offloading: Support multiple vlan tags in GSO.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold the
753 * rtnl semaphore. The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 * BUGS:
757 * If the API was consistent this would be __dev_get_by_hwaddr
758 */
759
760 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765
766 for_each_netdev(net, dev)
767 if (dev->type == type &&
768 !memcmp(dev->dev_addr, ha, dev->addr_len))
769 return dev;
770
771 return NULL;
772 }
773 EXPORT_SYMBOL(dev_getbyhwaddr);
774
775 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 {
777 struct net_device *dev;
778
779 ASSERT_RTNL();
780 for_each_netdev(net, dev)
781 if (dev->type == type)
782 return dev;
783
784 return NULL;
785 }
786 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787
788 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 {
790 struct net_device *dev, *ret = NULL;
791
792 rcu_read_lock();
793 for_each_netdev_rcu(net, dev)
794 if (dev->type == type) {
795 dev_hold(dev);
796 ret = dev;
797 break;
798 }
799 rcu_read_unlock();
800 return ret;
801 }
802 EXPORT_SYMBOL(dev_getfirstbyhwtype);
803
804 /**
805 * dev_get_by_flags_rcu - find any device with given flags
806 * @net: the applicable net namespace
807 * @if_flags: IFF_* values
808 * @mask: bitmask of bits in if_flags to check
809 *
810 * Search for any interface with the given flags. Returns NULL if a device
811 * is not found or a pointer to the device. Must be called inside
812 * rcu_read_lock(), and result refcount is unchanged.
813 */
814
815 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
816 unsigned short mask)
817 {
818 struct net_device *dev, *ret;
819
820 ret = NULL;
821 for_each_netdev_rcu(net, dev) {
822 if (((dev->flags ^ if_flags) & mask) == 0) {
823 ret = dev;
824 break;
825 }
826 }
827 return ret;
828 }
829 EXPORT_SYMBOL(dev_get_by_flags_rcu);
830
831 /**
832 * dev_valid_name - check if name is okay for network device
833 * @name: name string
834 *
835 * Network device names need to be valid file names to
836 * to allow sysfs to work. We also disallow any kind of
837 * whitespace.
838 */
839 int dev_valid_name(const char *name)
840 {
841 if (*name == '\0')
842 return 0;
843 if (strlen(name) >= IFNAMSIZ)
844 return 0;
845 if (!strcmp(name, ".") || !strcmp(name, ".."))
846 return 0;
847
848 while (*name) {
849 if (*name == '/' || isspace(*name))
850 return 0;
851 name++;
852 }
853 return 1;
854 }
855 EXPORT_SYMBOL(dev_valid_name);
856
857 /**
858 * __dev_alloc_name - allocate a name for a device
859 * @net: network namespace to allocate the device name in
860 * @name: name format string
861 * @buf: scratch buffer and result name string
862 *
863 * Passed a format string - eg "lt%d" it will try and find a suitable
864 * id. It scans list of devices to build up a free map, then chooses
865 * the first empty slot. The caller must hold the dev_base or rtnl lock
866 * while allocating the name and adding the device in order to avoid
867 * duplicates.
868 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869 * Returns the number of the unit assigned or a negative errno code.
870 */
871
872 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873 {
874 int i = 0;
875 const char *p;
876 const int max_netdevices = 8*PAGE_SIZE;
877 unsigned long *inuse;
878 struct net_device *d;
879
880 p = strnchr(name, IFNAMSIZ-1, '%');
881 if (p) {
882 /*
883 * Verify the string as this thing may have come from
884 * the user. There must be either one "%d" and no other "%"
885 * characters.
886 */
887 if (p[1] != 'd' || strchr(p + 2, '%'))
888 return -EINVAL;
889
890 /* Use one page as a bit array of possible slots */
891 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
892 if (!inuse)
893 return -ENOMEM;
894
895 for_each_netdev(net, d) {
896 if (!sscanf(d->name, name, &i))
897 continue;
898 if (i < 0 || i >= max_netdevices)
899 continue;
900
901 /* avoid cases where sscanf is not exact inverse of printf */
902 snprintf(buf, IFNAMSIZ, name, i);
903 if (!strncmp(buf, d->name, IFNAMSIZ))
904 set_bit(i, inuse);
905 }
906
907 i = find_first_zero_bit(inuse, max_netdevices);
908 free_page((unsigned long) inuse);
909 }
910
911 if (buf != name)
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!__dev_get_by_name(net, buf))
914 return i;
915
916 /* It is possible to run out of possible slots
917 * when the name is long and there isn't enough space left
918 * for the digits, or if all bits are used.
919 */
920 return -ENFILE;
921 }
922
923 /**
924 * dev_alloc_name - allocate a name for a device
925 * @dev: device
926 * @name: name format string
927 *
928 * Passed a format string - eg "lt%d" it will try and find a suitable
929 * id. It scans list of devices to build up a free map, then chooses
930 * the first empty slot. The caller must hold the dev_base or rtnl lock
931 * while allocating the name and adding the device in order to avoid
932 * duplicates.
933 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
934 * Returns the number of the unit assigned or a negative errno code.
935 */
936
937 int dev_alloc_name(struct net_device *dev, const char *name)
938 {
939 char buf[IFNAMSIZ];
940 struct net *net;
941 int ret;
942
943 BUG_ON(!dev_net(dev));
944 net = dev_net(dev);
945 ret = __dev_alloc_name(net, name, buf);
946 if (ret >= 0)
947 strlcpy(dev->name, buf, IFNAMSIZ);
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_alloc_name);
951
952 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953 {
954 struct net *net;
955
956 BUG_ON(!dev_net(dev));
957 net = dev_net(dev);
958
959 if (!dev_valid_name(name))
960 return -EINVAL;
961
962 if (fmt && strchr(name, '%'))
963 return dev_alloc_name(dev, name);
964 else if (__dev_get_by_name(net, name))
965 return -EEXIST;
966 else if (dev->name != name)
967 strlcpy(dev->name, name, IFNAMSIZ);
968
969 return 0;
970 }
971
972 /**
973 * dev_change_name - change name of a device
974 * @dev: device
975 * @newname: name (or format string) must be at least IFNAMSIZ
976 *
977 * Change name of a device, can pass format strings "eth%d".
978 * for wildcarding.
979 */
980 int dev_change_name(struct net_device *dev, const char *newname)
981 {
982 char oldname[IFNAMSIZ];
983 int err = 0;
984 int ret;
985 struct net *net;
986
987 ASSERT_RTNL();
988 BUG_ON(!dev_net(dev));
989
990 net = dev_net(dev);
991 if (dev->flags & IFF_UP)
992 return -EBUSY;
993
994 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
995 return 0;
996
997 memcpy(oldname, dev->name, IFNAMSIZ);
998
999 err = dev_get_valid_name(dev, newname, 1);
1000 if (err < 0)
1001 return err;
1002
1003 rollback:
1004 ret = device_rename(&dev->dev, dev->name);
1005 if (ret) {
1006 memcpy(dev->name, oldname, IFNAMSIZ);
1007 return ret;
1008 }
1009
1010 write_lock_bh(&dev_base_lock);
1011 hlist_del(&dev->name_hlist);
1012 write_unlock_bh(&dev_base_lock);
1013
1014 synchronize_rcu();
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1018 write_unlock_bh(&dev_base_lock);
1019
1020 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1021 ret = notifier_to_errno(ret);
1022
1023 if (ret) {
1024 /* err >= 0 after dev_alloc_name() or stores the first errno */
1025 if (err >= 0) {
1026 err = ret;
1027 memcpy(dev->name, oldname, IFNAMSIZ);
1028 goto rollback;
1029 } else {
1030 printk(KERN_ERR
1031 "%s: name change rollback failed: %d.\n",
1032 dev->name, ret);
1033 }
1034 }
1035
1036 return err;
1037 }
1038
1039 /**
1040 * dev_set_alias - change ifalias of a device
1041 * @dev: device
1042 * @alias: name up to IFALIASZ
1043 * @len: limit of bytes to copy from info
1044 *
1045 * Set ifalias for a device,
1046 */
1047 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048 {
1049 ASSERT_RTNL();
1050
1051 if (len >= IFALIASZ)
1052 return -EINVAL;
1053
1054 if (!len) {
1055 if (dev->ifalias) {
1056 kfree(dev->ifalias);
1057 dev->ifalias = NULL;
1058 }
1059 return 0;
1060 }
1061
1062 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1063 if (!dev->ifalias)
1064 return -ENOMEM;
1065
1066 strlcpy(dev->ifalias, alias, len+1);
1067 return len;
1068 }
1069
1070
1071 /**
1072 * netdev_features_change - device changes features
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed features.
1076 */
1077 void netdev_features_change(struct net_device *dev)
1078 {
1079 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 }
1081 EXPORT_SYMBOL(netdev_features_change);
1082
1083 /**
1084 * netdev_state_change - device changes state
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed state. This function calls
1088 * the notifier chains for netdev_chain and sends a NEWLINK message
1089 * to the routing socket.
1090 */
1091 void netdev_state_change(struct net_device *dev)
1092 {
1093 if (dev->flags & IFF_UP) {
1094 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1095 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 }
1097 }
1098 EXPORT_SYMBOL(netdev_state_change);
1099
1100 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 {
1102 return call_netdevice_notifiers(event, dev);
1103 }
1104 EXPORT_SYMBOL(netdev_bonding_change);
1105
1106 /**
1107 * dev_load - load a network module
1108 * @net: the applicable net namespace
1109 * @name: name of interface
1110 *
1111 * If a network interface is not present and the process has suitable
1112 * privileges this function loads the module. If module loading is not
1113 * available in this kernel then it becomes a nop.
1114 */
1115
1116 void dev_load(struct net *net, const char *name)
1117 {
1118 struct net_device *dev;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 if (!dev && capable(CAP_NET_ADMIN))
1125 request_module("%s", name);
1126 }
1127 EXPORT_SYMBOL(dev_load);
1128
1129 static int __dev_open(struct net_device *dev)
1130 {
1131 const struct net_device_ops *ops = dev->netdev_ops;
1132 int ret;
1133
1134 ASSERT_RTNL();
1135
1136 /*
1137 * Is it even present?
1138 */
1139 if (!netif_device_present(dev))
1140 return -ENODEV;
1141
1142 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1143 ret = notifier_to_errno(ret);
1144 if (ret)
1145 return ret;
1146
1147 /*
1148 * Call device private open method
1149 */
1150 set_bit(__LINK_STATE_START, &dev->state);
1151
1152 if (ops->ndo_validate_addr)
1153 ret = ops->ndo_validate_addr(dev);
1154
1155 if (!ret && ops->ndo_open)
1156 ret = ops->ndo_open(dev);
1157
1158 /*
1159 * If it went open OK then:
1160 */
1161
1162 if (ret)
1163 clear_bit(__LINK_STATE_START, &dev->state);
1164 else {
1165 /*
1166 * Set the flags.
1167 */
1168 dev->flags |= IFF_UP;
1169
1170 /*
1171 * Enable NET_DMA
1172 */
1173 net_dmaengine_get();
1174
1175 /*
1176 * Initialize multicasting status
1177 */
1178 dev_set_rx_mode(dev);
1179
1180 /*
1181 * Wakeup transmit queue engine
1182 */
1183 dev_activate(dev);
1184 }
1185
1186 return ret;
1187 }
1188
1189 /**
1190 * dev_open - prepare an interface for use.
1191 * @dev: device to open
1192 *
1193 * Takes a device from down to up state. The device's private open
1194 * function is invoked and then the multicast lists are loaded. Finally
1195 * the device is moved into the up state and a %NETDEV_UP message is
1196 * sent to the netdev notifier chain.
1197 *
1198 * Calling this function on an active interface is a nop. On a failure
1199 * a negative errno code is returned.
1200 */
1201 int dev_open(struct net_device *dev)
1202 {
1203 int ret;
1204
1205 /*
1206 * Is it already up?
1207 */
1208 if (dev->flags & IFF_UP)
1209 return 0;
1210
1211 /*
1212 * Open device
1213 */
1214 ret = __dev_open(dev);
1215 if (ret < 0)
1216 return ret;
1217
1218 /*
1219 * ... and announce new interface.
1220 */
1221 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1222 call_netdevice_notifiers(NETDEV_UP, dev);
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(dev_open);
1227
1228 static int __dev_close(struct net_device *dev)
1229 {
1230 const struct net_device_ops *ops = dev->netdev_ops;
1231
1232 ASSERT_RTNL();
1233 might_sleep();
1234
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list,
1244 * it can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250
1251 dev_deactivate(dev);
1252
1253 /*
1254 * Call the device specific close. This cannot fail.
1255 * Only if device is UP
1256 *
1257 * We allow it to be called even after a DETACH hot-plug
1258 * event.
1259 */
1260 if (ops->ndo_stop)
1261 ops->ndo_stop(dev);
1262
1263 /*
1264 * Device is now down.
1265 */
1266
1267 dev->flags &= ~IFF_UP;
1268
1269 /*
1270 * Shutdown NET_DMA
1271 */
1272 net_dmaengine_put();
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * dev_close - shutdown an interface.
1279 * @dev: device to shutdown
1280 *
1281 * This function moves an active device into down state. A
1282 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1283 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1284 * chain.
1285 */
1286 int dev_close(struct net_device *dev)
1287 {
1288 if (!(dev->flags & IFF_UP))
1289 return 0;
1290
1291 __dev_close(dev);
1292
1293 /*
1294 * Tell people we are down
1295 */
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_DOWN, dev);
1298
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(dev_close);
1302
1303
1304 /**
1305 * dev_disable_lro - disable Large Receive Offload on a device
1306 * @dev: device
1307 *
1308 * Disable Large Receive Offload (LRO) on a net device. Must be
1309 * called under RTNL. This is needed if received packets may be
1310 * forwarded to another interface.
1311 */
1312 void dev_disable_lro(struct net_device *dev)
1313 {
1314 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1315 dev->ethtool_ops->set_flags) {
1316 u32 flags = dev->ethtool_ops->get_flags(dev);
1317 if (flags & ETH_FLAG_LRO) {
1318 flags &= ~ETH_FLAG_LRO;
1319 dev->ethtool_ops->set_flags(dev, flags);
1320 }
1321 }
1322 WARN_ON(dev->features & NETIF_F_LRO);
1323 }
1324 EXPORT_SYMBOL(dev_disable_lro);
1325
1326
1327 static int dev_boot_phase = 1;
1328
1329 /*
1330 * Device change register/unregister. These are not inline or static
1331 * as we export them to the world.
1332 */
1333
1334 /**
1335 * register_netdevice_notifier - register a network notifier block
1336 * @nb: notifier
1337 *
1338 * Register a notifier to be called when network device events occur.
1339 * The notifier passed is linked into the kernel structures and must
1340 * not be reused until it has been unregistered. A negative errno code
1341 * is returned on a failure.
1342 *
1343 * When registered all registration and up events are replayed
1344 * to the new notifier to allow device to have a race free
1345 * view of the network device list.
1346 */
1347
1348 int register_netdevice_notifier(struct notifier_block *nb)
1349 {
1350 struct net_device *dev;
1351 struct net_device *last;
1352 struct net *net;
1353 int err;
1354
1355 rtnl_lock();
1356 err = raw_notifier_chain_register(&netdev_chain, nb);
1357 if (err)
1358 goto unlock;
1359 if (dev_boot_phase)
1360 goto unlock;
1361 for_each_net(net) {
1362 for_each_netdev(net, dev) {
1363 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1364 err = notifier_to_errno(err);
1365 if (err)
1366 goto rollback;
1367
1368 if (!(dev->flags & IFF_UP))
1369 continue;
1370
1371 nb->notifier_call(nb, NETDEV_UP, dev);
1372 }
1373 }
1374
1375 unlock:
1376 rtnl_unlock();
1377 return err;
1378
1379 rollback:
1380 last = dev;
1381 for_each_net(net) {
1382 for_each_netdev(net, dev) {
1383 if (dev == last)
1384 break;
1385
1386 if (dev->flags & IFF_UP) {
1387 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1388 nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 }
1390 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1392 }
1393 }
1394
1395 raw_notifier_chain_unregister(&netdev_chain, nb);
1396 goto unlock;
1397 }
1398 EXPORT_SYMBOL(register_netdevice_notifier);
1399
1400 /**
1401 * unregister_netdevice_notifier - unregister a network notifier block
1402 * @nb: notifier
1403 *
1404 * Unregister a notifier previously registered by
1405 * register_netdevice_notifier(). The notifier is unlinked into the
1406 * kernel structures and may then be reused. A negative errno code
1407 * is returned on a failure.
1408 */
1409
1410 int unregister_netdevice_notifier(struct notifier_block *nb)
1411 {
1412 int err;
1413
1414 rtnl_lock();
1415 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1416 rtnl_unlock();
1417 return err;
1418 }
1419 EXPORT_SYMBOL(unregister_netdevice_notifier);
1420
1421 /**
1422 * call_netdevice_notifiers - call all network notifier blocks
1423 * @val: value passed unmodified to notifier function
1424 * @dev: net_device pointer passed unmodified to notifier function
1425 *
1426 * Call all network notifier blocks. Parameters and return value
1427 * are as for raw_notifier_call_chain().
1428 */
1429
1430 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431 {
1432 ASSERT_RTNL();
1433 return raw_notifier_call_chain(&netdev_chain, val, dev);
1434 }
1435
1436 /* When > 0 there are consumers of rx skb time stamps */
1437 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438
1439 void net_enable_timestamp(void)
1440 {
1441 atomic_inc(&netstamp_needed);
1442 }
1443 EXPORT_SYMBOL(net_enable_timestamp);
1444
1445 void net_disable_timestamp(void)
1446 {
1447 atomic_dec(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_disable_timestamp);
1450
1451 static inline void net_timestamp_set(struct sk_buff *skb)
1452 {
1453 if (atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 else
1456 skb->tstamp.tv64 = 0;
1457 }
1458
1459 static inline void net_timestamp_check(struct sk_buff *skb)
1460 {
1461 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1462 __net_timestamp(skb);
1463 }
1464
1465 /**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped, but freed)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 skb_orphan(skb);
1486 nf_reset(skb);
1487
1488 if (unlikely(!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1490 atomic_long_inc(&dev->rx_dropped);
1491 kfree_skb(skb);
1492 return NET_RX_DROP;
1493 }
1494 skb_set_dev(skb, dev);
1495 skb->tstamp.tv64 = 0;
1496 skb->pkt_type = PACKET_HOST;
1497 skb->protocol = eth_type_trans(skb, dev);
1498 return netif_rx(skb);
1499 }
1500 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501
1502 /*
1503 * Support routine. Sends outgoing frames to any network
1504 * taps currently in use.
1505 */
1506
1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 {
1509 struct packet_type *ptype;
1510
1511 #ifdef CONFIG_NET_CLS_ACT
1512 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1513 net_timestamp_set(skb);
1514 #else
1515 net_timestamp_set(skb);
1516 #endif
1517
1518 rcu_read_lock();
1519 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1520 /* Never send packets back to the socket
1521 * they originated from - MvS (miquels@drinkel.ow.org)
1522 */
1523 if ((ptype->dev == dev || !ptype->dev) &&
1524 (ptype->af_packet_priv == NULL ||
1525 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1526 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1527 if (!skb2)
1528 break;
1529
1530 /* skb->nh should be correctly
1531 set by sender, so that the second statement is
1532 just protection against buggy protocols.
1533 */
1534 skb_reset_mac_header(skb2);
1535
1536 if (skb_network_header(skb2) < skb2->data ||
1537 skb2->network_header > skb2->tail) {
1538 if (net_ratelimit())
1539 printk(KERN_CRIT "protocol %04x is "
1540 "buggy, dev %s\n",
1541 ntohs(skb2->protocol),
1542 dev->name);
1543 skb_reset_network_header(skb2);
1544 }
1545
1546 skb2->transport_header = skb2->network_header;
1547 skb2->pkt_type = PACKET_OUTGOING;
1548 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 }
1550 }
1551 rcu_read_unlock();
1552 }
1553
1554 /*
1555 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1556 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1557 */
1558 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1559 {
1560 if (txq < 1 || txq > dev->num_tx_queues)
1561 return -EINVAL;
1562
1563 if (dev->reg_state == NETREG_REGISTERED) {
1564 ASSERT_RTNL();
1565
1566 if (txq < dev->real_num_tx_queues)
1567 qdisc_reset_all_tx_gt(dev, txq);
1568 }
1569
1570 dev->real_num_tx_queues = txq;
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574
1575 #ifdef CONFIG_RPS
1576 /**
1577 * netif_set_real_num_rx_queues - set actual number of RX queues used
1578 * @dev: Network device
1579 * @rxq: Actual number of RX queues
1580 *
1581 * This must be called either with the rtnl_lock held or before
1582 * registration of the net device. Returns 0 on success, or a
1583 * negative error code. If called before registration, it always
1584 * succeeds.
1585 */
1586 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1587 {
1588 int rc;
1589
1590 if (rxq < 1 || rxq > dev->num_rx_queues)
1591 return -EINVAL;
1592
1593 if (dev->reg_state == NETREG_REGISTERED) {
1594 ASSERT_RTNL();
1595
1596 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1597 rxq);
1598 if (rc)
1599 return rc;
1600 }
1601
1602 dev->real_num_rx_queues = rxq;
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1606 #endif
1607
1608 static inline void __netif_reschedule(struct Qdisc *q)
1609 {
1610 struct softnet_data *sd;
1611 unsigned long flags;
1612
1613 local_irq_save(flags);
1614 sd = &__get_cpu_var(softnet_data);
1615 q->next_sched = NULL;
1616 *sd->output_queue_tailp = q;
1617 sd->output_queue_tailp = &q->next_sched;
1618 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1619 local_irq_restore(flags);
1620 }
1621
1622 void __netif_schedule(struct Qdisc *q)
1623 {
1624 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1625 __netif_reschedule(q);
1626 }
1627 EXPORT_SYMBOL(__netif_schedule);
1628
1629 void dev_kfree_skb_irq(struct sk_buff *skb)
1630 {
1631 if (atomic_dec_and_test(&skb->users)) {
1632 struct softnet_data *sd;
1633 unsigned long flags;
1634
1635 local_irq_save(flags);
1636 sd = &__get_cpu_var(softnet_data);
1637 skb->next = sd->completion_queue;
1638 sd->completion_queue = skb;
1639 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1640 local_irq_restore(flags);
1641 }
1642 }
1643 EXPORT_SYMBOL(dev_kfree_skb_irq);
1644
1645 void dev_kfree_skb_any(struct sk_buff *skb)
1646 {
1647 if (in_irq() || irqs_disabled())
1648 dev_kfree_skb_irq(skb);
1649 else
1650 dev_kfree_skb(skb);
1651 }
1652 EXPORT_SYMBOL(dev_kfree_skb_any);
1653
1654
1655 /**
1656 * netif_device_detach - mark device as removed
1657 * @dev: network device
1658 *
1659 * Mark device as removed from system and therefore no longer available.
1660 */
1661 void netif_device_detach(struct net_device *dev)
1662 {
1663 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1664 netif_running(dev)) {
1665 netif_tx_stop_all_queues(dev);
1666 }
1667 }
1668 EXPORT_SYMBOL(netif_device_detach);
1669
1670 /**
1671 * netif_device_attach - mark device as attached
1672 * @dev: network device
1673 *
1674 * Mark device as attached from system and restart if needed.
1675 */
1676 void netif_device_attach(struct net_device *dev)
1677 {
1678 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1679 netif_running(dev)) {
1680 netif_tx_wake_all_queues(dev);
1681 __netdev_watchdog_up(dev);
1682 }
1683 }
1684 EXPORT_SYMBOL(netif_device_attach);
1685
1686 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1687 {
1688 return ((features & NETIF_F_NO_CSUM) ||
1689 ((features & NETIF_F_V4_CSUM) &&
1690 protocol == htons(ETH_P_IP)) ||
1691 ((features & NETIF_F_V6_CSUM) &&
1692 protocol == htons(ETH_P_IPV6)) ||
1693 ((features & NETIF_F_FCOE_CRC) &&
1694 protocol == htons(ETH_P_FCOE)));
1695 }
1696
1697 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1698 {
1699 __be16 protocol = skb->protocol;
1700 int features = dev->features;
1701
1702 if (vlan_tx_tag_present(skb)) {
1703 features &= dev->vlan_features;
1704 } else if (protocol == htons(ETH_P_8021Q)) {
1705 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1706 protocol = veh->h_vlan_encapsulated_proto;
1707 features &= dev->vlan_features;
1708 }
1709
1710 return can_checksum_protocol(features, protocol);
1711 }
1712
1713 /**
1714 * skb_dev_set -- assign a new device to a buffer
1715 * @skb: buffer for the new device
1716 * @dev: network device
1717 *
1718 * If an skb is owned by a device already, we have to reset
1719 * all data private to the namespace a device belongs to
1720 * before assigning it a new device.
1721 */
1722 #ifdef CONFIG_NET_NS
1723 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1724 {
1725 skb_dst_drop(skb);
1726 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1727 secpath_reset(skb);
1728 nf_reset(skb);
1729 skb_init_secmark(skb);
1730 skb->mark = 0;
1731 skb->priority = 0;
1732 skb->nf_trace = 0;
1733 skb->ipvs_property = 0;
1734 #ifdef CONFIG_NET_SCHED
1735 skb->tc_index = 0;
1736 #endif
1737 }
1738 skb->dev = dev;
1739 }
1740 EXPORT_SYMBOL(skb_set_dev);
1741 #endif /* CONFIG_NET_NS */
1742
1743 /*
1744 * Invalidate hardware checksum when packet is to be mangled, and
1745 * complete checksum manually on outgoing path.
1746 */
1747 int skb_checksum_help(struct sk_buff *skb)
1748 {
1749 __wsum csum;
1750 int ret = 0, offset;
1751
1752 if (skb->ip_summed == CHECKSUM_COMPLETE)
1753 goto out_set_summed;
1754
1755 if (unlikely(skb_shinfo(skb)->gso_size)) {
1756 /* Let GSO fix up the checksum. */
1757 goto out_set_summed;
1758 }
1759
1760 offset = skb->csum_start - skb_headroom(skb);
1761 BUG_ON(offset >= skb_headlen(skb));
1762 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1763
1764 offset += skb->csum_offset;
1765 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1766
1767 if (skb_cloned(skb) &&
1768 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1769 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1770 if (ret)
1771 goto out;
1772 }
1773
1774 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1775 out_set_summed:
1776 skb->ip_summed = CHECKSUM_NONE;
1777 out:
1778 return ret;
1779 }
1780 EXPORT_SYMBOL(skb_checksum_help);
1781
1782 /**
1783 * skb_gso_segment - Perform segmentation on skb.
1784 * @skb: buffer to segment
1785 * @features: features for the output path (see dev->features)
1786 *
1787 * This function segments the given skb and returns a list of segments.
1788 *
1789 * It may return NULL if the skb requires no segmentation. This is
1790 * only possible when GSO is used for verifying header integrity.
1791 */
1792 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1793 {
1794 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1795 struct packet_type *ptype;
1796 __be16 type = skb->protocol;
1797 int vlan_depth = ETH_HLEN;
1798 int err;
1799
1800 while (type == htons(ETH_P_8021Q)) {
1801 struct vlan_hdr *vh;
1802
1803 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1804 return ERR_PTR(-EINVAL);
1805
1806 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1807 type = vh->h_vlan_encapsulated_proto;
1808 vlan_depth += VLAN_HLEN;
1809 }
1810
1811 skb_reset_mac_header(skb);
1812 skb->mac_len = skb->network_header - skb->mac_header;
1813 __skb_pull(skb, skb->mac_len);
1814
1815 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1816 struct net_device *dev = skb->dev;
1817 struct ethtool_drvinfo info = {};
1818
1819 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1820 dev->ethtool_ops->get_drvinfo(dev, &info);
1821
1822 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1823 info.driver, dev ? dev->features : 0L,
1824 skb->sk ? skb->sk->sk_route_caps : 0L,
1825 skb->len, skb->data_len, skb->ip_summed);
1826
1827 if (skb_header_cloned(skb) &&
1828 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1829 return ERR_PTR(err);
1830 }
1831
1832 rcu_read_lock();
1833 list_for_each_entry_rcu(ptype,
1834 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1835 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1836 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1837 err = ptype->gso_send_check(skb);
1838 segs = ERR_PTR(err);
1839 if (err || skb_gso_ok(skb, features))
1840 break;
1841 __skb_push(skb, (skb->data -
1842 skb_network_header(skb)));
1843 }
1844 segs = ptype->gso_segment(skb, features);
1845 break;
1846 }
1847 }
1848 rcu_read_unlock();
1849
1850 __skb_push(skb, skb->data - skb_mac_header(skb));
1851
1852 return segs;
1853 }
1854 EXPORT_SYMBOL(skb_gso_segment);
1855
1856 /* Take action when hardware reception checksum errors are detected. */
1857 #ifdef CONFIG_BUG
1858 void netdev_rx_csum_fault(struct net_device *dev)
1859 {
1860 if (net_ratelimit()) {
1861 printk(KERN_ERR "%s: hw csum failure.\n",
1862 dev ? dev->name : "<unknown>");
1863 dump_stack();
1864 }
1865 }
1866 EXPORT_SYMBOL(netdev_rx_csum_fault);
1867 #endif
1868
1869 /* Actually, we should eliminate this check as soon as we know, that:
1870 * 1. IOMMU is present and allows to map all the memory.
1871 * 2. No high memory really exists on this machine.
1872 */
1873
1874 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1875 {
1876 #ifdef CONFIG_HIGHMEM
1877 int i;
1878 if (!(dev->features & NETIF_F_HIGHDMA)) {
1879 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1880 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1881 return 1;
1882 }
1883
1884 if (PCI_DMA_BUS_IS_PHYS) {
1885 struct device *pdev = dev->dev.parent;
1886
1887 if (!pdev)
1888 return 0;
1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1891 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1892 return 1;
1893 }
1894 }
1895 #endif
1896 return 0;
1897 }
1898
1899 struct dev_gso_cb {
1900 void (*destructor)(struct sk_buff *skb);
1901 };
1902
1903 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1904
1905 static void dev_gso_skb_destructor(struct sk_buff *skb)
1906 {
1907 struct dev_gso_cb *cb;
1908
1909 do {
1910 struct sk_buff *nskb = skb->next;
1911
1912 skb->next = nskb->next;
1913 nskb->next = NULL;
1914 kfree_skb(nskb);
1915 } while (skb->next);
1916
1917 cb = DEV_GSO_CB(skb);
1918 if (cb->destructor)
1919 cb->destructor(skb);
1920 }
1921
1922 /**
1923 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1924 * @skb: buffer to segment
1925 *
1926 * This function segments the given skb and stores the list of segments
1927 * in skb->next.
1928 */
1929 static int dev_gso_segment(struct sk_buff *skb)
1930 {
1931 struct net_device *dev = skb->dev;
1932 struct sk_buff *segs;
1933 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1934 NETIF_F_SG : 0);
1935
1936 segs = skb_gso_segment(skb, features);
1937
1938 /* Verifying header integrity only. */
1939 if (!segs)
1940 return 0;
1941
1942 if (IS_ERR(segs))
1943 return PTR_ERR(segs);
1944
1945 skb->next = segs;
1946 DEV_GSO_CB(skb)->destructor = skb->destructor;
1947 skb->destructor = dev_gso_skb_destructor;
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * Try to orphan skb early, right before transmission by the device.
1954 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1955 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1956 */
1957 static inline void skb_orphan_try(struct sk_buff *skb)
1958 {
1959 struct sock *sk = skb->sk;
1960
1961 if (sk && !skb_shinfo(skb)->tx_flags) {
1962 /* skb_tx_hash() wont be able to get sk.
1963 * We copy sk_hash into skb->rxhash
1964 */
1965 if (!skb->rxhash)
1966 skb->rxhash = sk->sk_hash;
1967 skb_orphan(skb);
1968 }
1969 }
1970
1971 /*
1972 * Returns true if either:
1973 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1974 * 2. skb is fragmented and the device does not support SG, or if
1975 * at least one of fragments is in highmem and device does not
1976 * support DMA from it.
1977 */
1978 static inline int skb_needs_linearize(struct sk_buff *skb,
1979 struct net_device *dev)
1980 {
1981 if (skb_is_nonlinear(skb)) {
1982 int features = dev->features;
1983
1984 if (vlan_tx_tag_present(skb))
1985 features &= dev->vlan_features;
1986
1987 return (skb_has_frag_list(skb) &&
1988 !(features & NETIF_F_FRAGLIST)) ||
1989 (skb_shinfo(skb)->nr_frags &&
1990 (!(features & NETIF_F_SG) ||
1991 illegal_highdma(dev, skb)));
1992 }
1993
1994 return 0;
1995 }
1996
1997 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1998 struct netdev_queue *txq)
1999 {
2000 const struct net_device_ops *ops = dev->netdev_ops;
2001 int rc = NETDEV_TX_OK;
2002
2003 if (likely(!skb->next)) {
2004 if (!list_empty(&ptype_all))
2005 dev_queue_xmit_nit(skb, dev);
2006
2007 /*
2008 * If device doesnt need skb->dst, release it right now while
2009 * its hot in this cpu cache
2010 */
2011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2012 skb_dst_drop(skb);
2013
2014 skb_orphan_try(skb);
2015
2016 if (vlan_tx_tag_present(skb) &&
2017 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2018 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2019 if (unlikely(!skb))
2020 goto out;
2021
2022 skb->vlan_tci = 0;
2023 }
2024
2025 if (netif_needs_gso(dev, skb)) {
2026 if (unlikely(dev_gso_segment(skb)))
2027 goto out_kfree_skb;
2028 if (skb->next)
2029 goto gso;
2030 } else {
2031 if (skb_needs_linearize(skb, dev) &&
2032 __skb_linearize(skb))
2033 goto out_kfree_skb;
2034
2035 /* If packet is not checksummed and device does not
2036 * support checksumming for this protocol, complete
2037 * checksumming here.
2038 */
2039 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2040 skb_set_transport_header(skb, skb->csum_start -
2041 skb_headroom(skb));
2042 if (!dev_can_checksum(dev, skb) &&
2043 skb_checksum_help(skb))
2044 goto out_kfree_skb;
2045 }
2046 }
2047
2048 rc = ops->ndo_start_xmit(skb, dev);
2049 trace_net_dev_xmit(skb, rc);
2050 if (rc == NETDEV_TX_OK)
2051 txq_trans_update(txq);
2052 return rc;
2053 }
2054
2055 gso:
2056 do {
2057 struct sk_buff *nskb = skb->next;
2058
2059 skb->next = nskb->next;
2060 nskb->next = NULL;
2061
2062 /*
2063 * If device doesnt need nskb->dst, release it right now while
2064 * its hot in this cpu cache
2065 */
2066 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2067 skb_dst_drop(nskb);
2068
2069 rc = ops->ndo_start_xmit(nskb, dev);
2070 trace_net_dev_xmit(nskb, rc);
2071 if (unlikely(rc != NETDEV_TX_OK)) {
2072 if (rc & ~NETDEV_TX_MASK)
2073 goto out_kfree_gso_skb;
2074 nskb->next = skb->next;
2075 skb->next = nskb;
2076 return rc;
2077 }
2078 txq_trans_update(txq);
2079 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2080 return NETDEV_TX_BUSY;
2081 } while (skb->next);
2082
2083 out_kfree_gso_skb:
2084 if (likely(skb->next == NULL))
2085 skb->destructor = DEV_GSO_CB(skb)->destructor;
2086 out_kfree_skb:
2087 kfree_skb(skb);
2088 out:
2089 return rc;
2090 }
2091
2092 static u32 hashrnd __read_mostly;
2093
2094 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2095 {
2096 u32 hash;
2097
2098 if (skb_rx_queue_recorded(skb)) {
2099 hash = skb_get_rx_queue(skb);
2100 while (unlikely(hash >= dev->real_num_tx_queues))
2101 hash -= dev->real_num_tx_queues;
2102 return hash;
2103 }
2104
2105 if (skb->sk && skb->sk->sk_hash)
2106 hash = skb->sk->sk_hash;
2107 else
2108 hash = (__force u16) skb->protocol ^ skb->rxhash;
2109 hash = jhash_1word(hash, hashrnd);
2110
2111 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2112 }
2113 EXPORT_SYMBOL(skb_tx_hash);
2114
2115 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2116 {
2117 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2118 if (net_ratelimit()) {
2119 pr_warning("%s selects TX queue %d, but "
2120 "real number of TX queues is %d\n",
2121 dev->name, queue_index, dev->real_num_tx_queues);
2122 }
2123 return 0;
2124 }
2125 return queue_index;
2126 }
2127
2128 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2129 struct sk_buff *skb)
2130 {
2131 int queue_index;
2132 const struct net_device_ops *ops = dev->netdev_ops;
2133
2134 if (ops->ndo_select_queue) {
2135 queue_index = ops->ndo_select_queue(dev, skb);
2136 queue_index = dev_cap_txqueue(dev, queue_index);
2137 } else {
2138 struct sock *sk = skb->sk;
2139 queue_index = sk_tx_queue_get(sk);
2140 if (queue_index < 0 || queue_index >= dev->real_num_tx_queues) {
2141
2142 queue_index = 0;
2143 if (dev->real_num_tx_queues > 1)
2144 queue_index = skb_tx_hash(dev, skb);
2145
2146 if (sk) {
2147 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2148
2149 if (dst && skb_dst(skb) == dst)
2150 sk_tx_queue_set(sk, queue_index);
2151 }
2152 }
2153 }
2154
2155 skb_set_queue_mapping(skb, queue_index);
2156 return netdev_get_tx_queue(dev, queue_index);
2157 }
2158
2159 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2160 struct net_device *dev,
2161 struct netdev_queue *txq)
2162 {
2163 spinlock_t *root_lock = qdisc_lock(q);
2164 bool contended = qdisc_is_running(q);
2165 int rc;
2166
2167 /*
2168 * Heuristic to force contended enqueues to serialize on a
2169 * separate lock before trying to get qdisc main lock.
2170 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2171 * and dequeue packets faster.
2172 */
2173 if (unlikely(contended))
2174 spin_lock(&q->busylock);
2175
2176 spin_lock(root_lock);
2177 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2178 kfree_skb(skb);
2179 rc = NET_XMIT_DROP;
2180 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2181 qdisc_run_begin(q)) {
2182 /*
2183 * This is a work-conserving queue; there are no old skbs
2184 * waiting to be sent out; and the qdisc is not running -
2185 * xmit the skb directly.
2186 */
2187 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2188 skb_dst_force(skb);
2189 __qdisc_update_bstats(q, skb->len);
2190 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2191 if (unlikely(contended)) {
2192 spin_unlock(&q->busylock);
2193 contended = false;
2194 }
2195 __qdisc_run(q);
2196 } else
2197 qdisc_run_end(q);
2198
2199 rc = NET_XMIT_SUCCESS;
2200 } else {
2201 skb_dst_force(skb);
2202 rc = qdisc_enqueue_root(skb, q);
2203 if (qdisc_run_begin(q)) {
2204 if (unlikely(contended)) {
2205 spin_unlock(&q->busylock);
2206 contended = false;
2207 }
2208 __qdisc_run(q);
2209 }
2210 }
2211 spin_unlock(root_lock);
2212 if (unlikely(contended))
2213 spin_unlock(&q->busylock);
2214 return rc;
2215 }
2216
2217 static DEFINE_PER_CPU(int, xmit_recursion);
2218 #define RECURSION_LIMIT 10
2219
2220 /**
2221 * dev_queue_xmit - transmit a buffer
2222 * @skb: buffer to transmit
2223 *
2224 * Queue a buffer for transmission to a network device. The caller must
2225 * have set the device and priority and built the buffer before calling
2226 * this function. The function can be called from an interrupt.
2227 *
2228 * A negative errno code is returned on a failure. A success does not
2229 * guarantee the frame will be transmitted as it may be dropped due
2230 * to congestion or traffic shaping.
2231 *
2232 * -----------------------------------------------------------------------------------
2233 * I notice this method can also return errors from the queue disciplines,
2234 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2235 * be positive.
2236 *
2237 * Regardless of the return value, the skb is consumed, so it is currently
2238 * difficult to retry a send to this method. (You can bump the ref count
2239 * before sending to hold a reference for retry if you are careful.)
2240 *
2241 * When calling this method, interrupts MUST be enabled. This is because
2242 * the BH enable code must have IRQs enabled so that it will not deadlock.
2243 * --BLG
2244 */
2245 int dev_queue_xmit(struct sk_buff *skb)
2246 {
2247 struct net_device *dev = skb->dev;
2248 struct netdev_queue *txq;
2249 struct Qdisc *q;
2250 int rc = -ENOMEM;
2251
2252 /* Disable soft irqs for various locks below. Also
2253 * stops preemption for RCU.
2254 */
2255 rcu_read_lock_bh();
2256
2257 txq = dev_pick_tx(dev, skb);
2258 q = rcu_dereference_bh(txq->qdisc);
2259
2260 #ifdef CONFIG_NET_CLS_ACT
2261 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2262 #endif
2263 trace_net_dev_queue(skb);
2264 if (q->enqueue) {
2265 rc = __dev_xmit_skb(skb, q, dev, txq);
2266 goto out;
2267 }
2268
2269 /* The device has no queue. Common case for software devices:
2270 loopback, all the sorts of tunnels...
2271
2272 Really, it is unlikely that netif_tx_lock protection is necessary
2273 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2274 counters.)
2275 However, it is possible, that they rely on protection
2276 made by us here.
2277
2278 Check this and shot the lock. It is not prone from deadlocks.
2279 Either shot noqueue qdisc, it is even simpler 8)
2280 */
2281 if (dev->flags & IFF_UP) {
2282 int cpu = smp_processor_id(); /* ok because BHs are off */
2283
2284 if (txq->xmit_lock_owner != cpu) {
2285
2286 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2287 goto recursion_alert;
2288
2289 HARD_TX_LOCK(dev, txq, cpu);
2290
2291 if (!netif_tx_queue_stopped(txq)) {
2292 __this_cpu_inc(xmit_recursion);
2293 rc = dev_hard_start_xmit(skb, dev, txq);
2294 __this_cpu_dec(xmit_recursion);
2295 if (dev_xmit_complete(rc)) {
2296 HARD_TX_UNLOCK(dev, txq);
2297 goto out;
2298 }
2299 }
2300 HARD_TX_UNLOCK(dev, txq);
2301 if (net_ratelimit())
2302 printk(KERN_CRIT "Virtual device %s asks to "
2303 "queue packet!\n", dev->name);
2304 } else {
2305 /* Recursion is detected! It is possible,
2306 * unfortunately
2307 */
2308 recursion_alert:
2309 if (net_ratelimit())
2310 printk(KERN_CRIT "Dead loop on virtual device "
2311 "%s, fix it urgently!\n", dev->name);
2312 }
2313 }
2314
2315 rc = -ENETDOWN;
2316 rcu_read_unlock_bh();
2317
2318 kfree_skb(skb);
2319 return rc;
2320 out:
2321 rcu_read_unlock_bh();
2322 return rc;
2323 }
2324 EXPORT_SYMBOL(dev_queue_xmit);
2325
2326
2327 /*=======================================================================
2328 Receiver routines
2329 =======================================================================*/
2330
2331 int netdev_max_backlog __read_mostly = 1000;
2332 int netdev_tstamp_prequeue __read_mostly = 1;
2333 int netdev_budget __read_mostly = 300;
2334 int weight_p __read_mostly = 64; /* old backlog weight */
2335
2336 /* Called with irq disabled */
2337 static inline void ____napi_schedule(struct softnet_data *sd,
2338 struct napi_struct *napi)
2339 {
2340 list_add_tail(&napi->poll_list, &sd->poll_list);
2341 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2342 }
2343
2344 /*
2345 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2346 * and src/dst port numbers. Returns a non-zero hash number on success
2347 * and 0 on failure.
2348 */
2349 __u32 __skb_get_rxhash(struct sk_buff *skb)
2350 {
2351 int nhoff, hash = 0, poff;
2352 struct ipv6hdr *ip6;
2353 struct iphdr *ip;
2354 u8 ip_proto;
2355 u32 addr1, addr2, ihl;
2356 union {
2357 u32 v32;
2358 u16 v16[2];
2359 } ports;
2360
2361 nhoff = skb_network_offset(skb);
2362
2363 switch (skb->protocol) {
2364 case __constant_htons(ETH_P_IP):
2365 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2366 goto done;
2367
2368 ip = (struct iphdr *) (skb->data + nhoff);
2369 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2370 ip_proto = 0;
2371 else
2372 ip_proto = ip->protocol;
2373 addr1 = (__force u32) ip->saddr;
2374 addr2 = (__force u32) ip->daddr;
2375 ihl = ip->ihl;
2376 break;
2377 case __constant_htons(ETH_P_IPV6):
2378 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2379 goto done;
2380
2381 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2382 ip_proto = ip6->nexthdr;
2383 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2384 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2385 ihl = (40 >> 2);
2386 break;
2387 default:
2388 goto done;
2389 }
2390
2391 ports.v32 = 0;
2392 poff = proto_ports_offset(ip_proto);
2393 if (poff >= 0) {
2394 nhoff += ihl * 4 + poff;
2395 if (pskb_may_pull(skb, nhoff + 4)) {
2396 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2397 if (ports.v16[1] < ports.v16[0])
2398 swap(ports.v16[0], ports.v16[1]);
2399 }
2400 }
2401
2402 /* get a consistent hash (same value on both flow directions) */
2403 if (addr2 < addr1)
2404 swap(addr1, addr2);
2405
2406 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2407 if (!hash)
2408 hash = 1;
2409
2410 done:
2411 return hash;
2412 }
2413 EXPORT_SYMBOL(__skb_get_rxhash);
2414
2415 #ifdef CONFIG_RPS
2416
2417 /* One global table that all flow-based protocols share. */
2418 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2419 EXPORT_SYMBOL(rps_sock_flow_table);
2420
2421 /*
2422 * get_rps_cpu is called from netif_receive_skb and returns the target
2423 * CPU from the RPS map of the receiving queue for a given skb.
2424 * rcu_read_lock must be held on entry.
2425 */
2426 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2427 struct rps_dev_flow **rflowp)
2428 {
2429 struct netdev_rx_queue *rxqueue;
2430 struct rps_map *map;
2431 struct rps_dev_flow_table *flow_table;
2432 struct rps_sock_flow_table *sock_flow_table;
2433 int cpu = -1;
2434 u16 tcpu;
2435
2436 if (skb_rx_queue_recorded(skb)) {
2437 u16 index = skb_get_rx_queue(skb);
2438 if (unlikely(index >= dev->real_num_rx_queues)) {
2439 WARN_ONCE(dev->real_num_rx_queues > 1,
2440 "%s received packet on queue %u, but number "
2441 "of RX queues is %u\n",
2442 dev->name, index, dev->real_num_rx_queues);
2443 goto done;
2444 }
2445 rxqueue = dev->_rx + index;
2446 } else
2447 rxqueue = dev->_rx;
2448
2449 map = rcu_dereference(rxqueue->rps_map);
2450 if (map) {
2451 if (map->len == 1) {
2452 tcpu = map->cpus[0];
2453 if (cpu_online(tcpu))
2454 cpu = tcpu;
2455 goto done;
2456 }
2457 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2458 goto done;
2459 }
2460
2461 skb_reset_network_header(skb);
2462 if (!skb_get_rxhash(skb))
2463 goto done;
2464
2465 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2466 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2467 if (flow_table && sock_flow_table) {
2468 u16 next_cpu;
2469 struct rps_dev_flow *rflow;
2470
2471 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2472 tcpu = rflow->cpu;
2473
2474 next_cpu = sock_flow_table->ents[skb->rxhash &
2475 sock_flow_table->mask];
2476
2477 /*
2478 * If the desired CPU (where last recvmsg was done) is
2479 * different from current CPU (one in the rx-queue flow
2480 * table entry), switch if one of the following holds:
2481 * - Current CPU is unset (equal to RPS_NO_CPU).
2482 * - Current CPU is offline.
2483 * - The current CPU's queue tail has advanced beyond the
2484 * last packet that was enqueued using this table entry.
2485 * This guarantees that all previous packets for the flow
2486 * have been dequeued, thus preserving in order delivery.
2487 */
2488 if (unlikely(tcpu != next_cpu) &&
2489 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2490 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2491 rflow->last_qtail)) >= 0)) {
2492 tcpu = rflow->cpu = next_cpu;
2493 if (tcpu != RPS_NO_CPU)
2494 rflow->last_qtail = per_cpu(softnet_data,
2495 tcpu).input_queue_head;
2496 }
2497 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2498 *rflowp = rflow;
2499 cpu = tcpu;
2500 goto done;
2501 }
2502 }
2503
2504 if (map) {
2505 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2506
2507 if (cpu_online(tcpu)) {
2508 cpu = tcpu;
2509 goto done;
2510 }
2511 }
2512
2513 done:
2514 return cpu;
2515 }
2516
2517 /* Called from hardirq (IPI) context */
2518 static void rps_trigger_softirq(void *data)
2519 {
2520 struct softnet_data *sd = data;
2521
2522 ____napi_schedule(sd, &sd->backlog);
2523 sd->received_rps++;
2524 }
2525
2526 #endif /* CONFIG_RPS */
2527
2528 /*
2529 * Check if this softnet_data structure is another cpu one
2530 * If yes, queue it to our IPI list and return 1
2531 * If no, return 0
2532 */
2533 static int rps_ipi_queued(struct softnet_data *sd)
2534 {
2535 #ifdef CONFIG_RPS
2536 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2537
2538 if (sd != mysd) {
2539 sd->rps_ipi_next = mysd->rps_ipi_list;
2540 mysd->rps_ipi_list = sd;
2541
2542 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2543 return 1;
2544 }
2545 #endif /* CONFIG_RPS */
2546 return 0;
2547 }
2548
2549 /*
2550 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2551 * queue (may be a remote CPU queue).
2552 */
2553 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2554 unsigned int *qtail)
2555 {
2556 struct softnet_data *sd;
2557 unsigned long flags;
2558
2559 sd = &per_cpu(softnet_data, cpu);
2560
2561 local_irq_save(flags);
2562
2563 rps_lock(sd);
2564 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2565 if (skb_queue_len(&sd->input_pkt_queue)) {
2566 enqueue:
2567 __skb_queue_tail(&sd->input_pkt_queue, skb);
2568 input_queue_tail_incr_save(sd, qtail);
2569 rps_unlock(sd);
2570 local_irq_restore(flags);
2571 return NET_RX_SUCCESS;
2572 }
2573
2574 /* Schedule NAPI for backlog device
2575 * We can use non atomic operation since we own the queue lock
2576 */
2577 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2578 if (!rps_ipi_queued(sd))
2579 ____napi_schedule(sd, &sd->backlog);
2580 }
2581 goto enqueue;
2582 }
2583
2584 sd->dropped++;
2585 rps_unlock(sd);
2586
2587 local_irq_restore(flags);
2588
2589 atomic_long_inc(&skb->dev->rx_dropped);
2590 kfree_skb(skb);
2591 return NET_RX_DROP;
2592 }
2593
2594 /**
2595 * netif_rx - post buffer to the network code
2596 * @skb: buffer to post
2597 *
2598 * This function receives a packet from a device driver and queues it for
2599 * the upper (protocol) levels to process. It always succeeds. The buffer
2600 * may be dropped during processing for congestion control or by the
2601 * protocol layers.
2602 *
2603 * return values:
2604 * NET_RX_SUCCESS (no congestion)
2605 * NET_RX_DROP (packet was dropped)
2606 *
2607 */
2608
2609 int netif_rx(struct sk_buff *skb)
2610 {
2611 int ret;
2612
2613 /* if netpoll wants it, pretend we never saw it */
2614 if (netpoll_rx(skb))
2615 return NET_RX_DROP;
2616
2617 if (netdev_tstamp_prequeue)
2618 net_timestamp_check(skb);
2619
2620 trace_netif_rx(skb);
2621 #ifdef CONFIG_RPS
2622 {
2623 struct rps_dev_flow voidflow, *rflow = &voidflow;
2624 int cpu;
2625
2626 preempt_disable();
2627 rcu_read_lock();
2628
2629 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2630 if (cpu < 0)
2631 cpu = smp_processor_id();
2632
2633 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2634
2635 rcu_read_unlock();
2636 preempt_enable();
2637 }
2638 #else
2639 {
2640 unsigned int qtail;
2641 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2642 put_cpu();
2643 }
2644 #endif
2645 return ret;
2646 }
2647 EXPORT_SYMBOL(netif_rx);
2648
2649 int netif_rx_ni(struct sk_buff *skb)
2650 {
2651 int err;
2652
2653 preempt_disable();
2654 err = netif_rx(skb);
2655 if (local_softirq_pending())
2656 do_softirq();
2657 preempt_enable();
2658
2659 return err;
2660 }
2661 EXPORT_SYMBOL(netif_rx_ni);
2662
2663 static void net_tx_action(struct softirq_action *h)
2664 {
2665 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2666
2667 if (sd->completion_queue) {
2668 struct sk_buff *clist;
2669
2670 local_irq_disable();
2671 clist = sd->completion_queue;
2672 sd->completion_queue = NULL;
2673 local_irq_enable();
2674
2675 while (clist) {
2676 struct sk_buff *skb = clist;
2677 clist = clist->next;
2678
2679 WARN_ON(atomic_read(&skb->users));
2680 trace_kfree_skb(skb, net_tx_action);
2681 __kfree_skb(skb);
2682 }
2683 }
2684
2685 if (sd->output_queue) {
2686 struct Qdisc *head;
2687
2688 local_irq_disable();
2689 head = sd->output_queue;
2690 sd->output_queue = NULL;
2691 sd->output_queue_tailp = &sd->output_queue;
2692 local_irq_enable();
2693
2694 while (head) {
2695 struct Qdisc *q = head;
2696 spinlock_t *root_lock;
2697
2698 head = head->next_sched;
2699
2700 root_lock = qdisc_lock(q);
2701 if (spin_trylock(root_lock)) {
2702 smp_mb__before_clear_bit();
2703 clear_bit(__QDISC_STATE_SCHED,
2704 &q->state);
2705 qdisc_run(q);
2706 spin_unlock(root_lock);
2707 } else {
2708 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2709 &q->state)) {
2710 __netif_reschedule(q);
2711 } else {
2712 smp_mb__before_clear_bit();
2713 clear_bit(__QDISC_STATE_SCHED,
2714 &q->state);
2715 }
2716 }
2717 }
2718 }
2719 }
2720
2721 static inline int deliver_skb(struct sk_buff *skb,
2722 struct packet_type *pt_prev,
2723 struct net_device *orig_dev)
2724 {
2725 atomic_inc(&skb->users);
2726 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2727 }
2728
2729 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2730 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2731 /* This hook is defined here for ATM LANE */
2732 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2733 unsigned char *addr) __read_mostly;
2734 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2735 #endif
2736
2737 #ifdef CONFIG_NET_CLS_ACT
2738 /* TODO: Maybe we should just force sch_ingress to be compiled in
2739 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2740 * a compare and 2 stores extra right now if we dont have it on
2741 * but have CONFIG_NET_CLS_ACT
2742 * NOTE: This doesnt stop any functionality; if you dont have
2743 * the ingress scheduler, you just cant add policies on ingress.
2744 *
2745 */
2746 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2747 {
2748 struct net_device *dev = skb->dev;
2749 u32 ttl = G_TC_RTTL(skb->tc_verd);
2750 int result = TC_ACT_OK;
2751 struct Qdisc *q;
2752
2753 if (unlikely(MAX_RED_LOOP < ttl++)) {
2754 if (net_ratelimit())
2755 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2756 skb->skb_iif, dev->ifindex);
2757 return TC_ACT_SHOT;
2758 }
2759
2760 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2761 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2762
2763 q = rxq->qdisc;
2764 if (q != &noop_qdisc) {
2765 spin_lock(qdisc_lock(q));
2766 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2767 result = qdisc_enqueue_root(skb, q);
2768 spin_unlock(qdisc_lock(q));
2769 }
2770
2771 return result;
2772 }
2773
2774 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2775 struct packet_type **pt_prev,
2776 int *ret, struct net_device *orig_dev)
2777 {
2778 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2779
2780 if (!rxq || rxq->qdisc == &noop_qdisc)
2781 goto out;
2782
2783 if (*pt_prev) {
2784 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2785 *pt_prev = NULL;
2786 }
2787
2788 switch (ing_filter(skb, rxq)) {
2789 case TC_ACT_SHOT:
2790 case TC_ACT_STOLEN:
2791 kfree_skb(skb);
2792 return NULL;
2793 }
2794
2795 out:
2796 skb->tc_verd = 0;
2797 return skb;
2798 }
2799 #endif
2800
2801 /**
2802 * netdev_rx_handler_register - register receive handler
2803 * @dev: device to register a handler for
2804 * @rx_handler: receive handler to register
2805 * @rx_handler_data: data pointer that is used by rx handler
2806 *
2807 * Register a receive hander for a device. This handler will then be
2808 * called from __netif_receive_skb. A negative errno code is returned
2809 * on a failure.
2810 *
2811 * The caller must hold the rtnl_mutex.
2812 */
2813 int netdev_rx_handler_register(struct net_device *dev,
2814 rx_handler_func_t *rx_handler,
2815 void *rx_handler_data)
2816 {
2817 ASSERT_RTNL();
2818
2819 if (dev->rx_handler)
2820 return -EBUSY;
2821
2822 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2823 rcu_assign_pointer(dev->rx_handler, rx_handler);
2824
2825 return 0;
2826 }
2827 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2828
2829 /**
2830 * netdev_rx_handler_unregister - unregister receive handler
2831 * @dev: device to unregister a handler from
2832 *
2833 * Unregister a receive hander from a device.
2834 *
2835 * The caller must hold the rtnl_mutex.
2836 */
2837 void netdev_rx_handler_unregister(struct net_device *dev)
2838 {
2839
2840 ASSERT_RTNL();
2841 rcu_assign_pointer(dev->rx_handler, NULL);
2842 rcu_assign_pointer(dev->rx_handler_data, NULL);
2843 }
2844 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2845
2846 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2847 struct net_device *master)
2848 {
2849 if (skb->pkt_type == PACKET_HOST) {
2850 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2851
2852 memcpy(dest, master->dev_addr, ETH_ALEN);
2853 }
2854 }
2855
2856 /* On bonding slaves other than the currently active slave, suppress
2857 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2858 * ARP on active-backup slaves with arp_validate enabled.
2859 */
2860 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2861 {
2862 struct net_device *dev = skb->dev;
2863
2864 if (master->priv_flags & IFF_MASTER_ARPMON)
2865 dev->last_rx = jiffies;
2866
2867 if ((master->priv_flags & IFF_MASTER_ALB) &&
2868 (master->priv_flags & IFF_BRIDGE_PORT)) {
2869 /* Do address unmangle. The local destination address
2870 * will be always the one master has. Provides the right
2871 * functionality in a bridge.
2872 */
2873 skb_bond_set_mac_by_master(skb, master);
2874 }
2875
2876 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2877 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2878 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2879 return 0;
2880
2881 if (master->priv_flags & IFF_MASTER_ALB) {
2882 if (skb->pkt_type != PACKET_BROADCAST &&
2883 skb->pkt_type != PACKET_MULTICAST)
2884 return 0;
2885 }
2886 if (master->priv_flags & IFF_MASTER_8023AD &&
2887 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2888 return 0;
2889
2890 return 1;
2891 }
2892 return 0;
2893 }
2894 EXPORT_SYMBOL(__skb_bond_should_drop);
2895
2896 static int __netif_receive_skb(struct sk_buff *skb)
2897 {
2898 struct packet_type *ptype, *pt_prev;
2899 rx_handler_func_t *rx_handler;
2900 struct net_device *orig_dev;
2901 struct net_device *master;
2902 struct net_device *null_or_orig;
2903 struct net_device *orig_or_bond;
2904 int ret = NET_RX_DROP;
2905 __be16 type;
2906
2907 if (!netdev_tstamp_prequeue)
2908 net_timestamp_check(skb);
2909
2910 trace_netif_receive_skb(skb);
2911
2912 /* if we've gotten here through NAPI, check netpoll */
2913 if (netpoll_receive_skb(skb))
2914 return NET_RX_DROP;
2915
2916 if (!skb->skb_iif)
2917 skb->skb_iif = skb->dev->ifindex;
2918
2919 /*
2920 * bonding note: skbs received on inactive slaves should only
2921 * be delivered to pkt handlers that are exact matches. Also
2922 * the deliver_no_wcard flag will be set. If packet handlers
2923 * are sensitive to duplicate packets these skbs will need to
2924 * be dropped at the handler.
2925 */
2926 null_or_orig = NULL;
2927 orig_dev = skb->dev;
2928 master = ACCESS_ONCE(orig_dev->master);
2929 if (skb->deliver_no_wcard)
2930 null_or_orig = orig_dev;
2931 else if (master) {
2932 if (skb_bond_should_drop(skb, master)) {
2933 skb->deliver_no_wcard = 1;
2934 null_or_orig = orig_dev; /* deliver only exact match */
2935 } else
2936 skb->dev = master;
2937 }
2938
2939 __this_cpu_inc(softnet_data.processed);
2940 skb_reset_network_header(skb);
2941 skb_reset_transport_header(skb);
2942 skb->mac_len = skb->network_header - skb->mac_header;
2943
2944 pt_prev = NULL;
2945
2946 rcu_read_lock();
2947
2948 #ifdef CONFIG_NET_CLS_ACT
2949 if (skb->tc_verd & TC_NCLS) {
2950 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2951 goto ncls;
2952 }
2953 #endif
2954
2955 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2956 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2957 ptype->dev == orig_dev) {
2958 if (pt_prev)
2959 ret = deliver_skb(skb, pt_prev, orig_dev);
2960 pt_prev = ptype;
2961 }
2962 }
2963
2964 #ifdef CONFIG_NET_CLS_ACT
2965 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2966 if (!skb)
2967 goto out;
2968 ncls:
2969 #endif
2970
2971 /* Handle special case of bridge or macvlan */
2972 rx_handler = rcu_dereference(skb->dev->rx_handler);
2973 if (rx_handler) {
2974 if (pt_prev) {
2975 ret = deliver_skb(skb, pt_prev, orig_dev);
2976 pt_prev = NULL;
2977 }
2978 skb = rx_handler(skb);
2979 if (!skb)
2980 goto out;
2981 }
2982
2983 if (vlan_tx_tag_present(skb)) {
2984 if (pt_prev) {
2985 ret = deliver_skb(skb, pt_prev, orig_dev);
2986 pt_prev = NULL;
2987 }
2988 if (vlan_hwaccel_do_receive(&skb)) {
2989 ret = __netif_receive_skb(skb);
2990 goto out;
2991 } else if (unlikely(!skb))
2992 goto out;
2993 }
2994
2995 /*
2996 * Make sure frames received on VLAN interfaces stacked on
2997 * bonding interfaces still make their way to any base bonding
2998 * device that may have registered for a specific ptype. The
2999 * handler may have to adjust skb->dev and orig_dev.
3000 */
3001 orig_or_bond = orig_dev;
3002 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3003 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3004 orig_or_bond = vlan_dev_real_dev(skb->dev);
3005 }
3006
3007 type = skb->protocol;
3008 list_for_each_entry_rcu(ptype,
3009 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3010 if (ptype->type == type && (ptype->dev == null_or_orig ||
3011 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3012 ptype->dev == orig_or_bond)) {
3013 if (pt_prev)
3014 ret = deliver_skb(skb, pt_prev, orig_dev);
3015 pt_prev = ptype;
3016 }
3017 }
3018
3019 if (pt_prev) {
3020 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3021 } else {
3022 atomic_long_inc(&skb->dev->rx_dropped);
3023 kfree_skb(skb);
3024 /* Jamal, now you will not able to escape explaining
3025 * me how you were going to use this. :-)
3026 */
3027 ret = NET_RX_DROP;
3028 }
3029
3030 out:
3031 rcu_read_unlock();
3032 return ret;
3033 }
3034
3035 /**
3036 * netif_receive_skb - process receive buffer from network
3037 * @skb: buffer to process
3038 *
3039 * netif_receive_skb() is the main receive data processing function.
3040 * It always succeeds. The buffer may be dropped during processing
3041 * for congestion control or by the protocol layers.
3042 *
3043 * This function may only be called from softirq context and interrupts
3044 * should be enabled.
3045 *
3046 * Return values (usually ignored):
3047 * NET_RX_SUCCESS: no congestion
3048 * NET_RX_DROP: packet was dropped
3049 */
3050 int netif_receive_skb(struct sk_buff *skb)
3051 {
3052 if (netdev_tstamp_prequeue)
3053 net_timestamp_check(skb);
3054
3055 if (skb_defer_rx_timestamp(skb))
3056 return NET_RX_SUCCESS;
3057
3058 #ifdef CONFIG_RPS
3059 {
3060 struct rps_dev_flow voidflow, *rflow = &voidflow;
3061 int cpu, ret;
3062
3063 rcu_read_lock();
3064
3065 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3066
3067 if (cpu >= 0) {
3068 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3069 rcu_read_unlock();
3070 } else {
3071 rcu_read_unlock();
3072 ret = __netif_receive_skb(skb);
3073 }
3074
3075 return ret;
3076 }
3077 #else
3078 return __netif_receive_skb(skb);
3079 #endif
3080 }
3081 EXPORT_SYMBOL(netif_receive_skb);
3082
3083 /* Network device is going away, flush any packets still pending
3084 * Called with irqs disabled.
3085 */
3086 static void flush_backlog(void *arg)
3087 {
3088 struct net_device *dev = arg;
3089 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3090 struct sk_buff *skb, *tmp;
3091
3092 rps_lock(sd);
3093 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3094 if (skb->dev == dev) {
3095 __skb_unlink(skb, &sd->input_pkt_queue);
3096 kfree_skb(skb);
3097 input_queue_head_incr(sd);
3098 }
3099 }
3100 rps_unlock(sd);
3101
3102 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3103 if (skb->dev == dev) {
3104 __skb_unlink(skb, &sd->process_queue);
3105 kfree_skb(skb);
3106 input_queue_head_incr(sd);
3107 }
3108 }
3109 }
3110
3111 static int napi_gro_complete(struct sk_buff *skb)
3112 {
3113 struct packet_type *ptype;
3114 __be16 type = skb->protocol;
3115 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3116 int err = -ENOENT;
3117
3118 if (NAPI_GRO_CB(skb)->count == 1) {
3119 skb_shinfo(skb)->gso_size = 0;
3120 goto out;
3121 }
3122
3123 rcu_read_lock();
3124 list_for_each_entry_rcu(ptype, head, list) {
3125 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3126 continue;
3127
3128 err = ptype->gro_complete(skb);
3129 break;
3130 }
3131 rcu_read_unlock();
3132
3133 if (err) {
3134 WARN_ON(&ptype->list == head);
3135 kfree_skb(skb);
3136 return NET_RX_SUCCESS;
3137 }
3138
3139 out:
3140 return netif_receive_skb(skb);
3141 }
3142
3143 inline void napi_gro_flush(struct napi_struct *napi)
3144 {
3145 struct sk_buff *skb, *next;
3146
3147 for (skb = napi->gro_list; skb; skb = next) {
3148 next = skb->next;
3149 skb->next = NULL;
3150 napi_gro_complete(skb);
3151 }
3152
3153 napi->gro_count = 0;
3154 napi->gro_list = NULL;
3155 }
3156 EXPORT_SYMBOL(napi_gro_flush);
3157
3158 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3159 {
3160 struct sk_buff **pp = NULL;
3161 struct packet_type *ptype;
3162 __be16 type = skb->protocol;
3163 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3164 int same_flow;
3165 int mac_len;
3166 enum gro_result ret;
3167
3168 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3169 goto normal;
3170
3171 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3172 goto normal;
3173
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(ptype, head, list) {
3176 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3177 continue;
3178
3179 skb_set_network_header(skb, skb_gro_offset(skb));
3180 mac_len = skb->network_header - skb->mac_header;
3181 skb->mac_len = mac_len;
3182 NAPI_GRO_CB(skb)->same_flow = 0;
3183 NAPI_GRO_CB(skb)->flush = 0;
3184 NAPI_GRO_CB(skb)->free = 0;
3185
3186 pp = ptype->gro_receive(&napi->gro_list, skb);
3187 break;
3188 }
3189 rcu_read_unlock();
3190
3191 if (&ptype->list == head)
3192 goto normal;
3193
3194 same_flow = NAPI_GRO_CB(skb)->same_flow;
3195 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3196
3197 if (pp) {
3198 struct sk_buff *nskb = *pp;
3199
3200 *pp = nskb->next;
3201 nskb->next = NULL;
3202 napi_gro_complete(nskb);
3203 napi->gro_count--;
3204 }
3205
3206 if (same_flow)
3207 goto ok;
3208
3209 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3210 goto normal;
3211
3212 napi->gro_count++;
3213 NAPI_GRO_CB(skb)->count = 1;
3214 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3215 skb->next = napi->gro_list;
3216 napi->gro_list = skb;
3217 ret = GRO_HELD;
3218
3219 pull:
3220 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3221 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3222
3223 BUG_ON(skb->end - skb->tail < grow);
3224
3225 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3226
3227 skb->tail += grow;
3228 skb->data_len -= grow;
3229
3230 skb_shinfo(skb)->frags[0].page_offset += grow;
3231 skb_shinfo(skb)->frags[0].size -= grow;
3232
3233 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3234 put_page(skb_shinfo(skb)->frags[0].page);
3235 memmove(skb_shinfo(skb)->frags,
3236 skb_shinfo(skb)->frags + 1,
3237 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3238 }
3239 }
3240
3241 ok:
3242 return ret;
3243
3244 normal:
3245 ret = GRO_NORMAL;
3246 goto pull;
3247 }
3248 EXPORT_SYMBOL(dev_gro_receive);
3249
3250 static inline gro_result_t
3251 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3252 {
3253 struct sk_buff *p;
3254
3255 for (p = napi->gro_list; p; p = p->next) {
3256 unsigned long diffs;
3257
3258 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3259 diffs |= p->vlan_tci ^ skb->vlan_tci;
3260 diffs |= compare_ether_header(skb_mac_header(p),
3261 skb_gro_mac_header(skb));
3262 NAPI_GRO_CB(p)->same_flow = !diffs;
3263 NAPI_GRO_CB(p)->flush = 0;
3264 }
3265
3266 return dev_gro_receive(napi, skb);
3267 }
3268
3269 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3270 {
3271 switch (ret) {
3272 case GRO_NORMAL:
3273 if (netif_receive_skb(skb))
3274 ret = GRO_DROP;
3275 break;
3276
3277 case GRO_DROP:
3278 case GRO_MERGED_FREE:
3279 kfree_skb(skb);
3280 break;
3281
3282 case GRO_HELD:
3283 case GRO_MERGED:
3284 break;
3285 }
3286
3287 return ret;
3288 }
3289 EXPORT_SYMBOL(napi_skb_finish);
3290
3291 void skb_gro_reset_offset(struct sk_buff *skb)
3292 {
3293 NAPI_GRO_CB(skb)->data_offset = 0;
3294 NAPI_GRO_CB(skb)->frag0 = NULL;
3295 NAPI_GRO_CB(skb)->frag0_len = 0;
3296
3297 if (skb->mac_header == skb->tail &&
3298 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3299 NAPI_GRO_CB(skb)->frag0 =
3300 page_address(skb_shinfo(skb)->frags[0].page) +
3301 skb_shinfo(skb)->frags[0].page_offset;
3302 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3303 }
3304 }
3305 EXPORT_SYMBOL(skb_gro_reset_offset);
3306
3307 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3308 {
3309 skb_gro_reset_offset(skb);
3310
3311 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3312 }
3313 EXPORT_SYMBOL(napi_gro_receive);
3314
3315 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3316 {
3317 __skb_pull(skb, skb_headlen(skb));
3318 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3319 skb->vlan_tci = 0;
3320
3321 napi->skb = skb;
3322 }
3323
3324 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3325 {
3326 struct sk_buff *skb = napi->skb;
3327
3328 if (!skb) {
3329 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3330 if (skb)
3331 napi->skb = skb;
3332 }
3333 return skb;
3334 }
3335 EXPORT_SYMBOL(napi_get_frags);
3336
3337 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3338 gro_result_t ret)
3339 {
3340 switch (ret) {
3341 case GRO_NORMAL:
3342 case GRO_HELD:
3343 skb->protocol = eth_type_trans(skb, skb->dev);
3344
3345 if (ret == GRO_HELD)
3346 skb_gro_pull(skb, -ETH_HLEN);
3347 else if (netif_receive_skb(skb))
3348 ret = GRO_DROP;
3349 break;
3350
3351 case GRO_DROP:
3352 case GRO_MERGED_FREE:
3353 napi_reuse_skb(napi, skb);
3354 break;
3355
3356 case GRO_MERGED:
3357 break;
3358 }
3359
3360 return ret;
3361 }
3362 EXPORT_SYMBOL(napi_frags_finish);
3363
3364 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3365 {
3366 struct sk_buff *skb = napi->skb;
3367 struct ethhdr *eth;
3368 unsigned int hlen;
3369 unsigned int off;
3370
3371 napi->skb = NULL;
3372
3373 skb_reset_mac_header(skb);
3374 skb_gro_reset_offset(skb);
3375
3376 off = skb_gro_offset(skb);
3377 hlen = off + sizeof(*eth);
3378 eth = skb_gro_header_fast(skb, off);
3379 if (skb_gro_header_hard(skb, hlen)) {
3380 eth = skb_gro_header_slow(skb, hlen, off);
3381 if (unlikely(!eth)) {
3382 napi_reuse_skb(napi, skb);
3383 skb = NULL;
3384 goto out;
3385 }
3386 }
3387
3388 skb_gro_pull(skb, sizeof(*eth));
3389
3390 /*
3391 * This works because the only protocols we care about don't require
3392 * special handling. We'll fix it up properly at the end.
3393 */
3394 skb->protocol = eth->h_proto;
3395
3396 out:
3397 return skb;
3398 }
3399 EXPORT_SYMBOL(napi_frags_skb);
3400
3401 gro_result_t napi_gro_frags(struct napi_struct *napi)
3402 {
3403 struct sk_buff *skb = napi_frags_skb(napi);
3404
3405 if (!skb)
3406 return GRO_DROP;
3407
3408 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3409 }
3410 EXPORT_SYMBOL(napi_gro_frags);
3411
3412 /*
3413 * net_rps_action sends any pending IPI's for rps.
3414 * Note: called with local irq disabled, but exits with local irq enabled.
3415 */
3416 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3417 {
3418 #ifdef CONFIG_RPS
3419 struct softnet_data *remsd = sd->rps_ipi_list;
3420
3421 if (remsd) {
3422 sd->rps_ipi_list = NULL;
3423
3424 local_irq_enable();
3425
3426 /* Send pending IPI's to kick RPS processing on remote cpus. */
3427 while (remsd) {
3428 struct softnet_data *next = remsd->rps_ipi_next;
3429
3430 if (cpu_online(remsd->cpu))
3431 __smp_call_function_single(remsd->cpu,
3432 &remsd->csd, 0);
3433 remsd = next;
3434 }
3435 } else
3436 #endif
3437 local_irq_enable();
3438 }
3439
3440 static int process_backlog(struct napi_struct *napi, int quota)
3441 {
3442 int work = 0;
3443 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3444
3445 #ifdef CONFIG_RPS
3446 /* Check if we have pending ipi, its better to send them now,
3447 * not waiting net_rx_action() end.
3448 */
3449 if (sd->rps_ipi_list) {
3450 local_irq_disable();
3451 net_rps_action_and_irq_enable(sd);
3452 }
3453 #endif
3454 napi->weight = weight_p;
3455 local_irq_disable();
3456 while (work < quota) {
3457 struct sk_buff *skb;
3458 unsigned int qlen;
3459
3460 while ((skb = __skb_dequeue(&sd->process_queue))) {
3461 local_irq_enable();
3462 __netif_receive_skb(skb);
3463 local_irq_disable();
3464 input_queue_head_incr(sd);
3465 if (++work >= quota) {
3466 local_irq_enable();
3467 return work;
3468 }
3469 }
3470
3471 rps_lock(sd);
3472 qlen = skb_queue_len(&sd->input_pkt_queue);
3473 if (qlen)
3474 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3475 &sd->process_queue);
3476
3477 if (qlen < quota - work) {
3478 /*
3479 * Inline a custom version of __napi_complete().
3480 * only current cpu owns and manipulates this napi,
3481 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3482 * we can use a plain write instead of clear_bit(),
3483 * and we dont need an smp_mb() memory barrier.
3484 */
3485 list_del(&napi->poll_list);
3486 napi->state = 0;
3487
3488 quota = work + qlen;
3489 }
3490 rps_unlock(sd);
3491 }
3492 local_irq_enable();
3493
3494 return work;
3495 }
3496
3497 /**
3498 * __napi_schedule - schedule for receive
3499 * @n: entry to schedule
3500 *
3501 * The entry's receive function will be scheduled to run
3502 */
3503 void __napi_schedule(struct napi_struct *n)
3504 {
3505 unsigned long flags;
3506
3507 local_irq_save(flags);
3508 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3509 local_irq_restore(flags);
3510 }
3511 EXPORT_SYMBOL(__napi_schedule);
3512
3513 void __napi_complete(struct napi_struct *n)
3514 {
3515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3516 BUG_ON(n->gro_list);
3517
3518 list_del(&n->poll_list);
3519 smp_mb__before_clear_bit();
3520 clear_bit(NAPI_STATE_SCHED, &n->state);
3521 }
3522 EXPORT_SYMBOL(__napi_complete);
3523
3524 void napi_complete(struct napi_struct *n)
3525 {
3526 unsigned long flags;
3527
3528 /*
3529 * don't let napi dequeue from the cpu poll list
3530 * just in case its running on a different cpu
3531 */
3532 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3533 return;
3534
3535 napi_gro_flush(n);
3536 local_irq_save(flags);
3537 __napi_complete(n);
3538 local_irq_restore(flags);
3539 }
3540 EXPORT_SYMBOL(napi_complete);
3541
3542 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3543 int (*poll)(struct napi_struct *, int), int weight)
3544 {
3545 INIT_LIST_HEAD(&napi->poll_list);
3546 napi->gro_count = 0;
3547 napi->gro_list = NULL;
3548 napi->skb = NULL;
3549 napi->poll = poll;
3550 napi->weight = weight;
3551 list_add(&napi->dev_list, &dev->napi_list);
3552 napi->dev = dev;
3553 #ifdef CONFIG_NETPOLL
3554 spin_lock_init(&napi->poll_lock);
3555 napi->poll_owner = -1;
3556 #endif
3557 set_bit(NAPI_STATE_SCHED, &napi->state);
3558 }
3559 EXPORT_SYMBOL(netif_napi_add);
3560
3561 void netif_napi_del(struct napi_struct *napi)
3562 {
3563 struct sk_buff *skb, *next;
3564
3565 list_del_init(&napi->dev_list);
3566 napi_free_frags(napi);
3567
3568 for (skb = napi->gro_list; skb; skb = next) {
3569 next = skb->next;
3570 skb->next = NULL;
3571 kfree_skb(skb);
3572 }
3573
3574 napi->gro_list = NULL;
3575 napi->gro_count = 0;
3576 }
3577 EXPORT_SYMBOL(netif_napi_del);
3578
3579 static void net_rx_action(struct softirq_action *h)
3580 {
3581 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3582 unsigned long time_limit = jiffies + 2;
3583 int budget = netdev_budget;
3584 void *have;
3585
3586 local_irq_disable();
3587
3588 while (!list_empty(&sd->poll_list)) {
3589 struct napi_struct *n;
3590 int work, weight;
3591
3592 /* If softirq window is exhuasted then punt.
3593 * Allow this to run for 2 jiffies since which will allow
3594 * an average latency of 1.5/HZ.
3595 */
3596 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3597 goto softnet_break;
3598
3599 local_irq_enable();
3600
3601 /* Even though interrupts have been re-enabled, this
3602 * access is safe because interrupts can only add new
3603 * entries to the tail of this list, and only ->poll()
3604 * calls can remove this head entry from the list.
3605 */
3606 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3607
3608 have = netpoll_poll_lock(n);
3609
3610 weight = n->weight;
3611
3612 /* This NAPI_STATE_SCHED test is for avoiding a race
3613 * with netpoll's poll_napi(). Only the entity which
3614 * obtains the lock and sees NAPI_STATE_SCHED set will
3615 * actually make the ->poll() call. Therefore we avoid
3616 * accidently calling ->poll() when NAPI is not scheduled.
3617 */
3618 work = 0;
3619 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3620 work = n->poll(n, weight);
3621 trace_napi_poll(n);
3622 }
3623
3624 WARN_ON_ONCE(work > weight);
3625
3626 budget -= work;
3627
3628 local_irq_disable();
3629
3630 /* Drivers must not modify the NAPI state if they
3631 * consume the entire weight. In such cases this code
3632 * still "owns" the NAPI instance and therefore can
3633 * move the instance around on the list at-will.
3634 */
3635 if (unlikely(work == weight)) {
3636 if (unlikely(napi_disable_pending(n))) {
3637 local_irq_enable();
3638 napi_complete(n);
3639 local_irq_disable();
3640 } else
3641 list_move_tail(&n->poll_list, &sd->poll_list);
3642 }
3643
3644 netpoll_poll_unlock(have);
3645 }
3646 out:
3647 net_rps_action_and_irq_enable(sd);
3648
3649 #ifdef CONFIG_NET_DMA
3650 /*
3651 * There may not be any more sk_buffs coming right now, so push
3652 * any pending DMA copies to hardware
3653 */
3654 dma_issue_pending_all();
3655 #endif
3656
3657 return;
3658
3659 softnet_break:
3660 sd->time_squeeze++;
3661 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3662 goto out;
3663 }
3664
3665 static gifconf_func_t *gifconf_list[NPROTO];
3666
3667 /**
3668 * register_gifconf - register a SIOCGIF handler
3669 * @family: Address family
3670 * @gifconf: Function handler
3671 *
3672 * Register protocol dependent address dumping routines. The handler
3673 * that is passed must not be freed or reused until it has been replaced
3674 * by another handler.
3675 */
3676 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3677 {
3678 if (family >= NPROTO)
3679 return -EINVAL;
3680 gifconf_list[family] = gifconf;
3681 return 0;
3682 }
3683 EXPORT_SYMBOL(register_gifconf);
3684
3685
3686 /*
3687 * Map an interface index to its name (SIOCGIFNAME)
3688 */
3689
3690 /*
3691 * We need this ioctl for efficient implementation of the
3692 * if_indextoname() function required by the IPv6 API. Without
3693 * it, we would have to search all the interfaces to find a
3694 * match. --pb
3695 */
3696
3697 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3698 {
3699 struct net_device *dev;
3700 struct ifreq ifr;
3701
3702 /*
3703 * Fetch the caller's info block.
3704 */
3705
3706 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3707 return -EFAULT;
3708
3709 rcu_read_lock();
3710 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3711 if (!dev) {
3712 rcu_read_unlock();
3713 return -ENODEV;
3714 }
3715
3716 strcpy(ifr.ifr_name, dev->name);
3717 rcu_read_unlock();
3718
3719 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3720 return -EFAULT;
3721 return 0;
3722 }
3723
3724 /*
3725 * Perform a SIOCGIFCONF call. This structure will change
3726 * size eventually, and there is nothing I can do about it.
3727 * Thus we will need a 'compatibility mode'.
3728 */
3729
3730 static int dev_ifconf(struct net *net, char __user *arg)
3731 {
3732 struct ifconf ifc;
3733 struct net_device *dev;
3734 char __user *pos;
3735 int len;
3736 int total;
3737 int i;
3738
3739 /*
3740 * Fetch the caller's info block.
3741 */
3742
3743 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3744 return -EFAULT;
3745
3746 pos = ifc.ifc_buf;
3747 len = ifc.ifc_len;
3748
3749 /*
3750 * Loop over the interfaces, and write an info block for each.
3751 */
3752
3753 total = 0;
3754 for_each_netdev(net, dev) {
3755 for (i = 0; i < NPROTO; i++) {
3756 if (gifconf_list[i]) {
3757 int done;
3758 if (!pos)
3759 done = gifconf_list[i](dev, NULL, 0);
3760 else
3761 done = gifconf_list[i](dev, pos + total,
3762 len - total);
3763 if (done < 0)
3764 return -EFAULT;
3765 total += done;
3766 }
3767 }
3768 }
3769
3770 /*
3771 * All done. Write the updated control block back to the caller.
3772 */
3773 ifc.ifc_len = total;
3774
3775 /*
3776 * Both BSD and Solaris return 0 here, so we do too.
3777 */
3778 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3779 }
3780
3781 #ifdef CONFIG_PROC_FS
3782 /*
3783 * This is invoked by the /proc filesystem handler to display a device
3784 * in detail.
3785 */
3786 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3787 __acquires(RCU)
3788 {
3789 struct net *net = seq_file_net(seq);
3790 loff_t off;
3791 struct net_device *dev;
3792
3793 rcu_read_lock();
3794 if (!*pos)
3795 return SEQ_START_TOKEN;
3796
3797 off = 1;
3798 for_each_netdev_rcu(net, dev)
3799 if (off++ == *pos)
3800 return dev;
3801
3802 return NULL;
3803 }
3804
3805 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3806 {
3807 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3808 first_net_device(seq_file_net(seq)) :
3809 next_net_device((struct net_device *)v);
3810
3811 ++*pos;
3812 return rcu_dereference(dev);
3813 }
3814
3815 void dev_seq_stop(struct seq_file *seq, void *v)
3816 __releases(RCU)
3817 {
3818 rcu_read_unlock();
3819 }
3820
3821 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3822 {
3823 struct rtnl_link_stats64 temp;
3824 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3825
3826 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3827 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3828 dev->name, stats->rx_bytes, stats->rx_packets,
3829 stats->rx_errors,
3830 stats->rx_dropped + stats->rx_missed_errors,
3831 stats->rx_fifo_errors,
3832 stats->rx_length_errors + stats->rx_over_errors +
3833 stats->rx_crc_errors + stats->rx_frame_errors,
3834 stats->rx_compressed, stats->multicast,
3835 stats->tx_bytes, stats->tx_packets,
3836 stats->tx_errors, stats->tx_dropped,
3837 stats->tx_fifo_errors, stats->collisions,
3838 stats->tx_carrier_errors +
3839 stats->tx_aborted_errors +
3840 stats->tx_window_errors +
3841 stats->tx_heartbeat_errors,
3842 stats->tx_compressed);
3843 }
3844
3845 /*
3846 * Called from the PROCfs module. This now uses the new arbitrary sized
3847 * /proc/net interface to create /proc/net/dev
3848 */
3849 static int dev_seq_show(struct seq_file *seq, void *v)
3850 {
3851 if (v == SEQ_START_TOKEN)
3852 seq_puts(seq, "Inter-| Receive "
3853 " | Transmit\n"
3854 " face |bytes packets errs drop fifo frame "
3855 "compressed multicast|bytes packets errs "
3856 "drop fifo colls carrier compressed\n");
3857 else
3858 dev_seq_printf_stats(seq, v);
3859 return 0;
3860 }
3861
3862 static struct softnet_data *softnet_get_online(loff_t *pos)
3863 {
3864 struct softnet_data *sd = NULL;
3865
3866 while (*pos < nr_cpu_ids)
3867 if (cpu_online(*pos)) {
3868 sd = &per_cpu(softnet_data, *pos);
3869 break;
3870 } else
3871 ++*pos;
3872 return sd;
3873 }
3874
3875 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3876 {
3877 return softnet_get_online(pos);
3878 }
3879
3880 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3881 {
3882 ++*pos;
3883 return softnet_get_online(pos);
3884 }
3885
3886 static void softnet_seq_stop(struct seq_file *seq, void *v)
3887 {
3888 }
3889
3890 static int softnet_seq_show(struct seq_file *seq, void *v)
3891 {
3892 struct softnet_data *sd = v;
3893
3894 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3895 sd->processed, sd->dropped, sd->time_squeeze, 0,
3896 0, 0, 0, 0, /* was fastroute */
3897 sd->cpu_collision, sd->received_rps);
3898 return 0;
3899 }
3900
3901 static const struct seq_operations dev_seq_ops = {
3902 .start = dev_seq_start,
3903 .next = dev_seq_next,
3904 .stop = dev_seq_stop,
3905 .show = dev_seq_show,
3906 };
3907
3908 static int dev_seq_open(struct inode *inode, struct file *file)
3909 {
3910 return seq_open_net(inode, file, &dev_seq_ops,
3911 sizeof(struct seq_net_private));
3912 }
3913
3914 static const struct file_operations dev_seq_fops = {
3915 .owner = THIS_MODULE,
3916 .open = dev_seq_open,
3917 .read = seq_read,
3918 .llseek = seq_lseek,
3919 .release = seq_release_net,
3920 };
3921
3922 static const struct seq_operations softnet_seq_ops = {
3923 .start = softnet_seq_start,
3924 .next = softnet_seq_next,
3925 .stop = softnet_seq_stop,
3926 .show = softnet_seq_show,
3927 };
3928
3929 static int softnet_seq_open(struct inode *inode, struct file *file)
3930 {
3931 return seq_open(file, &softnet_seq_ops);
3932 }
3933
3934 static const struct file_operations softnet_seq_fops = {
3935 .owner = THIS_MODULE,
3936 .open = softnet_seq_open,
3937 .read = seq_read,
3938 .llseek = seq_lseek,
3939 .release = seq_release,
3940 };
3941
3942 static void *ptype_get_idx(loff_t pos)
3943 {
3944 struct packet_type *pt = NULL;
3945 loff_t i = 0;
3946 int t;
3947
3948 list_for_each_entry_rcu(pt, &ptype_all, list) {
3949 if (i == pos)
3950 return pt;
3951 ++i;
3952 }
3953
3954 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3955 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3956 if (i == pos)
3957 return pt;
3958 ++i;
3959 }
3960 }
3961 return NULL;
3962 }
3963
3964 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3965 __acquires(RCU)
3966 {
3967 rcu_read_lock();
3968 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3969 }
3970
3971 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3972 {
3973 struct packet_type *pt;
3974 struct list_head *nxt;
3975 int hash;
3976
3977 ++*pos;
3978 if (v == SEQ_START_TOKEN)
3979 return ptype_get_idx(0);
3980
3981 pt = v;
3982 nxt = pt->list.next;
3983 if (pt->type == htons(ETH_P_ALL)) {
3984 if (nxt != &ptype_all)
3985 goto found;
3986 hash = 0;
3987 nxt = ptype_base[0].next;
3988 } else
3989 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3990
3991 while (nxt == &ptype_base[hash]) {
3992 if (++hash >= PTYPE_HASH_SIZE)
3993 return NULL;
3994 nxt = ptype_base[hash].next;
3995 }
3996 found:
3997 return list_entry(nxt, struct packet_type, list);
3998 }
3999
4000 static void ptype_seq_stop(struct seq_file *seq, void *v)
4001 __releases(RCU)
4002 {
4003 rcu_read_unlock();
4004 }
4005
4006 static int ptype_seq_show(struct seq_file *seq, void *v)
4007 {
4008 struct packet_type *pt = v;
4009
4010 if (v == SEQ_START_TOKEN)
4011 seq_puts(seq, "Type Device Function\n");
4012 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4013 if (pt->type == htons(ETH_P_ALL))
4014 seq_puts(seq, "ALL ");
4015 else
4016 seq_printf(seq, "%04x", ntohs(pt->type));
4017
4018 seq_printf(seq, " %-8s %pF\n",
4019 pt->dev ? pt->dev->name : "", pt->func);
4020 }
4021
4022 return 0;
4023 }
4024
4025 static const struct seq_operations ptype_seq_ops = {
4026 .start = ptype_seq_start,
4027 .next = ptype_seq_next,
4028 .stop = ptype_seq_stop,
4029 .show = ptype_seq_show,
4030 };
4031
4032 static int ptype_seq_open(struct inode *inode, struct file *file)
4033 {
4034 return seq_open_net(inode, file, &ptype_seq_ops,
4035 sizeof(struct seq_net_private));
4036 }
4037
4038 static const struct file_operations ptype_seq_fops = {
4039 .owner = THIS_MODULE,
4040 .open = ptype_seq_open,
4041 .read = seq_read,
4042 .llseek = seq_lseek,
4043 .release = seq_release_net,
4044 };
4045
4046
4047 static int __net_init dev_proc_net_init(struct net *net)
4048 {
4049 int rc = -ENOMEM;
4050
4051 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4052 goto out;
4053 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4054 goto out_dev;
4055 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4056 goto out_softnet;
4057
4058 if (wext_proc_init(net))
4059 goto out_ptype;
4060 rc = 0;
4061 out:
4062 return rc;
4063 out_ptype:
4064 proc_net_remove(net, "ptype");
4065 out_softnet:
4066 proc_net_remove(net, "softnet_stat");
4067 out_dev:
4068 proc_net_remove(net, "dev");
4069 goto out;
4070 }
4071
4072 static void __net_exit dev_proc_net_exit(struct net *net)
4073 {
4074 wext_proc_exit(net);
4075
4076 proc_net_remove(net, "ptype");
4077 proc_net_remove(net, "softnet_stat");
4078 proc_net_remove(net, "dev");
4079 }
4080
4081 static struct pernet_operations __net_initdata dev_proc_ops = {
4082 .init = dev_proc_net_init,
4083 .exit = dev_proc_net_exit,
4084 };
4085
4086 static int __init dev_proc_init(void)
4087 {
4088 return register_pernet_subsys(&dev_proc_ops);
4089 }
4090 #else
4091 #define dev_proc_init() 0
4092 #endif /* CONFIG_PROC_FS */
4093
4094
4095 /**
4096 * netdev_set_master - set up master/slave pair
4097 * @slave: slave device
4098 * @master: new master device
4099 *
4100 * Changes the master device of the slave. Pass %NULL to break the
4101 * bonding. The caller must hold the RTNL semaphore. On a failure
4102 * a negative errno code is returned. On success the reference counts
4103 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4104 * function returns zero.
4105 */
4106 int netdev_set_master(struct net_device *slave, struct net_device *master)
4107 {
4108 struct net_device *old = slave->master;
4109
4110 ASSERT_RTNL();
4111
4112 if (master) {
4113 if (old)
4114 return -EBUSY;
4115 dev_hold(master);
4116 }
4117
4118 slave->master = master;
4119
4120 if (old) {
4121 synchronize_net();
4122 dev_put(old);
4123 }
4124 if (master)
4125 slave->flags |= IFF_SLAVE;
4126 else
4127 slave->flags &= ~IFF_SLAVE;
4128
4129 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4130 return 0;
4131 }
4132 EXPORT_SYMBOL(netdev_set_master);
4133
4134 static void dev_change_rx_flags(struct net_device *dev, int flags)
4135 {
4136 const struct net_device_ops *ops = dev->netdev_ops;
4137
4138 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4139 ops->ndo_change_rx_flags(dev, flags);
4140 }
4141
4142 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4143 {
4144 unsigned short old_flags = dev->flags;
4145 uid_t uid;
4146 gid_t gid;
4147
4148 ASSERT_RTNL();
4149
4150 dev->flags |= IFF_PROMISC;
4151 dev->promiscuity += inc;
4152 if (dev->promiscuity == 0) {
4153 /*
4154 * Avoid overflow.
4155 * If inc causes overflow, untouch promisc and return error.
4156 */
4157 if (inc < 0)
4158 dev->flags &= ~IFF_PROMISC;
4159 else {
4160 dev->promiscuity -= inc;
4161 printk(KERN_WARNING "%s: promiscuity touches roof, "
4162 "set promiscuity failed, promiscuity feature "
4163 "of device might be broken.\n", dev->name);
4164 return -EOVERFLOW;
4165 }
4166 }
4167 if (dev->flags != old_flags) {
4168 printk(KERN_INFO "device %s %s promiscuous mode\n",
4169 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4170 "left");
4171 if (audit_enabled) {
4172 current_uid_gid(&uid, &gid);
4173 audit_log(current->audit_context, GFP_ATOMIC,
4174 AUDIT_ANOM_PROMISCUOUS,
4175 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4176 dev->name, (dev->flags & IFF_PROMISC),
4177 (old_flags & IFF_PROMISC),
4178 audit_get_loginuid(current),
4179 uid, gid,
4180 audit_get_sessionid(current));
4181 }
4182
4183 dev_change_rx_flags(dev, IFF_PROMISC);
4184 }
4185 return 0;
4186 }
4187
4188 /**
4189 * dev_set_promiscuity - update promiscuity count on a device
4190 * @dev: device
4191 * @inc: modifier
4192 *
4193 * Add or remove promiscuity from a device. While the count in the device
4194 * remains above zero the interface remains promiscuous. Once it hits zero
4195 * the device reverts back to normal filtering operation. A negative inc
4196 * value is used to drop promiscuity on the device.
4197 * Return 0 if successful or a negative errno code on error.
4198 */
4199 int dev_set_promiscuity(struct net_device *dev, int inc)
4200 {
4201 unsigned short old_flags = dev->flags;
4202 int err;
4203
4204 err = __dev_set_promiscuity(dev, inc);
4205 if (err < 0)
4206 return err;
4207 if (dev->flags != old_flags)
4208 dev_set_rx_mode(dev);
4209 return err;
4210 }
4211 EXPORT_SYMBOL(dev_set_promiscuity);
4212
4213 /**
4214 * dev_set_allmulti - update allmulti count on a device
4215 * @dev: device
4216 * @inc: modifier
4217 *
4218 * Add or remove reception of all multicast frames to a device. While the
4219 * count in the device remains above zero the interface remains listening
4220 * to all interfaces. Once it hits zero the device reverts back to normal
4221 * filtering operation. A negative @inc value is used to drop the counter
4222 * when releasing a resource needing all multicasts.
4223 * Return 0 if successful or a negative errno code on error.
4224 */
4225
4226 int dev_set_allmulti(struct net_device *dev, int inc)
4227 {
4228 unsigned short old_flags = dev->flags;
4229
4230 ASSERT_RTNL();
4231
4232 dev->flags |= IFF_ALLMULTI;
4233 dev->allmulti += inc;
4234 if (dev->allmulti == 0) {
4235 /*
4236 * Avoid overflow.
4237 * If inc causes overflow, untouch allmulti and return error.
4238 */
4239 if (inc < 0)
4240 dev->flags &= ~IFF_ALLMULTI;
4241 else {
4242 dev->allmulti -= inc;
4243 printk(KERN_WARNING "%s: allmulti touches roof, "
4244 "set allmulti failed, allmulti feature of "
4245 "device might be broken.\n", dev->name);
4246 return -EOVERFLOW;
4247 }
4248 }
4249 if (dev->flags ^ old_flags) {
4250 dev_change_rx_flags(dev, IFF_ALLMULTI);
4251 dev_set_rx_mode(dev);
4252 }
4253 return 0;
4254 }
4255 EXPORT_SYMBOL(dev_set_allmulti);
4256
4257 /*
4258 * Upload unicast and multicast address lists to device and
4259 * configure RX filtering. When the device doesn't support unicast
4260 * filtering it is put in promiscuous mode while unicast addresses
4261 * are present.
4262 */
4263 void __dev_set_rx_mode(struct net_device *dev)
4264 {
4265 const struct net_device_ops *ops = dev->netdev_ops;
4266
4267 /* dev_open will call this function so the list will stay sane. */
4268 if (!(dev->flags&IFF_UP))
4269 return;
4270
4271 if (!netif_device_present(dev))
4272 return;
4273
4274 if (ops->ndo_set_rx_mode)
4275 ops->ndo_set_rx_mode(dev);
4276 else {
4277 /* Unicast addresses changes may only happen under the rtnl,
4278 * therefore calling __dev_set_promiscuity here is safe.
4279 */
4280 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4281 __dev_set_promiscuity(dev, 1);
4282 dev->uc_promisc = 1;
4283 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4284 __dev_set_promiscuity(dev, -1);
4285 dev->uc_promisc = 0;
4286 }
4287
4288 if (ops->ndo_set_multicast_list)
4289 ops->ndo_set_multicast_list(dev);
4290 }
4291 }
4292
4293 void dev_set_rx_mode(struct net_device *dev)
4294 {
4295 netif_addr_lock_bh(dev);
4296 __dev_set_rx_mode(dev);
4297 netif_addr_unlock_bh(dev);
4298 }
4299
4300 /**
4301 * dev_get_flags - get flags reported to userspace
4302 * @dev: device
4303 *
4304 * Get the combination of flag bits exported through APIs to userspace.
4305 */
4306 unsigned dev_get_flags(const struct net_device *dev)
4307 {
4308 unsigned flags;
4309
4310 flags = (dev->flags & ~(IFF_PROMISC |
4311 IFF_ALLMULTI |
4312 IFF_RUNNING |
4313 IFF_LOWER_UP |
4314 IFF_DORMANT)) |
4315 (dev->gflags & (IFF_PROMISC |
4316 IFF_ALLMULTI));
4317
4318 if (netif_running(dev)) {
4319 if (netif_oper_up(dev))
4320 flags |= IFF_RUNNING;
4321 if (netif_carrier_ok(dev))
4322 flags |= IFF_LOWER_UP;
4323 if (netif_dormant(dev))
4324 flags |= IFF_DORMANT;
4325 }
4326
4327 return flags;
4328 }
4329 EXPORT_SYMBOL(dev_get_flags);
4330
4331 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4332 {
4333 int old_flags = dev->flags;
4334 int ret;
4335
4336 ASSERT_RTNL();
4337
4338 /*
4339 * Set the flags on our device.
4340 */
4341
4342 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4343 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4344 IFF_AUTOMEDIA)) |
4345 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4346 IFF_ALLMULTI));
4347
4348 /*
4349 * Load in the correct multicast list now the flags have changed.
4350 */
4351
4352 if ((old_flags ^ flags) & IFF_MULTICAST)
4353 dev_change_rx_flags(dev, IFF_MULTICAST);
4354
4355 dev_set_rx_mode(dev);
4356
4357 /*
4358 * Have we downed the interface. We handle IFF_UP ourselves
4359 * according to user attempts to set it, rather than blindly
4360 * setting it.
4361 */
4362
4363 ret = 0;
4364 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4365 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4366
4367 if (!ret)
4368 dev_set_rx_mode(dev);
4369 }
4370
4371 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4372 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4373
4374 dev->gflags ^= IFF_PROMISC;
4375 dev_set_promiscuity(dev, inc);
4376 }
4377
4378 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4379 is important. Some (broken) drivers set IFF_PROMISC, when
4380 IFF_ALLMULTI is requested not asking us and not reporting.
4381 */
4382 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4383 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4384
4385 dev->gflags ^= IFF_ALLMULTI;
4386 dev_set_allmulti(dev, inc);
4387 }
4388
4389 return ret;
4390 }
4391
4392 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4393 {
4394 unsigned int changes = dev->flags ^ old_flags;
4395
4396 if (changes & IFF_UP) {
4397 if (dev->flags & IFF_UP)
4398 call_netdevice_notifiers(NETDEV_UP, dev);
4399 else
4400 call_netdevice_notifiers(NETDEV_DOWN, dev);
4401 }
4402
4403 if (dev->flags & IFF_UP &&
4404 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4405 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4406 }
4407
4408 /**
4409 * dev_change_flags - change device settings
4410 * @dev: device
4411 * @flags: device state flags
4412 *
4413 * Change settings on device based state flags. The flags are
4414 * in the userspace exported format.
4415 */
4416 int dev_change_flags(struct net_device *dev, unsigned flags)
4417 {
4418 int ret, changes;
4419 int old_flags = dev->flags;
4420
4421 ret = __dev_change_flags(dev, flags);
4422 if (ret < 0)
4423 return ret;
4424
4425 changes = old_flags ^ dev->flags;
4426 if (changes)
4427 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4428
4429 __dev_notify_flags(dev, old_flags);
4430 return ret;
4431 }
4432 EXPORT_SYMBOL(dev_change_flags);
4433
4434 /**
4435 * dev_set_mtu - Change maximum transfer unit
4436 * @dev: device
4437 * @new_mtu: new transfer unit
4438 *
4439 * Change the maximum transfer size of the network device.
4440 */
4441 int dev_set_mtu(struct net_device *dev, int new_mtu)
4442 {
4443 const struct net_device_ops *ops = dev->netdev_ops;
4444 int err;
4445
4446 if (new_mtu == dev->mtu)
4447 return 0;
4448
4449 /* MTU must be positive. */
4450 if (new_mtu < 0)
4451 return -EINVAL;
4452
4453 if (!netif_device_present(dev))
4454 return -ENODEV;
4455
4456 err = 0;
4457 if (ops->ndo_change_mtu)
4458 err = ops->ndo_change_mtu(dev, new_mtu);
4459 else
4460 dev->mtu = new_mtu;
4461
4462 if (!err && dev->flags & IFF_UP)
4463 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4464 return err;
4465 }
4466 EXPORT_SYMBOL(dev_set_mtu);
4467
4468 /**
4469 * dev_set_mac_address - Change Media Access Control Address
4470 * @dev: device
4471 * @sa: new address
4472 *
4473 * Change the hardware (MAC) address of the device
4474 */
4475 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4476 {
4477 const struct net_device_ops *ops = dev->netdev_ops;
4478 int err;
4479
4480 if (!ops->ndo_set_mac_address)
4481 return -EOPNOTSUPP;
4482 if (sa->sa_family != dev->type)
4483 return -EINVAL;
4484 if (!netif_device_present(dev))
4485 return -ENODEV;
4486 err = ops->ndo_set_mac_address(dev, sa);
4487 if (!err)
4488 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4489 return err;
4490 }
4491 EXPORT_SYMBOL(dev_set_mac_address);
4492
4493 /*
4494 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4495 */
4496 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4497 {
4498 int err;
4499 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4500
4501 if (!dev)
4502 return -ENODEV;
4503
4504 switch (cmd) {
4505 case SIOCGIFFLAGS: /* Get interface flags */
4506 ifr->ifr_flags = (short) dev_get_flags(dev);
4507 return 0;
4508
4509 case SIOCGIFMETRIC: /* Get the metric on the interface
4510 (currently unused) */
4511 ifr->ifr_metric = 0;
4512 return 0;
4513
4514 case SIOCGIFMTU: /* Get the MTU of a device */
4515 ifr->ifr_mtu = dev->mtu;
4516 return 0;
4517
4518 case SIOCGIFHWADDR:
4519 if (!dev->addr_len)
4520 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4521 else
4522 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4523 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4524 ifr->ifr_hwaddr.sa_family = dev->type;
4525 return 0;
4526
4527 case SIOCGIFSLAVE:
4528 err = -EINVAL;
4529 break;
4530
4531 case SIOCGIFMAP:
4532 ifr->ifr_map.mem_start = dev->mem_start;
4533 ifr->ifr_map.mem_end = dev->mem_end;
4534 ifr->ifr_map.base_addr = dev->base_addr;
4535 ifr->ifr_map.irq = dev->irq;
4536 ifr->ifr_map.dma = dev->dma;
4537 ifr->ifr_map.port = dev->if_port;
4538 return 0;
4539
4540 case SIOCGIFINDEX:
4541 ifr->ifr_ifindex = dev->ifindex;
4542 return 0;
4543
4544 case SIOCGIFTXQLEN:
4545 ifr->ifr_qlen = dev->tx_queue_len;
4546 return 0;
4547
4548 default:
4549 /* dev_ioctl() should ensure this case
4550 * is never reached
4551 */
4552 WARN_ON(1);
4553 err = -EINVAL;
4554 break;
4555
4556 }
4557 return err;
4558 }
4559
4560 /*
4561 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4562 */
4563 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4564 {
4565 int err;
4566 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4567 const struct net_device_ops *ops;
4568
4569 if (!dev)
4570 return -ENODEV;
4571
4572 ops = dev->netdev_ops;
4573
4574 switch (cmd) {
4575 case SIOCSIFFLAGS: /* Set interface flags */
4576 return dev_change_flags(dev, ifr->ifr_flags);
4577
4578 case SIOCSIFMETRIC: /* Set the metric on the interface
4579 (currently unused) */
4580 return -EOPNOTSUPP;
4581
4582 case SIOCSIFMTU: /* Set the MTU of a device */
4583 return dev_set_mtu(dev, ifr->ifr_mtu);
4584
4585 case SIOCSIFHWADDR:
4586 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4587
4588 case SIOCSIFHWBROADCAST:
4589 if (ifr->ifr_hwaddr.sa_family != dev->type)
4590 return -EINVAL;
4591 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4592 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4593 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4594 return 0;
4595
4596 case SIOCSIFMAP:
4597 if (ops->ndo_set_config) {
4598 if (!netif_device_present(dev))
4599 return -ENODEV;
4600 return ops->ndo_set_config(dev, &ifr->ifr_map);
4601 }
4602 return -EOPNOTSUPP;
4603
4604 case SIOCADDMULTI:
4605 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4606 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4607 return -EINVAL;
4608 if (!netif_device_present(dev))
4609 return -ENODEV;
4610 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4611
4612 case SIOCDELMULTI:
4613 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4614 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4615 return -EINVAL;
4616 if (!netif_device_present(dev))
4617 return -ENODEV;
4618 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4619
4620 case SIOCSIFTXQLEN:
4621 if (ifr->ifr_qlen < 0)
4622 return -EINVAL;
4623 dev->tx_queue_len = ifr->ifr_qlen;
4624 return 0;
4625
4626 case SIOCSIFNAME:
4627 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4628 return dev_change_name(dev, ifr->ifr_newname);
4629
4630 /*
4631 * Unknown or private ioctl
4632 */
4633 default:
4634 if ((cmd >= SIOCDEVPRIVATE &&
4635 cmd <= SIOCDEVPRIVATE + 15) ||
4636 cmd == SIOCBONDENSLAVE ||
4637 cmd == SIOCBONDRELEASE ||
4638 cmd == SIOCBONDSETHWADDR ||
4639 cmd == SIOCBONDSLAVEINFOQUERY ||
4640 cmd == SIOCBONDINFOQUERY ||
4641 cmd == SIOCBONDCHANGEACTIVE ||
4642 cmd == SIOCGMIIPHY ||
4643 cmd == SIOCGMIIREG ||
4644 cmd == SIOCSMIIREG ||
4645 cmd == SIOCBRADDIF ||
4646 cmd == SIOCBRDELIF ||
4647 cmd == SIOCSHWTSTAMP ||
4648 cmd == SIOCWANDEV) {
4649 err = -EOPNOTSUPP;
4650 if (ops->ndo_do_ioctl) {
4651 if (netif_device_present(dev))
4652 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4653 else
4654 err = -ENODEV;
4655 }
4656 } else
4657 err = -EINVAL;
4658
4659 }
4660 return err;
4661 }
4662
4663 /*
4664 * This function handles all "interface"-type I/O control requests. The actual
4665 * 'doing' part of this is dev_ifsioc above.
4666 */
4667
4668 /**
4669 * dev_ioctl - network device ioctl
4670 * @net: the applicable net namespace
4671 * @cmd: command to issue
4672 * @arg: pointer to a struct ifreq in user space
4673 *
4674 * Issue ioctl functions to devices. This is normally called by the
4675 * user space syscall interfaces but can sometimes be useful for
4676 * other purposes. The return value is the return from the syscall if
4677 * positive or a negative errno code on error.
4678 */
4679
4680 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4681 {
4682 struct ifreq ifr;
4683 int ret;
4684 char *colon;
4685
4686 /* One special case: SIOCGIFCONF takes ifconf argument
4687 and requires shared lock, because it sleeps writing
4688 to user space.
4689 */
4690
4691 if (cmd == SIOCGIFCONF) {
4692 rtnl_lock();
4693 ret = dev_ifconf(net, (char __user *) arg);
4694 rtnl_unlock();
4695 return ret;
4696 }
4697 if (cmd == SIOCGIFNAME)
4698 return dev_ifname(net, (struct ifreq __user *)arg);
4699
4700 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4701 return -EFAULT;
4702
4703 ifr.ifr_name[IFNAMSIZ-1] = 0;
4704
4705 colon = strchr(ifr.ifr_name, ':');
4706 if (colon)
4707 *colon = 0;
4708
4709 /*
4710 * See which interface the caller is talking about.
4711 */
4712
4713 switch (cmd) {
4714 /*
4715 * These ioctl calls:
4716 * - can be done by all.
4717 * - atomic and do not require locking.
4718 * - return a value
4719 */
4720 case SIOCGIFFLAGS:
4721 case SIOCGIFMETRIC:
4722 case SIOCGIFMTU:
4723 case SIOCGIFHWADDR:
4724 case SIOCGIFSLAVE:
4725 case SIOCGIFMAP:
4726 case SIOCGIFINDEX:
4727 case SIOCGIFTXQLEN:
4728 dev_load(net, ifr.ifr_name);
4729 rcu_read_lock();
4730 ret = dev_ifsioc_locked(net, &ifr, cmd);
4731 rcu_read_unlock();
4732 if (!ret) {
4733 if (colon)
4734 *colon = ':';
4735 if (copy_to_user(arg, &ifr,
4736 sizeof(struct ifreq)))
4737 ret = -EFAULT;
4738 }
4739 return ret;
4740
4741 case SIOCETHTOOL:
4742 dev_load(net, ifr.ifr_name);
4743 rtnl_lock();
4744 ret = dev_ethtool(net, &ifr);
4745 rtnl_unlock();
4746 if (!ret) {
4747 if (colon)
4748 *colon = ':';
4749 if (copy_to_user(arg, &ifr,
4750 sizeof(struct ifreq)))
4751 ret = -EFAULT;
4752 }
4753 return ret;
4754
4755 /*
4756 * These ioctl calls:
4757 * - require superuser power.
4758 * - require strict serialization.
4759 * - return a value
4760 */
4761 case SIOCGMIIPHY:
4762 case SIOCGMIIREG:
4763 case SIOCSIFNAME:
4764 if (!capable(CAP_NET_ADMIN))
4765 return -EPERM;
4766 dev_load(net, ifr.ifr_name);
4767 rtnl_lock();
4768 ret = dev_ifsioc(net, &ifr, cmd);
4769 rtnl_unlock();
4770 if (!ret) {
4771 if (colon)
4772 *colon = ':';
4773 if (copy_to_user(arg, &ifr,
4774 sizeof(struct ifreq)))
4775 ret = -EFAULT;
4776 }
4777 return ret;
4778
4779 /*
4780 * These ioctl calls:
4781 * - require superuser power.
4782 * - require strict serialization.
4783 * - do not return a value
4784 */
4785 case SIOCSIFFLAGS:
4786 case SIOCSIFMETRIC:
4787 case SIOCSIFMTU:
4788 case SIOCSIFMAP:
4789 case SIOCSIFHWADDR:
4790 case SIOCSIFSLAVE:
4791 case SIOCADDMULTI:
4792 case SIOCDELMULTI:
4793 case SIOCSIFHWBROADCAST:
4794 case SIOCSIFTXQLEN:
4795 case SIOCSMIIREG:
4796 case SIOCBONDENSLAVE:
4797 case SIOCBONDRELEASE:
4798 case SIOCBONDSETHWADDR:
4799 case SIOCBONDCHANGEACTIVE:
4800 case SIOCBRADDIF:
4801 case SIOCBRDELIF:
4802 case SIOCSHWTSTAMP:
4803 if (!capable(CAP_NET_ADMIN))
4804 return -EPERM;
4805 /* fall through */
4806 case SIOCBONDSLAVEINFOQUERY:
4807 case SIOCBONDINFOQUERY:
4808 dev_load(net, ifr.ifr_name);
4809 rtnl_lock();
4810 ret = dev_ifsioc(net, &ifr, cmd);
4811 rtnl_unlock();
4812 return ret;
4813
4814 case SIOCGIFMEM:
4815 /* Get the per device memory space. We can add this but
4816 * currently do not support it */
4817 case SIOCSIFMEM:
4818 /* Set the per device memory buffer space.
4819 * Not applicable in our case */
4820 case SIOCSIFLINK:
4821 return -EINVAL;
4822
4823 /*
4824 * Unknown or private ioctl.
4825 */
4826 default:
4827 if (cmd == SIOCWANDEV ||
4828 (cmd >= SIOCDEVPRIVATE &&
4829 cmd <= SIOCDEVPRIVATE + 15)) {
4830 dev_load(net, ifr.ifr_name);
4831 rtnl_lock();
4832 ret = dev_ifsioc(net, &ifr, cmd);
4833 rtnl_unlock();
4834 if (!ret && copy_to_user(arg, &ifr,
4835 sizeof(struct ifreq)))
4836 ret = -EFAULT;
4837 return ret;
4838 }
4839 /* Take care of Wireless Extensions */
4840 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4841 return wext_handle_ioctl(net, &ifr, cmd, arg);
4842 return -EINVAL;
4843 }
4844 }
4845
4846
4847 /**
4848 * dev_new_index - allocate an ifindex
4849 * @net: the applicable net namespace
4850 *
4851 * Returns a suitable unique value for a new device interface
4852 * number. The caller must hold the rtnl semaphore or the
4853 * dev_base_lock to be sure it remains unique.
4854 */
4855 static int dev_new_index(struct net *net)
4856 {
4857 static int ifindex;
4858 for (;;) {
4859 if (++ifindex <= 0)
4860 ifindex = 1;
4861 if (!__dev_get_by_index(net, ifindex))
4862 return ifindex;
4863 }
4864 }
4865
4866 /* Delayed registration/unregisteration */
4867 static LIST_HEAD(net_todo_list);
4868
4869 static void net_set_todo(struct net_device *dev)
4870 {
4871 list_add_tail(&dev->todo_list, &net_todo_list);
4872 }
4873
4874 static void rollback_registered_many(struct list_head *head)
4875 {
4876 struct net_device *dev, *tmp;
4877
4878 BUG_ON(dev_boot_phase);
4879 ASSERT_RTNL();
4880
4881 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4882 /* Some devices call without registering
4883 * for initialization unwind. Remove those
4884 * devices and proceed with the remaining.
4885 */
4886 if (dev->reg_state == NETREG_UNINITIALIZED) {
4887 pr_debug("unregister_netdevice: device %s/%p never "
4888 "was registered\n", dev->name, dev);
4889
4890 WARN_ON(1);
4891 list_del(&dev->unreg_list);
4892 continue;
4893 }
4894
4895 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4896
4897 /* If device is running, close it first. */
4898 dev_close(dev);
4899
4900 /* And unlink it from device chain. */
4901 unlist_netdevice(dev);
4902
4903 dev->reg_state = NETREG_UNREGISTERING;
4904 }
4905
4906 synchronize_net();
4907
4908 list_for_each_entry(dev, head, unreg_list) {
4909 /* Shutdown queueing discipline. */
4910 dev_shutdown(dev);
4911
4912
4913 /* Notify protocols, that we are about to destroy
4914 this device. They should clean all the things.
4915 */
4916 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4917
4918 if (!dev->rtnl_link_ops ||
4919 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4920 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4921
4922 /*
4923 * Flush the unicast and multicast chains
4924 */
4925 dev_uc_flush(dev);
4926 dev_mc_flush(dev);
4927
4928 if (dev->netdev_ops->ndo_uninit)
4929 dev->netdev_ops->ndo_uninit(dev);
4930
4931 /* Notifier chain MUST detach us from master device. */
4932 WARN_ON(dev->master);
4933
4934 /* Remove entries from kobject tree */
4935 netdev_unregister_kobject(dev);
4936 }
4937
4938 /* Process any work delayed until the end of the batch */
4939 dev = list_first_entry(head, struct net_device, unreg_list);
4940 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4941
4942 rcu_barrier();
4943
4944 list_for_each_entry(dev, head, unreg_list)
4945 dev_put(dev);
4946 }
4947
4948 static void rollback_registered(struct net_device *dev)
4949 {
4950 LIST_HEAD(single);
4951
4952 list_add(&dev->unreg_list, &single);
4953 rollback_registered_many(&single);
4954 }
4955
4956 unsigned long netdev_fix_features(unsigned long features, const char *name)
4957 {
4958 /* Fix illegal SG+CSUM combinations. */
4959 if ((features & NETIF_F_SG) &&
4960 !(features & NETIF_F_ALL_CSUM)) {
4961 if (name)
4962 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4963 "checksum feature.\n", name);
4964 features &= ~NETIF_F_SG;
4965 }
4966
4967 /* TSO requires that SG is present as well. */
4968 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4969 if (name)
4970 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4971 "SG feature.\n", name);
4972 features &= ~NETIF_F_TSO;
4973 }
4974
4975 if (features & NETIF_F_UFO) {
4976 if (!(features & NETIF_F_GEN_CSUM)) {
4977 if (name)
4978 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4979 "since no NETIF_F_HW_CSUM feature.\n",
4980 name);
4981 features &= ~NETIF_F_UFO;
4982 }
4983
4984 if (!(features & NETIF_F_SG)) {
4985 if (name)
4986 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4987 "since no NETIF_F_SG feature.\n", name);
4988 features &= ~NETIF_F_UFO;
4989 }
4990 }
4991
4992 return features;
4993 }
4994 EXPORT_SYMBOL(netdev_fix_features);
4995
4996 /**
4997 * netif_stacked_transfer_operstate - transfer operstate
4998 * @rootdev: the root or lower level device to transfer state from
4999 * @dev: the device to transfer operstate to
5000 *
5001 * Transfer operational state from root to device. This is normally
5002 * called when a stacking relationship exists between the root
5003 * device and the device(a leaf device).
5004 */
5005 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5006 struct net_device *dev)
5007 {
5008 if (rootdev->operstate == IF_OPER_DORMANT)
5009 netif_dormant_on(dev);
5010 else
5011 netif_dormant_off(dev);
5012
5013 if (netif_carrier_ok(rootdev)) {
5014 if (!netif_carrier_ok(dev))
5015 netif_carrier_on(dev);
5016 } else {
5017 if (netif_carrier_ok(dev))
5018 netif_carrier_off(dev);
5019 }
5020 }
5021 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5022
5023 static int netif_alloc_rx_queues(struct net_device *dev)
5024 {
5025 #ifdef CONFIG_RPS
5026 unsigned int i, count = dev->num_rx_queues;
5027 struct netdev_rx_queue *rx;
5028
5029 BUG_ON(count < 1);
5030
5031 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5032 if (!rx) {
5033 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5034 return -ENOMEM;
5035 }
5036 dev->_rx = rx;
5037
5038 /*
5039 * Set a pointer to first element in the array which holds the
5040 * reference count.
5041 */
5042 for (i = 0; i < count; i++)
5043 rx[i].first = rx;
5044 #endif
5045 return 0;
5046 }
5047
5048 static int netif_alloc_netdev_queues(struct net_device *dev)
5049 {
5050 unsigned int count = dev->num_tx_queues;
5051 struct netdev_queue *tx;
5052
5053 BUG_ON(count < 1);
5054
5055 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5056 if (!tx) {
5057 pr_err("netdev: Unable to allocate %u tx queues.\n",
5058 count);
5059 return -ENOMEM;
5060 }
5061 dev->_tx = tx;
5062 return 0;
5063 }
5064
5065 static void netdev_init_one_queue(struct net_device *dev,
5066 struct netdev_queue *queue,
5067 void *_unused)
5068 {
5069 queue->dev = dev;
5070
5071 /* Initialize queue lock */
5072 spin_lock_init(&queue->_xmit_lock);
5073 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5074 queue->xmit_lock_owner = -1;
5075 }
5076
5077 static void netdev_init_queues(struct net_device *dev)
5078 {
5079 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5080 spin_lock_init(&dev->tx_global_lock);
5081 }
5082
5083 /**
5084 * register_netdevice - register a network device
5085 * @dev: device to register
5086 *
5087 * Take a completed network device structure and add it to the kernel
5088 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5089 * chain. 0 is returned on success. A negative errno code is returned
5090 * on a failure to set up the device, or if the name is a duplicate.
5091 *
5092 * Callers must hold the rtnl semaphore. You may want
5093 * register_netdev() instead of this.
5094 *
5095 * BUGS:
5096 * The locking appears insufficient to guarantee two parallel registers
5097 * will not get the same name.
5098 */
5099
5100 int register_netdevice(struct net_device *dev)
5101 {
5102 int ret;
5103 struct net *net = dev_net(dev);
5104
5105 BUG_ON(dev_boot_phase);
5106 ASSERT_RTNL();
5107
5108 might_sleep();
5109
5110 /* When net_device's are persistent, this will be fatal. */
5111 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5112 BUG_ON(!net);
5113
5114 spin_lock_init(&dev->addr_list_lock);
5115 netdev_set_addr_lockdep_class(dev);
5116
5117 dev->iflink = -1;
5118
5119 ret = netif_alloc_rx_queues(dev);
5120 if (ret)
5121 goto out;
5122
5123 ret = netif_alloc_netdev_queues(dev);
5124 if (ret)
5125 goto out;
5126
5127 netdev_init_queues(dev);
5128
5129 /* Init, if this function is available */
5130 if (dev->netdev_ops->ndo_init) {
5131 ret = dev->netdev_ops->ndo_init(dev);
5132 if (ret) {
5133 if (ret > 0)
5134 ret = -EIO;
5135 goto out;
5136 }
5137 }
5138
5139 ret = dev_get_valid_name(dev, dev->name, 0);
5140 if (ret)
5141 goto err_uninit;
5142
5143 dev->ifindex = dev_new_index(net);
5144 if (dev->iflink == -1)
5145 dev->iflink = dev->ifindex;
5146
5147 /* Fix illegal checksum combinations */
5148 if ((dev->features & NETIF_F_HW_CSUM) &&
5149 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5150 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5151 dev->name);
5152 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5153 }
5154
5155 if ((dev->features & NETIF_F_NO_CSUM) &&
5156 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5157 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5158 dev->name);
5159 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5160 }
5161
5162 dev->features = netdev_fix_features(dev->features, dev->name);
5163
5164 /* Enable software GSO if SG is supported. */
5165 if (dev->features & NETIF_F_SG)
5166 dev->features |= NETIF_F_GSO;
5167
5168 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5169 * vlan_dev_init() will do the dev->features check, so these features
5170 * are enabled only if supported by underlying device.
5171 */
5172 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5173
5174 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5175 ret = notifier_to_errno(ret);
5176 if (ret)
5177 goto err_uninit;
5178
5179 ret = netdev_register_kobject(dev);
5180 if (ret)
5181 goto err_uninit;
5182 dev->reg_state = NETREG_REGISTERED;
5183
5184 /*
5185 * Default initial state at registry is that the
5186 * device is present.
5187 */
5188
5189 set_bit(__LINK_STATE_PRESENT, &dev->state);
5190
5191 dev_init_scheduler(dev);
5192 dev_hold(dev);
5193 list_netdevice(dev);
5194
5195 /* Notify protocols, that a new device appeared. */
5196 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5197 ret = notifier_to_errno(ret);
5198 if (ret) {
5199 rollback_registered(dev);
5200 dev->reg_state = NETREG_UNREGISTERED;
5201 }
5202 /*
5203 * Prevent userspace races by waiting until the network
5204 * device is fully setup before sending notifications.
5205 */
5206 if (!dev->rtnl_link_ops ||
5207 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5208 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5209
5210 out:
5211 return ret;
5212
5213 err_uninit:
5214 if (dev->netdev_ops->ndo_uninit)
5215 dev->netdev_ops->ndo_uninit(dev);
5216 goto out;
5217 }
5218 EXPORT_SYMBOL(register_netdevice);
5219
5220 /**
5221 * init_dummy_netdev - init a dummy network device for NAPI
5222 * @dev: device to init
5223 *
5224 * This takes a network device structure and initialize the minimum
5225 * amount of fields so it can be used to schedule NAPI polls without
5226 * registering a full blown interface. This is to be used by drivers
5227 * that need to tie several hardware interfaces to a single NAPI
5228 * poll scheduler due to HW limitations.
5229 */
5230 int init_dummy_netdev(struct net_device *dev)
5231 {
5232 /* Clear everything. Note we don't initialize spinlocks
5233 * are they aren't supposed to be taken by any of the
5234 * NAPI code and this dummy netdev is supposed to be
5235 * only ever used for NAPI polls
5236 */
5237 memset(dev, 0, sizeof(struct net_device));
5238
5239 /* make sure we BUG if trying to hit standard
5240 * register/unregister code path
5241 */
5242 dev->reg_state = NETREG_DUMMY;
5243
5244 /* NAPI wants this */
5245 INIT_LIST_HEAD(&dev->napi_list);
5246
5247 /* a dummy interface is started by default */
5248 set_bit(__LINK_STATE_PRESENT, &dev->state);
5249 set_bit(__LINK_STATE_START, &dev->state);
5250
5251 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5252 * because users of this 'device' dont need to change
5253 * its refcount.
5254 */
5255
5256 return 0;
5257 }
5258 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5259
5260
5261 /**
5262 * register_netdev - register a network device
5263 * @dev: device to register
5264 *
5265 * Take a completed network device structure and add it to the kernel
5266 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5267 * chain. 0 is returned on success. A negative errno code is returned
5268 * on a failure to set up the device, or if the name is a duplicate.
5269 *
5270 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5271 * and expands the device name if you passed a format string to
5272 * alloc_netdev.
5273 */
5274 int register_netdev(struct net_device *dev)
5275 {
5276 int err;
5277
5278 rtnl_lock();
5279
5280 /*
5281 * If the name is a format string the caller wants us to do a
5282 * name allocation.
5283 */
5284 if (strchr(dev->name, '%')) {
5285 err = dev_alloc_name(dev, dev->name);
5286 if (err < 0)
5287 goto out;
5288 }
5289
5290 err = register_netdevice(dev);
5291 out:
5292 rtnl_unlock();
5293 return err;
5294 }
5295 EXPORT_SYMBOL(register_netdev);
5296
5297 int netdev_refcnt_read(const struct net_device *dev)
5298 {
5299 int i, refcnt = 0;
5300
5301 for_each_possible_cpu(i)
5302 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5303 return refcnt;
5304 }
5305 EXPORT_SYMBOL(netdev_refcnt_read);
5306
5307 /*
5308 * netdev_wait_allrefs - wait until all references are gone.
5309 *
5310 * This is called when unregistering network devices.
5311 *
5312 * Any protocol or device that holds a reference should register
5313 * for netdevice notification, and cleanup and put back the
5314 * reference if they receive an UNREGISTER event.
5315 * We can get stuck here if buggy protocols don't correctly
5316 * call dev_put.
5317 */
5318 static void netdev_wait_allrefs(struct net_device *dev)
5319 {
5320 unsigned long rebroadcast_time, warning_time;
5321 int refcnt;
5322
5323 linkwatch_forget_dev(dev);
5324
5325 rebroadcast_time = warning_time = jiffies;
5326 refcnt = netdev_refcnt_read(dev);
5327
5328 while (refcnt != 0) {
5329 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5330 rtnl_lock();
5331
5332 /* Rebroadcast unregister notification */
5333 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5334 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5335 * should have already handle it the first time */
5336
5337 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5338 &dev->state)) {
5339 /* We must not have linkwatch events
5340 * pending on unregister. If this
5341 * happens, we simply run the queue
5342 * unscheduled, resulting in a noop
5343 * for this device.
5344 */
5345 linkwatch_run_queue();
5346 }
5347
5348 __rtnl_unlock();
5349
5350 rebroadcast_time = jiffies;
5351 }
5352
5353 msleep(250);
5354
5355 refcnt = netdev_refcnt_read(dev);
5356
5357 if (time_after(jiffies, warning_time + 10 * HZ)) {
5358 printk(KERN_EMERG "unregister_netdevice: "
5359 "waiting for %s to become free. Usage "
5360 "count = %d\n",
5361 dev->name, refcnt);
5362 warning_time = jiffies;
5363 }
5364 }
5365 }
5366
5367 /* The sequence is:
5368 *
5369 * rtnl_lock();
5370 * ...
5371 * register_netdevice(x1);
5372 * register_netdevice(x2);
5373 * ...
5374 * unregister_netdevice(y1);
5375 * unregister_netdevice(y2);
5376 * ...
5377 * rtnl_unlock();
5378 * free_netdev(y1);
5379 * free_netdev(y2);
5380 *
5381 * We are invoked by rtnl_unlock().
5382 * This allows us to deal with problems:
5383 * 1) We can delete sysfs objects which invoke hotplug
5384 * without deadlocking with linkwatch via keventd.
5385 * 2) Since we run with the RTNL semaphore not held, we can sleep
5386 * safely in order to wait for the netdev refcnt to drop to zero.
5387 *
5388 * We must not return until all unregister events added during
5389 * the interval the lock was held have been completed.
5390 */
5391 void netdev_run_todo(void)
5392 {
5393 struct list_head list;
5394
5395 /* Snapshot list, allow later requests */
5396 list_replace_init(&net_todo_list, &list);
5397
5398 __rtnl_unlock();
5399
5400 while (!list_empty(&list)) {
5401 struct net_device *dev
5402 = list_first_entry(&list, struct net_device, todo_list);
5403 list_del(&dev->todo_list);
5404
5405 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5406 printk(KERN_ERR "network todo '%s' but state %d\n",
5407 dev->name, dev->reg_state);
5408 dump_stack();
5409 continue;
5410 }
5411
5412 dev->reg_state = NETREG_UNREGISTERED;
5413
5414 on_each_cpu(flush_backlog, dev, 1);
5415
5416 netdev_wait_allrefs(dev);
5417
5418 /* paranoia */
5419 BUG_ON(netdev_refcnt_read(dev));
5420 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5421 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5422 WARN_ON(dev->dn_ptr);
5423
5424 if (dev->destructor)
5425 dev->destructor(dev);
5426
5427 /* Free network device */
5428 kobject_put(&dev->dev.kobj);
5429 }
5430 }
5431
5432 /**
5433 * dev_txq_stats_fold - fold tx_queues stats
5434 * @dev: device to get statistics from
5435 * @stats: struct rtnl_link_stats64 to hold results
5436 */
5437 void dev_txq_stats_fold(const struct net_device *dev,
5438 struct rtnl_link_stats64 *stats)
5439 {
5440 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5441 unsigned int i;
5442 struct netdev_queue *txq;
5443
5444 for (i = 0; i < dev->num_tx_queues; i++) {
5445 txq = netdev_get_tx_queue(dev, i);
5446 spin_lock_bh(&txq->_xmit_lock);
5447 tx_bytes += txq->tx_bytes;
5448 tx_packets += txq->tx_packets;
5449 tx_dropped += txq->tx_dropped;
5450 spin_unlock_bh(&txq->_xmit_lock);
5451 }
5452 if (tx_bytes || tx_packets || tx_dropped) {
5453 stats->tx_bytes = tx_bytes;
5454 stats->tx_packets = tx_packets;
5455 stats->tx_dropped = tx_dropped;
5456 }
5457 }
5458 EXPORT_SYMBOL(dev_txq_stats_fold);
5459
5460 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5461 * fields in the same order, with only the type differing.
5462 */
5463 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5464 const struct net_device_stats *netdev_stats)
5465 {
5466 #if BITS_PER_LONG == 64
5467 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5468 memcpy(stats64, netdev_stats, sizeof(*stats64));
5469 #else
5470 size_t i, n = sizeof(*stats64) / sizeof(u64);
5471 const unsigned long *src = (const unsigned long *)netdev_stats;
5472 u64 *dst = (u64 *)stats64;
5473
5474 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5475 sizeof(*stats64) / sizeof(u64));
5476 for (i = 0; i < n; i++)
5477 dst[i] = src[i];
5478 #endif
5479 }
5480
5481 /**
5482 * dev_get_stats - get network device statistics
5483 * @dev: device to get statistics from
5484 * @storage: place to store stats
5485 *
5486 * Get network statistics from device. Return @storage.
5487 * The device driver may provide its own method by setting
5488 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5489 * otherwise the internal statistics structure is used.
5490 */
5491 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5492 struct rtnl_link_stats64 *storage)
5493 {
5494 const struct net_device_ops *ops = dev->netdev_ops;
5495
5496 if (ops->ndo_get_stats64) {
5497 memset(storage, 0, sizeof(*storage));
5498 ops->ndo_get_stats64(dev, storage);
5499 } else if (ops->ndo_get_stats) {
5500 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5501 } else {
5502 netdev_stats_to_stats64(storage, &dev->stats);
5503 dev_txq_stats_fold(dev, storage);
5504 }
5505 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5506 return storage;
5507 }
5508 EXPORT_SYMBOL(dev_get_stats);
5509
5510 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5511 {
5512 struct netdev_queue *queue = dev_ingress_queue(dev);
5513
5514 #ifdef CONFIG_NET_CLS_ACT
5515 if (queue)
5516 return queue;
5517 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5518 if (!queue)
5519 return NULL;
5520 netdev_init_one_queue(dev, queue, NULL);
5521 queue->qdisc = &noop_qdisc;
5522 queue->qdisc_sleeping = &noop_qdisc;
5523 rcu_assign_pointer(dev->ingress_queue, queue);
5524 #endif
5525 return queue;
5526 }
5527
5528 /**
5529 * alloc_netdev_mq - allocate network device
5530 * @sizeof_priv: size of private data to allocate space for
5531 * @name: device name format string
5532 * @setup: callback to initialize device
5533 * @queue_count: the number of subqueues to allocate
5534 *
5535 * Allocates a struct net_device with private data area for driver use
5536 * and performs basic initialization. Also allocates subquue structs
5537 * for each queue on the device at the end of the netdevice.
5538 */
5539 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5540 void (*setup)(struct net_device *), unsigned int queue_count)
5541 {
5542 struct net_device *dev;
5543 size_t alloc_size;
5544 struct net_device *p;
5545
5546 BUG_ON(strlen(name) >= sizeof(dev->name));
5547
5548 if (queue_count < 1) {
5549 pr_err("alloc_netdev: Unable to allocate device "
5550 "with zero queues.\n");
5551 return NULL;
5552 }
5553
5554 alloc_size = sizeof(struct net_device);
5555 if (sizeof_priv) {
5556 /* ensure 32-byte alignment of private area */
5557 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5558 alloc_size += sizeof_priv;
5559 }
5560 /* ensure 32-byte alignment of whole construct */
5561 alloc_size += NETDEV_ALIGN - 1;
5562
5563 p = kzalloc(alloc_size, GFP_KERNEL);
5564 if (!p) {
5565 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5566 return NULL;
5567 }
5568
5569 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5570 dev->padded = (char *)dev - (char *)p;
5571
5572 dev->pcpu_refcnt = alloc_percpu(int);
5573 if (!dev->pcpu_refcnt)
5574 goto free_p;
5575
5576 if (dev_addr_init(dev))
5577 goto free_pcpu;
5578
5579 dev_mc_init(dev);
5580 dev_uc_init(dev);
5581
5582 dev_net_set(dev, &init_net);
5583
5584 dev->num_tx_queues = queue_count;
5585 dev->real_num_tx_queues = queue_count;
5586
5587 #ifdef CONFIG_RPS
5588 dev->num_rx_queues = queue_count;
5589 dev->real_num_rx_queues = queue_count;
5590 #endif
5591
5592 dev->gso_max_size = GSO_MAX_SIZE;
5593
5594 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5595 dev->ethtool_ntuple_list.count = 0;
5596 INIT_LIST_HEAD(&dev->napi_list);
5597 INIT_LIST_HEAD(&dev->unreg_list);
5598 INIT_LIST_HEAD(&dev->link_watch_list);
5599 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5600 setup(dev);
5601 strcpy(dev->name, name);
5602 return dev;
5603
5604 free_pcpu:
5605 free_percpu(dev->pcpu_refcnt);
5606 free_p:
5607 kfree(p);
5608 return NULL;
5609 }
5610 EXPORT_SYMBOL(alloc_netdev_mq);
5611
5612 /**
5613 * free_netdev - free network device
5614 * @dev: device
5615 *
5616 * This function does the last stage of destroying an allocated device
5617 * interface. The reference to the device object is released.
5618 * If this is the last reference then it will be freed.
5619 */
5620 void free_netdev(struct net_device *dev)
5621 {
5622 struct napi_struct *p, *n;
5623
5624 release_net(dev_net(dev));
5625
5626 kfree(dev->_tx);
5627
5628 kfree(rcu_dereference_raw(dev->ingress_queue));
5629
5630 /* Flush device addresses */
5631 dev_addr_flush(dev);
5632
5633 /* Clear ethtool n-tuple list */
5634 ethtool_ntuple_flush(dev);
5635
5636 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5637 netif_napi_del(p);
5638
5639 free_percpu(dev->pcpu_refcnt);
5640 dev->pcpu_refcnt = NULL;
5641
5642 /* Compatibility with error handling in drivers */
5643 if (dev->reg_state == NETREG_UNINITIALIZED) {
5644 kfree((char *)dev - dev->padded);
5645 return;
5646 }
5647
5648 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5649 dev->reg_state = NETREG_RELEASED;
5650
5651 /* will free via device release */
5652 put_device(&dev->dev);
5653 }
5654 EXPORT_SYMBOL(free_netdev);
5655
5656 /**
5657 * synchronize_net - Synchronize with packet receive processing
5658 *
5659 * Wait for packets currently being received to be done.
5660 * Does not block later packets from starting.
5661 */
5662 void synchronize_net(void)
5663 {
5664 might_sleep();
5665 synchronize_rcu();
5666 }
5667 EXPORT_SYMBOL(synchronize_net);
5668
5669 /**
5670 * unregister_netdevice_queue - remove device from the kernel
5671 * @dev: device
5672 * @head: list
5673 *
5674 * This function shuts down a device interface and removes it
5675 * from the kernel tables.
5676 * If head not NULL, device is queued to be unregistered later.
5677 *
5678 * Callers must hold the rtnl semaphore. You may want
5679 * unregister_netdev() instead of this.
5680 */
5681
5682 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5683 {
5684 ASSERT_RTNL();
5685
5686 if (head) {
5687 list_move_tail(&dev->unreg_list, head);
5688 } else {
5689 rollback_registered(dev);
5690 /* Finish processing unregister after unlock */
5691 net_set_todo(dev);
5692 }
5693 }
5694 EXPORT_SYMBOL(unregister_netdevice_queue);
5695
5696 /**
5697 * unregister_netdevice_many - unregister many devices
5698 * @head: list of devices
5699 */
5700 void unregister_netdevice_many(struct list_head *head)
5701 {
5702 struct net_device *dev;
5703
5704 if (!list_empty(head)) {
5705 rollback_registered_many(head);
5706 list_for_each_entry(dev, head, unreg_list)
5707 net_set_todo(dev);
5708 }
5709 }
5710 EXPORT_SYMBOL(unregister_netdevice_many);
5711
5712 /**
5713 * unregister_netdev - remove device from the kernel
5714 * @dev: device
5715 *
5716 * This function shuts down a device interface and removes it
5717 * from the kernel tables.
5718 *
5719 * This is just a wrapper for unregister_netdevice that takes
5720 * the rtnl semaphore. In general you want to use this and not
5721 * unregister_netdevice.
5722 */
5723 void unregister_netdev(struct net_device *dev)
5724 {
5725 rtnl_lock();
5726 unregister_netdevice(dev);
5727 rtnl_unlock();
5728 }
5729 EXPORT_SYMBOL(unregister_netdev);
5730
5731 /**
5732 * dev_change_net_namespace - move device to different nethost namespace
5733 * @dev: device
5734 * @net: network namespace
5735 * @pat: If not NULL name pattern to try if the current device name
5736 * is already taken in the destination network namespace.
5737 *
5738 * This function shuts down a device interface and moves it
5739 * to a new network namespace. On success 0 is returned, on
5740 * a failure a netagive errno code is returned.
5741 *
5742 * Callers must hold the rtnl semaphore.
5743 */
5744
5745 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5746 {
5747 int err;
5748
5749 ASSERT_RTNL();
5750
5751 /* Don't allow namespace local devices to be moved. */
5752 err = -EINVAL;
5753 if (dev->features & NETIF_F_NETNS_LOCAL)
5754 goto out;
5755
5756 /* Ensure the device has been registrered */
5757 err = -EINVAL;
5758 if (dev->reg_state != NETREG_REGISTERED)
5759 goto out;
5760
5761 /* Get out if there is nothing todo */
5762 err = 0;
5763 if (net_eq(dev_net(dev), net))
5764 goto out;
5765
5766 /* Pick the destination device name, and ensure
5767 * we can use it in the destination network namespace.
5768 */
5769 err = -EEXIST;
5770 if (__dev_get_by_name(net, dev->name)) {
5771 /* We get here if we can't use the current device name */
5772 if (!pat)
5773 goto out;
5774 if (dev_get_valid_name(dev, pat, 1))
5775 goto out;
5776 }
5777
5778 /*
5779 * And now a mini version of register_netdevice unregister_netdevice.
5780 */
5781
5782 /* If device is running close it first. */
5783 dev_close(dev);
5784
5785 /* And unlink it from device chain */
5786 err = -ENODEV;
5787 unlist_netdevice(dev);
5788
5789 synchronize_net();
5790
5791 /* Shutdown queueing discipline. */
5792 dev_shutdown(dev);
5793
5794 /* Notify protocols, that we are about to destroy
5795 this device. They should clean all the things.
5796
5797 Note that dev->reg_state stays at NETREG_REGISTERED.
5798 This is wanted because this way 8021q and macvlan know
5799 the device is just moving and can keep their slaves up.
5800 */
5801 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5802 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5803
5804 /*
5805 * Flush the unicast and multicast chains
5806 */
5807 dev_uc_flush(dev);
5808 dev_mc_flush(dev);
5809
5810 /* Actually switch the network namespace */
5811 dev_net_set(dev, net);
5812
5813 /* If there is an ifindex conflict assign a new one */
5814 if (__dev_get_by_index(net, dev->ifindex)) {
5815 int iflink = (dev->iflink == dev->ifindex);
5816 dev->ifindex = dev_new_index(net);
5817 if (iflink)
5818 dev->iflink = dev->ifindex;
5819 }
5820
5821 /* Fixup kobjects */
5822 err = device_rename(&dev->dev, dev->name);
5823 WARN_ON(err);
5824
5825 /* Add the device back in the hashes */
5826 list_netdevice(dev);
5827
5828 /* Notify protocols, that a new device appeared. */
5829 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5830
5831 /*
5832 * Prevent userspace races by waiting until the network
5833 * device is fully setup before sending notifications.
5834 */
5835 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5836
5837 synchronize_net();
5838 err = 0;
5839 out:
5840 return err;
5841 }
5842 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5843
5844 static int dev_cpu_callback(struct notifier_block *nfb,
5845 unsigned long action,
5846 void *ocpu)
5847 {
5848 struct sk_buff **list_skb;
5849 struct sk_buff *skb;
5850 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5851 struct softnet_data *sd, *oldsd;
5852
5853 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5854 return NOTIFY_OK;
5855
5856 local_irq_disable();
5857 cpu = smp_processor_id();
5858 sd = &per_cpu(softnet_data, cpu);
5859 oldsd = &per_cpu(softnet_data, oldcpu);
5860
5861 /* Find end of our completion_queue. */
5862 list_skb = &sd->completion_queue;
5863 while (*list_skb)
5864 list_skb = &(*list_skb)->next;
5865 /* Append completion queue from offline CPU. */
5866 *list_skb = oldsd->completion_queue;
5867 oldsd->completion_queue = NULL;
5868
5869 /* Append output queue from offline CPU. */
5870 if (oldsd->output_queue) {
5871 *sd->output_queue_tailp = oldsd->output_queue;
5872 sd->output_queue_tailp = oldsd->output_queue_tailp;
5873 oldsd->output_queue = NULL;
5874 oldsd->output_queue_tailp = &oldsd->output_queue;
5875 }
5876
5877 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5878 local_irq_enable();
5879
5880 /* Process offline CPU's input_pkt_queue */
5881 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5882 netif_rx(skb);
5883 input_queue_head_incr(oldsd);
5884 }
5885 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5886 netif_rx(skb);
5887 input_queue_head_incr(oldsd);
5888 }
5889
5890 return NOTIFY_OK;
5891 }
5892
5893
5894 /**
5895 * netdev_increment_features - increment feature set by one
5896 * @all: current feature set
5897 * @one: new feature set
5898 * @mask: mask feature set
5899 *
5900 * Computes a new feature set after adding a device with feature set
5901 * @one to the master device with current feature set @all. Will not
5902 * enable anything that is off in @mask. Returns the new feature set.
5903 */
5904 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5905 unsigned long mask)
5906 {
5907 /* If device needs checksumming, downgrade to it. */
5908 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5909 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5910 else if (mask & NETIF_F_ALL_CSUM) {
5911 /* If one device supports v4/v6 checksumming, set for all. */
5912 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5913 !(all & NETIF_F_GEN_CSUM)) {
5914 all &= ~NETIF_F_ALL_CSUM;
5915 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5916 }
5917
5918 /* If one device supports hw checksumming, set for all. */
5919 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5920 all &= ~NETIF_F_ALL_CSUM;
5921 all |= NETIF_F_HW_CSUM;
5922 }
5923 }
5924
5925 one |= NETIF_F_ALL_CSUM;
5926
5927 one |= all & NETIF_F_ONE_FOR_ALL;
5928 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5929 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5930
5931 return all;
5932 }
5933 EXPORT_SYMBOL(netdev_increment_features);
5934
5935 static struct hlist_head *netdev_create_hash(void)
5936 {
5937 int i;
5938 struct hlist_head *hash;
5939
5940 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5941 if (hash != NULL)
5942 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5943 INIT_HLIST_HEAD(&hash[i]);
5944
5945 return hash;
5946 }
5947
5948 /* Initialize per network namespace state */
5949 static int __net_init netdev_init(struct net *net)
5950 {
5951 INIT_LIST_HEAD(&net->dev_base_head);
5952
5953 net->dev_name_head = netdev_create_hash();
5954 if (net->dev_name_head == NULL)
5955 goto err_name;
5956
5957 net->dev_index_head = netdev_create_hash();
5958 if (net->dev_index_head == NULL)
5959 goto err_idx;
5960
5961 return 0;
5962
5963 err_idx:
5964 kfree(net->dev_name_head);
5965 err_name:
5966 return -ENOMEM;
5967 }
5968
5969 /**
5970 * netdev_drivername - network driver for the device
5971 * @dev: network device
5972 * @buffer: buffer for resulting name
5973 * @len: size of buffer
5974 *
5975 * Determine network driver for device.
5976 */
5977 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5978 {
5979 const struct device_driver *driver;
5980 const struct device *parent;
5981
5982 if (len <= 0 || !buffer)
5983 return buffer;
5984 buffer[0] = 0;
5985
5986 parent = dev->dev.parent;
5987
5988 if (!parent)
5989 return buffer;
5990
5991 driver = parent->driver;
5992 if (driver && driver->name)
5993 strlcpy(buffer, driver->name, len);
5994 return buffer;
5995 }
5996
5997 static int __netdev_printk(const char *level, const struct net_device *dev,
5998 struct va_format *vaf)
5999 {
6000 int r;
6001
6002 if (dev && dev->dev.parent)
6003 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6004 netdev_name(dev), vaf);
6005 else if (dev)
6006 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6007 else
6008 r = printk("%s(NULL net_device): %pV", level, vaf);
6009
6010 return r;
6011 }
6012
6013 int netdev_printk(const char *level, const struct net_device *dev,
6014 const char *format, ...)
6015 {
6016 struct va_format vaf;
6017 va_list args;
6018 int r;
6019
6020 va_start(args, format);
6021
6022 vaf.fmt = format;
6023 vaf.va = &args;
6024
6025 r = __netdev_printk(level, dev, &vaf);
6026 va_end(args);
6027
6028 return r;
6029 }
6030 EXPORT_SYMBOL(netdev_printk);
6031
6032 #define define_netdev_printk_level(func, level) \
6033 int func(const struct net_device *dev, const char *fmt, ...) \
6034 { \
6035 int r; \
6036 struct va_format vaf; \
6037 va_list args; \
6038 \
6039 va_start(args, fmt); \
6040 \
6041 vaf.fmt = fmt; \
6042 vaf.va = &args; \
6043 \
6044 r = __netdev_printk(level, dev, &vaf); \
6045 va_end(args); \
6046 \
6047 return r; \
6048 } \
6049 EXPORT_SYMBOL(func);
6050
6051 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6052 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6053 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6054 define_netdev_printk_level(netdev_err, KERN_ERR);
6055 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6056 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6057 define_netdev_printk_level(netdev_info, KERN_INFO);
6058
6059 static void __net_exit netdev_exit(struct net *net)
6060 {
6061 kfree(net->dev_name_head);
6062 kfree(net->dev_index_head);
6063 }
6064
6065 static struct pernet_operations __net_initdata netdev_net_ops = {
6066 .init = netdev_init,
6067 .exit = netdev_exit,
6068 };
6069
6070 static void __net_exit default_device_exit(struct net *net)
6071 {
6072 struct net_device *dev, *aux;
6073 /*
6074 * Push all migratable network devices back to the
6075 * initial network namespace
6076 */
6077 rtnl_lock();
6078 for_each_netdev_safe(net, dev, aux) {
6079 int err;
6080 char fb_name[IFNAMSIZ];
6081
6082 /* Ignore unmoveable devices (i.e. loopback) */
6083 if (dev->features & NETIF_F_NETNS_LOCAL)
6084 continue;
6085
6086 /* Leave virtual devices for the generic cleanup */
6087 if (dev->rtnl_link_ops)
6088 continue;
6089
6090 /* Push remaing network devices to init_net */
6091 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6092 err = dev_change_net_namespace(dev, &init_net, fb_name);
6093 if (err) {
6094 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6095 __func__, dev->name, err);
6096 BUG();
6097 }
6098 }
6099 rtnl_unlock();
6100 }
6101
6102 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6103 {
6104 /* At exit all network devices most be removed from a network
6105 * namespace. Do this in the reverse order of registeration.
6106 * Do this across as many network namespaces as possible to
6107 * improve batching efficiency.
6108 */
6109 struct net_device *dev;
6110 struct net *net;
6111 LIST_HEAD(dev_kill_list);
6112
6113 rtnl_lock();
6114 list_for_each_entry(net, net_list, exit_list) {
6115 for_each_netdev_reverse(net, dev) {
6116 if (dev->rtnl_link_ops)
6117 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6118 else
6119 unregister_netdevice_queue(dev, &dev_kill_list);
6120 }
6121 }
6122 unregister_netdevice_many(&dev_kill_list);
6123 rtnl_unlock();
6124 }
6125
6126 static struct pernet_operations __net_initdata default_device_ops = {
6127 .exit = default_device_exit,
6128 .exit_batch = default_device_exit_batch,
6129 };
6130
6131 /*
6132 * Initialize the DEV module. At boot time this walks the device list and
6133 * unhooks any devices that fail to initialise (normally hardware not
6134 * present) and leaves us with a valid list of present and active devices.
6135 *
6136 */
6137
6138 /*
6139 * This is called single threaded during boot, so no need
6140 * to take the rtnl semaphore.
6141 */
6142 static int __init net_dev_init(void)
6143 {
6144 int i, rc = -ENOMEM;
6145
6146 BUG_ON(!dev_boot_phase);
6147
6148 if (dev_proc_init())
6149 goto out;
6150
6151 if (netdev_kobject_init())
6152 goto out;
6153
6154 INIT_LIST_HEAD(&ptype_all);
6155 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6156 INIT_LIST_HEAD(&ptype_base[i]);
6157
6158 if (register_pernet_subsys(&netdev_net_ops))
6159 goto out;
6160
6161 /*
6162 * Initialise the packet receive queues.
6163 */
6164
6165 for_each_possible_cpu(i) {
6166 struct softnet_data *sd = &per_cpu(softnet_data, i);
6167
6168 memset(sd, 0, sizeof(*sd));
6169 skb_queue_head_init(&sd->input_pkt_queue);
6170 skb_queue_head_init(&sd->process_queue);
6171 sd->completion_queue = NULL;
6172 INIT_LIST_HEAD(&sd->poll_list);
6173 sd->output_queue = NULL;
6174 sd->output_queue_tailp = &sd->output_queue;
6175 #ifdef CONFIG_RPS
6176 sd->csd.func = rps_trigger_softirq;
6177 sd->csd.info = sd;
6178 sd->csd.flags = 0;
6179 sd->cpu = i;
6180 #endif
6181
6182 sd->backlog.poll = process_backlog;
6183 sd->backlog.weight = weight_p;
6184 sd->backlog.gro_list = NULL;
6185 sd->backlog.gro_count = 0;
6186 }
6187
6188 dev_boot_phase = 0;
6189
6190 /* The loopback device is special if any other network devices
6191 * is present in a network namespace the loopback device must
6192 * be present. Since we now dynamically allocate and free the
6193 * loopback device ensure this invariant is maintained by
6194 * keeping the loopback device as the first device on the
6195 * list of network devices. Ensuring the loopback devices
6196 * is the first device that appears and the last network device
6197 * that disappears.
6198 */
6199 if (register_pernet_device(&loopback_net_ops))
6200 goto out;
6201
6202 if (register_pernet_device(&default_device_ops))
6203 goto out;
6204
6205 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6206 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6207
6208 hotcpu_notifier(dev_cpu_callback, 0);
6209 dst_init();
6210 dev_mcast_init();
6211 rc = 0;
6212 out:
6213 return rc;
6214 }
6215
6216 subsys_initcall(net_dev_init);
6217
6218 static int __init initialize_hashrnd(void)
6219 {
6220 get_random_bytes(&hashrnd, sizeof(hashrnd));
6221 return 0;
6222 }
6223
6224 late_initcall_sync(initialize_hashrnd);
6225
This page took 0.160901 seconds and 6 git commands to generate.