netdevice: Fix promiscuity and allmulti overflow
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123
124 #include "net-sysfs.h"
125
126 /*
127 * The list of packet types we will receive (as opposed to discard)
128 * and the routines to invoke.
129 *
130 * Why 16. Because with 16 the only overlap we get on a hash of the
131 * low nibble of the protocol value is RARP/SNAP/X.25.
132 *
133 * NOTE: That is no longer true with the addition of VLAN tags. Not
134 * sure which should go first, but I bet it won't make much
135 * difference if we are running VLANs. The good news is that
136 * this protocol won't be in the list unless compiled in, so
137 * the average user (w/out VLANs) will not be adversely affected.
138 * --BLG
139 *
140 * 0800 IP
141 * 8100 802.1Q VLAN
142 * 0001 802.3
143 * 0002 AX.25
144 * 0004 802.2
145 * 8035 RARP
146 * 0005 SNAP
147 * 0805 X.25
148 * 0806 ARP
149 * 8137 IPX
150 * 0009 Localtalk
151 * 86DD IPv6
152 */
153
154 #define PTYPE_HASH_SIZE (16)
155 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 static struct list_head ptype_all __read_mostly; /* Taps */
160
161 #ifdef CONFIG_NET_DMA
162 struct net_dma {
163 struct dma_client client;
164 spinlock_t lock;
165 cpumask_t channel_mask;
166 struct dma_chan **channels;
167 };
168
169 static enum dma_state_client
170 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
171 enum dma_state state);
172
173 static struct net_dma net_dma = {
174 .client = {
175 .event_callback = netdev_dma_event,
176 },
177 };
178 #endif
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading.
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200
201 EXPORT_SYMBOL(dev_base_lock);
202
203 #define NETDEV_HASHBITS 8
204 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
209 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
215 }
216
217 /* Device list insertion */
218 static int list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
228 write_unlock_bh(&dev_base_lock);
229 return 0;
230 }
231
232 /* Device list removal */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del(&dev->dev_list);
240 hlist_del(&dev->name_hlist);
241 hlist_del(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243 }
244
245 /*
246 * Our notifier list
247 */
248
249 static RAW_NOTIFIER_HEAD(netdev_chain);
250
251 /*
252 * Device drivers call our routines to queue packets here. We empty the
253 * queue in the local softnet handler.
254 */
255
256 DEFINE_PER_CPU(struct softnet_data, softnet_data);
257
258 #ifdef CONFIG_DEBUG_LOCK_ALLOC
259 /*
260 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
277 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
278 ARPHRD_NONE};
279
280 static const char *netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
294 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
295 "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298
299 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 {
301 int i;
302
303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 if (netdev_lock_type[i] == dev_type)
305 return i;
306 /* the last key is used by default */
307 return ARRAY_SIZE(netdev_lock_type) - 1;
308 }
309
310 static inline void netdev_set_lockdep_class(spinlock_t *lock,
311 unsigned short dev_type)
312 {
313 int i;
314
315 i = netdev_lock_pos(dev_type);
316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 netdev_lock_name[i]);
318 }
319 #else
320 static inline void netdev_set_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 }
324 #endif
325
326 /*******************************************************************************
327
328 Protocol management and registration routines
329
330 *******************************************************************************/
331
332 /*
333 * Add a protocol ID to the list. Now that the input handler is
334 * smarter we can dispense with all the messy stuff that used to be
335 * here.
336 *
337 * BEWARE!!! Protocol handlers, mangling input packets,
338 * MUST BE last in hash buckets and checking protocol handlers
339 * MUST start from promiscuous ptype_all chain in net_bh.
340 * It is true now, do not change it.
341 * Explanation follows: if protocol handler, mangling packet, will
342 * be the first on list, it is not able to sense, that packet
343 * is cloned and should be copied-on-write, so that it will
344 * change it and subsequent readers will get broken packet.
345 * --ANK (980803)
346 */
347
348 /**
349 * dev_add_pack - add packet handler
350 * @pt: packet type declaration
351 *
352 * Add a protocol handler to the networking stack. The passed &packet_type
353 * is linked into kernel lists and may not be freed until it has been
354 * removed from the kernel lists.
355 *
356 * This call does not sleep therefore it can not
357 * guarantee all CPU's that are in middle of receiving packets
358 * will see the new packet type (until the next received packet).
359 */
360
361 void dev_add_pack(struct packet_type *pt)
362 {
363 int hash;
364
365 spin_lock_bh(&ptype_lock);
366 if (pt->type == htons(ETH_P_ALL))
367 list_add_rcu(&pt->list, &ptype_all);
368 else {
369 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
370 list_add_rcu(&pt->list, &ptype_base[hash]);
371 }
372 spin_unlock_bh(&ptype_lock);
373 }
374
375 /**
376 * __dev_remove_pack - remove packet handler
377 * @pt: packet type declaration
378 *
379 * Remove a protocol handler that was previously added to the kernel
380 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
381 * from the kernel lists and can be freed or reused once this function
382 * returns.
383 *
384 * The packet type might still be in use by receivers
385 * and must not be freed until after all the CPU's have gone
386 * through a quiescent state.
387 */
388 void __dev_remove_pack(struct packet_type *pt)
389 {
390 struct list_head *head;
391 struct packet_type *pt1;
392
393 spin_lock_bh(&ptype_lock);
394
395 if (pt->type == htons(ETH_P_ALL))
396 head = &ptype_all;
397 else
398 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399
400 list_for_each_entry(pt1, head, list) {
401 if (pt == pt1) {
402 list_del_rcu(&pt->list);
403 goto out;
404 }
405 }
406
407 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
408 out:
409 spin_unlock_bh(&ptype_lock);
410 }
411 /**
412 * dev_remove_pack - remove packet handler
413 * @pt: packet type declaration
414 *
415 * Remove a protocol handler that was previously added to the kernel
416 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
417 * from the kernel lists and can be freed or reused once this function
418 * returns.
419 *
420 * This call sleeps to guarantee that no CPU is looking at the packet
421 * type after return.
422 */
423 void dev_remove_pack(struct packet_type *pt)
424 {
425 __dev_remove_pack(pt);
426
427 synchronize_net();
428 }
429
430 /******************************************************************************
431
432 Device Boot-time Settings Routines
433
434 *******************************************************************************/
435
436 /* Boot time configuration table */
437 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
438
439 /**
440 * netdev_boot_setup_add - add new setup entry
441 * @name: name of the device
442 * @map: configured settings for the device
443 *
444 * Adds new setup entry to the dev_boot_setup list. The function
445 * returns 0 on error and 1 on success. This is a generic routine to
446 * all netdevices.
447 */
448 static int netdev_boot_setup_add(char *name, struct ifmap *map)
449 {
450 struct netdev_boot_setup *s;
451 int i;
452
453 s = dev_boot_setup;
454 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
455 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
456 memset(s[i].name, 0, sizeof(s[i].name));
457 strcpy(s[i].name, name);
458 memcpy(&s[i].map, map, sizeof(s[i].map));
459 break;
460 }
461 }
462
463 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
464 }
465
466 /**
467 * netdev_boot_setup_check - check boot time settings
468 * @dev: the netdevice
469 *
470 * Check boot time settings for the device.
471 * The found settings are set for the device to be used
472 * later in the device probing.
473 * Returns 0 if no settings found, 1 if they are.
474 */
475 int netdev_boot_setup_check(struct net_device *dev)
476 {
477 struct netdev_boot_setup *s = dev_boot_setup;
478 int i;
479
480 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
481 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
482 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
483 dev->irq = s[i].map.irq;
484 dev->base_addr = s[i].map.base_addr;
485 dev->mem_start = s[i].map.mem_start;
486 dev->mem_end = s[i].map.mem_end;
487 return 1;
488 }
489 }
490 return 0;
491 }
492
493
494 /**
495 * netdev_boot_base - get address from boot time settings
496 * @prefix: prefix for network device
497 * @unit: id for network device
498 *
499 * Check boot time settings for the base address of device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found.
503 */
504 unsigned long netdev_boot_base(const char *prefix, int unit)
505 {
506 const struct netdev_boot_setup *s = dev_boot_setup;
507 char name[IFNAMSIZ];
508 int i;
509
510 sprintf(name, "%s%d", prefix, unit);
511
512 /*
513 * If device already registered then return base of 1
514 * to indicate not to probe for this interface
515 */
516 if (__dev_get_by_name(&init_net, name))
517 return 1;
518
519 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
520 if (!strcmp(name, s[i].name))
521 return s[i].map.base_addr;
522 return 0;
523 }
524
525 /*
526 * Saves at boot time configured settings for any netdevice.
527 */
528 int __init netdev_boot_setup(char *str)
529 {
530 int ints[5];
531 struct ifmap map;
532
533 str = get_options(str, ARRAY_SIZE(ints), ints);
534 if (!str || !*str)
535 return 0;
536
537 /* Save settings */
538 memset(&map, 0, sizeof(map));
539 if (ints[0] > 0)
540 map.irq = ints[1];
541 if (ints[0] > 1)
542 map.base_addr = ints[2];
543 if (ints[0] > 2)
544 map.mem_start = ints[3];
545 if (ints[0] > 3)
546 map.mem_end = ints[4];
547
548 /* Add new entry to the list */
549 return netdev_boot_setup_add(str, &map);
550 }
551
552 __setup("netdev=", netdev_boot_setup);
553
554 /*******************************************************************************
555
556 Device Interface Subroutines
557
558 *******************************************************************************/
559
560 /**
561 * __dev_get_by_name - find a device by its name
562 * @net: the applicable net namespace
563 * @name: name to find
564 *
565 * Find an interface by name. Must be called under RTNL semaphore
566 * or @dev_base_lock. If the name is found a pointer to the device
567 * is returned. If the name is not found then %NULL is returned. The
568 * reference counters are not incremented so the caller must be
569 * careful with locks.
570 */
571
572 struct net_device *__dev_get_by_name(struct net *net, const char *name)
573 {
574 struct hlist_node *p;
575
576 hlist_for_each(p, dev_name_hash(net, name)) {
577 struct net_device *dev
578 = hlist_entry(p, struct net_device, name_hlist);
579 if (!strncmp(dev->name, name, IFNAMSIZ))
580 return dev;
581 }
582 return NULL;
583 }
584
585 /**
586 * dev_get_by_name - find a device by its name
587 * @net: the applicable net namespace
588 * @name: name to find
589 *
590 * Find an interface by name. This can be called from any
591 * context and does its own locking. The returned handle has
592 * the usage count incremented and the caller must use dev_put() to
593 * release it when it is no longer needed. %NULL is returned if no
594 * matching device is found.
595 */
596
597 struct net_device *dev_get_by_name(struct net *net, const char *name)
598 {
599 struct net_device *dev;
600
601 read_lock(&dev_base_lock);
602 dev = __dev_get_by_name(net, name);
603 if (dev)
604 dev_hold(dev);
605 read_unlock(&dev_base_lock);
606 return dev;
607 }
608
609 /**
610 * __dev_get_by_index - find a device by its ifindex
611 * @net: the applicable net namespace
612 * @ifindex: index of device
613 *
614 * Search for an interface by index. Returns %NULL if the device
615 * is not found or a pointer to the device. The device has not
616 * had its reference counter increased so the caller must be careful
617 * about locking. The caller must hold either the RTNL semaphore
618 * or @dev_base_lock.
619 */
620
621 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
622 {
623 struct hlist_node *p;
624
625 hlist_for_each(p, dev_index_hash(net, ifindex)) {
626 struct net_device *dev
627 = hlist_entry(p, struct net_device, index_hlist);
628 if (dev->ifindex == ifindex)
629 return dev;
630 }
631 return NULL;
632 }
633
634
635 /**
636 * dev_get_by_index - find a device by its ifindex
637 * @net: the applicable net namespace
638 * @ifindex: index of device
639 *
640 * Search for an interface by index. Returns NULL if the device
641 * is not found or a pointer to the device. The device returned has
642 * had a reference added and the pointer is safe until the user calls
643 * dev_put to indicate they have finished with it.
644 */
645
646 struct net_device *dev_get_by_index(struct net *net, int ifindex)
647 {
648 struct net_device *dev;
649
650 read_lock(&dev_base_lock);
651 dev = __dev_get_by_index(net, ifindex);
652 if (dev)
653 dev_hold(dev);
654 read_unlock(&dev_base_lock);
655 return dev;
656 }
657
658 /**
659 * dev_getbyhwaddr - find a device by its hardware address
660 * @net: the applicable net namespace
661 * @type: media type of device
662 * @ha: hardware address
663 *
664 * Search for an interface by MAC address. Returns NULL if the device
665 * is not found or a pointer to the device. The caller must hold the
666 * rtnl semaphore. The returned device has not had its ref count increased
667 * and the caller must therefore be careful about locking
668 *
669 * BUGS:
670 * If the API was consistent this would be __dev_get_by_hwaddr
671 */
672
673 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
674 {
675 struct net_device *dev;
676
677 ASSERT_RTNL();
678
679 for_each_netdev(net, dev)
680 if (dev->type == type &&
681 !memcmp(dev->dev_addr, ha, dev->addr_len))
682 return dev;
683
684 return NULL;
685 }
686
687 EXPORT_SYMBOL(dev_getbyhwaddr);
688
689 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
690 {
691 struct net_device *dev;
692
693 ASSERT_RTNL();
694 for_each_netdev(net, dev)
695 if (dev->type == type)
696 return dev;
697
698 return NULL;
699 }
700
701 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
702
703 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
704 {
705 struct net_device *dev;
706
707 rtnl_lock();
708 dev = __dev_getfirstbyhwtype(net, type);
709 if (dev)
710 dev_hold(dev);
711 rtnl_unlock();
712 return dev;
713 }
714
715 EXPORT_SYMBOL(dev_getfirstbyhwtype);
716
717 /**
718 * dev_get_by_flags - find any device with given flags
719 * @net: the applicable net namespace
720 * @if_flags: IFF_* values
721 * @mask: bitmask of bits in if_flags to check
722 *
723 * Search for any interface with the given flags. Returns NULL if a device
724 * is not found or a pointer to the device. The device returned has
725 * had a reference added and the pointer is safe until the user calls
726 * dev_put to indicate they have finished with it.
727 */
728
729 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
730 {
731 struct net_device *dev, *ret;
732
733 ret = NULL;
734 read_lock(&dev_base_lock);
735 for_each_netdev(net, dev) {
736 if (((dev->flags ^ if_flags) & mask) == 0) {
737 dev_hold(dev);
738 ret = dev;
739 break;
740 }
741 }
742 read_unlock(&dev_base_lock);
743 return ret;
744 }
745
746 /**
747 * dev_valid_name - check if name is okay for network device
748 * @name: name string
749 *
750 * Network device names need to be valid file names to
751 * to allow sysfs to work. We also disallow any kind of
752 * whitespace.
753 */
754 int dev_valid_name(const char *name)
755 {
756 if (*name == '\0')
757 return 0;
758 if (strlen(name) >= IFNAMSIZ)
759 return 0;
760 if (!strcmp(name, ".") || !strcmp(name, ".."))
761 return 0;
762
763 while (*name) {
764 if (*name == '/' || isspace(*name))
765 return 0;
766 name++;
767 }
768 return 1;
769 }
770
771 /**
772 * __dev_alloc_name - allocate a name for a device
773 * @net: network namespace to allocate the device name in
774 * @name: name format string
775 * @buf: scratch buffer and result name string
776 *
777 * Passed a format string - eg "lt%d" it will try and find a suitable
778 * id. It scans list of devices to build up a free map, then chooses
779 * the first empty slot. The caller must hold the dev_base or rtnl lock
780 * while allocating the name and adding the device in order to avoid
781 * duplicates.
782 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
783 * Returns the number of the unit assigned or a negative errno code.
784 */
785
786 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
787 {
788 int i = 0;
789 const char *p;
790 const int max_netdevices = 8*PAGE_SIZE;
791 unsigned long *inuse;
792 struct net_device *d;
793
794 p = strnchr(name, IFNAMSIZ-1, '%');
795 if (p) {
796 /*
797 * Verify the string as this thing may have come from
798 * the user. There must be either one "%d" and no other "%"
799 * characters.
800 */
801 if (p[1] != 'd' || strchr(p + 2, '%'))
802 return -EINVAL;
803
804 /* Use one page as a bit array of possible slots */
805 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
806 if (!inuse)
807 return -ENOMEM;
808
809 for_each_netdev(net, d) {
810 if (!sscanf(d->name, name, &i))
811 continue;
812 if (i < 0 || i >= max_netdevices)
813 continue;
814
815 /* avoid cases where sscanf is not exact inverse of printf */
816 snprintf(buf, IFNAMSIZ, name, i);
817 if (!strncmp(buf, d->name, IFNAMSIZ))
818 set_bit(i, inuse);
819 }
820
821 i = find_first_zero_bit(inuse, max_netdevices);
822 free_page((unsigned long) inuse);
823 }
824
825 snprintf(buf, IFNAMSIZ, name, i);
826 if (!__dev_get_by_name(net, buf))
827 return i;
828
829 /* It is possible to run out of possible slots
830 * when the name is long and there isn't enough space left
831 * for the digits, or if all bits are used.
832 */
833 return -ENFILE;
834 }
835
836 /**
837 * dev_alloc_name - allocate a name for a device
838 * @dev: device
839 * @name: name format string
840 *
841 * Passed a format string - eg "lt%d" it will try and find a suitable
842 * id. It scans list of devices to build up a free map, then chooses
843 * the first empty slot. The caller must hold the dev_base or rtnl lock
844 * while allocating the name and adding the device in order to avoid
845 * duplicates.
846 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
847 * Returns the number of the unit assigned or a negative errno code.
848 */
849
850 int dev_alloc_name(struct net_device *dev, const char *name)
851 {
852 char buf[IFNAMSIZ];
853 struct net *net;
854 int ret;
855
856 BUG_ON(!dev_net(dev));
857 net = dev_net(dev);
858 ret = __dev_alloc_name(net, name, buf);
859 if (ret >= 0)
860 strlcpy(dev->name, buf, IFNAMSIZ);
861 return ret;
862 }
863
864
865 /**
866 * dev_change_name - change name of a device
867 * @dev: device
868 * @newname: name (or format string) must be at least IFNAMSIZ
869 *
870 * Change name of a device, can pass format strings "eth%d".
871 * for wildcarding.
872 */
873 int dev_change_name(struct net_device *dev, char *newname)
874 {
875 char oldname[IFNAMSIZ];
876 int err = 0;
877 int ret;
878 struct net *net;
879
880 ASSERT_RTNL();
881 BUG_ON(!dev_net(dev));
882
883 net = dev_net(dev);
884 if (dev->flags & IFF_UP)
885 return -EBUSY;
886
887 if (!dev_valid_name(newname))
888 return -EINVAL;
889
890 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
891 return 0;
892
893 memcpy(oldname, dev->name, IFNAMSIZ);
894
895 if (strchr(newname, '%')) {
896 err = dev_alloc_name(dev, newname);
897 if (err < 0)
898 return err;
899 strcpy(newname, dev->name);
900 }
901 else if (__dev_get_by_name(net, newname))
902 return -EEXIST;
903 else
904 strlcpy(dev->name, newname, IFNAMSIZ);
905
906 rollback:
907 err = device_rename(&dev->dev, dev->name);
908 if (err) {
909 memcpy(dev->name, oldname, IFNAMSIZ);
910 return err;
911 }
912
913 write_lock_bh(&dev_base_lock);
914 hlist_del(&dev->name_hlist);
915 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
916 write_unlock_bh(&dev_base_lock);
917
918 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
919 ret = notifier_to_errno(ret);
920
921 if (ret) {
922 if (err) {
923 printk(KERN_ERR
924 "%s: name change rollback failed: %d.\n",
925 dev->name, ret);
926 } else {
927 err = ret;
928 memcpy(dev->name, oldname, IFNAMSIZ);
929 goto rollback;
930 }
931 }
932
933 return err;
934 }
935
936 /**
937 * netdev_features_change - device changes features
938 * @dev: device to cause notification
939 *
940 * Called to indicate a device has changed features.
941 */
942 void netdev_features_change(struct net_device *dev)
943 {
944 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
945 }
946 EXPORT_SYMBOL(netdev_features_change);
947
948 /**
949 * netdev_state_change - device changes state
950 * @dev: device to cause notification
951 *
952 * Called to indicate a device has changed state. This function calls
953 * the notifier chains for netdev_chain and sends a NEWLINK message
954 * to the routing socket.
955 */
956 void netdev_state_change(struct net_device *dev)
957 {
958 if (dev->flags & IFF_UP) {
959 call_netdevice_notifiers(NETDEV_CHANGE, dev);
960 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
961 }
962 }
963
964 void netdev_bonding_change(struct net_device *dev)
965 {
966 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
967 }
968 EXPORT_SYMBOL(netdev_bonding_change);
969
970 /**
971 * dev_load - load a network module
972 * @net: the applicable net namespace
973 * @name: name of interface
974 *
975 * If a network interface is not present and the process has suitable
976 * privileges this function loads the module. If module loading is not
977 * available in this kernel then it becomes a nop.
978 */
979
980 void dev_load(struct net *net, const char *name)
981 {
982 struct net_device *dev;
983
984 read_lock(&dev_base_lock);
985 dev = __dev_get_by_name(net, name);
986 read_unlock(&dev_base_lock);
987
988 if (!dev && capable(CAP_SYS_MODULE))
989 request_module("%s", name);
990 }
991
992 /**
993 * dev_open - prepare an interface for use.
994 * @dev: device to open
995 *
996 * Takes a device from down to up state. The device's private open
997 * function is invoked and then the multicast lists are loaded. Finally
998 * the device is moved into the up state and a %NETDEV_UP message is
999 * sent to the netdev notifier chain.
1000 *
1001 * Calling this function on an active interface is a nop. On a failure
1002 * a negative errno code is returned.
1003 */
1004 int dev_open(struct net_device *dev)
1005 {
1006 int ret = 0;
1007
1008 ASSERT_RTNL();
1009
1010 /*
1011 * Is it already up?
1012 */
1013
1014 if (dev->flags & IFF_UP)
1015 return 0;
1016
1017 /*
1018 * Is it even present?
1019 */
1020 if (!netif_device_present(dev))
1021 return -ENODEV;
1022
1023 /*
1024 * Call device private open method
1025 */
1026 set_bit(__LINK_STATE_START, &dev->state);
1027
1028 if (dev->validate_addr)
1029 ret = dev->validate_addr(dev);
1030
1031 if (!ret && dev->open)
1032 ret = dev->open(dev);
1033
1034 /*
1035 * If it went open OK then:
1036 */
1037
1038 if (ret)
1039 clear_bit(__LINK_STATE_START, &dev->state);
1040 else {
1041 /*
1042 * Set the flags.
1043 */
1044 dev->flags |= IFF_UP;
1045
1046 /*
1047 * Initialize multicasting status
1048 */
1049 dev_set_rx_mode(dev);
1050
1051 /*
1052 * Wakeup transmit queue engine
1053 */
1054 dev_activate(dev);
1055
1056 /*
1057 * ... and announce new interface.
1058 */
1059 call_netdevice_notifiers(NETDEV_UP, dev);
1060 }
1061
1062 return ret;
1063 }
1064
1065 /**
1066 * dev_close - shutdown an interface.
1067 * @dev: device to shutdown
1068 *
1069 * This function moves an active device into down state. A
1070 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1071 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1072 * chain.
1073 */
1074 int dev_close(struct net_device *dev)
1075 {
1076 ASSERT_RTNL();
1077
1078 might_sleep();
1079
1080 if (!(dev->flags & IFF_UP))
1081 return 0;
1082
1083 /*
1084 * Tell people we are going down, so that they can
1085 * prepare to death, when device is still operating.
1086 */
1087 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1088
1089 clear_bit(__LINK_STATE_START, &dev->state);
1090
1091 /* Synchronize to scheduled poll. We cannot touch poll list,
1092 * it can be even on different cpu. So just clear netif_running().
1093 *
1094 * dev->stop() will invoke napi_disable() on all of it's
1095 * napi_struct instances on this device.
1096 */
1097 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1098
1099 dev_deactivate(dev);
1100
1101 /*
1102 * Call the device specific close. This cannot fail.
1103 * Only if device is UP
1104 *
1105 * We allow it to be called even after a DETACH hot-plug
1106 * event.
1107 */
1108 if (dev->stop)
1109 dev->stop(dev);
1110
1111 /*
1112 * Device is now down.
1113 */
1114
1115 dev->flags &= ~IFF_UP;
1116
1117 /*
1118 * Tell people we are down
1119 */
1120 call_netdevice_notifiers(NETDEV_DOWN, dev);
1121
1122 return 0;
1123 }
1124
1125
1126 static int dev_boot_phase = 1;
1127
1128 /*
1129 * Device change register/unregister. These are not inline or static
1130 * as we export them to the world.
1131 */
1132
1133 /**
1134 * register_netdevice_notifier - register a network notifier block
1135 * @nb: notifier
1136 *
1137 * Register a notifier to be called when network device events occur.
1138 * The notifier passed is linked into the kernel structures and must
1139 * not be reused until it has been unregistered. A negative errno code
1140 * is returned on a failure.
1141 *
1142 * When registered all registration and up events are replayed
1143 * to the new notifier to allow device to have a race free
1144 * view of the network device list.
1145 */
1146
1147 int register_netdevice_notifier(struct notifier_block *nb)
1148 {
1149 struct net_device *dev;
1150 struct net_device *last;
1151 struct net *net;
1152 int err;
1153
1154 rtnl_lock();
1155 err = raw_notifier_chain_register(&netdev_chain, nb);
1156 if (err)
1157 goto unlock;
1158 if (dev_boot_phase)
1159 goto unlock;
1160 for_each_net(net) {
1161 for_each_netdev(net, dev) {
1162 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1163 err = notifier_to_errno(err);
1164 if (err)
1165 goto rollback;
1166
1167 if (!(dev->flags & IFF_UP))
1168 continue;
1169
1170 nb->notifier_call(nb, NETDEV_UP, dev);
1171 }
1172 }
1173
1174 unlock:
1175 rtnl_unlock();
1176 return err;
1177
1178 rollback:
1179 last = dev;
1180 for_each_net(net) {
1181 for_each_netdev(net, dev) {
1182 if (dev == last)
1183 break;
1184
1185 if (dev->flags & IFF_UP) {
1186 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1187 nb->notifier_call(nb, NETDEV_DOWN, dev);
1188 }
1189 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1190 }
1191 }
1192
1193 raw_notifier_chain_unregister(&netdev_chain, nb);
1194 goto unlock;
1195 }
1196
1197 /**
1198 * unregister_netdevice_notifier - unregister a network notifier block
1199 * @nb: notifier
1200 *
1201 * Unregister a notifier previously registered by
1202 * register_netdevice_notifier(). The notifier is unlinked into the
1203 * kernel structures and may then be reused. A negative errno code
1204 * is returned on a failure.
1205 */
1206
1207 int unregister_netdevice_notifier(struct notifier_block *nb)
1208 {
1209 int err;
1210
1211 rtnl_lock();
1212 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1213 rtnl_unlock();
1214 return err;
1215 }
1216
1217 /**
1218 * call_netdevice_notifiers - call all network notifier blocks
1219 * @val: value passed unmodified to notifier function
1220 * @dev: net_device pointer passed unmodified to notifier function
1221 *
1222 * Call all network notifier blocks. Parameters and return value
1223 * are as for raw_notifier_call_chain().
1224 */
1225
1226 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1227 {
1228 return raw_notifier_call_chain(&netdev_chain, val, dev);
1229 }
1230
1231 /* When > 0 there are consumers of rx skb time stamps */
1232 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1233
1234 void net_enable_timestamp(void)
1235 {
1236 atomic_inc(&netstamp_needed);
1237 }
1238
1239 void net_disable_timestamp(void)
1240 {
1241 atomic_dec(&netstamp_needed);
1242 }
1243
1244 static inline void net_timestamp(struct sk_buff *skb)
1245 {
1246 if (atomic_read(&netstamp_needed))
1247 __net_timestamp(skb);
1248 else
1249 skb->tstamp.tv64 = 0;
1250 }
1251
1252 /*
1253 * Support routine. Sends outgoing frames to any network
1254 * taps currently in use.
1255 */
1256
1257 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1258 {
1259 struct packet_type *ptype;
1260
1261 net_timestamp(skb);
1262
1263 rcu_read_lock();
1264 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1265 /* Never send packets back to the socket
1266 * they originated from - MvS (miquels@drinkel.ow.org)
1267 */
1268 if ((ptype->dev == dev || !ptype->dev) &&
1269 (ptype->af_packet_priv == NULL ||
1270 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1271 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1272 if (!skb2)
1273 break;
1274
1275 /* skb->nh should be correctly
1276 set by sender, so that the second statement is
1277 just protection against buggy protocols.
1278 */
1279 skb_reset_mac_header(skb2);
1280
1281 if (skb_network_header(skb2) < skb2->data ||
1282 skb2->network_header > skb2->tail) {
1283 if (net_ratelimit())
1284 printk(KERN_CRIT "protocol %04x is "
1285 "buggy, dev %s\n",
1286 skb2->protocol, dev->name);
1287 skb_reset_network_header(skb2);
1288 }
1289
1290 skb2->transport_header = skb2->network_header;
1291 skb2->pkt_type = PACKET_OUTGOING;
1292 ptype->func(skb2, skb->dev, ptype, skb->dev);
1293 }
1294 }
1295 rcu_read_unlock();
1296 }
1297
1298
1299 void __netif_schedule(struct net_device *dev)
1300 {
1301 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1302 unsigned long flags;
1303 struct softnet_data *sd;
1304
1305 local_irq_save(flags);
1306 sd = &__get_cpu_var(softnet_data);
1307 dev->next_sched = sd->output_queue;
1308 sd->output_queue = dev;
1309 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1310 local_irq_restore(flags);
1311 }
1312 }
1313 EXPORT_SYMBOL(__netif_schedule);
1314
1315 void dev_kfree_skb_irq(struct sk_buff *skb)
1316 {
1317 if (atomic_dec_and_test(&skb->users)) {
1318 struct softnet_data *sd;
1319 unsigned long flags;
1320
1321 local_irq_save(flags);
1322 sd = &__get_cpu_var(softnet_data);
1323 skb->next = sd->completion_queue;
1324 sd->completion_queue = skb;
1325 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1326 local_irq_restore(flags);
1327 }
1328 }
1329 EXPORT_SYMBOL(dev_kfree_skb_irq);
1330
1331 void dev_kfree_skb_any(struct sk_buff *skb)
1332 {
1333 if (in_irq() || irqs_disabled())
1334 dev_kfree_skb_irq(skb);
1335 else
1336 dev_kfree_skb(skb);
1337 }
1338 EXPORT_SYMBOL(dev_kfree_skb_any);
1339
1340
1341 /**
1342 * netif_device_detach - mark device as removed
1343 * @dev: network device
1344 *
1345 * Mark device as removed from system and therefore no longer available.
1346 */
1347 void netif_device_detach(struct net_device *dev)
1348 {
1349 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1350 netif_running(dev)) {
1351 netif_stop_queue(dev);
1352 }
1353 }
1354 EXPORT_SYMBOL(netif_device_detach);
1355
1356 /**
1357 * netif_device_attach - mark device as attached
1358 * @dev: network device
1359 *
1360 * Mark device as attached from system and restart if needed.
1361 */
1362 void netif_device_attach(struct net_device *dev)
1363 {
1364 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1365 netif_running(dev)) {
1366 netif_wake_queue(dev);
1367 __netdev_watchdog_up(dev);
1368 }
1369 }
1370 EXPORT_SYMBOL(netif_device_attach);
1371
1372 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1373 {
1374 return ((features & NETIF_F_GEN_CSUM) ||
1375 ((features & NETIF_F_IP_CSUM) &&
1376 protocol == htons(ETH_P_IP)) ||
1377 ((features & NETIF_F_IPV6_CSUM) &&
1378 protocol == htons(ETH_P_IPV6)));
1379 }
1380
1381 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1382 {
1383 if (can_checksum_protocol(dev->features, skb->protocol))
1384 return true;
1385
1386 if (skb->protocol == htons(ETH_P_8021Q)) {
1387 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1388 if (can_checksum_protocol(dev->features & dev->vlan_features,
1389 veh->h_vlan_encapsulated_proto))
1390 return true;
1391 }
1392
1393 return false;
1394 }
1395
1396 /*
1397 * Invalidate hardware checksum when packet is to be mangled, and
1398 * complete checksum manually on outgoing path.
1399 */
1400 int skb_checksum_help(struct sk_buff *skb)
1401 {
1402 __wsum csum;
1403 int ret = 0, offset;
1404
1405 if (skb->ip_summed == CHECKSUM_COMPLETE)
1406 goto out_set_summed;
1407
1408 if (unlikely(skb_shinfo(skb)->gso_size)) {
1409 /* Let GSO fix up the checksum. */
1410 goto out_set_summed;
1411 }
1412
1413 offset = skb->csum_start - skb_headroom(skb);
1414 BUG_ON(offset >= skb_headlen(skb));
1415 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1416
1417 offset += skb->csum_offset;
1418 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1419
1420 if (skb_cloned(skb) &&
1421 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1422 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1423 if (ret)
1424 goto out;
1425 }
1426
1427 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1428 out_set_summed:
1429 skb->ip_summed = CHECKSUM_NONE;
1430 out:
1431 return ret;
1432 }
1433
1434 /**
1435 * skb_gso_segment - Perform segmentation on skb.
1436 * @skb: buffer to segment
1437 * @features: features for the output path (see dev->features)
1438 *
1439 * This function segments the given skb and returns a list of segments.
1440 *
1441 * It may return NULL if the skb requires no segmentation. This is
1442 * only possible when GSO is used for verifying header integrity.
1443 */
1444 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1445 {
1446 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1447 struct packet_type *ptype;
1448 __be16 type = skb->protocol;
1449 int err;
1450
1451 BUG_ON(skb_shinfo(skb)->frag_list);
1452
1453 skb_reset_mac_header(skb);
1454 skb->mac_len = skb->network_header - skb->mac_header;
1455 __skb_pull(skb, skb->mac_len);
1456
1457 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1458 if (skb_header_cloned(skb) &&
1459 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1460 return ERR_PTR(err);
1461 }
1462
1463 rcu_read_lock();
1464 list_for_each_entry_rcu(ptype,
1465 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1466 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1467 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1468 err = ptype->gso_send_check(skb);
1469 segs = ERR_PTR(err);
1470 if (err || skb_gso_ok(skb, features))
1471 break;
1472 __skb_push(skb, (skb->data -
1473 skb_network_header(skb)));
1474 }
1475 segs = ptype->gso_segment(skb, features);
1476 break;
1477 }
1478 }
1479 rcu_read_unlock();
1480
1481 __skb_push(skb, skb->data - skb_mac_header(skb));
1482
1483 return segs;
1484 }
1485
1486 EXPORT_SYMBOL(skb_gso_segment);
1487
1488 /* Take action when hardware reception checksum errors are detected. */
1489 #ifdef CONFIG_BUG
1490 void netdev_rx_csum_fault(struct net_device *dev)
1491 {
1492 if (net_ratelimit()) {
1493 printk(KERN_ERR "%s: hw csum failure.\n",
1494 dev ? dev->name : "<unknown>");
1495 dump_stack();
1496 }
1497 }
1498 EXPORT_SYMBOL(netdev_rx_csum_fault);
1499 #endif
1500
1501 /* Actually, we should eliminate this check as soon as we know, that:
1502 * 1. IOMMU is present and allows to map all the memory.
1503 * 2. No high memory really exists on this machine.
1504 */
1505
1506 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1507 {
1508 #ifdef CONFIG_HIGHMEM
1509 int i;
1510
1511 if (dev->features & NETIF_F_HIGHDMA)
1512 return 0;
1513
1514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1515 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1516 return 1;
1517
1518 #endif
1519 return 0;
1520 }
1521
1522 struct dev_gso_cb {
1523 void (*destructor)(struct sk_buff *skb);
1524 };
1525
1526 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1527
1528 static void dev_gso_skb_destructor(struct sk_buff *skb)
1529 {
1530 struct dev_gso_cb *cb;
1531
1532 do {
1533 struct sk_buff *nskb = skb->next;
1534
1535 skb->next = nskb->next;
1536 nskb->next = NULL;
1537 kfree_skb(nskb);
1538 } while (skb->next);
1539
1540 cb = DEV_GSO_CB(skb);
1541 if (cb->destructor)
1542 cb->destructor(skb);
1543 }
1544
1545 /**
1546 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1547 * @skb: buffer to segment
1548 *
1549 * This function segments the given skb and stores the list of segments
1550 * in skb->next.
1551 */
1552 static int dev_gso_segment(struct sk_buff *skb)
1553 {
1554 struct net_device *dev = skb->dev;
1555 struct sk_buff *segs;
1556 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1557 NETIF_F_SG : 0);
1558
1559 segs = skb_gso_segment(skb, features);
1560
1561 /* Verifying header integrity only. */
1562 if (!segs)
1563 return 0;
1564
1565 if (IS_ERR(segs))
1566 return PTR_ERR(segs);
1567
1568 skb->next = segs;
1569 DEV_GSO_CB(skb)->destructor = skb->destructor;
1570 skb->destructor = dev_gso_skb_destructor;
1571
1572 return 0;
1573 }
1574
1575 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1576 {
1577 if (likely(!skb->next)) {
1578 if (!list_empty(&ptype_all))
1579 dev_queue_xmit_nit(skb, dev);
1580
1581 if (netif_needs_gso(dev, skb)) {
1582 if (unlikely(dev_gso_segment(skb)))
1583 goto out_kfree_skb;
1584 if (skb->next)
1585 goto gso;
1586 }
1587
1588 return dev->hard_start_xmit(skb, dev);
1589 }
1590
1591 gso:
1592 do {
1593 struct sk_buff *nskb = skb->next;
1594 int rc;
1595
1596 skb->next = nskb->next;
1597 nskb->next = NULL;
1598 rc = dev->hard_start_xmit(nskb, dev);
1599 if (unlikely(rc)) {
1600 nskb->next = skb->next;
1601 skb->next = nskb;
1602 return rc;
1603 }
1604 if (unlikely((netif_queue_stopped(dev) ||
1605 netif_subqueue_stopped(dev, skb)) &&
1606 skb->next))
1607 return NETDEV_TX_BUSY;
1608 } while (skb->next);
1609
1610 skb->destructor = DEV_GSO_CB(skb)->destructor;
1611
1612 out_kfree_skb:
1613 kfree_skb(skb);
1614 return 0;
1615 }
1616
1617 /**
1618 * dev_queue_xmit - transmit a buffer
1619 * @skb: buffer to transmit
1620 *
1621 * Queue a buffer for transmission to a network device. The caller must
1622 * have set the device and priority and built the buffer before calling
1623 * this function. The function can be called from an interrupt.
1624 *
1625 * A negative errno code is returned on a failure. A success does not
1626 * guarantee the frame will be transmitted as it may be dropped due
1627 * to congestion or traffic shaping.
1628 *
1629 * -----------------------------------------------------------------------------------
1630 * I notice this method can also return errors from the queue disciplines,
1631 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1632 * be positive.
1633 *
1634 * Regardless of the return value, the skb is consumed, so it is currently
1635 * difficult to retry a send to this method. (You can bump the ref count
1636 * before sending to hold a reference for retry if you are careful.)
1637 *
1638 * When calling this method, interrupts MUST be enabled. This is because
1639 * the BH enable code must have IRQs enabled so that it will not deadlock.
1640 * --BLG
1641 */
1642
1643 int dev_queue_xmit(struct sk_buff *skb)
1644 {
1645 struct net_device *dev = skb->dev;
1646 struct Qdisc *q;
1647 int rc = -ENOMEM;
1648
1649 /* GSO will handle the following emulations directly. */
1650 if (netif_needs_gso(dev, skb))
1651 goto gso;
1652
1653 if (skb_shinfo(skb)->frag_list &&
1654 !(dev->features & NETIF_F_FRAGLIST) &&
1655 __skb_linearize(skb))
1656 goto out_kfree_skb;
1657
1658 /* Fragmented skb is linearized if device does not support SG,
1659 * or if at least one of fragments is in highmem and device
1660 * does not support DMA from it.
1661 */
1662 if (skb_shinfo(skb)->nr_frags &&
1663 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1664 __skb_linearize(skb))
1665 goto out_kfree_skb;
1666
1667 /* If packet is not checksummed and device does not support
1668 * checksumming for this protocol, complete checksumming here.
1669 */
1670 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1671 skb_set_transport_header(skb, skb->csum_start -
1672 skb_headroom(skb));
1673 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1674 goto out_kfree_skb;
1675 }
1676
1677 gso:
1678 spin_lock_prefetch(&dev->queue_lock);
1679
1680 /* Disable soft irqs for various locks below. Also
1681 * stops preemption for RCU.
1682 */
1683 rcu_read_lock_bh();
1684
1685 /* Updates of qdisc are serialized by queue_lock.
1686 * The struct Qdisc which is pointed to by qdisc is now a
1687 * rcu structure - it may be accessed without acquiring
1688 * a lock (but the structure may be stale.) The freeing of the
1689 * qdisc will be deferred until it's known that there are no
1690 * more references to it.
1691 *
1692 * If the qdisc has an enqueue function, we still need to
1693 * hold the queue_lock before calling it, since queue_lock
1694 * also serializes access to the device queue.
1695 */
1696
1697 q = rcu_dereference(dev->qdisc);
1698 #ifdef CONFIG_NET_CLS_ACT
1699 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1700 #endif
1701 if (q->enqueue) {
1702 /* Grab device queue */
1703 spin_lock(&dev->queue_lock);
1704 q = dev->qdisc;
1705 if (q->enqueue) {
1706 /* reset queue_mapping to zero */
1707 skb_set_queue_mapping(skb, 0);
1708 rc = q->enqueue(skb, q);
1709 qdisc_run(dev);
1710 spin_unlock(&dev->queue_lock);
1711
1712 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1713 goto out;
1714 }
1715 spin_unlock(&dev->queue_lock);
1716 }
1717
1718 /* The device has no queue. Common case for software devices:
1719 loopback, all the sorts of tunnels...
1720
1721 Really, it is unlikely that netif_tx_lock protection is necessary
1722 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1723 counters.)
1724 However, it is possible, that they rely on protection
1725 made by us here.
1726
1727 Check this and shot the lock. It is not prone from deadlocks.
1728 Either shot noqueue qdisc, it is even simpler 8)
1729 */
1730 if (dev->flags & IFF_UP) {
1731 int cpu = smp_processor_id(); /* ok because BHs are off */
1732
1733 if (dev->xmit_lock_owner != cpu) {
1734
1735 HARD_TX_LOCK(dev, cpu);
1736
1737 if (!netif_queue_stopped(dev) &&
1738 !netif_subqueue_stopped(dev, skb)) {
1739 rc = 0;
1740 if (!dev_hard_start_xmit(skb, dev)) {
1741 HARD_TX_UNLOCK(dev);
1742 goto out;
1743 }
1744 }
1745 HARD_TX_UNLOCK(dev);
1746 if (net_ratelimit())
1747 printk(KERN_CRIT "Virtual device %s asks to "
1748 "queue packet!\n", dev->name);
1749 } else {
1750 /* Recursion is detected! It is possible,
1751 * unfortunately */
1752 if (net_ratelimit())
1753 printk(KERN_CRIT "Dead loop on virtual device "
1754 "%s, fix it urgently!\n", dev->name);
1755 }
1756 }
1757
1758 rc = -ENETDOWN;
1759 rcu_read_unlock_bh();
1760
1761 out_kfree_skb:
1762 kfree_skb(skb);
1763 return rc;
1764 out:
1765 rcu_read_unlock_bh();
1766 return rc;
1767 }
1768
1769
1770 /*=======================================================================
1771 Receiver routines
1772 =======================================================================*/
1773
1774 int netdev_max_backlog __read_mostly = 1000;
1775 int netdev_budget __read_mostly = 300;
1776 int weight_p __read_mostly = 64; /* old backlog weight */
1777
1778 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1779
1780
1781 /**
1782 * netif_rx - post buffer to the network code
1783 * @skb: buffer to post
1784 *
1785 * This function receives a packet from a device driver and queues it for
1786 * the upper (protocol) levels to process. It always succeeds. The buffer
1787 * may be dropped during processing for congestion control or by the
1788 * protocol layers.
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
1792 * NET_RX_DROP (packet was dropped)
1793 *
1794 */
1795
1796 int netif_rx(struct sk_buff *skb)
1797 {
1798 struct softnet_data *queue;
1799 unsigned long flags;
1800
1801 /* if netpoll wants it, pretend we never saw it */
1802 if (netpoll_rx(skb))
1803 return NET_RX_DROP;
1804
1805 if (!skb->tstamp.tv64)
1806 net_timestamp(skb);
1807
1808 /*
1809 * The code is rearranged so that the path is the most
1810 * short when CPU is congested, but is still operating.
1811 */
1812 local_irq_save(flags);
1813 queue = &__get_cpu_var(softnet_data);
1814
1815 __get_cpu_var(netdev_rx_stat).total++;
1816 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1817 if (queue->input_pkt_queue.qlen) {
1818 enqueue:
1819 dev_hold(skb->dev);
1820 __skb_queue_tail(&queue->input_pkt_queue, skb);
1821 local_irq_restore(flags);
1822 return NET_RX_SUCCESS;
1823 }
1824
1825 napi_schedule(&queue->backlog);
1826 goto enqueue;
1827 }
1828
1829 __get_cpu_var(netdev_rx_stat).dropped++;
1830 local_irq_restore(flags);
1831
1832 kfree_skb(skb);
1833 return NET_RX_DROP;
1834 }
1835
1836 int netif_rx_ni(struct sk_buff *skb)
1837 {
1838 int err;
1839
1840 preempt_disable();
1841 err = netif_rx(skb);
1842 if (local_softirq_pending())
1843 do_softirq();
1844 preempt_enable();
1845
1846 return err;
1847 }
1848
1849 EXPORT_SYMBOL(netif_rx_ni);
1850
1851 static inline struct net_device *skb_bond(struct sk_buff *skb)
1852 {
1853 struct net_device *dev = skb->dev;
1854
1855 if (dev->master) {
1856 if (skb_bond_should_drop(skb)) {
1857 kfree_skb(skb);
1858 return NULL;
1859 }
1860 skb->dev = dev->master;
1861 }
1862
1863 return dev;
1864 }
1865
1866
1867 static void net_tx_action(struct softirq_action *h)
1868 {
1869 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1870
1871 if (sd->completion_queue) {
1872 struct sk_buff *clist;
1873
1874 local_irq_disable();
1875 clist = sd->completion_queue;
1876 sd->completion_queue = NULL;
1877 local_irq_enable();
1878
1879 while (clist) {
1880 struct sk_buff *skb = clist;
1881 clist = clist->next;
1882
1883 BUG_TRAP(!atomic_read(&skb->users));
1884 __kfree_skb(skb);
1885 }
1886 }
1887
1888 if (sd->output_queue) {
1889 struct net_device *head;
1890
1891 local_irq_disable();
1892 head = sd->output_queue;
1893 sd->output_queue = NULL;
1894 local_irq_enable();
1895
1896 while (head) {
1897 struct net_device *dev = head;
1898 head = head->next_sched;
1899
1900 smp_mb__before_clear_bit();
1901 clear_bit(__LINK_STATE_SCHED, &dev->state);
1902
1903 if (spin_trylock(&dev->queue_lock)) {
1904 qdisc_run(dev);
1905 spin_unlock(&dev->queue_lock);
1906 } else {
1907 netif_schedule(dev);
1908 }
1909 }
1910 }
1911 }
1912
1913 static inline int deliver_skb(struct sk_buff *skb,
1914 struct packet_type *pt_prev,
1915 struct net_device *orig_dev)
1916 {
1917 atomic_inc(&skb->users);
1918 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1919 }
1920
1921 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1922 /* These hooks defined here for ATM */
1923 struct net_bridge;
1924 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1925 unsigned char *addr);
1926 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1927
1928 /*
1929 * If bridge module is loaded call bridging hook.
1930 * returns NULL if packet was consumed.
1931 */
1932 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1933 struct sk_buff *skb) __read_mostly;
1934 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1935 struct packet_type **pt_prev, int *ret,
1936 struct net_device *orig_dev)
1937 {
1938 struct net_bridge_port *port;
1939
1940 if (skb->pkt_type == PACKET_LOOPBACK ||
1941 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1942 return skb;
1943
1944 if (*pt_prev) {
1945 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1946 *pt_prev = NULL;
1947 }
1948
1949 return br_handle_frame_hook(port, skb);
1950 }
1951 #else
1952 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1953 #endif
1954
1955 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1956 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1957 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1958
1959 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1960 struct packet_type **pt_prev,
1961 int *ret,
1962 struct net_device *orig_dev)
1963 {
1964 if (skb->dev->macvlan_port == NULL)
1965 return skb;
1966
1967 if (*pt_prev) {
1968 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1969 *pt_prev = NULL;
1970 }
1971 return macvlan_handle_frame_hook(skb);
1972 }
1973 #else
1974 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1975 #endif
1976
1977 #ifdef CONFIG_NET_CLS_ACT
1978 /* TODO: Maybe we should just force sch_ingress to be compiled in
1979 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1980 * a compare and 2 stores extra right now if we dont have it on
1981 * but have CONFIG_NET_CLS_ACT
1982 * NOTE: This doesnt stop any functionality; if you dont have
1983 * the ingress scheduler, you just cant add policies on ingress.
1984 *
1985 */
1986 static int ing_filter(struct sk_buff *skb)
1987 {
1988 struct Qdisc *q;
1989 struct net_device *dev = skb->dev;
1990 int result = TC_ACT_OK;
1991 u32 ttl = G_TC_RTTL(skb->tc_verd);
1992
1993 if (MAX_RED_LOOP < ttl++) {
1994 printk(KERN_WARNING
1995 "Redir loop detected Dropping packet (%d->%d)\n",
1996 skb->iif, dev->ifindex);
1997 return TC_ACT_SHOT;
1998 }
1999
2000 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2001 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2002
2003 spin_lock(&dev->ingress_lock);
2004 if ((q = dev->qdisc_ingress) != NULL)
2005 result = q->enqueue(skb, q);
2006 spin_unlock(&dev->ingress_lock);
2007
2008 return result;
2009 }
2010
2011 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2012 struct packet_type **pt_prev,
2013 int *ret, struct net_device *orig_dev)
2014 {
2015 if (!skb->dev->qdisc_ingress)
2016 goto out;
2017
2018 if (*pt_prev) {
2019 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2020 *pt_prev = NULL;
2021 } else {
2022 /* Huh? Why does turning on AF_PACKET affect this? */
2023 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2024 }
2025
2026 switch (ing_filter(skb)) {
2027 case TC_ACT_SHOT:
2028 case TC_ACT_STOLEN:
2029 kfree_skb(skb);
2030 return NULL;
2031 }
2032
2033 out:
2034 skb->tc_verd = 0;
2035 return skb;
2036 }
2037 #endif
2038
2039 /**
2040 * netif_receive_skb - process receive buffer from network
2041 * @skb: buffer to process
2042 *
2043 * netif_receive_skb() is the main receive data processing function.
2044 * It always succeeds. The buffer may be dropped during processing
2045 * for congestion control or by the protocol layers.
2046 *
2047 * This function may only be called from softirq context and interrupts
2048 * should be enabled.
2049 *
2050 * Return values (usually ignored):
2051 * NET_RX_SUCCESS: no congestion
2052 * NET_RX_DROP: packet was dropped
2053 */
2054 int netif_receive_skb(struct sk_buff *skb)
2055 {
2056 struct packet_type *ptype, *pt_prev;
2057 struct net_device *orig_dev;
2058 int ret = NET_RX_DROP;
2059 __be16 type;
2060
2061 /* if we've gotten here through NAPI, check netpoll */
2062 if (netpoll_receive_skb(skb))
2063 return NET_RX_DROP;
2064
2065 if (!skb->tstamp.tv64)
2066 net_timestamp(skb);
2067
2068 if (!skb->iif)
2069 skb->iif = skb->dev->ifindex;
2070
2071 orig_dev = skb_bond(skb);
2072
2073 if (!orig_dev)
2074 return NET_RX_DROP;
2075
2076 __get_cpu_var(netdev_rx_stat).total++;
2077
2078 skb_reset_network_header(skb);
2079 skb_reset_transport_header(skb);
2080 skb->mac_len = skb->network_header - skb->mac_header;
2081
2082 pt_prev = NULL;
2083
2084 rcu_read_lock();
2085
2086 #ifdef CONFIG_NET_CLS_ACT
2087 if (skb->tc_verd & TC_NCLS) {
2088 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2089 goto ncls;
2090 }
2091 #endif
2092
2093 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2094 if (!ptype->dev || ptype->dev == skb->dev) {
2095 if (pt_prev)
2096 ret = deliver_skb(skb, pt_prev, orig_dev);
2097 pt_prev = ptype;
2098 }
2099 }
2100
2101 #ifdef CONFIG_NET_CLS_ACT
2102 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2103 if (!skb)
2104 goto out;
2105 ncls:
2106 #endif
2107
2108 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2109 if (!skb)
2110 goto out;
2111 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2112 if (!skb)
2113 goto out;
2114
2115 type = skb->protocol;
2116 list_for_each_entry_rcu(ptype,
2117 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2118 if (ptype->type == type &&
2119 (!ptype->dev || ptype->dev == skb->dev)) {
2120 if (pt_prev)
2121 ret = deliver_skb(skb, pt_prev, orig_dev);
2122 pt_prev = ptype;
2123 }
2124 }
2125
2126 if (pt_prev) {
2127 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2128 } else {
2129 kfree_skb(skb);
2130 /* Jamal, now you will not able to escape explaining
2131 * me how you were going to use this. :-)
2132 */
2133 ret = NET_RX_DROP;
2134 }
2135
2136 out:
2137 rcu_read_unlock();
2138 return ret;
2139 }
2140
2141 static int process_backlog(struct napi_struct *napi, int quota)
2142 {
2143 int work = 0;
2144 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2145 unsigned long start_time = jiffies;
2146
2147 napi->weight = weight_p;
2148 do {
2149 struct sk_buff *skb;
2150 struct net_device *dev;
2151
2152 local_irq_disable();
2153 skb = __skb_dequeue(&queue->input_pkt_queue);
2154 if (!skb) {
2155 __napi_complete(napi);
2156 local_irq_enable();
2157 break;
2158 }
2159
2160 local_irq_enable();
2161
2162 dev = skb->dev;
2163
2164 netif_receive_skb(skb);
2165
2166 dev_put(dev);
2167 } while (++work < quota && jiffies == start_time);
2168
2169 return work;
2170 }
2171
2172 /**
2173 * __napi_schedule - schedule for receive
2174 * @n: entry to schedule
2175 *
2176 * The entry's receive function will be scheduled to run
2177 */
2178 void __napi_schedule(struct napi_struct *n)
2179 {
2180 unsigned long flags;
2181
2182 local_irq_save(flags);
2183 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2184 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2185 local_irq_restore(flags);
2186 }
2187 EXPORT_SYMBOL(__napi_schedule);
2188
2189
2190 static void net_rx_action(struct softirq_action *h)
2191 {
2192 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2193 unsigned long start_time = jiffies;
2194 int budget = netdev_budget;
2195 void *have;
2196
2197 local_irq_disable();
2198
2199 while (!list_empty(list)) {
2200 struct napi_struct *n;
2201 int work, weight;
2202
2203 /* If softirq window is exhuasted then punt.
2204 *
2205 * Note that this is a slight policy change from the
2206 * previous NAPI code, which would allow up to 2
2207 * jiffies to pass before breaking out. The test
2208 * used to be "jiffies - start_time > 1".
2209 */
2210 if (unlikely(budget <= 0 || jiffies != start_time))
2211 goto softnet_break;
2212
2213 local_irq_enable();
2214
2215 /* Even though interrupts have been re-enabled, this
2216 * access is safe because interrupts can only add new
2217 * entries to the tail of this list, and only ->poll()
2218 * calls can remove this head entry from the list.
2219 */
2220 n = list_entry(list->next, struct napi_struct, poll_list);
2221
2222 have = netpoll_poll_lock(n);
2223
2224 weight = n->weight;
2225
2226 /* This NAPI_STATE_SCHED test is for avoiding a race
2227 * with netpoll's poll_napi(). Only the entity which
2228 * obtains the lock and sees NAPI_STATE_SCHED set will
2229 * actually make the ->poll() call. Therefore we avoid
2230 * accidently calling ->poll() when NAPI is not scheduled.
2231 */
2232 work = 0;
2233 if (test_bit(NAPI_STATE_SCHED, &n->state))
2234 work = n->poll(n, weight);
2235
2236 WARN_ON_ONCE(work > weight);
2237
2238 budget -= work;
2239
2240 local_irq_disable();
2241
2242 /* Drivers must not modify the NAPI state if they
2243 * consume the entire weight. In such cases this code
2244 * still "owns" the NAPI instance and therefore can
2245 * move the instance around on the list at-will.
2246 */
2247 if (unlikely(work == weight)) {
2248 if (unlikely(napi_disable_pending(n)))
2249 __napi_complete(n);
2250 else
2251 list_move_tail(&n->poll_list, list);
2252 }
2253
2254 netpoll_poll_unlock(have);
2255 }
2256 out:
2257 local_irq_enable();
2258
2259 #ifdef CONFIG_NET_DMA
2260 /*
2261 * There may not be any more sk_buffs coming right now, so push
2262 * any pending DMA copies to hardware
2263 */
2264 if (!cpus_empty(net_dma.channel_mask)) {
2265 int chan_idx;
2266 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2267 struct dma_chan *chan = net_dma.channels[chan_idx];
2268 if (chan)
2269 dma_async_memcpy_issue_pending(chan);
2270 }
2271 }
2272 #endif
2273
2274 return;
2275
2276 softnet_break:
2277 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2278 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2279 goto out;
2280 }
2281
2282 static gifconf_func_t * gifconf_list [NPROTO];
2283
2284 /**
2285 * register_gifconf - register a SIOCGIF handler
2286 * @family: Address family
2287 * @gifconf: Function handler
2288 *
2289 * Register protocol dependent address dumping routines. The handler
2290 * that is passed must not be freed or reused until it has been replaced
2291 * by another handler.
2292 */
2293 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2294 {
2295 if (family >= NPROTO)
2296 return -EINVAL;
2297 gifconf_list[family] = gifconf;
2298 return 0;
2299 }
2300
2301
2302 /*
2303 * Map an interface index to its name (SIOCGIFNAME)
2304 */
2305
2306 /*
2307 * We need this ioctl for efficient implementation of the
2308 * if_indextoname() function required by the IPv6 API. Without
2309 * it, we would have to search all the interfaces to find a
2310 * match. --pb
2311 */
2312
2313 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2314 {
2315 struct net_device *dev;
2316 struct ifreq ifr;
2317
2318 /*
2319 * Fetch the caller's info block.
2320 */
2321
2322 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2323 return -EFAULT;
2324
2325 read_lock(&dev_base_lock);
2326 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2327 if (!dev) {
2328 read_unlock(&dev_base_lock);
2329 return -ENODEV;
2330 }
2331
2332 strcpy(ifr.ifr_name, dev->name);
2333 read_unlock(&dev_base_lock);
2334
2335 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2336 return -EFAULT;
2337 return 0;
2338 }
2339
2340 /*
2341 * Perform a SIOCGIFCONF call. This structure will change
2342 * size eventually, and there is nothing I can do about it.
2343 * Thus we will need a 'compatibility mode'.
2344 */
2345
2346 static int dev_ifconf(struct net *net, char __user *arg)
2347 {
2348 struct ifconf ifc;
2349 struct net_device *dev;
2350 char __user *pos;
2351 int len;
2352 int total;
2353 int i;
2354
2355 /*
2356 * Fetch the caller's info block.
2357 */
2358
2359 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2360 return -EFAULT;
2361
2362 pos = ifc.ifc_buf;
2363 len = ifc.ifc_len;
2364
2365 /*
2366 * Loop over the interfaces, and write an info block for each.
2367 */
2368
2369 total = 0;
2370 for_each_netdev(net, dev) {
2371 for (i = 0; i < NPROTO; i++) {
2372 if (gifconf_list[i]) {
2373 int done;
2374 if (!pos)
2375 done = gifconf_list[i](dev, NULL, 0);
2376 else
2377 done = gifconf_list[i](dev, pos + total,
2378 len - total);
2379 if (done < 0)
2380 return -EFAULT;
2381 total += done;
2382 }
2383 }
2384 }
2385
2386 /*
2387 * All done. Write the updated control block back to the caller.
2388 */
2389 ifc.ifc_len = total;
2390
2391 /*
2392 * Both BSD and Solaris return 0 here, so we do too.
2393 */
2394 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2395 }
2396
2397 #ifdef CONFIG_PROC_FS
2398 /*
2399 * This is invoked by the /proc filesystem handler to display a device
2400 * in detail.
2401 */
2402 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2403 __acquires(dev_base_lock)
2404 {
2405 struct net *net = seq_file_net(seq);
2406 loff_t off;
2407 struct net_device *dev;
2408
2409 read_lock(&dev_base_lock);
2410 if (!*pos)
2411 return SEQ_START_TOKEN;
2412
2413 off = 1;
2414 for_each_netdev(net, dev)
2415 if (off++ == *pos)
2416 return dev;
2417
2418 return NULL;
2419 }
2420
2421 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2422 {
2423 struct net *net = seq_file_net(seq);
2424 ++*pos;
2425 return v == SEQ_START_TOKEN ?
2426 first_net_device(net) : next_net_device((struct net_device *)v);
2427 }
2428
2429 void dev_seq_stop(struct seq_file *seq, void *v)
2430 __releases(dev_base_lock)
2431 {
2432 read_unlock(&dev_base_lock);
2433 }
2434
2435 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2436 {
2437 struct net_device_stats *stats = dev->get_stats(dev);
2438
2439 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2440 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2441 dev->name, stats->rx_bytes, stats->rx_packets,
2442 stats->rx_errors,
2443 stats->rx_dropped + stats->rx_missed_errors,
2444 stats->rx_fifo_errors,
2445 stats->rx_length_errors + stats->rx_over_errors +
2446 stats->rx_crc_errors + stats->rx_frame_errors,
2447 stats->rx_compressed, stats->multicast,
2448 stats->tx_bytes, stats->tx_packets,
2449 stats->tx_errors, stats->tx_dropped,
2450 stats->tx_fifo_errors, stats->collisions,
2451 stats->tx_carrier_errors +
2452 stats->tx_aborted_errors +
2453 stats->tx_window_errors +
2454 stats->tx_heartbeat_errors,
2455 stats->tx_compressed);
2456 }
2457
2458 /*
2459 * Called from the PROCfs module. This now uses the new arbitrary sized
2460 * /proc/net interface to create /proc/net/dev
2461 */
2462 static int dev_seq_show(struct seq_file *seq, void *v)
2463 {
2464 if (v == SEQ_START_TOKEN)
2465 seq_puts(seq, "Inter-| Receive "
2466 " | Transmit\n"
2467 " face |bytes packets errs drop fifo frame "
2468 "compressed multicast|bytes packets errs "
2469 "drop fifo colls carrier compressed\n");
2470 else
2471 dev_seq_printf_stats(seq, v);
2472 return 0;
2473 }
2474
2475 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2476 {
2477 struct netif_rx_stats *rc = NULL;
2478
2479 while (*pos < nr_cpu_ids)
2480 if (cpu_online(*pos)) {
2481 rc = &per_cpu(netdev_rx_stat, *pos);
2482 break;
2483 } else
2484 ++*pos;
2485 return rc;
2486 }
2487
2488 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2489 {
2490 return softnet_get_online(pos);
2491 }
2492
2493 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2494 {
2495 ++*pos;
2496 return softnet_get_online(pos);
2497 }
2498
2499 static void softnet_seq_stop(struct seq_file *seq, void *v)
2500 {
2501 }
2502
2503 static int softnet_seq_show(struct seq_file *seq, void *v)
2504 {
2505 struct netif_rx_stats *s = v;
2506
2507 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2508 s->total, s->dropped, s->time_squeeze, 0,
2509 0, 0, 0, 0, /* was fastroute */
2510 s->cpu_collision );
2511 return 0;
2512 }
2513
2514 static const struct seq_operations dev_seq_ops = {
2515 .start = dev_seq_start,
2516 .next = dev_seq_next,
2517 .stop = dev_seq_stop,
2518 .show = dev_seq_show,
2519 };
2520
2521 static int dev_seq_open(struct inode *inode, struct file *file)
2522 {
2523 return seq_open_net(inode, file, &dev_seq_ops,
2524 sizeof(struct seq_net_private));
2525 }
2526
2527 static const struct file_operations dev_seq_fops = {
2528 .owner = THIS_MODULE,
2529 .open = dev_seq_open,
2530 .read = seq_read,
2531 .llseek = seq_lseek,
2532 .release = seq_release_net,
2533 };
2534
2535 static const struct seq_operations softnet_seq_ops = {
2536 .start = softnet_seq_start,
2537 .next = softnet_seq_next,
2538 .stop = softnet_seq_stop,
2539 .show = softnet_seq_show,
2540 };
2541
2542 static int softnet_seq_open(struct inode *inode, struct file *file)
2543 {
2544 return seq_open(file, &softnet_seq_ops);
2545 }
2546
2547 static const struct file_operations softnet_seq_fops = {
2548 .owner = THIS_MODULE,
2549 .open = softnet_seq_open,
2550 .read = seq_read,
2551 .llseek = seq_lseek,
2552 .release = seq_release,
2553 };
2554
2555 static void *ptype_get_idx(loff_t pos)
2556 {
2557 struct packet_type *pt = NULL;
2558 loff_t i = 0;
2559 int t;
2560
2561 list_for_each_entry_rcu(pt, &ptype_all, list) {
2562 if (i == pos)
2563 return pt;
2564 ++i;
2565 }
2566
2567 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2568 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2569 if (i == pos)
2570 return pt;
2571 ++i;
2572 }
2573 }
2574 return NULL;
2575 }
2576
2577 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2578 __acquires(RCU)
2579 {
2580 rcu_read_lock();
2581 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2582 }
2583
2584 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2585 {
2586 struct packet_type *pt;
2587 struct list_head *nxt;
2588 int hash;
2589
2590 ++*pos;
2591 if (v == SEQ_START_TOKEN)
2592 return ptype_get_idx(0);
2593
2594 pt = v;
2595 nxt = pt->list.next;
2596 if (pt->type == htons(ETH_P_ALL)) {
2597 if (nxt != &ptype_all)
2598 goto found;
2599 hash = 0;
2600 nxt = ptype_base[0].next;
2601 } else
2602 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2603
2604 while (nxt == &ptype_base[hash]) {
2605 if (++hash >= PTYPE_HASH_SIZE)
2606 return NULL;
2607 nxt = ptype_base[hash].next;
2608 }
2609 found:
2610 return list_entry(nxt, struct packet_type, list);
2611 }
2612
2613 static void ptype_seq_stop(struct seq_file *seq, void *v)
2614 __releases(RCU)
2615 {
2616 rcu_read_unlock();
2617 }
2618
2619 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2620 {
2621 #ifdef CONFIG_KALLSYMS
2622 unsigned long offset = 0, symsize;
2623 const char *symname;
2624 char *modname;
2625 char namebuf[128];
2626
2627 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2628 &modname, namebuf);
2629
2630 if (symname) {
2631 char *delim = ":";
2632
2633 if (!modname)
2634 modname = delim = "";
2635 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2636 symname, offset);
2637 return;
2638 }
2639 #endif
2640
2641 seq_printf(seq, "[%p]", sym);
2642 }
2643
2644 static int ptype_seq_show(struct seq_file *seq, void *v)
2645 {
2646 struct packet_type *pt = v;
2647
2648 if (v == SEQ_START_TOKEN)
2649 seq_puts(seq, "Type Device Function\n");
2650 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2651 if (pt->type == htons(ETH_P_ALL))
2652 seq_puts(seq, "ALL ");
2653 else
2654 seq_printf(seq, "%04x", ntohs(pt->type));
2655
2656 seq_printf(seq, " %-8s ",
2657 pt->dev ? pt->dev->name : "");
2658 ptype_seq_decode(seq, pt->func);
2659 seq_putc(seq, '\n');
2660 }
2661
2662 return 0;
2663 }
2664
2665 static const struct seq_operations ptype_seq_ops = {
2666 .start = ptype_seq_start,
2667 .next = ptype_seq_next,
2668 .stop = ptype_seq_stop,
2669 .show = ptype_seq_show,
2670 };
2671
2672 static int ptype_seq_open(struct inode *inode, struct file *file)
2673 {
2674 return seq_open_net(inode, file, &ptype_seq_ops,
2675 sizeof(struct seq_net_private));
2676 }
2677
2678 static const struct file_operations ptype_seq_fops = {
2679 .owner = THIS_MODULE,
2680 .open = ptype_seq_open,
2681 .read = seq_read,
2682 .llseek = seq_lseek,
2683 .release = seq_release_net,
2684 };
2685
2686
2687 static int __net_init dev_proc_net_init(struct net *net)
2688 {
2689 int rc = -ENOMEM;
2690
2691 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2692 goto out;
2693 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2694 goto out_dev;
2695 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2696 goto out_softnet;
2697
2698 if (wext_proc_init(net))
2699 goto out_ptype;
2700 rc = 0;
2701 out:
2702 return rc;
2703 out_ptype:
2704 proc_net_remove(net, "ptype");
2705 out_softnet:
2706 proc_net_remove(net, "softnet_stat");
2707 out_dev:
2708 proc_net_remove(net, "dev");
2709 goto out;
2710 }
2711
2712 static void __net_exit dev_proc_net_exit(struct net *net)
2713 {
2714 wext_proc_exit(net);
2715
2716 proc_net_remove(net, "ptype");
2717 proc_net_remove(net, "softnet_stat");
2718 proc_net_remove(net, "dev");
2719 }
2720
2721 static struct pernet_operations __net_initdata dev_proc_ops = {
2722 .init = dev_proc_net_init,
2723 .exit = dev_proc_net_exit,
2724 };
2725
2726 static int __init dev_proc_init(void)
2727 {
2728 return register_pernet_subsys(&dev_proc_ops);
2729 }
2730 #else
2731 #define dev_proc_init() 0
2732 #endif /* CONFIG_PROC_FS */
2733
2734
2735 /**
2736 * netdev_set_master - set up master/slave pair
2737 * @slave: slave device
2738 * @master: new master device
2739 *
2740 * Changes the master device of the slave. Pass %NULL to break the
2741 * bonding. The caller must hold the RTNL semaphore. On a failure
2742 * a negative errno code is returned. On success the reference counts
2743 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2744 * function returns zero.
2745 */
2746 int netdev_set_master(struct net_device *slave, struct net_device *master)
2747 {
2748 struct net_device *old = slave->master;
2749
2750 ASSERT_RTNL();
2751
2752 if (master) {
2753 if (old)
2754 return -EBUSY;
2755 dev_hold(master);
2756 }
2757
2758 slave->master = master;
2759
2760 synchronize_net();
2761
2762 if (old)
2763 dev_put(old);
2764
2765 if (master)
2766 slave->flags |= IFF_SLAVE;
2767 else
2768 slave->flags &= ~IFF_SLAVE;
2769
2770 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2771 return 0;
2772 }
2773
2774 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2775 {
2776 unsigned short old_flags = dev->flags;
2777
2778 ASSERT_RTNL();
2779
2780 dev->flags |= IFF_PROMISC;
2781 dev->promiscuity += inc;
2782 if (dev->promiscuity == 0) {
2783 /*
2784 * Avoid overflow.
2785 * If inc causes overflow, untouch promisc and return error.
2786 */
2787 if (inc < 0)
2788 dev->flags &= ~IFF_PROMISC;
2789 else {
2790 dev->promiscuity -= inc;
2791 printk(KERN_WARNING "%s: promiscuity touches roof, "
2792 "set promiscuity failed, promiscuity feature "
2793 "of device might be broken.\n", dev->name);
2794 return -EOVERFLOW;
2795 }
2796 }
2797 if (dev->flags != old_flags) {
2798 printk(KERN_INFO "device %s %s promiscuous mode\n",
2799 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2800 "left");
2801 if (audit_enabled)
2802 audit_log(current->audit_context, GFP_ATOMIC,
2803 AUDIT_ANOM_PROMISCUOUS,
2804 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2805 dev->name, (dev->flags & IFF_PROMISC),
2806 (old_flags & IFF_PROMISC),
2807 audit_get_loginuid(current),
2808 current->uid, current->gid,
2809 audit_get_sessionid(current));
2810
2811 if (dev->change_rx_flags)
2812 dev->change_rx_flags(dev, IFF_PROMISC);
2813 }
2814 return 0;
2815 }
2816
2817 /**
2818 * dev_set_promiscuity - update promiscuity count on a device
2819 * @dev: device
2820 * @inc: modifier
2821 *
2822 * Add or remove promiscuity from a device. While the count in the device
2823 * remains above zero the interface remains promiscuous. Once it hits zero
2824 * the device reverts back to normal filtering operation. A negative inc
2825 * value is used to drop promiscuity on the device.
2826 * Return 0 if successful or a negative errno code on error.
2827 */
2828 int dev_set_promiscuity(struct net_device *dev, int inc)
2829 {
2830 unsigned short old_flags = dev->flags;
2831 int err;
2832
2833 err = __dev_set_promiscuity(dev, inc);
2834 if (!err)
2835 return err;
2836 if (dev->flags != old_flags)
2837 dev_set_rx_mode(dev);
2838 return err;
2839 }
2840
2841 /**
2842 * dev_set_allmulti - update allmulti count on a device
2843 * @dev: device
2844 * @inc: modifier
2845 *
2846 * Add or remove reception of all multicast frames to a device. While the
2847 * count in the device remains above zero the interface remains listening
2848 * to all interfaces. Once it hits zero the device reverts back to normal
2849 * filtering operation. A negative @inc value is used to drop the counter
2850 * when releasing a resource needing all multicasts.
2851 * Return 0 if successful or a negative errno code on error.
2852 */
2853
2854 int dev_set_allmulti(struct net_device *dev, int inc)
2855 {
2856 unsigned short old_flags = dev->flags;
2857
2858 ASSERT_RTNL();
2859
2860 dev->flags |= IFF_ALLMULTI;
2861 dev->allmulti += inc;
2862 if (dev->allmulti == 0) {
2863 /*
2864 * Avoid overflow.
2865 * If inc causes overflow, untouch allmulti and return error.
2866 */
2867 if (inc < 0)
2868 dev->flags &= ~IFF_ALLMULTI;
2869 else {
2870 dev->allmulti -= inc;
2871 printk(KERN_WARNING "%s: allmulti touches roof, "
2872 "set allmulti failed, allmulti feature of "
2873 "device might be broken.\n", dev->name);
2874 return -EOVERFLOW;
2875 }
2876 }
2877 if (dev->flags ^ old_flags) {
2878 if (dev->change_rx_flags)
2879 dev->change_rx_flags(dev, IFF_ALLMULTI);
2880 dev_set_rx_mode(dev);
2881 }
2882 return 0;
2883 }
2884
2885 /*
2886 * Upload unicast and multicast address lists to device and
2887 * configure RX filtering. When the device doesn't support unicast
2888 * filtering it is put in promiscuous mode while unicast addresses
2889 * are present.
2890 */
2891 void __dev_set_rx_mode(struct net_device *dev)
2892 {
2893 /* dev_open will call this function so the list will stay sane. */
2894 if (!(dev->flags&IFF_UP))
2895 return;
2896
2897 if (!netif_device_present(dev))
2898 return;
2899
2900 if (dev->set_rx_mode)
2901 dev->set_rx_mode(dev);
2902 else {
2903 /* Unicast addresses changes may only happen under the rtnl,
2904 * therefore calling __dev_set_promiscuity here is safe.
2905 */
2906 if (dev->uc_count > 0 && !dev->uc_promisc) {
2907 __dev_set_promiscuity(dev, 1);
2908 dev->uc_promisc = 1;
2909 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2910 __dev_set_promiscuity(dev, -1);
2911 dev->uc_promisc = 0;
2912 }
2913
2914 if (dev->set_multicast_list)
2915 dev->set_multicast_list(dev);
2916 }
2917 }
2918
2919 void dev_set_rx_mode(struct net_device *dev)
2920 {
2921 netif_tx_lock_bh(dev);
2922 __dev_set_rx_mode(dev);
2923 netif_tx_unlock_bh(dev);
2924 }
2925
2926 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2927 void *addr, int alen, int glbl)
2928 {
2929 struct dev_addr_list *da;
2930
2931 for (; (da = *list) != NULL; list = &da->next) {
2932 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2933 alen == da->da_addrlen) {
2934 if (glbl) {
2935 int old_glbl = da->da_gusers;
2936 da->da_gusers = 0;
2937 if (old_glbl == 0)
2938 break;
2939 }
2940 if (--da->da_users)
2941 return 0;
2942
2943 *list = da->next;
2944 kfree(da);
2945 (*count)--;
2946 return 0;
2947 }
2948 }
2949 return -ENOENT;
2950 }
2951
2952 int __dev_addr_add(struct dev_addr_list **list, int *count,
2953 void *addr, int alen, int glbl)
2954 {
2955 struct dev_addr_list *da;
2956
2957 for (da = *list; da != NULL; da = da->next) {
2958 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2959 da->da_addrlen == alen) {
2960 if (glbl) {
2961 int old_glbl = da->da_gusers;
2962 da->da_gusers = 1;
2963 if (old_glbl)
2964 return 0;
2965 }
2966 da->da_users++;
2967 return 0;
2968 }
2969 }
2970
2971 da = kzalloc(sizeof(*da), GFP_ATOMIC);
2972 if (da == NULL)
2973 return -ENOMEM;
2974 memcpy(da->da_addr, addr, alen);
2975 da->da_addrlen = alen;
2976 da->da_users = 1;
2977 da->da_gusers = glbl ? 1 : 0;
2978 da->next = *list;
2979 *list = da;
2980 (*count)++;
2981 return 0;
2982 }
2983
2984 /**
2985 * dev_unicast_delete - Release secondary unicast address.
2986 * @dev: device
2987 * @addr: address to delete
2988 * @alen: length of @addr
2989 *
2990 * Release reference to a secondary unicast address and remove it
2991 * from the device if the reference count drops to zero.
2992 *
2993 * The caller must hold the rtnl_mutex.
2994 */
2995 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2996 {
2997 int err;
2998
2999 ASSERT_RTNL();
3000
3001 netif_tx_lock_bh(dev);
3002 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3003 if (!err)
3004 __dev_set_rx_mode(dev);
3005 netif_tx_unlock_bh(dev);
3006 return err;
3007 }
3008 EXPORT_SYMBOL(dev_unicast_delete);
3009
3010 /**
3011 * dev_unicast_add - add a secondary unicast address
3012 * @dev: device
3013 * @addr: address to delete
3014 * @alen: length of @addr
3015 *
3016 * Add a secondary unicast address to the device or increase
3017 * the reference count if it already exists.
3018 *
3019 * The caller must hold the rtnl_mutex.
3020 */
3021 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3022 {
3023 int err;
3024
3025 ASSERT_RTNL();
3026
3027 netif_tx_lock_bh(dev);
3028 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3029 if (!err)
3030 __dev_set_rx_mode(dev);
3031 netif_tx_unlock_bh(dev);
3032 return err;
3033 }
3034 EXPORT_SYMBOL(dev_unicast_add);
3035
3036 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3037 struct dev_addr_list **from, int *from_count)
3038 {
3039 struct dev_addr_list *da, *next;
3040 int err = 0;
3041
3042 da = *from;
3043 while (da != NULL) {
3044 next = da->next;
3045 if (!da->da_synced) {
3046 err = __dev_addr_add(to, to_count,
3047 da->da_addr, da->da_addrlen, 0);
3048 if (err < 0)
3049 break;
3050 da->da_synced = 1;
3051 da->da_users++;
3052 } else if (da->da_users == 1) {
3053 __dev_addr_delete(to, to_count,
3054 da->da_addr, da->da_addrlen, 0);
3055 __dev_addr_delete(from, from_count,
3056 da->da_addr, da->da_addrlen, 0);
3057 }
3058 da = next;
3059 }
3060 return err;
3061 }
3062
3063 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3064 struct dev_addr_list **from, int *from_count)
3065 {
3066 struct dev_addr_list *da, *next;
3067
3068 da = *from;
3069 while (da != NULL) {
3070 next = da->next;
3071 if (da->da_synced) {
3072 __dev_addr_delete(to, to_count,
3073 da->da_addr, da->da_addrlen, 0);
3074 da->da_synced = 0;
3075 __dev_addr_delete(from, from_count,
3076 da->da_addr, da->da_addrlen, 0);
3077 }
3078 da = next;
3079 }
3080 }
3081
3082 /**
3083 * dev_unicast_sync - Synchronize device's unicast list to another device
3084 * @to: destination device
3085 * @from: source device
3086 *
3087 * Add newly added addresses to the destination device and release
3088 * addresses that have no users left. The source device must be
3089 * locked by netif_tx_lock_bh.
3090 *
3091 * This function is intended to be called from the dev->set_rx_mode
3092 * function of layered software devices.
3093 */
3094 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3095 {
3096 int err = 0;
3097
3098 netif_tx_lock_bh(to);
3099 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3100 &from->uc_list, &from->uc_count);
3101 if (!err)
3102 __dev_set_rx_mode(to);
3103 netif_tx_unlock_bh(to);
3104 return err;
3105 }
3106 EXPORT_SYMBOL(dev_unicast_sync);
3107
3108 /**
3109 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3110 * @to: destination device
3111 * @from: source device
3112 *
3113 * Remove all addresses that were added to the destination device by
3114 * dev_unicast_sync(). This function is intended to be called from the
3115 * dev->stop function of layered software devices.
3116 */
3117 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3118 {
3119 netif_tx_lock_bh(from);
3120 netif_tx_lock_bh(to);
3121
3122 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3123 &from->uc_list, &from->uc_count);
3124 __dev_set_rx_mode(to);
3125
3126 netif_tx_unlock_bh(to);
3127 netif_tx_unlock_bh(from);
3128 }
3129 EXPORT_SYMBOL(dev_unicast_unsync);
3130
3131 static void __dev_addr_discard(struct dev_addr_list **list)
3132 {
3133 struct dev_addr_list *tmp;
3134
3135 while (*list != NULL) {
3136 tmp = *list;
3137 *list = tmp->next;
3138 if (tmp->da_users > tmp->da_gusers)
3139 printk("__dev_addr_discard: address leakage! "
3140 "da_users=%d\n", tmp->da_users);
3141 kfree(tmp);
3142 }
3143 }
3144
3145 static void dev_addr_discard(struct net_device *dev)
3146 {
3147 netif_tx_lock_bh(dev);
3148
3149 __dev_addr_discard(&dev->uc_list);
3150 dev->uc_count = 0;
3151
3152 __dev_addr_discard(&dev->mc_list);
3153 dev->mc_count = 0;
3154
3155 netif_tx_unlock_bh(dev);
3156 }
3157
3158 unsigned dev_get_flags(const struct net_device *dev)
3159 {
3160 unsigned flags;
3161
3162 flags = (dev->flags & ~(IFF_PROMISC |
3163 IFF_ALLMULTI |
3164 IFF_RUNNING |
3165 IFF_LOWER_UP |
3166 IFF_DORMANT)) |
3167 (dev->gflags & (IFF_PROMISC |
3168 IFF_ALLMULTI));
3169
3170 if (netif_running(dev)) {
3171 if (netif_oper_up(dev))
3172 flags |= IFF_RUNNING;
3173 if (netif_carrier_ok(dev))
3174 flags |= IFF_LOWER_UP;
3175 if (netif_dormant(dev))
3176 flags |= IFF_DORMANT;
3177 }
3178
3179 return flags;
3180 }
3181
3182 int dev_change_flags(struct net_device *dev, unsigned flags)
3183 {
3184 int ret, changes;
3185 int old_flags = dev->flags;
3186
3187 ASSERT_RTNL();
3188
3189 /*
3190 * Set the flags on our device.
3191 */
3192
3193 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3194 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3195 IFF_AUTOMEDIA)) |
3196 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3197 IFF_ALLMULTI));
3198
3199 /*
3200 * Load in the correct multicast list now the flags have changed.
3201 */
3202
3203 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3204 dev->change_rx_flags(dev, IFF_MULTICAST);
3205
3206 dev_set_rx_mode(dev);
3207
3208 /*
3209 * Have we downed the interface. We handle IFF_UP ourselves
3210 * according to user attempts to set it, rather than blindly
3211 * setting it.
3212 */
3213
3214 ret = 0;
3215 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3216 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3217
3218 if (!ret)
3219 dev_set_rx_mode(dev);
3220 }
3221
3222 if (dev->flags & IFF_UP &&
3223 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3224 IFF_VOLATILE)))
3225 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3226
3227 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3228 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3229 dev->gflags ^= IFF_PROMISC;
3230 dev_set_promiscuity(dev, inc);
3231 }
3232
3233 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3234 is important. Some (broken) drivers set IFF_PROMISC, when
3235 IFF_ALLMULTI is requested not asking us and not reporting.
3236 */
3237 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3238 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3239 dev->gflags ^= IFF_ALLMULTI;
3240 dev_set_allmulti(dev, inc);
3241 }
3242
3243 /* Exclude state transition flags, already notified */
3244 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3245 if (changes)
3246 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3247
3248 return ret;
3249 }
3250
3251 int dev_set_mtu(struct net_device *dev, int new_mtu)
3252 {
3253 int err;
3254
3255 if (new_mtu == dev->mtu)
3256 return 0;
3257
3258 /* MTU must be positive. */
3259 if (new_mtu < 0)
3260 return -EINVAL;
3261
3262 if (!netif_device_present(dev))
3263 return -ENODEV;
3264
3265 err = 0;
3266 if (dev->change_mtu)
3267 err = dev->change_mtu(dev, new_mtu);
3268 else
3269 dev->mtu = new_mtu;
3270 if (!err && dev->flags & IFF_UP)
3271 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3272 return err;
3273 }
3274
3275 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3276 {
3277 int err;
3278
3279 if (!dev->set_mac_address)
3280 return -EOPNOTSUPP;
3281 if (sa->sa_family != dev->type)
3282 return -EINVAL;
3283 if (!netif_device_present(dev))
3284 return -ENODEV;
3285 err = dev->set_mac_address(dev, sa);
3286 if (!err)
3287 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3288 return err;
3289 }
3290
3291 /*
3292 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3293 */
3294 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3295 {
3296 int err;
3297 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3298
3299 if (!dev)
3300 return -ENODEV;
3301
3302 switch (cmd) {
3303 case SIOCGIFFLAGS: /* Get interface flags */
3304 ifr->ifr_flags = dev_get_flags(dev);
3305 return 0;
3306
3307 case SIOCGIFMETRIC: /* Get the metric on the interface
3308 (currently unused) */
3309 ifr->ifr_metric = 0;
3310 return 0;
3311
3312 case SIOCGIFMTU: /* Get the MTU of a device */
3313 ifr->ifr_mtu = dev->mtu;
3314 return 0;
3315
3316 case SIOCGIFHWADDR:
3317 if (!dev->addr_len)
3318 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3319 else
3320 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3321 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3322 ifr->ifr_hwaddr.sa_family = dev->type;
3323 return 0;
3324
3325 case SIOCGIFSLAVE:
3326 err = -EINVAL;
3327 break;
3328
3329 case SIOCGIFMAP:
3330 ifr->ifr_map.mem_start = dev->mem_start;
3331 ifr->ifr_map.mem_end = dev->mem_end;
3332 ifr->ifr_map.base_addr = dev->base_addr;
3333 ifr->ifr_map.irq = dev->irq;
3334 ifr->ifr_map.dma = dev->dma;
3335 ifr->ifr_map.port = dev->if_port;
3336 return 0;
3337
3338 case SIOCGIFINDEX:
3339 ifr->ifr_ifindex = dev->ifindex;
3340 return 0;
3341
3342 case SIOCGIFTXQLEN:
3343 ifr->ifr_qlen = dev->tx_queue_len;
3344 return 0;
3345
3346 default:
3347 /* dev_ioctl() should ensure this case
3348 * is never reached
3349 */
3350 WARN_ON(1);
3351 err = -EINVAL;
3352 break;
3353
3354 }
3355 return err;
3356 }
3357
3358 /*
3359 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3360 */
3361 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3362 {
3363 int err;
3364 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3365
3366 if (!dev)
3367 return -ENODEV;
3368
3369 switch (cmd) {
3370 case SIOCSIFFLAGS: /* Set interface flags */
3371 return dev_change_flags(dev, ifr->ifr_flags);
3372
3373 case SIOCSIFMETRIC: /* Set the metric on the interface
3374 (currently unused) */
3375 return -EOPNOTSUPP;
3376
3377 case SIOCSIFMTU: /* Set the MTU of a device */
3378 return dev_set_mtu(dev, ifr->ifr_mtu);
3379
3380 case SIOCSIFHWADDR:
3381 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3382
3383 case SIOCSIFHWBROADCAST:
3384 if (ifr->ifr_hwaddr.sa_family != dev->type)
3385 return -EINVAL;
3386 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3387 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3388 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3389 return 0;
3390
3391 case SIOCSIFMAP:
3392 if (dev->set_config) {
3393 if (!netif_device_present(dev))
3394 return -ENODEV;
3395 return dev->set_config(dev, &ifr->ifr_map);
3396 }
3397 return -EOPNOTSUPP;
3398
3399 case SIOCADDMULTI:
3400 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3401 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3402 return -EINVAL;
3403 if (!netif_device_present(dev))
3404 return -ENODEV;
3405 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3406 dev->addr_len, 1);
3407
3408 case SIOCDELMULTI:
3409 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3410 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3411 return -EINVAL;
3412 if (!netif_device_present(dev))
3413 return -ENODEV;
3414 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3415 dev->addr_len, 1);
3416
3417 case SIOCSIFTXQLEN:
3418 if (ifr->ifr_qlen < 0)
3419 return -EINVAL;
3420 dev->tx_queue_len = ifr->ifr_qlen;
3421 return 0;
3422
3423 case SIOCSIFNAME:
3424 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3425 return dev_change_name(dev, ifr->ifr_newname);
3426
3427 /*
3428 * Unknown or private ioctl
3429 */
3430
3431 default:
3432 if ((cmd >= SIOCDEVPRIVATE &&
3433 cmd <= SIOCDEVPRIVATE + 15) ||
3434 cmd == SIOCBONDENSLAVE ||
3435 cmd == SIOCBONDRELEASE ||
3436 cmd == SIOCBONDSETHWADDR ||
3437 cmd == SIOCBONDSLAVEINFOQUERY ||
3438 cmd == SIOCBONDINFOQUERY ||
3439 cmd == SIOCBONDCHANGEACTIVE ||
3440 cmd == SIOCGMIIPHY ||
3441 cmd == SIOCGMIIREG ||
3442 cmd == SIOCSMIIREG ||
3443 cmd == SIOCBRADDIF ||
3444 cmd == SIOCBRDELIF ||
3445 cmd == SIOCWANDEV) {
3446 err = -EOPNOTSUPP;
3447 if (dev->do_ioctl) {
3448 if (netif_device_present(dev))
3449 err = dev->do_ioctl(dev, ifr,
3450 cmd);
3451 else
3452 err = -ENODEV;
3453 }
3454 } else
3455 err = -EINVAL;
3456
3457 }
3458 return err;
3459 }
3460
3461 /*
3462 * This function handles all "interface"-type I/O control requests. The actual
3463 * 'doing' part of this is dev_ifsioc above.
3464 */
3465
3466 /**
3467 * dev_ioctl - network device ioctl
3468 * @net: the applicable net namespace
3469 * @cmd: command to issue
3470 * @arg: pointer to a struct ifreq in user space
3471 *
3472 * Issue ioctl functions to devices. This is normally called by the
3473 * user space syscall interfaces but can sometimes be useful for
3474 * other purposes. The return value is the return from the syscall if
3475 * positive or a negative errno code on error.
3476 */
3477
3478 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3479 {
3480 struct ifreq ifr;
3481 int ret;
3482 char *colon;
3483
3484 /* One special case: SIOCGIFCONF takes ifconf argument
3485 and requires shared lock, because it sleeps writing
3486 to user space.
3487 */
3488
3489 if (cmd == SIOCGIFCONF) {
3490 rtnl_lock();
3491 ret = dev_ifconf(net, (char __user *) arg);
3492 rtnl_unlock();
3493 return ret;
3494 }
3495 if (cmd == SIOCGIFNAME)
3496 return dev_ifname(net, (struct ifreq __user *)arg);
3497
3498 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3499 return -EFAULT;
3500
3501 ifr.ifr_name[IFNAMSIZ-1] = 0;
3502
3503 colon = strchr(ifr.ifr_name, ':');
3504 if (colon)
3505 *colon = 0;
3506
3507 /*
3508 * See which interface the caller is talking about.
3509 */
3510
3511 switch (cmd) {
3512 /*
3513 * These ioctl calls:
3514 * - can be done by all.
3515 * - atomic and do not require locking.
3516 * - return a value
3517 */
3518 case SIOCGIFFLAGS:
3519 case SIOCGIFMETRIC:
3520 case SIOCGIFMTU:
3521 case SIOCGIFHWADDR:
3522 case SIOCGIFSLAVE:
3523 case SIOCGIFMAP:
3524 case SIOCGIFINDEX:
3525 case SIOCGIFTXQLEN:
3526 dev_load(net, ifr.ifr_name);
3527 read_lock(&dev_base_lock);
3528 ret = dev_ifsioc_locked(net, &ifr, cmd);
3529 read_unlock(&dev_base_lock);
3530 if (!ret) {
3531 if (colon)
3532 *colon = ':';
3533 if (copy_to_user(arg, &ifr,
3534 sizeof(struct ifreq)))
3535 ret = -EFAULT;
3536 }
3537 return ret;
3538
3539 case SIOCETHTOOL:
3540 dev_load(net, ifr.ifr_name);
3541 rtnl_lock();
3542 ret = dev_ethtool(net, &ifr);
3543 rtnl_unlock();
3544 if (!ret) {
3545 if (colon)
3546 *colon = ':';
3547 if (copy_to_user(arg, &ifr,
3548 sizeof(struct ifreq)))
3549 ret = -EFAULT;
3550 }
3551 return ret;
3552
3553 /*
3554 * These ioctl calls:
3555 * - require superuser power.
3556 * - require strict serialization.
3557 * - return a value
3558 */
3559 case SIOCGMIIPHY:
3560 case SIOCGMIIREG:
3561 case SIOCSIFNAME:
3562 if (!capable(CAP_NET_ADMIN))
3563 return -EPERM;
3564 dev_load(net, ifr.ifr_name);
3565 rtnl_lock();
3566 ret = dev_ifsioc(net, &ifr, cmd);
3567 rtnl_unlock();
3568 if (!ret) {
3569 if (colon)
3570 *colon = ':';
3571 if (copy_to_user(arg, &ifr,
3572 sizeof(struct ifreq)))
3573 ret = -EFAULT;
3574 }
3575 return ret;
3576
3577 /*
3578 * These ioctl calls:
3579 * - require superuser power.
3580 * - require strict serialization.
3581 * - do not return a value
3582 */
3583 case SIOCSIFFLAGS:
3584 case SIOCSIFMETRIC:
3585 case SIOCSIFMTU:
3586 case SIOCSIFMAP:
3587 case SIOCSIFHWADDR:
3588 case SIOCSIFSLAVE:
3589 case SIOCADDMULTI:
3590 case SIOCDELMULTI:
3591 case SIOCSIFHWBROADCAST:
3592 case SIOCSIFTXQLEN:
3593 case SIOCSMIIREG:
3594 case SIOCBONDENSLAVE:
3595 case SIOCBONDRELEASE:
3596 case SIOCBONDSETHWADDR:
3597 case SIOCBONDCHANGEACTIVE:
3598 case SIOCBRADDIF:
3599 case SIOCBRDELIF:
3600 if (!capable(CAP_NET_ADMIN))
3601 return -EPERM;
3602 /* fall through */
3603 case SIOCBONDSLAVEINFOQUERY:
3604 case SIOCBONDINFOQUERY:
3605 dev_load(net, ifr.ifr_name);
3606 rtnl_lock();
3607 ret = dev_ifsioc(net, &ifr, cmd);
3608 rtnl_unlock();
3609 return ret;
3610
3611 case SIOCGIFMEM:
3612 /* Get the per device memory space. We can add this but
3613 * currently do not support it */
3614 case SIOCSIFMEM:
3615 /* Set the per device memory buffer space.
3616 * Not applicable in our case */
3617 case SIOCSIFLINK:
3618 return -EINVAL;
3619
3620 /*
3621 * Unknown or private ioctl.
3622 */
3623 default:
3624 if (cmd == SIOCWANDEV ||
3625 (cmd >= SIOCDEVPRIVATE &&
3626 cmd <= SIOCDEVPRIVATE + 15)) {
3627 dev_load(net, ifr.ifr_name);
3628 rtnl_lock();
3629 ret = dev_ifsioc(net, &ifr, cmd);
3630 rtnl_unlock();
3631 if (!ret && copy_to_user(arg, &ifr,
3632 sizeof(struct ifreq)))
3633 ret = -EFAULT;
3634 return ret;
3635 }
3636 /* Take care of Wireless Extensions */
3637 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3638 return wext_handle_ioctl(net, &ifr, cmd, arg);
3639 return -EINVAL;
3640 }
3641 }
3642
3643
3644 /**
3645 * dev_new_index - allocate an ifindex
3646 * @net: the applicable net namespace
3647 *
3648 * Returns a suitable unique value for a new device interface
3649 * number. The caller must hold the rtnl semaphore or the
3650 * dev_base_lock to be sure it remains unique.
3651 */
3652 static int dev_new_index(struct net *net)
3653 {
3654 static int ifindex;
3655 for (;;) {
3656 if (++ifindex <= 0)
3657 ifindex = 1;
3658 if (!__dev_get_by_index(net, ifindex))
3659 return ifindex;
3660 }
3661 }
3662
3663 /* Delayed registration/unregisteration */
3664 static DEFINE_SPINLOCK(net_todo_list_lock);
3665 static LIST_HEAD(net_todo_list);
3666
3667 static void net_set_todo(struct net_device *dev)
3668 {
3669 spin_lock(&net_todo_list_lock);
3670 list_add_tail(&dev->todo_list, &net_todo_list);
3671 spin_unlock(&net_todo_list_lock);
3672 }
3673
3674 static void rollback_registered(struct net_device *dev)
3675 {
3676 BUG_ON(dev_boot_phase);
3677 ASSERT_RTNL();
3678
3679 /* Some devices call without registering for initialization unwind. */
3680 if (dev->reg_state == NETREG_UNINITIALIZED) {
3681 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3682 "was registered\n", dev->name, dev);
3683
3684 WARN_ON(1);
3685 return;
3686 }
3687
3688 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3689
3690 /* If device is running, close it first. */
3691 dev_close(dev);
3692
3693 /* And unlink it from device chain. */
3694 unlist_netdevice(dev);
3695
3696 dev->reg_state = NETREG_UNREGISTERING;
3697
3698 synchronize_net();
3699
3700 /* Shutdown queueing discipline. */
3701 dev_shutdown(dev);
3702
3703
3704 /* Notify protocols, that we are about to destroy
3705 this device. They should clean all the things.
3706 */
3707 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3708
3709 /*
3710 * Flush the unicast and multicast chains
3711 */
3712 dev_addr_discard(dev);
3713
3714 if (dev->uninit)
3715 dev->uninit(dev);
3716
3717 /* Notifier chain MUST detach us from master device. */
3718 BUG_TRAP(!dev->master);
3719
3720 /* Remove entries from kobject tree */
3721 netdev_unregister_kobject(dev);
3722
3723 synchronize_net();
3724
3725 dev_put(dev);
3726 }
3727
3728 /**
3729 * register_netdevice - register a network device
3730 * @dev: device to register
3731 *
3732 * Take a completed network device structure and add it to the kernel
3733 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3734 * chain. 0 is returned on success. A negative errno code is returned
3735 * on a failure to set up the device, or if the name is a duplicate.
3736 *
3737 * Callers must hold the rtnl semaphore. You may want
3738 * register_netdev() instead of this.
3739 *
3740 * BUGS:
3741 * The locking appears insufficient to guarantee two parallel registers
3742 * will not get the same name.
3743 */
3744
3745 int register_netdevice(struct net_device *dev)
3746 {
3747 struct hlist_head *head;
3748 struct hlist_node *p;
3749 int ret;
3750 struct net *net;
3751
3752 BUG_ON(dev_boot_phase);
3753 ASSERT_RTNL();
3754
3755 might_sleep();
3756
3757 /* When net_device's are persistent, this will be fatal. */
3758 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3759 BUG_ON(!dev_net(dev));
3760 net = dev_net(dev);
3761
3762 spin_lock_init(&dev->queue_lock);
3763 spin_lock_init(&dev->_xmit_lock);
3764 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3765 dev->xmit_lock_owner = -1;
3766 spin_lock_init(&dev->ingress_lock);
3767
3768 dev->iflink = -1;
3769
3770 /* Init, if this function is available */
3771 if (dev->init) {
3772 ret = dev->init(dev);
3773 if (ret) {
3774 if (ret > 0)
3775 ret = -EIO;
3776 goto out;
3777 }
3778 }
3779
3780 if (!dev_valid_name(dev->name)) {
3781 ret = -EINVAL;
3782 goto err_uninit;
3783 }
3784
3785 dev->ifindex = dev_new_index(net);
3786 if (dev->iflink == -1)
3787 dev->iflink = dev->ifindex;
3788
3789 /* Check for existence of name */
3790 head = dev_name_hash(net, dev->name);
3791 hlist_for_each(p, head) {
3792 struct net_device *d
3793 = hlist_entry(p, struct net_device, name_hlist);
3794 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3795 ret = -EEXIST;
3796 goto err_uninit;
3797 }
3798 }
3799
3800 /* Fix illegal checksum combinations */
3801 if ((dev->features & NETIF_F_HW_CSUM) &&
3802 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3803 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3804 dev->name);
3805 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3806 }
3807
3808 if ((dev->features & NETIF_F_NO_CSUM) &&
3809 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3810 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3811 dev->name);
3812 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3813 }
3814
3815
3816 /* Fix illegal SG+CSUM combinations. */
3817 if ((dev->features & NETIF_F_SG) &&
3818 !(dev->features & NETIF_F_ALL_CSUM)) {
3819 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3820 dev->name);
3821 dev->features &= ~NETIF_F_SG;
3822 }
3823
3824 /* TSO requires that SG is present as well. */
3825 if ((dev->features & NETIF_F_TSO) &&
3826 !(dev->features & NETIF_F_SG)) {
3827 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3828 dev->name);
3829 dev->features &= ~NETIF_F_TSO;
3830 }
3831 if (dev->features & NETIF_F_UFO) {
3832 if (!(dev->features & NETIF_F_HW_CSUM)) {
3833 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3834 "NETIF_F_HW_CSUM feature.\n",
3835 dev->name);
3836 dev->features &= ~NETIF_F_UFO;
3837 }
3838 if (!(dev->features & NETIF_F_SG)) {
3839 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3840 "NETIF_F_SG feature.\n",
3841 dev->name);
3842 dev->features &= ~NETIF_F_UFO;
3843 }
3844 }
3845
3846 netdev_initialize_kobject(dev);
3847 ret = netdev_register_kobject(dev);
3848 if (ret)
3849 goto err_uninit;
3850 dev->reg_state = NETREG_REGISTERED;
3851
3852 /*
3853 * Default initial state at registry is that the
3854 * device is present.
3855 */
3856
3857 set_bit(__LINK_STATE_PRESENT, &dev->state);
3858
3859 dev_init_scheduler(dev);
3860 dev_hold(dev);
3861 list_netdevice(dev);
3862
3863 /* Notify protocols, that a new device appeared. */
3864 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3865 ret = notifier_to_errno(ret);
3866 if (ret) {
3867 rollback_registered(dev);
3868 dev->reg_state = NETREG_UNREGISTERED;
3869 }
3870
3871 out:
3872 return ret;
3873
3874 err_uninit:
3875 if (dev->uninit)
3876 dev->uninit(dev);
3877 goto out;
3878 }
3879
3880 /**
3881 * register_netdev - register a network device
3882 * @dev: device to register
3883 *
3884 * Take a completed network device structure and add it to the kernel
3885 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3886 * chain. 0 is returned on success. A negative errno code is returned
3887 * on a failure to set up the device, or if the name is a duplicate.
3888 *
3889 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3890 * and expands the device name if you passed a format string to
3891 * alloc_netdev.
3892 */
3893 int register_netdev(struct net_device *dev)
3894 {
3895 int err;
3896
3897 rtnl_lock();
3898
3899 /*
3900 * If the name is a format string the caller wants us to do a
3901 * name allocation.
3902 */
3903 if (strchr(dev->name, '%')) {
3904 err = dev_alloc_name(dev, dev->name);
3905 if (err < 0)
3906 goto out;
3907 }
3908
3909 err = register_netdevice(dev);
3910 out:
3911 rtnl_unlock();
3912 return err;
3913 }
3914 EXPORT_SYMBOL(register_netdev);
3915
3916 /*
3917 * netdev_wait_allrefs - wait until all references are gone.
3918 *
3919 * This is called when unregistering network devices.
3920 *
3921 * Any protocol or device that holds a reference should register
3922 * for netdevice notification, and cleanup and put back the
3923 * reference if they receive an UNREGISTER event.
3924 * We can get stuck here if buggy protocols don't correctly
3925 * call dev_put.
3926 */
3927 static void netdev_wait_allrefs(struct net_device *dev)
3928 {
3929 unsigned long rebroadcast_time, warning_time;
3930
3931 rebroadcast_time = warning_time = jiffies;
3932 while (atomic_read(&dev->refcnt) != 0) {
3933 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3934 rtnl_lock();
3935
3936 /* Rebroadcast unregister notification */
3937 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3938
3939 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3940 &dev->state)) {
3941 /* We must not have linkwatch events
3942 * pending on unregister. If this
3943 * happens, we simply run the queue
3944 * unscheduled, resulting in a noop
3945 * for this device.
3946 */
3947 linkwatch_run_queue();
3948 }
3949
3950 __rtnl_unlock();
3951
3952 rebroadcast_time = jiffies;
3953 }
3954
3955 msleep(250);
3956
3957 if (time_after(jiffies, warning_time + 10 * HZ)) {
3958 printk(KERN_EMERG "unregister_netdevice: "
3959 "waiting for %s to become free. Usage "
3960 "count = %d\n",
3961 dev->name, atomic_read(&dev->refcnt));
3962 warning_time = jiffies;
3963 }
3964 }
3965 }
3966
3967 /* The sequence is:
3968 *
3969 * rtnl_lock();
3970 * ...
3971 * register_netdevice(x1);
3972 * register_netdevice(x2);
3973 * ...
3974 * unregister_netdevice(y1);
3975 * unregister_netdevice(y2);
3976 * ...
3977 * rtnl_unlock();
3978 * free_netdev(y1);
3979 * free_netdev(y2);
3980 *
3981 * We are invoked by rtnl_unlock() after it drops the semaphore.
3982 * This allows us to deal with problems:
3983 * 1) We can delete sysfs objects which invoke hotplug
3984 * without deadlocking with linkwatch via keventd.
3985 * 2) Since we run with the RTNL semaphore not held, we can sleep
3986 * safely in order to wait for the netdev refcnt to drop to zero.
3987 */
3988 static DEFINE_MUTEX(net_todo_run_mutex);
3989 void netdev_run_todo(void)
3990 {
3991 struct list_head list;
3992
3993 /* Need to guard against multiple cpu's getting out of order. */
3994 mutex_lock(&net_todo_run_mutex);
3995
3996 /* Not safe to do outside the semaphore. We must not return
3997 * until all unregister events invoked by the local processor
3998 * have been completed (either by this todo run, or one on
3999 * another cpu).
4000 */
4001 if (list_empty(&net_todo_list))
4002 goto out;
4003
4004 /* Snapshot list, allow later requests */
4005 spin_lock(&net_todo_list_lock);
4006 list_replace_init(&net_todo_list, &list);
4007 spin_unlock(&net_todo_list_lock);
4008
4009 while (!list_empty(&list)) {
4010 struct net_device *dev
4011 = list_entry(list.next, struct net_device, todo_list);
4012 list_del(&dev->todo_list);
4013
4014 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4015 printk(KERN_ERR "network todo '%s' but state %d\n",
4016 dev->name, dev->reg_state);
4017 dump_stack();
4018 continue;
4019 }
4020
4021 dev->reg_state = NETREG_UNREGISTERED;
4022
4023 netdev_wait_allrefs(dev);
4024
4025 /* paranoia */
4026 BUG_ON(atomic_read(&dev->refcnt));
4027 BUG_TRAP(!dev->ip_ptr);
4028 BUG_TRAP(!dev->ip6_ptr);
4029 BUG_TRAP(!dev->dn_ptr);
4030
4031 if (dev->destructor)
4032 dev->destructor(dev);
4033
4034 /* Free network device */
4035 kobject_put(&dev->dev.kobj);
4036 }
4037
4038 out:
4039 mutex_unlock(&net_todo_run_mutex);
4040 }
4041
4042 static struct net_device_stats *internal_stats(struct net_device *dev)
4043 {
4044 return &dev->stats;
4045 }
4046
4047 /**
4048 * alloc_netdev_mq - allocate network device
4049 * @sizeof_priv: size of private data to allocate space for
4050 * @name: device name format string
4051 * @setup: callback to initialize device
4052 * @queue_count: the number of subqueues to allocate
4053 *
4054 * Allocates a struct net_device with private data area for driver use
4055 * and performs basic initialization. Also allocates subquue structs
4056 * for each queue on the device at the end of the netdevice.
4057 */
4058 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4059 void (*setup)(struct net_device *), unsigned int queue_count)
4060 {
4061 void *p;
4062 struct net_device *dev;
4063 int alloc_size;
4064
4065 BUG_ON(strlen(name) >= sizeof(dev->name));
4066
4067 alloc_size = sizeof(struct net_device) +
4068 sizeof(struct net_device_subqueue) * (queue_count - 1);
4069 if (sizeof_priv) {
4070 /* ensure 32-byte alignment of private area */
4071 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4072 alloc_size += sizeof_priv;
4073 }
4074 /* ensure 32-byte alignment of whole construct */
4075 alloc_size += NETDEV_ALIGN_CONST;
4076
4077 p = kzalloc(alloc_size, GFP_KERNEL);
4078 if (!p) {
4079 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4080 return NULL;
4081 }
4082
4083 dev = (struct net_device *)
4084 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4085 dev->padded = (char *)dev - (char *)p;
4086 dev_net_set(dev, &init_net);
4087
4088 if (sizeof_priv) {
4089 dev->priv = ((char *)dev +
4090 ((sizeof(struct net_device) +
4091 (sizeof(struct net_device_subqueue) *
4092 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4093 & ~NETDEV_ALIGN_CONST));
4094 }
4095
4096 dev->egress_subqueue_count = queue_count;
4097 dev->gso_max_size = GSO_MAX_SIZE;
4098
4099 dev->get_stats = internal_stats;
4100 netpoll_netdev_init(dev);
4101 setup(dev);
4102 strcpy(dev->name, name);
4103 return dev;
4104 }
4105 EXPORT_SYMBOL(alloc_netdev_mq);
4106
4107 /**
4108 * free_netdev - free network device
4109 * @dev: device
4110 *
4111 * This function does the last stage of destroying an allocated device
4112 * interface. The reference to the device object is released.
4113 * If this is the last reference then it will be freed.
4114 */
4115 void free_netdev(struct net_device *dev)
4116 {
4117 release_net(dev_net(dev));
4118
4119 /* Compatibility with error handling in drivers */
4120 if (dev->reg_state == NETREG_UNINITIALIZED) {
4121 kfree((char *)dev - dev->padded);
4122 return;
4123 }
4124
4125 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4126 dev->reg_state = NETREG_RELEASED;
4127
4128 /* will free via device release */
4129 put_device(&dev->dev);
4130 }
4131
4132 /* Synchronize with packet receive processing. */
4133 void synchronize_net(void)
4134 {
4135 might_sleep();
4136 synchronize_rcu();
4137 }
4138
4139 /**
4140 * unregister_netdevice - remove device from the kernel
4141 * @dev: device
4142 *
4143 * This function shuts down a device interface and removes it
4144 * from the kernel tables.
4145 *
4146 * Callers must hold the rtnl semaphore. You may want
4147 * unregister_netdev() instead of this.
4148 */
4149
4150 void unregister_netdevice(struct net_device *dev)
4151 {
4152 ASSERT_RTNL();
4153
4154 rollback_registered(dev);
4155 /* Finish processing unregister after unlock */
4156 net_set_todo(dev);
4157 }
4158
4159 /**
4160 * unregister_netdev - remove device from the kernel
4161 * @dev: device
4162 *
4163 * This function shuts down a device interface and removes it
4164 * from the kernel tables.
4165 *
4166 * This is just a wrapper for unregister_netdevice that takes
4167 * the rtnl semaphore. In general you want to use this and not
4168 * unregister_netdevice.
4169 */
4170 void unregister_netdev(struct net_device *dev)
4171 {
4172 rtnl_lock();
4173 unregister_netdevice(dev);
4174 rtnl_unlock();
4175 }
4176
4177 EXPORT_SYMBOL(unregister_netdev);
4178
4179 /**
4180 * dev_change_net_namespace - move device to different nethost namespace
4181 * @dev: device
4182 * @net: network namespace
4183 * @pat: If not NULL name pattern to try if the current device name
4184 * is already taken in the destination network namespace.
4185 *
4186 * This function shuts down a device interface and moves it
4187 * to a new network namespace. On success 0 is returned, on
4188 * a failure a netagive errno code is returned.
4189 *
4190 * Callers must hold the rtnl semaphore.
4191 */
4192
4193 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4194 {
4195 char buf[IFNAMSIZ];
4196 const char *destname;
4197 int err;
4198
4199 ASSERT_RTNL();
4200
4201 /* Don't allow namespace local devices to be moved. */
4202 err = -EINVAL;
4203 if (dev->features & NETIF_F_NETNS_LOCAL)
4204 goto out;
4205
4206 /* Ensure the device has been registrered */
4207 err = -EINVAL;
4208 if (dev->reg_state != NETREG_REGISTERED)
4209 goto out;
4210
4211 /* Get out if there is nothing todo */
4212 err = 0;
4213 if (net_eq(dev_net(dev), net))
4214 goto out;
4215
4216 /* Pick the destination device name, and ensure
4217 * we can use it in the destination network namespace.
4218 */
4219 err = -EEXIST;
4220 destname = dev->name;
4221 if (__dev_get_by_name(net, destname)) {
4222 /* We get here if we can't use the current device name */
4223 if (!pat)
4224 goto out;
4225 if (!dev_valid_name(pat))
4226 goto out;
4227 if (strchr(pat, '%')) {
4228 if (__dev_alloc_name(net, pat, buf) < 0)
4229 goto out;
4230 destname = buf;
4231 } else
4232 destname = pat;
4233 if (__dev_get_by_name(net, destname))
4234 goto out;
4235 }
4236
4237 /*
4238 * And now a mini version of register_netdevice unregister_netdevice.
4239 */
4240
4241 /* If device is running close it first. */
4242 dev_close(dev);
4243
4244 /* And unlink it from device chain */
4245 err = -ENODEV;
4246 unlist_netdevice(dev);
4247
4248 synchronize_net();
4249
4250 /* Shutdown queueing discipline. */
4251 dev_shutdown(dev);
4252
4253 /* Notify protocols, that we are about to destroy
4254 this device. They should clean all the things.
4255 */
4256 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4257
4258 /*
4259 * Flush the unicast and multicast chains
4260 */
4261 dev_addr_discard(dev);
4262
4263 /* Actually switch the network namespace */
4264 dev_net_set(dev, net);
4265
4266 /* Assign the new device name */
4267 if (destname != dev->name)
4268 strcpy(dev->name, destname);
4269
4270 /* If there is an ifindex conflict assign a new one */
4271 if (__dev_get_by_index(net, dev->ifindex)) {
4272 int iflink = (dev->iflink == dev->ifindex);
4273 dev->ifindex = dev_new_index(net);
4274 if (iflink)
4275 dev->iflink = dev->ifindex;
4276 }
4277
4278 /* Fixup kobjects */
4279 netdev_unregister_kobject(dev);
4280 err = netdev_register_kobject(dev);
4281 WARN_ON(err);
4282
4283 /* Add the device back in the hashes */
4284 list_netdevice(dev);
4285
4286 /* Notify protocols, that a new device appeared. */
4287 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4288
4289 synchronize_net();
4290 err = 0;
4291 out:
4292 return err;
4293 }
4294
4295 static int dev_cpu_callback(struct notifier_block *nfb,
4296 unsigned long action,
4297 void *ocpu)
4298 {
4299 struct sk_buff **list_skb;
4300 struct net_device **list_net;
4301 struct sk_buff *skb;
4302 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4303 struct softnet_data *sd, *oldsd;
4304
4305 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4306 return NOTIFY_OK;
4307
4308 local_irq_disable();
4309 cpu = smp_processor_id();
4310 sd = &per_cpu(softnet_data, cpu);
4311 oldsd = &per_cpu(softnet_data, oldcpu);
4312
4313 /* Find end of our completion_queue. */
4314 list_skb = &sd->completion_queue;
4315 while (*list_skb)
4316 list_skb = &(*list_skb)->next;
4317 /* Append completion queue from offline CPU. */
4318 *list_skb = oldsd->completion_queue;
4319 oldsd->completion_queue = NULL;
4320
4321 /* Find end of our output_queue. */
4322 list_net = &sd->output_queue;
4323 while (*list_net)
4324 list_net = &(*list_net)->next_sched;
4325 /* Append output queue from offline CPU. */
4326 *list_net = oldsd->output_queue;
4327 oldsd->output_queue = NULL;
4328
4329 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4330 local_irq_enable();
4331
4332 /* Process offline CPU's input_pkt_queue */
4333 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4334 netif_rx(skb);
4335
4336 return NOTIFY_OK;
4337 }
4338
4339 #ifdef CONFIG_NET_DMA
4340 /**
4341 * net_dma_rebalance - try to maintain one DMA channel per CPU
4342 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4343 *
4344 * This is called when the number of channels allocated to the net_dma client
4345 * changes. The net_dma client tries to have one DMA channel per CPU.
4346 */
4347
4348 static void net_dma_rebalance(struct net_dma *net_dma)
4349 {
4350 unsigned int cpu, i, n, chan_idx;
4351 struct dma_chan *chan;
4352
4353 if (cpus_empty(net_dma->channel_mask)) {
4354 for_each_online_cpu(cpu)
4355 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4356 return;
4357 }
4358
4359 i = 0;
4360 cpu = first_cpu(cpu_online_map);
4361
4362 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4363 chan = net_dma->channels[chan_idx];
4364
4365 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4366 + (i < (num_online_cpus() %
4367 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4368
4369 while(n) {
4370 per_cpu(softnet_data, cpu).net_dma = chan;
4371 cpu = next_cpu(cpu, cpu_online_map);
4372 n--;
4373 }
4374 i++;
4375 }
4376 }
4377
4378 /**
4379 * netdev_dma_event - event callback for the net_dma_client
4380 * @client: should always be net_dma_client
4381 * @chan: DMA channel for the event
4382 * @state: DMA state to be handled
4383 */
4384 static enum dma_state_client
4385 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4386 enum dma_state state)
4387 {
4388 int i, found = 0, pos = -1;
4389 struct net_dma *net_dma =
4390 container_of(client, struct net_dma, client);
4391 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4392
4393 spin_lock(&net_dma->lock);
4394 switch (state) {
4395 case DMA_RESOURCE_AVAILABLE:
4396 for (i = 0; i < nr_cpu_ids; i++)
4397 if (net_dma->channels[i] == chan) {
4398 found = 1;
4399 break;
4400 } else if (net_dma->channels[i] == NULL && pos < 0)
4401 pos = i;
4402
4403 if (!found && pos >= 0) {
4404 ack = DMA_ACK;
4405 net_dma->channels[pos] = chan;
4406 cpu_set(pos, net_dma->channel_mask);
4407 net_dma_rebalance(net_dma);
4408 }
4409 break;
4410 case DMA_RESOURCE_REMOVED:
4411 for (i = 0; i < nr_cpu_ids; i++)
4412 if (net_dma->channels[i] == chan) {
4413 found = 1;
4414 pos = i;
4415 break;
4416 }
4417
4418 if (found) {
4419 ack = DMA_ACK;
4420 cpu_clear(pos, net_dma->channel_mask);
4421 net_dma->channels[i] = NULL;
4422 net_dma_rebalance(net_dma);
4423 }
4424 break;
4425 default:
4426 break;
4427 }
4428 spin_unlock(&net_dma->lock);
4429
4430 return ack;
4431 }
4432
4433 /**
4434 * netdev_dma_regiser - register the networking subsystem as a DMA client
4435 */
4436 static int __init netdev_dma_register(void)
4437 {
4438 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4439 GFP_KERNEL);
4440 if (unlikely(!net_dma.channels)) {
4441 printk(KERN_NOTICE
4442 "netdev_dma: no memory for net_dma.channels\n");
4443 return -ENOMEM;
4444 }
4445 spin_lock_init(&net_dma.lock);
4446 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4447 dma_async_client_register(&net_dma.client);
4448 dma_async_client_chan_request(&net_dma.client);
4449 return 0;
4450 }
4451
4452 #else
4453 static int __init netdev_dma_register(void) { return -ENODEV; }
4454 #endif /* CONFIG_NET_DMA */
4455
4456 /**
4457 * netdev_compute_feature - compute conjunction of two feature sets
4458 * @all: first feature set
4459 * @one: second feature set
4460 *
4461 * Computes a new feature set after adding a device with feature set
4462 * @one to the master device with current feature set @all. Returns
4463 * the new feature set.
4464 */
4465 int netdev_compute_features(unsigned long all, unsigned long one)
4466 {
4467 /* if device needs checksumming, downgrade to hw checksumming */
4468 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4469 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4470
4471 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4472 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4473 all ^= NETIF_F_HW_CSUM
4474 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4475
4476 if (one & NETIF_F_GSO)
4477 one |= NETIF_F_GSO_SOFTWARE;
4478 one |= NETIF_F_GSO;
4479
4480 /* If even one device supports robust GSO, enable it for all. */
4481 if (one & NETIF_F_GSO_ROBUST)
4482 all |= NETIF_F_GSO_ROBUST;
4483
4484 all &= one | NETIF_F_LLTX;
4485
4486 if (!(all & NETIF_F_ALL_CSUM))
4487 all &= ~NETIF_F_SG;
4488 if (!(all & NETIF_F_SG))
4489 all &= ~NETIF_F_GSO_MASK;
4490
4491 return all;
4492 }
4493 EXPORT_SYMBOL(netdev_compute_features);
4494
4495 static struct hlist_head *netdev_create_hash(void)
4496 {
4497 int i;
4498 struct hlist_head *hash;
4499
4500 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4501 if (hash != NULL)
4502 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4503 INIT_HLIST_HEAD(&hash[i]);
4504
4505 return hash;
4506 }
4507
4508 /* Initialize per network namespace state */
4509 static int __net_init netdev_init(struct net *net)
4510 {
4511 INIT_LIST_HEAD(&net->dev_base_head);
4512
4513 net->dev_name_head = netdev_create_hash();
4514 if (net->dev_name_head == NULL)
4515 goto err_name;
4516
4517 net->dev_index_head = netdev_create_hash();
4518 if (net->dev_index_head == NULL)
4519 goto err_idx;
4520
4521 return 0;
4522
4523 err_idx:
4524 kfree(net->dev_name_head);
4525 err_name:
4526 return -ENOMEM;
4527 }
4528
4529 static void __net_exit netdev_exit(struct net *net)
4530 {
4531 kfree(net->dev_name_head);
4532 kfree(net->dev_index_head);
4533 }
4534
4535 static struct pernet_operations __net_initdata netdev_net_ops = {
4536 .init = netdev_init,
4537 .exit = netdev_exit,
4538 };
4539
4540 static void __net_exit default_device_exit(struct net *net)
4541 {
4542 struct net_device *dev, *next;
4543 /*
4544 * Push all migratable of the network devices back to the
4545 * initial network namespace
4546 */
4547 rtnl_lock();
4548 for_each_netdev_safe(net, dev, next) {
4549 int err;
4550 char fb_name[IFNAMSIZ];
4551
4552 /* Ignore unmoveable devices (i.e. loopback) */
4553 if (dev->features & NETIF_F_NETNS_LOCAL)
4554 continue;
4555
4556 /* Push remaing network devices to init_net */
4557 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4558 err = dev_change_net_namespace(dev, &init_net, fb_name);
4559 if (err) {
4560 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4561 __func__, dev->name, err);
4562 BUG();
4563 }
4564 }
4565 rtnl_unlock();
4566 }
4567
4568 static struct pernet_operations __net_initdata default_device_ops = {
4569 .exit = default_device_exit,
4570 };
4571
4572 /*
4573 * Initialize the DEV module. At boot time this walks the device list and
4574 * unhooks any devices that fail to initialise (normally hardware not
4575 * present) and leaves us with a valid list of present and active devices.
4576 *
4577 */
4578
4579 /*
4580 * This is called single threaded during boot, so no need
4581 * to take the rtnl semaphore.
4582 */
4583 static int __init net_dev_init(void)
4584 {
4585 int i, rc = -ENOMEM;
4586
4587 BUG_ON(!dev_boot_phase);
4588
4589 if (dev_proc_init())
4590 goto out;
4591
4592 if (netdev_kobject_init())
4593 goto out;
4594
4595 INIT_LIST_HEAD(&ptype_all);
4596 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4597 INIT_LIST_HEAD(&ptype_base[i]);
4598
4599 if (register_pernet_subsys(&netdev_net_ops))
4600 goto out;
4601
4602 if (register_pernet_device(&default_device_ops))
4603 goto out;
4604
4605 /*
4606 * Initialise the packet receive queues.
4607 */
4608
4609 for_each_possible_cpu(i) {
4610 struct softnet_data *queue;
4611
4612 queue = &per_cpu(softnet_data, i);
4613 skb_queue_head_init(&queue->input_pkt_queue);
4614 queue->completion_queue = NULL;
4615 INIT_LIST_HEAD(&queue->poll_list);
4616
4617 queue->backlog.poll = process_backlog;
4618 queue->backlog.weight = weight_p;
4619 }
4620
4621 netdev_dma_register();
4622
4623 dev_boot_phase = 0;
4624
4625 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4626 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4627
4628 hotcpu_notifier(dev_cpu_callback, 0);
4629 dst_init();
4630 dev_mcast_init();
4631 rc = 0;
4632 out:
4633 return rc;
4634 }
4635
4636 subsys_initcall(net_dev_init);
4637
4638 EXPORT_SYMBOL(__dev_get_by_index);
4639 EXPORT_SYMBOL(__dev_get_by_name);
4640 EXPORT_SYMBOL(__dev_remove_pack);
4641 EXPORT_SYMBOL(dev_valid_name);
4642 EXPORT_SYMBOL(dev_add_pack);
4643 EXPORT_SYMBOL(dev_alloc_name);
4644 EXPORT_SYMBOL(dev_close);
4645 EXPORT_SYMBOL(dev_get_by_flags);
4646 EXPORT_SYMBOL(dev_get_by_index);
4647 EXPORT_SYMBOL(dev_get_by_name);
4648 EXPORT_SYMBOL(dev_open);
4649 EXPORT_SYMBOL(dev_queue_xmit);
4650 EXPORT_SYMBOL(dev_remove_pack);
4651 EXPORT_SYMBOL(dev_set_allmulti);
4652 EXPORT_SYMBOL(dev_set_promiscuity);
4653 EXPORT_SYMBOL(dev_change_flags);
4654 EXPORT_SYMBOL(dev_set_mtu);
4655 EXPORT_SYMBOL(dev_set_mac_address);
4656 EXPORT_SYMBOL(free_netdev);
4657 EXPORT_SYMBOL(netdev_boot_setup_check);
4658 EXPORT_SYMBOL(netdev_set_master);
4659 EXPORT_SYMBOL(netdev_state_change);
4660 EXPORT_SYMBOL(netif_receive_skb);
4661 EXPORT_SYMBOL(netif_rx);
4662 EXPORT_SYMBOL(register_gifconf);
4663 EXPORT_SYMBOL(register_netdevice);
4664 EXPORT_SYMBOL(register_netdevice_notifier);
4665 EXPORT_SYMBOL(skb_checksum_help);
4666 EXPORT_SYMBOL(synchronize_net);
4667 EXPORT_SYMBOL(unregister_netdevice);
4668 EXPORT_SYMBOL(unregister_netdevice_notifier);
4669 EXPORT_SYMBOL(net_enable_timestamp);
4670 EXPORT_SYMBOL(net_disable_timestamp);
4671 EXPORT_SYMBOL(dev_get_flags);
4672
4673 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4674 EXPORT_SYMBOL(br_handle_frame_hook);
4675 EXPORT_SYMBOL(br_fdb_get_hook);
4676 EXPORT_SYMBOL(br_fdb_put_hook);
4677 #endif
4678
4679 #ifdef CONFIG_KMOD
4680 EXPORT_SYMBOL(dev_load);
4681 #endif
4682
4683 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.139097 seconds and 6 git commands to generate.