiscuity from a device. While the count in the device
3274 * remains above zero the interface remains promiscuous. Once it hits zero
3275 * the device reverts back to normal filtering operation. A negative inc
3276 * value is used to drop promiscuity on the device.
3277 * Return 0 if successful or a negative errno code on error.
3278 */
3279 int dev_set_promiscuity(struct net_device *dev, int inc)
3280 {
3281 unsigned short old_flags = dev->flags;
3282 int err;
3283
3284 err = __dev_set_promiscuity(dev, inc);
3285 if (err < 0)
3286 return err;
3287 if (dev->flags != old_flags)
3288 dev_set_rx_mode(dev);
3289 return err;
3290 }
3291
3292 /**
3293 * dev_set_allmulti - update allmulti count on a device
3294 * @dev: device
3295 * @inc: modifier
3296 *
3297 * Add or remove reception of all multicast frames to a device. While the
3298 * count in the device remains above zero the interface remains listening
3299 * to all interfaces. Once it hits zero the device reverts back to normal
3300 * filtering operation. A negative @inc value is used to drop the counter
3301 * when releasing a resource needing all multicasts.
3302 * Return 0 if successful or a negative errno code on error.
3303 */
3304
3305 int dev_set_allmulti(struct net_device *dev, int inc)
3306 {
3307 unsigned short old_flags = dev->flags;
3308
3309 ASSERT_RTNL();
3310
3311 dev->flags |= IFF_ALLMULTI;
3312 dev->allmulti += inc;
3313 if (dev->allmulti == 0) {
3314 /*
3315 * Avoid overflow.
3316 * If inc causes overflow, untouch allmulti and return error.
3317 */
3318 if (inc < 0)
3319 dev->flags &= ~IFF_ALLMULTI;
3320 else {
3321 dev->allmulti -= inc;
3322 printk(KERN_WARNING "%s: allmulti touches roof, "
3323 "set allmulti failed, allmulti feature of "
3324 "device might be broken.\n", dev->name);
3325 return -EOVERFLOW;
3326 }
3327 }
3328 if (dev->flags ^ old_flags) {
3329 dev_change_rx_flags(dev, IFF_ALLMULTI);
3330 dev_set_rx_mode(dev);
3331 }
3332 return 0;
3333 }
3334
3335 /*
3336 * Upload unicast and multicast address lists to device and
3337 * configure RX filtering. When the device doesn't support unicast
3338 * filtering it is put in promiscuous mode while unicast addresses
3339 * are present.
3340 */
3341 void __dev_set_rx_mode(struct net_device *dev)
3342 {
3343 const struct net_device_ops *ops = dev->netdev_ops;
3344
3345 /* dev_open will call this function so the list will stay sane. */
3346 if (!(dev->flags&IFF_UP))
3347 return;
3348
3349 if (!netif_device_present(dev))
3350 return;
3351
3352 if (ops->ndo_set_rx_mode)
3353 ops->ndo_set_rx_mode(dev);
3354 else {
3355 /* Unicast addresses changes may only happen under the rtnl,
3356 * therefore calling __dev_set_promiscuity here is safe.
3357 */
3358 if (dev->uc_count > 0 && !dev->uc_promisc) {
3359 __dev_set_promiscuity(dev, 1);
3360 dev->uc_promisc = 1;
3361 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3362 __dev_set_promiscuity(dev, -1);
3363 dev->uc_promisc = 0;
3364 }
3365
3366 if (ops->ndo_set_multicast_list)
3367 ops->ndo_set_multicast_list(dev);
3368 }
3369 }
3370
3371 void dev_set_rx_mode(struct net_device *dev)
3372 {
3373 netif_addr_lock_bh(dev);
3374 __dev_set_rx_mode(dev);
3375 netif_addr_unlock_bh(dev);
3376 }
3377
3378 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3379 void *addr, int alen, int glbl)
3380 {
3381 struct dev_addr_list *da;
3382
3383 for (; (da = *list) != NULL; list = &da->next) {
3384 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3385 alen == da->da_addrlen) {
3386 if (glbl) {
3387 int old_glbl = da->da_gusers;
3388 da->da_gusers = 0;
3389 if (old_glbl == 0)
3390 break;
3391 }
3392 if (--da->da_users)
3393 return 0;
3394
3395 *list = da->next;
3396 kfree(da);
3397 (*count)--;
3398 return 0;
3399 }
3400 }
3401 return -ENOENT;
3402 }
3403
3404 int __dev_addr_add(struct dev_addr_list **list, int *count,
3405 void *addr, int alen, int glbl)
3406 {
3407 struct dev_addr_list *da;
3408
3409 for (da = *list; da != NULL; da = da->next) {
3410 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3411 da->da_addrlen == alen) {
3412 if (glbl) {
3413 int old_glbl = da->da_gusers;
3414 da->da_gusers = 1;
3415 if (old_glbl)
3416 return 0;
3417 }
3418 da->da_users++;
3419 return 0;
3420 }
3421 }
3422
3423 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3424 if (da == NULL)
3425 return -ENOMEM;
3426 memcpy(da->da_addr, addr, alen);
3427 da->da_addrlen = alen;
3428 da->da_users = 1;
3429 da->da_gusers = glbl ? 1 : 0;
3430 da->next = *list;
3431 *list = da;
3432 (*count)++;
3433 return 0;
3434 }
3435
3436 /**
3437 * dev_unicast_delete - Release secondary unicast address.
3438 * @dev: device
3439 * @addr: address to delete
3440 * @alen: length of @addr
3441 *
3442 * Release reference to a secondary unicast address and remove it
3443 * from the device if the reference count drops to zero.
3444 *
3445 * The caller must hold the rtnl_mutex.
3446 */
3447 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3448 {
3449 int err;
3450
3451 ASSERT_RTNL();
3452
3453 netif_addr_lock_bh(dev);
3454 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3455 if (!err)
3456 __dev_set_rx_mode(dev);
3457 netif_addr_unlock_bh(dev);
3458 return err;
3459 }
3460 EXPORT_SYMBOL(dev_unicast_delete);
3461
3462 /**
3463 * dev_unicast_add - add a secondary unicast address
3464 * @dev: device
3465 * @addr: address to add
3466 * @alen: length of @addr
3467 *
3468 * Add a secondary unicast address to the device or increase
3469 * the reference count if it already exists.
3470 *
3471 * The caller must hold the rtnl_mutex.
3472 */
3473 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3474 {
3475 int err;
3476
3477 ASSERT_RTNL();
3478
3479 netif_addr_lock_bh(dev);
3480 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3481 if (!err)
3482 __dev_set_rx_mode(dev);
3483 netif_addr_unlock_bh(dev);
3484 return err;
3485 }
3486 EXPORT_SYMBOL(dev_unicast_add);
3487
3488 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3489 struct dev_addr_list **from, int *from_count)
3490 {
3491 struct dev_addr_list *da, *next;
3492 int err = 0;
3493
3494 da = *from;
3495 while (da != NULL) {
3496 next = da->next;
3497 if (!da->da_synced) {
3498 err = __dev_addr_add(to, to_count,
3499 da->da_addr, da->da_addrlen, 0);
3500 if (err < 0)
3501 break;
3502 da->da_synced = 1;
3503 da->da_users++;
3504 } else if (da->da_users == 1) {
3505 __dev_addr_delete(to, to_count,
3506 da->da_addr, da->da_addrlen, 0);
3507 __dev_addr_delete(from, from_count,
3508 da->da_addr, da->da_addrlen, 0);
3509 }
3510 da = next;
3511 }
3512 return err;
3513 }
3514
3515 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3516 struct dev_addr_list **from, int *from_count)
3517 {
3518 struct dev_addr_list *da, *next;
3519
3520 da = *from;
3521 while (da != NULL) {
3522 next = da->next;
3523 if (da->da_synced) {
3524 __dev_addr_delete(to, to_count,
3525 da->da_addr, da->da_addrlen, 0);
3526 da->da_synced = 0;
3527 __dev_addr_delete(from, from_count,
3528 da->da_addr, da->da_addrlen, 0);
3529 }
3530 da = next;
3531 }
3532 }
3533
3534 /**
3535 * dev_unicast_sync - Synchronize device's unicast list to another device
3536 * @to: destination device
3537 * @from: source device
3538 *
3539 * Add newly added addresses to the destination device and release
3540 * addresses that have no users left. The source device must be
3541 * locked by netif_tx_lock_bh.
3542 *
3543 * This function is intended to be called from the dev->set_rx_mode
3544 * function of layered software devices.
3545 */
3546 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3547 {
3548 int err = 0;
3549
3550 netif_addr_lock_bh(to);
3551 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3552 &from->uc_list, &from->uc_count);
3553 if (!err)
3554 __dev_set_rx_mode(to);
3555 netif_addr_unlock_bh(to);
3556 return err;
3557 }
3558 EXPORT_SYMBOL(dev_unicast_sync);
3559
3560 /**
3561 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3562 * @to: destination device
3563 * @from: source device
3564 *
3565 * Remove all addresses that were added to the destination device by
3566 * dev_unicast_sync(). This function is intended to be called from the
3567 * dev->stop function of layered software devices.
3568 */
3569 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3570 {
3571 netif_addr_lock_bh(from);
3572 netif_addr_lock(to);
3573
3574 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3575 &from->uc_list, &from->uc_count);
3576 __dev_set_rx_mode(to);
3577
3578 netif_addr_unlock(to);
3579 netif_addr_unlock_bh(from);
3580 }
3581 EXPORT_SYMBOL(dev_unicast_unsync);
3582
3583 static void __dev_addr_discard(struct dev_addr_list **list)
3584 {
3585 struct dev_addr_list *tmp;
3586
3587 while (*list != NULL) {
3588 tmp = *list;
3589 *list = tmp->next;
3590 if (tmp->da_users > tmp->da_gusers)
3591 printk("__dev_addr_discard: address leakage! "
3592 "da_users=%d\n", tmp->da_users);
3593 kfree(tmp);
3594 }
3595 }
3596
3597 static void dev_addr_discard(struct net_device *dev)
3598 {
3599 netif_addr_lock_bh(dev);
3600
3601 __dev_addr_discard(&dev->uc_list);
3602 dev->uc_count = 0;
3603
3604 __dev_addr_discard(&dev->mc_list);
3605 dev->mc_count = 0;
3606
3607 netif_addr_unlock_bh(dev);
3608 }
3609
3610 /**
3611 * dev_get_flags - get flags reported to userspace
3612 * @dev: device
3613 *
3614 * Get the combination of flag bits exported through APIs to userspace.
3615 */
3616 unsigned dev_get_flags(const struct net_device *dev)
3617 {
3618 unsigned flags;
3619
3620 flags = (dev->flags & ~(IFF_PROMISC |
3621 IFF_ALLMULTI |
3622 IFF_RUNNING |
3623 IFF_LOWER_UP |
3624 IFF_DORMANT)) |
3625 (dev->gflags & (IFF_PROMISC |
3626 IFF_ALLMULTI));
3627
3628 if (netif_running(dev)) {
3629 if (netif_oper_up(dev))
3630 flags |= IFF_RUNNING;
3631 if (netif_carrier_ok(dev))
3632 flags |= IFF_LOWER_UP;
3633 if (netif_dormant(dev))
3634 flags |= IFF_DORMANT;
3635 }
3636
3637 return flags;
3638 }
3639
3640 /**
3641 * dev_change_flags - change device settings
3642 * @dev: device
3643 * @flags: device state flags
3644 *
3645 * Change settings on device based state flags. The flags are
3646 * in the userspace exported format.
3647 */
3648 int dev_change_flags(struct net_device *dev, unsigned flags)
3649 {
3650 int ret, changes;
3651 int old_flags = dev->flags;
3652
3653 ASSERT_RTNL();
3654
3655 /*
3656 * Set the flags on our device.
3657 */
3658
3659 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3660 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3661 IFF_AUTOMEDIA)) |
3662 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3663 IFF_ALLMULTI));
3664
3665 /*
3666 * Load in the correct multicast list now the flags have changed.
3667 */
3668
3669 if ((old_flags ^ flags) & IFF_MULTICAST)
3670 dev_change_rx_flags(dev, IFF_MULTICAST);
3671
3672 dev_set_rx_mode(dev);
3673
3674 /*
3675 * Have we downed the interface. We handle IFF_UP ourselves
3676 * according to user attempts to set it, rather than blindly
3677 * setting it.
3678 */
3679
3680 ret = 0;
3681 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3682 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3683
3684 if (!ret)
3685 dev_set_rx_mode(dev);
3686 }
3687
3688 if (dev->flags & IFF_UP &&
3689 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3690 IFF_VOLATILE)))
3691 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3692
3693 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3694 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3695 dev->gflags ^= IFF_PROMISC;
3696 dev_set_promiscuity(dev, inc);
3697 }
3698
3699 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3700 is important. Some (broken) drivers set IFF_PROMISC, when
3701 IFF_ALLMULTI is requested not asking us and not reporting.
3702 */
3703 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3704 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3705 dev->gflags ^= IFF_ALLMULTI;
3706 dev_set_allmulti(dev, inc);
3707 }
3708
3709 /* Exclude state transition flags, already notified */
3710 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3711 if (changes)
3712 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3713
3714 return ret;
3715 }
3716
3717 /**
3718 * dev_set_mtu - Change maximum transfer unit
3719 * @dev: device
3720 * @new_mtu: new transfer unit
3721 *
3722 * Change the maximum transfer size of the network device.
3723 */
3724 int dev_set_mtu(struct net_device *dev, int new_mtu)
3725 {
3726 const struct net_device_ops *ops = dev->netdev_ops;
3727 int err;
3728
3729 if (new_mtu == dev->mtu)
3730 return 0;
3731
3732 /* MTU must be positive. */
3733 if (new_mtu < 0)
3734 return -EINVAL;
3735
3736 if (!netif_device_present(dev))
3737 return -ENODEV;
3738
3739 err = 0;
3740 if (ops->ndo_change_mtu)
3741 err = ops->ndo_change_mtu(dev, new_mtu);
3742 else
3743 dev->mtu = new_mtu;
3744
3745 if (!err && dev->flags & IFF_UP)
3746 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3747 return err;
3748 }
3749
3750 /**
3751 * dev_set_mac_address - Change Media Access Control Address
3752 * @dev: device
3753 * @sa: new address
3754 *
3755 * Change the hardware (MAC) address of the device
3756 */
3757 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3758 {
3759 const struct net_device_ops *ops = dev->netdev_ops;
3760 int err;
3761
3762 if (!ops->ndo_set_mac_address)
3763 return -EOPNOTSUPP;
3764 if (sa->sa_family != dev->type)
3765 return -EINVAL;
3766 if (!netif_device_present(dev))
3767 return -ENODEV;
3768 err = ops->ndo_set_mac_address(dev, sa);
3769 if (!err)
3770 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3771 return err;
3772 }
3773
3774 /*
3775 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3776 */
3777 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3778 {
3779 int err;
3780 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3781
3782 if (!dev)
3783 return -ENODEV;
3784
3785 switch (cmd) {
3786 case SIOCGIFFLAGS: /* Get interface flags */
3787 ifr->ifr_flags = dev_get_flags(dev);
3788 return 0;
3789
3790 case SIOCGIFMETRIC: /* Get the metric on the interface
3791 (currently unused) */
3792 ifr->ifr_metric = 0;
3793 return 0;
3794
3795 case SIOCGIFMTU: /* Get the MTU of a device */
3796 ifr->ifr_mtu = dev->mtu;
3797 return 0;
3798
3799 case SIOCGIFHWADDR:
3800 if (!dev->addr_len)
3801 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3802 else
3803 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3804 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3805 ifr->ifr_hwaddr.sa_family = dev->type;
3806 return 0;
3807
3808 case SIOCGIFSLAVE:
3809 err = -EINVAL;
3810 break;
3811
3812 case SIOCGIFMAP:
3813 ifr->ifr_map.mem_start = dev->mem_start;
3814 ifr->ifr_map.mem_end = dev->mem_end;
3815 ifr->ifr_map.base_addr = dev->base_addr;
3816 ifr->ifr_map.irq = dev->irq;
3817 ifr->ifr_map.dma = dev->dma;
3818 ifr->ifr_map.port = dev->if_port;
3819 return 0;
3820
3821 case SIOCGIFINDEX:
3822 ifr->ifr_ifindex = dev->ifindex;
3823 return 0;
3824
3825 case SIOCGIFTXQLEN:
3826 ifr->ifr_qlen = dev->tx_queue_len;
3827 return 0;
3828
3829 default:
3830 /* dev_ioctl() should ensure this case
3831 * is never reached
3832 */
3833 WARN_ON(1);
3834 err = -EINVAL;
3835 break;
3836
3837 }
3838 return err;
3839 }
3840
3841 /*
3842 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3843 */
3844 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3845 {
3846 int err;
3847 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3848 const struct net_device_ops *ops;
3849
3850 if (!dev)
3851 return -ENODEV;
3852
3853 ops = dev->netdev_ops;
3854
3855 switch (cmd) {
3856 case SIOCSIFFLAGS: /* Set interface flags */
3857 return dev_change_flags(dev, ifr->ifr_flags);
3858
3859 case SIOCSIFMETRIC: /* Set the metric on the interface
3860 (currently unused) */
3861 return -EOPNOTSUPP;
3862
3863 case SIOCSIFMTU: /* Set the MTU of a device */
3864 return dev_set_mtu(dev, ifr->ifr_mtu);
3865
3866 case SIOCSIFHWADDR:
3867 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3868
3869 case SIOCSIFHWBROADCAST:
3870 if (ifr->ifr_hwaddr.sa_family != dev->type)
3871 return -EINVAL;
3872 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3873 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3874 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3875 return 0;
3876
3877 case SIOCSIFMAP:
3878 if (ops->ndo_set_config) {
3879 if (!netif_device_present(dev))
3880 return -ENODEV;
3881 return ops->ndo_set_config(dev, &ifr->ifr_map);
3882 }
3883 return -EOPNOTSUPP;
3884
3885 case SIOCADDMULTI:
3886 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3887 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3888 return -EINVAL;
3889 if (!netif_device_present(dev))
3890 return -ENODEV;
3891 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3892 dev->addr_len, 1);
3893
3894 case SIOCDELMULTI:
3895 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3896 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3897 return -EINVAL;
3898 if (!netif_device_present(dev))
3899 return -ENODEV;
3900 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3901 dev->addr_len, 1);
3902
3903 case SIOCSIFTXQLEN:
3904 if (ifr->ifr_qlen < 0)
3905 return -EINVAL;
3906 dev->tx_queue_len = ifr->ifr_qlen;
3907 return 0;
3908
3909 case SIOCSIFNAME:
3910 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3911 return dev_change_name(dev, ifr->ifr_newname);
3912
3913 /*
3914 * Unknown or private ioctl
3915 */
3916
3917 default:
3918 if ((cmd >= SIOCDEVPRIVATE &&
3919 cmd <= SIOCDEVPRIVATE + 15) ||
3920 cmd == SIOCBONDENSLAVE ||
3921 cmd == SIOCBONDRELEASE ||
3922 cmd == SIOCBONDSETHWADDR ||
3923 cmd == SIOCBONDSLAVEINFOQUERY ||
3924 cmd == SIOCBONDINFOQUERY ||
3925 cmd == SIOCBONDCHANGEACTIVE ||
3926 cmd == SIOCGMIIPHY ||
3927 cmd == SIOCGMIIREG ||
3928 cmd == SIOCSMIIREG ||
3929 cmd == SIOCBRADDIF ||
3930 cmd == SIOCBRDELIF ||
3931 cmd == SIOCWANDEV) {
3932 err = -EOPNOTSUPP;
3933 if (ops->ndo_do_ioctl) {
3934 if (netif_device_present(dev))
3935 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3936 else
3937 err = -ENODEV;
3938 }
3939 } else
3940 err = -EINVAL;
3941
3942 }
3943 return err;
3944 }
3945
3946 /*
3947 * This function handles all "interface"-type I/O control requests. The actual
3948 * 'doing' part of this is dev_ifsioc above.
3949 */
3950
3951 /**
3952 * dev_ioctl - network device ioctl
3953 * @net: the applicable net namespace
3954 * @cmd: command to issue
3955 * @arg: pointer to a struct ifreq in user space
3956 *
3957 * Issue ioctl functions to devices. This is normally called by the
3958 * user space syscall interfaces but can sometimes be useful for
3959 * other purposes. The return value is the return from the syscall if
3960 * positive or a negative errno code on error.
3961 */
3962
3963 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3964 {
3965 struct ifreq ifr;
3966 int ret;
3967 char *colon;
3968
3969 /* One special case: SIOCGIFCONF takes ifconf argument
3970 and requires shared lock, because it sleeps writing
3971 to user space.
3972 */
3973
3974 if (cmd == SIOCGIFCONF) {
3975 rtnl_lock();
3976 ret = dev_ifconf(net, (char __user *) arg);
3977 rtnl_unlock();
3978 return ret;
3979 }
3980 if (cmd == SIOCGIFNAME)
3981 return dev_ifname(net, (struct ifreq __user *)arg);
3982
3983 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3984 return -EFAULT;
3985
3986 ifr.ifr_name[IFNAMSIZ-1] = 0;
3987
3988 colon = strchr(ifr.ifr_name, ':');
3989 if (colon)
3990 *colon = 0;
3991
3992 /*
3993 * See which interface the caller is talking about.
3994 */
3995
3996 switch (cmd) {
3997 /*
3998 * These ioctl calls:
3999 * - can be done by all.
4000 * - atomic and do not require locking.
4001 * - return a value
4002 */
4003 case SIOCGIFFLAGS:
4004 case SIOCGIFMETRIC:
4005 case SIOCGIFMTU:
4006 case SIOCGIFHWADDR:
4007 case SIOCGIFSLAVE:
4008 case SIOCGIFMAP:
4009 case SIOCGIFINDEX:
4010 case SIOCGIFTXQLEN:
4011 dev_load(net, ifr.ifr_name);
4012 read_lock(&dev_base_lock);
4013 ret = dev_ifsioc_locked(net, &ifr, cmd);
4014 read_unlock(&dev_base_lock);
4015 if (!ret) {
4016 if (colon)
4017 *colon = ':';
4018 if (copy_to_user(arg, &ifr,
4019 sizeof(struct ifreq)))
4020 ret = -EFAULT;
4021 }
4022 return ret;
4023
4024 case SIOCETHTOOL:
4025 dev_load(net, ifr.ifr_name);
4026 rtnl_lock();
4027 ret = dev_ethtool(net, &ifr);
4028 rtnl_unlock();
4029 if (!ret) {
4030 if (colon)
4031 *colon = ':';
4032 if (copy_to_user(arg, &ifr,
4033 sizeof(struct ifreq)))
4034 ret = -EFAULT;
4035 }
4036 return ret;
4037
4038 /*
4039 * These ioctl calls:
4040 * - require superuser power.
4041 * - require strict serialization.
4042 * - return a value
4043 */
4044 case SIOCGMIIPHY:
4045 case SIOCGMIIREG:
4046 case SIOCSIFNAME:
4047 if (!capable(CAP_NET_ADMIN))
4048 return -EPERM;
4049 dev_load(net, ifr.ifr_name);
4050 rtnl_lock();
4051 ret = dev_ifsioc(net, &ifr, cmd);
4052 rtnl_unlock();
4053 if (!ret) {
4054 if (colon)
4055 *colon = ':';
4056 if (copy_to_user(arg, &ifr,
4057 sizeof(struct ifreq)))
4058 ret = -EFAULT;
4059 }
4060 return ret;
4061
4062 /*
4063 * These ioctl calls:
4064 * - require superuser power.
4065 * - require strict serialization.
4066 * - do not return a value
4067 */
4068 case SIOCSIFFLAGS:
4069 case SIOCSIFMETRIC:
4070 case SIOCSIFMTU:
4071 case SIOCSIFMAP:
4072 case SIOCSIFHWADDR:
4073 case SIOCSIFSLAVE:
4074 case SIOCADDMULTI:
4075 case SIOCDELMULTI:
4076 case SIOCSIFHWBROADCAST:
4077 case SIOCSIFTXQLEN:
4078 case SIOCSMIIREG:
4079 case SIOCBONDENSLAVE:
4080 case SIOCBONDRELEASE:
4081 case SIOCBONDSETHWADDR:
4082 case SIOCBONDCHANGEACTIVE:
4083 case SIOCBRADDIF:
4084 case SIOCBRDELIF:
4085 if (!capable(CAP_NET_ADMIN))
4086 return -EPERM;
4087 /* fall through */
4088 case SIOCBONDSLAVEINFOQUERY:
4089 case SIOCBONDINFOQUERY:
4090 dev_load(net, ifr.ifr_name);
4091 rtnl_lock();
4092 ret = dev_ifsioc(net, &ifr, cmd);
4093 rtnl_unlock();
4094 return ret;
4095
4096 case SIOCGIFMEM:
4097 /* Get the per device memory space. We can add this but
4098 * currently do not support it */
4099 case SIOCSIFMEM:
4100 /* Set the per device memory buffer space.
4101 * Not applicable in our case */
4102 case SIOCSIFLINK:
4103 return -EINVAL;
4104
4105 /*
4106 * Unknown or private ioctl.
4107 */
4108 default:
4109 if (cmd == SIOCWANDEV ||
4110 (cmd >= SIOCDEVPRIVATE &&
4111 cmd <= SIOCDEVPRIVATE + 15)) {
4112 dev_load(net, ifr.ifr_name);
4113 rtnl_lock();
4114 ret = dev_ifsioc(net, &ifr, cmd);
4115 rtnl_unlock();
4116 if (!ret && copy_to_user(arg, &ifr,
4117 sizeof(struct ifreq)))
4118 ret = -EFAULT;
4119 return ret;
4120 }
4121 /* Take care of Wireless Extensions */
4122 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4123 return wext_handle_ioctl(net, &ifr, cmd, arg);
4124 return -EINVAL;
4125 }
4126 }
4127
4128
4129 /**
4130 * dev_new_index - allocate an ifindex
4131 * @net: the applicable net namespace
4132 *
4133 * Returns a suitable unique value for a new device interface
4134 * number. The caller must hold the rtnl semaphore or the
4135 * dev_base_lock to be sure it remains unique.
4136 */
4137 static int dev_new_index(struct net *net)
4138 {
4139 static int ifindex;
4140 for (;;) {
4141 if (++ifindex <= 0)
4142 ifindex = 1;
4143 if (!__dev_get_by_index(net, ifindex))
4144 return ifindex;
4145 }
4146 }
4147
4148 /* Delayed registration/unregisteration */
4149 static LIST_HEAD(net_todo_list);
4150
4151 static void net_set_todo(struct net_device *dev)
4152 {
4153 list_add_tail(&dev->todo_list, &net_todo_list);
4154 }
4155
4156 static void rollback_registered(struct net_device *dev)
4157 {
4158 BUG_ON(dev_boot_phase);
4159 ASSERT_RTNL();
4160
4161 /* Some devices call without registering for initialization unwind. */
4162 if (dev->reg_state == NETREG_UNINITIALIZED) {
4163 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4164 "was registered\n", dev->name, dev);
4165
4166 WARN_ON(1);
4167 return;
4168 }
4169
4170 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4171
4172 /* If device is running, close it first. */
4173 dev_close(dev);
4174
4175 /* And unlink it from device chain. */
4176 unlist_netdevice(dev);
4177
4178 dev->reg_state = NETREG_UNREGISTERING;
4179
4180 synchronize_net();
4181
4182 /* Shutdown queueing discipline. */
4183 dev_shutdown(dev);
4184
4185
4186 /* Notify protocols, that we are about to destroy
4187 this device. They should clean all the things.
4188 */
4189 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4190
4191 /*
4192 * Flush the unicast and multicast chains
4193 */
4194 dev_addr_discard(dev);
4195
4196 if (dev->netdev_ops->ndo_uninit)
4197 dev->netdev_ops->ndo_uninit(dev);
4198
4199 /* Notifier chain MUST detach us from master device. */
4200 WARN_ON(dev->master);
4201
4202 /* Remove entries from kobject tree */
4203 netdev_unregister_kobject(dev);
4204
4205 synchronize_net();
4206
4207 dev_put(dev);
4208 }
4209
4210 static void __netdev_init_queue_locks_one(struct net_device *dev,
4211 struct netdev_queue *dev_queue,
4212 void *_unused)
4213 {
4214 spin_lock_init(&dev_queue->_xmit_lock);
4215 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4216 dev_queue->xmit_lock_owner = -1;
4217 }
4218
4219 static void netdev_init_queue_locks(struct net_device *dev)
4220 {
4221 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4222 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4223 }
4224
4225 unsigned long netdev_fix_features(unsigned long features, const char *name)
4226 {
4227 /* Fix illegal SG+CSUM combinations. */
4228 if ((features & NETIF_F_SG) &&
4229 !(features & NETIF_F_ALL_CSUM)) {
4230 if (name)
4231 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4232 "checksum feature.\n", name);
4233 features &= ~NETIF_F_SG;
4234 }
4235
4236 /* TSO requires that SG is present as well. */
4237 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4238 if (name)
4239 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4240 "SG feature.\n", name);
4241 features &= ~NETIF_F_TSO;
4242 }
4243
4244 if (features & NETIF_F_UFO) {
4245 if (!(features & NETIF_F_GEN_CSUM)) {
4246 if (name)
4247 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4248 "since no NETIF_F_HW_CSUM feature.\n",
4249 name);
4250 features &= ~NETIF_F_UFO;
4251 }
4252
4253 if (!(features & NETIF_F_SG)) {
4254 if (name)
4255 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4256 "since no NETIF_F_SG feature.\n", name);
4257 features &= ~NETIF_F_UFO;
4258 }
4259 }
4260
4261 return features;
4262 }
4263 EXPORT_SYMBOL(netdev_fix_features);
4264
4265 /**
4266 * register_netdevice - register a network device
4267 * @dev: device to register
4268 *
4269 * Take a completed network device structure and add it to the kernel
4270 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4271 * chain. 0 is returned on success. A negative errno code is returned
4272 * on a failure to set up the device, or if the name is a duplicate.
4273 *
4274 * Callers must hold the rtnl semaphore. You may want
4275 * register_netdev() instead of this.
4276 *
4277 * BUGS:
4278 * The locking appears insufficient to guarantee two parallel registers
4279 * will not get the same name.
4280 */
4281
4282 int register_netdevice(struct net_device *dev)
4283 {
4284 struct hlist_head *head;
4285 struct hlist_node *p;
4286 int ret;
4287 struct net *net = dev_net(dev);
4288
4289 BUG_ON(dev_boot_phase);
4290 ASSERT_RTNL();
4291
4292 might_sleep();
4293
4294 /* When net_device's are persistent, this will be fatal. */
4295 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4296 BUG_ON(!net);
4297
4298 spin_lock_init(&dev->addr_list_lock);
4299 netdev_set_addr_lockdep_class(dev);
4300 netdev_init_queue_locks(dev);
4301
4302 dev->iflink = -1;
4303
4304 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4305 /* Netdevice_ops API compatiability support.
4306 * This is temporary until all network devices are converted.
4307 */
4308 if (dev->netdev_ops) {
4309 const struct net_device_ops *ops = dev->netdev_ops;
4310
4311 dev->init = ops->ndo_init;
4312 dev->uninit = ops->ndo_uninit;
4313 dev->open = ops->ndo_open;
4314 dev->change_rx_flags = ops->ndo_change_rx_flags;
4315 dev->set_rx_mode = ops->ndo_set_rx_mode;
4316 dev->set_multicast_list = ops->ndo_set_multicast_list;
4317 dev->set_mac_address = ops->ndo_set_mac_address;
4318 dev->validate_addr = ops->ndo_validate_addr;
4319 dev->do_ioctl = ops->ndo_do_ioctl;
4320 dev->set_config = ops->ndo_set_config;
4321 dev->change_mtu = ops->ndo_change_mtu;
4322 dev->tx_timeout = ops->ndo_tx_timeout;
4323 dev->get_stats = ops->ndo_get_stats;
4324 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4325 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4326 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4327 #ifdef CONFIG_NET_POLL_CONTROLLER
4328 dev->poll_controller = ops->ndo_poll_controller;
4329 #endif
4330 } else {
4331 char drivername[64];
4332 pr_info("%s (%s): not using net_device_ops yet\n",
4333 dev->name, netdev_drivername(dev, drivername, 64));
4334
4335 /* This works only because net_device_ops and the
4336 compatiablity structure are the same. */
4337 dev->netdev_ops = (void *) &(dev->init);
4338 }
4339 #endif
4340
4341 /* Init, if this function is available */
4342 if (dev->netdev_ops->ndo_init) {
4343 ret = dev->netdev_ops->ndo_init(dev);
4344 if (ret) {
4345 if (ret > 0)
4346 ret = -EIO;
4347 goto out;
4348 }
4349 }
4350
4351 if (!dev_valid_name(dev->name)) {
4352 ret = -EINVAL;
4353 goto err_uninit;
4354 }
4355
4356 dev->ifindex = dev_new_index(net);
4357 if (dev->iflink == -1)
4358 dev->iflink = dev->ifindex;
4359
4360 /* Check for existence of name */
4361 head = dev_name_hash(net, dev->name);
4362 hlist_for_each(p, head) {
4363 struct net_device *d
4364 = hlist_entry(p, struct net_device, name_hlist);
4365 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4366 ret = -EEXIST;
4367 goto err_uninit;
4368 }
4369 }
4370
4371 /* Fix illegal checksum combinations */
4372 if ((dev->features & NETIF_F_HW_CSUM) &&
4373 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4374 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4375 dev->name);
4376 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4377 }
4378
4379 if ((dev->features & NETIF_F_NO_CSUM) &&
4380 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4381 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4382 dev->name);
4383 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4384 }
4385
4386 dev->features = netdev_fix_features(dev->features, dev->name);
4387
4388 /* Enable software GSO if SG is supported. */
4389 if (dev->features & NETIF_F_SG)
4390 dev->features |= NETIF_F_GSO;
4391
4392 netdev_initialize_kobject(dev);
4393 ret = netdev_register_kobject(dev);
4394 if (ret)
4395 goto err_uninit;
4396 dev->reg_state = NETREG_REGISTERED;
4397
4398 /*
4399 * Default initial state at registry is that the
4400 * device is present.
4401 */
4402
4403 set_bit(__LINK_STATE_PRESENT, &dev->state);
4404
4405 dev_init_scheduler(dev);
4406 dev_hold(dev);
4407 list_netdevice(dev);
4408
4409 /* Notify protocols, that a new device appeared. */
4410 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4411 ret = notifier_to_errno(ret);
4412 if (ret) {
4413 rollback_registered(dev);
4414 dev->reg_state = NETREG_UNREGISTERED;
4415 }
4416
4417 out:
4418 return ret;
4419
4420 err_uninit:
4421 if (dev->netdev_ops->ndo_uninit)
4422 dev->netdev_ops->ndo_uninit(dev);
4423 goto out;
4424 }
4425
4426 /**
4427 * register_netdev - register a network device
4428 * @dev: device to register
4429 *
4430 * Take a completed network device structure and add it to the kernel
4431 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4432 * chain. 0 is returned on success. A negative errno code is returned
4433 * on a failure to set up the device, or if the name is a duplicate.
4434 *
4435 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4436 * and expands the device name if you passed a format string to
4437 * alloc_netdev.
4438 */
4439 int register_netdev(struct net_device *dev)
4440 {
4441 int err;
4442
4443 rtnl_lock();
4444
4445 /*
4446 * If the name is a format string the caller wants us to do a
4447 * name allocation.
4448 */
4449 if (strchr(dev->name, '%')) {
4450 err = dev_alloc_name(dev, dev->name);
4451 if (err < 0)
4452 goto out;
4453 }
4454
4455 err = register_netdevice(dev);
4456 out:
4457 rtnl_unlock();
4458 return err;
4459 }
4460 EXPORT_SYMBOL(register_netdev);
4461
4462 /*
4463 * netdev_wait_allrefs - wait until all references are gone.
4464 *
4465 * This is called when unregistering network devices.
4466 *
4467 * Any protocol or device that holds a reference should register
4468 * for netdevice notification, and cleanup and put back the
4469 * reference if they receive an UNREGISTER event.
4470 * We can get stuck here if buggy protocols don't correctly
4471 * call dev_put.
4472 */
4473 static void netdev_wait_allrefs(struct net_device *dev)
4474 {
4475 unsigned long rebroadcast_time, warning_time;
4476
4477 rebroadcast_time = warning_time = jiffies;
4478 while (atomic_read(&dev->refcnt) != 0) {
4479 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4480 rtnl_lock();
4481
4482 /* Rebroadcast unregister notification */
4483 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4484
4485 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4486 &dev->state)) {
4487 /* We must not have linkwatch events
4488 * pending on unregister. If this
4489 * happens, we simply run the queue
4490 * unscheduled, resulting in a noop
4491 * for this device.
4492 */
4493 linkwatch_run_queue();
4494 }
4495
4496 __rtnl_unlock();
4497
4498 rebroadcast_time = jiffies;
4499 }
4500
4501 msleep(250);
4502
4503 if (time_after(jiffies, warning_time + 10 * HZ)) {
4504 printk(KERN_EMERG "unregister_netdevice: "
4505 "waiting for %s to become free. Usage "
4506 "count = %d\n",
4507 dev->name, atomic_read(&dev->refcnt));
4508 warning_time = jiffies;
4509 }
4510 }
4511 }
4512
4513 /* The sequence is:
4514 *
4515 * rtnl_lock();
4516 * ...
4517 * register_netdevice(x1);
4518 * register_netdevice(x2);
4519 * ...
4520 * unregister_netdevice(y1);
4521 * unregister_netdevice(y2);
4522 * ...
4523 * rtnl_unlock();
4524 * free_netdev(y1);
4525 * free_netdev(y2);
4526 *
4527 * We are invoked by rtnl_unlock().
4528 * This allows us to deal with problems:
4529 * 1) We can delete sysfs objects which invoke hotplug
4530 * without deadlocking with linkwatch via keventd.
4531 * 2) Since we run with the RTNL semaphore not held, we can sleep
4532 * safely in order to wait for the netdev refcnt to drop to zero.
4533 *
4534 * We must not return until all unregister events added during
4535 * the interval the lock was held have been completed.
4536 */
4537 void netdev_run_todo(void)
4538 {
4539 struct list_head list;
4540
4541 /* Snapshot list, allow later requests */
4542 list_replace_init(&net_todo_list, &list);
4543
4544 __rtnl_unlock();
4545
4546 while (!list_empty(&list)) {
4547 struct net_device *dev
4548 = list_entry(list.next, struct net_device, todo_list);
4549 list_del(&dev->todo_list);
4550
4551 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4552 printk(KERN_ERR "network todo '%s' but state %d\n",
4553 dev->name, dev->reg_state);
4554 dump_stack();
4555 continue;
4556 }
4557
4558 dev->reg_state = NETREG_UNREGISTERED;
4559
4560 on_each_cpu(flush_backlog, dev, 1);
4561
4562 netdev_wait_allrefs(dev);
4563
4564 /* paranoia */
4565 BUG_ON(atomic_read(&dev->refcnt));
4566 WARN_ON(dev->ip_ptr);
4567 WARN_ON(dev->ip6_ptr);
4568 WARN_ON(dev->dn_ptr);
4569
4570 if (dev->destructor)
4571 dev->destructor(dev);
4572
4573 /* Free network device */
4574 kobject_put(&dev->dev.kobj);
4575 }
4576 }
4577
4578 /**
4579 * dev_get_stats - get network device statistics
4580 * @dev: device to get statistics from
4581 *
4582 * Get network statistics from device. The device driver may provide
4583 * its own method by setting dev->netdev_ops->get_stats; otherwise
4584 * the internal statistics structure is used.
4585 */
4586 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4587 {
4588 const struct net_device_ops *ops = dev->netdev_ops;
4589
4590 if (ops->ndo_get_stats)
4591 return ops->ndo_get_stats(dev);
4592 else
4593 return &dev->stats;
4594 }
4595 EXPORT_SYMBOL(dev_get_stats);
4596
4597 static void netdev_init_one_queue(struct net_device *dev,
4598 struct netdev_queue *queue,
4599 void *_unused)
4600 {
4601 queue->dev = dev;
4602 }
4603
4604 static void netdev_init_queues(struct net_device *dev)
4605 {
4606 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4607 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4608 spin_lock_init(&dev->tx_global_lock);
4609 }
4610
4611 /**
4612 * alloc_netdev_mq - allocate network device
4613 * @sizeof_priv: size of private data to allocate space for
4614 * @name: device name format string
4615 * @setup: callback to initialize device
4616 * @queue_count: the number of subqueues to allocate
4617 *
4618 * Allocates a struct net_device with private data area for driver use
4619 * and performs basic initialization. Also allocates subquue structs
4620 * for each queue on the device at the end of the netdevice.
4621 */
4622 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4623 void (*setup)(struct net_device *), unsigned int queue_count)
4624 {
4625 struct netdev_queue *tx;
4626 struct net_device *dev;
4627 size_t alloc_size;
4628 void *p;
4629
4630 BUG_ON(strlen(name) >= sizeof(dev->name));
4631
4632 alloc_size = sizeof(struct net_device);
4633 if (sizeof_priv) {
4634 /* ensure 32-byte alignment of private area */
4635 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4636 alloc_size += sizeof_priv;
4637 }
4638 /* ensure 32-byte alignment of whole construct */
4639 alloc_size += NETDEV_ALIGN_CONST;
4640
4641 p = kzalloc(alloc_size, GFP_KERNEL);
4642 if (!p) {
4643 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4644 return NULL;
4645 }
4646
4647 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4648 if (!tx) {
4649 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4650 "tx qdiscs.\n");
4651 kfree(p);
4652 return NULL;
4653 }
4654
4655 dev = (struct net_device *)
4656 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4657 dev->padded = (char *)dev - (char *)p;
4658 dev_net_set(dev, &init_net);
4659
4660 dev->_tx = tx;
4661 dev->num_tx_queues = queue_count;
4662 dev->real_num_tx_queues = queue_count;
4663
4664 dev->gso_max_size = GSO_MAX_SIZE;
4665
4666 netdev_init_queues(dev);
4667
4668 INIT_LIST_HEAD(&dev->napi_list);
4669 setup(dev);
4670 strcpy(dev->name, name);
4671 return dev;
4672 }
4673 EXPORT_SYMBOL(alloc_netdev_mq);
4674
4675 /**
4676 * free_netdev - free network device
4677 * @dev: device
4678 *
4679 * This function does the last stage of destroying an allocated device
4680 * interface. The reference to the device object is released.
4681 * If this is the last reference then it will be freed.
4682 */
4683 void free_netdev(struct net_device *dev)
4684 {
4685 struct napi_struct *p, *n;
4686
4687 release_net(dev_net(dev));
4688
4689 kfree(dev->_tx);
4690
4691 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4692 netif_napi_del(p);
4693
4694 /* Compatibility with error handling in drivers */
4695 if (dev->reg_state == NETREG_UNINITIALIZED) {
4696 kfree((char *)dev - dev->padded);
4697 return;
4698 }
4699
4700 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4701 dev->reg_state = NETREG_RELEASED;
4702
4703 /* will free via device release */
4704 put_device(&dev->dev);
4705 }
4706
4707 /**
4708 * synchronize_net - Synchronize with packet receive processing
4709 *
4710 * Wait for packets currently being received to be done.
4711 * Does not block later packets from starting.
4712 */
4713 void synchronize_net(void)
4714 {
4715 might_sleep();
4716 synchronize_rcu();
4717 }
4718
4719 /**
4720 * unregister_netdevice - remove device from the kernel
4721 * @dev: device
4722 *
4723 * This function shuts down a device interface and removes it
4724 * from the kernel tables.
4725 *
4726 * Callers must hold the rtnl semaphore. You may want
4727 * unregister_netdev() instead of this.
4728 */
4729
4730 void unregister_netdevice(struct net_device *dev)
4731 {
4732 ASSERT_RTNL();
4733
4734 rollback_registered(dev);
4735 /* Finish processing unregister after unlock */
4736 net_set_todo(dev);
4737 }
4738
4739 /**
4740 * unregister_netdev - remove device from the kernel
4741 * @dev: device
4742 *
4743 * This function shuts down a device interface and removes it
4744 * from the kernel tables.
4745 *
4746 * This is just a wrapper for unregister_netdevice that takes
4747 * the rtnl semaphore. In general you want to use this and not
4748 * unregister_netdevice.
4749 */
4750 void unregister_netdev(struct net_device *dev)
4751 {
4752 rtnl_lock();
4753 unregister_netdevice(dev);
4754 rtnl_unlock();
4755 }
4756
4757 EXPORT_SYMBOL(unregister_netdev);
4758
4759 /**
4760 * dev_change_net_namespace - move device to different nethost namespace
4761 * @dev: device
4762 * @net: network namespace
4763 * @pat: If not NULL name pattern to try if the current device name
4764 * is already taken in the destination network namespace.
4765 *
4766 * This function shuts down a device interface and moves it
4767 * to a new network namespace. On success 0 is returned, on
4768 * a failure a netagive errno code is returned.
4769 *
4770 * Callers must hold the rtnl semaphore.
4771 */
4772
4773 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4774 {
4775 char buf[IFNAMSIZ];
4776 const char *destname;
4777 int err;
4778
4779 ASSERT_RTNL();
4780
4781 /* Don't allow namespace local devices to be moved. */
4782 err = -EINVAL;
4783 if (dev->features & NETIF_F_NETNS_LOCAL)
4784 goto out;
4785
4786 #ifdef CONFIG_SYSFS
4787 /* Don't allow real devices to be moved when sysfs
4788 * is enabled.
4789 */
4790 err = -EINVAL;
4791 if (dev->dev.parent)
4792 goto out;
4793 #endif
4794
4795 /* Ensure the device has been registrered */
4796 err = -EINVAL;
4797 if (dev->reg_state != NETREG_REGISTERED)
4798 goto out;
4799
4800 /* Get out if there is nothing todo */
4801 err = 0;
4802 if (net_eq(dev_net(dev), net))
4803 goto out;
4804
4805 /* Pick the destination device name, and ensure
4806 * we can use it in the destination network namespace.
4807 */
4808 err = -EEXIST;
4809 destname = dev->name;
4810 if (__dev_get_by_name(net, destname)) {
4811 /* We get here if we can't use the current device name */
4812 if (!pat)
4813 goto out;
4814 if (!dev_valid_name(pat))
4815 goto out;
4816 if (strchr(pat, '%')) {
4817 if (__dev_alloc_name(net, pat, buf) < 0)
4818 goto out;
4819 destname = buf;
4820 } else
4821 destname = pat;
4822 if (__dev_get_by_name(net, destname))
4823 goto out;
4824 }
4825
4826 /*
4827 * And now a mini version of register_netdevice unregister_netdevice.
4828 */
4829
4830 /* If device is running close it first. */
4831 dev_close(dev);
4832
4833 /* And unlink it from device chain */
4834 err = -ENODEV;
4835 unlist_netdevice(dev);
4836
4837 synchronize_net();
4838
4839 /* Shutdown queueing discipline. */
4840 dev_shutdown(dev);
4841
4842 /* Notify protocols, that we are about to destroy
4843 this device. They should clean all the things.
4844 */
4845 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4846
4847 /*
4848 * Flush the unicast and multicast chains
4849 */
4850 dev_addr_discard(dev);
4851
4852 netdev_unregister_kobject(dev);
4853
4854 /* Actually switch the network namespace */
4855 dev_net_set(dev, net);
4856
4857 /* Assign the new device name */
4858 if (destname != dev->name)
4859 strcpy(dev->name, destname);
4860
4861 /* If there is an ifindex conflict assign a new one */
4862 if (__dev_get_by_index(net, dev->ifindex)) {
4863 int iflink = (dev->iflink == dev->ifindex);
4864 dev->ifindex = dev_new_index(net);
4865 if (iflink)
4866 dev->iflink = dev->ifindex;
4867 }
4868
4869 /* Fixup kobjects */
4870 err = netdev_register_kobject(dev);
4871 WARN_ON(err);
4872
4873 /* Add the device back in the hashes */
4874 list_netdevice(dev);
4875
4876 /* Notify protocols, that a new device appeared. */
4877 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4878
4879 synchronize_net();
4880 err = 0;
4881 out:
4882 return err;
4883 }
4884
4885 static int dev_cpu_callback(struct notifier_block *nfb,
4886 unsigned long action,
4887 void *ocpu)
4888 {
4889 struct sk_buff **list_skb;
4890 struct Qdisc **list_net;
4891 struct sk_buff *skb;
4892 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4893 struct softnet_data *sd, *oldsd;
4894
4895 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4896 return NOTIFY_OK;
4897
4898 local_irq_disable();
4899 cpu = smp_processor_id();
4900 sd = &per_cpu(softnet_data, cpu);
4901 oldsd = &per_cpu(softnet_data, oldcpu);
4902
4903 /* Find end of our completion_queue. */
4904 list_skb = &sd->completion_queue;
4905 while (*list_skb)
4906 list_skb = &(*list_skb)->next;
4907 /* Append completion queue from offline CPU. */
4908 *list_skb = oldsd->completion_queue;
4909 oldsd->completion_queue = NULL;
4910
4911 /* Find end of our output_queue. */
4912 list_net = &sd->output_queue;
4913 while (*list_net)
4914 list_net = &(*list_net)->next_sched;
4915 /* Append output queue from offline CPU. */
4916 *list_net = oldsd->output_queue;
4917 oldsd->output_queue = NULL;
4918
4919 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4920 local_irq_enable();
4921
4922 /* Process offline CPU's input_pkt_queue */
4923 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4924 netif_rx(skb);
4925
4926 return NOTIFY_OK;
4927 }
4928
4929
4930 /**
4931 * netdev_increment_features - increment feature set by one
4932 * @all: current feature set
4933 * @one: new feature set
4934 * @mask: mask feature set
4935 *
4936 * Computes a new feature set after adding a device with feature set
4937 * @one to the master device with current feature set @all. Will not
4938 * enable anything that is off in @mask. Returns the new feature set.
4939 */
4940 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4941 unsigned long mask)
4942 {
4943 /* If device needs checksumming, downgrade to it. */
4944 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4945 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4946 else if (mask & NETIF_F_ALL_CSUM) {
4947 /* If one device supports v4/v6 checksumming, set for all. */
4948 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4949 !(all & NETIF_F_GEN_CSUM)) {
4950 all &= ~NETIF_F_ALL_CSUM;
4951 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4952 }
4953
4954 /* If one device supports hw checksumming, set for all. */
4955 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4956 all &= ~NETIF_F_ALL_CSUM;
4957 all |= NETIF_F_HW_CSUM;
4958 }
4959 }
4960
4961 one |= NETIF_F_ALL_CSUM;
4962
4963 one |= all & NETIF_F_ONE_FOR_ALL;
4964 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4965 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4966
4967 return all;
4968 }
4969 EXPORT_SYMBOL(netdev_increment_features);
4970
4971 static struct hlist_head *netdev_create_hash(void)
4972 {
4973 int i;
4974 struct hlist_head *hash;
4975
4976 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4977 if (hash != NULL)
4978 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4979 INIT_HLIST_HEAD(&hash[i]);
4980
4981 return hash;
4982 }
4983
4984 /* Initialize per network namespace state */
4985 static int __net_init netdev_init(struct net *net)
4986 {
4987 INIT_LIST_HEAD(&net->dev_base_head);
4988
4989 net->dev_name_head = netdev_create_hash();
4990 if (net->dev_name_head == NULL)
4991 goto err_name;
4992
4993 net->dev_index_head = netdev_create_hash();
4994 if (net->dev_index_head == NULL)
4995 goto err_idx;
4996
4997 return 0;
4998
4999 err_idx:
5000 kfree(net->dev_name_head);
5001 err_name:
5002 return -ENOMEM;
5003 }
5004
5005 /**
5006 * netdev_drivername - network driver for the device
5007 * @dev: network device
5008 * @buffer: buffer for resulting name
5009 * @len: size of buffer
5010 *
5011 * Determine network driver for device.
5012 */
5013 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5014 {
5015 const struct device_driver *driver;
5016 const struct device *parent;
5017
5018 if (len <= 0 || !buffer)
5019 return buffer;
5020 buffer[0] = 0;
5021
5022 parent = dev->dev.parent;
5023
5024 if (!parent)
5025 return buffer;
5026
5027 driver = parent->driver;
5028 if (driver && driver->name)
5029 strlcpy(buffer, driver->name, len);
5030 return buffer;
5031 }
5032
5033 static void __net_exit netdev_exit(struct net *net)
5034 {
5035 kfree(net->dev_name_head);
5036 kfree(net->dev_index_head);
5037 }
5038
5039 static struct pernet_operations __net_initdata netdev_net_ops = {
5040 .init = netdev_init,
5041 .exit = netdev_exit,
5042 };
5043
5044 static void __net_exit default_device_exit(struct net *net)
5045 {
5046 struct net_device *dev;
5047 /*
5048 * Push all migratable of the network devices back to the
5049 * initial network namespace
5050 */
5051 rtnl_lock();
5052 restart:
5053 for_each_netdev(net, dev) {
5054 int err;
5055 char fb_name[IFNAMSIZ];
5056
5057 /* Ignore unmoveable devices (i.e. loopback) */
5058 if (dev->features & NETIF_F_NETNS_LOCAL)
5059 continue;
5060
5061 /* Delete virtual devices */
5062 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5063 dev->rtnl_link_ops->dellink(dev);
5064 goto restart;
5065 }
5066
5067 /* Push remaing network devices to init_net */
5068 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5069 err = dev_change_net_namespace(dev, &init_net, fb_name);
5070 if (err) {
5071 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5072 __func__, dev->name, err);
5073 BUG();
5074 }
5075 goto restart;
5076 }
5077 rtnl_unlock();
5078 }
5079
5080 static struct pernet_operations __net_initdata default_device_ops = {
5081 .exit = default_device_exit,
5082 };
5083
5084 /*
5085 * Initialize the DEV module. At boot time this walks the device list and
5086 * unhooks any devices that fail to initialise (normally hardware not
5087 * present) and leaves us with a valid list of present and active devices.
5088 *
5089 */
5090
5091 /*
5092 * This is called single threaded during boot, so no need
5093 * to take the rtnl semaphore.
5094 */
5095 static int __init net_dev_init(void)
5096 {
5097 int i, rc = -ENOMEM;
5098
5099 BUG_ON(!dev_boot_phase);
5100
5101 if (dev_proc_init())
5102 goto out;
5103
5104 if (netdev_kobject_init())
5105 goto out;
5106
5107 INIT_LIST_HEAD(&ptype_all);
5108 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5109 INIT_LIST_HEAD(&ptype_base[i]);
5110
5111 if (register_pernet_subsys(&netdev_net_ops))
5112 goto out;
5113
5114 /*
5115 * Initialise the packet receive queues.
5116 */
5117
5118 for_each_possible_cpu(i) {
5119 struct softnet_data *queue;
5120
5121 queue = &per_cpu(softnet_data, i);
5122 skb_queue_head_init(&queue->input_pkt_queue);
5123 queue->completion_queue = NULL;
5124 INIT_LIST_HEAD(&queue->poll_list);
5125
5126 queue->backlog.poll = process_backlog;
5127 queue->backlog.weight = weight_p;
5128 queue->backlog.gro_list = NULL;
5129 }
5130
5131 dev_boot_phase = 0;
5132
5133 /* The loopback device is special if any other network devices
5134 * is present in a network namespace the loopback device must
5135 * be present. Since we now dynamically allocate and free the
5136 * loopback device ensure this invariant is maintained by
5137 * keeping the loopback device as the first device on the
5138 * list of network devices. Ensuring the loopback devices
5139 * is the first device that appears and the last network device
5140 * that disappears.
5141 */
5142 if (register_pernet_device(&loopback_net_ops))
5143 goto out;
5144
5145 if (register_pernet_device(&default_device_ops))
5146 goto out;
5147
5148 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5149 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5150
5151 hotcpu_notifier(dev_cpu_callback, 0);
5152 dst_init();
5153 dev_mcast_init();
5154 #ifdef CONFIG_NET_DMA
5155 dmaengine_get();
5156 #endif
5157 rc = 0;
5158 out:
5159 return rc;
5160 }
5161
5162 subsys_initcall(net_dev_init);
5163
5164 EXPORT_SYMBOL(__dev_get_by_index);
5165 EXPORT_SYMBOL(__dev_get_by_name);
5166 EXPORT_SYMBOL(__dev_remove_pack);
5167 EXPORT_SYMBOL(dev_valid_name);
5168 EXPORT_SYMBOL(dev_add_pack);
5169 EXPORT_SYMBOL(dev_alloc_name);
5170 EXPORT_SYMBOL(dev_close);
5171 EXPORT_SYMBOL(dev_get_by_flags);
5172 EXPORT_SYMBOL(dev_get_by_index);
5173 EXPORT_SYMBOL(dev_get_by_name);
5174 EXPORT_SYMBOL(dev_open);
5175 EXPORT_SYMBOL(dev_queue_xmit);
5176 EXPORT_SYMBOL(dev_remove_pack);
5177 EXPORT_SYMBOL(dev_set_allmulti);
5178 EXPORT_SYMBOL(dev_set_promiscuity);
5179 EXPORT_SYMBOL(dev_change_flags);
5180 EXPORT_SYMBOL(dev_set_mtu);
5181 EXPORT_SYMBOL(dev_set_mac_address);
5182 EXPORT_SYMBOL(free_netdev);
5183 EXPORT_SYMBOL(netdev_boot_setup_check);
5184 EXPORT_SYMBOL(netdev_set_master);
5185 EXPORT_SYMBOL(netdev_state_change);
5186 EXPORT_SYMBOL(netif_receive_skb);
5187 EXPORT_SYMBOL(netif_rx);
5188 EXPORT_SYMBOL(register_gifconf);
5189 EXPORT_SYMBOL(register_netdevice);
5190 EXPORT_SYMBOL(register_netdevice_notifier);
5191 EXPORT_SYMBOL(skb_checksum_help);
5192 EXPORT_SYMBOL(synchronize_net);
5193 EXPORT_SYMBOL(unregister_netdevice);
5194 EXPORT_SYMBOL(unregister_netdevice_notifier);
5195 EXPORT_SYMBOL(net_enable_timestamp);
5196 EXPORT_SYMBOL(net_disable_timestamp);
5197 EXPORT_SYMBOL(dev_get_flags);
5198
5199 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5200 EXPORT_SYMBOL(br_handle_frame_hook);
5201 EXPORT_SYMBOL(br_fdb_get_hook);
5202 EXPORT_SYMBOL(br_fdb_put_hook);
5203 #endif
5204
5205 EXPORT_SYMBOL(dev_load);
5206
5207 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.163342 seconds and 6 git commands to generate.