net: gro: fix a potential crash in skb_gro_reset_offset
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_alloc_name_ns(struct net *net,
963 struct net_device *dev,
964 const char *name)
965 {
966 char buf[IFNAMSIZ];
967 int ret;
968
969 ret = __dev_alloc_name(net, name, buf);
970 if (ret >= 0)
971 strlcpy(dev->name, buf, IFNAMSIZ);
972 return ret;
973 }
974
975 static int dev_get_valid_name(struct net *net,
976 struct net_device *dev,
977 const char *name)
978 {
979 BUG_ON(!net);
980
981 if (!dev_valid_name(name))
982 return -EINVAL;
983
984 if (strchr(name, '%'))
985 return dev_alloc_name_ns(net, dev, name);
986 else if (__dev_get_by_name(net, name))
987 return -EEXIST;
988 else if (dev->name != name)
989 strlcpy(dev->name, name, IFNAMSIZ);
990
991 return 0;
992 }
993
994 /**
995 * dev_change_name - change name of a device
996 * @dev: device
997 * @newname: name (or format string) must be at least IFNAMSIZ
998 *
999 * Change name of a device, can pass format strings "eth%d".
1000 * for wildcarding.
1001 */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 char oldname[IFNAMSIZ];
1005 int err = 0;
1006 int ret;
1007 struct net *net;
1008
1009 ASSERT_RTNL();
1010 BUG_ON(!dev_net(dev));
1011
1012 net = dev_net(dev);
1013 if (dev->flags & IFF_UP)
1014 return -EBUSY;
1015
1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 return 0;
1018
1019 memcpy(oldname, dev->name, IFNAMSIZ);
1020
1021 err = dev_get_valid_name(net, dev, newname);
1022 if (err < 0)
1023 return err;
1024
1025 rollback:
1026 ret = device_rename(&dev->dev, dev->name);
1027 if (ret) {
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 return ret;
1030 }
1031
1032 write_lock_bh(&dev_base_lock);
1033 hlist_del_rcu(&dev->name_hlist);
1034 write_unlock_bh(&dev_base_lock);
1035
1036 synchronize_rcu();
1037
1038 write_lock_bh(&dev_base_lock);
1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 write_unlock_bh(&dev_base_lock);
1041
1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 ret = notifier_to_errno(ret);
1044
1045 if (ret) {
1046 /* err >= 0 after dev_alloc_name() or stores the first errno */
1047 if (err >= 0) {
1048 err = ret;
1049 memcpy(dev->name, oldname, IFNAMSIZ);
1050 goto rollback;
1051 } else {
1052 pr_err("%s: name change rollback failed: %d\n",
1053 dev->name, ret);
1054 }
1055 }
1056
1057 return err;
1058 }
1059
1060 /**
1061 * dev_set_alias - change ifalias of a device
1062 * @dev: device
1063 * @alias: name up to IFALIASZ
1064 * @len: limit of bytes to copy from info
1065 *
1066 * Set ifalias for a device,
1067 */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 char *new_ifalias;
1071
1072 ASSERT_RTNL();
1073
1074 if (len >= IFALIASZ)
1075 return -EINVAL;
1076
1077 if (!len) {
1078 if (dev->ifalias) {
1079 kfree(dev->ifalias);
1080 dev->ifalias = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 if (!new_ifalias)
1087 return -ENOMEM;
1088 dev->ifalias = new_ifalias;
1089
1090 strlcpy(dev->ifalias, alias, len+1);
1091 return len;
1092 }
1093
1094
1095 /**
1096 * netdev_features_change - device changes features
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed features.
1100 */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106
1107 /**
1108 * netdev_state_change - device changes state
1109 * @dev: device to cause notification
1110 *
1111 * Called to indicate a device has changed state. This function calls
1112 * the notifier chains for netdev_chain and sends a NEWLINK message
1113 * to the routing socket.
1114 */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 if (dev->flags & IFF_UP) {
1118 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 }
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123
1124 /**
1125 * netdev_notify_peers - notify network peers about existence of @dev
1126 * @dev: network device
1127 *
1128 * Generate traffic such that interested network peers are aware of
1129 * @dev, such as by generating a gratuitous ARP. This may be used when
1130 * a device wants to inform the rest of the network about some sort of
1131 * reconfiguration such as a failover event or virtual machine
1132 * migration.
1133 */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 rtnl_lock();
1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141
1142 /**
1143 * dev_load - load a network module
1144 * @net: the applicable net namespace
1145 * @name: name of interface
1146 *
1147 * If a network interface is not present and the process has suitable
1148 * privileges this function loads the module. If module loading is not
1149 * available in this kernel then it becomes a nop.
1150 */
1151
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 struct net_device *dev;
1155 int no_module;
1156
1157 rcu_read_lock();
1158 dev = dev_get_by_name_rcu(net, name);
1159 rcu_read_unlock();
1160
1161 no_module = !dev;
1162 if (no_module && capable(CAP_NET_ADMIN))
1163 no_module = request_module("netdev-%s", name);
1164 if (no_module && capable(CAP_SYS_MODULE)) {
1165 if (!request_module("%s", name))
1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 name);
1168 }
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 const struct net_device_ops *ops = dev->netdev_ops;
1175 int ret;
1176
1177 ASSERT_RTNL();
1178
1179 if (!netif_device_present(dev))
1180 return -ENODEV;
1181
1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 ret = notifier_to_errno(ret);
1184 if (ret)
1185 return ret;
1186
1187 set_bit(__LINK_STATE_START, &dev->state);
1188
1189 if (ops->ndo_validate_addr)
1190 ret = ops->ndo_validate_addr(dev);
1191
1192 if (!ret && ops->ndo_open)
1193 ret = ops->ndo_open(dev);
1194
1195 if (ret)
1196 clear_bit(__LINK_STATE_START, &dev->state);
1197 else {
1198 dev->flags |= IFF_UP;
1199 net_dmaengine_get();
1200 dev_set_rx_mode(dev);
1201 dev_activate(dev);
1202 add_device_randomness(dev->dev_addr, dev->addr_len);
1203 }
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * dev_open - prepare an interface for use.
1210 * @dev: device to open
1211 *
1212 * Takes a device from down to up state. The device's private open
1213 * function is invoked and then the multicast lists are loaded. Finally
1214 * the device is moved into the up state and a %NETDEV_UP message is
1215 * sent to the netdev notifier chain.
1216 *
1217 * Calling this function on an active interface is a nop. On a failure
1218 * a negative errno code is returned.
1219 */
1220 int dev_open(struct net_device *dev)
1221 {
1222 int ret;
1223
1224 if (dev->flags & IFF_UP)
1225 return 0;
1226
1227 ret = __dev_open(dev);
1228 if (ret < 0)
1229 return ret;
1230
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 call_netdevice_notifiers(NETDEV_UP, dev);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 struct net_device *dev;
1241
1242 ASSERT_RTNL();
1243 might_sleep();
1244
1245 list_for_each_entry(dev, head, unreg_list) {
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 dev->flags &= ~IFF_UP;
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 if (dev->flags & IFF_UP) {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329 list_del(&single);
1330 }
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334
1335
1336 /**
1337 * dev_disable_lro - disable Large Receive Offload on a device
1338 * @dev: device
1339 *
1340 * Disable Large Receive Offload (LRO) on a net device. Must be
1341 * called under RTNL. This is needed if received packets may be
1342 * forwarded to another interface.
1343 */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 /*
1347 * If we're trying to disable lro on a vlan device
1348 * use the underlying physical device instead
1349 */
1350 if (is_vlan_dev(dev))
1351 dev = vlan_dev_real_dev(dev);
1352
1353 dev->wanted_features &= ~NETIF_F_LRO;
1354 netdev_update_features(dev);
1355
1356 if (unlikely(dev->features & NETIF_F_LRO))
1357 netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360
1361
1362 static int dev_boot_phase = 1;
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 goto outroll;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 }
1422 }
1423
1424 outroll:
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 *
1439 * After unregistering unregister and down device events are synthesized
1440 * for all devices on the device list to the removed notifier to remove
1441 * the need for special case cleanup code.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 struct net_device *dev;
1447 struct net *net;
1448 int err;
1449
1450 rtnl_lock();
1451 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 if (err)
1453 goto unlock;
1454
1455 for_each_net(net) {
1456 for_each_netdev(net, dev) {
1457 if (dev->flags & IFF_UP) {
1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 }
1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 }
1463 }
1464 unlock:
1465 rtnl_unlock();
1466 return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469
1470 /**
1471 * call_netdevice_notifiers - call all network notifier blocks
1472 * @val: value passed unmodified to notifier function
1473 * @dev: net_device pointer passed unmodified to notifier function
1474 *
1475 * Call all network notifier blocks. Parameters and return value
1476 * are as for raw_notifier_call_chain().
1477 */
1478
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 ASSERT_RTNL();
1482 return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489 * If net_disable_timestamp() is called from irq context, defer the
1490 * static_key_slow_dec() calls.
1491 */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499
1500 if (deferred) {
1501 while (--deferred)
1502 static_key_slow_dec(&netstamp_needed);
1503 return;
1504 }
1505 #endif
1506 WARN_ON(in_interrupt());
1507 static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 if (in_interrupt()) {
1515 atomic_inc(&netstamp_needed_deferred);
1516 return;
1517 }
1518 #endif
1519 static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 skb->tstamp.tv64 = 0;
1526 if (static_key_false(&netstamp_needed))
1527 __net_timestamp(skb);
1528 }
1529
1530 #define net_timestamp_check(COND, SKB) \
1531 if (static_key_false(&netstamp_needed)) { \
1532 if ((COND) && !(SKB)->tstamp.tv64) \
1533 __net_timestamp(SKB); \
1534 } \
1535
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 struct hwtstamp_config cfg;
1539 enum hwtstamp_tx_types tx_type;
1540 enum hwtstamp_rx_filters rx_filter;
1541 int tx_type_valid = 0;
1542 int rx_filter_valid = 0;
1543
1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 return -EFAULT;
1546
1547 if (cfg.flags) /* reserved for future extensions */
1548 return -EINVAL;
1549
1550 tx_type = cfg.tx_type;
1551 rx_filter = cfg.rx_filter;
1552
1553 switch (tx_type) {
1554 case HWTSTAMP_TX_OFF:
1555 case HWTSTAMP_TX_ON:
1556 case HWTSTAMP_TX_ONESTEP_SYNC:
1557 tx_type_valid = 1;
1558 break;
1559 }
1560
1561 switch (rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 case HWTSTAMP_FILTER_ALL:
1564 case HWTSTAMP_FILTER_SOME:
1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 rx_filter_valid = 1;
1578 break;
1579 }
1580
1581 if (!tx_type_valid || !rx_filter_valid)
1582 return -ERANGE;
1583
1584 return 0;
1585 }
1586
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 struct sk_buff *skb)
1589 {
1590 unsigned int len;
1591
1592 if (!(dev->flags & IFF_UP))
1593 return false;
1594
1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 if (skb->len <= len)
1597 return true;
1598
1599 /* if TSO is enabled, we don't care about the length as the packet
1600 * could be forwarded without being segmented before
1601 */
1602 if (skb_is_gso(skb))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /**
1609 * dev_forward_skb - loopback an skb to another netif
1610 *
1611 * @dev: destination network device
1612 * @skb: buffer to forward
1613 *
1614 * return values:
1615 * NET_RX_SUCCESS (no congestion)
1616 * NET_RX_DROP (packet was dropped, but freed)
1617 *
1618 * dev_forward_skb can be used for injecting an skb from the
1619 * start_xmit function of one device into the receive queue
1620 * of another device.
1621 *
1622 * The receiving device may be in another namespace, so
1623 * we have to clear all information in the skb that could
1624 * impact namespace isolation.
1625 */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 }
1635
1636 skb_orphan(skb);
1637 nf_reset(skb);
1638
1639 if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 atomic_long_inc(&dev->rx_dropped);
1641 kfree_skb(skb);
1642 return NET_RX_DROP;
1643 }
1644 skb->skb_iif = 0;
1645 skb->dev = dev;
1646 skb_dst_drop(skb);
1647 skb->tstamp.tv64 = 0;
1648 skb->pkt_type = PACKET_HOST;
1649 skb->protocol = eth_type_trans(skb, dev);
1650 skb->mark = 0;
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 struct packet_type *pt_prev,
1659 struct net_device *orig_dev)
1660 {
1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 return -ENOMEM;
1663 atomic_inc(&skb->users);
1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 if (ptype->af_packet_priv == NULL)
1670 return false;
1671
1672 if (ptype->id_match)
1673 return ptype->id_match(ptype, skb->sk);
1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /*
1681 * Support routine. Sends outgoing frames to any network
1682 * taps currently in use.
1683 */
1684
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 struct packet_type *ptype;
1688 struct sk_buff *skb2 = NULL;
1689 struct packet_type *pt_prev = NULL;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 /* Never send packets back to the socket
1694 * they originated from - MvS (miquels@drinkel.ow.org)
1695 */
1696 if ((ptype->dev == dev || !ptype->dev) &&
1697 (!skb_loop_sk(ptype, skb))) {
1698 if (pt_prev) {
1699 deliver_skb(skb2, pt_prev, skb->dev);
1700 pt_prev = ptype;
1701 continue;
1702 }
1703
1704 skb2 = skb_clone(skb, GFP_ATOMIC);
1705 if (!skb2)
1706 break;
1707
1708 net_timestamp_set(skb2);
1709
1710 /* skb->nh should be correctly
1711 set by sender, so that the second statement is
1712 just protection against buggy protocols.
1713 */
1714 skb_reset_mac_header(skb2);
1715
1716 if (skb_network_header(skb2) < skb2->data ||
1717 skb2->network_header > skb2->tail) {
1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 ntohs(skb2->protocol),
1720 dev->name);
1721 skb_reset_network_header(skb2);
1722 }
1723
1724 skb2->transport_header = skb2->network_header;
1725 skb2->pkt_type = PACKET_OUTGOING;
1726 pt_prev = ptype;
1727 }
1728 }
1729 if (pt_prev)
1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 rcu_read_unlock();
1732 }
1733
1734 /**
1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736 * @dev: Network device
1737 * @txq: number of queues available
1738 *
1739 * If real_num_tx_queues is changed the tc mappings may no longer be
1740 * valid. To resolve this verify the tc mapping remains valid and if
1741 * not NULL the mapping. With no priorities mapping to this
1742 * offset/count pair it will no longer be used. In the worst case TC0
1743 * is invalid nothing can be done so disable priority mappings. If is
1744 * expected that drivers will fix this mapping if they can before
1745 * calling netif_set_real_num_tx_queues.
1746 */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 int i;
1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751
1752 /* If TC0 is invalidated disable TC mapping */
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 dev->num_tc = 0;
1756 return;
1757 }
1758
1759 /* Invalidated prio to tc mappings set to TC0 */
1760 for (i = 1; i < TC_BITMASK + 1; i++) {
1761 int q = netdev_get_prio_tc_map(dev, i);
1762
1763 tc = &dev->tc_to_txq[q];
1764 if (tc->offset + tc->count > txq) {
1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 i, q);
1767 netdev_set_prio_tc_map(dev, i, 0);
1768 }
1769 }
1770 }
1771
1772 /*
1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775 */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 int rc;
1779
1780 if (txq < 1 || txq > dev->num_tx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED ||
1784 dev->reg_state == NETREG_UNREGISTERING) {
1785 ASSERT_RTNL();
1786
1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 txq);
1789 if (rc)
1790 return rc;
1791
1792 if (dev->num_tc)
1793 netif_setup_tc(dev, txq);
1794
1795 if (txq < dev->real_num_tx_queues)
1796 qdisc_reset_all_tx_gt(dev, txq);
1797 }
1798
1799 dev->real_num_tx_queues = txq;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803
1804 #ifdef CONFIG_RPS
1805 /**
1806 * netif_set_real_num_rx_queues - set actual number of RX queues used
1807 * @dev: Network device
1808 * @rxq: Actual number of RX queues
1809 *
1810 * This must be called either with the rtnl_lock held or before
1811 * registration of the net device. Returns 0 on success, or a
1812 * negative error code. If called before registration, it always
1813 * succeeds.
1814 */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 int rc;
1818
1819 if (rxq < 1 || rxq > dev->num_rx_queues)
1820 return -EINVAL;
1821
1822 if (dev->reg_state == NETREG_REGISTERED) {
1823 ASSERT_RTNL();
1824
1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 rxq);
1827 if (rc)
1828 return rc;
1829 }
1830
1831 dev->real_num_rx_queues = rxq;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836
1837 /**
1838 * netif_get_num_default_rss_queues - default number of RSS queues
1839 *
1840 * This routine should set an upper limit on the number of RSS queues
1841 * used by default by multiqueue devices.
1842 */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 q->next_sched = NULL;
1857 *sd->output_queue_tailp = q;
1858 sd->output_queue_tailp = &q->next_sched;
1859 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 local_irq_restore(flags);
1861 }
1862
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 __netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 if (atomic_dec_and_test(&skb->users)) {
1873 struct softnet_data *sd;
1874 unsigned long flags;
1875
1876 local_irq_save(flags);
1877 sd = &__get_cpu_var(softnet_data);
1878 skb->next = sd->completion_queue;
1879 sd->completion_queue = skb;
1880 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 local_irq_restore(flags);
1882 }
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 if (in_irq() || irqs_disabled())
1889 dev_kfree_skb_irq(skb);
1890 else
1891 dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894
1895
1896 /**
1897 * netif_device_detach - mark device as removed
1898 * @dev: network device
1899 *
1900 * Mark device as removed from system and therefore no longer available.
1901 */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 netif_running(dev)) {
1906 netif_tx_stop_all_queues(dev);
1907 }
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910
1911 /**
1912 * netif_device_attach - mark device as attached
1913 * @dev: network device
1914 *
1915 * Mark device as attached from system and restart if needed.
1916 */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 netif_running(dev)) {
1921 netif_tx_wake_all_queues(dev);
1922 __netdev_watchdog_up(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 static const netdev_features_t null_features = 0;
1930 struct net_device *dev = skb->dev;
1931 const char *driver = "";
1932
1933 if (dev && dev->dev.parent)
1934 driver = dev_driver_string(dev->dev.parent);
1935
1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 "gso_type=%d ip_summed=%d\n",
1938 driver, dev ? &dev->features : &null_features,
1939 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943
1944 /*
1945 * Invalidate hardware checksum when packet is to be mangled, and
1946 * complete checksum manually on outgoing path.
1947 */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 __wsum csum;
1951 int ret = 0, offset;
1952
1953 if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 goto out_set_summed;
1955
1956 if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 skb_warn_bad_offload(skb);
1958 return -EINVAL;
1959 }
1960
1961 offset = skb_checksum_start_offset(skb);
1962 BUG_ON(offset >= skb_headlen(skb));
1963 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964
1965 offset += skb->csum_offset;
1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967
1968 if (skb_cloned(skb) &&
1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 if (ret)
1972 goto out;
1973 }
1974
1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982
1983 /**
1984 * skb_gso_segment - Perform segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: features for the output path (see dev->features)
1987 *
1988 * This function segments the given skb and returns a list of segments.
1989 *
1990 * It may return NULL if the skb requires no segmentation. This is
1991 * only possible when GSO is used for verifying header integrity.
1992 */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 netdev_features_t features)
1995 {
1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 struct packet_type *ptype;
1998 __be16 type = skb->protocol;
1999 int vlan_depth = ETH_HLEN;
2000 int err;
2001
2002 while (type == htons(ETH_P_8021Q)) {
2003 struct vlan_hdr *vh;
2004
2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 return ERR_PTR(-EINVAL);
2007
2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 type = vh->h_vlan_encapsulated_proto;
2010 vlan_depth += VLAN_HLEN;
2011 }
2012
2013 skb_reset_mac_header(skb);
2014 skb->mac_len = skb->network_header - skb->mac_header;
2015 __skb_pull(skb, skb->mac_len);
2016
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 skb_warn_bad_offload(skb);
2019
2020 if (skb_header_cloned(skb) &&
2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 return ERR_PTR(err);
2023 }
2024
2025 rcu_read_lock();
2026 list_for_each_entry_rcu(ptype,
2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 err = ptype->gso_send_check(skb);
2031 segs = ERR_PTR(err);
2032 if (err || skb_gso_ok(skb, features))
2033 break;
2034 __skb_push(skb, (skb->data -
2035 skb_network_header(skb)));
2036 }
2037 segs = ptype->gso_segment(skb, features);
2038 break;
2039 }
2040 }
2041 rcu_read_unlock();
2042
2043 __skb_push(skb, skb->data - skb_mac_header(skb));
2044
2045 return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 if (net_ratelimit()) {
2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 dump_stack();
2056 }
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062 * 1. IOMMU is present and allows to map all the memory.
2063 * 2. No high memory really exists on this machine.
2064 */
2065
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 int i;
2070 if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 if (PageHighMem(skb_frag_page(frag)))
2074 return 1;
2075 }
2076 }
2077
2078 if (PCI_DMA_BUS_IS_PHYS) {
2079 struct device *pdev = dev->dev.parent;
2080
2081 if (!pdev)
2082 return 0;
2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 return 1;
2088 }
2089 }
2090 #endif
2091 return 0;
2092 }
2093
2094 struct dev_gso_cb {
2095 void (*destructor)(struct sk_buff *skb);
2096 };
2097
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 struct dev_gso_cb *cb;
2103
2104 do {
2105 struct sk_buff *nskb = skb->next;
2106
2107 skb->next = nskb->next;
2108 nskb->next = NULL;
2109 kfree_skb(nskb);
2110 } while (skb->next);
2111
2112 cb = DEV_GSO_CB(skb);
2113 if (cb->destructor)
2114 cb->destructor(skb);
2115 }
2116
2117 /**
2118 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2119 * @skb: buffer to segment
2120 * @features: device features as applicable to this skb
2121 *
2122 * This function segments the given skb and stores the list of segments
2123 * in skb->next.
2124 */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 struct sk_buff *segs;
2128
2129 segs = skb_gso_segment(skb, features);
2130
2131 /* Verifying header integrity only. */
2132 if (!segs)
2133 return 0;
2134
2135 if (IS_ERR(segs))
2136 return PTR_ERR(segs);
2137
2138 skb->next = segs;
2139 DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 skb->destructor = dev_gso_skb_destructor;
2141
2142 return 0;
2143 }
2144
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 return ((features & NETIF_F_GEN_CSUM) ||
2148 ((features & NETIF_F_V4_CSUM) &&
2149 protocol == htons(ETH_P_IP)) ||
2150 ((features & NETIF_F_V6_CSUM) &&
2151 protocol == htons(ETH_P_IPV6)) ||
2152 ((features & NETIF_F_FCOE_CRC) &&
2153 protocol == htons(ETH_P_FCOE)));
2154 }
2155
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 __be16 protocol, netdev_features_t features)
2158 {
2159 if (skb->ip_summed != CHECKSUM_NONE &&
2160 !can_checksum_protocol(features, protocol)) {
2161 features &= ~NETIF_F_ALL_CSUM;
2162 features &= ~NETIF_F_SG;
2163 } else if (illegal_highdma(skb->dev, skb)) {
2164 features &= ~NETIF_F_SG;
2165 }
2166
2167 return features;
2168 }
2169
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 __be16 protocol = skb->protocol;
2173 netdev_features_t features = skb->dev->features;
2174
2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 features &= ~NETIF_F_GSO_MASK;
2177
2178 if (protocol == htons(ETH_P_8021Q)) {
2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 protocol = veh->h_vlan_encapsulated_proto;
2181 } else if (!vlan_tx_tag_present(skb)) {
2182 return harmonize_features(skb, protocol, features);
2183 }
2184
2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186
2187 if (protocol != htons(ETH_P_8021Q)) {
2188 return harmonize_features(skb, protocol, features);
2189 } else {
2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 return harmonize_features(skb, protocol, features);
2193 }
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196
2197 /*
2198 * Returns true if either:
2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2200 * 2. skb is fragmented and the device does not support SG.
2201 */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 int features)
2204 {
2205 return skb_is_nonlinear(skb) &&
2206 ((skb_has_frag_list(skb) &&
2207 !(features & NETIF_F_FRAGLIST)) ||
2208 (skb_shinfo(skb)->nr_frags &&
2209 !(features & NETIF_F_SG)));
2210 }
2211
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 struct netdev_queue *txq)
2214 {
2215 const struct net_device_ops *ops = dev->netdev_ops;
2216 int rc = NETDEV_TX_OK;
2217 unsigned int skb_len;
2218
2219 if (likely(!skb->next)) {
2220 netdev_features_t features;
2221
2222 /*
2223 * If device doesn't need skb->dst, release it right now while
2224 * its hot in this cpu cache
2225 */
2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 skb_dst_drop(skb);
2228
2229 features = netif_skb_features(skb);
2230
2231 if (vlan_tx_tag_present(skb) &&
2232 !(features & NETIF_F_HW_VLAN_TX)) {
2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 if (unlikely(!skb))
2235 goto out;
2236
2237 skb->vlan_tci = 0;
2238 }
2239
2240 if (netif_needs_gso(skb, features)) {
2241 if (unlikely(dev_gso_segment(skb, features)))
2242 goto out_kfree_skb;
2243 if (skb->next)
2244 goto gso;
2245 } else {
2246 if (skb_needs_linearize(skb, features) &&
2247 __skb_linearize(skb))
2248 goto out_kfree_skb;
2249
2250 /* If packet is not checksummed and device does not
2251 * support checksumming for this protocol, complete
2252 * checksumming here.
2253 */
2254 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 skb_set_transport_header(skb,
2256 skb_checksum_start_offset(skb));
2257 if (!(features & NETIF_F_ALL_CSUM) &&
2258 skb_checksum_help(skb))
2259 goto out_kfree_skb;
2260 }
2261 }
2262
2263 if (!list_empty(&ptype_all))
2264 dev_queue_xmit_nit(skb, dev);
2265
2266 skb_len = skb->len;
2267 rc = ops->ndo_start_xmit(skb, dev);
2268 trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 if (rc == NETDEV_TX_OK)
2270 txq_trans_update(txq);
2271 return rc;
2272 }
2273
2274 gso:
2275 do {
2276 struct sk_buff *nskb = skb->next;
2277
2278 skb->next = nskb->next;
2279 nskb->next = NULL;
2280
2281 /*
2282 * If device doesn't need nskb->dst, release it right now while
2283 * its hot in this cpu cache
2284 */
2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 skb_dst_drop(nskb);
2287
2288 if (!list_empty(&ptype_all))
2289 dev_queue_xmit_nit(nskb, dev);
2290
2291 skb_len = nskb->len;
2292 rc = ops->ndo_start_xmit(nskb, dev);
2293 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 if (unlikely(rc != NETDEV_TX_OK)) {
2295 if (rc & ~NETDEV_TX_MASK)
2296 goto out_kfree_gso_skb;
2297 nskb->next = skb->next;
2298 skb->next = nskb;
2299 return rc;
2300 }
2301 txq_trans_update(txq);
2302 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 return NETDEV_TX_BUSY;
2304 } while (skb->next);
2305
2306 out_kfree_gso_skb:
2307 if (likely(skb->next == NULL))
2308 skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 kfree_skb(skb);
2311 out:
2312 return rc;
2313 }
2314
2315 static u32 hashrnd __read_mostly;
2316
2317 /*
2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319 * to be used as a distribution range.
2320 */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 unsigned int num_tx_queues)
2323 {
2324 u32 hash;
2325 u16 qoffset = 0;
2326 u16 qcount = num_tx_queues;
2327
2328 if (skb_rx_queue_recorded(skb)) {
2329 hash = skb_get_rx_queue(skb);
2330 while (unlikely(hash >= num_tx_queues))
2331 hash -= num_tx_queues;
2332 return hash;
2333 }
2334
2335 if (dev->num_tc) {
2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 qoffset = dev->tc_to_txq[tc].offset;
2338 qcount = dev->tc_to_txq[tc].count;
2339 }
2340
2341 if (skb->sk && skb->sk->sk_hash)
2342 hash = skb->sk->sk_hash;
2343 else
2344 hash = (__force u16) skb->protocol;
2345 hash = jhash_1word(hash, hashrnd);
2346
2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 dev->name, queue_index,
2356 dev->real_num_tx_queues);
2357 return 0;
2358 }
2359 return queue_index;
2360 }
2361
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 struct xps_dev_maps *dev_maps;
2366 struct xps_map *map;
2367 int queue_index = -1;
2368
2369 rcu_read_lock();
2370 dev_maps = rcu_dereference(dev->xps_maps);
2371 if (dev_maps) {
2372 map = rcu_dereference(
2373 dev_maps->cpu_map[raw_smp_processor_id()]);
2374 if (map) {
2375 if (map->len == 1)
2376 queue_index = map->queues[0];
2377 else {
2378 u32 hash;
2379 if (skb->sk && skb->sk->sk_hash)
2380 hash = skb->sk->sk_hash;
2381 else
2382 hash = (__force u16) skb->protocol ^
2383 skb->rxhash;
2384 hash = jhash_1word(hash, hashrnd);
2385 queue_index = map->queues[
2386 ((u64)hash * map->len) >> 32];
2387 }
2388 if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 queue_index = -1;
2390 }
2391 }
2392 rcu_read_unlock();
2393
2394 return queue_index;
2395 #else
2396 return -1;
2397 #endif
2398 }
2399
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 struct sk_buff *skb)
2402 {
2403 int queue_index;
2404 const struct net_device_ops *ops = dev->netdev_ops;
2405
2406 if (dev->real_num_tx_queues == 1)
2407 queue_index = 0;
2408 else if (ops->ndo_select_queue) {
2409 queue_index = ops->ndo_select_queue(dev, skb);
2410 queue_index = dev_cap_txqueue(dev, queue_index);
2411 } else {
2412 struct sock *sk = skb->sk;
2413 queue_index = sk_tx_queue_get(sk);
2414
2415 if (queue_index < 0 || skb->ooo_okay ||
2416 queue_index >= dev->real_num_tx_queues) {
2417 int old_index = queue_index;
2418
2419 queue_index = get_xps_queue(dev, skb);
2420 if (queue_index < 0)
2421 queue_index = skb_tx_hash(dev, skb);
2422
2423 if (queue_index != old_index && sk) {
2424 struct dst_entry *dst =
2425 rcu_dereference_check(sk->sk_dst_cache, 1);
2426
2427 if (dst && skb_dst(skb) == dst)
2428 sk_tx_queue_set(sk, queue_index);
2429 }
2430 }
2431 }
2432
2433 skb_set_queue_mapping(skb, queue_index);
2434 return netdev_get_tx_queue(dev, queue_index);
2435 }
2436
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 struct net_device *dev,
2439 struct netdev_queue *txq)
2440 {
2441 spinlock_t *root_lock = qdisc_lock(q);
2442 bool contended;
2443 int rc;
2444
2445 qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 qdisc_calculate_pkt_len(skb, q);
2447 /*
2448 * Heuristic to force contended enqueues to serialize on a
2449 * separate lock before trying to get qdisc main lock.
2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 * and dequeue packets faster.
2452 */
2453 contended = qdisc_is_running(q);
2454 if (unlikely(contended))
2455 spin_lock(&q->busylock);
2456
2457 spin_lock(root_lock);
2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 kfree_skb(skb);
2460 rc = NET_XMIT_DROP;
2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 qdisc_run_begin(q)) {
2463 /*
2464 * This is a work-conserving queue; there are no old skbs
2465 * waiting to be sent out; and the qdisc is not running -
2466 * xmit the skb directly.
2467 */
2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 skb_dst_force(skb);
2470
2471 qdisc_bstats_update(q, skb);
2472
2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 if (unlikely(contended)) {
2475 spin_unlock(&q->busylock);
2476 contended = false;
2477 }
2478 __qdisc_run(q);
2479 } else
2480 qdisc_run_end(q);
2481
2482 rc = NET_XMIT_SUCCESS;
2483 } else {
2484 skb_dst_force(skb);
2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 if (qdisc_run_begin(q)) {
2487 if (unlikely(contended)) {
2488 spin_unlock(&q->busylock);
2489 contended = false;
2490 }
2491 __qdisc_run(q);
2492 }
2493 }
2494 spin_unlock(root_lock);
2495 if (unlikely(contended))
2496 spin_unlock(&q->busylock);
2497 return rc;
2498 }
2499
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504
2505 if (!skb->priority && skb->sk && map) {
2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507
2508 if (prioidx < map->priomap_len)
2509 skb->priority = map->priomap[prioidx];
2510 }
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518
2519 /**
2520 * dev_loopback_xmit - loop back @skb
2521 * @skb: buffer to transmit
2522 */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 skb_reset_mac_header(skb);
2526 __skb_pull(skb, skb_network_offset(skb));
2527 skb->pkt_type = PACKET_LOOPBACK;
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 WARN_ON(!skb_dst(skb));
2530 skb_dst_force(skb);
2531 netif_rx_ni(skb);
2532 return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535
2536 /**
2537 * dev_queue_xmit - transmit a buffer
2538 * @skb: buffer to transmit
2539 *
2540 * Queue a buffer for transmission to a network device. The caller must
2541 * have set the device and priority and built the buffer before calling
2542 * this function. The function can be called from an interrupt.
2543 *
2544 * A negative errno code is returned on a failure. A success does not
2545 * guarantee the frame will be transmitted as it may be dropped due
2546 * to congestion or traffic shaping.
2547 *
2548 * -----------------------------------------------------------------------------------
2549 * I notice this method can also return errors from the queue disciplines,
2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2551 * be positive.
2552 *
2553 * Regardless of the return value, the skb is consumed, so it is currently
2554 * difficult to retry a send to this method. (You can bump the ref count
2555 * before sending to hold a reference for retry if you are careful.)
2556 *
2557 * When calling this method, interrupts MUST be enabled. This is because
2558 * the BH enable code must have IRQs enabled so that it will not deadlock.
2559 * --BLG
2560 */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 struct net_device *dev = skb->dev;
2564 struct netdev_queue *txq;
2565 struct Qdisc *q;
2566 int rc = -ENOMEM;
2567
2568 /* Disable soft irqs for various locks below. Also
2569 * stops preemption for RCU.
2570 */
2571 rcu_read_lock_bh();
2572
2573 skb_update_prio(skb);
2574
2575 txq = netdev_pick_tx(dev, skb);
2576 q = rcu_dereference_bh(txq->qdisc);
2577
2578 #ifdef CONFIG_NET_CLS_ACT
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 trace_net_dev_queue(skb);
2582 if (q->enqueue) {
2583 rc = __dev_xmit_skb(skb, q, dev, txq);
2584 goto out;
2585 }
2586
2587 /* The device has no queue. Common case for software devices:
2588 loopback, all the sorts of tunnels...
2589
2590 Really, it is unlikely that netif_tx_lock protection is necessary
2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2592 counters.)
2593 However, it is possible, that they rely on protection
2594 made by us here.
2595
2596 Check this and shot the lock. It is not prone from deadlocks.
2597 Either shot noqueue qdisc, it is even simpler 8)
2598 */
2599 if (dev->flags & IFF_UP) {
2600 int cpu = smp_processor_id(); /* ok because BHs are off */
2601
2602 if (txq->xmit_lock_owner != cpu) {
2603
2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 goto recursion_alert;
2606
2607 HARD_TX_LOCK(dev, txq, cpu);
2608
2609 if (!netif_xmit_stopped(txq)) {
2610 __this_cpu_inc(xmit_recursion);
2611 rc = dev_hard_start_xmit(skb, dev, txq);
2612 __this_cpu_dec(xmit_recursion);
2613 if (dev_xmit_complete(rc)) {
2614 HARD_TX_UNLOCK(dev, txq);
2615 goto out;
2616 }
2617 }
2618 HARD_TX_UNLOCK(dev, txq);
2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 dev->name);
2621 } else {
2622 /* Recursion is detected! It is possible,
2623 * unfortunately
2624 */
2625 recursion_alert:
2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 dev->name);
2628 }
2629 }
2630
2631 rc = -ENETDOWN;
2632 rcu_read_unlock_bh();
2633
2634 kfree_skb(skb);
2635 return rc;
2636 out:
2637 rcu_read_unlock_bh();
2638 return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641
2642
2643 /*=======================================================================
2644 Receiver routines
2645 =======================================================================*/
2646
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64; /* old backlog weight */
2653
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 struct napi_struct *napi)
2657 {
2658 list_add_tail(&napi->poll_list, &sd->poll_list);
2659 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661
2662 /*
2663 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2665 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2666 * if hash is a canonical 4-tuple hash over transport ports.
2667 */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 struct flow_keys keys;
2671 u32 hash;
2672
2673 if (!skb_flow_dissect(skb, &keys))
2674 return;
2675
2676 if (keys.ports)
2677 skb->l4_rxhash = 1;
2678
2679 /* get a consistent hash (same value on both flow directions) */
2680 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 swap(keys.dst, keys.src);
2684 swap(keys.port16[0], keys.port16[1]);
2685 }
2686
2687 hash = jhash_3words((__force u32)keys.dst,
2688 (__force u32)keys.src,
2689 (__force u32)keys.ports, hashrnd);
2690 if (!hash)
2691 hash = 1;
2692
2693 skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696
2697 #ifdef CONFIG_RPS
2698
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702
2703 struct static_key rps_needed __read_mostly;
2704
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 struct netdev_rx_queue *rxqueue;
2712 struct rps_dev_flow_table *flow_table;
2713 struct rps_dev_flow *old_rflow;
2714 u32 flow_id;
2715 u16 rxq_index;
2716 int rc;
2717
2718 /* Should we steer this flow to a different hardware queue? */
2719 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 !(dev->features & NETIF_F_NTUPLE))
2721 goto out;
2722 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 if (rxq_index == skb_get_rx_queue(skb))
2724 goto out;
2725
2726 rxqueue = dev->_rx + rxq_index;
2727 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 if (!flow_table)
2729 goto out;
2730 flow_id = skb->rxhash & flow_table->mask;
2731 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 rxq_index, flow_id);
2733 if (rc < 0)
2734 goto out;
2735 old_rflow = rflow;
2736 rflow = &flow_table->flows[flow_id];
2737 rflow->filter = rc;
2738 if (old_rflow->filter == rflow->filter)
2739 old_rflow->filter = RPS_NO_FILTER;
2740 out:
2741 #endif
2742 rflow->last_qtail =
2743 per_cpu(softnet_data, next_cpu).input_queue_head;
2744 }
2745
2746 rflow->cpu = next_cpu;
2747 return rflow;
2748 }
2749
2750 /*
2751 * get_rps_cpu is called from netif_receive_skb and returns the target
2752 * CPU from the RPS map of the receiving queue for a given skb.
2753 * rcu_read_lock must be held on entry.
2754 */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 struct rps_dev_flow **rflowp)
2757 {
2758 struct netdev_rx_queue *rxqueue;
2759 struct rps_map *map;
2760 struct rps_dev_flow_table *flow_table;
2761 struct rps_sock_flow_table *sock_flow_table;
2762 int cpu = -1;
2763 u16 tcpu;
2764
2765 if (skb_rx_queue_recorded(skb)) {
2766 u16 index = skb_get_rx_queue(skb);
2767 if (unlikely(index >= dev->real_num_rx_queues)) {
2768 WARN_ONCE(dev->real_num_rx_queues > 1,
2769 "%s received packet on queue %u, but number "
2770 "of RX queues is %u\n",
2771 dev->name, index, dev->real_num_rx_queues);
2772 goto done;
2773 }
2774 rxqueue = dev->_rx + index;
2775 } else
2776 rxqueue = dev->_rx;
2777
2778 map = rcu_dereference(rxqueue->rps_map);
2779 if (map) {
2780 if (map->len == 1 &&
2781 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 tcpu = map->cpus[0];
2783 if (cpu_online(tcpu))
2784 cpu = tcpu;
2785 goto done;
2786 }
2787 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 goto done;
2789 }
2790
2791 skb_reset_network_header(skb);
2792 if (!skb_get_rxhash(skb))
2793 goto done;
2794
2795 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 if (flow_table && sock_flow_table) {
2798 u16 next_cpu;
2799 struct rps_dev_flow *rflow;
2800
2801 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 tcpu = rflow->cpu;
2803
2804 next_cpu = sock_flow_table->ents[skb->rxhash &
2805 sock_flow_table->mask];
2806
2807 /*
2808 * If the desired CPU (where last recvmsg was done) is
2809 * different from current CPU (one in the rx-queue flow
2810 * table entry), switch if one of the following holds:
2811 * - Current CPU is unset (equal to RPS_NO_CPU).
2812 * - Current CPU is offline.
2813 * - The current CPU's queue tail has advanced beyond the
2814 * last packet that was enqueued using this table entry.
2815 * This guarantees that all previous packets for the flow
2816 * have been dequeued, thus preserving in order delivery.
2817 */
2818 if (unlikely(tcpu != next_cpu) &&
2819 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 rflow->last_qtail)) >= 0))
2822 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2823
2824 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2825 *rflowp = rflow;
2826 cpu = tcpu;
2827 goto done;
2828 }
2829 }
2830
2831 if (map) {
2832 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2833
2834 if (cpu_online(tcpu)) {
2835 cpu = tcpu;
2836 goto done;
2837 }
2838 }
2839
2840 done:
2841 return cpu;
2842 }
2843
2844 #ifdef CONFIG_RFS_ACCEL
2845
2846 /**
2847 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2848 * @dev: Device on which the filter was set
2849 * @rxq_index: RX queue index
2850 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2851 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2852 *
2853 * Drivers that implement ndo_rx_flow_steer() should periodically call
2854 * this function for each installed filter and remove the filters for
2855 * which it returns %true.
2856 */
2857 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2858 u32 flow_id, u16 filter_id)
2859 {
2860 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2861 struct rps_dev_flow_table *flow_table;
2862 struct rps_dev_flow *rflow;
2863 bool expire = true;
2864 int cpu;
2865
2866 rcu_read_lock();
2867 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2868 if (flow_table && flow_id <= flow_table->mask) {
2869 rflow = &flow_table->flows[flow_id];
2870 cpu = ACCESS_ONCE(rflow->cpu);
2871 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2872 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2873 rflow->last_qtail) <
2874 (int)(10 * flow_table->mask)))
2875 expire = false;
2876 }
2877 rcu_read_unlock();
2878 return expire;
2879 }
2880 EXPORT_SYMBOL(rps_may_expire_flow);
2881
2882 #endif /* CONFIG_RFS_ACCEL */
2883
2884 /* Called from hardirq (IPI) context */
2885 static void rps_trigger_softirq(void *data)
2886 {
2887 struct softnet_data *sd = data;
2888
2889 ____napi_schedule(sd, &sd->backlog);
2890 sd->received_rps++;
2891 }
2892
2893 #endif /* CONFIG_RPS */
2894
2895 /*
2896 * Check if this softnet_data structure is another cpu one
2897 * If yes, queue it to our IPI list and return 1
2898 * If no, return 0
2899 */
2900 static int rps_ipi_queued(struct softnet_data *sd)
2901 {
2902 #ifdef CONFIG_RPS
2903 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2904
2905 if (sd != mysd) {
2906 sd->rps_ipi_next = mysd->rps_ipi_list;
2907 mysd->rps_ipi_list = sd;
2908
2909 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2910 return 1;
2911 }
2912 #endif /* CONFIG_RPS */
2913 return 0;
2914 }
2915
2916 /*
2917 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2918 * queue (may be a remote CPU queue).
2919 */
2920 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2921 unsigned int *qtail)
2922 {
2923 struct softnet_data *sd;
2924 unsigned long flags;
2925
2926 sd = &per_cpu(softnet_data, cpu);
2927
2928 local_irq_save(flags);
2929
2930 rps_lock(sd);
2931 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2932 if (skb_queue_len(&sd->input_pkt_queue)) {
2933 enqueue:
2934 __skb_queue_tail(&sd->input_pkt_queue, skb);
2935 input_queue_tail_incr_save(sd, qtail);
2936 rps_unlock(sd);
2937 local_irq_restore(flags);
2938 return NET_RX_SUCCESS;
2939 }
2940
2941 /* Schedule NAPI for backlog device
2942 * We can use non atomic operation since we own the queue lock
2943 */
2944 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2945 if (!rps_ipi_queued(sd))
2946 ____napi_schedule(sd, &sd->backlog);
2947 }
2948 goto enqueue;
2949 }
2950
2951 sd->dropped++;
2952 rps_unlock(sd);
2953
2954 local_irq_restore(flags);
2955
2956 atomic_long_inc(&skb->dev->rx_dropped);
2957 kfree_skb(skb);
2958 return NET_RX_DROP;
2959 }
2960
2961 /**
2962 * netif_rx - post buffer to the network code
2963 * @skb: buffer to post
2964 *
2965 * This function receives a packet from a device driver and queues it for
2966 * the upper (protocol) levels to process. It always succeeds. The buffer
2967 * may be dropped during processing for congestion control or by the
2968 * protocol layers.
2969 *
2970 * return values:
2971 * NET_RX_SUCCESS (no congestion)
2972 * NET_RX_DROP (packet was dropped)
2973 *
2974 */
2975
2976 int netif_rx(struct sk_buff *skb)
2977 {
2978 int ret;
2979
2980 /* if netpoll wants it, pretend we never saw it */
2981 if (netpoll_rx(skb))
2982 return NET_RX_DROP;
2983
2984 net_timestamp_check(netdev_tstamp_prequeue, skb);
2985
2986 trace_netif_rx(skb);
2987 #ifdef CONFIG_RPS
2988 if (static_key_false(&rps_needed)) {
2989 struct rps_dev_flow voidflow, *rflow = &voidflow;
2990 int cpu;
2991
2992 preempt_disable();
2993 rcu_read_lock();
2994
2995 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2996 if (cpu < 0)
2997 cpu = smp_processor_id();
2998
2999 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3000
3001 rcu_read_unlock();
3002 preempt_enable();
3003 } else
3004 #endif
3005 {
3006 unsigned int qtail;
3007 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3008 put_cpu();
3009 }
3010 return ret;
3011 }
3012 EXPORT_SYMBOL(netif_rx);
3013
3014 int netif_rx_ni(struct sk_buff *skb)
3015 {
3016 int err;
3017
3018 preempt_disable();
3019 err = netif_rx(skb);
3020 if (local_softirq_pending())
3021 do_softirq();
3022 preempt_enable();
3023
3024 return err;
3025 }
3026 EXPORT_SYMBOL(netif_rx_ni);
3027
3028 static void net_tx_action(struct softirq_action *h)
3029 {
3030 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3031
3032 if (sd->completion_queue) {
3033 struct sk_buff *clist;
3034
3035 local_irq_disable();
3036 clist = sd->completion_queue;
3037 sd->completion_queue = NULL;
3038 local_irq_enable();
3039
3040 while (clist) {
3041 struct sk_buff *skb = clist;
3042 clist = clist->next;
3043
3044 WARN_ON(atomic_read(&skb->users));
3045 trace_kfree_skb(skb, net_tx_action);
3046 __kfree_skb(skb);
3047 }
3048 }
3049
3050 if (sd->output_queue) {
3051 struct Qdisc *head;
3052
3053 local_irq_disable();
3054 head = sd->output_queue;
3055 sd->output_queue = NULL;
3056 sd->output_queue_tailp = &sd->output_queue;
3057 local_irq_enable();
3058
3059 while (head) {
3060 struct Qdisc *q = head;
3061 spinlock_t *root_lock;
3062
3063 head = head->next_sched;
3064
3065 root_lock = qdisc_lock(q);
3066 if (spin_trylock(root_lock)) {
3067 smp_mb__before_clear_bit();
3068 clear_bit(__QDISC_STATE_SCHED,
3069 &q->state);
3070 qdisc_run(q);
3071 spin_unlock(root_lock);
3072 } else {
3073 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3074 &q->state)) {
3075 __netif_reschedule(q);
3076 } else {
3077 smp_mb__before_clear_bit();
3078 clear_bit(__QDISC_STATE_SCHED,
3079 &q->state);
3080 }
3081 }
3082 }
3083 }
3084 }
3085
3086 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3087 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3088 /* This hook is defined here for ATM LANE */
3089 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3090 unsigned char *addr) __read_mostly;
3091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3092 #endif
3093
3094 #ifdef CONFIG_NET_CLS_ACT
3095 /* TODO: Maybe we should just force sch_ingress to be compiled in
3096 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3097 * a compare and 2 stores extra right now if we dont have it on
3098 * but have CONFIG_NET_CLS_ACT
3099 * NOTE: This doesn't stop any functionality; if you dont have
3100 * the ingress scheduler, you just can't add policies on ingress.
3101 *
3102 */
3103 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3104 {
3105 struct net_device *dev = skb->dev;
3106 u32 ttl = G_TC_RTTL(skb->tc_verd);
3107 int result = TC_ACT_OK;
3108 struct Qdisc *q;
3109
3110 if (unlikely(MAX_RED_LOOP < ttl++)) {
3111 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3112 skb->skb_iif, dev->ifindex);
3113 return TC_ACT_SHOT;
3114 }
3115
3116 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3117 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3118
3119 q = rxq->qdisc;
3120 if (q != &noop_qdisc) {
3121 spin_lock(qdisc_lock(q));
3122 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3123 result = qdisc_enqueue_root(skb, q);
3124 spin_unlock(qdisc_lock(q));
3125 }
3126
3127 return result;
3128 }
3129
3130 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3131 struct packet_type **pt_prev,
3132 int *ret, struct net_device *orig_dev)
3133 {
3134 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3135
3136 if (!rxq || rxq->qdisc == &noop_qdisc)
3137 goto out;
3138
3139 if (*pt_prev) {
3140 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3141 *pt_prev = NULL;
3142 }
3143
3144 switch (ing_filter(skb, rxq)) {
3145 case TC_ACT_SHOT:
3146 case TC_ACT_STOLEN:
3147 kfree_skb(skb);
3148 return NULL;
3149 }
3150
3151 out:
3152 skb->tc_verd = 0;
3153 return skb;
3154 }
3155 #endif
3156
3157 /**
3158 * netdev_rx_handler_register - register receive handler
3159 * @dev: device to register a handler for
3160 * @rx_handler: receive handler to register
3161 * @rx_handler_data: data pointer that is used by rx handler
3162 *
3163 * Register a receive hander for a device. This handler will then be
3164 * called from __netif_receive_skb. A negative errno code is returned
3165 * on a failure.
3166 *
3167 * The caller must hold the rtnl_mutex.
3168 *
3169 * For a general description of rx_handler, see enum rx_handler_result.
3170 */
3171 int netdev_rx_handler_register(struct net_device *dev,
3172 rx_handler_func_t *rx_handler,
3173 void *rx_handler_data)
3174 {
3175 ASSERT_RTNL();
3176
3177 if (dev->rx_handler)
3178 return -EBUSY;
3179
3180 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3181 rcu_assign_pointer(dev->rx_handler, rx_handler);
3182
3183 return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3186
3187 /**
3188 * netdev_rx_handler_unregister - unregister receive handler
3189 * @dev: device to unregister a handler from
3190 *
3191 * Unregister a receive hander from a device.
3192 *
3193 * The caller must hold the rtnl_mutex.
3194 */
3195 void netdev_rx_handler_unregister(struct net_device *dev)
3196 {
3197
3198 ASSERT_RTNL();
3199 RCU_INIT_POINTER(dev->rx_handler, NULL);
3200 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3201 }
3202 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3203
3204 /*
3205 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3206 * the special handling of PFMEMALLOC skbs.
3207 */
3208 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3209 {
3210 switch (skb->protocol) {
3211 case __constant_htons(ETH_P_ARP):
3212 case __constant_htons(ETH_P_IP):
3213 case __constant_htons(ETH_P_IPV6):
3214 case __constant_htons(ETH_P_8021Q):
3215 return true;
3216 default:
3217 return false;
3218 }
3219 }
3220
3221 static int __netif_receive_skb(struct sk_buff *skb)
3222 {
3223 struct packet_type *ptype, *pt_prev;
3224 rx_handler_func_t *rx_handler;
3225 struct net_device *orig_dev;
3226 struct net_device *null_or_dev;
3227 bool deliver_exact = false;
3228 int ret = NET_RX_DROP;
3229 __be16 type;
3230 unsigned long pflags = current->flags;
3231
3232 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3233
3234 trace_netif_receive_skb(skb);
3235
3236 /*
3237 * PFMEMALLOC skbs are special, they should
3238 * - be delivered to SOCK_MEMALLOC sockets only
3239 * - stay away from userspace
3240 * - have bounded memory usage
3241 *
3242 * Use PF_MEMALLOC as this saves us from propagating the allocation
3243 * context down to all allocation sites.
3244 */
3245 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3246 current->flags |= PF_MEMALLOC;
3247
3248 /* if we've gotten here through NAPI, check netpoll */
3249 if (netpoll_receive_skb(skb))
3250 goto out;
3251
3252 orig_dev = skb->dev;
3253
3254 skb_reset_network_header(skb);
3255 skb_reset_transport_header(skb);
3256 skb_reset_mac_len(skb);
3257
3258 pt_prev = NULL;
3259
3260 rcu_read_lock();
3261
3262 another_round:
3263 skb->skb_iif = skb->dev->ifindex;
3264
3265 __this_cpu_inc(softnet_data.processed);
3266
3267 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3268 skb = vlan_untag(skb);
3269 if (unlikely(!skb))
3270 goto unlock;
3271 }
3272
3273 #ifdef CONFIG_NET_CLS_ACT
3274 if (skb->tc_verd & TC_NCLS) {
3275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3276 goto ncls;
3277 }
3278 #endif
3279
3280 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3281 goto skip_taps;
3282
3283 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3284 if (!ptype->dev || ptype->dev == skb->dev) {
3285 if (pt_prev)
3286 ret = deliver_skb(skb, pt_prev, orig_dev);
3287 pt_prev = ptype;
3288 }
3289 }
3290
3291 skip_taps:
3292 #ifdef CONFIG_NET_CLS_ACT
3293 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3294 if (!skb)
3295 goto unlock;
3296 ncls:
3297 #endif
3298
3299 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3300 && !skb_pfmemalloc_protocol(skb))
3301 goto drop;
3302
3303 rx_handler = rcu_dereference(skb->dev->rx_handler);
3304 if (vlan_tx_tag_present(skb)) {
3305 if (pt_prev) {
3306 ret = deliver_skb(skb, pt_prev, orig_dev);
3307 pt_prev = NULL;
3308 }
3309 if (vlan_do_receive(&skb, !rx_handler))
3310 goto another_round;
3311 else if (unlikely(!skb))
3312 goto unlock;
3313 }
3314
3315 if (rx_handler) {
3316 if (pt_prev) {
3317 ret = deliver_skb(skb, pt_prev, orig_dev);
3318 pt_prev = NULL;
3319 }
3320 switch (rx_handler(&skb)) {
3321 case RX_HANDLER_CONSUMED:
3322 goto unlock;
3323 case RX_HANDLER_ANOTHER:
3324 goto another_round;
3325 case RX_HANDLER_EXACT:
3326 deliver_exact = true;
3327 case RX_HANDLER_PASS:
3328 break;
3329 default:
3330 BUG();
3331 }
3332 }
3333
3334 /* deliver only exact match when indicated */
3335 null_or_dev = deliver_exact ? skb->dev : NULL;
3336
3337 type = skb->protocol;
3338 list_for_each_entry_rcu(ptype,
3339 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3340 if (ptype->type == type &&
3341 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3342 ptype->dev == orig_dev)) {
3343 if (pt_prev)
3344 ret = deliver_skb(skb, pt_prev, orig_dev);
3345 pt_prev = ptype;
3346 }
3347 }
3348
3349 if (pt_prev) {
3350 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3351 goto drop;
3352 else
3353 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3354 } else {
3355 drop:
3356 atomic_long_inc(&skb->dev->rx_dropped);
3357 kfree_skb(skb);
3358 /* Jamal, now you will not able to escape explaining
3359 * me how you were going to use this. :-)
3360 */
3361 ret = NET_RX_DROP;
3362 }
3363
3364 unlock:
3365 rcu_read_unlock();
3366 out:
3367 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3368 return ret;
3369 }
3370
3371 /**
3372 * netif_receive_skb - process receive buffer from network
3373 * @skb: buffer to process
3374 *
3375 * netif_receive_skb() is the main receive data processing function.
3376 * It always succeeds. The buffer may be dropped during processing
3377 * for congestion control or by the protocol layers.
3378 *
3379 * This function may only be called from softirq context and interrupts
3380 * should be enabled.
3381 *
3382 * Return values (usually ignored):
3383 * NET_RX_SUCCESS: no congestion
3384 * NET_RX_DROP: packet was dropped
3385 */
3386 int netif_receive_skb(struct sk_buff *skb)
3387 {
3388 net_timestamp_check(netdev_tstamp_prequeue, skb);
3389
3390 if (skb_defer_rx_timestamp(skb))
3391 return NET_RX_SUCCESS;
3392
3393 #ifdef CONFIG_RPS
3394 if (static_key_false(&rps_needed)) {
3395 struct rps_dev_flow voidflow, *rflow = &voidflow;
3396 int cpu, ret;
3397
3398 rcu_read_lock();
3399
3400 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3401
3402 if (cpu >= 0) {
3403 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3404 rcu_read_unlock();
3405 return ret;
3406 }
3407 rcu_read_unlock();
3408 }
3409 #endif
3410 return __netif_receive_skb(skb);
3411 }
3412 EXPORT_SYMBOL(netif_receive_skb);
3413
3414 /* Network device is going away, flush any packets still pending
3415 * Called with irqs disabled.
3416 */
3417 static void flush_backlog(void *arg)
3418 {
3419 struct net_device *dev = arg;
3420 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3421 struct sk_buff *skb, *tmp;
3422
3423 rps_lock(sd);
3424 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3425 if (skb->dev == dev) {
3426 __skb_unlink(skb, &sd->input_pkt_queue);
3427 kfree_skb(skb);
3428 input_queue_head_incr(sd);
3429 }
3430 }
3431 rps_unlock(sd);
3432
3433 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3434 if (skb->dev == dev) {
3435 __skb_unlink(skb, &sd->process_queue);
3436 kfree_skb(skb);
3437 input_queue_head_incr(sd);
3438 }
3439 }
3440 }
3441
3442 static int napi_gro_complete(struct sk_buff *skb)
3443 {
3444 struct packet_type *ptype;
3445 __be16 type = skb->protocol;
3446 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3447 int err = -ENOENT;
3448
3449 if (NAPI_GRO_CB(skb)->count == 1) {
3450 skb_shinfo(skb)->gso_size = 0;
3451 goto out;
3452 }
3453
3454 rcu_read_lock();
3455 list_for_each_entry_rcu(ptype, head, list) {
3456 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3457 continue;
3458
3459 err = ptype->gro_complete(skb);
3460 break;
3461 }
3462 rcu_read_unlock();
3463
3464 if (err) {
3465 WARN_ON(&ptype->list == head);
3466 kfree_skb(skb);
3467 return NET_RX_SUCCESS;
3468 }
3469
3470 out:
3471 return netif_receive_skb(skb);
3472 }
3473
3474 inline void napi_gro_flush(struct napi_struct *napi)
3475 {
3476 struct sk_buff *skb, *next;
3477
3478 for (skb = napi->gro_list; skb; skb = next) {
3479 next = skb->next;
3480 skb->next = NULL;
3481 napi_gro_complete(skb);
3482 }
3483
3484 napi->gro_count = 0;
3485 napi->gro_list = NULL;
3486 }
3487 EXPORT_SYMBOL(napi_gro_flush);
3488
3489 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3490 {
3491 struct sk_buff **pp = NULL;
3492 struct packet_type *ptype;
3493 __be16 type = skb->protocol;
3494 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3495 int same_flow;
3496 int mac_len;
3497 enum gro_result ret;
3498
3499 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3500 goto normal;
3501
3502 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3503 goto normal;
3504
3505 rcu_read_lock();
3506 list_for_each_entry_rcu(ptype, head, list) {
3507 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3508 continue;
3509
3510 skb_set_network_header(skb, skb_gro_offset(skb));
3511 mac_len = skb->network_header - skb->mac_header;
3512 skb->mac_len = mac_len;
3513 NAPI_GRO_CB(skb)->same_flow = 0;
3514 NAPI_GRO_CB(skb)->flush = 0;
3515 NAPI_GRO_CB(skb)->free = 0;
3516
3517 pp = ptype->gro_receive(&napi->gro_list, skb);
3518 break;
3519 }
3520 rcu_read_unlock();
3521
3522 if (&ptype->list == head)
3523 goto normal;
3524
3525 same_flow = NAPI_GRO_CB(skb)->same_flow;
3526 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3527
3528 if (pp) {
3529 struct sk_buff *nskb = *pp;
3530
3531 *pp = nskb->next;
3532 nskb->next = NULL;
3533 napi_gro_complete(nskb);
3534 napi->gro_count--;
3535 }
3536
3537 if (same_flow)
3538 goto ok;
3539
3540 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3541 goto normal;
3542
3543 napi->gro_count++;
3544 NAPI_GRO_CB(skb)->count = 1;
3545 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3546 skb->next = napi->gro_list;
3547 napi->gro_list = skb;
3548 ret = GRO_HELD;
3549
3550 pull:
3551 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3552 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3553
3554 BUG_ON(skb->end - skb->tail < grow);
3555
3556 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3557
3558 skb->tail += grow;
3559 skb->data_len -= grow;
3560
3561 skb_shinfo(skb)->frags[0].page_offset += grow;
3562 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3563
3564 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3565 skb_frag_unref(skb, 0);
3566 memmove(skb_shinfo(skb)->frags,
3567 skb_shinfo(skb)->frags + 1,
3568 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3569 }
3570 }
3571
3572 ok:
3573 return ret;
3574
3575 normal:
3576 ret = GRO_NORMAL;
3577 goto pull;
3578 }
3579 EXPORT_SYMBOL(dev_gro_receive);
3580
3581 static inline gro_result_t
3582 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3583 {
3584 struct sk_buff *p;
3585 unsigned int maclen = skb->dev->hard_header_len;
3586
3587 for (p = napi->gro_list; p; p = p->next) {
3588 unsigned long diffs;
3589
3590 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3591 diffs |= p->vlan_tci ^ skb->vlan_tci;
3592 if (maclen == ETH_HLEN)
3593 diffs |= compare_ether_header(skb_mac_header(p),
3594 skb_gro_mac_header(skb));
3595 else if (!diffs)
3596 diffs = memcmp(skb_mac_header(p),
3597 skb_gro_mac_header(skb),
3598 maclen);
3599 NAPI_GRO_CB(p)->same_flow = !diffs;
3600 NAPI_GRO_CB(p)->flush = 0;
3601 }
3602
3603 return dev_gro_receive(napi, skb);
3604 }
3605
3606 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3607 {
3608 switch (ret) {
3609 case GRO_NORMAL:
3610 if (netif_receive_skb(skb))
3611 ret = GRO_DROP;
3612 break;
3613
3614 case GRO_DROP:
3615 kfree_skb(skb);
3616 break;
3617
3618 case GRO_MERGED_FREE:
3619 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3620 kmem_cache_free(skbuff_head_cache, skb);
3621 else
3622 __kfree_skb(skb);
3623 break;
3624
3625 case GRO_HELD:
3626 case GRO_MERGED:
3627 break;
3628 }
3629
3630 return ret;
3631 }
3632 EXPORT_SYMBOL(napi_skb_finish);
3633
3634 static void skb_gro_reset_offset(struct sk_buff *skb)
3635 {
3636 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3637 const skb_frag_t *frag0 = &pinfo->frags[0];
3638
3639 NAPI_GRO_CB(skb)->data_offset = 0;
3640 NAPI_GRO_CB(skb)->frag0 = NULL;
3641 NAPI_GRO_CB(skb)->frag0_len = 0;
3642
3643 if (skb->mac_header == skb->tail &&
3644 pinfo->nr_frags &&
3645 !PageHighMem(skb_frag_page(frag0))) {
3646 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3647 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3648 }
3649 }
3650
3651 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3652 {
3653 skb_gro_reset_offset(skb);
3654
3655 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3656 }
3657 EXPORT_SYMBOL(napi_gro_receive);
3658
3659 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3660 {
3661 __skb_pull(skb, skb_headlen(skb));
3662 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3663 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3664 skb->vlan_tci = 0;
3665 skb->dev = napi->dev;
3666 skb->skb_iif = 0;
3667
3668 napi->skb = skb;
3669 }
3670
3671 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3672 {
3673 struct sk_buff *skb = napi->skb;
3674
3675 if (!skb) {
3676 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3677 if (skb)
3678 napi->skb = skb;
3679 }
3680 return skb;
3681 }
3682 EXPORT_SYMBOL(napi_get_frags);
3683
3684 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3685 gro_result_t ret)
3686 {
3687 switch (ret) {
3688 case GRO_NORMAL:
3689 case GRO_HELD:
3690 skb->protocol = eth_type_trans(skb, skb->dev);
3691
3692 if (ret == GRO_HELD)
3693 skb_gro_pull(skb, -ETH_HLEN);
3694 else if (netif_receive_skb(skb))
3695 ret = GRO_DROP;
3696 break;
3697
3698 case GRO_DROP:
3699 case GRO_MERGED_FREE:
3700 napi_reuse_skb(napi, skb);
3701 break;
3702
3703 case GRO_MERGED:
3704 break;
3705 }
3706
3707 return ret;
3708 }
3709 EXPORT_SYMBOL(napi_frags_finish);
3710
3711 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3712 {
3713 struct sk_buff *skb = napi->skb;
3714 struct ethhdr *eth;
3715 unsigned int hlen;
3716 unsigned int off;
3717
3718 napi->skb = NULL;
3719
3720 skb_reset_mac_header(skb);
3721 skb_gro_reset_offset(skb);
3722
3723 off = skb_gro_offset(skb);
3724 hlen = off + sizeof(*eth);
3725 eth = skb_gro_header_fast(skb, off);
3726 if (skb_gro_header_hard(skb, hlen)) {
3727 eth = skb_gro_header_slow(skb, hlen, off);
3728 if (unlikely(!eth)) {
3729 napi_reuse_skb(napi, skb);
3730 skb = NULL;
3731 goto out;
3732 }
3733 }
3734
3735 skb_gro_pull(skb, sizeof(*eth));
3736
3737 /*
3738 * This works because the only protocols we care about don't require
3739 * special handling. We'll fix it up properly at the end.
3740 */
3741 skb->protocol = eth->h_proto;
3742
3743 out:
3744 return skb;
3745 }
3746
3747 gro_result_t napi_gro_frags(struct napi_struct *napi)
3748 {
3749 struct sk_buff *skb = napi_frags_skb(napi);
3750
3751 if (!skb)
3752 return GRO_DROP;
3753
3754 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3755 }
3756 EXPORT_SYMBOL(napi_gro_frags);
3757
3758 /*
3759 * net_rps_action sends any pending IPI's for rps.
3760 * Note: called with local irq disabled, but exits with local irq enabled.
3761 */
3762 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3763 {
3764 #ifdef CONFIG_RPS
3765 struct softnet_data *remsd = sd->rps_ipi_list;
3766
3767 if (remsd) {
3768 sd->rps_ipi_list = NULL;
3769
3770 local_irq_enable();
3771
3772 /* Send pending IPI's to kick RPS processing on remote cpus. */
3773 while (remsd) {
3774 struct softnet_data *next = remsd->rps_ipi_next;
3775
3776 if (cpu_online(remsd->cpu))
3777 __smp_call_function_single(remsd->cpu,
3778 &remsd->csd, 0);
3779 remsd = next;
3780 }
3781 } else
3782 #endif
3783 local_irq_enable();
3784 }
3785
3786 static int process_backlog(struct napi_struct *napi, int quota)
3787 {
3788 int work = 0;
3789 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3790
3791 #ifdef CONFIG_RPS
3792 /* Check if we have pending ipi, its better to send them now,
3793 * not waiting net_rx_action() end.
3794 */
3795 if (sd->rps_ipi_list) {
3796 local_irq_disable();
3797 net_rps_action_and_irq_enable(sd);
3798 }
3799 #endif
3800 napi->weight = weight_p;
3801 local_irq_disable();
3802 while (work < quota) {
3803 struct sk_buff *skb;
3804 unsigned int qlen;
3805
3806 while ((skb = __skb_dequeue(&sd->process_queue))) {
3807 local_irq_enable();
3808 __netif_receive_skb(skb);
3809 local_irq_disable();
3810 input_queue_head_incr(sd);
3811 if (++work >= quota) {
3812 local_irq_enable();
3813 return work;
3814 }
3815 }
3816
3817 rps_lock(sd);
3818 qlen = skb_queue_len(&sd->input_pkt_queue);
3819 if (qlen)
3820 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3821 &sd->process_queue);
3822
3823 if (qlen < quota - work) {
3824 /*
3825 * Inline a custom version of __napi_complete().
3826 * only current cpu owns and manipulates this napi,
3827 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3828 * we can use a plain write instead of clear_bit(),
3829 * and we dont need an smp_mb() memory barrier.
3830 */
3831 list_del(&napi->poll_list);
3832 napi->state = 0;
3833
3834 quota = work + qlen;
3835 }
3836 rps_unlock(sd);
3837 }
3838 local_irq_enable();
3839
3840 return work;
3841 }
3842
3843 /**
3844 * __napi_schedule - schedule for receive
3845 * @n: entry to schedule
3846 *
3847 * The entry's receive function will be scheduled to run
3848 */
3849 void __napi_schedule(struct napi_struct *n)
3850 {
3851 unsigned long flags;
3852
3853 local_irq_save(flags);
3854 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3855 local_irq_restore(flags);
3856 }
3857 EXPORT_SYMBOL(__napi_schedule);
3858
3859 void __napi_complete(struct napi_struct *n)
3860 {
3861 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3862 BUG_ON(n->gro_list);
3863
3864 list_del(&n->poll_list);
3865 smp_mb__before_clear_bit();
3866 clear_bit(NAPI_STATE_SCHED, &n->state);
3867 }
3868 EXPORT_SYMBOL(__napi_complete);
3869
3870 void napi_complete(struct napi_struct *n)
3871 {
3872 unsigned long flags;
3873
3874 /*
3875 * don't let napi dequeue from the cpu poll list
3876 * just in case its running on a different cpu
3877 */
3878 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3879 return;
3880
3881 napi_gro_flush(n);
3882 local_irq_save(flags);
3883 __napi_complete(n);
3884 local_irq_restore(flags);
3885 }
3886 EXPORT_SYMBOL(napi_complete);
3887
3888 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3889 int (*poll)(struct napi_struct *, int), int weight)
3890 {
3891 INIT_LIST_HEAD(&napi->poll_list);
3892 napi->gro_count = 0;
3893 napi->gro_list = NULL;
3894 napi->skb = NULL;
3895 napi->poll = poll;
3896 napi->weight = weight;
3897 list_add(&napi->dev_list, &dev->napi_list);
3898 napi->dev = dev;
3899 #ifdef CONFIG_NETPOLL
3900 spin_lock_init(&napi->poll_lock);
3901 napi->poll_owner = -1;
3902 #endif
3903 set_bit(NAPI_STATE_SCHED, &napi->state);
3904 }
3905 EXPORT_SYMBOL(netif_napi_add);
3906
3907 void netif_napi_del(struct napi_struct *napi)
3908 {
3909 struct sk_buff *skb, *next;
3910
3911 list_del_init(&napi->dev_list);
3912 napi_free_frags(napi);
3913
3914 for (skb = napi->gro_list; skb; skb = next) {
3915 next = skb->next;
3916 skb->next = NULL;
3917 kfree_skb(skb);
3918 }
3919
3920 napi->gro_list = NULL;
3921 napi->gro_count = 0;
3922 }
3923 EXPORT_SYMBOL(netif_napi_del);
3924
3925 static void net_rx_action(struct softirq_action *h)
3926 {
3927 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3928 unsigned long time_limit = jiffies + 2;
3929 int budget = netdev_budget;
3930 void *have;
3931
3932 local_irq_disable();
3933
3934 while (!list_empty(&sd->poll_list)) {
3935 struct napi_struct *n;
3936 int work, weight;
3937
3938 /* If softirq window is exhuasted then punt.
3939 * Allow this to run for 2 jiffies since which will allow
3940 * an average latency of 1.5/HZ.
3941 */
3942 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3943 goto softnet_break;
3944
3945 local_irq_enable();
3946
3947 /* Even though interrupts have been re-enabled, this
3948 * access is safe because interrupts can only add new
3949 * entries to the tail of this list, and only ->poll()
3950 * calls can remove this head entry from the list.
3951 */
3952 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3953
3954 have = netpoll_poll_lock(n);
3955
3956 weight = n->weight;
3957
3958 /* This NAPI_STATE_SCHED test is for avoiding a race
3959 * with netpoll's poll_napi(). Only the entity which
3960 * obtains the lock and sees NAPI_STATE_SCHED set will
3961 * actually make the ->poll() call. Therefore we avoid
3962 * accidentally calling ->poll() when NAPI is not scheduled.
3963 */
3964 work = 0;
3965 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3966 work = n->poll(n, weight);
3967 trace_napi_poll(n);
3968 }
3969
3970 WARN_ON_ONCE(work > weight);
3971
3972 budget -= work;
3973
3974 local_irq_disable();
3975
3976 /* Drivers must not modify the NAPI state if they
3977 * consume the entire weight. In such cases this code
3978 * still "owns" the NAPI instance and therefore can
3979 * move the instance around on the list at-will.
3980 */
3981 if (unlikely(work == weight)) {
3982 if (unlikely(napi_disable_pending(n))) {
3983 local_irq_enable();
3984 napi_complete(n);
3985 local_irq_disable();
3986 } else
3987 list_move_tail(&n->poll_list, &sd->poll_list);
3988 }
3989
3990 netpoll_poll_unlock(have);
3991 }
3992 out:
3993 net_rps_action_and_irq_enable(sd);
3994
3995 #ifdef CONFIG_NET_DMA
3996 /*
3997 * There may not be any more sk_buffs coming right now, so push
3998 * any pending DMA copies to hardware
3999 */
4000 dma_issue_pending_all();
4001 #endif
4002
4003 return;
4004
4005 softnet_break:
4006 sd->time_squeeze++;
4007 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4008 goto out;
4009 }
4010
4011 static gifconf_func_t *gifconf_list[NPROTO];
4012
4013 /**
4014 * register_gifconf - register a SIOCGIF handler
4015 * @family: Address family
4016 * @gifconf: Function handler
4017 *
4018 * Register protocol dependent address dumping routines. The handler
4019 * that is passed must not be freed or reused until it has been replaced
4020 * by another handler.
4021 */
4022 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4023 {
4024 if (family >= NPROTO)
4025 return -EINVAL;
4026 gifconf_list[family] = gifconf;
4027 return 0;
4028 }
4029 EXPORT_SYMBOL(register_gifconf);
4030
4031
4032 /*
4033 * Map an interface index to its name (SIOCGIFNAME)
4034 */
4035
4036 /*
4037 * We need this ioctl for efficient implementation of the
4038 * if_indextoname() function required by the IPv6 API. Without
4039 * it, we would have to search all the interfaces to find a
4040 * match. --pb
4041 */
4042
4043 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4044 {
4045 struct net_device *dev;
4046 struct ifreq ifr;
4047
4048 /*
4049 * Fetch the caller's info block.
4050 */
4051
4052 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4053 return -EFAULT;
4054
4055 rcu_read_lock();
4056 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4057 if (!dev) {
4058 rcu_read_unlock();
4059 return -ENODEV;
4060 }
4061
4062 strcpy(ifr.ifr_name, dev->name);
4063 rcu_read_unlock();
4064
4065 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4066 return -EFAULT;
4067 return 0;
4068 }
4069
4070 /*
4071 * Perform a SIOCGIFCONF call. This structure will change
4072 * size eventually, and there is nothing I can do about it.
4073 * Thus we will need a 'compatibility mode'.
4074 */
4075
4076 static int dev_ifconf(struct net *net, char __user *arg)
4077 {
4078 struct ifconf ifc;
4079 struct net_device *dev;
4080 char __user *pos;
4081 int len;
4082 int total;
4083 int i;
4084
4085 /*
4086 * Fetch the caller's info block.
4087 */
4088
4089 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4090 return -EFAULT;
4091
4092 pos = ifc.ifc_buf;
4093 len = ifc.ifc_len;
4094
4095 /*
4096 * Loop over the interfaces, and write an info block for each.
4097 */
4098
4099 total = 0;
4100 for_each_netdev(net, dev) {
4101 for (i = 0; i < NPROTO; i++) {
4102 if (gifconf_list[i]) {
4103 int done;
4104 if (!pos)
4105 done = gifconf_list[i](dev, NULL, 0);
4106 else
4107 done = gifconf_list[i](dev, pos + total,
4108 len - total);
4109 if (done < 0)
4110 return -EFAULT;
4111 total += done;
4112 }
4113 }
4114 }
4115
4116 /*
4117 * All done. Write the updated control block back to the caller.
4118 */
4119 ifc.ifc_len = total;
4120
4121 /*
4122 * Both BSD and Solaris return 0 here, so we do too.
4123 */
4124 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4125 }
4126
4127 #ifdef CONFIG_PROC_FS
4128
4129 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4130
4131 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4132 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4133 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4134
4135 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4136 {
4137 struct net *net = seq_file_net(seq);
4138 struct net_device *dev;
4139 struct hlist_node *p;
4140 struct hlist_head *h;
4141 unsigned int count = 0, offset = get_offset(*pos);
4142
4143 h = &net->dev_name_head[get_bucket(*pos)];
4144 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4145 if (++count == offset)
4146 return dev;
4147 }
4148
4149 return NULL;
4150 }
4151
4152 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4153 {
4154 struct net_device *dev;
4155 unsigned int bucket;
4156
4157 do {
4158 dev = dev_from_same_bucket(seq, pos);
4159 if (dev)
4160 return dev;
4161
4162 bucket = get_bucket(*pos) + 1;
4163 *pos = set_bucket_offset(bucket, 1);
4164 } while (bucket < NETDEV_HASHENTRIES);
4165
4166 return NULL;
4167 }
4168
4169 /*
4170 * This is invoked by the /proc filesystem handler to display a device
4171 * in detail.
4172 */
4173 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4174 __acquires(RCU)
4175 {
4176 rcu_read_lock();
4177 if (!*pos)
4178 return SEQ_START_TOKEN;
4179
4180 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4181 return NULL;
4182
4183 return dev_from_bucket(seq, pos);
4184 }
4185
4186 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4187 {
4188 ++*pos;
4189 return dev_from_bucket(seq, pos);
4190 }
4191
4192 void dev_seq_stop(struct seq_file *seq, void *v)
4193 __releases(RCU)
4194 {
4195 rcu_read_unlock();
4196 }
4197
4198 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4199 {
4200 struct rtnl_link_stats64 temp;
4201 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4202
4203 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4204 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4205 dev->name, stats->rx_bytes, stats->rx_packets,
4206 stats->rx_errors,
4207 stats->rx_dropped + stats->rx_missed_errors,
4208 stats->rx_fifo_errors,
4209 stats->rx_length_errors + stats->rx_over_errors +
4210 stats->rx_crc_errors + stats->rx_frame_errors,
4211 stats->rx_compressed, stats->multicast,
4212 stats->tx_bytes, stats->tx_packets,
4213 stats->tx_errors, stats->tx_dropped,
4214 stats->tx_fifo_errors, stats->collisions,
4215 stats->tx_carrier_errors +
4216 stats->tx_aborted_errors +
4217 stats->tx_window_errors +
4218 stats->tx_heartbeat_errors,
4219 stats->tx_compressed);
4220 }
4221
4222 /*
4223 * Called from the PROCfs module. This now uses the new arbitrary sized
4224 * /proc/net interface to create /proc/net/dev
4225 */
4226 static int dev_seq_show(struct seq_file *seq, void *v)
4227 {
4228 if (v == SEQ_START_TOKEN)
4229 seq_puts(seq, "Inter-| Receive "
4230 " | Transmit\n"
4231 " face |bytes packets errs drop fifo frame "
4232 "compressed multicast|bytes packets errs "
4233 "drop fifo colls carrier compressed\n");
4234 else
4235 dev_seq_printf_stats(seq, v);
4236 return 0;
4237 }
4238
4239 static struct softnet_data *softnet_get_online(loff_t *pos)
4240 {
4241 struct softnet_data *sd = NULL;
4242
4243 while (*pos < nr_cpu_ids)
4244 if (cpu_online(*pos)) {
4245 sd = &per_cpu(softnet_data, *pos);
4246 break;
4247 } else
4248 ++*pos;
4249 return sd;
4250 }
4251
4252 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4253 {
4254 return softnet_get_online(pos);
4255 }
4256
4257 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4258 {
4259 ++*pos;
4260 return softnet_get_online(pos);
4261 }
4262
4263 static void softnet_seq_stop(struct seq_file *seq, void *v)
4264 {
4265 }
4266
4267 static int softnet_seq_show(struct seq_file *seq, void *v)
4268 {
4269 struct softnet_data *sd = v;
4270
4271 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4272 sd->processed, sd->dropped, sd->time_squeeze, 0,
4273 0, 0, 0, 0, /* was fastroute */
4274 sd->cpu_collision, sd->received_rps);
4275 return 0;
4276 }
4277
4278 static const struct seq_operations dev_seq_ops = {
4279 .start = dev_seq_start,
4280 .next = dev_seq_next,
4281 .stop = dev_seq_stop,
4282 .show = dev_seq_show,
4283 };
4284
4285 static int dev_seq_open(struct inode *inode, struct file *file)
4286 {
4287 return seq_open_net(inode, file, &dev_seq_ops,
4288 sizeof(struct seq_net_private));
4289 }
4290
4291 static const struct file_operations dev_seq_fops = {
4292 .owner = THIS_MODULE,
4293 .open = dev_seq_open,
4294 .read = seq_read,
4295 .llseek = seq_lseek,
4296 .release = seq_release_net,
4297 };
4298
4299 static const struct seq_operations softnet_seq_ops = {
4300 .start = softnet_seq_start,
4301 .next = softnet_seq_next,
4302 .stop = softnet_seq_stop,
4303 .show = softnet_seq_show,
4304 };
4305
4306 static int softnet_seq_open(struct inode *inode, struct file *file)
4307 {
4308 return seq_open(file, &softnet_seq_ops);
4309 }
4310
4311 static const struct file_operations softnet_seq_fops = {
4312 .owner = THIS_MODULE,
4313 .open = softnet_seq_open,
4314 .read = seq_read,
4315 .llseek = seq_lseek,
4316 .release = seq_release,
4317 };
4318
4319 static void *ptype_get_idx(loff_t pos)
4320 {
4321 struct packet_type *pt = NULL;
4322 loff_t i = 0;
4323 int t;
4324
4325 list_for_each_entry_rcu(pt, &ptype_all, list) {
4326 if (i == pos)
4327 return pt;
4328 ++i;
4329 }
4330
4331 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4332 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4333 if (i == pos)
4334 return pt;
4335 ++i;
4336 }
4337 }
4338 return NULL;
4339 }
4340
4341 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4342 __acquires(RCU)
4343 {
4344 rcu_read_lock();
4345 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4346 }
4347
4348 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4349 {
4350 struct packet_type *pt;
4351 struct list_head *nxt;
4352 int hash;
4353
4354 ++*pos;
4355 if (v == SEQ_START_TOKEN)
4356 return ptype_get_idx(0);
4357
4358 pt = v;
4359 nxt = pt->list.next;
4360 if (pt->type == htons(ETH_P_ALL)) {
4361 if (nxt != &ptype_all)
4362 goto found;
4363 hash = 0;
4364 nxt = ptype_base[0].next;
4365 } else
4366 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4367
4368 while (nxt == &ptype_base[hash]) {
4369 if (++hash >= PTYPE_HASH_SIZE)
4370 return NULL;
4371 nxt = ptype_base[hash].next;
4372 }
4373 found:
4374 return list_entry(nxt, struct packet_type, list);
4375 }
4376
4377 static void ptype_seq_stop(struct seq_file *seq, void *v)
4378 __releases(RCU)
4379 {
4380 rcu_read_unlock();
4381 }
4382
4383 static int ptype_seq_show(struct seq_file *seq, void *v)
4384 {
4385 struct packet_type *pt = v;
4386
4387 if (v == SEQ_START_TOKEN)
4388 seq_puts(seq, "Type Device Function\n");
4389 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4390 if (pt->type == htons(ETH_P_ALL))
4391 seq_puts(seq, "ALL ");
4392 else
4393 seq_printf(seq, "%04x", ntohs(pt->type));
4394
4395 seq_printf(seq, " %-8s %pF\n",
4396 pt->dev ? pt->dev->name : "", pt->func);
4397 }
4398
4399 return 0;
4400 }
4401
4402 static const struct seq_operations ptype_seq_ops = {
4403 .start = ptype_seq_start,
4404 .next = ptype_seq_next,
4405 .stop = ptype_seq_stop,
4406 .show = ptype_seq_show,
4407 };
4408
4409 static int ptype_seq_open(struct inode *inode, struct file *file)
4410 {
4411 return seq_open_net(inode, file, &ptype_seq_ops,
4412 sizeof(struct seq_net_private));
4413 }
4414
4415 static const struct file_operations ptype_seq_fops = {
4416 .owner = THIS_MODULE,
4417 .open = ptype_seq_open,
4418 .read = seq_read,
4419 .llseek = seq_lseek,
4420 .release = seq_release_net,
4421 };
4422
4423
4424 static int __net_init dev_proc_net_init(struct net *net)
4425 {
4426 int rc = -ENOMEM;
4427
4428 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4429 goto out;
4430 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4431 goto out_dev;
4432 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4433 goto out_softnet;
4434
4435 if (wext_proc_init(net))
4436 goto out_ptype;
4437 rc = 0;
4438 out:
4439 return rc;
4440 out_ptype:
4441 proc_net_remove(net, "ptype");
4442 out_softnet:
4443 proc_net_remove(net, "softnet_stat");
4444 out_dev:
4445 proc_net_remove(net, "dev");
4446 goto out;
4447 }
4448
4449 static void __net_exit dev_proc_net_exit(struct net *net)
4450 {
4451 wext_proc_exit(net);
4452
4453 proc_net_remove(net, "ptype");
4454 proc_net_remove(net, "softnet_stat");
4455 proc_net_remove(net, "dev");
4456 }
4457
4458 static struct pernet_operations __net_initdata dev_proc_ops = {
4459 .init = dev_proc_net_init,
4460 .exit = dev_proc_net_exit,
4461 };
4462
4463 static int __init dev_proc_init(void)
4464 {
4465 return register_pernet_subsys(&dev_proc_ops);
4466 }
4467 #else
4468 #define dev_proc_init() 0
4469 #endif /* CONFIG_PROC_FS */
4470
4471
4472 /**
4473 * netdev_set_master - set up master pointer
4474 * @slave: slave device
4475 * @master: new master device
4476 *
4477 * Changes the master device of the slave. Pass %NULL to break the
4478 * bonding. The caller must hold the RTNL semaphore. On a failure
4479 * a negative errno code is returned. On success the reference counts
4480 * are adjusted and the function returns zero.
4481 */
4482 int netdev_set_master(struct net_device *slave, struct net_device *master)
4483 {
4484 struct net_device *old = slave->master;
4485
4486 ASSERT_RTNL();
4487
4488 if (master) {
4489 if (old)
4490 return -EBUSY;
4491 dev_hold(master);
4492 }
4493
4494 slave->master = master;
4495
4496 if (old)
4497 dev_put(old);
4498 return 0;
4499 }
4500 EXPORT_SYMBOL(netdev_set_master);
4501
4502 /**
4503 * netdev_set_bond_master - set up bonding master/slave pair
4504 * @slave: slave device
4505 * @master: new master device
4506 *
4507 * Changes the master device of the slave. Pass %NULL to break the
4508 * bonding. The caller must hold the RTNL semaphore. On a failure
4509 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4510 * to the routing socket and the function returns zero.
4511 */
4512 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4513 {
4514 int err;
4515
4516 ASSERT_RTNL();
4517
4518 err = netdev_set_master(slave, master);
4519 if (err)
4520 return err;
4521 if (master)
4522 slave->flags |= IFF_SLAVE;
4523 else
4524 slave->flags &= ~IFF_SLAVE;
4525
4526 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4527 return 0;
4528 }
4529 EXPORT_SYMBOL(netdev_set_bond_master);
4530
4531 static void dev_change_rx_flags(struct net_device *dev, int flags)
4532 {
4533 const struct net_device_ops *ops = dev->netdev_ops;
4534
4535 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4536 ops->ndo_change_rx_flags(dev, flags);
4537 }
4538
4539 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4540 {
4541 unsigned int old_flags = dev->flags;
4542 kuid_t uid;
4543 kgid_t gid;
4544
4545 ASSERT_RTNL();
4546
4547 dev->flags |= IFF_PROMISC;
4548 dev->promiscuity += inc;
4549 if (dev->promiscuity == 0) {
4550 /*
4551 * Avoid overflow.
4552 * If inc causes overflow, untouch promisc and return error.
4553 */
4554 if (inc < 0)
4555 dev->flags &= ~IFF_PROMISC;
4556 else {
4557 dev->promiscuity -= inc;
4558 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4559 dev->name);
4560 return -EOVERFLOW;
4561 }
4562 }
4563 if (dev->flags != old_flags) {
4564 pr_info("device %s %s promiscuous mode\n",
4565 dev->name,
4566 dev->flags & IFF_PROMISC ? "entered" : "left");
4567 if (audit_enabled) {
4568 current_uid_gid(&uid, &gid);
4569 audit_log(current->audit_context, GFP_ATOMIC,
4570 AUDIT_ANOM_PROMISCUOUS,
4571 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4572 dev->name, (dev->flags & IFF_PROMISC),
4573 (old_flags & IFF_PROMISC),
4574 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4575 from_kuid(&init_user_ns, uid),
4576 from_kgid(&init_user_ns, gid),
4577 audit_get_sessionid(current));
4578 }
4579
4580 dev_change_rx_flags(dev, IFF_PROMISC);
4581 }
4582 return 0;
4583 }
4584
4585 /**
4586 * dev_set_promiscuity - update promiscuity count on a device
4587 * @dev: device
4588 * @inc: modifier
4589 *
4590 * Add or remove promiscuity from a device. While the count in the device
4591 * remains above zero the interface remains promiscuous. Once it hits zero
4592 * the device reverts back to normal filtering operation. A negative inc
4593 * value is used to drop promiscuity on the device.
4594 * Return 0 if successful or a negative errno code on error.
4595 */
4596 int dev_set_promiscuity(struct net_device *dev, int inc)
4597 {
4598 unsigned int old_flags = dev->flags;
4599 int err;
4600
4601 err = __dev_set_promiscuity(dev, inc);
4602 if (err < 0)
4603 return err;
4604 if (dev->flags != old_flags)
4605 dev_set_rx_mode(dev);
4606 return err;
4607 }
4608 EXPORT_SYMBOL(dev_set_promiscuity);
4609
4610 /**
4611 * dev_set_allmulti - update allmulti count on a device
4612 * @dev: device
4613 * @inc: modifier
4614 *
4615 * Add or remove reception of all multicast frames to a device. While the
4616 * count in the device remains above zero the interface remains listening
4617 * to all interfaces. Once it hits zero the device reverts back to normal
4618 * filtering operation. A negative @inc value is used to drop the counter
4619 * when releasing a resource needing all multicasts.
4620 * Return 0 if successful or a negative errno code on error.
4621 */
4622
4623 int dev_set_allmulti(struct net_device *dev, int inc)
4624 {
4625 unsigned int old_flags = dev->flags;
4626
4627 ASSERT_RTNL();
4628
4629 dev->flags |= IFF_ALLMULTI;
4630 dev->allmulti += inc;
4631 if (dev->allmulti == 0) {
4632 /*
4633 * Avoid overflow.
4634 * If inc causes overflow, untouch allmulti and return error.
4635 */
4636 if (inc < 0)
4637 dev->flags &= ~IFF_ALLMULTI;
4638 else {
4639 dev->allmulti -= inc;
4640 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4641 dev->name);
4642 return -EOVERFLOW;
4643 }
4644 }
4645 if (dev->flags ^ old_flags) {
4646 dev_change_rx_flags(dev, IFF_ALLMULTI);
4647 dev_set_rx_mode(dev);
4648 }
4649 return 0;
4650 }
4651 EXPORT_SYMBOL(dev_set_allmulti);
4652
4653 /*
4654 * Upload unicast and multicast address lists to device and
4655 * configure RX filtering. When the device doesn't support unicast
4656 * filtering it is put in promiscuous mode while unicast addresses
4657 * are present.
4658 */
4659 void __dev_set_rx_mode(struct net_device *dev)
4660 {
4661 const struct net_device_ops *ops = dev->netdev_ops;
4662
4663 /* dev_open will call this function so the list will stay sane. */
4664 if (!(dev->flags&IFF_UP))
4665 return;
4666
4667 if (!netif_device_present(dev))
4668 return;
4669
4670 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4671 /* Unicast addresses changes may only happen under the rtnl,
4672 * therefore calling __dev_set_promiscuity here is safe.
4673 */
4674 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4675 __dev_set_promiscuity(dev, 1);
4676 dev->uc_promisc = true;
4677 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4678 __dev_set_promiscuity(dev, -1);
4679 dev->uc_promisc = false;
4680 }
4681 }
4682
4683 if (ops->ndo_set_rx_mode)
4684 ops->ndo_set_rx_mode(dev);
4685 }
4686
4687 void dev_set_rx_mode(struct net_device *dev)
4688 {
4689 netif_addr_lock_bh(dev);
4690 __dev_set_rx_mode(dev);
4691 netif_addr_unlock_bh(dev);
4692 }
4693
4694 /**
4695 * dev_get_flags - get flags reported to userspace
4696 * @dev: device
4697 *
4698 * Get the combination of flag bits exported through APIs to userspace.
4699 */
4700 unsigned int dev_get_flags(const struct net_device *dev)
4701 {
4702 unsigned int flags;
4703
4704 flags = (dev->flags & ~(IFF_PROMISC |
4705 IFF_ALLMULTI |
4706 IFF_RUNNING |
4707 IFF_LOWER_UP |
4708 IFF_DORMANT)) |
4709 (dev->gflags & (IFF_PROMISC |
4710 IFF_ALLMULTI));
4711
4712 if (netif_running(dev)) {
4713 if (netif_oper_up(dev))
4714 flags |= IFF_RUNNING;
4715 if (netif_carrier_ok(dev))
4716 flags |= IFF_LOWER_UP;
4717 if (netif_dormant(dev))
4718 flags |= IFF_DORMANT;
4719 }
4720
4721 return flags;
4722 }
4723 EXPORT_SYMBOL(dev_get_flags);
4724
4725 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4726 {
4727 unsigned int old_flags = dev->flags;
4728 int ret;
4729
4730 ASSERT_RTNL();
4731
4732 /*
4733 * Set the flags on our device.
4734 */
4735
4736 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4737 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4738 IFF_AUTOMEDIA)) |
4739 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4740 IFF_ALLMULTI));
4741
4742 /*
4743 * Load in the correct multicast list now the flags have changed.
4744 */
4745
4746 if ((old_flags ^ flags) & IFF_MULTICAST)
4747 dev_change_rx_flags(dev, IFF_MULTICAST);
4748
4749 dev_set_rx_mode(dev);
4750
4751 /*
4752 * Have we downed the interface. We handle IFF_UP ourselves
4753 * according to user attempts to set it, rather than blindly
4754 * setting it.
4755 */
4756
4757 ret = 0;
4758 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4759 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4760
4761 if (!ret)
4762 dev_set_rx_mode(dev);
4763 }
4764
4765 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4766 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4767
4768 dev->gflags ^= IFF_PROMISC;
4769 dev_set_promiscuity(dev, inc);
4770 }
4771
4772 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4773 is important. Some (broken) drivers set IFF_PROMISC, when
4774 IFF_ALLMULTI is requested not asking us and not reporting.
4775 */
4776 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4777 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4778
4779 dev->gflags ^= IFF_ALLMULTI;
4780 dev_set_allmulti(dev, inc);
4781 }
4782
4783 return ret;
4784 }
4785
4786 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4787 {
4788 unsigned int changes = dev->flags ^ old_flags;
4789
4790 if (changes & IFF_UP) {
4791 if (dev->flags & IFF_UP)
4792 call_netdevice_notifiers(NETDEV_UP, dev);
4793 else
4794 call_netdevice_notifiers(NETDEV_DOWN, dev);
4795 }
4796
4797 if (dev->flags & IFF_UP &&
4798 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4799 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4800 }
4801
4802 /**
4803 * dev_change_flags - change device settings
4804 * @dev: device
4805 * @flags: device state flags
4806 *
4807 * Change settings on device based state flags. The flags are
4808 * in the userspace exported format.
4809 */
4810 int dev_change_flags(struct net_device *dev, unsigned int flags)
4811 {
4812 int ret;
4813 unsigned int changes, old_flags = dev->flags;
4814
4815 ret = __dev_change_flags(dev, flags);
4816 if (ret < 0)
4817 return ret;
4818
4819 changes = old_flags ^ dev->flags;
4820 if (changes)
4821 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4822
4823 __dev_notify_flags(dev, old_flags);
4824 return ret;
4825 }
4826 EXPORT_SYMBOL(dev_change_flags);
4827
4828 /**
4829 * dev_set_mtu - Change maximum transfer unit
4830 * @dev: device
4831 * @new_mtu: new transfer unit
4832 *
4833 * Change the maximum transfer size of the network device.
4834 */
4835 int dev_set_mtu(struct net_device *dev, int new_mtu)
4836 {
4837 const struct net_device_ops *ops = dev->netdev_ops;
4838 int err;
4839
4840 if (new_mtu == dev->mtu)
4841 return 0;
4842
4843 /* MTU must be positive. */
4844 if (new_mtu < 0)
4845 return -EINVAL;
4846
4847 if (!netif_device_present(dev))
4848 return -ENODEV;
4849
4850 err = 0;
4851 if (ops->ndo_change_mtu)
4852 err = ops->ndo_change_mtu(dev, new_mtu);
4853 else
4854 dev->mtu = new_mtu;
4855
4856 if (!err && dev->flags & IFF_UP)
4857 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4858 return err;
4859 }
4860 EXPORT_SYMBOL(dev_set_mtu);
4861
4862 /**
4863 * dev_set_group - Change group this device belongs to
4864 * @dev: device
4865 * @new_group: group this device should belong to
4866 */
4867 void dev_set_group(struct net_device *dev, int new_group)
4868 {
4869 dev->group = new_group;
4870 }
4871 EXPORT_SYMBOL(dev_set_group);
4872
4873 /**
4874 * dev_set_mac_address - Change Media Access Control Address
4875 * @dev: device
4876 * @sa: new address
4877 *
4878 * Change the hardware (MAC) address of the device
4879 */
4880 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4881 {
4882 const struct net_device_ops *ops = dev->netdev_ops;
4883 int err;
4884
4885 if (!ops->ndo_set_mac_address)
4886 return -EOPNOTSUPP;
4887 if (sa->sa_family != dev->type)
4888 return -EINVAL;
4889 if (!netif_device_present(dev))
4890 return -ENODEV;
4891 err = ops->ndo_set_mac_address(dev, sa);
4892 if (!err)
4893 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4894 add_device_randomness(dev->dev_addr, dev->addr_len);
4895 return err;
4896 }
4897 EXPORT_SYMBOL(dev_set_mac_address);
4898
4899 /*
4900 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4901 */
4902 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4903 {
4904 int err;
4905 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4906
4907 if (!dev)
4908 return -ENODEV;
4909
4910 switch (cmd) {
4911 case SIOCGIFFLAGS: /* Get interface flags */
4912 ifr->ifr_flags = (short) dev_get_flags(dev);
4913 return 0;
4914
4915 case SIOCGIFMETRIC: /* Get the metric on the interface
4916 (currently unused) */
4917 ifr->ifr_metric = 0;
4918 return 0;
4919
4920 case SIOCGIFMTU: /* Get the MTU of a device */
4921 ifr->ifr_mtu = dev->mtu;
4922 return 0;
4923
4924 case SIOCGIFHWADDR:
4925 if (!dev->addr_len)
4926 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4927 else
4928 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4929 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4930 ifr->ifr_hwaddr.sa_family = dev->type;
4931 return 0;
4932
4933 case SIOCGIFSLAVE:
4934 err = -EINVAL;
4935 break;
4936
4937 case SIOCGIFMAP:
4938 ifr->ifr_map.mem_start = dev->mem_start;
4939 ifr->ifr_map.mem_end = dev->mem_end;
4940 ifr->ifr_map.base_addr = dev->base_addr;
4941 ifr->ifr_map.irq = dev->irq;
4942 ifr->ifr_map.dma = dev->dma;
4943 ifr->ifr_map.port = dev->if_port;
4944 return 0;
4945
4946 case SIOCGIFINDEX:
4947 ifr->ifr_ifindex = dev->ifindex;
4948 return 0;
4949
4950 case SIOCGIFTXQLEN:
4951 ifr->ifr_qlen = dev->tx_queue_len;
4952 return 0;
4953
4954 default:
4955 /* dev_ioctl() should ensure this case
4956 * is never reached
4957 */
4958 WARN_ON(1);
4959 err = -ENOTTY;
4960 break;
4961
4962 }
4963 return err;
4964 }
4965
4966 /*
4967 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4968 */
4969 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4970 {
4971 int err;
4972 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4973 const struct net_device_ops *ops;
4974
4975 if (!dev)
4976 return -ENODEV;
4977
4978 ops = dev->netdev_ops;
4979
4980 switch (cmd) {
4981 case SIOCSIFFLAGS: /* Set interface flags */
4982 return dev_change_flags(dev, ifr->ifr_flags);
4983
4984 case SIOCSIFMETRIC: /* Set the metric on the interface
4985 (currently unused) */
4986 return -EOPNOTSUPP;
4987
4988 case SIOCSIFMTU: /* Set the MTU of a device */
4989 return dev_set_mtu(dev, ifr->ifr_mtu);
4990
4991 case SIOCSIFHWADDR:
4992 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4993
4994 case SIOCSIFHWBROADCAST:
4995 if (ifr->ifr_hwaddr.sa_family != dev->type)
4996 return -EINVAL;
4997 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4998 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4999 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5000 return 0;
5001
5002 case SIOCSIFMAP:
5003 if (ops->ndo_set_config) {
5004 if (!netif_device_present(dev))
5005 return -ENODEV;
5006 return ops->ndo_set_config(dev, &ifr->ifr_map);
5007 }
5008 return -EOPNOTSUPP;
5009
5010 case SIOCADDMULTI:
5011 if (!ops->ndo_set_rx_mode ||
5012 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5013 return -EINVAL;
5014 if (!netif_device_present(dev))
5015 return -ENODEV;
5016 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5017
5018 case SIOCDELMULTI:
5019 if (!ops->ndo_set_rx_mode ||
5020 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5021 return -EINVAL;
5022 if (!netif_device_present(dev))
5023 return -ENODEV;
5024 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5025
5026 case SIOCSIFTXQLEN:
5027 if (ifr->ifr_qlen < 0)
5028 return -EINVAL;
5029 dev->tx_queue_len = ifr->ifr_qlen;
5030 return 0;
5031
5032 case SIOCSIFNAME:
5033 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5034 return dev_change_name(dev, ifr->ifr_newname);
5035
5036 case SIOCSHWTSTAMP:
5037 err = net_hwtstamp_validate(ifr);
5038 if (err)
5039 return err;
5040 /* fall through */
5041
5042 /*
5043 * Unknown or private ioctl
5044 */
5045 default:
5046 if ((cmd >= SIOCDEVPRIVATE &&
5047 cmd <= SIOCDEVPRIVATE + 15) ||
5048 cmd == SIOCBONDENSLAVE ||
5049 cmd == SIOCBONDRELEASE ||
5050 cmd == SIOCBONDSETHWADDR ||
5051 cmd == SIOCBONDSLAVEINFOQUERY ||
5052 cmd == SIOCBONDINFOQUERY ||
5053 cmd == SIOCBONDCHANGEACTIVE ||
5054 cmd == SIOCGMIIPHY ||
5055 cmd == SIOCGMIIREG ||
5056 cmd == SIOCSMIIREG ||
5057 cmd == SIOCBRADDIF ||
5058 cmd == SIOCBRDELIF ||
5059 cmd == SIOCSHWTSTAMP ||
5060 cmd == SIOCWANDEV) {
5061 err = -EOPNOTSUPP;
5062 if (ops->ndo_do_ioctl) {
5063 if (netif_device_present(dev))
5064 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5065 else
5066 err = -ENODEV;
5067 }
5068 } else
5069 err = -EINVAL;
5070
5071 }
5072 return err;
5073 }
5074
5075 /*
5076 * This function handles all "interface"-type I/O control requests. The actual
5077 * 'doing' part of this is dev_ifsioc above.
5078 */
5079
5080 /**
5081 * dev_ioctl - network device ioctl
5082 * @net: the applicable net namespace
5083 * @cmd: command to issue
5084 * @arg: pointer to a struct ifreq in user space
5085 *
5086 * Issue ioctl functions to devices. This is normally called by the
5087 * user space syscall interfaces but can sometimes be useful for
5088 * other purposes. The return value is the return from the syscall if
5089 * positive or a negative errno code on error.
5090 */
5091
5092 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5093 {
5094 struct ifreq ifr;
5095 int ret;
5096 char *colon;
5097
5098 /* One special case: SIOCGIFCONF takes ifconf argument
5099 and requires shared lock, because it sleeps writing
5100 to user space.
5101 */
5102
5103 if (cmd == SIOCGIFCONF) {
5104 rtnl_lock();
5105 ret = dev_ifconf(net, (char __user *) arg);
5106 rtnl_unlock();
5107 return ret;
5108 }
5109 if (cmd == SIOCGIFNAME)
5110 return dev_ifname(net, (struct ifreq __user *)arg);
5111
5112 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5113 return -EFAULT;
5114
5115 ifr.ifr_name[IFNAMSIZ-1] = 0;
5116
5117 colon = strchr(ifr.ifr_name, ':');
5118 if (colon)
5119 *colon = 0;
5120
5121 /*
5122 * See which interface the caller is talking about.
5123 */
5124
5125 switch (cmd) {
5126 /*
5127 * These ioctl calls:
5128 * - can be done by all.
5129 * - atomic and do not require locking.
5130 * - return a value
5131 */
5132 case SIOCGIFFLAGS:
5133 case SIOCGIFMETRIC:
5134 case SIOCGIFMTU:
5135 case SIOCGIFHWADDR:
5136 case SIOCGIFSLAVE:
5137 case SIOCGIFMAP:
5138 case SIOCGIFINDEX:
5139 case SIOCGIFTXQLEN:
5140 dev_load(net, ifr.ifr_name);
5141 rcu_read_lock();
5142 ret = dev_ifsioc_locked(net, &ifr, cmd);
5143 rcu_read_unlock();
5144 if (!ret) {
5145 if (colon)
5146 *colon = ':';
5147 if (copy_to_user(arg, &ifr,
5148 sizeof(struct ifreq)))
5149 ret = -EFAULT;
5150 }
5151 return ret;
5152
5153 case SIOCETHTOOL:
5154 dev_load(net, ifr.ifr_name);
5155 rtnl_lock();
5156 ret = dev_ethtool(net, &ifr);
5157 rtnl_unlock();
5158 if (!ret) {
5159 if (colon)
5160 *colon = ':';
5161 if (copy_to_user(arg, &ifr,
5162 sizeof(struct ifreq)))
5163 ret = -EFAULT;
5164 }
5165 return ret;
5166
5167 /*
5168 * These ioctl calls:
5169 * - require superuser power.
5170 * - require strict serialization.
5171 * - return a value
5172 */
5173 case SIOCGMIIPHY:
5174 case SIOCGMIIREG:
5175 case SIOCSIFNAME:
5176 if (!capable(CAP_NET_ADMIN))
5177 return -EPERM;
5178 dev_load(net, ifr.ifr_name);
5179 rtnl_lock();
5180 ret = dev_ifsioc(net, &ifr, cmd);
5181 rtnl_unlock();
5182 if (!ret) {
5183 if (colon)
5184 *colon = ':';
5185 if (copy_to_user(arg, &ifr,
5186 sizeof(struct ifreq)))
5187 ret = -EFAULT;
5188 }
5189 return ret;
5190
5191 /*
5192 * These ioctl calls:
5193 * - require superuser power.
5194 * - require strict serialization.
5195 * - do not return a value
5196 */
5197 case SIOCSIFFLAGS:
5198 case SIOCSIFMETRIC:
5199 case SIOCSIFMTU:
5200 case SIOCSIFMAP:
5201 case SIOCSIFHWADDR:
5202 case SIOCSIFSLAVE:
5203 case SIOCADDMULTI:
5204 case SIOCDELMULTI:
5205 case SIOCSIFHWBROADCAST:
5206 case SIOCSIFTXQLEN:
5207 case SIOCSMIIREG:
5208 case SIOCBONDENSLAVE:
5209 case SIOCBONDRELEASE:
5210 case SIOCBONDSETHWADDR:
5211 case SIOCBONDCHANGEACTIVE:
5212 case SIOCBRADDIF:
5213 case SIOCBRDELIF:
5214 case SIOCSHWTSTAMP:
5215 if (!capable(CAP_NET_ADMIN))
5216 return -EPERM;
5217 /* fall through */
5218 case SIOCBONDSLAVEINFOQUERY:
5219 case SIOCBONDINFOQUERY:
5220 dev_load(net, ifr.ifr_name);
5221 rtnl_lock();
5222 ret = dev_ifsioc(net, &ifr, cmd);
5223 rtnl_unlock();
5224 return ret;
5225
5226 case SIOCGIFMEM:
5227 /* Get the per device memory space. We can add this but
5228 * currently do not support it */
5229 case SIOCSIFMEM:
5230 /* Set the per device memory buffer space.
5231 * Not applicable in our case */
5232 case SIOCSIFLINK:
5233 return -ENOTTY;
5234
5235 /*
5236 * Unknown or private ioctl.
5237 */
5238 default:
5239 if (cmd == SIOCWANDEV ||
5240 (cmd >= SIOCDEVPRIVATE &&
5241 cmd <= SIOCDEVPRIVATE + 15)) {
5242 dev_load(net, ifr.ifr_name);
5243 rtnl_lock();
5244 ret = dev_ifsioc(net, &ifr, cmd);
5245 rtnl_unlock();
5246 if (!ret && copy_to_user(arg, &ifr,
5247 sizeof(struct ifreq)))
5248 ret = -EFAULT;
5249 return ret;
5250 }
5251 /* Take care of Wireless Extensions */
5252 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5253 return wext_handle_ioctl(net, &ifr, cmd, arg);
5254 return -ENOTTY;
5255 }
5256 }
5257
5258
5259 /**
5260 * dev_new_index - allocate an ifindex
5261 * @net: the applicable net namespace
5262 *
5263 * Returns a suitable unique value for a new device interface
5264 * number. The caller must hold the rtnl semaphore or the
5265 * dev_base_lock to be sure it remains unique.
5266 */
5267 static int dev_new_index(struct net *net)
5268 {
5269 int ifindex = net->ifindex;
5270 for (;;) {
5271 if (++ifindex <= 0)
5272 ifindex = 1;
5273 if (!__dev_get_by_index(net, ifindex))
5274 return net->ifindex = ifindex;
5275 }
5276 }
5277
5278 /* Delayed registration/unregisteration */
5279 static LIST_HEAD(net_todo_list);
5280
5281 static void net_set_todo(struct net_device *dev)
5282 {
5283 list_add_tail(&dev->todo_list, &net_todo_list);
5284 }
5285
5286 static void rollback_registered_many(struct list_head *head)
5287 {
5288 struct net_device *dev, *tmp;
5289
5290 BUG_ON(dev_boot_phase);
5291 ASSERT_RTNL();
5292
5293 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5294 /* Some devices call without registering
5295 * for initialization unwind. Remove those
5296 * devices and proceed with the remaining.
5297 */
5298 if (dev->reg_state == NETREG_UNINITIALIZED) {
5299 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5300 dev->name, dev);
5301
5302 WARN_ON(1);
5303 list_del(&dev->unreg_list);
5304 continue;
5305 }
5306 dev->dismantle = true;
5307 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5308 }
5309
5310 /* If device is running, close it first. */
5311 dev_close_many(head);
5312
5313 list_for_each_entry(dev, head, unreg_list) {
5314 /* And unlink it from device chain. */
5315 unlist_netdevice(dev);
5316
5317 dev->reg_state = NETREG_UNREGISTERING;
5318 }
5319
5320 synchronize_net();
5321
5322 list_for_each_entry(dev, head, unreg_list) {
5323 /* Shutdown queueing discipline. */
5324 dev_shutdown(dev);
5325
5326
5327 /* Notify protocols, that we are about to destroy
5328 this device. They should clean all the things.
5329 */
5330 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5331
5332 if (!dev->rtnl_link_ops ||
5333 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5334 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5335
5336 /*
5337 * Flush the unicast and multicast chains
5338 */
5339 dev_uc_flush(dev);
5340 dev_mc_flush(dev);
5341
5342 if (dev->netdev_ops->ndo_uninit)
5343 dev->netdev_ops->ndo_uninit(dev);
5344
5345 /* Notifier chain MUST detach us from master device. */
5346 WARN_ON(dev->master);
5347
5348 /* Remove entries from kobject tree */
5349 netdev_unregister_kobject(dev);
5350 }
5351
5352 synchronize_net();
5353
5354 list_for_each_entry(dev, head, unreg_list)
5355 dev_put(dev);
5356 }
5357
5358 static void rollback_registered(struct net_device *dev)
5359 {
5360 LIST_HEAD(single);
5361
5362 list_add(&dev->unreg_list, &single);
5363 rollback_registered_many(&single);
5364 list_del(&single);
5365 }
5366
5367 static netdev_features_t netdev_fix_features(struct net_device *dev,
5368 netdev_features_t features)
5369 {
5370 /* Fix illegal checksum combinations */
5371 if ((features & NETIF_F_HW_CSUM) &&
5372 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5373 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5374 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5375 }
5376
5377 /* Fix illegal SG+CSUM combinations. */
5378 if ((features & NETIF_F_SG) &&
5379 !(features & NETIF_F_ALL_CSUM)) {
5380 netdev_dbg(dev,
5381 "Dropping NETIF_F_SG since no checksum feature.\n");
5382 features &= ~NETIF_F_SG;
5383 }
5384
5385 /* TSO requires that SG is present as well. */
5386 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5387 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5388 features &= ~NETIF_F_ALL_TSO;
5389 }
5390
5391 /* TSO ECN requires that TSO is present as well. */
5392 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5393 features &= ~NETIF_F_TSO_ECN;
5394
5395 /* Software GSO depends on SG. */
5396 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5397 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5398 features &= ~NETIF_F_GSO;
5399 }
5400
5401 /* UFO needs SG and checksumming */
5402 if (features & NETIF_F_UFO) {
5403 /* maybe split UFO into V4 and V6? */
5404 if (!((features & NETIF_F_GEN_CSUM) ||
5405 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5406 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5407 netdev_dbg(dev,
5408 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5409 features &= ~NETIF_F_UFO;
5410 }
5411
5412 if (!(features & NETIF_F_SG)) {
5413 netdev_dbg(dev,
5414 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5415 features &= ~NETIF_F_UFO;
5416 }
5417 }
5418
5419 return features;
5420 }
5421
5422 int __netdev_update_features(struct net_device *dev)
5423 {
5424 netdev_features_t features;
5425 int err = 0;
5426
5427 ASSERT_RTNL();
5428
5429 features = netdev_get_wanted_features(dev);
5430
5431 if (dev->netdev_ops->ndo_fix_features)
5432 features = dev->netdev_ops->ndo_fix_features(dev, features);
5433
5434 /* driver might be less strict about feature dependencies */
5435 features = netdev_fix_features(dev, features);
5436
5437 if (dev->features == features)
5438 return 0;
5439
5440 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5441 &dev->features, &features);
5442
5443 if (dev->netdev_ops->ndo_set_features)
5444 err = dev->netdev_ops->ndo_set_features(dev, features);
5445
5446 if (unlikely(err < 0)) {
5447 netdev_err(dev,
5448 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5449 err, &features, &dev->features);
5450 return -1;
5451 }
5452
5453 if (!err)
5454 dev->features = features;
5455
5456 return 1;
5457 }
5458
5459 /**
5460 * netdev_update_features - recalculate device features
5461 * @dev: the device to check
5462 *
5463 * Recalculate dev->features set and send notifications if it
5464 * has changed. Should be called after driver or hardware dependent
5465 * conditions might have changed that influence the features.
5466 */
5467 void netdev_update_features(struct net_device *dev)
5468 {
5469 if (__netdev_update_features(dev))
5470 netdev_features_change(dev);
5471 }
5472 EXPORT_SYMBOL(netdev_update_features);
5473
5474 /**
5475 * netdev_change_features - recalculate device features
5476 * @dev: the device to check
5477 *
5478 * Recalculate dev->features set and send notifications even
5479 * if they have not changed. Should be called instead of
5480 * netdev_update_features() if also dev->vlan_features might
5481 * have changed to allow the changes to be propagated to stacked
5482 * VLAN devices.
5483 */
5484 void netdev_change_features(struct net_device *dev)
5485 {
5486 __netdev_update_features(dev);
5487 netdev_features_change(dev);
5488 }
5489 EXPORT_SYMBOL(netdev_change_features);
5490
5491 /**
5492 * netif_stacked_transfer_operstate - transfer operstate
5493 * @rootdev: the root or lower level device to transfer state from
5494 * @dev: the device to transfer operstate to
5495 *
5496 * Transfer operational state from root to device. This is normally
5497 * called when a stacking relationship exists between the root
5498 * device and the device(a leaf device).
5499 */
5500 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5501 struct net_device *dev)
5502 {
5503 if (rootdev->operstate == IF_OPER_DORMANT)
5504 netif_dormant_on(dev);
5505 else
5506 netif_dormant_off(dev);
5507
5508 if (netif_carrier_ok(rootdev)) {
5509 if (!netif_carrier_ok(dev))
5510 netif_carrier_on(dev);
5511 } else {
5512 if (netif_carrier_ok(dev))
5513 netif_carrier_off(dev);
5514 }
5515 }
5516 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5517
5518 #ifdef CONFIG_RPS
5519 static int netif_alloc_rx_queues(struct net_device *dev)
5520 {
5521 unsigned int i, count = dev->num_rx_queues;
5522 struct netdev_rx_queue *rx;
5523
5524 BUG_ON(count < 1);
5525
5526 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5527 if (!rx) {
5528 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5529 return -ENOMEM;
5530 }
5531 dev->_rx = rx;
5532
5533 for (i = 0; i < count; i++)
5534 rx[i].dev = dev;
5535 return 0;
5536 }
5537 #endif
5538
5539 static void netdev_init_one_queue(struct net_device *dev,
5540 struct netdev_queue *queue, void *_unused)
5541 {
5542 /* Initialize queue lock */
5543 spin_lock_init(&queue->_xmit_lock);
5544 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5545 queue->xmit_lock_owner = -1;
5546 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5547 queue->dev = dev;
5548 #ifdef CONFIG_BQL
5549 dql_init(&queue->dql, HZ);
5550 #endif
5551 }
5552
5553 static int netif_alloc_netdev_queues(struct net_device *dev)
5554 {
5555 unsigned int count = dev->num_tx_queues;
5556 struct netdev_queue *tx;
5557
5558 BUG_ON(count < 1);
5559
5560 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5561 if (!tx) {
5562 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5563 return -ENOMEM;
5564 }
5565 dev->_tx = tx;
5566
5567 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5568 spin_lock_init(&dev->tx_global_lock);
5569
5570 return 0;
5571 }
5572
5573 /**
5574 * register_netdevice - register a network device
5575 * @dev: device to register
5576 *
5577 * Take a completed network device structure and add it to the kernel
5578 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5579 * chain. 0 is returned on success. A negative errno code is returned
5580 * on a failure to set up the device, or if the name is a duplicate.
5581 *
5582 * Callers must hold the rtnl semaphore. You may want
5583 * register_netdev() instead of this.
5584 *
5585 * BUGS:
5586 * The locking appears insufficient to guarantee two parallel registers
5587 * will not get the same name.
5588 */
5589
5590 int register_netdevice(struct net_device *dev)
5591 {
5592 int ret;
5593 struct net *net = dev_net(dev);
5594
5595 BUG_ON(dev_boot_phase);
5596 ASSERT_RTNL();
5597
5598 might_sleep();
5599
5600 /* When net_device's are persistent, this will be fatal. */
5601 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5602 BUG_ON(!net);
5603
5604 spin_lock_init(&dev->addr_list_lock);
5605 netdev_set_addr_lockdep_class(dev);
5606
5607 dev->iflink = -1;
5608
5609 ret = dev_get_valid_name(net, dev, dev->name);
5610 if (ret < 0)
5611 goto out;
5612
5613 /* Init, if this function is available */
5614 if (dev->netdev_ops->ndo_init) {
5615 ret = dev->netdev_ops->ndo_init(dev);
5616 if (ret) {
5617 if (ret > 0)
5618 ret = -EIO;
5619 goto out;
5620 }
5621 }
5622
5623 ret = -EBUSY;
5624 if (!dev->ifindex)
5625 dev->ifindex = dev_new_index(net);
5626 else if (__dev_get_by_index(net, dev->ifindex))
5627 goto err_uninit;
5628
5629 if (dev->iflink == -1)
5630 dev->iflink = dev->ifindex;
5631
5632 /* Transfer changeable features to wanted_features and enable
5633 * software offloads (GSO and GRO).
5634 */
5635 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5636 dev->features |= NETIF_F_SOFT_FEATURES;
5637 dev->wanted_features = dev->features & dev->hw_features;
5638
5639 /* Turn on no cache copy if HW is doing checksum */
5640 if (!(dev->flags & IFF_LOOPBACK)) {
5641 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5642 if (dev->features & NETIF_F_ALL_CSUM) {
5643 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5644 dev->features |= NETIF_F_NOCACHE_COPY;
5645 }
5646 }
5647
5648 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5649 */
5650 dev->vlan_features |= NETIF_F_HIGHDMA;
5651
5652 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5653 ret = notifier_to_errno(ret);
5654 if (ret)
5655 goto err_uninit;
5656
5657 ret = netdev_register_kobject(dev);
5658 if (ret)
5659 goto err_uninit;
5660 dev->reg_state = NETREG_REGISTERED;
5661
5662 __netdev_update_features(dev);
5663
5664 /*
5665 * Default initial state at registry is that the
5666 * device is present.
5667 */
5668
5669 set_bit(__LINK_STATE_PRESENT, &dev->state);
5670
5671 linkwatch_init_dev(dev);
5672
5673 dev_init_scheduler(dev);
5674 dev_hold(dev);
5675 list_netdevice(dev);
5676 add_device_randomness(dev->dev_addr, dev->addr_len);
5677
5678 /* Notify protocols, that a new device appeared. */
5679 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5680 ret = notifier_to_errno(ret);
5681 if (ret) {
5682 rollback_registered(dev);
5683 dev->reg_state = NETREG_UNREGISTERED;
5684 }
5685 /*
5686 * Prevent userspace races by waiting until the network
5687 * device is fully setup before sending notifications.
5688 */
5689 if (!dev->rtnl_link_ops ||
5690 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5691 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5692
5693 out:
5694 return ret;
5695
5696 err_uninit:
5697 if (dev->netdev_ops->ndo_uninit)
5698 dev->netdev_ops->ndo_uninit(dev);
5699 goto out;
5700 }
5701 EXPORT_SYMBOL(register_netdevice);
5702
5703 /**
5704 * init_dummy_netdev - init a dummy network device for NAPI
5705 * @dev: device to init
5706 *
5707 * This takes a network device structure and initialize the minimum
5708 * amount of fields so it can be used to schedule NAPI polls without
5709 * registering a full blown interface. This is to be used by drivers
5710 * that need to tie several hardware interfaces to a single NAPI
5711 * poll scheduler due to HW limitations.
5712 */
5713 int init_dummy_netdev(struct net_device *dev)
5714 {
5715 /* Clear everything. Note we don't initialize spinlocks
5716 * are they aren't supposed to be taken by any of the
5717 * NAPI code and this dummy netdev is supposed to be
5718 * only ever used for NAPI polls
5719 */
5720 memset(dev, 0, sizeof(struct net_device));
5721
5722 /* make sure we BUG if trying to hit standard
5723 * register/unregister code path
5724 */
5725 dev->reg_state = NETREG_DUMMY;
5726
5727 /* NAPI wants this */
5728 INIT_LIST_HEAD(&dev->napi_list);
5729
5730 /* a dummy interface is started by default */
5731 set_bit(__LINK_STATE_PRESENT, &dev->state);
5732 set_bit(__LINK_STATE_START, &dev->state);
5733
5734 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5735 * because users of this 'device' dont need to change
5736 * its refcount.
5737 */
5738
5739 return 0;
5740 }
5741 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5742
5743
5744 /**
5745 * register_netdev - register a network device
5746 * @dev: device to register
5747 *
5748 * Take a completed network device structure and add it to the kernel
5749 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5750 * chain. 0 is returned on success. A negative errno code is returned
5751 * on a failure to set up the device, or if the name is a duplicate.
5752 *
5753 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5754 * and expands the device name if you passed a format string to
5755 * alloc_netdev.
5756 */
5757 int register_netdev(struct net_device *dev)
5758 {
5759 int err;
5760
5761 rtnl_lock();
5762 err = register_netdevice(dev);
5763 rtnl_unlock();
5764 return err;
5765 }
5766 EXPORT_SYMBOL(register_netdev);
5767
5768 int netdev_refcnt_read(const struct net_device *dev)
5769 {
5770 int i, refcnt = 0;
5771
5772 for_each_possible_cpu(i)
5773 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5774 return refcnt;
5775 }
5776 EXPORT_SYMBOL(netdev_refcnt_read);
5777
5778 /**
5779 * netdev_wait_allrefs - wait until all references are gone.
5780 * @dev: target net_device
5781 *
5782 * This is called when unregistering network devices.
5783 *
5784 * Any protocol or device that holds a reference should register
5785 * for netdevice notification, and cleanup and put back the
5786 * reference if they receive an UNREGISTER event.
5787 * We can get stuck here if buggy protocols don't correctly
5788 * call dev_put.
5789 */
5790 static void netdev_wait_allrefs(struct net_device *dev)
5791 {
5792 unsigned long rebroadcast_time, warning_time;
5793 int refcnt;
5794
5795 linkwatch_forget_dev(dev);
5796
5797 rebroadcast_time = warning_time = jiffies;
5798 refcnt = netdev_refcnt_read(dev);
5799
5800 while (refcnt != 0) {
5801 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5802 rtnl_lock();
5803
5804 /* Rebroadcast unregister notification */
5805 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5806
5807 __rtnl_unlock();
5808 rcu_barrier();
5809 rtnl_lock();
5810
5811 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5812 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5813 &dev->state)) {
5814 /* We must not have linkwatch events
5815 * pending on unregister. If this
5816 * happens, we simply run the queue
5817 * unscheduled, resulting in a noop
5818 * for this device.
5819 */
5820 linkwatch_run_queue();
5821 }
5822
5823 __rtnl_unlock();
5824
5825 rebroadcast_time = jiffies;
5826 }
5827
5828 msleep(250);
5829
5830 refcnt = netdev_refcnt_read(dev);
5831
5832 if (time_after(jiffies, warning_time + 10 * HZ)) {
5833 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5834 dev->name, refcnt);
5835 warning_time = jiffies;
5836 }
5837 }
5838 }
5839
5840 /* The sequence is:
5841 *
5842 * rtnl_lock();
5843 * ...
5844 * register_netdevice(x1);
5845 * register_netdevice(x2);
5846 * ...
5847 * unregister_netdevice(y1);
5848 * unregister_netdevice(y2);
5849 * ...
5850 * rtnl_unlock();
5851 * free_netdev(y1);
5852 * free_netdev(y2);
5853 *
5854 * We are invoked by rtnl_unlock().
5855 * This allows us to deal with problems:
5856 * 1) We can delete sysfs objects which invoke hotplug
5857 * without deadlocking with linkwatch via keventd.
5858 * 2) Since we run with the RTNL semaphore not held, we can sleep
5859 * safely in order to wait for the netdev refcnt to drop to zero.
5860 *
5861 * We must not return until all unregister events added during
5862 * the interval the lock was held have been completed.
5863 */
5864 void netdev_run_todo(void)
5865 {
5866 struct list_head list;
5867
5868 /* Snapshot list, allow later requests */
5869 list_replace_init(&net_todo_list, &list);
5870
5871 __rtnl_unlock();
5872
5873
5874 /* Wait for rcu callbacks to finish before next phase */
5875 if (!list_empty(&list))
5876 rcu_barrier();
5877
5878 while (!list_empty(&list)) {
5879 struct net_device *dev
5880 = list_first_entry(&list, struct net_device, todo_list);
5881 list_del(&dev->todo_list);
5882
5883 rtnl_lock();
5884 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5885 __rtnl_unlock();
5886
5887 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5888 pr_err("network todo '%s' but state %d\n",
5889 dev->name, dev->reg_state);
5890 dump_stack();
5891 continue;
5892 }
5893
5894 dev->reg_state = NETREG_UNREGISTERED;
5895
5896 on_each_cpu(flush_backlog, dev, 1);
5897
5898 netdev_wait_allrefs(dev);
5899
5900 /* paranoia */
5901 BUG_ON(netdev_refcnt_read(dev));
5902 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5903 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5904 WARN_ON(dev->dn_ptr);
5905
5906 if (dev->destructor)
5907 dev->destructor(dev);
5908
5909 /* Free network device */
5910 kobject_put(&dev->dev.kobj);
5911 }
5912 }
5913
5914 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5915 * fields in the same order, with only the type differing.
5916 */
5917 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5918 const struct net_device_stats *netdev_stats)
5919 {
5920 #if BITS_PER_LONG == 64
5921 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5922 memcpy(stats64, netdev_stats, sizeof(*stats64));
5923 #else
5924 size_t i, n = sizeof(*stats64) / sizeof(u64);
5925 const unsigned long *src = (const unsigned long *)netdev_stats;
5926 u64 *dst = (u64 *)stats64;
5927
5928 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5929 sizeof(*stats64) / sizeof(u64));
5930 for (i = 0; i < n; i++)
5931 dst[i] = src[i];
5932 #endif
5933 }
5934 EXPORT_SYMBOL(netdev_stats_to_stats64);
5935
5936 /**
5937 * dev_get_stats - get network device statistics
5938 * @dev: device to get statistics from
5939 * @storage: place to store stats
5940 *
5941 * Get network statistics from device. Return @storage.
5942 * The device driver may provide its own method by setting
5943 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5944 * otherwise the internal statistics structure is used.
5945 */
5946 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5947 struct rtnl_link_stats64 *storage)
5948 {
5949 const struct net_device_ops *ops = dev->netdev_ops;
5950
5951 if (ops->ndo_get_stats64) {
5952 memset(storage, 0, sizeof(*storage));
5953 ops->ndo_get_stats64(dev, storage);
5954 } else if (ops->ndo_get_stats) {
5955 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5956 } else {
5957 netdev_stats_to_stats64(storage, &dev->stats);
5958 }
5959 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5960 return storage;
5961 }
5962 EXPORT_SYMBOL(dev_get_stats);
5963
5964 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5965 {
5966 struct netdev_queue *queue = dev_ingress_queue(dev);
5967
5968 #ifdef CONFIG_NET_CLS_ACT
5969 if (queue)
5970 return queue;
5971 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5972 if (!queue)
5973 return NULL;
5974 netdev_init_one_queue(dev, queue, NULL);
5975 queue->qdisc = &noop_qdisc;
5976 queue->qdisc_sleeping = &noop_qdisc;
5977 rcu_assign_pointer(dev->ingress_queue, queue);
5978 #endif
5979 return queue;
5980 }
5981
5982 static const struct ethtool_ops default_ethtool_ops;
5983
5984 /**
5985 * alloc_netdev_mqs - allocate network device
5986 * @sizeof_priv: size of private data to allocate space for
5987 * @name: device name format string
5988 * @setup: callback to initialize device
5989 * @txqs: the number of TX subqueues to allocate
5990 * @rxqs: the number of RX subqueues to allocate
5991 *
5992 * Allocates a struct net_device with private data area for driver use
5993 * and performs basic initialization. Also allocates subquue structs
5994 * for each queue on the device.
5995 */
5996 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5997 void (*setup)(struct net_device *),
5998 unsigned int txqs, unsigned int rxqs)
5999 {
6000 struct net_device *dev;
6001 size_t alloc_size;
6002 struct net_device *p;
6003
6004 BUG_ON(strlen(name) >= sizeof(dev->name));
6005
6006 if (txqs < 1) {
6007 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6008 return NULL;
6009 }
6010
6011 #ifdef CONFIG_RPS
6012 if (rxqs < 1) {
6013 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6014 return NULL;
6015 }
6016 #endif
6017
6018 alloc_size = sizeof(struct net_device);
6019 if (sizeof_priv) {
6020 /* ensure 32-byte alignment of private area */
6021 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6022 alloc_size += sizeof_priv;
6023 }
6024 /* ensure 32-byte alignment of whole construct */
6025 alloc_size += NETDEV_ALIGN - 1;
6026
6027 p = kzalloc(alloc_size, GFP_KERNEL);
6028 if (!p) {
6029 pr_err("alloc_netdev: Unable to allocate device\n");
6030 return NULL;
6031 }
6032
6033 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6034 dev->padded = (char *)dev - (char *)p;
6035
6036 dev->pcpu_refcnt = alloc_percpu(int);
6037 if (!dev->pcpu_refcnt)
6038 goto free_p;
6039
6040 if (dev_addr_init(dev))
6041 goto free_pcpu;
6042
6043 dev_mc_init(dev);
6044 dev_uc_init(dev);
6045
6046 dev_net_set(dev, &init_net);
6047
6048 dev->gso_max_size = GSO_MAX_SIZE;
6049 dev->gso_max_segs = GSO_MAX_SEGS;
6050
6051 INIT_LIST_HEAD(&dev->napi_list);
6052 INIT_LIST_HEAD(&dev->unreg_list);
6053 INIT_LIST_HEAD(&dev->link_watch_list);
6054 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6055 setup(dev);
6056
6057 dev->num_tx_queues = txqs;
6058 dev->real_num_tx_queues = txqs;
6059 if (netif_alloc_netdev_queues(dev))
6060 goto free_all;
6061
6062 #ifdef CONFIG_RPS
6063 dev->num_rx_queues = rxqs;
6064 dev->real_num_rx_queues = rxqs;
6065 if (netif_alloc_rx_queues(dev))
6066 goto free_all;
6067 #endif
6068
6069 strcpy(dev->name, name);
6070 dev->group = INIT_NETDEV_GROUP;
6071 if (!dev->ethtool_ops)
6072 dev->ethtool_ops = &default_ethtool_ops;
6073 return dev;
6074
6075 free_all:
6076 free_netdev(dev);
6077 return NULL;
6078
6079 free_pcpu:
6080 free_percpu(dev->pcpu_refcnt);
6081 kfree(dev->_tx);
6082 #ifdef CONFIG_RPS
6083 kfree(dev->_rx);
6084 #endif
6085
6086 free_p:
6087 kfree(p);
6088 return NULL;
6089 }
6090 EXPORT_SYMBOL(alloc_netdev_mqs);
6091
6092 /**
6093 * free_netdev - free network device
6094 * @dev: device
6095 *
6096 * This function does the last stage of destroying an allocated device
6097 * interface. The reference to the device object is released.
6098 * If this is the last reference then it will be freed.
6099 */
6100 void free_netdev(struct net_device *dev)
6101 {
6102 struct napi_struct *p, *n;
6103
6104 release_net(dev_net(dev));
6105
6106 kfree(dev->_tx);
6107 #ifdef CONFIG_RPS
6108 kfree(dev->_rx);
6109 #endif
6110
6111 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6112
6113 /* Flush device addresses */
6114 dev_addr_flush(dev);
6115
6116 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6117 netif_napi_del(p);
6118
6119 free_percpu(dev->pcpu_refcnt);
6120 dev->pcpu_refcnt = NULL;
6121
6122 /* Compatibility with error handling in drivers */
6123 if (dev->reg_state == NETREG_UNINITIALIZED) {
6124 kfree((char *)dev - dev->padded);
6125 return;
6126 }
6127
6128 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6129 dev->reg_state = NETREG_RELEASED;
6130
6131 /* will free via device release */
6132 put_device(&dev->dev);
6133 }
6134 EXPORT_SYMBOL(free_netdev);
6135
6136 /**
6137 * synchronize_net - Synchronize with packet receive processing
6138 *
6139 * Wait for packets currently being received to be done.
6140 * Does not block later packets from starting.
6141 */
6142 void synchronize_net(void)
6143 {
6144 might_sleep();
6145 if (rtnl_is_locked())
6146 synchronize_rcu_expedited();
6147 else
6148 synchronize_rcu();
6149 }
6150 EXPORT_SYMBOL(synchronize_net);
6151
6152 /**
6153 * unregister_netdevice_queue - remove device from the kernel
6154 * @dev: device
6155 * @head: list
6156 *
6157 * This function shuts down a device interface and removes it
6158 * from the kernel tables.
6159 * If head not NULL, device is queued to be unregistered later.
6160 *
6161 * Callers must hold the rtnl semaphore. You may want
6162 * unregister_netdev() instead of this.
6163 */
6164
6165 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6166 {
6167 ASSERT_RTNL();
6168
6169 if (head) {
6170 list_move_tail(&dev->unreg_list, head);
6171 } else {
6172 rollback_registered(dev);
6173 /* Finish processing unregister after unlock */
6174 net_set_todo(dev);
6175 }
6176 }
6177 EXPORT_SYMBOL(unregister_netdevice_queue);
6178
6179 /**
6180 * unregister_netdevice_many - unregister many devices
6181 * @head: list of devices
6182 */
6183 void unregister_netdevice_many(struct list_head *head)
6184 {
6185 struct net_device *dev;
6186
6187 if (!list_empty(head)) {
6188 rollback_registered_many(head);
6189 list_for_each_entry(dev, head, unreg_list)
6190 net_set_todo(dev);
6191 }
6192 }
6193 EXPORT_SYMBOL(unregister_netdevice_many);
6194
6195 /**
6196 * unregister_netdev - remove device from the kernel
6197 * @dev: device
6198 *
6199 * This function shuts down a device interface and removes it
6200 * from the kernel tables.
6201 *
6202 * This is just a wrapper for unregister_netdevice that takes
6203 * the rtnl semaphore. In general you want to use this and not
6204 * unregister_netdevice.
6205 */
6206 void unregister_netdev(struct net_device *dev)
6207 {
6208 rtnl_lock();
6209 unregister_netdevice(dev);
6210 rtnl_unlock();
6211 }
6212 EXPORT_SYMBOL(unregister_netdev);
6213
6214 /**
6215 * dev_change_net_namespace - move device to different nethost namespace
6216 * @dev: device
6217 * @net: network namespace
6218 * @pat: If not NULL name pattern to try if the current device name
6219 * is already taken in the destination network namespace.
6220 *
6221 * This function shuts down a device interface and moves it
6222 * to a new network namespace. On success 0 is returned, on
6223 * a failure a netagive errno code is returned.
6224 *
6225 * Callers must hold the rtnl semaphore.
6226 */
6227
6228 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6229 {
6230 int err;
6231
6232 ASSERT_RTNL();
6233
6234 /* Don't allow namespace local devices to be moved. */
6235 err = -EINVAL;
6236 if (dev->features & NETIF_F_NETNS_LOCAL)
6237 goto out;
6238
6239 /* Ensure the device has been registrered */
6240 err = -EINVAL;
6241 if (dev->reg_state != NETREG_REGISTERED)
6242 goto out;
6243
6244 /* Get out if there is nothing todo */
6245 err = 0;
6246 if (net_eq(dev_net(dev), net))
6247 goto out;
6248
6249 /* Pick the destination device name, and ensure
6250 * we can use it in the destination network namespace.
6251 */
6252 err = -EEXIST;
6253 if (__dev_get_by_name(net, dev->name)) {
6254 /* We get here if we can't use the current device name */
6255 if (!pat)
6256 goto out;
6257 if (dev_get_valid_name(net, dev, pat) < 0)
6258 goto out;
6259 }
6260
6261 /*
6262 * And now a mini version of register_netdevice unregister_netdevice.
6263 */
6264
6265 /* If device is running close it first. */
6266 dev_close(dev);
6267
6268 /* And unlink it from device chain */
6269 err = -ENODEV;
6270 unlist_netdevice(dev);
6271
6272 synchronize_net();
6273
6274 /* Shutdown queueing discipline. */
6275 dev_shutdown(dev);
6276
6277 /* Notify protocols, that we are about to destroy
6278 this device. They should clean all the things.
6279
6280 Note that dev->reg_state stays at NETREG_REGISTERED.
6281 This is wanted because this way 8021q and macvlan know
6282 the device is just moving and can keep their slaves up.
6283 */
6284 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6285 rcu_barrier();
6286 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6287 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6288
6289 /*
6290 * Flush the unicast and multicast chains
6291 */
6292 dev_uc_flush(dev);
6293 dev_mc_flush(dev);
6294
6295 /* Actually switch the network namespace */
6296 dev_net_set(dev, net);
6297
6298 /* If there is an ifindex conflict assign a new one */
6299 if (__dev_get_by_index(net, dev->ifindex)) {
6300 int iflink = (dev->iflink == dev->ifindex);
6301 dev->ifindex = dev_new_index(net);
6302 if (iflink)
6303 dev->iflink = dev->ifindex;
6304 }
6305
6306 /* Fixup kobjects */
6307 err = device_rename(&dev->dev, dev->name);
6308 WARN_ON(err);
6309
6310 /* Add the device back in the hashes */
6311 list_netdevice(dev);
6312
6313 /* Notify protocols, that a new device appeared. */
6314 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6315
6316 /*
6317 * Prevent userspace races by waiting until the network
6318 * device is fully setup before sending notifications.
6319 */
6320 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6321
6322 synchronize_net();
6323 err = 0;
6324 out:
6325 return err;
6326 }
6327 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6328
6329 static int dev_cpu_callback(struct notifier_block *nfb,
6330 unsigned long action,
6331 void *ocpu)
6332 {
6333 struct sk_buff **list_skb;
6334 struct sk_buff *skb;
6335 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6336 struct softnet_data *sd, *oldsd;
6337
6338 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6339 return NOTIFY_OK;
6340
6341 local_irq_disable();
6342 cpu = smp_processor_id();
6343 sd = &per_cpu(softnet_data, cpu);
6344 oldsd = &per_cpu(softnet_data, oldcpu);
6345
6346 /* Find end of our completion_queue. */
6347 list_skb = &sd->completion_queue;
6348 while (*list_skb)
6349 list_skb = &(*list_skb)->next;
6350 /* Append completion queue from offline CPU. */
6351 *list_skb = oldsd->completion_queue;
6352 oldsd->completion_queue = NULL;
6353
6354 /* Append output queue from offline CPU. */
6355 if (oldsd->output_queue) {
6356 *sd->output_queue_tailp = oldsd->output_queue;
6357 sd->output_queue_tailp = oldsd->output_queue_tailp;
6358 oldsd->output_queue = NULL;
6359 oldsd->output_queue_tailp = &oldsd->output_queue;
6360 }
6361 /* Append NAPI poll list from offline CPU. */
6362 if (!list_empty(&oldsd->poll_list)) {
6363 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6364 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6365 }
6366
6367 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6368 local_irq_enable();
6369
6370 /* Process offline CPU's input_pkt_queue */
6371 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6372 netif_rx(skb);
6373 input_queue_head_incr(oldsd);
6374 }
6375 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6376 netif_rx(skb);
6377 input_queue_head_incr(oldsd);
6378 }
6379
6380 return NOTIFY_OK;
6381 }
6382
6383
6384 /**
6385 * netdev_increment_features - increment feature set by one
6386 * @all: current feature set
6387 * @one: new feature set
6388 * @mask: mask feature set
6389 *
6390 * Computes a new feature set after adding a device with feature set
6391 * @one to the master device with current feature set @all. Will not
6392 * enable anything that is off in @mask. Returns the new feature set.
6393 */
6394 netdev_features_t netdev_increment_features(netdev_features_t all,
6395 netdev_features_t one, netdev_features_t mask)
6396 {
6397 if (mask & NETIF_F_GEN_CSUM)
6398 mask |= NETIF_F_ALL_CSUM;
6399 mask |= NETIF_F_VLAN_CHALLENGED;
6400
6401 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6402 all &= one | ~NETIF_F_ALL_FOR_ALL;
6403
6404 /* If one device supports hw checksumming, set for all. */
6405 if (all & NETIF_F_GEN_CSUM)
6406 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6407
6408 return all;
6409 }
6410 EXPORT_SYMBOL(netdev_increment_features);
6411
6412 static struct hlist_head *netdev_create_hash(void)
6413 {
6414 int i;
6415 struct hlist_head *hash;
6416
6417 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6418 if (hash != NULL)
6419 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6420 INIT_HLIST_HEAD(&hash[i]);
6421
6422 return hash;
6423 }
6424
6425 /* Initialize per network namespace state */
6426 static int __net_init netdev_init(struct net *net)
6427 {
6428 if (net != &init_net)
6429 INIT_LIST_HEAD(&net->dev_base_head);
6430
6431 net->dev_name_head = netdev_create_hash();
6432 if (net->dev_name_head == NULL)
6433 goto err_name;
6434
6435 net->dev_index_head = netdev_create_hash();
6436 if (net->dev_index_head == NULL)
6437 goto err_idx;
6438
6439 return 0;
6440
6441 err_idx:
6442 kfree(net->dev_name_head);
6443 err_name:
6444 return -ENOMEM;
6445 }
6446
6447 /**
6448 * netdev_drivername - network driver for the device
6449 * @dev: network device
6450 *
6451 * Determine network driver for device.
6452 */
6453 const char *netdev_drivername(const struct net_device *dev)
6454 {
6455 const struct device_driver *driver;
6456 const struct device *parent;
6457 const char *empty = "";
6458
6459 parent = dev->dev.parent;
6460 if (!parent)
6461 return empty;
6462
6463 driver = parent->driver;
6464 if (driver && driver->name)
6465 return driver->name;
6466 return empty;
6467 }
6468
6469 static int __netdev_printk(const char *level, const struct net_device *dev,
6470 struct va_format *vaf)
6471 {
6472 int r;
6473
6474 if (dev && dev->dev.parent) {
6475 r = dev_printk_emit(level[1] - '0',
6476 dev->dev.parent,
6477 "%s %s %s: %pV",
6478 dev_driver_string(dev->dev.parent),
6479 dev_name(dev->dev.parent),
6480 netdev_name(dev), vaf);
6481 } else if (dev) {
6482 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6483 } else {
6484 r = printk("%s(NULL net_device): %pV", level, vaf);
6485 }
6486
6487 return r;
6488 }
6489
6490 int netdev_printk(const char *level, const struct net_device *dev,
6491 const char *format, ...)
6492 {
6493 struct va_format vaf;
6494 va_list args;
6495 int r;
6496
6497 va_start(args, format);
6498
6499 vaf.fmt = format;
6500 vaf.va = &args;
6501
6502 r = __netdev_printk(level, dev, &vaf);
6503
6504 va_end(args);
6505
6506 return r;
6507 }
6508 EXPORT_SYMBOL(netdev_printk);
6509
6510 #define define_netdev_printk_level(func, level) \
6511 int func(const struct net_device *dev, const char *fmt, ...) \
6512 { \
6513 int r; \
6514 struct va_format vaf; \
6515 va_list args; \
6516 \
6517 va_start(args, fmt); \
6518 \
6519 vaf.fmt = fmt; \
6520 vaf.va = &args; \
6521 \
6522 r = __netdev_printk(level, dev, &vaf); \
6523 \
6524 va_end(args); \
6525 \
6526 return r; \
6527 } \
6528 EXPORT_SYMBOL(func);
6529
6530 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6531 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6532 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6533 define_netdev_printk_level(netdev_err, KERN_ERR);
6534 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6535 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6536 define_netdev_printk_level(netdev_info, KERN_INFO);
6537
6538 static void __net_exit netdev_exit(struct net *net)
6539 {
6540 kfree(net->dev_name_head);
6541 kfree(net->dev_index_head);
6542 }
6543
6544 static struct pernet_operations __net_initdata netdev_net_ops = {
6545 .init = netdev_init,
6546 .exit = netdev_exit,
6547 };
6548
6549 static void __net_exit default_device_exit(struct net *net)
6550 {
6551 struct net_device *dev, *aux;
6552 /*
6553 * Push all migratable network devices back to the
6554 * initial network namespace
6555 */
6556 rtnl_lock();
6557 for_each_netdev_safe(net, dev, aux) {
6558 int err;
6559 char fb_name[IFNAMSIZ];
6560
6561 /* Ignore unmoveable devices (i.e. loopback) */
6562 if (dev->features & NETIF_F_NETNS_LOCAL)
6563 continue;
6564
6565 /* Leave virtual devices for the generic cleanup */
6566 if (dev->rtnl_link_ops)
6567 continue;
6568
6569 /* Push remaining network devices to init_net */
6570 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6571 err = dev_change_net_namespace(dev, &init_net, fb_name);
6572 if (err) {
6573 pr_emerg("%s: failed to move %s to init_net: %d\n",
6574 __func__, dev->name, err);
6575 BUG();
6576 }
6577 }
6578 rtnl_unlock();
6579 }
6580
6581 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6582 {
6583 /* At exit all network devices most be removed from a network
6584 * namespace. Do this in the reverse order of registration.
6585 * Do this across as many network namespaces as possible to
6586 * improve batching efficiency.
6587 */
6588 struct net_device *dev;
6589 struct net *net;
6590 LIST_HEAD(dev_kill_list);
6591
6592 rtnl_lock();
6593 list_for_each_entry(net, net_list, exit_list) {
6594 for_each_netdev_reverse(net, dev) {
6595 if (dev->rtnl_link_ops)
6596 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6597 else
6598 unregister_netdevice_queue(dev, &dev_kill_list);
6599 }
6600 }
6601 unregister_netdevice_many(&dev_kill_list);
6602 list_del(&dev_kill_list);
6603 rtnl_unlock();
6604 }
6605
6606 static struct pernet_operations __net_initdata default_device_ops = {
6607 .exit = default_device_exit,
6608 .exit_batch = default_device_exit_batch,
6609 };
6610
6611 /*
6612 * Initialize the DEV module. At boot time this walks the device list and
6613 * unhooks any devices that fail to initialise (normally hardware not
6614 * present) and leaves us with a valid list of present and active devices.
6615 *
6616 */
6617
6618 /*
6619 * This is called single threaded during boot, so no need
6620 * to take the rtnl semaphore.
6621 */
6622 static int __init net_dev_init(void)
6623 {
6624 int i, rc = -ENOMEM;
6625
6626 BUG_ON(!dev_boot_phase);
6627
6628 if (dev_proc_init())
6629 goto out;
6630
6631 if (netdev_kobject_init())
6632 goto out;
6633
6634 INIT_LIST_HEAD(&ptype_all);
6635 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6636 INIT_LIST_HEAD(&ptype_base[i]);
6637
6638 if (register_pernet_subsys(&netdev_net_ops))
6639 goto out;
6640
6641 /*
6642 * Initialise the packet receive queues.
6643 */
6644
6645 for_each_possible_cpu(i) {
6646 struct softnet_data *sd = &per_cpu(softnet_data, i);
6647
6648 memset(sd, 0, sizeof(*sd));
6649 skb_queue_head_init(&sd->input_pkt_queue);
6650 skb_queue_head_init(&sd->process_queue);
6651 sd->completion_queue = NULL;
6652 INIT_LIST_HEAD(&sd->poll_list);
6653 sd->output_queue = NULL;
6654 sd->output_queue_tailp = &sd->output_queue;
6655 #ifdef CONFIG_RPS
6656 sd->csd.func = rps_trigger_softirq;
6657 sd->csd.info = sd;
6658 sd->csd.flags = 0;
6659 sd->cpu = i;
6660 #endif
6661
6662 sd->backlog.poll = process_backlog;
6663 sd->backlog.weight = weight_p;
6664 sd->backlog.gro_list = NULL;
6665 sd->backlog.gro_count = 0;
6666 }
6667
6668 dev_boot_phase = 0;
6669
6670 /* The loopback device is special if any other network devices
6671 * is present in a network namespace the loopback device must
6672 * be present. Since we now dynamically allocate and free the
6673 * loopback device ensure this invariant is maintained by
6674 * keeping the loopback device as the first device on the
6675 * list of network devices. Ensuring the loopback devices
6676 * is the first device that appears and the last network device
6677 * that disappears.
6678 */
6679 if (register_pernet_device(&loopback_net_ops))
6680 goto out;
6681
6682 if (register_pernet_device(&default_device_ops))
6683 goto out;
6684
6685 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6686 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6687
6688 hotcpu_notifier(dev_cpu_callback, 0);
6689 dst_init();
6690 dev_mcast_init();
6691 rc = 0;
6692 out:
6693 return rc;
6694 }
6695
6696 subsys_initcall(net_dev_init);
6697
6698 static int __init initialize_hashrnd(void)
6699 {
6700 get_random_bytes(&hashrnd, sizeof(hashrnd));
6701 return 0;
6702 }
6703
6704 late_initcall_sync(initialize_hashrnd);
6705
This page took 0.165295 seconds and 6 git commands to generate.