netdev: network device operations infrastructure
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /*
133 * The list of packet types we will receive (as opposed to discard)
134 * and the routines to invoke.
135 *
136 * Why 16. Because with 16 the only overlap we get on a hash of the
137 * low nibble of the protocol value is RARP/SNAP/X.25.
138 *
139 * NOTE: That is no longer true with the addition of VLAN tags. Not
140 * sure which should go first, but I bet it won't make much
141 * difference if we are running VLANs. The good news is that
142 * this protocol won't be in the list unless compiled in, so
143 * the average user (w/out VLANs) will not be adversely affected.
144 * --BLG
145 *
146 * 0800 IP
147 * 8100 802.1Q VLAN
148 * 0001 802.3
149 * 0002 AX.25
150 * 0004 802.2
151 * 8035 RARP
152 * 0005 SNAP
153 * 0805 X.25
154 * 0806 ARP
155 * 8137 IPX
156 * 0009 Localtalk
157 * 86DD IPv6
158 */
159
160 #define PTYPE_HASH_SIZE (16)
161 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
162
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly; /* Taps */
166
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 struct dma_client client;
170 spinlock_t lock;
171 cpumask_t channel_mask;
172 struct dma_chan **channels;
173 };
174
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 enum dma_state state);
178
179 static struct net_dma net_dma = {
180 .client = {
181 .event_callback = netdev_dma_event,
182 },
183 };
184 #endif
185
186 /*
187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188 * semaphore.
189 *
190 * Pure readers hold dev_base_lock for reading.
191 *
192 * Writers must hold the rtnl semaphore while they loop through the
193 * dev_base_head list, and hold dev_base_lock for writing when they do the
194 * actual updates. This allows pure readers to access the list even
195 * while a writer is preparing to update it.
196 *
197 * To put it another way, dev_base_lock is held for writing only to
198 * protect against pure readers; the rtnl semaphore provides the
199 * protection against other writers.
200 *
201 * See, for example usages, register_netdevice() and
202 * unregister_netdevice(), which must be called with the rtnl
203 * semaphore held.
204 */
205 DEFINE_RWLOCK(dev_base_lock);
206
207 EXPORT_SYMBOL(dev_base_lock);
208
209 #define NETDEV_HASHBITS 8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 write_unlock_bh(&dev_base_lock);
235 return 0;
236 }
237
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del(&dev->dev_list);
246 hlist_del(&dev->name_hlist);
247 hlist_del(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263
264 #ifdef CONFIG_LOCKDEP
265 /*
266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267 * according to dev->type
268 */
269 static const unsigned short netdev_lock_type[] =
270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 ARPHRD_NONE};
285
286 static const char *netdev_lock_name[] =
287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 "_xmit_NONE"};
302
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 int i;
309
310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 if (netdev_lock_type[i] == dev_type)
312 return i;
313 /* the last key is used by default */
314 return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 unsigned short dev_type)
319 {
320 int i;
321
322 i = netdev_lock_pos(dev_type);
323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 netdev_lock_name[i]);
325 }
326
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev->type);
332 lockdep_set_class_and_name(&dev->addr_list_lock,
333 &netdev_addr_lock_key[i],
334 netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345
346 /*******************************************************************************
347
348 Protocol management and registration routines
349
350 *******************************************************************************/
351
352 /*
353 * Add a protocol ID to the list. Now that the input handler is
354 * smarter we can dispense with all the messy stuff that used to be
355 * here.
356 *
357 * BEWARE!!! Protocol handlers, mangling input packets,
358 * MUST BE last in hash buckets and checking protocol handlers
359 * MUST start from promiscuous ptype_all chain in net_bh.
360 * It is true now, do not change it.
361 * Explanation follows: if protocol handler, mangling packet, will
362 * be the first on list, it is not able to sense, that packet
363 * is cloned and should be copied-on-write, so that it will
364 * change it and subsequent readers will get broken packet.
365 * --ANK (980803)
366 */
367
368 /**
369 * dev_add_pack - add packet handler
370 * @pt: packet type declaration
371 *
372 * Add a protocol handler to the networking stack. The passed &packet_type
373 * is linked into kernel lists and may not be freed until it has been
374 * removed from the kernel lists.
375 *
376 * This call does not sleep therefore it can not
377 * guarantee all CPU's that are in middle of receiving packets
378 * will see the new packet type (until the next received packet).
379 */
380
381 void dev_add_pack(struct packet_type *pt)
382 {
383 int hash;
384
385 spin_lock_bh(&ptype_lock);
386 if (pt->type == htons(ETH_P_ALL))
387 list_add_rcu(&pt->list, &ptype_all);
388 else {
389 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 list_add_rcu(&pt->list, &ptype_base[hash]);
391 }
392 spin_unlock_bh(&ptype_lock);
393 }
394
395 /**
396 * __dev_remove_pack - remove packet handler
397 * @pt: packet type declaration
398 *
399 * Remove a protocol handler that was previously added to the kernel
400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
401 * from the kernel lists and can be freed or reused once this function
402 * returns.
403 *
404 * The packet type might still be in use by receivers
405 * and must not be freed until after all the CPU's have gone
406 * through a quiescent state.
407 */
408 void __dev_remove_pack(struct packet_type *pt)
409 {
410 struct list_head *head;
411 struct packet_type *pt1;
412
413 spin_lock_bh(&ptype_lock);
414
415 if (pt->type == htons(ETH_P_ALL))
416 head = &ptype_all;
417 else
418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 spin_unlock_bh(&ptype_lock);
430 }
431 /**
432 * dev_remove_pack - remove packet handler
433 * @pt: packet type declaration
434 *
435 * Remove a protocol handler that was previously added to the kernel
436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
437 * from the kernel lists and can be freed or reused once this function
438 * returns.
439 *
440 * This call sleeps to guarantee that no CPU is looking at the packet
441 * type after return.
442 */
443 void dev_remove_pack(struct packet_type *pt)
444 {
445 __dev_remove_pack(pt);
446
447 synchronize_net();
448 }
449
450 /******************************************************************************
451
452 Device Boot-time Settings Routines
453
454 *******************************************************************************/
455
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
458
459 /**
460 * netdev_boot_setup_add - add new setup entry
461 * @name: name of the device
462 * @map: configured settings for the device
463 *
464 * Adds new setup entry to the dev_boot_setup list. The function
465 * returns 0 on error and 1 on success. This is a generic routine to
466 * all netdevices.
467 */
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
469 {
470 struct netdev_boot_setup *s;
471 int i;
472
473 s = dev_boot_setup;
474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 memset(s[i].name, 0, sizeof(s[i].name));
477 strlcpy(s[i].name, name, IFNAMSIZ);
478 memcpy(&s[i].map, map, sizeof(s[i].map));
479 break;
480 }
481 }
482
483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 }
485
486 /**
487 * netdev_boot_setup_check - check boot time settings
488 * @dev: the netdevice
489 *
490 * Check boot time settings for the device.
491 * The found settings are set for the device to be used
492 * later in the device probing.
493 * Returns 0 if no settings found, 1 if they are.
494 */
495 int netdev_boot_setup_check(struct net_device *dev)
496 {
497 struct netdev_boot_setup *s = dev_boot_setup;
498 int i;
499
500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 !strcmp(dev->name, s[i].name)) {
503 dev->irq = s[i].map.irq;
504 dev->base_addr = s[i].map.base_addr;
505 dev->mem_start = s[i].map.mem_start;
506 dev->mem_end = s[i].map.mem_end;
507 return 1;
508 }
509 }
510 return 0;
511 }
512
513
514 /**
515 * netdev_boot_base - get address from boot time settings
516 * @prefix: prefix for network device
517 * @unit: id for network device
518 *
519 * Check boot time settings for the base address of device.
520 * The found settings are set for the device to be used
521 * later in the device probing.
522 * Returns 0 if no settings found.
523 */
524 unsigned long netdev_boot_base(const char *prefix, int unit)
525 {
526 const struct netdev_boot_setup *s = dev_boot_setup;
527 char name[IFNAMSIZ];
528 int i;
529
530 sprintf(name, "%s%d", prefix, unit);
531
532 /*
533 * If device already registered then return base of 1
534 * to indicate not to probe for this interface
535 */
536 if (__dev_get_by_name(&init_net, name))
537 return 1;
538
539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 if (!strcmp(name, s[i].name))
541 return s[i].map.base_addr;
542 return 0;
543 }
544
545 /*
546 * Saves at boot time configured settings for any netdevice.
547 */
548 int __init netdev_boot_setup(char *str)
549 {
550 int ints[5];
551 struct ifmap map;
552
553 str = get_options(str, ARRAY_SIZE(ints), ints);
554 if (!str || !*str)
555 return 0;
556
557 /* Save settings */
558 memset(&map, 0, sizeof(map));
559 if (ints[0] > 0)
560 map.irq = ints[1];
561 if (ints[0] > 1)
562 map.base_addr = ints[2];
563 if (ints[0] > 2)
564 map.mem_start = ints[3];
565 if (ints[0] > 3)
566 map.mem_end = ints[4];
567
568 /* Add new entry to the list */
569 return netdev_boot_setup_add(str, &map);
570 }
571
572 __setup("netdev=", netdev_boot_setup);
573
574 /*******************************************************************************
575
576 Device Interface Subroutines
577
578 *******************************************************************************/
579
580 /**
581 * __dev_get_by_name - find a device by its name
582 * @net: the applicable net namespace
583 * @name: name to find
584 *
585 * Find an interface by name. Must be called under RTNL semaphore
586 * or @dev_base_lock. If the name is found a pointer to the device
587 * is returned. If the name is not found then %NULL is returned. The
588 * reference counters are not incremented so the caller must be
589 * careful with locks.
590 */
591
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
593 {
594 struct hlist_node *p;
595
596 hlist_for_each(p, dev_name_hash(net, name)) {
597 struct net_device *dev
598 = hlist_entry(p, struct net_device, name_hlist);
599 if (!strncmp(dev->name, name, IFNAMSIZ))
600 return dev;
601 }
602 return NULL;
603 }
604
605 /**
606 * dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. This can be called from any
611 * context and does its own locking. The returned handle has
612 * the usage count incremented and the caller must use dev_put() to
613 * release it when it is no longer needed. %NULL is returned if no
614 * matching device is found.
615 */
616
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
618 {
619 struct net_device *dev;
620
621 read_lock(&dev_base_lock);
622 dev = __dev_get_by_name(net, name);
623 if (dev)
624 dev_hold(dev);
625 read_unlock(&dev_base_lock);
626 return dev;
627 }
628
629 /**
630 * __dev_get_by_index - find a device by its ifindex
631 * @net: the applicable net namespace
632 * @ifindex: index of device
633 *
634 * Search for an interface by index. Returns %NULL if the device
635 * is not found or a pointer to the device. The device has not
636 * had its reference counter increased so the caller must be careful
637 * about locking. The caller must hold either the RTNL semaphore
638 * or @dev_base_lock.
639 */
640
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
642 {
643 struct hlist_node *p;
644
645 hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 struct net_device *dev
647 = hlist_entry(p, struct net_device, index_hlist);
648 if (dev->ifindex == ifindex)
649 return dev;
650 }
651 return NULL;
652 }
653
654
655 /**
656 * dev_get_by_index - find a device by its ifindex
657 * @net: the applicable net namespace
658 * @ifindex: index of device
659 *
660 * Search for an interface by index. Returns NULL if the device
661 * is not found or a pointer to the device. The device returned has
662 * had a reference added and the pointer is safe until the user calls
663 * dev_put to indicate they have finished with it.
664 */
665
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct net_device *dev;
669
670 read_lock(&dev_base_lock);
671 dev = __dev_get_by_index(net, ifindex);
672 if (dev)
673 dev_hold(dev);
674 read_unlock(&dev_base_lock);
675 return dev;
676 }
677
678 /**
679 * dev_getbyhwaddr - find a device by its hardware address
680 * @net: the applicable net namespace
681 * @type: media type of device
682 * @ha: hardware address
683 *
684 * Search for an interface by MAC address. Returns NULL if the device
685 * is not found or a pointer to the device. The caller must hold the
686 * rtnl semaphore. The returned device has not had its ref count increased
687 * and the caller must therefore be careful about locking
688 *
689 * BUGS:
690 * If the API was consistent this would be __dev_get_by_hwaddr
691 */
692
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 {
695 struct net_device *dev;
696
697 ASSERT_RTNL();
698
699 for_each_netdev(net, dev)
700 if (dev->type == type &&
701 !memcmp(dev->dev_addr, ha, dev->addr_len))
702 return dev;
703
704 return NULL;
705 }
706
707 EXPORT_SYMBOL(dev_getbyhwaddr);
708
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 struct net_device *dev;
712
713 ASSERT_RTNL();
714 for_each_netdev(net, dev)
715 if (dev->type == type)
716 return dev;
717
718 return NULL;
719 }
720
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
722
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
724 {
725 struct net_device *dev;
726
727 rtnl_lock();
728 dev = __dev_getfirstbyhwtype(net, type);
729 if (dev)
730 dev_hold(dev);
731 rtnl_unlock();
732 return dev;
733 }
734
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
736
737 /**
738 * dev_get_by_flags - find any device with given flags
739 * @net: the applicable net namespace
740 * @if_flags: IFF_* values
741 * @mask: bitmask of bits in if_flags to check
742 *
743 * Search for any interface with the given flags. Returns NULL if a device
744 * is not found or a pointer to the device. The device returned has
745 * had a reference added and the pointer is safe until the user calls
746 * dev_put to indicate they have finished with it.
747 */
748
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
750 {
751 struct net_device *dev, *ret;
752
753 ret = NULL;
754 read_lock(&dev_base_lock);
755 for_each_netdev(net, dev) {
756 if (((dev->flags ^ if_flags) & mask) == 0) {
757 dev_hold(dev);
758 ret = dev;
759 break;
760 }
761 }
762 read_unlock(&dev_base_lock);
763 return ret;
764 }
765
766 /**
767 * dev_valid_name - check if name is okay for network device
768 * @name: name string
769 *
770 * Network device names need to be valid file names to
771 * to allow sysfs to work. We also disallow any kind of
772 * whitespace.
773 */
774 int dev_valid_name(const char *name)
775 {
776 if (*name == '\0')
777 return 0;
778 if (strlen(name) >= IFNAMSIZ)
779 return 0;
780 if (!strcmp(name, ".") || !strcmp(name, ".."))
781 return 0;
782
783 while (*name) {
784 if (*name == '/' || isspace(*name))
785 return 0;
786 name++;
787 }
788 return 1;
789 }
790
791 /**
792 * __dev_alloc_name - allocate a name for a device
793 * @net: network namespace to allocate the device name in
794 * @name: name format string
795 * @buf: scratch buffer and result name string
796 *
797 * Passed a format string - eg "lt%d" it will try and find a suitable
798 * id. It scans list of devices to build up a free map, then chooses
799 * the first empty slot. The caller must hold the dev_base or rtnl lock
800 * while allocating the name and adding the device in order to avoid
801 * duplicates.
802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803 * Returns the number of the unit assigned or a negative errno code.
804 */
805
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 {
808 int i = 0;
809 const char *p;
810 const int max_netdevices = 8*PAGE_SIZE;
811 unsigned long *inuse;
812 struct net_device *d;
813
814 p = strnchr(name, IFNAMSIZ-1, '%');
815 if (p) {
816 /*
817 * Verify the string as this thing may have come from
818 * the user. There must be either one "%d" and no other "%"
819 * characters.
820 */
821 if (p[1] != 'd' || strchr(p + 2, '%'))
822 return -EINVAL;
823
824 /* Use one page as a bit array of possible slots */
825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 if (!inuse)
827 return -ENOMEM;
828
829 for_each_netdev(net, d) {
830 if (!sscanf(d->name, name, &i))
831 continue;
832 if (i < 0 || i >= max_netdevices)
833 continue;
834
835 /* avoid cases where sscanf is not exact inverse of printf */
836 snprintf(buf, IFNAMSIZ, name, i);
837 if (!strncmp(buf, d->name, IFNAMSIZ))
838 set_bit(i, inuse);
839 }
840
841 i = find_first_zero_bit(inuse, max_netdevices);
842 free_page((unsigned long) inuse);
843 }
844
845 snprintf(buf, IFNAMSIZ, name, i);
846 if (!__dev_get_by_name(net, buf))
847 return i;
848
849 /* It is possible to run out of possible slots
850 * when the name is long and there isn't enough space left
851 * for the digits, or if all bits are used.
852 */
853 return -ENFILE;
854 }
855
856 /**
857 * dev_alloc_name - allocate a name for a device
858 * @dev: device
859 * @name: name format string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 int dev_alloc_name(struct net_device *dev, const char *name)
871 {
872 char buf[IFNAMSIZ];
873 struct net *net;
874 int ret;
875
876 BUG_ON(!dev_net(dev));
877 net = dev_net(dev);
878 ret = __dev_alloc_name(net, name, buf);
879 if (ret >= 0)
880 strlcpy(dev->name, buf, IFNAMSIZ);
881 return ret;
882 }
883
884
885 /**
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
889 *
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
892 */
893 int dev_change_name(struct net_device *dev, const char *newname)
894 {
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
899
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
902
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
906
907 if (!dev_valid_name(newname))
908 return -EINVAL;
909
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
912
913 memcpy(oldname, dev->name, IFNAMSIZ);
914
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 }
920 else if (__dev_get_by_name(net, newname))
921 return -EEXIST;
922 else
923 strlcpy(dev->name, newname, IFNAMSIZ);
924
925 rollback:
926 /* For now only devices in the initial network namespace
927 * are in sysfs.
928 */
929 if (net == &init_net) {
930 ret = device_rename(&dev->dev, dev->name);
931 if (ret) {
932 memcpy(dev->name, oldname, IFNAMSIZ);
933 return ret;
934 }
935 }
936
937 write_lock_bh(&dev_base_lock);
938 hlist_del(&dev->name_hlist);
939 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
940 write_unlock_bh(&dev_base_lock);
941
942 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
943 ret = notifier_to_errno(ret);
944
945 if (ret) {
946 if (err) {
947 printk(KERN_ERR
948 "%s: name change rollback failed: %d.\n",
949 dev->name, ret);
950 } else {
951 err = ret;
952 memcpy(dev->name, oldname, IFNAMSIZ);
953 goto rollback;
954 }
955 }
956
957 return err;
958 }
959
960 /**
961 * dev_set_alias - change ifalias of a device
962 * @dev: device
963 * @alias: name up to IFALIASZ
964 * @len: limit of bytes to copy from info
965 *
966 * Set ifalias for a device,
967 */
968 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
969 {
970 ASSERT_RTNL();
971
972 if (len >= IFALIASZ)
973 return -EINVAL;
974
975 if (!len) {
976 if (dev->ifalias) {
977 kfree(dev->ifalias);
978 dev->ifalias = NULL;
979 }
980 return 0;
981 }
982
983 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
984 if (!dev->ifalias)
985 return -ENOMEM;
986
987 strlcpy(dev->ifalias, alias, len+1);
988 return len;
989 }
990
991
992 /**
993 * netdev_features_change - device changes features
994 * @dev: device to cause notification
995 *
996 * Called to indicate a device has changed features.
997 */
998 void netdev_features_change(struct net_device *dev)
999 {
1000 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1001 }
1002 EXPORT_SYMBOL(netdev_features_change);
1003
1004 /**
1005 * netdev_state_change - device changes state
1006 * @dev: device to cause notification
1007 *
1008 * Called to indicate a device has changed state. This function calls
1009 * the notifier chains for netdev_chain and sends a NEWLINK message
1010 * to the routing socket.
1011 */
1012 void netdev_state_change(struct net_device *dev)
1013 {
1014 if (dev->flags & IFF_UP) {
1015 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1016 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1017 }
1018 }
1019
1020 void netdev_bonding_change(struct net_device *dev)
1021 {
1022 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1023 }
1024 EXPORT_SYMBOL(netdev_bonding_change);
1025
1026 /**
1027 * dev_load - load a network module
1028 * @net: the applicable net namespace
1029 * @name: name of interface
1030 *
1031 * If a network interface is not present and the process has suitable
1032 * privileges this function loads the module. If module loading is not
1033 * available in this kernel then it becomes a nop.
1034 */
1035
1036 void dev_load(struct net *net, const char *name)
1037 {
1038 struct net_device *dev;
1039
1040 read_lock(&dev_base_lock);
1041 dev = __dev_get_by_name(net, name);
1042 read_unlock(&dev_base_lock);
1043
1044 if (!dev && capable(CAP_SYS_MODULE))
1045 request_module("%s", name);
1046 }
1047
1048 /**
1049 * dev_open - prepare an interface for use.
1050 * @dev: device to open
1051 *
1052 * Takes a device from down to up state. The device's private open
1053 * function is invoked and then the multicast lists are loaded. Finally
1054 * the device is moved into the up state and a %NETDEV_UP message is
1055 * sent to the netdev notifier chain.
1056 *
1057 * Calling this function on an active interface is a nop. On a failure
1058 * a negative errno code is returned.
1059 */
1060 int dev_open(struct net_device *dev)
1061 {
1062 const struct net_device_ops *ops = dev->netdev_ops;
1063 int ret = 0;
1064
1065 ASSERT_RTNL();
1066
1067 /*
1068 * Is it already up?
1069 */
1070
1071 if (dev->flags & IFF_UP)
1072 return 0;
1073
1074 /*
1075 * Is it even present?
1076 */
1077 if (!netif_device_present(dev))
1078 return -ENODEV;
1079
1080 /*
1081 * Call device private open method
1082 */
1083 set_bit(__LINK_STATE_START, &dev->state);
1084
1085 if (ops->ndo_validate_addr)
1086 ret = ops->ndo_validate_addr(dev);
1087
1088 if (!ret && ops->ndo_open)
1089 ret = ops->ndo_open(dev);
1090
1091 /*
1092 * If it went open OK then:
1093 */
1094
1095 if (ret)
1096 clear_bit(__LINK_STATE_START, &dev->state);
1097 else {
1098 /*
1099 * Set the flags.
1100 */
1101 dev->flags |= IFF_UP;
1102
1103 /*
1104 * Initialize multicasting status
1105 */
1106 dev_set_rx_mode(dev);
1107
1108 /*
1109 * Wakeup transmit queue engine
1110 */
1111 dev_activate(dev);
1112
1113 /*
1114 * ... and announce new interface.
1115 */
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1117 }
1118
1119 return ret;
1120 }
1121
1122 /**
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1125 *
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1130 */
1131 int dev_close(struct net_device *dev)
1132 {
1133 const struct net_device_ops *ops = dev->netdev_ops;
1134 ASSERT_RTNL();
1135
1136 might_sleep();
1137
1138 if (!(dev->flags & IFF_UP))
1139 return 0;
1140
1141 /*
1142 * Tell people we are going down, so that they can
1143 * prepare to death, when device is still operating.
1144 */
1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1146
1147 clear_bit(__LINK_STATE_START, &dev->state);
1148
1149 /* Synchronize to scheduled poll. We cannot touch poll list,
1150 * it can be even on different cpu. So just clear netif_running().
1151 *
1152 * dev->stop() will invoke napi_disable() on all of it's
1153 * napi_struct instances on this device.
1154 */
1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1156
1157 dev_deactivate(dev);
1158
1159 /*
1160 * Call the device specific close. This cannot fail.
1161 * Only if device is UP
1162 *
1163 * We allow it to be called even after a DETACH hot-plug
1164 * event.
1165 */
1166 if (ops->ndo_stop)
1167 ops->ndo_stop(dev);
1168
1169 /*
1170 * Device is now down.
1171 */
1172
1173 dev->flags &= ~IFF_UP;
1174
1175 /*
1176 * Tell people we are down
1177 */
1178 call_netdevice_notifiers(NETDEV_DOWN, dev);
1179
1180 return 0;
1181 }
1182
1183
1184 /**
1185 * dev_disable_lro - disable Large Receive Offload on a device
1186 * @dev: device
1187 *
1188 * Disable Large Receive Offload (LRO) on a net device. Must be
1189 * called under RTNL. This is needed if received packets may be
1190 * forwarded to another interface.
1191 */
1192 void dev_disable_lro(struct net_device *dev)
1193 {
1194 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1195 dev->ethtool_ops->set_flags) {
1196 u32 flags = dev->ethtool_ops->get_flags(dev);
1197 if (flags & ETH_FLAG_LRO) {
1198 flags &= ~ETH_FLAG_LRO;
1199 dev->ethtool_ops->set_flags(dev, flags);
1200 }
1201 }
1202 WARN_ON(dev->features & NETIF_F_LRO);
1203 }
1204 EXPORT_SYMBOL(dev_disable_lro);
1205
1206
1207 static int dev_boot_phase = 1;
1208
1209 /*
1210 * Device change register/unregister. These are not inline or static
1211 * as we export them to the world.
1212 */
1213
1214 /**
1215 * register_netdevice_notifier - register a network notifier block
1216 * @nb: notifier
1217 *
1218 * Register a notifier to be called when network device events occur.
1219 * The notifier passed is linked into the kernel structures and must
1220 * not be reused until it has been unregistered. A negative errno code
1221 * is returned on a failure.
1222 *
1223 * When registered all registration and up events are replayed
1224 * to the new notifier to allow device to have a race free
1225 * view of the network device list.
1226 */
1227
1228 int register_netdevice_notifier(struct notifier_block *nb)
1229 {
1230 struct net_device *dev;
1231 struct net_device *last;
1232 struct net *net;
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_register(&netdev_chain, nb);
1237 if (err)
1238 goto unlock;
1239 if (dev_boot_phase)
1240 goto unlock;
1241 for_each_net(net) {
1242 for_each_netdev(net, dev) {
1243 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1244 err = notifier_to_errno(err);
1245 if (err)
1246 goto rollback;
1247
1248 if (!(dev->flags & IFF_UP))
1249 continue;
1250
1251 nb->notifier_call(nb, NETDEV_UP, dev);
1252 }
1253 }
1254
1255 unlock:
1256 rtnl_unlock();
1257 return err;
1258
1259 rollback:
1260 last = dev;
1261 for_each_net(net) {
1262 for_each_netdev(net, dev) {
1263 if (dev == last)
1264 break;
1265
1266 if (dev->flags & IFF_UP) {
1267 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1268 nb->notifier_call(nb, NETDEV_DOWN, dev);
1269 }
1270 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1271 }
1272 }
1273
1274 raw_notifier_chain_unregister(&netdev_chain, nb);
1275 goto unlock;
1276 }
1277
1278 /**
1279 * unregister_netdevice_notifier - unregister a network notifier block
1280 * @nb: notifier
1281 *
1282 * Unregister a notifier previously registered by
1283 * register_netdevice_notifier(). The notifier is unlinked into the
1284 * kernel structures and may then be reused. A negative errno code
1285 * is returned on a failure.
1286 */
1287
1288 int unregister_netdevice_notifier(struct notifier_block *nb)
1289 {
1290 int err;
1291
1292 rtnl_lock();
1293 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1294 rtnl_unlock();
1295 return err;
1296 }
1297
1298 /**
1299 * call_netdevice_notifiers - call all network notifier blocks
1300 * @val: value passed unmodified to notifier function
1301 * @dev: net_device pointer passed unmodified to notifier function
1302 *
1303 * Call all network notifier blocks. Parameters and return value
1304 * are as for raw_notifier_call_chain().
1305 */
1306
1307 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1308 {
1309 return raw_notifier_call_chain(&netdev_chain, val, dev);
1310 }
1311
1312 /* When > 0 there are consumers of rx skb time stamps */
1313 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1314
1315 void net_enable_timestamp(void)
1316 {
1317 atomic_inc(&netstamp_needed);
1318 }
1319
1320 void net_disable_timestamp(void)
1321 {
1322 atomic_dec(&netstamp_needed);
1323 }
1324
1325 static inline void net_timestamp(struct sk_buff *skb)
1326 {
1327 if (atomic_read(&netstamp_needed))
1328 __net_timestamp(skb);
1329 else
1330 skb->tstamp.tv64 = 0;
1331 }
1332
1333 /*
1334 * Support routine. Sends outgoing frames to any network
1335 * taps currently in use.
1336 */
1337
1338 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1339 {
1340 struct packet_type *ptype;
1341
1342 net_timestamp(skb);
1343
1344 rcu_read_lock();
1345 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1346 /* Never send packets back to the socket
1347 * they originated from - MvS (miquels@drinkel.ow.org)
1348 */
1349 if ((ptype->dev == dev || !ptype->dev) &&
1350 (ptype->af_packet_priv == NULL ||
1351 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1352 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1353 if (!skb2)
1354 break;
1355
1356 /* skb->nh should be correctly
1357 set by sender, so that the second statement is
1358 just protection against buggy protocols.
1359 */
1360 skb_reset_mac_header(skb2);
1361
1362 if (skb_network_header(skb2) < skb2->data ||
1363 skb2->network_header > skb2->tail) {
1364 if (net_ratelimit())
1365 printk(KERN_CRIT "protocol %04x is "
1366 "buggy, dev %s\n",
1367 skb2->protocol, dev->name);
1368 skb_reset_network_header(skb2);
1369 }
1370
1371 skb2->transport_header = skb2->network_header;
1372 skb2->pkt_type = PACKET_OUTGOING;
1373 ptype->func(skb2, skb->dev, ptype, skb->dev);
1374 }
1375 }
1376 rcu_read_unlock();
1377 }
1378
1379
1380 static inline void __netif_reschedule(struct Qdisc *q)
1381 {
1382 struct softnet_data *sd;
1383 unsigned long flags;
1384
1385 local_irq_save(flags);
1386 sd = &__get_cpu_var(softnet_data);
1387 q->next_sched = sd->output_queue;
1388 sd->output_queue = q;
1389 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1390 local_irq_restore(flags);
1391 }
1392
1393 void __netif_schedule(struct Qdisc *q)
1394 {
1395 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1396 __netif_reschedule(q);
1397 }
1398 EXPORT_SYMBOL(__netif_schedule);
1399
1400 void dev_kfree_skb_irq(struct sk_buff *skb)
1401 {
1402 if (atomic_dec_and_test(&skb->users)) {
1403 struct softnet_data *sd;
1404 unsigned long flags;
1405
1406 local_irq_save(flags);
1407 sd = &__get_cpu_var(softnet_data);
1408 skb->next = sd->completion_queue;
1409 sd->completion_queue = skb;
1410 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1411 local_irq_restore(flags);
1412 }
1413 }
1414 EXPORT_SYMBOL(dev_kfree_skb_irq);
1415
1416 void dev_kfree_skb_any(struct sk_buff *skb)
1417 {
1418 if (in_irq() || irqs_disabled())
1419 dev_kfree_skb_irq(skb);
1420 else
1421 dev_kfree_skb(skb);
1422 }
1423 EXPORT_SYMBOL(dev_kfree_skb_any);
1424
1425
1426 /**
1427 * netif_device_detach - mark device as removed
1428 * @dev: network device
1429 *
1430 * Mark device as removed from system and therefore no longer available.
1431 */
1432 void netif_device_detach(struct net_device *dev)
1433 {
1434 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1435 netif_running(dev)) {
1436 netif_stop_queue(dev);
1437 }
1438 }
1439 EXPORT_SYMBOL(netif_device_detach);
1440
1441 /**
1442 * netif_device_attach - mark device as attached
1443 * @dev: network device
1444 *
1445 * Mark device as attached from system and restart if needed.
1446 */
1447 void netif_device_attach(struct net_device *dev)
1448 {
1449 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1450 netif_running(dev)) {
1451 netif_wake_queue(dev);
1452 __netdev_watchdog_up(dev);
1453 }
1454 }
1455 EXPORT_SYMBOL(netif_device_attach);
1456
1457 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1458 {
1459 return ((features & NETIF_F_GEN_CSUM) ||
1460 ((features & NETIF_F_IP_CSUM) &&
1461 protocol == htons(ETH_P_IP)) ||
1462 ((features & NETIF_F_IPV6_CSUM) &&
1463 protocol == htons(ETH_P_IPV6)));
1464 }
1465
1466 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1467 {
1468 if (can_checksum_protocol(dev->features, skb->protocol))
1469 return true;
1470
1471 if (skb->protocol == htons(ETH_P_8021Q)) {
1472 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1473 if (can_checksum_protocol(dev->features & dev->vlan_features,
1474 veh->h_vlan_encapsulated_proto))
1475 return true;
1476 }
1477
1478 return false;
1479 }
1480
1481 /*
1482 * Invalidate hardware checksum when packet is to be mangled, and
1483 * complete checksum manually on outgoing path.
1484 */
1485 int skb_checksum_help(struct sk_buff *skb)
1486 {
1487 __wsum csum;
1488 int ret = 0, offset;
1489
1490 if (skb->ip_summed == CHECKSUM_COMPLETE)
1491 goto out_set_summed;
1492
1493 if (unlikely(skb_shinfo(skb)->gso_size)) {
1494 /* Let GSO fix up the checksum. */
1495 goto out_set_summed;
1496 }
1497
1498 offset = skb->csum_start - skb_headroom(skb);
1499 BUG_ON(offset >= skb_headlen(skb));
1500 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1501
1502 offset += skb->csum_offset;
1503 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1504
1505 if (skb_cloned(skb) &&
1506 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1507 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1508 if (ret)
1509 goto out;
1510 }
1511
1512 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1513 out_set_summed:
1514 skb->ip_summed = CHECKSUM_NONE;
1515 out:
1516 return ret;
1517 }
1518
1519 /**
1520 * skb_gso_segment - Perform segmentation on skb.
1521 * @skb: buffer to segment
1522 * @features: features for the output path (see dev->features)
1523 *
1524 * This function segments the given skb and returns a list of segments.
1525 *
1526 * It may return NULL if the skb requires no segmentation. This is
1527 * only possible when GSO is used for verifying header integrity.
1528 */
1529 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1530 {
1531 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1532 struct packet_type *ptype;
1533 __be16 type = skb->protocol;
1534 int err;
1535
1536 BUG_ON(skb_shinfo(skb)->frag_list);
1537
1538 skb_reset_mac_header(skb);
1539 skb->mac_len = skb->network_header - skb->mac_header;
1540 __skb_pull(skb, skb->mac_len);
1541
1542 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1543 if (skb_header_cloned(skb) &&
1544 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1545 return ERR_PTR(err);
1546 }
1547
1548 rcu_read_lock();
1549 list_for_each_entry_rcu(ptype,
1550 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1551 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1553 err = ptype->gso_send_check(skb);
1554 segs = ERR_PTR(err);
1555 if (err || skb_gso_ok(skb, features))
1556 break;
1557 __skb_push(skb, (skb->data -
1558 skb_network_header(skb)));
1559 }
1560 segs = ptype->gso_segment(skb, features);
1561 break;
1562 }
1563 }
1564 rcu_read_unlock();
1565
1566 __skb_push(skb, skb->data - skb_mac_header(skb));
1567
1568 return segs;
1569 }
1570
1571 EXPORT_SYMBOL(skb_gso_segment);
1572
1573 /* Take action when hardware reception checksum errors are detected. */
1574 #ifdef CONFIG_BUG
1575 void netdev_rx_csum_fault(struct net_device *dev)
1576 {
1577 if (net_ratelimit()) {
1578 printk(KERN_ERR "%s: hw csum failure.\n",
1579 dev ? dev->name : "<unknown>");
1580 dump_stack();
1581 }
1582 }
1583 EXPORT_SYMBOL(netdev_rx_csum_fault);
1584 #endif
1585
1586 /* Actually, we should eliminate this check as soon as we know, that:
1587 * 1. IOMMU is present and allows to map all the memory.
1588 * 2. No high memory really exists on this machine.
1589 */
1590
1591 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1592 {
1593 #ifdef CONFIG_HIGHMEM
1594 int i;
1595
1596 if (dev->features & NETIF_F_HIGHDMA)
1597 return 0;
1598
1599 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1600 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1601 return 1;
1602
1603 #endif
1604 return 0;
1605 }
1606
1607 struct dev_gso_cb {
1608 void (*destructor)(struct sk_buff *skb);
1609 };
1610
1611 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1612
1613 static void dev_gso_skb_destructor(struct sk_buff *skb)
1614 {
1615 struct dev_gso_cb *cb;
1616
1617 do {
1618 struct sk_buff *nskb = skb->next;
1619
1620 skb->next = nskb->next;
1621 nskb->next = NULL;
1622 kfree_skb(nskb);
1623 } while (skb->next);
1624
1625 cb = DEV_GSO_CB(skb);
1626 if (cb->destructor)
1627 cb->destructor(skb);
1628 }
1629
1630 /**
1631 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1632 * @skb: buffer to segment
1633 *
1634 * This function segments the given skb and stores the list of segments
1635 * in skb->next.
1636 */
1637 static int dev_gso_segment(struct sk_buff *skb)
1638 {
1639 struct net_device *dev = skb->dev;
1640 struct sk_buff *segs;
1641 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1642 NETIF_F_SG : 0);
1643
1644 segs = skb_gso_segment(skb, features);
1645
1646 /* Verifying header integrity only. */
1647 if (!segs)
1648 return 0;
1649
1650 if (IS_ERR(segs))
1651 return PTR_ERR(segs);
1652
1653 skb->next = segs;
1654 DEV_GSO_CB(skb)->destructor = skb->destructor;
1655 skb->destructor = dev_gso_skb_destructor;
1656
1657 return 0;
1658 }
1659
1660 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1661 struct netdev_queue *txq)
1662 {
1663 if (likely(!skb->next)) {
1664 if (!list_empty(&ptype_all))
1665 dev_queue_xmit_nit(skb, dev);
1666
1667 if (netif_needs_gso(dev, skb)) {
1668 if (unlikely(dev_gso_segment(skb)))
1669 goto out_kfree_skb;
1670 if (skb->next)
1671 goto gso;
1672 }
1673
1674 return dev->hard_start_xmit(skb, dev);
1675 }
1676
1677 gso:
1678 do {
1679 struct sk_buff *nskb = skb->next;
1680 int rc;
1681
1682 skb->next = nskb->next;
1683 nskb->next = NULL;
1684 rc = dev->hard_start_xmit(nskb, dev);
1685 if (unlikely(rc)) {
1686 nskb->next = skb->next;
1687 skb->next = nskb;
1688 return rc;
1689 }
1690 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1691 return NETDEV_TX_BUSY;
1692 } while (skb->next);
1693
1694 skb->destructor = DEV_GSO_CB(skb)->destructor;
1695
1696 out_kfree_skb:
1697 kfree_skb(skb);
1698 return 0;
1699 }
1700
1701 static u32 simple_tx_hashrnd;
1702 static int simple_tx_hashrnd_initialized = 0;
1703
1704 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1705 {
1706 u32 addr1, addr2, ports;
1707 u32 hash, ihl;
1708 u8 ip_proto = 0;
1709
1710 if (unlikely(!simple_tx_hashrnd_initialized)) {
1711 get_random_bytes(&simple_tx_hashrnd, 4);
1712 simple_tx_hashrnd_initialized = 1;
1713 }
1714
1715 switch (skb->protocol) {
1716 case htons(ETH_P_IP):
1717 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1718 ip_proto = ip_hdr(skb)->protocol;
1719 addr1 = ip_hdr(skb)->saddr;
1720 addr2 = ip_hdr(skb)->daddr;
1721 ihl = ip_hdr(skb)->ihl;
1722 break;
1723 case htons(ETH_P_IPV6):
1724 ip_proto = ipv6_hdr(skb)->nexthdr;
1725 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1726 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1727 ihl = (40 >> 2);
1728 break;
1729 default:
1730 return 0;
1731 }
1732
1733
1734 switch (ip_proto) {
1735 case IPPROTO_TCP:
1736 case IPPROTO_UDP:
1737 case IPPROTO_DCCP:
1738 case IPPROTO_ESP:
1739 case IPPROTO_AH:
1740 case IPPROTO_SCTP:
1741 case IPPROTO_UDPLITE:
1742 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1743 break;
1744
1745 default:
1746 ports = 0;
1747 break;
1748 }
1749
1750 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1751
1752 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1753 }
1754
1755 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1756 struct sk_buff *skb)
1757 {
1758 u16 queue_index = 0;
1759
1760 if (dev->select_queue)
1761 queue_index = dev->select_queue(dev, skb);
1762 else if (dev->real_num_tx_queues > 1)
1763 queue_index = simple_tx_hash(dev, skb);
1764
1765 skb_set_queue_mapping(skb, queue_index);
1766 return netdev_get_tx_queue(dev, queue_index);
1767 }
1768
1769 /**
1770 * dev_queue_xmit - transmit a buffer
1771 * @skb: buffer to transmit
1772 *
1773 * Queue a buffer for transmission to a network device. The caller must
1774 * have set the device and priority and built the buffer before calling
1775 * this function. The function can be called from an interrupt.
1776 *
1777 * A negative errno code is returned on a failure. A success does not
1778 * guarantee the frame will be transmitted as it may be dropped due
1779 * to congestion or traffic shaping.
1780 *
1781 * -----------------------------------------------------------------------------------
1782 * I notice this method can also return errors from the queue disciplines,
1783 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1784 * be positive.
1785 *
1786 * Regardless of the return value, the skb is consumed, so it is currently
1787 * difficult to retry a send to this method. (You can bump the ref count
1788 * before sending to hold a reference for retry if you are careful.)
1789 *
1790 * When calling this method, interrupts MUST be enabled. This is because
1791 * the BH enable code must have IRQs enabled so that it will not deadlock.
1792 * --BLG
1793 */
1794 int dev_queue_xmit(struct sk_buff *skb)
1795 {
1796 struct net_device *dev = skb->dev;
1797 struct netdev_queue *txq;
1798 struct Qdisc *q;
1799 int rc = -ENOMEM;
1800
1801 /* GSO will handle the following emulations directly. */
1802 if (netif_needs_gso(dev, skb))
1803 goto gso;
1804
1805 if (skb_shinfo(skb)->frag_list &&
1806 !(dev->features & NETIF_F_FRAGLIST) &&
1807 __skb_linearize(skb))
1808 goto out_kfree_skb;
1809
1810 /* Fragmented skb is linearized if device does not support SG,
1811 * or if at least one of fragments is in highmem and device
1812 * does not support DMA from it.
1813 */
1814 if (skb_shinfo(skb)->nr_frags &&
1815 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1816 __skb_linearize(skb))
1817 goto out_kfree_skb;
1818
1819 /* If packet is not checksummed and device does not support
1820 * checksumming for this protocol, complete checksumming here.
1821 */
1822 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1823 skb_set_transport_header(skb, skb->csum_start -
1824 skb_headroom(skb));
1825 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1826 goto out_kfree_skb;
1827 }
1828
1829 gso:
1830 /* Disable soft irqs for various locks below. Also
1831 * stops preemption for RCU.
1832 */
1833 rcu_read_lock_bh();
1834
1835 txq = dev_pick_tx(dev, skb);
1836 q = rcu_dereference(txq->qdisc);
1837
1838 #ifdef CONFIG_NET_CLS_ACT
1839 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1840 #endif
1841 if (q->enqueue) {
1842 spinlock_t *root_lock = qdisc_lock(q);
1843
1844 spin_lock(root_lock);
1845
1846 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1847 kfree_skb(skb);
1848 rc = NET_XMIT_DROP;
1849 } else {
1850 rc = qdisc_enqueue_root(skb, q);
1851 qdisc_run(q);
1852 }
1853 spin_unlock(root_lock);
1854
1855 goto out;
1856 }
1857
1858 /* The device has no queue. Common case for software devices:
1859 loopback, all the sorts of tunnels...
1860
1861 Really, it is unlikely that netif_tx_lock protection is necessary
1862 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1863 counters.)
1864 However, it is possible, that they rely on protection
1865 made by us here.
1866
1867 Check this and shot the lock. It is not prone from deadlocks.
1868 Either shot noqueue qdisc, it is even simpler 8)
1869 */
1870 if (dev->flags & IFF_UP) {
1871 int cpu = smp_processor_id(); /* ok because BHs are off */
1872
1873 if (txq->xmit_lock_owner != cpu) {
1874
1875 HARD_TX_LOCK(dev, txq, cpu);
1876
1877 if (!netif_tx_queue_stopped(txq)) {
1878 rc = 0;
1879 if (!dev_hard_start_xmit(skb, dev, txq)) {
1880 HARD_TX_UNLOCK(dev, txq);
1881 goto out;
1882 }
1883 }
1884 HARD_TX_UNLOCK(dev, txq);
1885 if (net_ratelimit())
1886 printk(KERN_CRIT "Virtual device %s asks to "
1887 "queue packet!\n", dev->name);
1888 } else {
1889 /* Recursion is detected! It is possible,
1890 * unfortunately */
1891 if (net_ratelimit())
1892 printk(KERN_CRIT "Dead loop on virtual device "
1893 "%s, fix it urgently!\n", dev->name);
1894 }
1895 }
1896
1897 rc = -ENETDOWN;
1898 rcu_read_unlock_bh();
1899
1900 out_kfree_skb:
1901 kfree_skb(skb);
1902 return rc;
1903 out:
1904 rcu_read_unlock_bh();
1905 return rc;
1906 }
1907
1908
1909 /*=======================================================================
1910 Receiver routines
1911 =======================================================================*/
1912
1913 int netdev_max_backlog __read_mostly = 1000;
1914 int netdev_budget __read_mostly = 300;
1915 int weight_p __read_mostly = 64; /* old backlog weight */
1916
1917 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1918
1919
1920 /**
1921 * netif_rx - post buffer to the network code
1922 * @skb: buffer to post
1923 *
1924 * This function receives a packet from a device driver and queues it for
1925 * the upper (protocol) levels to process. It always succeeds. The buffer
1926 * may be dropped during processing for congestion control or by the
1927 * protocol layers.
1928 *
1929 * return values:
1930 * NET_RX_SUCCESS (no congestion)
1931 * NET_RX_DROP (packet was dropped)
1932 *
1933 */
1934
1935 int netif_rx(struct sk_buff *skb)
1936 {
1937 struct softnet_data *queue;
1938 unsigned long flags;
1939
1940 /* if netpoll wants it, pretend we never saw it */
1941 if (netpoll_rx(skb))
1942 return NET_RX_DROP;
1943
1944 if (!skb->tstamp.tv64)
1945 net_timestamp(skb);
1946
1947 /*
1948 * The code is rearranged so that the path is the most
1949 * short when CPU is congested, but is still operating.
1950 */
1951 local_irq_save(flags);
1952 queue = &__get_cpu_var(softnet_data);
1953
1954 __get_cpu_var(netdev_rx_stat).total++;
1955 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1956 if (queue->input_pkt_queue.qlen) {
1957 enqueue:
1958 __skb_queue_tail(&queue->input_pkt_queue, skb);
1959 local_irq_restore(flags);
1960 return NET_RX_SUCCESS;
1961 }
1962
1963 napi_schedule(&queue->backlog);
1964 goto enqueue;
1965 }
1966
1967 __get_cpu_var(netdev_rx_stat).dropped++;
1968 local_irq_restore(flags);
1969
1970 kfree_skb(skb);
1971 return NET_RX_DROP;
1972 }
1973
1974 int netif_rx_ni(struct sk_buff *skb)
1975 {
1976 int err;
1977
1978 preempt_disable();
1979 err = netif_rx(skb);
1980 if (local_softirq_pending())
1981 do_softirq();
1982 preempt_enable();
1983
1984 return err;
1985 }
1986
1987 EXPORT_SYMBOL(netif_rx_ni);
1988
1989 static void net_tx_action(struct softirq_action *h)
1990 {
1991 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1992
1993 if (sd->completion_queue) {
1994 struct sk_buff *clist;
1995
1996 local_irq_disable();
1997 clist = sd->completion_queue;
1998 sd->completion_queue = NULL;
1999 local_irq_enable();
2000
2001 while (clist) {
2002 struct sk_buff *skb = clist;
2003 clist = clist->next;
2004
2005 WARN_ON(atomic_read(&skb->users));
2006 __kfree_skb(skb);
2007 }
2008 }
2009
2010 if (sd->output_queue) {
2011 struct Qdisc *head;
2012
2013 local_irq_disable();
2014 head = sd->output_queue;
2015 sd->output_queue = NULL;
2016 local_irq_enable();
2017
2018 while (head) {
2019 struct Qdisc *q = head;
2020 spinlock_t *root_lock;
2021
2022 head = head->next_sched;
2023
2024 root_lock = qdisc_lock(q);
2025 if (spin_trylock(root_lock)) {
2026 smp_mb__before_clear_bit();
2027 clear_bit(__QDISC_STATE_SCHED,
2028 &q->state);
2029 qdisc_run(q);
2030 spin_unlock(root_lock);
2031 } else {
2032 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2033 &q->state)) {
2034 __netif_reschedule(q);
2035 } else {
2036 smp_mb__before_clear_bit();
2037 clear_bit(__QDISC_STATE_SCHED,
2038 &q->state);
2039 }
2040 }
2041 }
2042 }
2043 }
2044
2045 static inline int deliver_skb(struct sk_buff *skb,
2046 struct packet_type *pt_prev,
2047 struct net_device *orig_dev)
2048 {
2049 atomic_inc(&skb->users);
2050 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2051 }
2052
2053 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2054 /* These hooks defined here for ATM */
2055 struct net_bridge;
2056 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2057 unsigned char *addr);
2058 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2059
2060 /*
2061 * If bridge module is loaded call bridging hook.
2062 * returns NULL if packet was consumed.
2063 */
2064 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2065 struct sk_buff *skb) __read_mostly;
2066 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2067 struct packet_type **pt_prev, int *ret,
2068 struct net_device *orig_dev)
2069 {
2070 struct net_bridge_port *port;
2071
2072 if (skb->pkt_type == PACKET_LOOPBACK ||
2073 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2074 return skb;
2075
2076 if (*pt_prev) {
2077 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2078 *pt_prev = NULL;
2079 }
2080
2081 return br_handle_frame_hook(port, skb);
2082 }
2083 #else
2084 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2085 #endif
2086
2087 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2088 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2089 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2090
2091 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2092 struct packet_type **pt_prev,
2093 int *ret,
2094 struct net_device *orig_dev)
2095 {
2096 if (skb->dev->macvlan_port == NULL)
2097 return skb;
2098
2099 if (*pt_prev) {
2100 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2101 *pt_prev = NULL;
2102 }
2103 return macvlan_handle_frame_hook(skb);
2104 }
2105 #else
2106 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2107 #endif
2108
2109 #ifdef CONFIG_NET_CLS_ACT
2110 /* TODO: Maybe we should just force sch_ingress to be compiled in
2111 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2112 * a compare and 2 stores extra right now if we dont have it on
2113 * but have CONFIG_NET_CLS_ACT
2114 * NOTE: This doesnt stop any functionality; if you dont have
2115 * the ingress scheduler, you just cant add policies on ingress.
2116 *
2117 */
2118 static int ing_filter(struct sk_buff *skb)
2119 {
2120 struct net_device *dev = skb->dev;
2121 u32 ttl = G_TC_RTTL(skb->tc_verd);
2122 struct netdev_queue *rxq;
2123 int result = TC_ACT_OK;
2124 struct Qdisc *q;
2125
2126 if (MAX_RED_LOOP < ttl++) {
2127 printk(KERN_WARNING
2128 "Redir loop detected Dropping packet (%d->%d)\n",
2129 skb->iif, dev->ifindex);
2130 return TC_ACT_SHOT;
2131 }
2132
2133 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2134 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2135
2136 rxq = &dev->rx_queue;
2137
2138 q = rxq->qdisc;
2139 if (q != &noop_qdisc) {
2140 spin_lock(qdisc_lock(q));
2141 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2142 result = qdisc_enqueue_root(skb, q);
2143 spin_unlock(qdisc_lock(q));
2144 }
2145
2146 return result;
2147 }
2148
2149 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2150 struct packet_type **pt_prev,
2151 int *ret, struct net_device *orig_dev)
2152 {
2153 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2154 goto out;
2155
2156 if (*pt_prev) {
2157 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2158 *pt_prev = NULL;
2159 } else {
2160 /* Huh? Why does turning on AF_PACKET affect this? */
2161 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2162 }
2163
2164 switch (ing_filter(skb)) {
2165 case TC_ACT_SHOT:
2166 case TC_ACT_STOLEN:
2167 kfree_skb(skb);
2168 return NULL;
2169 }
2170
2171 out:
2172 skb->tc_verd = 0;
2173 return skb;
2174 }
2175 #endif
2176
2177 /*
2178 * netif_nit_deliver - deliver received packets to network taps
2179 * @skb: buffer
2180 *
2181 * This function is used to deliver incoming packets to network
2182 * taps. It should be used when the normal netif_receive_skb path
2183 * is bypassed, for example because of VLAN acceleration.
2184 */
2185 void netif_nit_deliver(struct sk_buff *skb)
2186 {
2187 struct packet_type *ptype;
2188
2189 if (list_empty(&ptype_all))
2190 return;
2191
2192 skb_reset_network_header(skb);
2193 skb_reset_transport_header(skb);
2194 skb->mac_len = skb->network_header - skb->mac_header;
2195
2196 rcu_read_lock();
2197 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2198 if (!ptype->dev || ptype->dev == skb->dev)
2199 deliver_skb(skb, ptype, skb->dev);
2200 }
2201 rcu_read_unlock();
2202 }
2203
2204 /**
2205 * netif_receive_skb - process receive buffer from network
2206 * @skb: buffer to process
2207 *
2208 * netif_receive_skb() is the main receive data processing function.
2209 * It always succeeds. The buffer may be dropped during processing
2210 * for congestion control or by the protocol layers.
2211 *
2212 * This function may only be called from softirq context and interrupts
2213 * should be enabled.
2214 *
2215 * Return values (usually ignored):
2216 * NET_RX_SUCCESS: no congestion
2217 * NET_RX_DROP: packet was dropped
2218 */
2219 int netif_receive_skb(struct sk_buff *skb)
2220 {
2221 struct packet_type *ptype, *pt_prev;
2222 struct net_device *orig_dev;
2223 struct net_device *null_or_orig;
2224 int ret = NET_RX_DROP;
2225 __be16 type;
2226
2227 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2228 return NET_RX_SUCCESS;
2229
2230 /* if we've gotten here through NAPI, check netpoll */
2231 if (netpoll_receive_skb(skb))
2232 return NET_RX_DROP;
2233
2234 if (!skb->tstamp.tv64)
2235 net_timestamp(skb);
2236
2237 if (!skb->iif)
2238 skb->iif = skb->dev->ifindex;
2239
2240 null_or_orig = NULL;
2241 orig_dev = skb->dev;
2242 if (orig_dev->master) {
2243 if (skb_bond_should_drop(skb))
2244 null_or_orig = orig_dev; /* deliver only exact match */
2245 else
2246 skb->dev = orig_dev->master;
2247 }
2248
2249 __get_cpu_var(netdev_rx_stat).total++;
2250
2251 skb_reset_network_header(skb);
2252 skb_reset_transport_header(skb);
2253 skb->mac_len = skb->network_header - skb->mac_header;
2254
2255 pt_prev = NULL;
2256
2257 rcu_read_lock();
2258
2259 /* Don't receive packets in an exiting network namespace */
2260 if (!net_alive(dev_net(skb->dev))) {
2261 kfree_skb(skb);
2262 goto out;
2263 }
2264
2265 #ifdef CONFIG_NET_CLS_ACT
2266 if (skb->tc_verd & TC_NCLS) {
2267 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2268 goto ncls;
2269 }
2270 #endif
2271
2272 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2273 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2274 ptype->dev == orig_dev) {
2275 if (pt_prev)
2276 ret = deliver_skb(skb, pt_prev, orig_dev);
2277 pt_prev = ptype;
2278 }
2279 }
2280
2281 #ifdef CONFIG_NET_CLS_ACT
2282 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2283 if (!skb)
2284 goto out;
2285 ncls:
2286 #endif
2287
2288 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2289 if (!skb)
2290 goto out;
2291 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2292 if (!skb)
2293 goto out;
2294
2295 type = skb->protocol;
2296 list_for_each_entry_rcu(ptype,
2297 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2298 if (ptype->type == type &&
2299 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2300 ptype->dev == orig_dev)) {
2301 if (pt_prev)
2302 ret = deliver_skb(skb, pt_prev, orig_dev);
2303 pt_prev = ptype;
2304 }
2305 }
2306
2307 if (pt_prev) {
2308 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2309 } else {
2310 kfree_skb(skb);
2311 /* Jamal, now you will not able to escape explaining
2312 * me how you were going to use this. :-)
2313 */
2314 ret = NET_RX_DROP;
2315 }
2316
2317 out:
2318 rcu_read_unlock();
2319 return ret;
2320 }
2321
2322 /* Network device is going away, flush any packets still pending */
2323 static void flush_backlog(void *arg)
2324 {
2325 struct net_device *dev = arg;
2326 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2327 struct sk_buff *skb, *tmp;
2328
2329 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2330 if (skb->dev == dev) {
2331 __skb_unlink(skb, &queue->input_pkt_queue);
2332 kfree_skb(skb);
2333 }
2334 }
2335
2336 static int process_backlog(struct napi_struct *napi, int quota)
2337 {
2338 int work = 0;
2339 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2340 unsigned long start_time = jiffies;
2341
2342 napi->weight = weight_p;
2343 do {
2344 struct sk_buff *skb;
2345
2346 local_irq_disable();
2347 skb = __skb_dequeue(&queue->input_pkt_queue);
2348 if (!skb) {
2349 __napi_complete(napi);
2350 local_irq_enable();
2351 break;
2352 }
2353 local_irq_enable();
2354
2355 netif_receive_skb(skb);
2356 } while (++work < quota && jiffies == start_time);
2357
2358 return work;
2359 }
2360
2361 /**
2362 * __napi_schedule - schedule for receive
2363 * @n: entry to schedule
2364 *
2365 * The entry's receive function will be scheduled to run
2366 */
2367 void __napi_schedule(struct napi_struct *n)
2368 {
2369 unsigned long flags;
2370
2371 local_irq_save(flags);
2372 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2373 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2374 local_irq_restore(flags);
2375 }
2376 EXPORT_SYMBOL(__napi_schedule);
2377
2378
2379 static void net_rx_action(struct softirq_action *h)
2380 {
2381 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2382 unsigned long time_limit = jiffies + 2;
2383 int budget = netdev_budget;
2384 void *have;
2385
2386 local_irq_disable();
2387
2388 while (!list_empty(list)) {
2389 struct napi_struct *n;
2390 int work, weight;
2391
2392 /* If softirq window is exhuasted then punt.
2393 * Allow this to run for 2 jiffies since which will allow
2394 * an average latency of 1.5/HZ.
2395 */
2396 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2397 goto softnet_break;
2398
2399 local_irq_enable();
2400
2401 /* Even though interrupts have been re-enabled, this
2402 * access is safe because interrupts can only add new
2403 * entries to the tail of this list, and only ->poll()
2404 * calls can remove this head entry from the list.
2405 */
2406 n = list_entry(list->next, struct napi_struct, poll_list);
2407
2408 have = netpoll_poll_lock(n);
2409
2410 weight = n->weight;
2411
2412 /* This NAPI_STATE_SCHED test is for avoiding a race
2413 * with netpoll's poll_napi(). Only the entity which
2414 * obtains the lock and sees NAPI_STATE_SCHED set will
2415 * actually make the ->poll() call. Therefore we avoid
2416 * accidently calling ->poll() when NAPI is not scheduled.
2417 */
2418 work = 0;
2419 if (test_bit(NAPI_STATE_SCHED, &n->state))
2420 work = n->poll(n, weight);
2421
2422 WARN_ON_ONCE(work > weight);
2423
2424 budget -= work;
2425
2426 local_irq_disable();
2427
2428 /* Drivers must not modify the NAPI state if they
2429 * consume the entire weight. In such cases this code
2430 * still "owns" the NAPI instance and therefore can
2431 * move the instance around on the list at-will.
2432 */
2433 if (unlikely(work == weight)) {
2434 if (unlikely(napi_disable_pending(n)))
2435 __napi_complete(n);
2436 else
2437 list_move_tail(&n->poll_list, list);
2438 }
2439
2440 netpoll_poll_unlock(have);
2441 }
2442 out:
2443 local_irq_enable();
2444
2445 #ifdef CONFIG_NET_DMA
2446 /*
2447 * There may not be any more sk_buffs coming right now, so push
2448 * any pending DMA copies to hardware
2449 */
2450 if (!cpus_empty(net_dma.channel_mask)) {
2451 int chan_idx;
2452 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2453 struct dma_chan *chan = net_dma.channels[chan_idx];
2454 if (chan)
2455 dma_async_memcpy_issue_pending(chan);
2456 }
2457 }
2458 #endif
2459
2460 return;
2461
2462 softnet_break:
2463 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2464 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2465 goto out;
2466 }
2467
2468 static gifconf_func_t * gifconf_list [NPROTO];
2469
2470 /**
2471 * register_gifconf - register a SIOCGIF handler
2472 * @family: Address family
2473 * @gifconf: Function handler
2474 *
2475 * Register protocol dependent address dumping routines. The handler
2476 * that is passed must not be freed or reused until it has been replaced
2477 * by another handler.
2478 */
2479 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2480 {
2481 if (family >= NPROTO)
2482 return -EINVAL;
2483 gifconf_list[family] = gifconf;
2484 return 0;
2485 }
2486
2487
2488 /*
2489 * Map an interface index to its name (SIOCGIFNAME)
2490 */
2491
2492 /*
2493 * We need this ioctl for efficient implementation of the
2494 * if_indextoname() function required by the IPv6 API. Without
2495 * it, we would have to search all the interfaces to find a
2496 * match. --pb
2497 */
2498
2499 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2500 {
2501 struct net_device *dev;
2502 struct ifreq ifr;
2503
2504 /*
2505 * Fetch the caller's info block.
2506 */
2507
2508 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2509 return -EFAULT;
2510
2511 read_lock(&dev_base_lock);
2512 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2513 if (!dev) {
2514 read_unlock(&dev_base_lock);
2515 return -ENODEV;
2516 }
2517
2518 strcpy(ifr.ifr_name, dev->name);
2519 read_unlock(&dev_base_lock);
2520
2521 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2522 return -EFAULT;
2523 return 0;
2524 }
2525
2526 /*
2527 * Perform a SIOCGIFCONF call. This structure will change
2528 * size eventually, and there is nothing I can do about it.
2529 * Thus we will need a 'compatibility mode'.
2530 */
2531
2532 static int dev_ifconf(struct net *net, char __user *arg)
2533 {
2534 struct ifconf ifc;
2535 struct net_device *dev;
2536 char __user *pos;
2537 int len;
2538 int total;
2539 int i;
2540
2541 /*
2542 * Fetch the caller's info block.
2543 */
2544
2545 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2546 return -EFAULT;
2547
2548 pos = ifc.ifc_buf;
2549 len = ifc.ifc_len;
2550
2551 /*
2552 * Loop over the interfaces, and write an info block for each.
2553 */
2554
2555 total = 0;
2556 for_each_netdev(net, dev) {
2557 for (i = 0; i < NPROTO; i++) {
2558 if (gifconf_list[i]) {
2559 int done;
2560 if (!pos)
2561 done = gifconf_list[i](dev, NULL, 0);
2562 else
2563 done = gifconf_list[i](dev, pos + total,
2564 len - total);
2565 if (done < 0)
2566 return -EFAULT;
2567 total += done;
2568 }
2569 }
2570 }
2571
2572 /*
2573 * All done. Write the updated control block back to the caller.
2574 */
2575 ifc.ifc_len = total;
2576
2577 /*
2578 * Both BSD and Solaris return 0 here, so we do too.
2579 */
2580 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2581 }
2582
2583 #ifdef CONFIG_PROC_FS
2584 /*
2585 * This is invoked by the /proc filesystem handler to display a device
2586 * in detail.
2587 */
2588 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2589 __acquires(dev_base_lock)
2590 {
2591 struct net *net = seq_file_net(seq);
2592 loff_t off;
2593 struct net_device *dev;
2594
2595 read_lock(&dev_base_lock);
2596 if (!*pos)
2597 return SEQ_START_TOKEN;
2598
2599 off = 1;
2600 for_each_netdev(net, dev)
2601 if (off++ == *pos)
2602 return dev;
2603
2604 return NULL;
2605 }
2606
2607 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2608 {
2609 struct net *net = seq_file_net(seq);
2610 ++*pos;
2611 return v == SEQ_START_TOKEN ?
2612 first_net_device(net) : next_net_device((struct net_device *)v);
2613 }
2614
2615 void dev_seq_stop(struct seq_file *seq, void *v)
2616 __releases(dev_base_lock)
2617 {
2618 read_unlock(&dev_base_lock);
2619 }
2620
2621 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2622 {
2623 struct net_device_stats *stats = dev->get_stats(dev);
2624
2625 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2626 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2627 dev->name, stats->rx_bytes, stats->rx_packets,
2628 stats->rx_errors,
2629 stats->rx_dropped + stats->rx_missed_errors,
2630 stats->rx_fifo_errors,
2631 stats->rx_length_errors + stats->rx_over_errors +
2632 stats->rx_crc_errors + stats->rx_frame_errors,
2633 stats->rx_compressed, stats->multicast,
2634 stats->tx_bytes, stats->tx_packets,
2635 stats->tx_errors, stats->tx_dropped,
2636 stats->tx_fifo_errors, stats->collisions,
2637 stats->tx_carrier_errors +
2638 stats->tx_aborted_errors +
2639 stats->tx_window_errors +
2640 stats->tx_heartbeat_errors,
2641 stats->tx_compressed);
2642 }
2643
2644 /*
2645 * Called from the PROCfs module. This now uses the new arbitrary sized
2646 * /proc/net interface to create /proc/net/dev
2647 */
2648 static int dev_seq_show(struct seq_file *seq, void *v)
2649 {
2650 if (v == SEQ_START_TOKEN)
2651 seq_puts(seq, "Inter-| Receive "
2652 " | Transmit\n"
2653 " face |bytes packets errs drop fifo frame "
2654 "compressed multicast|bytes packets errs "
2655 "drop fifo colls carrier compressed\n");
2656 else
2657 dev_seq_printf_stats(seq, v);
2658 return 0;
2659 }
2660
2661 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2662 {
2663 struct netif_rx_stats *rc = NULL;
2664
2665 while (*pos < nr_cpu_ids)
2666 if (cpu_online(*pos)) {
2667 rc = &per_cpu(netdev_rx_stat, *pos);
2668 break;
2669 } else
2670 ++*pos;
2671 return rc;
2672 }
2673
2674 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2675 {
2676 return softnet_get_online(pos);
2677 }
2678
2679 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2680 {
2681 ++*pos;
2682 return softnet_get_online(pos);
2683 }
2684
2685 static void softnet_seq_stop(struct seq_file *seq, void *v)
2686 {
2687 }
2688
2689 static int softnet_seq_show(struct seq_file *seq, void *v)
2690 {
2691 struct netif_rx_stats *s = v;
2692
2693 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2694 s->total, s->dropped, s->time_squeeze, 0,
2695 0, 0, 0, 0, /* was fastroute */
2696 s->cpu_collision );
2697 return 0;
2698 }
2699
2700 static const struct seq_operations dev_seq_ops = {
2701 .start = dev_seq_start,
2702 .next = dev_seq_next,
2703 .stop = dev_seq_stop,
2704 .show = dev_seq_show,
2705 };
2706
2707 static int dev_seq_open(struct inode *inode, struct file *file)
2708 {
2709 return seq_open_net(inode, file, &dev_seq_ops,
2710 sizeof(struct seq_net_private));
2711 }
2712
2713 static const struct file_operations dev_seq_fops = {
2714 .owner = THIS_MODULE,
2715 .open = dev_seq_open,
2716 .read = seq_read,
2717 .llseek = seq_lseek,
2718 .release = seq_release_net,
2719 };
2720
2721 static const struct seq_operations softnet_seq_ops = {
2722 .start = softnet_seq_start,
2723 .next = softnet_seq_next,
2724 .stop = softnet_seq_stop,
2725 .show = softnet_seq_show,
2726 };
2727
2728 static int softnet_seq_open(struct inode *inode, struct file *file)
2729 {
2730 return seq_open(file, &softnet_seq_ops);
2731 }
2732
2733 static const struct file_operations softnet_seq_fops = {
2734 .owner = THIS_MODULE,
2735 .open = softnet_seq_open,
2736 .read = seq_read,
2737 .llseek = seq_lseek,
2738 .release = seq_release,
2739 };
2740
2741 static void *ptype_get_idx(loff_t pos)
2742 {
2743 struct packet_type *pt = NULL;
2744 loff_t i = 0;
2745 int t;
2746
2747 list_for_each_entry_rcu(pt, &ptype_all, list) {
2748 if (i == pos)
2749 return pt;
2750 ++i;
2751 }
2752
2753 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2754 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2755 if (i == pos)
2756 return pt;
2757 ++i;
2758 }
2759 }
2760 return NULL;
2761 }
2762
2763 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2764 __acquires(RCU)
2765 {
2766 rcu_read_lock();
2767 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2768 }
2769
2770 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2771 {
2772 struct packet_type *pt;
2773 struct list_head *nxt;
2774 int hash;
2775
2776 ++*pos;
2777 if (v == SEQ_START_TOKEN)
2778 return ptype_get_idx(0);
2779
2780 pt = v;
2781 nxt = pt->list.next;
2782 if (pt->type == htons(ETH_P_ALL)) {
2783 if (nxt != &ptype_all)
2784 goto found;
2785 hash = 0;
2786 nxt = ptype_base[0].next;
2787 } else
2788 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2789
2790 while (nxt == &ptype_base[hash]) {
2791 if (++hash >= PTYPE_HASH_SIZE)
2792 return NULL;
2793 nxt = ptype_base[hash].next;
2794 }
2795 found:
2796 return list_entry(nxt, struct packet_type, list);
2797 }
2798
2799 static void ptype_seq_stop(struct seq_file *seq, void *v)
2800 __releases(RCU)
2801 {
2802 rcu_read_unlock();
2803 }
2804
2805 static int ptype_seq_show(struct seq_file *seq, void *v)
2806 {
2807 struct packet_type *pt = v;
2808
2809 if (v == SEQ_START_TOKEN)
2810 seq_puts(seq, "Type Device Function\n");
2811 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2812 if (pt->type == htons(ETH_P_ALL))
2813 seq_puts(seq, "ALL ");
2814 else
2815 seq_printf(seq, "%04x", ntohs(pt->type));
2816
2817 seq_printf(seq, " %-8s %pF\n",
2818 pt->dev ? pt->dev->name : "", pt->func);
2819 }
2820
2821 return 0;
2822 }
2823
2824 static const struct seq_operations ptype_seq_ops = {
2825 .start = ptype_seq_start,
2826 .next = ptype_seq_next,
2827 .stop = ptype_seq_stop,
2828 .show = ptype_seq_show,
2829 };
2830
2831 static int ptype_seq_open(struct inode *inode, struct file *file)
2832 {
2833 return seq_open_net(inode, file, &ptype_seq_ops,
2834 sizeof(struct seq_net_private));
2835 }
2836
2837 static const struct file_operations ptype_seq_fops = {
2838 .owner = THIS_MODULE,
2839 .open = ptype_seq_open,
2840 .read = seq_read,
2841 .llseek = seq_lseek,
2842 .release = seq_release_net,
2843 };
2844
2845
2846 static int __net_init dev_proc_net_init(struct net *net)
2847 {
2848 int rc = -ENOMEM;
2849
2850 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2851 goto out;
2852 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2853 goto out_dev;
2854 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2855 goto out_softnet;
2856
2857 if (wext_proc_init(net))
2858 goto out_ptype;
2859 rc = 0;
2860 out:
2861 return rc;
2862 out_ptype:
2863 proc_net_remove(net, "ptype");
2864 out_softnet:
2865 proc_net_remove(net, "softnet_stat");
2866 out_dev:
2867 proc_net_remove(net, "dev");
2868 goto out;
2869 }
2870
2871 static void __net_exit dev_proc_net_exit(struct net *net)
2872 {
2873 wext_proc_exit(net);
2874
2875 proc_net_remove(net, "ptype");
2876 proc_net_remove(net, "softnet_stat");
2877 proc_net_remove(net, "dev");
2878 }
2879
2880 static struct pernet_operations __net_initdata dev_proc_ops = {
2881 .init = dev_proc_net_init,
2882 .exit = dev_proc_net_exit,
2883 };
2884
2885 static int __init dev_proc_init(void)
2886 {
2887 return register_pernet_subsys(&dev_proc_ops);
2888 }
2889 #else
2890 #define dev_proc_init() 0
2891 #endif /* CONFIG_PROC_FS */
2892
2893
2894 /**
2895 * netdev_set_master - set up master/slave pair
2896 * @slave: slave device
2897 * @master: new master device
2898 *
2899 * Changes the master device of the slave. Pass %NULL to break the
2900 * bonding. The caller must hold the RTNL semaphore. On a failure
2901 * a negative errno code is returned. On success the reference counts
2902 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2903 * function returns zero.
2904 */
2905 int netdev_set_master(struct net_device *slave, struct net_device *master)
2906 {
2907 struct net_device *old = slave->master;
2908
2909 ASSERT_RTNL();
2910
2911 if (master) {
2912 if (old)
2913 return -EBUSY;
2914 dev_hold(master);
2915 }
2916
2917 slave->master = master;
2918
2919 synchronize_net();
2920
2921 if (old)
2922 dev_put(old);
2923
2924 if (master)
2925 slave->flags |= IFF_SLAVE;
2926 else
2927 slave->flags &= ~IFF_SLAVE;
2928
2929 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2930 return 0;
2931 }
2932
2933 static void dev_change_rx_flags(struct net_device *dev, int flags)
2934 {
2935 const struct net_device_ops *ops = dev->netdev_ops;
2936
2937 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
2938 ops->ndo_change_rx_flags(dev, flags);
2939 }
2940
2941 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2942 {
2943 unsigned short old_flags = dev->flags;
2944
2945 ASSERT_RTNL();
2946
2947 dev->flags |= IFF_PROMISC;
2948 dev->promiscuity += inc;
2949 if (dev->promiscuity == 0) {
2950 /*
2951 * Avoid overflow.
2952 * If inc causes overflow, untouch promisc and return error.
2953 */
2954 if (inc < 0)
2955 dev->flags &= ~IFF_PROMISC;
2956 else {
2957 dev->promiscuity -= inc;
2958 printk(KERN_WARNING "%s: promiscuity touches roof, "
2959 "set promiscuity failed, promiscuity feature "
2960 "of device might be broken.\n", dev->name);
2961 return -EOVERFLOW;
2962 }
2963 }
2964 if (dev->flags != old_flags) {
2965 printk(KERN_INFO "device %s %s promiscuous mode\n",
2966 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2967 "left");
2968 if (audit_enabled)
2969 audit_log(current->audit_context, GFP_ATOMIC,
2970 AUDIT_ANOM_PROMISCUOUS,
2971 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2972 dev->name, (dev->flags & IFF_PROMISC),
2973 (old_flags & IFF_PROMISC),
2974 audit_get_loginuid(current),
2975 current->uid, current->gid,
2976 audit_get_sessionid(current));
2977
2978 dev_change_rx_flags(dev, IFF_PROMISC);
2979 }
2980 return 0;
2981 }
2982
2983 /**
2984 * dev_set_promiscuity - update promiscuity count on a device
2985 * @dev: device
2986 * @inc: modifier
2987 *
2988 * Add or remove promiscuity from a device. While the count in the device
2989 * remains above zero the interface remains promiscuous. Once it hits zero
2990 * the device reverts back to normal filtering operation. A negative inc
2991 * value is used to drop promiscuity on the device.
2992 * Return 0 if successful or a negative errno code on error.
2993 */
2994 int dev_set_promiscuity(struct net_device *dev, int inc)
2995 {
2996 unsigned short old_flags = dev->flags;
2997 int err;
2998
2999 err = __dev_set_promiscuity(dev, inc);
3000 if (err < 0)
3001 return err;
3002 if (dev->flags != old_flags)
3003 dev_set_rx_mode(dev);
3004 return err;
3005 }
3006
3007 /**
3008 * dev_set_allmulti - update allmulti count on a device
3009 * @dev: device
3010 * @inc: modifier
3011 *
3012 * Add or remove reception of all multicast frames to a device. While the
3013 * count in the device remains above zero the interface remains listening
3014 * to all interfaces. Once it hits zero the device reverts back to normal
3015 * filtering operation. A negative @inc value is used to drop the counter
3016 * when releasing a resource needing all multicasts.
3017 * Return 0 if successful or a negative errno code on error.
3018 */
3019
3020 int dev_set_allmulti(struct net_device *dev, int inc)
3021 {
3022 unsigned short old_flags = dev->flags;
3023
3024 ASSERT_RTNL();
3025
3026 dev->flags |= IFF_ALLMULTI;
3027 dev->allmulti += inc;
3028 if (dev->allmulti == 0) {
3029 /*
3030 * Avoid overflow.
3031 * If inc causes overflow, untouch allmulti and return error.
3032 */
3033 if (inc < 0)
3034 dev->flags &= ~IFF_ALLMULTI;
3035 else {
3036 dev->allmulti -= inc;
3037 printk(KERN_WARNING "%s: allmulti touches roof, "
3038 "set allmulti failed, allmulti feature of "
3039 "device might be broken.\n", dev->name);
3040 return -EOVERFLOW;
3041 }
3042 }
3043 if (dev->flags ^ old_flags) {
3044 dev_change_rx_flags(dev, IFF_ALLMULTI);
3045 dev_set_rx_mode(dev);
3046 }
3047 return 0;
3048 }
3049
3050 /*
3051 * Upload unicast and multicast address lists to device and
3052 * configure RX filtering. When the device doesn't support unicast
3053 * filtering it is put in promiscuous mode while unicast addresses
3054 * are present.
3055 */
3056 void __dev_set_rx_mode(struct net_device *dev)
3057 {
3058 const struct net_device_ops *ops = dev->netdev_ops;
3059
3060 /* dev_open will call this function so the list will stay sane. */
3061 if (!(dev->flags&IFF_UP))
3062 return;
3063
3064 if (!netif_device_present(dev))
3065 return;
3066
3067 if (ops->ndo_set_rx_mode)
3068 ops->ndo_set_rx_mode(dev);
3069 else {
3070 /* Unicast addresses changes may only happen under the rtnl,
3071 * therefore calling __dev_set_promiscuity here is safe.
3072 */
3073 if (dev->uc_count > 0 && !dev->uc_promisc) {
3074 __dev_set_promiscuity(dev, 1);
3075 dev->uc_promisc = 1;
3076 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3077 __dev_set_promiscuity(dev, -1);
3078 dev->uc_promisc = 0;
3079 }
3080
3081 if (ops->ndo_set_multicast_list)
3082 ops->ndo_set_multicast_list(dev);
3083 }
3084 }
3085
3086 void dev_set_rx_mode(struct net_device *dev)
3087 {
3088 netif_addr_lock_bh(dev);
3089 __dev_set_rx_mode(dev);
3090 netif_addr_unlock_bh(dev);
3091 }
3092
3093 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3094 void *addr, int alen, int glbl)
3095 {
3096 struct dev_addr_list *da;
3097
3098 for (; (da = *list) != NULL; list = &da->next) {
3099 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3100 alen == da->da_addrlen) {
3101 if (glbl) {
3102 int old_glbl = da->da_gusers;
3103 da->da_gusers = 0;
3104 if (old_glbl == 0)
3105 break;
3106 }
3107 if (--da->da_users)
3108 return 0;
3109
3110 *list = da->next;
3111 kfree(da);
3112 (*count)--;
3113 return 0;
3114 }
3115 }
3116 return -ENOENT;
3117 }
3118
3119 int __dev_addr_add(struct dev_addr_list **list, int *count,
3120 void *addr, int alen, int glbl)
3121 {
3122 struct dev_addr_list *da;
3123
3124 for (da = *list; da != NULL; da = da->next) {
3125 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3126 da->da_addrlen == alen) {
3127 if (glbl) {
3128 int old_glbl = da->da_gusers;
3129 da->da_gusers = 1;
3130 if (old_glbl)
3131 return 0;
3132 }
3133 da->da_users++;
3134 return 0;
3135 }
3136 }
3137
3138 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3139 if (da == NULL)
3140 return -ENOMEM;
3141 memcpy(da->da_addr, addr, alen);
3142 da->da_addrlen = alen;
3143 da->da_users = 1;
3144 da->da_gusers = glbl ? 1 : 0;
3145 da->next = *list;
3146 *list = da;
3147 (*count)++;
3148 return 0;
3149 }
3150
3151 /**
3152 * dev_unicast_delete - Release secondary unicast address.
3153 * @dev: device
3154 * @addr: address to delete
3155 * @alen: length of @addr
3156 *
3157 * Release reference to a secondary unicast address and remove it
3158 * from the device if the reference count drops to zero.
3159 *
3160 * The caller must hold the rtnl_mutex.
3161 */
3162 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3163 {
3164 int err;
3165
3166 ASSERT_RTNL();
3167
3168 netif_addr_lock_bh(dev);
3169 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3170 if (!err)
3171 __dev_set_rx_mode(dev);
3172 netif_addr_unlock_bh(dev);
3173 return err;
3174 }
3175 EXPORT_SYMBOL(dev_unicast_delete);
3176
3177 /**
3178 * dev_unicast_add - add a secondary unicast address
3179 * @dev: device
3180 * @addr: address to add
3181 * @alen: length of @addr
3182 *
3183 * Add a secondary unicast address to the device or increase
3184 * the reference count if it already exists.
3185 *
3186 * The caller must hold the rtnl_mutex.
3187 */
3188 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3189 {
3190 int err;
3191
3192 ASSERT_RTNL();
3193
3194 netif_addr_lock_bh(dev);
3195 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3196 if (!err)
3197 __dev_set_rx_mode(dev);
3198 netif_addr_unlock_bh(dev);
3199 return err;
3200 }
3201 EXPORT_SYMBOL(dev_unicast_add);
3202
3203 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3204 struct dev_addr_list **from, int *from_count)
3205 {
3206 struct dev_addr_list *da, *next;
3207 int err = 0;
3208
3209 da = *from;
3210 while (da != NULL) {
3211 next = da->next;
3212 if (!da->da_synced) {
3213 err = __dev_addr_add(to, to_count,
3214 da->da_addr, da->da_addrlen, 0);
3215 if (err < 0)
3216 break;
3217 da->da_synced = 1;
3218 da->da_users++;
3219 } else if (da->da_users == 1) {
3220 __dev_addr_delete(to, to_count,
3221 da->da_addr, da->da_addrlen, 0);
3222 __dev_addr_delete(from, from_count,
3223 da->da_addr, da->da_addrlen, 0);
3224 }
3225 da = next;
3226 }
3227 return err;
3228 }
3229
3230 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3231 struct dev_addr_list **from, int *from_count)
3232 {
3233 struct dev_addr_list *da, *next;
3234
3235 da = *from;
3236 while (da != NULL) {
3237 next = da->next;
3238 if (da->da_synced) {
3239 __dev_addr_delete(to, to_count,
3240 da->da_addr, da->da_addrlen, 0);
3241 da->da_synced = 0;
3242 __dev_addr_delete(from, from_count,
3243 da->da_addr, da->da_addrlen, 0);
3244 }
3245 da = next;
3246 }
3247 }
3248
3249 /**
3250 * dev_unicast_sync - Synchronize device's unicast list to another device
3251 * @to: destination device
3252 * @from: source device
3253 *
3254 * Add newly added addresses to the destination device and release
3255 * addresses that have no users left. The source device must be
3256 * locked by netif_tx_lock_bh.
3257 *
3258 * This function is intended to be called from the dev->set_rx_mode
3259 * function of layered software devices.
3260 */
3261 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3262 {
3263 int err = 0;
3264
3265 netif_addr_lock_bh(to);
3266 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3267 &from->uc_list, &from->uc_count);
3268 if (!err)
3269 __dev_set_rx_mode(to);
3270 netif_addr_unlock_bh(to);
3271 return err;
3272 }
3273 EXPORT_SYMBOL(dev_unicast_sync);
3274
3275 /**
3276 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3277 * @to: destination device
3278 * @from: source device
3279 *
3280 * Remove all addresses that were added to the destination device by
3281 * dev_unicast_sync(). This function is intended to be called from the
3282 * dev->stop function of layered software devices.
3283 */
3284 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3285 {
3286 netif_addr_lock_bh(from);
3287 netif_addr_lock(to);
3288
3289 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3290 &from->uc_list, &from->uc_count);
3291 __dev_set_rx_mode(to);
3292
3293 netif_addr_unlock(to);
3294 netif_addr_unlock_bh(from);
3295 }
3296 EXPORT_SYMBOL(dev_unicast_unsync);
3297
3298 static void __dev_addr_discard(struct dev_addr_list **list)
3299 {
3300 struct dev_addr_list *tmp;
3301
3302 while (*list != NULL) {
3303 tmp = *list;
3304 *list = tmp->next;
3305 if (tmp->da_users > tmp->da_gusers)
3306 printk("__dev_addr_discard: address leakage! "
3307 "da_users=%d\n", tmp->da_users);
3308 kfree(tmp);
3309 }
3310 }
3311
3312 static void dev_addr_discard(struct net_device *dev)
3313 {
3314 netif_addr_lock_bh(dev);
3315
3316 __dev_addr_discard(&dev->uc_list);
3317 dev->uc_count = 0;
3318
3319 __dev_addr_discard(&dev->mc_list);
3320 dev->mc_count = 0;
3321
3322 netif_addr_unlock_bh(dev);
3323 }
3324
3325 /**
3326 * dev_get_flags - get flags reported to userspace
3327 * @dev: device
3328 *
3329 * Get the combination of flag bits exported through APIs to userspace.
3330 */
3331 unsigned dev_get_flags(const struct net_device *dev)
3332 {
3333 unsigned flags;
3334
3335 flags = (dev->flags & ~(IFF_PROMISC |
3336 IFF_ALLMULTI |
3337 IFF_RUNNING |
3338 IFF_LOWER_UP |
3339 IFF_DORMANT)) |
3340 (dev->gflags & (IFF_PROMISC |
3341 IFF_ALLMULTI));
3342
3343 if (netif_running(dev)) {
3344 if (netif_oper_up(dev))
3345 flags |= IFF_RUNNING;
3346 if (netif_carrier_ok(dev))
3347 flags |= IFF_LOWER_UP;
3348 if (netif_dormant(dev))
3349 flags |= IFF_DORMANT;
3350 }
3351
3352 return flags;
3353 }
3354
3355 /**
3356 * dev_change_flags - change device settings
3357 * @dev: device
3358 * @flags: device state flags
3359 *
3360 * Change settings on device based state flags. The flags are
3361 * in the userspace exported format.
3362 */
3363 int dev_change_flags(struct net_device *dev, unsigned flags)
3364 {
3365 int ret, changes;
3366 int old_flags = dev->flags;
3367
3368 ASSERT_RTNL();
3369
3370 /*
3371 * Set the flags on our device.
3372 */
3373
3374 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3375 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3376 IFF_AUTOMEDIA)) |
3377 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3378 IFF_ALLMULTI));
3379
3380 /*
3381 * Load in the correct multicast list now the flags have changed.
3382 */
3383
3384 if ((old_flags ^ flags) & IFF_MULTICAST)
3385 dev_change_rx_flags(dev, IFF_MULTICAST);
3386
3387 dev_set_rx_mode(dev);
3388
3389 /*
3390 * Have we downed the interface. We handle IFF_UP ourselves
3391 * according to user attempts to set it, rather than blindly
3392 * setting it.
3393 */
3394
3395 ret = 0;
3396 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3397 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3398
3399 if (!ret)
3400 dev_set_rx_mode(dev);
3401 }
3402
3403 if (dev->flags & IFF_UP &&
3404 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3405 IFF_VOLATILE)))
3406 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3407
3408 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3409 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3410 dev->gflags ^= IFF_PROMISC;
3411 dev_set_promiscuity(dev, inc);
3412 }
3413
3414 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3415 is important. Some (broken) drivers set IFF_PROMISC, when
3416 IFF_ALLMULTI is requested not asking us and not reporting.
3417 */
3418 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3419 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3420 dev->gflags ^= IFF_ALLMULTI;
3421 dev_set_allmulti(dev, inc);
3422 }
3423
3424 /* Exclude state transition flags, already notified */
3425 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3426 if (changes)
3427 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3428
3429 return ret;
3430 }
3431
3432 /**
3433 * dev_set_mtu - Change maximum transfer unit
3434 * @dev: device
3435 * @new_mtu: new transfer unit
3436 *
3437 * Change the maximum transfer size of the network device.
3438 */
3439 int dev_set_mtu(struct net_device *dev, int new_mtu)
3440 {
3441 const struct net_device_ops *ops = dev->netdev_ops;
3442 int err;
3443
3444 if (new_mtu == dev->mtu)
3445 return 0;
3446
3447 /* MTU must be positive. */
3448 if (new_mtu < 0)
3449 return -EINVAL;
3450
3451 if (!netif_device_present(dev))
3452 return -ENODEV;
3453
3454 err = 0;
3455 if (ops->ndo_change_mtu)
3456 err = ops->ndo_change_mtu(dev, new_mtu);
3457 else
3458 dev->mtu = new_mtu;
3459
3460 if (!err && dev->flags & IFF_UP)
3461 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3462 return err;
3463 }
3464
3465 /**
3466 * dev_set_mac_address - Change Media Access Control Address
3467 * @dev: device
3468 * @sa: new address
3469 *
3470 * Change the hardware (MAC) address of the device
3471 */
3472 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3473 {
3474 const struct net_device_ops *ops = dev->netdev_ops;
3475 int err;
3476
3477 if (!ops->ndo_set_mac_address)
3478 return -EOPNOTSUPP;
3479 if (sa->sa_family != dev->type)
3480 return -EINVAL;
3481 if (!netif_device_present(dev))
3482 return -ENODEV;
3483 err = ops->ndo_set_mac_address(dev, sa);
3484 if (!err)
3485 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3486 return err;
3487 }
3488
3489 /*
3490 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3491 */
3492 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3493 {
3494 int err;
3495 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3496
3497 if (!dev)
3498 return -ENODEV;
3499
3500 switch (cmd) {
3501 case SIOCGIFFLAGS: /* Get interface flags */
3502 ifr->ifr_flags = dev_get_flags(dev);
3503 return 0;
3504
3505 case SIOCGIFMETRIC: /* Get the metric on the interface
3506 (currently unused) */
3507 ifr->ifr_metric = 0;
3508 return 0;
3509
3510 case SIOCGIFMTU: /* Get the MTU of a device */
3511 ifr->ifr_mtu = dev->mtu;
3512 return 0;
3513
3514 case SIOCGIFHWADDR:
3515 if (!dev->addr_len)
3516 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3517 else
3518 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3519 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3520 ifr->ifr_hwaddr.sa_family = dev->type;
3521 return 0;
3522
3523 case SIOCGIFSLAVE:
3524 err = -EINVAL;
3525 break;
3526
3527 case SIOCGIFMAP:
3528 ifr->ifr_map.mem_start = dev->mem_start;
3529 ifr->ifr_map.mem_end = dev->mem_end;
3530 ifr->ifr_map.base_addr = dev->base_addr;
3531 ifr->ifr_map.irq = dev->irq;
3532 ifr->ifr_map.dma = dev->dma;
3533 ifr->ifr_map.port = dev->if_port;
3534 return 0;
3535
3536 case SIOCGIFINDEX:
3537 ifr->ifr_ifindex = dev->ifindex;
3538 return 0;
3539
3540 case SIOCGIFTXQLEN:
3541 ifr->ifr_qlen = dev->tx_queue_len;
3542 return 0;
3543
3544 default:
3545 /* dev_ioctl() should ensure this case
3546 * is never reached
3547 */
3548 WARN_ON(1);
3549 err = -EINVAL;
3550 break;
3551
3552 }
3553 return err;
3554 }
3555
3556 /*
3557 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3558 */
3559 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3560 {
3561 int err;
3562 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3563 const struct net_device_ops *ops = dev->netdev_ops;
3564
3565 if (!dev)
3566 return -ENODEV;
3567
3568 switch (cmd) {
3569 case SIOCSIFFLAGS: /* Set interface flags */
3570 return dev_change_flags(dev, ifr->ifr_flags);
3571
3572 case SIOCSIFMETRIC: /* Set the metric on the interface
3573 (currently unused) */
3574 return -EOPNOTSUPP;
3575
3576 case SIOCSIFMTU: /* Set the MTU of a device */
3577 return dev_set_mtu(dev, ifr->ifr_mtu);
3578
3579 case SIOCSIFHWADDR:
3580 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3581
3582 case SIOCSIFHWBROADCAST:
3583 if (ifr->ifr_hwaddr.sa_family != dev->type)
3584 return -EINVAL;
3585 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3586 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3587 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3588 return 0;
3589
3590 case SIOCSIFMAP:
3591 if (ops->ndo_set_config) {
3592 if (!netif_device_present(dev))
3593 return -ENODEV;
3594 return ops->ndo_set_config(dev, &ifr->ifr_map);
3595 }
3596 return -EOPNOTSUPP;
3597
3598 case SIOCADDMULTI:
3599 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3600 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3601 return -EINVAL;
3602 if (!netif_device_present(dev))
3603 return -ENODEV;
3604 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3605 dev->addr_len, 1);
3606
3607 case SIOCDELMULTI:
3608 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3609 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3610 return -EINVAL;
3611 if (!netif_device_present(dev))
3612 return -ENODEV;
3613 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3614 dev->addr_len, 1);
3615
3616 case SIOCSIFTXQLEN:
3617 if (ifr->ifr_qlen < 0)
3618 return -EINVAL;
3619 dev->tx_queue_len = ifr->ifr_qlen;
3620 return 0;
3621
3622 case SIOCSIFNAME:
3623 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3624 return dev_change_name(dev, ifr->ifr_newname);
3625
3626 /*
3627 * Unknown or private ioctl
3628 */
3629
3630 default:
3631 if ((cmd >= SIOCDEVPRIVATE &&
3632 cmd <= SIOCDEVPRIVATE + 15) ||
3633 cmd == SIOCBONDENSLAVE ||
3634 cmd == SIOCBONDRELEASE ||
3635 cmd == SIOCBONDSETHWADDR ||
3636 cmd == SIOCBONDSLAVEINFOQUERY ||
3637 cmd == SIOCBONDINFOQUERY ||
3638 cmd == SIOCBONDCHANGEACTIVE ||
3639 cmd == SIOCGMIIPHY ||
3640 cmd == SIOCGMIIREG ||
3641 cmd == SIOCSMIIREG ||
3642 cmd == SIOCBRADDIF ||
3643 cmd == SIOCBRDELIF ||
3644 cmd == SIOCWANDEV) {
3645 err = -EOPNOTSUPP;
3646 if (ops->ndo_do_ioctl) {
3647 if (netif_device_present(dev))
3648 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3649 else
3650 err = -ENODEV;
3651 }
3652 } else
3653 err = -EINVAL;
3654
3655 }
3656 return err;
3657 }
3658
3659 /*
3660 * This function handles all "interface"-type I/O control requests. The actual
3661 * 'doing' part of this is dev_ifsioc above.
3662 */
3663
3664 /**
3665 * dev_ioctl - network device ioctl
3666 * @net: the applicable net namespace
3667 * @cmd: command to issue
3668 * @arg: pointer to a struct ifreq in user space
3669 *
3670 * Issue ioctl functions to devices. This is normally called by the
3671 * user space syscall interfaces but can sometimes be useful for
3672 * other purposes. The return value is the return from the syscall if
3673 * positive or a negative errno code on error.
3674 */
3675
3676 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3677 {
3678 struct ifreq ifr;
3679 int ret;
3680 char *colon;
3681
3682 /* One special case: SIOCGIFCONF takes ifconf argument
3683 and requires shared lock, because it sleeps writing
3684 to user space.
3685 */
3686
3687 if (cmd == SIOCGIFCONF) {
3688 rtnl_lock();
3689 ret = dev_ifconf(net, (char __user *) arg);
3690 rtnl_unlock();
3691 return ret;
3692 }
3693 if (cmd == SIOCGIFNAME)
3694 return dev_ifname(net, (struct ifreq __user *)arg);
3695
3696 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3697 return -EFAULT;
3698
3699 ifr.ifr_name[IFNAMSIZ-1] = 0;
3700
3701 colon = strchr(ifr.ifr_name, ':');
3702 if (colon)
3703 *colon = 0;
3704
3705 /*
3706 * See which interface the caller is talking about.
3707 */
3708
3709 switch (cmd) {
3710 /*
3711 * These ioctl calls:
3712 * - can be done by all.
3713 * - atomic and do not require locking.
3714 * - return a value
3715 */
3716 case SIOCGIFFLAGS:
3717 case SIOCGIFMETRIC:
3718 case SIOCGIFMTU:
3719 case SIOCGIFHWADDR:
3720 case SIOCGIFSLAVE:
3721 case SIOCGIFMAP:
3722 case SIOCGIFINDEX:
3723 case SIOCGIFTXQLEN:
3724 dev_load(net, ifr.ifr_name);
3725 read_lock(&dev_base_lock);
3726 ret = dev_ifsioc_locked(net, &ifr, cmd);
3727 read_unlock(&dev_base_lock);
3728 if (!ret) {
3729 if (colon)
3730 *colon = ':';
3731 if (copy_to_user(arg, &ifr,
3732 sizeof(struct ifreq)))
3733 ret = -EFAULT;
3734 }
3735 return ret;
3736
3737 case SIOCETHTOOL:
3738 dev_load(net, ifr.ifr_name);
3739 rtnl_lock();
3740 ret = dev_ethtool(net, &ifr);
3741 rtnl_unlock();
3742 if (!ret) {
3743 if (colon)
3744 *colon = ':';
3745 if (copy_to_user(arg, &ifr,
3746 sizeof(struct ifreq)))
3747 ret = -EFAULT;
3748 }
3749 return ret;
3750
3751 /*
3752 * These ioctl calls:
3753 * - require superuser power.
3754 * - require strict serialization.
3755 * - return a value
3756 */
3757 case SIOCGMIIPHY:
3758 case SIOCGMIIREG:
3759 case SIOCSIFNAME:
3760 if (!capable(CAP_NET_ADMIN))
3761 return -EPERM;
3762 dev_load(net, ifr.ifr_name);
3763 rtnl_lock();
3764 ret = dev_ifsioc(net, &ifr, cmd);
3765 rtnl_unlock();
3766 if (!ret) {
3767 if (colon)
3768 *colon = ':';
3769 if (copy_to_user(arg, &ifr,
3770 sizeof(struct ifreq)))
3771 ret = -EFAULT;
3772 }
3773 return ret;
3774
3775 /*
3776 * These ioctl calls:
3777 * - require superuser power.
3778 * - require strict serialization.
3779 * - do not return a value
3780 */
3781 case SIOCSIFFLAGS:
3782 case SIOCSIFMETRIC:
3783 case SIOCSIFMTU:
3784 case SIOCSIFMAP:
3785 case SIOCSIFHWADDR:
3786 case SIOCSIFSLAVE:
3787 case SIOCADDMULTI:
3788 case SIOCDELMULTI:
3789 case SIOCSIFHWBROADCAST:
3790 case SIOCSIFTXQLEN:
3791 case SIOCSMIIREG:
3792 case SIOCBONDENSLAVE:
3793 case SIOCBONDRELEASE:
3794 case SIOCBONDSETHWADDR:
3795 case SIOCBONDCHANGEACTIVE:
3796 case SIOCBRADDIF:
3797 case SIOCBRDELIF:
3798 if (!capable(CAP_NET_ADMIN))
3799 return -EPERM;
3800 /* fall through */
3801 case SIOCBONDSLAVEINFOQUERY:
3802 case SIOCBONDINFOQUERY:
3803 dev_load(net, ifr.ifr_name);
3804 rtnl_lock();
3805 ret = dev_ifsioc(net, &ifr, cmd);
3806 rtnl_unlock();
3807 return ret;
3808
3809 case SIOCGIFMEM:
3810 /* Get the per device memory space. We can add this but
3811 * currently do not support it */
3812 case SIOCSIFMEM:
3813 /* Set the per device memory buffer space.
3814 * Not applicable in our case */
3815 case SIOCSIFLINK:
3816 return -EINVAL;
3817
3818 /*
3819 * Unknown or private ioctl.
3820 */
3821 default:
3822 if (cmd == SIOCWANDEV ||
3823 (cmd >= SIOCDEVPRIVATE &&
3824 cmd <= SIOCDEVPRIVATE + 15)) {
3825 dev_load(net, ifr.ifr_name);
3826 rtnl_lock();
3827 ret = dev_ifsioc(net, &ifr, cmd);
3828 rtnl_unlock();
3829 if (!ret && copy_to_user(arg, &ifr,
3830 sizeof(struct ifreq)))
3831 ret = -EFAULT;
3832 return ret;
3833 }
3834 /* Take care of Wireless Extensions */
3835 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3836 return wext_handle_ioctl(net, &ifr, cmd, arg);
3837 return -EINVAL;
3838 }
3839 }
3840
3841
3842 /**
3843 * dev_new_index - allocate an ifindex
3844 * @net: the applicable net namespace
3845 *
3846 * Returns a suitable unique value for a new device interface
3847 * number. The caller must hold the rtnl semaphore or the
3848 * dev_base_lock to be sure it remains unique.
3849 */
3850 static int dev_new_index(struct net *net)
3851 {
3852 static int ifindex;
3853 for (;;) {
3854 if (++ifindex <= 0)
3855 ifindex = 1;
3856 if (!__dev_get_by_index(net, ifindex))
3857 return ifindex;
3858 }
3859 }
3860
3861 /* Delayed registration/unregisteration */
3862 static LIST_HEAD(net_todo_list);
3863
3864 static void net_set_todo(struct net_device *dev)
3865 {
3866 list_add_tail(&dev->todo_list, &net_todo_list);
3867 }
3868
3869 static void rollback_registered(struct net_device *dev)
3870 {
3871 BUG_ON(dev_boot_phase);
3872 ASSERT_RTNL();
3873
3874 /* Some devices call without registering for initialization unwind. */
3875 if (dev->reg_state == NETREG_UNINITIALIZED) {
3876 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3877 "was registered\n", dev->name, dev);
3878
3879 WARN_ON(1);
3880 return;
3881 }
3882
3883 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3884
3885 /* If device is running, close it first. */
3886 dev_close(dev);
3887
3888 /* And unlink it from device chain. */
3889 unlist_netdevice(dev);
3890
3891 dev->reg_state = NETREG_UNREGISTERING;
3892
3893 synchronize_net();
3894
3895 /* Shutdown queueing discipline. */
3896 dev_shutdown(dev);
3897
3898
3899 /* Notify protocols, that we are about to destroy
3900 this device. They should clean all the things.
3901 */
3902 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3903
3904 /*
3905 * Flush the unicast and multicast chains
3906 */
3907 dev_addr_discard(dev);
3908
3909 if (dev->netdev_ops->ndo_uninit)
3910 dev->netdev_ops->ndo_uninit(dev);
3911
3912 /* Notifier chain MUST detach us from master device. */
3913 WARN_ON(dev->master);
3914
3915 /* Remove entries from kobject tree */
3916 netdev_unregister_kobject(dev);
3917
3918 synchronize_net();
3919
3920 dev_put(dev);
3921 }
3922
3923 static void __netdev_init_queue_locks_one(struct net_device *dev,
3924 struct netdev_queue *dev_queue,
3925 void *_unused)
3926 {
3927 spin_lock_init(&dev_queue->_xmit_lock);
3928 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3929 dev_queue->xmit_lock_owner = -1;
3930 }
3931
3932 static void netdev_init_queue_locks(struct net_device *dev)
3933 {
3934 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3935 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3936 }
3937
3938 unsigned long netdev_fix_features(unsigned long features, const char *name)
3939 {
3940 /* Fix illegal SG+CSUM combinations. */
3941 if ((features & NETIF_F_SG) &&
3942 !(features & NETIF_F_ALL_CSUM)) {
3943 if (name)
3944 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
3945 "checksum feature.\n", name);
3946 features &= ~NETIF_F_SG;
3947 }
3948
3949 /* TSO requires that SG is present as well. */
3950 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
3951 if (name)
3952 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
3953 "SG feature.\n", name);
3954 features &= ~NETIF_F_TSO;
3955 }
3956
3957 if (features & NETIF_F_UFO) {
3958 if (!(features & NETIF_F_GEN_CSUM)) {
3959 if (name)
3960 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
3961 "since no NETIF_F_HW_CSUM feature.\n",
3962 name);
3963 features &= ~NETIF_F_UFO;
3964 }
3965
3966 if (!(features & NETIF_F_SG)) {
3967 if (name)
3968 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
3969 "since no NETIF_F_SG feature.\n", name);
3970 features &= ~NETIF_F_UFO;
3971 }
3972 }
3973
3974 return features;
3975 }
3976 EXPORT_SYMBOL(netdev_fix_features);
3977
3978 /**
3979 * register_netdevice - register a network device
3980 * @dev: device to register
3981 *
3982 * Take a completed network device structure and add it to the kernel
3983 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3984 * chain. 0 is returned on success. A negative errno code is returned
3985 * on a failure to set up the device, or if the name is a duplicate.
3986 *
3987 * Callers must hold the rtnl semaphore. You may want
3988 * register_netdev() instead of this.
3989 *
3990 * BUGS:
3991 * The locking appears insufficient to guarantee two parallel registers
3992 * will not get the same name.
3993 */
3994
3995 int register_netdevice(struct net_device *dev)
3996 {
3997 struct hlist_head *head;
3998 struct hlist_node *p;
3999 int ret;
4000 struct net *net = dev_net(dev);
4001
4002 BUG_ON(dev_boot_phase);
4003 ASSERT_RTNL();
4004
4005 might_sleep();
4006
4007 /* When net_device's are persistent, this will be fatal. */
4008 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4009 BUG_ON(!net);
4010
4011 spin_lock_init(&dev->addr_list_lock);
4012 netdev_set_addr_lockdep_class(dev);
4013 netdev_init_queue_locks(dev);
4014
4015 dev->iflink = -1;
4016
4017 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4018 /* Netdevice_ops API compatiability support.
4019 * This is temporary until all network devices are converted.
4020 */
4021 if (dev->netdev_ops) {
4022 const struct net_device_ops *ops = dev->netdev_ops;
4023
4024 dev->init = ops->ndo_init;
4025 dev->uninit = ops->ndo_uninit;
4026 dev->open = ops->ndo_open;
4027 dev->change_rx_flags = ops->ndo_change_rx_flags;
4028 dev->set_rx_mode = ops->ndo_set_rx_mode;
4029 dev->set_multicast_list = ops->ndo_set_multicast_list;
4030 dev->set_mac_address = ops->ndo_set_mac_address;
4031 dev->validate_addr = ops->ndo_validate_addr;
4032 dev->do_ioctl = ops->ndo_do_ioctl;
4033 dev->set_config = ops->ndo_set_config;
4034 dev->change_mtu = ops->ndo_change_mtu;
4035 dev->tx_timeout = ops->ndo_tx_timeout;
4036 dev->get_stats = ops->ndo_get_stats;
4037 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4038 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4039 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4040 #ifdef CONFIG_NET_POLL_CONTROLLER
4041 dev->poll_controller = ops->ndo_poll_controller;
4042 #endif
4043 } else {
4044 char drivername[64];
4045 pr_info("%s (%s): not using net_device_ops yet\n",
4046 dev->name, netdev_drivername(dev, drivername, 64));
4047
4048 /* This works only because net_device_ops and the
4049 compatiablity structure are the same. */
4050 dev->netdev_ops = (void *) &(dev->init);
4051 }
4052 #endif
4053
4054 /* Init, if this function is available */
4055 if (dev->netdev_ops->ndo_init) {
4056 ret = dev->netdev_ops->ndo_init(dev);
4057 if (ret) {
4058 if (ret > 0)
4059 ret = -EIO;
4060 goto out;
4061 }
4062 }
4063
4064 if (!dev_valid_name(dev->name)) {
4065 ret = -EINVAL;
4066 goto err_uninit;
4067 }
4068
4069 dev->ifindex = dev_new_index(net);
4070 if (dev->iflink == -1)
4071 dev->iflink = dev->ifindex;
4072
4073 /* Check for existence of name */
4074 head = dev_name_hash(net, dev->name);
4075 hlist_for_each(p, head) {
4076 struct net_device *d
4077 = hlist_entry(p, struct net_device, name_hlist);
4078 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4079 ret = -EEXIST;
4080 goto err_uninit;
4081 }
4082 }
4083
4084 /* Fix illegal checksum combinations */
4085 if ((dev->features & NETIF_F_HW_CSUM) &&
4086 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4087 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4088 dev->name);
4089 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4090 }
4091
4092 if ((dev->features & NETIF_F_NO_CSUM) &&
4093 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4094 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4095 dev->name);
4096 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4097 }
4098
4099 dev->features = netdev_fix_features(dev->features, dev->name);
4100
4101 /* Enable software GSO if SG is supported. */
4102 if (dev->features & NETIF_F_SG)
4103 dev->features |= NETIF_F_GSO;
4104
4105 netdev_initialize_kobject(dev);
4106 ret = netdev_register_kobject(dev);
4107 if (ret)
4108 goto err_uninit;
4109 dev->reg_state = NETREG_REGISTERED;
4110
4111 /*
4112 * Default initial state at registry is that the
4113 * device is present.
4114 */
4115
4116 set_bit(__LINK_STATE_PRESENT, &dev->state);
4117
4118 dev_init_scheduler(dev);
4119 dev_hold(dev);
4120 list_netdevice(dev);
4121
4122 /* Notify protocols, that a new device appeared. */
4123 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4124 ret = notifier_to_errno(ret);
4125 if (ret) {
4126 rollback_registered(dev);
4127 dev->reg_state = NETREG_UNREGISTERED;
4128 }
4129
4130 out:
4131 return ret;
4132
4133 err_uninit:
4134 if (dev->netdev_ops->ndo_uninit)
4135 dev->netdev_ops->ndo_uninit(dev);
4136 goto out;
4137 }
4138
4139 /**
4140 * register_netdev - register a network device
4141 * @dev: device to register
4142 *
4143 * Take a completed network device structure and add it to the kernel
4144 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4145 * chain. 0 is returned on success. A negative errno code is returned
4146 * on a failure to set up the device, or if the name is a duplicate.
4147 *
4148 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4149 * and expands the device name if you passed a format string to
4150 * alloc_netdev.
4151 */
4152 int register_netdev(struct net_device *dev)
4153 {
4154 int err;
4155
4156 rtnl_lock();
4157
4158 /*
4159 * If the name is a format string the caller wants us to do a
4160 * name allocation.
4161 */
4162 if (strchr(dev->name, '%')) {
4163 err = dev_alloc_name(dev, dev->name);
4164 if (err < 0)
4165 goto out;
4166 }
4167
4168 err = register_netdevice(dev);
4169 out:
4170 rtnl_unlock();
4171 return err;
4172 }
4173 EXPORT_SYMBOL(register_netdev);
4174
4175 /*
4176 * netdev_wait_allrefs - wait until all references are gone.
4177 *
4178 * This is called when unregistering network devices.
4179 *
4180 * Any protocol or device that holds a reference should register
4181 * for netdevice notification, and cleanup and put back the
4182 * reference if they receive an UNREGISTER event.
4183 * We can get stuck here if buggy protocols don't correctly
4184 * call dev_put.
4185 */
4186 static void netdev_wait_allrefs(struct net_device *dev)
4187 {
4188 unsigned long rebroadcast_time, warning_time;
4189
4190 rebroadcast_time = warning_time = jiffies;
4191 while (atomic_read(&dev->refcnt) != 0) {
4192 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4193 rtnl_lock();
4194
4195 /* Rebroadcast unregister notification */
4196 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4197
4198 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4199 &dev->state)) {
4200 /* We must not have linkwatch events
4201 * pending on unregister. If this
4202 * happens, we simply run the queue
4203 * unscheduled, resulting in a noop
4204 * for this device.
4205 */
4206 linkwatch_run_queue();
4207 }
4208
4209 __rtnl_unlock();
4210
4211 rebroadcast_time = jiffies;
4212 }
4213
4214 msleep(250);
4215
4216 if (time_after(jiffies, warning_time + 10 * HZ)) {
4217 printk(KERN_EMERG "unregister_netdevice: "
4218 "waiting for %s to become free. Usage "
4219 "count = %d\n",
4220 dev->name, atomic_read(&dev->refcnt));
4221 warning_time = jiffies;
4222 }
4223 }
4224 }
4225
4226 /* The sequence is:
4227 *
4228 * rtnl_lock();
4229 * ...
4230 * register_netdevice(x1);
4231 * register_netdevice(x2);
4232 * ...
4233 * unregister_netdevice(y1);
4234 * unregister_netdevice(y2);
4235 * ...
4236 * rtnl_unlock();
4237 * free_netdev(y1);
4238 * free_netdev(y2);
4239 *
4240 * We are invoked by rtnl_unlock().
4241 * This allows us to deal with problems:
4242 * 1) We can delete sysfs objects which invoke hotplug
4243 * without deadlocking with linkwatch via keventd.
4244 * 2) Since we run with the RTNL semaphore not held, we can sleep
4245 * safely in order to wait for the netdev refcnt to drop to zero.
4246 *
4247 * We must not return until all unregister events added during
4248 * the interval the lock was held have been completed.
4249 */
4250 void netdev_run_todo(void)
4251 {
4252 struct list_head list;
4253
4254 /* Snapshot list, allow later requests */
4255 list_replace_init(&net_todo_list, &list);
4256
4257 __rtnl_unlock();
4258
4259 while (!list_empty(&list)) {
4260 struct net_device *dev
4261 = list_entry(list.next, struct net_device, todo_list);
4262 list_del(&dev->todo_list);
4263
4264 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4265 printk(KERN_ERR "network todo '%s' but state %d\n",
4266 dev->name, dev->reg_state);
4267 dump_stack();
4268 continue;
4269 }
4270
4271 dev->reg_state = NETREG_UNREGISTERED;
4272
4273 on_each_cpu(flush_backlog, dev, 1);
4274
4275 netdev_wait_allrefs(dev);
4276
4277 /* paranoia */
4278 BUG_ON(atomic_read(&dev->refcnt));
4279 WARN_ON(dev->ip_ptr);
4280 WARN_ON(dev->ip6_ptr);
4281 WARN_ON(dev->dn_ptr);
4282
4283 if (dev->destructor)
4284 dev->destructor(dev);
4285
4286 /* Free network device */
4287 kobject_put(&dev->dev.kobj);
4288 }
4289 }
4290
4291 static struct net_device_stats *internal_stats(struct net_device *dev)
4292 {
4293 return &dev->stats;
4294 }
4295
4296 static void netdev_init_one_queue(struct net_device *dev,
4297 struct netdev_queue *queue,
4298 void *_unused)
4299 {
4300 queue->dev = dev;
4301 }
4302
4303 static void netdev_init_queues(struct net_device *dev)
4304 {
4305 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4306 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4307 spin_lock_init(&dev->tx_global_lock);
4308 }
4309
4310 /**
4311 * alloc_netdev_mq - allocate network device
4312 * @sizeof_priv: size of private data to allocate space for
4313 * @name: device name format string
4314 * @setup: callback to initialize device
4315 * @queue_count: the number of subqueues to allocate
4316 *
4317 * Allocates a struct net_device with private data area for driver use
4318 * and performs basic initialization. Also allocates subquue structs
4319 * for each queue on the device at the end of the netdevice.
4320 */
4321 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4322 void (*setup)(struct net_device *), unsigned int queue_count)
4323 {
4324 struct netdev_queue *tx;
4325 struct net_device *dev;
4326 size_t alloc_size;
4327 void *p;
4328
4329 BUG_ON(strlen(name) >= sizeof(dev->name));
4330
4331 alloc_size = sizeof(struct net_device);
4332 if (sizeof_priv) {
4333 /* ensure 32-byte alignment of private area */
4334 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4335 alloc_size += sizeof_priv;
4336 }
4337 /* ensure 32-byte alignment of whole construct */
4338 alloc_size += NETDEV_ALIGN_CONST;
4339
4340 p = kzalloc(alloc_size, GFP_KERNEL);
4341 if (!p) {
4342 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4343 return NULL;
4344 }
4345
4346 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4347 if (!tx) {
4348 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4349 "tx qdiscs.\n");
4350 kfree(p);
4351 return NULL;
4352 }
4353
4354 dev = (struct net_device *)
4355 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4356 dev->padded = (char *)dev - (char *)p;
4357 dev_net_set(dev, &init_net);
4358
4359 dev->_tx = tx;
4360 dev->num_tx_queues = queue_count;
4361 dev->real_num_tx_queues = queue_count;
4362
4363 if (sizeof_priv) {
4364 dev->priv = ((char *)dev +
4365 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4366 & ~NETDEV_ALIGN_CONST));
4367 }
4368
4369 dev->gso_max_size = GSO_MAX_SIZE;
4370
4371 netdev_init_queues(dev);
4372
4373 dev->get_stats = internal_stats;
4374 netpoll_netdev_init(dev);
4375 setup(dev);
4376 strcpy(dev->name, name);
4377 return dev;
4378 }
4379 EXPORT_SYMBOL(alloc_netdev_mq);
4380
4381 /**
4382 * free_netdev - free network device
4383 * @dev: device
4384 *
4385 * This function does the last stage of destroying an allocated device
4386 * interface. The reference to the device object is released.
4387 * If this is the last reference then it will be freed.
4388 */
4389 void free_netdev(struct net_device *dev)
4390 {
4391 release_net(dev_net(dev));
4392
4393 kfree(dev->_tx);
4394
4395 /* Compatibility with error handling in drivers */
4396 if (dev->reg_state == NETREG_UNINITIALIZED) {
4397 kfree((char *)dev - dev->padded);
4398 return;
4399 }
4400
4401 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4402 dev->reg_state = NETREG_RELEASED;
4403
4404 /* will free via device release */
4405 put_device(&dev->dev);
4406 }
4407
4408 /**
4409 * synchronize_net - Synchronize with packet receive processing
4410 *
4411 * Wait for packets currently being received to be done.
4412 * Does not block later packets from starting.
4413 */
4414 void synchronize_net(void)
4415 {
4416 might_sleep();
4417 synchronize_rcu();
4418 }
4419
4420 /**
4421 * unregister_netdevice - remove device from the kernel
4422 * @dev: device
4423 *
4424 * This function shuts down a device interface and removes it
4425 * from the kernel tables.
4426 *
4427 * Callers must hold the rtnl semaphore. You may want
4428 * unregister_netdev() instead of this.
4429 */
4430
4431 void unregister_netdevice(struct net_device *dev)
4432 {
4433 ASSERT_RTNL();
4434
4435 rollback_registered(dev);
4436 /* Finish processing unregister after unlock */
4437 net_set_todo(dev);
4438 }
4439
4440 /**
4441 * unregister_netdev - remove device from the kernel
4442 * @dev: device
4443 *
4444 * This function shuts down a device interface and removes it
4445 * from the kernel tables.
4446 *
4447 * This is just a wrapper for unregister_netdevice that takes
4448 * the rtnl semaphore. In general you want to use this and not
4449 * unregister_netdevice.
4450 */
4451 void unregister_netdev(struct net_device *dev)
4452 {
4453 rtnl_lock();
4454 unregister_netdevice(dev);
4455 rtnl_unlock();
4456 }
4457
4458 EXPORT_SYMBOL(unregister_netdev);
4459
4460 /**
4461 * dev_change_net_namespace - move device to different nethost namespace
4462 * @dev: device
4463 * @net: network namespace
4464 * @pat: If not NULL name pattern to try if the current device name
4465 * is already taken in the destination network namespace.
4466 *
4467 * This function shuts down a device interface and moves it
4468 * to a new network namespace. On success 0 is returned, on
4469 * a failure a netagive errno code is returned.
4470 *
4471 * Callers must hold the rtnl semaphore.
4472 */
4473
4474 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4475 {
4476 char buf[IFNAMSIZ];
4477 const char *destname;
4478 int err;
4479
4480 ASSERT_RTNL();
4481
4482 /* Don't allow namespace local devices to be moved. */
4483 err = -EINVAL;
4484 if (dev->features & NETIF_F_NETNS_LOCAL)
4485 goto out;
4486
4487 #ifdef CONFIG_SYSFS
4488 /* Don't allow real devices to be moved when sysfs
4489 * is enabled.
4490 */
4491 err = -EINVAL;
4492 if (dev->dev.parent)
4493 goto out;
4494 #endif
4495
4496 /* Ensure the device has been registrered */
4497 err = -EINVAL;
4498 if (dev->reg_state != NETREG_REGISTERED)
4499 goto out;
4500
4501 /* Get out if there is nothing todo */
4502 err = 0;
4503 if (net_eq(dev_net(dev), net))
4504 goto out;
4505
4506 /* Pick the destination device name, and ensure
4507 * we can use it in the destination network namespace.
4508 */
4509 err = -EEXIST;
4510 destname = dev->name;
4511 if (__dev_get_by_name(net, destname)) {
4512 /* We get here if we can't use the current device name */
4513 if (!pat)
4514 goto out;
4515 if (!dev_valid_name(pat))
4516 goto out;
4517 if (strchr(pat, '%')) {
4518 if (__dev_alloc_name(net, pat, buf) < 0)
4519 goto out;
4520 destname = buf;
4521 } else
4522 destname = pat;
4523 if (__dev_get_by_name(net, destname))
4524 goto out;
4525 }
4526
4527 /*
4528 * And now a mini version of register_netdevice unregister_netdevice.
4529 */
4530
4531 /* If device is running close it first. */
4532 dev_close(dev);
4533
4534 /* And unlink it from device chain */
4535 err = -ENODEV;
4536 unlist_netdevice(dev);
4537
4538 synchronize_net();
4539
4540 /* Shutdown queueing discipline. */
4541 dev_shutdown(dev);
4542
4543 /* Notify protocols, that we are about to destroy
4544 this device. They should clean all the things.
4545 */
4546 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4547
4548 /*
4549 * Flush the unicast and multicast chains
4550 */
4551 dev_addr_discard(dev);
4552
4553 netdev_unregister_kobject(dev);
4554
4555 /* Actually switch the network namespace */
4556 dev_net_set(dev, net);
4557
4558 /* Assign the new device name */
4559 if (destname != dev->name)
4560 strcpy(dev->name, destname);
4561
4562 /* If there is an ifindex conflict assign a new one */
4563 if (__dev_get_by_index(net, dev->ifindex)) {
4564 int iflink = (dev->iflink == dev->ifindex);
4565 dev->ifindex = dev_new_index(net);
4566 if (iflink)
4567 dev->iflink = dev->ifindex;
4568 }
4569
4570 /* Fixup kobjects */
4571 err = netdev_register_kobject(dev);
4572 WARN_ON(err);
4573
4574 /* Add the device back in the hashes */
4575 list_netdevice(dev);
4576
4577 /* Notify protocols, that a new device appeared. */
4578 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4579
4580 synchronize_net();
4581 err = 0;
4582 out:
4583 return err;
4584 }
4585
4586 static int dev_cpu_callback(struct notifier_block *nfb,
4587 unsigned long action,
4588 void *ocpu)
4589 {
4590 struct sk_buff **list_skb;
4591 struct Qdisc **list_net;
4592 struct sk_buff *skb;
4593 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4594 struct softnet_data *sd, *oldsd;
4595
4596 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4597 return NOTIFY_OK;
4598
4599 local_irq_disable();
4600 cpu = smp_processor_id();
4601 sd = &per_cpu(softnet_data, cpu);
4602 oldsd = &per_cpu(softnet_data, oldcpu);
4603
4604 /* Find end of our completion_queue. */
4605 list_skb = &sd->completion_queue;
4606 while (*list_skb)
4607 list_skb = &(*list_skb)->next;
4608 /* Append completion queue from offline CPU. */
4609 *list_skb = oldsd->completion_queue;
4610 oldsd->completion_queue = NULL;
4611
4612 /* Find end of our output_queue. */
4613 list_net = &sd->output_queue;
4614 while (*list_net)
4615 list_net = &(*list_net)->next_sched;
4616 /* Append output queue from offline CPU. */
4617 *list_net = oldsd->output_queue;
4618 oldsd->output_queue = NULL;
4619
4620 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4621 local_irq_enable();
4622
4623 /* Process offline CPU's input_pkt_queue */
4624 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4625 netif_rx(skb);
4626
4627 return NOTIFY_OK;
4628 }
4629
4630 #ifdef CONFIG_NET_DMA
4631 /**
4632 * net_dma_rebalance - try to maintain one DMA channel per CPU
4633 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4634 *
4635 * This is called when the number of channels allocated to the net_dma client
4636 * changes. The net_dma client tries to have one DMA channel per CPU.
4637 */
4638
4639 static void net_dma_rebalance(struct net_dma *net_dma)
4640 {
4641 unsigned int cpu, i, n, chan_idx;
4642 struct dma_chan *chan;
4643
4644 if (cpus_empty(net_dma->channel_mask)) {
4645 for_each_online_cpu(cpu)
4646 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4647 return;
4648 }
4649
4650 i = 0;
4651 cpu = first_cpu(cpu_online_map);
4652
4653 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4654 chan = net_dma->channels[chan_idx];
4655
4656 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4657 + (i < (num_online_cpus() %
4658 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4659
4660 while(n) {
4661 per_cpu(softnet_data, cpu).net_dma = chan;
4662 cpu = next_cpu(cpu, cpu_online_map);
4663 n--;
4664 }
4665 i++;
4666 }
4667 }
4668
4669 /**
4670 * netdev_dma_event - event callback for the net_dma_client
4671 * @client: should always be net_dma_client
4672 * @chan: DMA channel for the event
4673 * @state: DMA state to be handled
4674 */
4675 static enum dma_state_client
4676 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4677 enum dma_state state)
4678 {
4679 int i, found = 0, pos = -1;
4680 struct net_dma *net_dma =
4681 container_of(client, struct net_dma, client);
4682 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4683
4684 spin_lock(&net_dma->lock);
4685 switch (state) {
4686 case DMA_RESOURCE_AVAILABLE:
4687 for (i = 0; i < nr_cpu_ids; i++)
4688 if (net_dma->channels[i] == chan) {
4689 found = 1;
4690 break;
4691 } else if (net_dma->channels[i] == NULL && pos < 0)
4692 pos = i;
4693
4694 if (!found && pos >= 0) {
4695 ack = DMA_ACK;
4696 net_dma->channels[pos] = chan;
4697 cpu_set(pos, net_dma->channel_mask);
4698 net_dma_rebalance(net_dma);
4699 }
4700 break;
4701 case DMA_RESOURCE_REMOVED:
4702 for (i = 0; i < nr_cpu_ids; i++)
4703 if (net_dma->channels[i] == chan) {
4704 found = 1;
4705 pos = i;
4706 break;
4707 }
4708
4709 if (found) {
4710 ack = DMA_ACK;
4711 cpu_clear(pos, net_dma->channel_mask);
4712 net_dma->channels[i] = NULL;
4713 net_dma_rebalance(net_dma);
4714 }
4715 break;
4716 default:
4717 break;
4718 }
4719 spin_unlock(&net_dma->lock);
4720
4721 return ack;
4722 }
4723
4724 /**
4725 * netdev_dma_register - register the networking subsystem as a DMA client
4726 */
4727 static int __init netdev_dma_register(void)
4728 {
4729 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4730 GFP_KERNEL);
4731 if (unlikely(!net_dma.channels)) {
4732 printk(KERN_NOTICE
4733 "netdev_dma: no memory for net_dma.channels\n");
4734 return -ENOMEM;
4735 }
4736 spin_lock_init(&net_dma.lock);
4737 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4738 dma_async_client_register(&net_dma.client);
4739 dma_async_client_chan_request(&net_dma.client);
4740 return 0;
4741 }
4742
4743 #else
4744 static int __init netdev_dma_register(void) { return -ENODEV; }
4745 #endif /* CONFIG_NET_DMA */
4746
4747 /**
4748 * netdev_increment_features - increment feature set by one
4749 * @all: current feature set
4750 * @one: new feature set
4751 * @mask: mask feature set
4752 *
4753 * Computes a new feature set after adding a device with feature set
4754 * @one to the master device with current feature set @all. Will not
4755 * enable anything that is off in @mask. Returns the new feature set.
4756 */
4757 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4758 unsigned long mask)
4759 {
4760 /* If device needs checksumming, downgrade to it. */
4761 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4762 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4763 else if (mask & NETIF_F_ALL_CSUM) {
4764 /* If one device supports v4/v6 checksumming, set for all. */
4765 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4766 !(all & NETIF_F_GEN_CSUM)) {
4767 all &= ~NETIF_F_ALL_CSUM;
4768 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4769 }
4770
4771 /* If one device supports hw checksumming, set for all. */
4772 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4773 all &= ~NETIF_F_ALL_CSUM;
4774 all |= NETIF_F_HW_CSUM;
4775 }
4776 }
4777
4778 one |= NETIF_F_ALL_CSUM;
4779
4780 one |= all & NETIF_F_ONE_FOR_ALL;
4781 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4782 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4783
4784 return all;
4785 }
4786 EXPORT_SYMBOL(netdev_increment_features);
4787
4788 static struct hlist_head *netdev_create_hash(void)
4789 {
4790 int i;
4791 struct hlist_head *hash;
4792
4793 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4794 if (hash != NULL)
4795 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4796 INIT_HLIST_HEAD(&hash[i]);
4797
4798 return hash;
4799 }
4800
4801 /* Initialize per network namespace state */
4802 static int __net_init netdev_init(struct net *net)
4803 {
4804 INIT_LIST_HEAD(&net->dev_base_head);
4805
4806 net->dev_name_head = netdev_create_hash();
4807 if (net->dev_name_head == NULL)
4808 goto err_name;
4809
4810 net->dev_index_head = netdev_create_hash();
4811 if (net->dev_index_head == NULL)
4812 goto err_idx;
4813
4814 return 0;
4815
4816 err_idx:
4817 kfree(net->dev_name_head);
4818 err_name:
4819 return -ENOMEM;
4820 }
4821
4822 /**
4823 * netdev_drivername - network driver for the device
4824 * @dev: network device
4825 * @buffer: buffer for resulting name
4826 * @len: size of buffer
4827 *
4828 * Determine network driver for device.
4829 */
4830 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
4831 {
4832 const struct device_driver *driver;
4833 const struct device *parent;
4834
4835 if (len <= 0 || !buffer)
4836 return buffer;
4837 buffer[0] = 0;
4838
4839 parent = dev->dev.parent;
4840
4841 if (!parent)
4842 return buffer;
4843
4844 driver = parent->driver;
4845 if (driver && driver->name)
4846 strlcpy(buffer, driver->name, len);
4847 return buffer;
4848 }
4849
4850 static void __net_exit netdev_exit(struct net *net)
4851 {
4852 kfree(net->dev_name_head);
4853 kfree(net->dev_index_head);
4854 }
4855
4856 static struct pernet_operations __net_initdata netdev_net_ops = {
4857 .init = netdev_init,
4858 .exit = netdev_exit,
4859 };
4860
4861 static void __net_exit default_device_exit(struct net *net)
4862 {
4863 struct net_device *dev, *next;
4864 /*
4865 * Push all migratable of the network devices back to the
4866 * initial network namespace
4867 */
4868 rtnl_lock();
4869 for_each_netdev_safe(net, dev, next) {
4870 int err;
4871 char fb_name[IFNAMSIZ];
4872
4873 /* Ignore unmoveable devices (i.e. loopback) */
4874 if (dev->features & NETIF_F_NETNS_LOCAL)
4875 continue;
4876
4877 /* Delete virtual devices */
4878 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
4879 dev->rtnl_link_ops->dellink(dev);
4880 continue;
4881 }
4882
4883 /* Push remaing network devices to init_net */
4884 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4885 err = dev_change_net_namespace(dev, &init_net, fb_name);
4886 if (err) {
4887 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4888 __func__, dev->name, err);
4889 BUG();
4890 }
4891 }
4892 rtnl_unlock();
4893 }
4894
4895 static struct pernet_operations __net_initdata default_device_ops = {
4896 .exit = default_device_exit,
4897 };
4898
4899 /*
4900 * Initialize the DEV module. At boot time this walks the device list and
4901 * unhooks any devices that fail to initialise (normally hardware not
4902 * present) and leaves us with a valid list of present and active devices.
4903 *
4904 */
4905
4906 /*
4907 * This is called single threaded during boot, so no need
4908 * to take the rtnl semaphore.
4909 */
4910 static int __init net_dev_init(void)
4911 {
4912 int i, rc = -ENOMEM;
4913
4914 BUG_ON(!dev_boot_phase);
4915
4916 if (dev_proc_init())
4917 goto out;
4918
4919 if (netdev_kobject_init())
4920 goto out;
4921
4922 INIT_LIST_HEAD(&ptype_all);
4923 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4924 INIT_LIST_HEAD(&ptype_base[i]);
4925
4926 if (register_pernet_subsys(&netdev_net_ops))
4927 goto out;
4928
4929 /*
4930 * Initialise the packet receive queues.
4931 */
4932
4933 for_each_possible_cpu(i) {
4934 struct softnet_data *queue;
4935
4936 queue = &per_cpu(softnet_data, i);
4937 skb_queue_head_init(&queue->input_pkt_queue);
4938 queue->completion_queue = NULL;
4939 INIT_LIST_HEAD(&queue->poll_list);
4940
4941 queue->backlog.poll = process_backlog;
4942 queue->backlog.weight = weight_p;
4943 }
4944
4945 dev_boot_phase = 0;
4946
4947 /* The loopback device is special if any other network devices
4948 * is present in a network namespace the loopback device must
4949 * be present. Since we now dynamically allocate and free the
4950 * loopback device ensure this invariant is maintained by
4951 * keeping the loopback device as the first device on the
4952 * list of network devices. Ensuring the loopback devices
4953 * is the first device that appears and the last network device
4954 * that disappears.
4955 */
4956 if (register_pernet_device(&loopback_net_ops))
4957 goto out;
4958
4959 if (register_pernet_device(&default_device_ops))
4960 goto out;
4961
4962 netdev_dma_register();
4963
4964 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4965 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4966
4967 hotcpu_notifier(dev_cpu_callback, 0);
4968 dst_init();
4969 dev_mcast_init();
4970 rc = 0;
4971 out:
4972 return rc;
4973 }
4974
4975 subsys_initcall(net_dev_init);
4976
4977 EXPORT_SYMBOL(__dev_get_by_index);
4978 EXPORT_SYMBOL(__dev_get_by_name);
4979 EXPORT_SYMBOL(__dev_remove_pack);
4980 EXPORT_SYMBOL(dev_valid_name);
4981 EXPORT_SYMBOL(dev_add_pack);
4982 EXPORT_SYMBOL(dev_alloc_name);
4983 EXPORT_SYMBOL(dev_close);
4984 EXPORT_SYMBOL(dev_get_by_flags);
4985 EXPORT_SYMBOL(dev_get_by_index);
4986 EXPORT_SYMBOL(dev_get_by_name);
4987 EXPORT_SYMBOL(dev_open);
4988 EXPORT_SYMBOL(dev_queue_xmit);
4989 EXPORT_SYMBOL(dev_remove_pack);
4990 EXPORT_SYMBOL(dev_set_allmulti);
4991 EXPORT_SYMBOL(dev_set_promiscuity);
4992 EXPORT_SYMBOL(dev_change_flags);
4993 EXPORT_SYMBOL(dev_set_mtu);
4994 EXPORT_SYMBOL(dev_set_mac_address);
4995 EXPORT_SYMBOL(free_netdev);
4996 EXPORT_SYMBOL(netdev_boot_setup_check);
4997 EXPORT_SYMBOL(netdev_set_master);
4998 EXPORT_SYMBOL(netdev_state_change);
4999 EXPORT_SYMBOL(netif_receive_skb);
5000 EXPORT_SYMBOL(netif_rx);
5001 EXPORT_SYMBOL(register_gifconf);
5002 EXPORT_SYMBOL(register_netdevice);
5003 EXPORT_SYMBOL(register_netdevice_notifier);
5004 EXPORT_SYMBOL(skb_checksum_help);
5005 EXPORT_SYMBOL(synchronize_net);
5006 EXPORT_SYMBOL(unregister_netdevice);
5007 EXPORT_SYMBOL(unregister_netdevice_notifier);
5008 EXPORT_SYMBOL(net_enable_timestamp);
5009 EXPORT_SYMBOL(net_disable_timestamp);
5010 EXPORT_SYMBOL(dev_get_flags);
5011
5012 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5013 EXPORT_SYMBOL(br_handle_frame_hook);
5014 EXPORT_SYMBOL(br_fdb_get_hook);
5015 EXPORT_SYMBOL(br_fdb_put_hook);
5016 #endif
5017
5018 EXPORT_SYMBOL(dev_load);
5019
5020 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.252973 seconds and 6 git commands to generate.