net: add netif_is_lag_port helper
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141
142 #include "net-sysfs.h"
143
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149
150 static DEFINE_SPINLOCK(ptype_lock);
151 static DEFINE_SPINLOCK(offload_lock);
152 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
153 struct list_head ptype_all __read_mostly; /* Taps */
154 static struct list_head offload_base __read_mostly;
155
156 static int netif_rx_internal(struct sk_buff *skb);
157 static int call_netdevice_notifiers_info(unsigned long val,
158 struct net_device *dev,
159 struct netdev_notifier_info *info);
160
161 /*
162 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
163 * semaphore.
164 *
165 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
166 *
167 * Writers must hold the rtnl semaphore while they loop through the
168 * dev_base_head list, and hold dev_base_lock for writing when they do the
169 * actual updates. This allows pure readers to access the list even
170 * while a writer is preparing to update it.
171 *
172 * To put it another way, dev_base_lock is held for writing only to
173 * protect against pure readers; the rtnl semaphore provides the
174 * protection against other writers.
175 *
176 * See, for example usages, register_netdevice() and
177 * unregister_netdevice(), which must be called with the rtnl
178 * semaphore held.
179 */
180 DEFINE_RWLOCK(dev_base_lock);
181 EXPORT_SYMBOL(dev_base_lock);
182
183 /* protects napi_hash addition/deletion and napi_gen_id */
184 static DEFINE_SPINLOCK(napi_hash_lock);
185
186 static unsigned int napi_gen_id = NR_CPUS;
187 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
188
189 static seqcount_t devnet_rename_seq;
190
191 static inline void dev_base_seq_inc(struct net *net)
192 {
193 while (++net->dev_base_seq == 0);
194 }
195
196 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197 {
198 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199
200 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
201 }
202
203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
204 {
205 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
206 }
207
208 static inline void rps_lock(struct softnet_data *sd)
209 {
210 #ifdef CONFIG_RPS
211 spin_lock(&sd->input_pkt_queue.lock);
212 #endif
213 }
214
215 static inline void rps_unlock(struct softnet_data *sd)
216 {
217 #ifdef CONFIG_RPS
218 spin_unlock(&sd->input_pkt_queue.lock);
219 #endif
220 }
221
222 /* Device list insertion */
223 static void list_netdevice(struct net_device *dev)
224 {
225 struct net *net = dev_net(dev);
226
227 ASSERT_RTNL();
228
229 write_lock_bh(&dev_base_lock);
230 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
231 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
232 hlist_add_head_rcu(&dev->index_hlist,
233 dev_index_hash(net, dev->ifindex));
234 write_unlock_bh(&dev_base_lock);
235
236 dev_base_seq_inc(net);
237 }
238
239 /* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252
253 dev_base_seq_inc(dev_net(dev));
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
289 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
290 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
306 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
307 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
308
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331 }
332
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351
352 /*******************************************************************************
353
354 Protocol management and registration routines
355
356 *******************************************************************************/
357
358 /*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374 static inline struct list_head *ptype_head(const struct packet_type *pt)
375 {
376 if (pt->type == htons(ETH_P_ALL))
377 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
378 else
379 return pt->dev ? &pt->dev->ptype_specific :
380 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 pr_warn("dev_remove_pack: %p not found\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459
460 /**
461 * dev_add_offload - register offload handlers
462 * @po: protocol offload declaration
463 *
464 * Add protocol offload handlers to the networking stack. The passed
465 * &proto_offload is linked into kernel lists and may not be freed until
466 * it has been removed from the kernel lists.
467 *
468 * This call does not sleep therefore it can not
469 * guarantee all CPU's that are in middle of receiving packets
470 * will see the new offload handlers (until the next received packet).
471 */
472 void dev_add_offload(struct packet_offload *po)
473 {
474 struct packet_offload *elem;
475
476 spin_lock(&offload_lock);
477 list_for_each_entry(elem, &offload_base, list) {
478 if (po->priority < elem->priority)
479 break;
480 }
481 list_add_rcu(&po->list, elem->list.prev);
482 spin_unlock(&offload_lock);
483 }
484 EXPORT_SYMBOL(dev_add_offload);
485
486 /**
487 * __dev_remove_offload - remove offload handler
488 * @po: packet offload declaration
489 *
490 * Remove a protocol offload handler that was previously added to the
491 * kernel offload handlers by dev_add_offload(). The passed &offload_type
492 * is removed from the kernel lists and can be freed or reused once this
493 * function returns.
494 *
495 * The packet type might still be in use by receivers
496 * and must not be freed until after all the CPU's have gone
497 * through a quiescent state.
498 */
499 static void __dev_remove_offload(struct packet_offload *po)
500 {
501 struct list_head *head = &offload_base;
502 struct packet_offload *po1;
503
504 spin_lock(&offload_lock);
505
506 list_for_each_entry(po1, head, list) {
507 if (po == po1) {
508 list_del_rcu(&po->list);
509 goto out;
510 }
511 }
512
513 pr_warn("dev_remove_offload: %p not found\n", po);
514 out:
515 spin_unlock(&offload_lock);
516 }
517
518 /**
519 * dev_remove_offload - remove packet offload handler
520 * @po: packet offload declaration
521 *
522 * Remove a packet offload handler that was previously added to the kernel
523 * offload handlers by dev_add_offload(). The passed &offload_type is
524 * removed from the kernel lists and can be freed or reused once this
525 * function returns.
526 *
527 * This call sleeps to guarantee that no CPU is looking at the packet
528 * type after return.
529 */
530 void dev_remove_offload(struct packet_offload *po)
531 {
532 __dev_remove_offload(po);
533
534 synchronize_net();
535 }
536 EXPORT_SYMBOL(dev_remove_offload);
537
538 /******************************************************************************
539
540 Device Boot-time Settings Routines
541
542 *******************************************************************************/
543
544 /* Boot time configuration table */
545 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
546
547 /**
548 * netdev_boot_setup_add - add new setup entry
549 * @name: name of the device
550 * @map: configured settings for the device
551 *
552 * Adds new setup entry to the dev_boot_setup list. The function
553 * returns 0 on error and 1 on success. This is a generic routine to
554 * all netdevices.
555 */
556 static int netdev_boot_setup_add(char *name, struct ifmap *map)
557 {
558 struct netdev_boot_setup *s;
559 int i;
560
561 s = dev_boot_setup;
562 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
563 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
564 memset(s[i].name, 0, sizeof(s[i].name));
565 strlcpy(s[i].name, name, IFNAMSIZ);
566 memcpy(&s[i].map, map, sizeof(s[i].map));
567 break;
568 }
569 }
570
571 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
572 }
573
574 /**
575 * netdev_boot_setup_check - check boot time settings
576 * @dev: the netdevice
577 *
578 * Check boot time settings for the device.
579 * The found settings are set for the device to be used
580 * later in the device probing.
581 * Returns 0 if no settings found, 1 if they are.
582 */
583 int netdev_boot_setup_check(struct net_device *dev)
584 {
585 struct netdev_boot_setup *s = dev_boot_setup;
586 int i;
587
588 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
589 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
590 !strcmp(dev->name, s[i].name)) {
591 dev->irq = s[i].map.irq;
592 dev->base_addr = s[i].map.base_addr;
593 dev->mem_start = s[i].map.mem_start;
594 dev->mem_end = s[i].map.mem_end;
595 return 1;
596 }
597 }
598 return 0;
599 }
600 EXPORT_SYMBOL(netdev_boot_setup_check);
601
602
603 /**
604 * netdev_boot_base - get address from boot time settings
605 * @prefix: prefix for network device
606 * @unit: id for network device
607 *
608 * Check boot time settings for the base address of device.
609 * The found settings are set for the device to be used
610 * later in the device probing.
611 * Returns 0 if no settings found.
612 */
613 unsigned long netdev_boot_base(const char *prefix, int unit)
614 {
615 const struct netdev_boot_setup *s = dev_boot_setup;
616 char name[IFNAMSIZ];
617 int i;
618
619 sprintf(name, "%s%d", prefix, unit);
620
621 /*
622 * If device already registered then return base of 1
623 * to indicate not to probe for this interface
624 */
625 if (__dev_get_by_name(&init_net, name))
626 return 1;
627
628 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
629 if (!strcmp(name, s[i].name))
630 return s[i].map.base_addr;
631 return 0;
632 }
633
634 /*
635 * Saves at boot time configured settings for any netdevice.
636 */
637 int __init netdev_boot_setup(char *str)
638 {
639 int ints[5];
640 struct ifmap map;
641
642 str = get_options(str, ARRAY_SIZE(ints), ints);
643 if (!str || !*str)
644 return 0;
645
646 /* Save settings */
647 memset(&map, 0, sizeof(map));
648 if (ints[0] > 0)
649 map.irq = ints[1];
650 if (ints[0] > 1)
651 map.base_addr = ints[2];
652 if (ints[0] > 2)
653 map.mem_start = ints[3];
654 if (ints[0] > 3)
655 map.mem_end = ints[4];
656
657 /* Add new entry to the list */
658 return netdev_boot_setup_add(str, &map);
659 }
660
661 __setup("netdev=", netdev_boot_setup);
662
663 /*******************************************************************************
664
665 Device Interface Subroutines
666
667 *******************************************************************************/
668
669 /**
670 * dev_get_iflink - get 'iflink' value of a interface
671 * @dev: targeted interface
672 *
673 * Indicates the ifindex the interface is linked to.
674 * Physical interfaces have the same 'ifindex' and 'iflink' values.
675 */
676
677 int dev_get_iflink(const struct net_device *dev)
678 {
679 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
680 return dev->netdev_ops->ndo_get_iflink(dev);
681
682 return dev->ifindex;
683 }
684 EXPORT_SYMBOL(dev_get_iflink);
685
686 /**
687 * dev_fill_metadata_dst - Retrieve tunnel egress information.
688 * @dev: targeted interface
689 * @skb: The packet.
690 *
691 * For better visibility of tunnel traffic OVS needs to retrieve
692 * egress tunnel information for a packet. Following API allows
693 * user to get this info.
694 */
695 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
696 {
697 struct ip_tunnel_info *info;
698
699 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
700 return -EINVAL;
701
702 info = skb_tunnel_info_unclone(skb);
703 if (!info)
704 return -ENOMEM;
705 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
706 return -EINVAL;
707
708 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
709 }
710 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
711
712 /**
713 * __dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. Must be called under RTNL semaphore
718 * or @dev_base_lock. If the name is found a pointer to the device
719 * is returned. If the name is not found then %NULL is returned. The
720 * reference counters are not incremented so the caller must be
721 * careful with locks.
722 */
723
724 struct net_device *__dev_get_by_name(struct net *net, const char *name)
725 {
726 struct net_device *dev;
727 struct hlist_head *head = dev_name_hash(net, name);
728
729 hlist_for_each_entry(dev, head, name_hlist)
730 if (!strncmp(dev->name, name, IFNAMSIZ))
731 return dev;
732
733 return NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736
737 /**
738 * dev_get_by_name_rcu - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name.
743 * If the name is found a pointer to the device is returned.
744 * If the name is not found then %NULL is returned.
745 * The reference counters are not incremented so the caller must be
746 * careful with locks. The caller must hold RCU lock.
747 */
748
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 struct net_device *dev;
752 struct hlist_head *head = dev_name_hash(net, name);
753
754 hlist_for_each_entry_rcu(dev, head, name_hlist)
755 if (!strncmp(dev->name, name, IFNAMSIZ))
756 return dev;
757
758 return NULL;
759 }
760 EXPORT_SYMBOL(dev_get_by_name_rcu);
761
762 /**
763 * dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
766 *
767 * Find an interface by name. This can be called from any
768 * context and does its own locking. The returned handle has
769 * the usage count incremented and the caller must use dev_put() to
770 * release it when it is no longer needed. %NULL is returned if no
771 * matching device is found.
772 */
773
774 struct net_device *dev_get_by_name(struct net *net, const char *name)
775 {
776 struct net_device *dev;
777
778 rcu_read_lock();
779 dev = dev_get_by_name_rcu(net, name);
780 if (dev)
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 if (dev)
855 dev_hold(dev);
856 rcu_read_unlock();
857 return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860
861 /**
862 * netdev_get_name - get a netdevice name, knowing its ifindex.
863 * @net: network namespace
864 * @name: a pointer to the buffer where the name will be stored.
865 * @ifindex: the ifindex of the interface to get the name from.
866 *
867 * The use of raw_seqcount_begin() and cond_resched() before
868 * retrying is required as we want to give the writers a chance
869 * to complete when CONFIG_PREEMPT is not set.
870 */
871 int netdev_get_name(struct net *net, char *name, int ifindex)
872 {
873 struct net_device *dev;
874 unsigned int seq;
875
876 retry:
877 seq = raw_seqcount_begin(&devnet_rename_seq);
878 rcu_read_lock();
879 dev = dev_get_by_index_rcu(net, ifindex);
880 if (!dev) {
881 rcu_read_unlock();
882 return -ENODEV;
883 }
884
885 strcpy(name, dev->name);
886 rcu_read_unlock();
887 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
888 cond_resched();
889 goto retry;
890 }
891
892 return 0;
893 }
894
895 /**
896 * dev_getbyhwaddr_rcu - find a device by its hardware address
897 * @net: the applicable net namespace
898 * @type: media type of device
899 * @ha: hardware address
900 *
901 * Search for an interface by MAC address. Returns NULL if the device
902 * is not found or a pointer to the device.
903 * The caller must hold RCU or RTNL.
904 * The returned device has not had its ref count increased
905 * and the caller must therefore be careful about locking
906 *
907 */
908
909 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
910 const char *ha)
911 {
912 struct net_device *dev;
913
914 for_each_netdev_rcu(net, dev)
915 if (dev->type == type &&
916 !memcmp(dev->dev_addr, ha, dev->addr_len))
917 return dev;
918
919 return NULL;
920 }
921 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
922
923 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
924 {
925 struct net_device *dev;
926
927 ASSERT_RTNL();
928 for_each_netdev(net, dev)
929 if (dev->type == type)
930 return dev;
931
932 return NULL;
933 }
934 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
935
936 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
937 {
938 struct net_device *dev, *ret = NULL;
939
940 rcu_read_lock();
941 for_each_netdev_rcu(net, dev)
942 if (dev->type == type) {
943 dev_hold(dev);
944 ret = dev;
945 break;
946 }
947 rcu_read_unlock();
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_getfirstbyhwtype);
951
952 /**
953 * __dev_get_by_flags - find any device with given flags
954 * @net: the applicable net namespace
955 * @if_flags: IFF_* values
956 * @mask: bitmask of bits in if_flags to check
957 *
958 * Search for any interface with the given flags. Returns NULL if a device
959 * is not found or a pointer to the device. Must be called inside
960 * rtnl_lock(), and result refcount is unchanged.
961 */
962
963 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
964 unsigned short mask)
965 {
966 struct net_device *dev, *ret;
967
968 ASSERT_RTNL();
969
970 ret = NULL;
971 for_each_netdev(net, dev) {
972 if (((dev->flags ^ if_flags) & mask) == 0) {
973 ret = dev;
974 break;
975 }
976 }
977 return ret;
978 }
979 EXPORT_SYMBOL(__dev_get_by_flags);
980
981 /**
982 * dev_valid_name - check if name is okay for network device
983 * @name: name string
984 *
985 * Network device names need to be valid file names to
986 * to allow sysfs to work. We also disallow any kind of
987 * whitespace.
988 */
989 bool dev_valid_name(const char *name)
990 {
991 if (*name == '\0')
992 return false;
993 if (strlen(name) >= IFNAMSIZ)
994 return false;
995 if (!strcmp(name, ".") || !strcmp(name, ".."))
996 return false;
997
998 while (*name) {
999 if (*name == '/' || *name == ':' || isspace(*name))
1000 return false;
1001 name++;
1002 }
1003 return true;
1004 }
1005 EXPORT_SYMBOL(dev_valid_name);
1006
1007 /**
1008 * __dev_alloc_name - allocate a name for a device
1009 * @net: network namespace to allocate the device name in
1010 * @name: name format string
1011 * @buf: scratch buffer and result name string
1012 *
1013 * Passed a format string - eg "lt%d" it will try and find a suitable
1014 * id. It scans list of devices to build up a free map, then chooses
1015 * the first empty slot. The caller must hold the dev_base or rtnl lock
1016 * while allocating the name and adding the device in order to avoid
1017 * duplicates.
1018 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1019 * Returns the number of the unit assigned or a negative errno code.
1020 */
1021
1022 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1023 {
1024 int i = 0;
1025 const char *p;
1026 const int max_netdevices = 8*PAGE_SIZE;
1027 unsigned long *inuse;
1028 struct net_device *d;
1029
1030 p = strnchr(name, IFNAMSIZ-1, '%');
1031 if (p) {
1032 /*
1033 * Verify the string as this thing may have come from
1034 * the user. There must be either one "%d" and no other "%"
1035 * characters.
1036 */
1037 if (p[1] != 'd' || strchr(p + 2, '%'))
1038 return -EINVAL;
1039
1040 /* Use one page as a bit array of possible slots */
1041 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1042 if (!inuse)
1043 return -ENOMEM;
1044
1045 for_each_netdev(net, d) {
1046 if (!sscanf(d->name, name, &i))
1047 continue;
1048 if (i < 0 || i >= max_netdevices)
1049 continue;
1050
1051 /* avoid cases where sscanf is not exact inverse of printf */
1052 snprintf(buf, IFNAMSIZ, name, i);
1053 if (!strncmp(buf, d->name, IFNAMSIZ))
1054 set_bit(i, inuse);
1055 }
1056
1057 i = find_first_zero_bit(inuse, max_netdevices);
1058 free_page((unsigned long) inuse);
1059 }
1060
1061 if (buf != name)
1062 snprintf(buf, IFNAMSIZ, name, i);
1063 if (!__dev_get_by_name(net, buf))
1064 return i;
1065
1066 /* It is possible to run out of possible slots
1067 * when the name is long and there isn't enough space left
1068 * for the digits, or if all bits are used.
1069 */
1070 return -ENFILE;
1071 }
1072
1073 /**
1074 * dev_alloc_name - allocate a name for a device
1075 * @dev: device
1076 * @name: name format string
1077 *
1078 * Passed a format string - eg "lt%d" it will try and find a suitable
1079 * id. It scans list of devices to build up a free map, then chooses
1080 * the first empty slot. The caller must hold the dev_base or rtnl lock
1081 * while allocating the name and adding the device in order to avoid
1082 * duplicates.
1083 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084 * Returns the number of the unit assigned or a negative errno code.
1085 */
1086
1087 int dev_alloc_name(struct net_device *dev, const char *name)
1088 {
1089 char buf[IFNAMSIZ];
1090 struct net *net;
1091 int ret;
1092
1093 BUG_ON(!dev_net(dev));
1094 net = dev_net(dev);
1095 ret = __dev_alloc_name(net, name, buf);
1096 if (ret >= 0)
1097 strlcpy(dev->name, buf, IFNAMSIZ);
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101
1102 static int dev_alloc_name_ns(struct net *net,
1103 struct net_device *dev,
1104 const char *name)
1105 {
1106 char buf[IFNAMSIZ];
1107 int ret;
1108
1109 ret = __dev_alloc_name(net, name, buf);
1110 if (ret >= 0)
1111 strlcpy(dev->name, buf, IFNAMSIZ);
1112 return ret;
1113 }
1114
1115 static int dev_get_valid_name(struct net *net,
1116 struct net_device *dev,
1117 const char *name)
1118 {
1119 BUG_ON(!net);
1120
1121 if (!dev_valid_name(name))
1122 return -EINVAL;
1123
1124 if (strchr(name, '%'))
1125 return dev_alloc_name_ns(net, dev, name);
1126 else if (__dev_get_by_name(net, name))
1127 return -EEXIST;
1128 else if (dev->name != name)
1129 strlcpy(dev->name, name, IFNAMSIZ);
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * dev_change_name - change name of a device
1136 * @dev: device
1137 * @newname: name (or format string) must be at least IFNAMSIZ
1138 *
1139 * Change name of a device, can pass format strings "eth%d".
1140 * for wildcarding.
1141 */
1142 int dev_change_name(struct net_device *dev, const char *newname)
1143 {
1144 unsigned char old_assign_type;
1145 char oldname[IFNAMSIZ];
1146 int err = 0;
1147 int ret;
1148 struct net *net;
1149
1150 ASSERT_RTNL();
1151 BUG_ON(!dev_net(dev));
1152
1153 net = dev_net(dev);
1154 if (dev->flags & IFF_UP)
1155 return -EBUSY;
1156
1157 write_seqcount_begin(&devnet_rename_seq);
1158
1159 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160 write_seqcount_end(&devnet_rename_seq);
1161 return 0;
1162 }
1163
1164 memcpy(oldname, dev->name, IFNAMSIZ);
1165
1166 err = dev_get_valid_name(net, dev, newname);
1167 if (err < 0) {
1168 write_seqcount_end(&devnet_rename_seq);
1169 return err;
1170 }
1171
1172 if (oldname[0] && !strchr(oldname, '%'))
1173 netdev_info(dev, "renamed from %s\n", oldname);
1174
1175 old_assign_type = dev->name_assign_type;
1176 dev->name_assign_type = NET_NAME_RENAMED;
1177
1178 rollback:
1179 ret = device_rename(&dev->dev, dev->name);
1180 if (ret) {
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 dev->name_assign_type = old_assign_type;
1183 write_seqcount_end(&devnet_rename_seq);
1184 return ret;
1185 }
1186
1187 write_seqcount_end(&devnet_rename_seq);
1188
1189 netdev_adjacent_rename_links(dev, oldname);
1190
1191 write_lock_bh(&dev_base_lock);
1192 hlist_del_rcu(&dev->name_hlist);
1193 write_unlock_bh(&dev_base_lock);
1194
1195 synchronize_rcu();
1196
1197 write_lock_bh(&dev_base_lock);
1198 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1199 write_unlock_bh(&dev_base_lock);
1200
1201 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202 ret = notifier_to_errno(ret);
1203
1204 if (ret) {
1205 /* err >= 0 after dev_alloc_name() or stores the first errno */
1206 if (err >= 0) {
1207 err = ret;
1208 write_seqcount_begin(&devnet_rename_seq);
1209 memcpy(dev->name, oldname, IFNAMSIZ);
1210 memcpy(oldname, newname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 old_assign_type = NET_NAME_RENAMED;
1213 goto rollback;
1214 } else {
1215 pr_err("%s: name change rollback failed: %d\n",
1216 dev->name, ret);
1217 }
1218 }
1219
1220 return err;
1221 }
1222
1223 /**
1224 * dev_set_alias - change ifalias of a device
1225 * @dev: device
1226 * @alias: name up to IFALIASZ
1227 * @len: limit of bytes to copy from info
1228 *
1229 * Set ifalias for a device,
1230 */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233 char *new_ifalias;
1234
1235 ASSERT_RTNL();
1236
1237 if (len >= IFALIASZ)
1238 return -EINVAL;
1239
1240 if (!len) {
1241 kfree(dev->ifalias);
1242 dev->ifalias = NULL;
1243 return 0;
1244 }
1245
1246 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1247 if (!new_ifalias)
1248 return -ENOMEM;
1249 dev->ifalias = new_ifalias;
1250
1251 strlcpy(dev->ifalias, alias, len+1);
1252 return len;
1253 }
1254
1255
1256 /**
1257 * netdev_features_change - device changes features
1258 * @dev: device to cause notification
1259 *
1260 * Called to indicate a device has changed features.
1261 */
1262 void netdev_features_change(struct net_device *dev)
1263 {
1264 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1265 }
1266 EXPORT_SYMBOL(netdev_features_change);
1267
1268 /**
1269 * netdev_state_change - device changes state
1270 * @dev: device to cause notification
1271 *
1272 * Called to indicate a device has changed state. This function calls
1273 * the notifier chains for netdev_chain and sends a NEWLINK message
1274 * to the routing socket.
1275 */
1276 void netdev_state_change(struct net_device *dev)
1277 {
1278 if (dev->flags & IFF_UP) {
1279 struct netdev_notifier_change_info change_info;
1280
1281 change_info.flags_changed = 0;
1282 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1283 &change_info.info);
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1285 }
1286 }
1287 EXPORT_SYMBOL(netdev_state_change);
1288
1289 /**
1290 * netdev_notify_peers - notify network peers about existence of @dev
1291 * @dev: network device
1292 *
1293 * Generate traffic such that interested network peers are aware of
1294 * @dev, such as by generating a gratuitous ARP. This may be used when
1295 * a device wants to inform the rest of the network about some sort of
1296 * reconfiguration such as a failover event or virtual machine
1297 * migration.
1298 */
1299 void netdev_notify_peers(struct net_device *dev)
1300 {
1301 rtnl_lock();
1302 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1303 rtnl_unlock();
1304 }
1305 EXPORT_SYMBOL(netdev_notify_peers);
1306
1307 static int __dev_open(struct net_device *dev)
1308 {
1309 const struct net_device_ops *ops = dev->netdev_ops;
1310 int ret;
1311
1312 ASSERT_RTNL();
1313
1314 if (!netif_device_present(dev))
1315 return -ENODEV;
1316
1317 /* Block netpoll from trying to do any rx path servicing.
1318 * If we don't do this there is a chance ndo_poll_controller
1319 * or ndo_poll may be running while we open the device
1320 */
1321 netpoll_poll_disable(dev);
1322
1323 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1324 ret = notifier_to_errno(ret);
1325 if (ret)
1326 return ret;
1327
1328 set_bit(__LINK_STATE_START, &dev->state);
1329
1330 if (ops->ndo_validate_addr)
1331 ret = ops->ndo_validate_addr(dev);
1332
1333 if (!ret && ops->ndo_open)
1334 ret = ops->ndo_open(dev);
1335
1336 netpoll_poll_enable(dev);
1337
1338 if (ret)
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340 else {
1341 dev->flags |= IFF_UP;
1342 dev_set_rx_mode(dev);
1343 dev_activate(dev);
1344 add_device_randomness(dev->dev_addr, dev->addr_len);
1345 }
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * dev_open - prepare an interface for use.
1352 * @dev: device to open
1353 *
1354 * Takes a device from down to up state. The device's private open
1355 * function is invoked and then the multicast lists are loaded. Finally
1356 * the device is moved into the up state and a %NETDEV_UP message is
1357 * sent to the netdev notifier chain.
1358 *
1359 * Calling this function on an active interface is a nop. On a failure
1360 * a negative errno code is returned.
1361 */
1362 int dev_open(struct net_device *dev)
1363 {
1364 int ret;
1365
1366 if (dev->flags & IFF_UP)
1367 return 0;
1368
1369 ret = __dev_open(dev);
1370 if (ret < 0)
1371 return ret;
1372
1373 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1374 call_netdevice_notifiers(NETDEV_UP, dev);
1375
1376 return ret;
1377 }
1378 EXPORT_SYMBOL(dev_open);
1379
1380 static int __dev_close_many(struct list_head *head)
1381 {
1382 struct net_device *dev;
1383
1384 ASSERT_RTNL();
1385 might_sleep();
1386
1387 list_for_each_entry(dev, head, close_list) {
1388 /* Temporarily disable netpoll until the interface is down */
1389 netpoll_poll_disable(dev);
1390
1391 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1392
1393 clear_bit(__LINK_STATE_START, &dev->state);
1394
1395 /* Synchronize to scheduled poll. We cannot touch poll list, it
1396 * can be even on different cpu. So just clear netif_running().
1397 *
1398 * dev->stop() will invoke napi_disable() on all of it's
1399 * napi_struct instances on this device.
1400 */
1401 smp_mb__after_atomic(); /* Commit netif_running(). */
1402 }
1403
1404 dev_deactivate_many(head);
1405
1406 list_for_each_entry(dev, head, close_list) {
1407 const struct net_device_ops *ops = dev->netdev_ops;
1408
1409 /*
1410 * Call the device specific close. This cannot fail.
1411 * Only if device is UP
1412 *
1413 * We allow it to be called even after a DETACH hot-plug
1414 * event.
1415 */
1416 if (ops->ndo_stop)
1417 ops->ndo_stop(dev);
1418
1419 dev->flags &= ~IFF_UP;
1420 netpoll_poll_enable(dev);
1421 }
1422
1423 return 0;
1424 }
1425
1426 static int __dev_close(struct net_device *dev)
1427 {
1428 int retval;
1429 LIST_HEAD(single);
1430
1431 list_add(&dev->close_list, &single);
1432 retval = __dev_close_many(&single);
1433 list_del(&single);
1434
1435 return retval;
1436 }
1437
1438 int dev_close_many(struct list_head *head, bool unlink)
1439 {
1440 struct net_device *dev, *tmp;
1441
1442 /* Remove the devices that don't need to be closed */
1443 list_for_each_entry_safe(dev, tmp, head, close_list)
1444 if (!(dev->flags & IFF_UP))
1445 list_del_init(&dev->close_list);
1446
1447 __dev_close_many(head);
1448
1449 list_for_each_entry_safe(dev, tmp, head, close_list) {
1450 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1451 call_netdevice_notifiers(NETDEV_DOWN, dev);
1452 if (unlink)
1453 list_del_init(&dev->close_list);
1454 }
1455
1456 return 0;
1457 }
1458 EXPORT_SYMBOL(dev_close_many);
1459
1460 /**
1461 * dev_close - shutdown an interface.
1462 * @dev: device to shutdown
1463 *
1464 * This function moves an active device into down state. A
1465 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1466 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1467 * chain.
1468 */
1469 int dev_close(struct net_device *dev)
1470 {
1471 if (dev->flags & IFF_UP) {
1472 LIST_HEAD(single);
1473
1474 list_add(&dev->close_list, &single);
1475 dev_close_many(&single, true);
1476 list_del(&single);
1477 }
1478 return 0;
1479 }
1480 EXPORT_SYMBOL(dev_close);
1481
1482
1483 /**
1484 * dev_disable_lro - disable Large Receive Offload on a device
1485 * @dev: device
1486 *
1487 * Disable Large Receive Offload (LRO) on a net device. Must be
1488 * called under RTNL. This is needed if received packets may be
1489 * forwarded to another interface.
1490 */
1491 void dev_disable_lro(struct net_device *dev)
1492 {
1493 struct net_device *lower_dev;
1494 struct list_head *iter;
1495
1496 dev->wanted_features &= ~NETIF_F_LRO;
1497 netdev_update_features(dev);
1498
1499 if (unlikely(dev->features & NETIF_F_LRO))
1500 netdev_WARN(dev, "failed to disable LRO!\n");
1501
1502 netdev_for_each_lower_dev(dev, lower_dev, iter)
1503 dev_disable_lro(lower_dev);
1504 }
1505 EXPORT_SYMBOL(dev_disable_lro);
1506
1507 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1508 struct net_device *dev)
1509 {
1510 struct netdev_notifier_info info;
1511
1512 netdev_notifier_info_init(&info, dev);
1513 return nb->notifier_call(nb, val, &info);
1514 }
1515
1516 static int dev_boot_phase = 1;
1517
1518 /**
1519 * register_netdevice_notifier - register a network notifier block
1520 * @nb: notifier
1521 *
1522 * Register a notifier to be called when network device events occur.
1523 * The notifier passed is linked into the kernel structures and must
1524 * not be reused until it has been unregistered. A negative errno code
1525 * is returned on a failure.
1526 *
1527 * When registered all registration and up events are replayed
1528 * to the new notifier to allow device to have a race free
1529 * view of the network device list.
1530 */
1531
1532 int register_netdevice_notifier(struct notifier_block *nb)
1533 {
1534 struct net_device *dev;
1535 struct net_device *last;
1536 struct net *net;
1537 int err;
1538
1539 rtnl_lock();
1540 err = raw_notifier_chain_register(&netdev_chain, nb);
1541 if (err)
1542 goto unlock;
1543 if (dev_boot_phase)
1544 goto unlock;
1545 for_each_net(net) {
1546 for_each_netdev(net, dev) {
1547 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1548 err = notifier_to_errno(err);
1549 if (err)
1550 goto rollback;
1551
1552 if (!(dev->flags & IFF_UP))
1553 continue;
1554
1555 call_netdevice_notifier(nb, NETDEV_UP, dev);
1556 }
1557 }
1558
1559 unlock:
1560 rtnl_unlock();
1561 return err;
1562
1563 rollback:
1564 last = dev;
1565 for_each_net(net) {
1566 for_each_netdev(net, dev) {
1567 if (dev == last)
1568 goto outroll;
1569
1570 if (dev->flags & IFF_UP) {
1571 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1572 dev);
1573 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1574 }
1575 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1576 }
1577 }
1578
1579 outroll:
1580 raw_notifier_chain_unregister(&netdev_chain, nb);
1581 goto unlock;
1582 }
1583 EXPORT_SYMBOL(register_netdevice_notifier);
1584
1585 /**
1586 * unregister_netdevice_notifier - unregister a network notifier block
1587 * @nb: notifier
1588 *
1589 * Unregister a notifier previously registered by
1590 * register_netdevice_notifier(). The notifier is unlinked into the
1591 * kernel structures and may then be reused. A negative errno code
1592 * is returned on a failure.
1593 *
1594 * After unregistering unregister and down device events are synthesized
1595 * for all devices on the device list to the removed notifier to remove
1596 * the need for special case cleanup code.
1597 */
1598
1599 int unregister_netdevice_notifier(struct notifier_block *nb)
1600 {
1601 struct net_device *dev;
1602 struct net *net;
1603 int err;
1604
1605 rtnl_lock();
1606 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1607 if (err)
1608 goto unlock;
1609
1610 for_each_net(net) {
1611 for_each_netdev(net, dev) {
1612 if (dev->flags & IFF_UP) {
1613 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1614 dev);
1615 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1616 }
1617 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1618 }
1619 }
1620 unlock:
1621 rtnl_unlock();
1622 return err;
1623 }
1624 EXPORT_SYMBOL(unregister_netdevice_notifier);
1625
1626 /**
1627 * call_netdevice_notifiers_info - call all network notifier blocks
1628 * @val: value passed unmodified to notifier function
1629 * @dev: net_device pointer passed unmodified to notifier function
1630 * @info: notifier information data
1631 *
1632 * Call all network notifier blocks. Parameters and return value
1633 * are as for raw_notifier_call_chain().
1634 */
1635
1636 static int call_netdevice_notifiers_info(unsigned long val,
1637 struct net_device *dev,
1638 struct netdev_notifier_info *info)
1639 {
1640 ASSERT_RTNL();
1641 netdev_notifier_info_init(info, dev);
1642 return raw_notifier_call_chain(&netdev_chain, val, info);
1643 }
1644
1645 /**
1646 * call_netdevice_notifiers - call all network notifier blocks
1647 * @val: value passed unmodified to notifier function
1648 * @dev: net_device pointer passed unmodified to notifier function
1649 *
1650 * Call all network notifier blocks. Parameters and return value
1651 * are as for raw_notifier_call_chain().
1652 */
1653
1654 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1655 {
1656 struct netdev_notifier_info info;
1657
1658 return call_netdevice_notifiers_info(val, dev, &info);
1659 }
1660 EXPORT_SYMBOL(call_netdevice_notifiers);
1661
1662 #ifdef CONFIG_NET_INGRESS
1663 static struct static_key ingress_needed __read_mostly;
1664
1665 void net_inc_ingress_queue(void)
1666 {
1667 static_key_slow_inc(&ingress_needed);
1668 }
1669 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1670
1671 void net_dec_ingress_queue(void)
1672 {
1673 static_key_slow_dec(&ingress_needed);
1674 }
1675 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1676 #endif
1677
1678 static struct static_key netstamp_needed __read_mostly;
1679 #ifdef HAVE_JUMP_LABEL
1680 /* We are not allowed to call static_key_slow_dec() from irq context
1681 * If net_disable_timestamp() is called from irq context, defer the
1682 * static_key_slow_dec() calls.
1683 */
1684 static atomic_t netstamp_needed_deferred;
1685 #endif
1686
1687 void net_enable_timestamp(void)
1688 {
1689 #ifdef HAVE_JUMP_LABEL
1690 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1691
1692 if (deferred) {
1693 while (--deferred)
1694 static_key_slow_dec(&netstamp_needed);
1695 return;
1696 }
1697 #endif
1698 static_key_slow_inc(&netstamp_needed);
1699 }
1700 EXPORT_SYMBOL(net_enable_timestamp);
1701
1702 void net_disable_timestamp(void)
1703 {
1704 #ifdef HAVE_JUMP_LABEL
1705 if (in_interrupt()) {
1706 atomic_inc(&netstamp_needed_deferred);
1707 return;
1708 }
1709 #endif
1710 static_key_slow_dec(&netstamp_needed);
1711 }
1712 EXPORT_SYMBOL(net_disable_timestamp);
1713
1714 static inline void net_timestamp_set(struct sk_buff *skb)
1715 {
1716 skb->tstamp.tv64 = 0;
1717 if (static_key_false(&netstamp_needed))
1718 __net_timestamp(skb);
1719 }
1720
1721 #define net_timestamp_check(COND, SKB) \
1722 if (static_key_false(&netstamp_needed)) { \
1723 if ((COND) && !(SKB)->tstamp.tv64) \
1724 __net_timestamp(SKB); \
1725 } \
1726
1727 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1728 {
1729 unsigned int len;
1730
1731 if (!(dev->flags & IFF_UP))
1732 return false;
1733
1734 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1735 if (skb->len <= len)
1736 return true;
1737
1738 /* if TSO is enabled, we don't care about the length as the packet
1739 * could be forwarded without being segmented before
1740 */
1741 if (skb_is_gso(skb))
1742 return true;
1743
1744 return false;
1745 }
1746 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1747
1748 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1749 {
1750 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1751 unlikely(!is_skb_forwardable(dev, skb))) {
1752 atomic_long_inc(&dev->rx_dropped);
1753 kfree_skb(skb);
1754 return NET_RX_DROP;
1755 }
1756
1757 skb_scrub_packet(skb, true);
1758 skb->priority = 0;
1759 skb->protocol = eth_type_trans(skb, dev);
1760 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1761
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1765
1766 /**
1767 * dev_forward_skb - loopback an skb to another netif
1768 *
1769 * @dev: destination network device
1770 * @skb: buffer to forward
1771 *
1772 * return values:
1773 * NET_RX_SUCCESS (no congestion)
1774 * NET_RX_DROP (packet was dropped, but freed)
1775 *
1776 * dev_forward_skb can be used for injecting an skb from the
1777 * start_xmit function of one device into the receive queue
1778 * of another device.
1779 *
1780 * The receiving device may be in another namespace, so
1781 * we have to clear all information in the skb that could
1782 * impact namespace isolation.
1783 */
1784 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1785 {
1786 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1787 }
1788 EXPORT_SYMBOL_GPL(dev_forward_skb);
1789
1790 static inline int deliver_skb(struct sk_buff *skb,
1791 struct packet_type *pt_prev,
1792 struct net_device *orig_dev)
1793 {
1794 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1795 return -ENOMEM;
1796 atomic_inc(&skb->users);
1797 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1798 }
1799
1800 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1801 struct packet_type **pt,
1802 struct net_device *orig_dev,
1803 __be16 type,
1804 struct list_head *ptype_list)
1805 {
1806 struct packet_type *ptype, *pt_prev = *pt;
1807
1808 list_for_each_entry_rcu(ptype, ptype_list, list) {
1809 if (ptype->type != type)
1810 continue;
1811 if (pt_prev)
1812 deliver_skb(skb, pt_prev, orig_dev);
1813 pt_prev = ptype;
1814 }
1815 *pt = pt_prev;
1816 }
1817
1818 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1819 {
1820 if (!ptype->af_packet_priv || !skb->sk)
1821 return false;
1822
1823 if (ptype->id_match)
1824 return ptype->id_match(ptype, skb->sk);
1825 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /*
1832 * Support routine. Sends outgoing frames to any network
1833 * taps currently in use.
1834 */
1835
1836 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1837 {
1838 struct packet_type *ptype;
1839 struct sk_buff *skb2 = NULL;
1840 struct packet_type *pt_prev = NULL;
1841 struct list_head *ptype_list = &ptype_all;
1842
1843 rcu_read_lock();
1844 again:
1845 list_for_each_entry_rcu(ptype, ptype_list, list) {
1846 /* Never send packets back to the socket
1847 * they originated from - MvS (miquels@drinkel.ow.org)
1848 */
1849 if (skb_loop_sk(ptype, skb))
1850 continue;
1851
1852 if (pt_prev) {
1853 deliver_skb(skb2, pt_prev, skb->dev);
1854 pt_prev = ptype;
1855 continue;
1856 }
1857
1858 /* need to clone skb, done only once */
1859 skb2 = skb_clone(skb, GFP_ATOMIC);
1860 if (!skb2)
1861 goto out_unlock;
1862
1863 net_timestamp_set(skb2);
1864
1865 /* skb->nh should be correctly
1866 * set by sender, so that the second statement is
1867 * just protection against buggy protocols.
1868 */
1869 skb_reset_mac_header(skb2);
1870
1871 if (skb_network_header(skb2) < skb2->data ||
1872 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1873 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1874 ntohs(skb2->protocol),
1875 dev->name);
1876 skb_reset_network_header(skb2);
1877 }
1878
1879 skb2->transport_header = skb2->network_header;
1880 skb2->pkt_type = PACKET_OUTGOING;
1881 pt_prev = ptype;
1882 }
1883
1884 if (ptype_list == &ptype_all) {
1885 ptype_list = &dev->ptype_all;
1886 goto again;
1887 }
1888 out_unlock:
1889 if (pt_prev)
1890 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1891 rcu_read_unlock();
1892 }
1893
1894 /**
1895 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1896 * @dev: Network device
1897 * @txq: number of queues available
1898 *
1899 * If real_num_tx_queues is changed the tc mappings may no longer be
1900 * valid. To resolve this verify the tc mapping remains valid and if
1901 * not NULL the mapping. With no priorities mapping to this
1902 * offset/count pair it will no longer be used. In the worst case TC0
1903 * is invalid nothing can be done so disable priority mappings. If is
1904 * expected that drivers will fix this mapping if they can before
1905 * calling netif_set_real_num_tx_queues.
1906 */
1907 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1908 {
1909 int i;
1910 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1911
1912 /* If TC0 is invalidated disable TC mapping */
1913 if (tc->offset + tc->count > txq) {
1914 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1915 dev->num_tc = 0;
1916 return;
1917 }
1918
1919 /* Invalidated prio to tc mappings set to TC0 */
1920 for (i = 1; i < TC_BITMASK + 1; i++) {
1921 int q = netdev_get_prio_tc_map(dev, i);
1922
1923 tc = &dev->tc_to_txq[q];
1924 if (tc->offset + tc->count > txq) {
1925 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1926 i, q);
1927 netdev_set_prio_tc_map(dev, i, 0);
1928 }
1929 }
1930 }
1931
1932 #ifdef CONFIG_XPS
1933 static DEFINE_MUTEX(xps_map_mutex);
1934 #define xmap_dereference(P) \
1935 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1936
1937 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1938 int cpu, u16 index)
1939 {
1940 struct xps_map *map = NULL;
1941 int pos;
1942
1943 if (dev_maps)
1944 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1945
1946 for (pos = 0; map && pos < map->len; pos++) {
1947 if (map->queues[pos] == index) {
1948 if (map->len > 1) {
1949 map->queues[pos] = map->queues[--map->len];
1950 } else {
1951 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1952 kfree_rcu(map, rcu);
1953 map = NULL;
1954 }
1955 break;
1956 }
1957 }
1958
1959 return map;
1960 }
1961
1962 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1963 {
1964 struct xps_dev_maps *dev_maps;
1965 int cpu, i;
1966 bool active = false;
1967
1968 mutex_lock(&xps_map_mutex);
1969 dev_maps = xmap_dereference(dev->xps_maps);
1970
1971 if (!dev_maps)
1972 goto out_no_maps;
1973
1974 for_each_possible_cpu(cpu) {
1975 for (i = index; i < dev->num_tx_queues; i++) {
1976 if (!remove_xps_queue(dev_maps, cpu, i))
1977 break;
1978 }
1979 if (i == dev->num_tx_queues)
1980 active = true;
1981 }
1982
1983 if (!active) {
1984 RCU_INIT_POINTER(dev->xps_maps, NULL);
1985 kfree_rcu(dev_maps, rcu);
1986 }
1987
1988 for (i = index; i < dev->num_tx_queues; i++)
1989 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1990 NUMA_NO_NODE);
1991
1992 out_no_maps:
1993 mutex_unlock(&xps_map_mutex);
1994 }
1995
1996 static struct xps_map *expand_xps_map(struct xps_map *map,
1997 int cpu, u16 index)
1998 {
1999 struct xps_map *new_map;
2000 int alloc_len = XPS_MIN_MAP_ALLOC;
2001 int i, pos;
2002
2003 for (pos = 0; map && pos < map->len; pos++) {
2004 if (map->queues[pos] != index)
2005 continue;
2006 return map;
2007 }
2008
2009 /* Need to add queue to this CPU's existing map */
2010 if (map) {
2011 if (pos < map->alloc_len)
2012 return map;
2013
2014 alloc_len = map->alloc_len * 2;
2015 }
2016
2017 /* Need to allocate new map to store queue on this CPU's map */
2018 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2019 cpu_to_node(cpu));
2020 if (!new_map)
2021 return NULL;
2022
2023 for (i = 0; i < pos; i++)
2024 new_map->queues[i] = map->queues[i];
2025 new_map->alloc_len = alloc_len;
2026 new_map->len = pos;
2027
2028 return new_map;
2029 }
2030
2031 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2032 u16 index)
2033 {
2034 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2035 struct xps_map *map, *new_map;
2036 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2037 int cpu, numa_node_id = -2;
2038 bool active = false;
2039
2040 mutex_lock(&xps_map_mutex);
2041
2042 dev_maps = xmap_dereference(dev->xps_maps);
2043
2044 /* allocate memory for queue storage */
2045 for_each_online_cpu(cpu) {
2046 if (!cpumask_test_cpu(cpu, mask))
2047 continue;
2048
2049 if (!new_dev_maps)
2050 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2051 if (!new_dev_maps) {
2052 mutex_unlock(&xps_map_mutex);
2053 return -ENOMEM;
2054 }
2055
2056 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2057 NULL;
2058
2059 map = expand_xps_map(map, cpu, index);
2060 if (!map)
2061 goto error;
2062
2063 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2064 }
2065
2066 if (!new_dev_maps)
2067 goto out_no_new_maps;
2068
2069 for_each_possible_cpu(cpu) {
2070 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2071 /* add queue to CPU maps */
2072 int pos = 0;
2073
2074 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2075 while ((pos < map->len) && (map->queues[pos] != index))
2076 pos++;
2077
2078 if (pos == map->len)
2079 map->queues[map->len++] = index;
2080 #ifdef CONFIG_NUMA
2081 if (numa_node_id == -2)
2082 numa_node_id = cpu_to_node(cpu);
2083 else if (numa_node_id != cpu_to_node(cpu))
2084 numa_node_id = -1;
2085 #endif
2086 } else if (dev_maps) {
2087 /* fill in the new device map from the old device map */
2088 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2089 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2090 }
2091
2092 }
2093
2094 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2095
2096 /* Cleanup old maps */
2097 if (dev_maps) {
2098 for_each_possible_cpu(cpu) {
2099 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2100 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2101 if (map && map != new_map)
2102 kfree_rcu(map, rcu);
2103 }
2104
2105 kfree_rcu(dev_maps, rcu);
2106 }
2107
2108 dev_maps = new_dev_maps;
2109 active = true;
2110
2111 out_no_new_maps:
2112 /* update Tx queue numa node */
2113 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2114 (numa_node_id >= 0) ? numa_node_id :
2115 NUMA_NO_NODE);
2116
2117 if (!dev_maps)
2118 goto out_no_maps;
2119
2120 /* removes queue from unused CPUs */
2121 for_each_possible_cpu(cpu) {
2122 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2123 continue;
2124
2125 if (remove_xps_queue(dev_maps, cpu, index))
2126 active = true;
2127 }
2128
2129 /* free map if not active */
2130 if (!active) {
2131 RCU_INIT_POINTER(dev->xps_maps, NULL);
2132 kfree_rcu(dev_maps, rcu);
2133 }
2134
2135 out_no_maps:
2136 mutex_unlock(&xps_map_mutex);
2137
2138 return 0;
2139 error:
2140 /* remove any maps that we added */
2141 for_each_possible_cpu(cpu) {
2142 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2143 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2144 NULL;
2145 if (new_map && new_map != map)
2146 kfree(new_map);
2147 }
2148
2149 mutex_unlock(&xps_map_mutex);
2150
2151 kfree(new_dev_maps);
2152 return -ENOMEM;
2153 }
2154 EXPORT_SYMBOL(netif_set_xps_queue);
2155
2156 #endif
2157 /*
2158 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2159 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2160 */
2161 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2162 {
2163 int rc;
2164
2165 if (txq < 1 || txq > dev->num_tx_queues)
2166 return -EINVAL;
2167
2168 if (dev->reg_state == NETREG_REGISTERED ||
2169 dev->reg_state == NETREG_UNREGISTERING) {
2170 ASSERT_RTNL();
2171
2172 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2173 txq);
2174 if (rc)
2175 return rc;
2176
2177 if (dev->num_tc)
2178 netif_setup_tc(dev, txq);
2179
2180 if (txq < dev->real_num_tx_queues) {
2181 qdisc_reset_all_tx_gt(dev, txq);
2182 #ifdef CONFIG_XPS
2183 netif_reset_xps_queues_gt(dev, txq);
2184 #endif
2185 }
2186 }
2187
2188 dev->real_num_tx_queues = txq;
2189 return 0;
2190 }
2191 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2192
2193 #ifdef CONFIG_SYSFS
2194 /**
2195 * netif_set_real_num_rx_queues - set actual number of RX queues used
2196 * @dev: Network device
2197 * @rxq: Actual number of RX queues
2198 *
2199 * This must be called either with the rtnl_lock held or before
2200 * registration of the net device. Returns 0 on success, or a
2201 * negative error code. If called before registration, it always
2202 * succeeds.
2203 */
2204 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2205 {
2206 int rc;
2207
2208 if (rxq < 1 || rxq > dev->num_rx_queues)
2209 return -EINVAL;
2210
2211 if (dev->reg_state == NETREG_REGISTERED) {
2212 ASSERT_RTNL();
2213
2214 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2215 rxq);
2216 if (rc)
2217 return rc;
2218 }
2219
2220 dev->real_num_rx_queues = rxq;
2221 return 0;
2222 }
2223 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2224 #endif
2225
2226 /**
2227 * netif_get_num_default_rss_queues - default number of RSS queues
2228 *
2229 * This routine should set an upper limit on the number of RSS queues
2230 * used by default by multiqueue devices.
2231 */
2232 int netif_get_num_default_rss_queues(void)
2233 {
2234 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2235 }
2236 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2237
2238 static inline void __netif_reschedule(struct Qdisc *q)
2239 {
2240 struct softnet_data *sd;
2241 unsigned long flags;
2242
2243 local_irq_save(flags);
2244 sd = this_cpu_ptr(&softnet_data);
2245 q->next_sched = NULL;
2246 *sd->output_queue_tailp = q;
2247 sd->output_queue_tailp = &q->next_sched;
2248 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2249 local_irq_restore(flags);
2250 }
2251
2252 void __netif_schedule(struct Qdisc *q)
2253 {
2254 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2255 __netif_reschedule(q);
2256 }
2257 EXPORT_SYMBOL(__netif_schedule);
2258
2259 struct dev_kfree_skb_cb {
2260 enum skb_free_reason reason;
2261 };
2262
2263 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2264 {
2265 return (struct dev_kfree_skb_cb *)skb->cb;
2266 }
2267
2268 void netif_schedule_queue(struct netdev_queue *txq)
2269 {
2270 rcu_read_lock();
2271 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2272 struct Qdisc *q = rcu_dereference(txq->qdisc);
2273
2274 __netif_schedule(q);
2275 }
2276 rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(netif_schedule_queue);
2279
2280 /**
2281 * netif_wake_subqueue - allow sending packets on subqueue
2282 * @dev: network device
2283 * @queue_index: sub queue index
2284 *
2285 * Resume individual transmit queue of a device with multiple transmit queues.
2286 */
2287 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2288 {
2289 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2290
2291 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2292 struct Qdisc *q;
2293
2294 rcu_read_lock();
2295 q = rcu_dereference(txq->qdisc);
2296 __netif_schedule(q);
2297 rcu_read_unlock();
2298 }
2299 }
2300 EXPORT_SYMBOL(netif_wake_subqueue);
2301
2302 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2303 {
2304 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2305 struct Qdisc *q;
2306
2307 rcu_read_lock();
2308 q = rcu_dereference(dev_queue->qdisc);
2309 __netif_schedule(q);
2310 rcu_read_unlock();
2311 }
2312 }
2313 EXPORT_SYMBOL(netif_tx_wake_queue);
2314
2315 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2316 {
2317 unsigned long flags;
2318
2319 if (likely(atomic_read(&skb->users) == 1)) {
2320 smp_rmb();
2321 atomic_set(&skb->users, 0);
2322 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2323 return;
2324 }
2325 get_kfree_skb_cb(skb)->reason = reason;
2326 local_irq_save(flags);
2327 skb->next = __this_cpu_read(softnet_data.completion_queue);
2328 __this_cpu_write(softnet_data.completion_queue, skb);
2329 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2330 local_irq_restore(flags);
2331 }
2332 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2333
2334 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2335 {
2336 if (in_irq() || irqs_disabled())
2337 __dev_kfree_skb_irq(skb, reason);
2338 else
2339 dev_kfree_skb(skb);
2340 }
2341 EXPORT_SYMBOL(__dev_kfree_skb_any);
2342
2343
2344 /**
2345 * netif_device_detach - mark device as removed
2346 * @dev: network device
2347 *
2348 * Mark device as removed from system and therefore no longer available.
2349 */
2350 void netif_device_detach(struct net_device *dev)
2351 {
2352 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2353 netif_running(dev)) {
2354 netif_tx_stop_all_queues(dev);
2355 }
2356 }
2357 EXPORT_SYMBOL(netif_device_detach);
2358
2359 /**
2360 * netif_device_attach - mark device as attached
2361 * @dev: network device
2362 *
2363 * Mark device as attached from system and restart if needed.
2364 */
2365 void netif_device_attach(struct net_device *dev)
2366 {
2367 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2368 netif_running(dev)) {
2369 netif_tx_wake_all_queues(dev);
2370 __netdev_watchdog_up(dev);
2371 }
2372 }
2373 EXPORT_SYMBOL(netif_device_attach);
2374
2375 /*
2376 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2377 * to be used as a distribution range.
2378 */
2379 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2380 unsigned int num_tx_queues)
2381 {
2382 u32 hash;
2383 u16 qoffset = 0;
2384 u16 qcount = num_tx_queues;
2385
2386 if (skb_rx_queue_recorded(skb)) {
2387 hash = skb_get_rx_queue(skb);
2388 while (unlikely(hash >= num_tx_queues))
2389 hash -= num_tx_queues;
2390 return hash;
2391 }
2392
2393 if (dev->num_tc) {
2394 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2395 qoffset = dev->tc_to_txq[tc].offset;
2396 qcount = dev->tc_to_txq[tc].count;
2397 }
2398
2399 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2400 }
2401 EXPORT_SYMBOL(__skb_tx_hash);
2402
2403 static void skb_warn_bad_offload(const struct sk_buff *skb)
2404 {
2405 static const netdev_features_t null_features = 0;
2406 struct net_device *dev = skb->dev;
2407 const char *name = "";
2408
2409 if (!net_ratelimit())
2410 return;
2411
2412 if (dev) {
2413 if (dev->dev.parent)
2414 name = dev_driver_string(dev->dev.parent);
2415 else
2416 name = netdev_name(dev);
2417 }
2418 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2419 "gso_type=%d ip_summed=%d\n",
2420 name, dev ? &dev->features : &null_features,
2421 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2422 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2423 skb_shinfo(skb)->gso_type, skb->ip_summed);
2424 }
2425
2426 /*
2427 * Invalidate hardware checksum when packet is to be mangled, and
2428 * complete checksum manually on outgoing path.
2429 */
2430 int skb_checksum_help(struct sk_buff *skb)
2431 {
2432 __wsum csum;
2433 int ret = 0, offset;
2434
2435 if (skb->ip_summed == CHECKSUM_COMPLETE)
2436 goto out_set_summed;
2437
2438 if (unlikely(skb_shinfo(skb)->gso_size)) {
2439 skb_warn_bad_offload(skb);
2440 return -EINVAL;
2441 }
2442
2443 /* Before computing a checksum, we should make sure no frag could
2444 * be modified by an external entity : checksum could be wrong.
2445 */
2446 if (skb_has_shared_frag(skb)) {
2447 ret = __skb_linearize(skb);
2448 if (ret)
2449 goto out;
2450 }
2451
2452 offset = skb_checksum_start_offset(skb);
2453 BUG_ON(offset >= skb_headlen(skb));
2454 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2455
2456 offset += skb->csum_offset;
2457 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2458
2459 if (skb_cloned(skb) &&
2460 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2461 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2462 if (ret)
2463 goto out;
2464 }
2465
2466 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2467 out_set_summed:
2468 skb->ip_summed = CHECKSUM_NONE;
2469 out:
2470 return ret;
2471 }
2472 EXPORT_SYMBOL(skb_checksum_help);
2473
2474 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2475 {
2476 __be16 type = skb->protocol;
2477
2478 /* Tunnel gso handlers can set protocol to ethernet. */
2479 if (type == htons(ETH_P_TEB)) {
2480 struct ethhdr *eth;
2481
2482 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2483 return 0;
2484
2485 eth = (struct ethhdr *)skb_mac_header(skb);
2486 type = eth->h_proto;
2487 }
2488
2489 return __vlan_get_protocol(skb, type, depth);
2490 }
2491
2492 /**
2493 * skb_mac_gso_segment - mac layer segmentation handler.
2494 * @skb: buffer to segment
2495 * @features: features for the output path (see dev->features)
2496 */
2497 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2498 netdev_features_t features)
2499 {
2500 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2501 struct packet_offload *ptype;
2502 int vlan_depth = skb->mac_len;
2503 __be16 type = skb_network_protocol(skb, &vlan_depth);
2504
2505 if (unlikely(!type))
2506 return ERR_PTR(-EINVAL);
2507
2508 __skb_pull(skb, vlan_depth);
2509
2510 rcu_read_lock();
2511 list_for_each_entry_rcu(ptype, &offload_base, list) {
2512 if (ptype->type == type && ptype->callbacks.gso_segment) {
2513 segs = ptype->callbacks.gso_segment(skb, features);
2514 break;
2515 }
2516 }
2517 rcu_read_unlock();
2518
2519 __skb_push(skb, skb->data - skb_mac_header(skb));
2520
2521 return segs;
2522 }
2523 EXPORT_SYMBOL(skb_mac_gso_segment);
2524
2525
2526 /* openvswitch calls this on rx path, so we need a different check.
2527 */
2528 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2529 {
2530 if (tx_path)
2531 return skb->ip_summed != CHECKSUM_PARTIAL;
2532 else
2533 return skb->ip_summed == CHECKSUM_NONE;
2534 }
2535
2536 /**
2537 * __skb_gso_segment - Perform segmentation on skb.
2538 * @skb: buffer to segment
2539 * @features: features for the output path (see dev->features)
2540 * @tx_path: whether it is called in TX path
2541 *
2542 * This function segments the given skb and returns a list of segments.
2543 *
2544 * It may return NULL if the skb requires no segmentation. This is
2545 * only possible when GSO is used for verifying header integrity.
2546 */
2547 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2548 netdev_features_t features, bool tx_path)
2549 {
2550 if (unlikely(skb_needs_check(skb, tx_path))) {
2551 int err;
2552
2553 skb_warn_bad_offload(skb);
2554
2555 err = skb_cow_head(skb, 0);
2556 if (err < 0)
2557 return ERR_PTR(err);
2558 }
2559
2560 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2561 SKB_GSO_CB(skb)->encap_level = 0;
2562
2563 skb_reset_mac_header(skb);
2564 skb_reset_mac_len(skb);
2565
2566 return skb_mac_gso_segment(skb, features);
2567 }
2568 EXPORT_SYMBOL(__skb_gso_segment);
2569
2570 /* Take action when hardware reception checksum errors are detected. */
2571 #ifdef CONFIG_BUG
2572 void netdev_rx_csum_fault(struct net_device *dev)
2573 {
2574 if (net_ratelimit()) {
2575 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2576 dump_stack();
2577 }
2578 }
2579 EXPORT_SYMBOL(netdev_rx_csum_fault);
2580 #endif
2581
2582 /* Actually, we should eliminate this check as soon as we know, that:
2583 * 1. IOMMU is present and allows to map all the memory.
2584 * 2. No high memory really exists on this machine.
2585 */
2586
2587 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2588 {
2589 #ifdef CONFIG_HIGHMEM
2590 int i;
2591 if (!(dev->features & NETIF_F_HIGHDMA)) {
2592 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2593 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2594 if (PageHighMem(skb_frag_page(frag)))
2595 return 1;
2596 }
2597 }
2598
2599 if (PCI_DMA_BUS_IS_PHYS) {
2600 struct device *pdev = dev->dev.parent;
2601
2602 if (!pdev)
2603 return 0;
2604 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2606 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2607 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2608 return 1;
2609 }
2610 }
2611 #endif
2612 return 0;
2613 }
2614
2615 /* If MPLS offload request, verify we are testing hardware MPLS features
2616 * instead of standard features for the netdev.
2617 */
2618 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2619 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2620 netdev_features_t features,
2621 __be16 type)
2622 {
2623 if (eth_p_mpls(type))
2624 features &= skb->dev->mpls_features;
2625
2626 return features;
2627 }
2628 #else
2629 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2630 netdev_features_t features,
2631 __be16 type)
2632 {
2633 return features;
2634 }
2635 #endif
2636
2637 static netdev_features_t harmonize_features(struct sk_buff *skb,
2638 netdev_features_t features)
2639 {
2640 int tmp;
2641 __be16 type;
2642
2643 type = skb_network_protocol(skb, &tmp);
2644 features = net_mpls_features(skb, features, type);
2645
2646 if (skb->ip_summed != CHECKSUM_NONE &&
2647 !can_checksum_protocol(features, type)) {
2648 features &= ~NETIF_F_ALL_CSUM;
2649 } else if (illegal_highdma(skb->dev, skb)) {
2650 features &= ~NETIF_F_SG;
2651 }
2652
2653 return features;
2654 }
2655
2656 netdev_features_t passthru_features_check(struct sk_buff *skb,
2657 struct net_device *dev,
2658 netdev_features_t features)
2659 {
2660 return features;
2661 }
2662 EXPORT_SYMBOL(passthru_features_check);
2663
2664 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2665 struct net_device *dev,
2666 netdev_features_t features)
2667 {
2668 return vlan_features_check(skb, features);
2669 }
2670
2671 netdev_features_t netif_skb_features(struct sk_buff *skb)
2672 {
2673 struct net_device *dev = skb->dev;
2674 netdev_features_t features = dev->features;
2675 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2676
2677 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2678 features &= ~NETIF_F_GSO_MASK;
2679
2680 /* If encapsulation offload request, verify we are testing
2681 * hardware encapsulation features instead of standard
2682 * features for the netdev
2683 */
2684 if (skb->encapsulation)
2685 features &= dev->hw_enc_features;
2686
2687 if (skb_vlan_tagged(skb))
2688 features = netdev_intersect_features(features,
2689 dev->vlan_features |
2690 NETIF_F_HW_VLAN_CTAG_TX |
2691 NETIF_F_HW_VLAN_STAG_TX);
2692
2693 if (dev->netdev_ops->ndo_features_check)
2694 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2695 features);
2696 else
2697 features &= dflt_features_check(skb, dev, features);
2698
2699 return harmonize_features(skb, features);
2700 }
2701 EXPORT_SYMBOL(netif_skb_features);
2702
2703 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2704 struct netdev_queue *txq, bool more)
2705 {
2706 unsigned int len;
2707 int rc;
2708
2709 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2710 dev_queue_xmit_nit(skb, dev);
2711
2712 len = skb->len;
2713 trace_net_dev_start_xmit(skb, dev);
2714 rc = netdev_start_xmit(skb, dev, txq, more);
2715 trace_net_dev_xmit(skb, rc, dev, len);
2716
2717 return rc;
2718 }
2719
2720 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2721 struct netdev_queue *txq, int *ret)
2722 {
2723 struct sk_buff *skb = first;
2724 int rc = NETDEV_TX_OK;
2725
2726 while (skb) {
2727 struct sk_buff *next = skb->next;
2728
2729 skb->next = NULL;
2730 rc = xmit_one(skb, dev, txq, next != NULL);
2731 if (unlikely(!dev_xmit_complete(rc))) {
2732 skb->next = next;
2733 goto out;
2734 }
2735
2736 skb = next;
2737 if (netif_xmit_stopped(txq) && skb) {
2738 rc = NETDEV_TX_BUSY;
2739 break;
2740 }
2741 }
2742
2743 out:
2744 *ret = rc;
2745 return skb;
2746 }
2747
2748 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2749 netdev_features_t features)
2750 {
2751 if (skb_vlan_tag_present(skb) &&
2752 !vlan_hw_offload_capable(features, skb->vlan_proto))
2753 skb = __vlan_hwaccel_push_inside(skb);
2754 return skb;
2755 }
2756
2757 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2758 {
2759 netdev_features_t features;
2760
2761 if (skb->next)
2762 return skb;
2763
2764 features = netif_skb_features(skb);
2765 skb = validate_xmit_vlan(skb, features);
2766 if (unlikely(!skb))
2767 goto out_null;
2768
2769 if (netif_needs_gso(skb, features)) {
2770 struct sk_buff *segs;
2771
2772 segs = skb_gso_segment(skb, features);
2773 if (IS_ERR(segs)) {
2774 goto out_kfree_skb;
2775 } else if (segs) {
2776 consume_skb(skb);
2777 skb = segs;
2778 }
2779 } else {
2780 if (skb_needs_linearize(skb, features) &&
2781 __skb_linearize(skb))
2782 goto out_kfree_skb;
2783
2784 /* If packet is not checksummed and device does not
2785 * support checksumming for this protocol, complete
2786 * checksumming here.
2787 */
2788 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 if (skb->encapsulation)
2790 skb_set_inner_transport_header(skb,
2791 skb_checksum_start_offset(skb));
2792 else
2793 skb_set_transport_header(skb,
2794 skb_checksum_start_offset(skb));
2795 if (!(features & NETIF_F_ALL_CSUM) &&
2796 skb_checksum_help(skb))
2797 goto out_kfree_skb;
2798 }
2799 }
2800
2801 return skb;
2802
2803 out_kfree_skb:
2804 kfree_skb(skb);
2805 out_null:
2806 return NULL;
2807 }
2808
2809 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2810 {
2811 struct sk_buff *next, *head = NULL, *tail;
2812
2813 for (; skb != NULL; skb = next) {
2814 next = skb->next;
2815 skb->next = NULL;
2816
2817 /* in case skb wont be segmented, point to itself */
2818 skb->prev = skb;
2819
2820 skb = validate_xmit_skb(skb, dev);
2821 if (!skb)
2822 continue;
2823
2824 if (!head)
2825 head = skb;
2826 else
2827 tail->next = skb;
2828 /* If skb was segmented, skb->prev points to
2829 * the last segment. If not, it still contains skb.
2830 */
2831 tail = skb->prev;
2832 }
2833 return head;
2834 }
2835
2836 static void qdisc_pkt_len_init(struct sk_buff *skb)
2837 {
2838 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2839
2840 qdisc_skb_cb(skb)->pkt_len = skb->len;
2841
2842 /* To get more precise estimation of bytes sent on wire,
2843 * we add to pkt_len the headers size of all segments
2844 */
2845 if (shinfo->gso_size) {
2846 unsigned int hdr_len;
2847 u16 gso_segs = shinfo->gso_segs;
2848
2849 /* mac layer + network layer */
2850 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2851
2852 /* + transport layer */
2853 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2854 hdr_len += tcp_hdrlen(skb);
2855 else
2856 hdr_len += sizeof(struct udphdr);
2857
2858 if (shinfo->gso_type & SKB_GSO_DODGY)
2859 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2860 shinfo->gso_size);
2861
2862 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2863 }
2864 }
2865
2866 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2867 struct net_device *dev,
2868 struct netdev_queue *txq)
2869 {
2870 spinlock_t *root_lock = qdisc_lock(q);
2871 bool contended;
2872 int rc;
2873
2874 qdisc_pkt_len_init(skb);
2875 qdisc_calculate_pkt_len(skb, q);
2876 /*
2877 * Heuristic to force contended enqueues to serialize on a
2878 * separate lock before trying to get qdisc main lock.
2879 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2880 * often and dequeue packets faster.
2881 */
2882 contended = qdisc_is_running(q);
2883 if (unlikely(contended))
2884 spin_lock(&q->busylock);
2885
2886 spin_lock(root_lock);
2887 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2888 kfree_skb(skb);
2889 rc = NET_XMIT_DROP;
2890 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2891 qdisc_run_begin(q)) {
2892 /*
2893 * This is a work-conserving queue; there are no old skbs
2894 * waiting to be sent out; and the qdisc is not running -
2895 * xmit the skb directly.
2896 */
2897
2898 qdisc_bstats_update(q, skb);
2899
2900 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2901 if (unlikely(contended)) {
2902 spin_unlock(&q->busylock);
2903 contended = false;
2904 }
2905 __qdisc_run(q);
2906 } else
2907 qdisc_run_end(q);
2908
2909 rc = NET_XMIT_SUCCESS;
2910 } else {
2911 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2912 if (qdisc_run_begin(q)) {
2913 if (unlikely(contended)) {
2914 spin_unlock(&q->busylock);
2915 contended = false;
2916 }
2917 __qdisc_run(q);
2918 }
2919 }
2920 spin_unlock(root_lock);
2921 if (unlikely(contended))
2922 spin_unlock(&q->busylock);
2923 return rc;
2924 }
2925
2926 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2927 static void skb_update_prio(struct sk_buff *skb)
2928 {
2929 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2930
2931 if (!skb->priority && skb->sk && map) {
2932 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2933
2934 if (prioidx < map->priomap_len)
2935 skb->priority = map->priomap[prioidx];
2936 }
2937 }
2938 #else
2939 #define skb_update_prio(skb)
2940 #endif
2941
2942 DEFINE_PER_CPU(int, xmit_recursion);
2943 EXPORT_SYMBOL(xmit_recursion);
2944
2945 #define RECURSION_LIMIT 10
2946
2947 /**
2948 * dev_loopback_xmit - loop back @skb
2949 * @net: network namespace this loopback is happening in
2950 * @sk: sk needed to be a netfilter okfn
2951 * @skb: buffer to transmit
2952 */
2953 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2954 {
2955 skb_reset_mac_header(skb);
2956 __skb_pull(skb, skb_network_offset(skb));
2957 skb->pkt_type = PACKET_LOOPBACK;
2958 skb->ip_summed = CHECKSUM_UNNECESSARY;
2959 WARN_ON(!skb_dst(skb));
2960 skb_dst_force(skb);
2961 netif_rx_ni(skb);
2962 return 0;
2963 }
2964 EXPORT_SYMBOL(dev_loopback_xmit);
2965
2966 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2967 {
2968 #ifdef CONFIG_XPS
2969 struct xps_dev_maps *dev_maps;
2970 struct xps_map *map;
2971 int queue_index = -1;
2972
2973 rcu_read_lock();
2974 dev_maps = rcu_dereference(dev->xps_maps);
2975 if (dev_maps) {
2976 map = rcu_dereference(
2977 dev_maps->cpu_map[skb->sender_cpu - 1]);
2978 if (map) {
2979 if (map->len == 1)
2980 queue_index = map->queues[0];
2981 else
2982 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2983 map->len)];
2984 if (unlikely(queue_index >= dev->real_num_tx_queues))
2985 queue_index = -1;
2986 }
2987 }
2988 rcu_read_unlock();
2989
2990 return queue_index;
2991 #else
2992 return -1;
2993 #endif
2994 }
2995
2996 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2997 {
2998 struct sock *sk = skb->sk;
2999 int queue_index = sk_tx_queue_get(sk);
3000
3001 if (queue_index < 0 || skb->ooo_okay ||
3002 queue_index >= dev->real_num_tx_queues) {
3003 int new_index = get_xps_queue(dev, skb);
3004 if (new_index < 0)
3005 new_index = skb_tx_hash(dev, skb);
3006
3007 if (queue_index != new_index && sk &&
3008 sk_fullsock(sk) &&
3009 rcu_access_pointer(sk->sk_dst_cache))
3010 sk_tx_queue_set(sk, new_index);
3011
3012 queue_index = new_index;
3013 }
3014
3015 return queue_index;
3016 }
3017
3018 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3019 struct sk_buff *skb,
3020 void *accel_priv)
3021 {
3022 int queue_index = 0;
3023
3024 #ifdef CONFIG_XPS
3025 u32 sender_cpu = skb->sender_cpu - 1;
3026
3027 if (sender_cpu >= (u32)NR_CPUS)
3028 skb->sender_cpu = raw_smp_processor_id() + 1;
3029 #endif
3030
3031 if (dev->real_num_tx_queues != 1) {
3032 const struct net_device_ops *ops = dev->netdev_ops;
3033 if (ops->ndo_select_queue)
3034 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3035 __netdev_pick_tx);
3036 else
3037 queue_index = __netdev_pick_tx(dev, skb);
3038
3039 if (!accel_priv)
3040 queue_index = netdev_cap_txqueue(dev, queue_index);
3041 }
3042
3043 skb_set_queue_mapping(skb, queue_index);
3044 return netdev_get_tx_queue(dev, queue_index);
3045 }
3046
3047 /**
3048 * __dev_queue_xmit - transmit a buffer
3049 * @skb: buffer to transmit
3050 * @accel_priv: private data used for L2 forwarding offload
3051 *
3052 * Queue a buffer for transmission to a network device. The caller must
3053 * have set the device and priority and built the buffer before calling
3054 * this function. The function can be called from an interrupt.
3055 *
3056 * A negative errno code is returned on a failure. A success does not
3057 * guarantee the frame will be transmitted as it may be dropped due
3058 * to congestion or traffic shaping.
3059 *
3060 * -----------------------------------------------------------------------------------
3061 * I notice this method can also return errors from the queue disciplines,
3062 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3063 * be positive.
3064 *
3065 * Regardless of the return value, the skb is consumed, so it is currently
3066 * difficult to retry a send to this method. (You can bump the ref count
3067 * before sending to hold a reference for retry if you are careful.)
3068 *
3069 * When calling this method, interrupts MUST be enabled. This is because
3070 * the BH enable code must have IRQs enabled so that it will not deadlock.
3071 * --BLG
3072 */
3073 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3074 {
3075 struct net_device *dev = skb->dev;
3076 struct netdev_queue *txq;
3077 struct Qdisc *q;
3078 int rc = -ENOMEM;
3079
3080 skb_reset_mac_header(skb);
3081
3082 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3083 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3084
3085 /* Disable soft irqs for various locks below. Also
3086 * stops preemption for RCU.
3087 */
3088 rcu_read_lock_bh();
3089
3090 skb_update_prio(skb);
3091
3092 /* If device/qdisc don't need skb->dst, release it right now while
3093 * its hot in this cpu cache.
3094 */
3095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3096 skb_dst_drop(skb);
3097 else
3098 skb_dst_force(skb);
3099
3100 #ifdef CONFIG_NET_SWITCHDEV
3101 /* Don't forward if offload device already forwarded */
3102 if (skb->offload_fwd_mark &&
3103 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3104 consume_skb(skb);
3105 rc = NET_XMIT_SUCCESS;
3106 goto out;
3107 }
3108 #endif
3109
3110 txq = netdev_pick_tx(dev, skb, accel_priv);
3111 q = rcu_dereference_bh(txq->qdisc);
3112
3113 #ifdef CONFIG_NET_CLS_ACT
3114 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3115 #endif
3116 trace_net_dev_queue(skb);
3117 if (q->enqueue) {
3118 rc = __dev_xmit_skb(skb, q, dev, txq);
3119 goto out;
3120 }
3121
3122 /* The device has no queue. Common case for software devices:
3123 loopback, all the sorts of tunnels...
3124
3125 Really, it is unlikely that netif_tx_lock protection is necessary
3126 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3127 counters.)
3128 However, it is possible, that they rely on protection
3129 made by us here.
3130
3131 Check this and shot the lock. It is not prone from deadlocks.
3132 Either shot noqueue qdisc, it is even simpler 8)
3133 */
3134 if (dev->flags & IFF_UP) {
3135 int cpu = smp_processor_id(); /* ok because BHs are off */
3136
3137 if (txq->xmit_lock_owner != cpu) {
3138
3139 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3140 goto recursion_alert;
3141
3142 skb = validate_xmit_skb(skb, dev);
3143 if (!skb)
3144 goto drop;
3145
3146 HARD_TX_LOCK(dev, txq, cpu);
3147
3148 if (!netif_xmit_stopped(txq)) {
3149 __this_cpu_inc(xmit_recursion);
3150 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3151 __this_cpu_dec(xmit_recursion);
3152 if (dev_xmit_complete(rc)) {
3153 HARD_TX_UNLOCK(dev, txq);
3154 goto out;
3155 }
3156 }
3157 HARD_TX_UNLOCK(dev, txq);
3158 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3159 dev->name);
3160 } else {
3161 /* Recursion is detected! It is possible,
3162 * unfortunately
3163 */
3164 recursion_alert:
3165 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3166 dev->name);
3167 }
3168 }
3169
3170 rc = -ENETDOWN;
3171 drop:
3172 rcu_read_unlock_bh();
3173
3174 atomic_long_inc(&dev->tx_dropped);
3175 kfree_skb_list(skb);
3176 return rc;
3177 out:
3178 rcu_read_unlock_bh();
3179 return rc;
3180 }
3181
3182 int dev_queue_xmit(struct sk_buff *skb)
3183 {
3184 return __dev_queue_xmit(skb, NULL);
3185 }
3186 EXPORT_SYMBOL(dev_queue_xmit);
3187
3188 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3189 {
3190 return __dev_queue_xmit(skb, accel_priv);
3191 }
3192 EXPORT_SYMBOL(dev_queue_xmit_accel);
3193
3194
3195 /*=======================================================================
3196 Receiver routines
3197 =======================================================================*/
3198
3199 int netdev_max_backlog __read_mostly = 1000;
3200 EXPORT_SYMBOL(netdev_max_backlog);
3201
3202 int netdev_tstamp_prequeue __read_mostly = 1;
3203 int netdev_budget __read_mostly = 300;
3204 int weight_p __read_mostly = 64; /* old backlog weight */
3205
3206 /* Called with irq disabled */
3207 static inline void ____napi_schedule(struct softnet_data *sd,
3208 struct napi_struct *napi)
3209 {
3210 list_add_tail(&napi->poll_list, &sd->poll_list);
3211 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3212 }
3213
3214 #ifdef CONFIG_RPS
3215
3216 /* One global table that all flow-based protocols share. */
3217 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3218 EXPORT_SYMBOL(rps_sock_flow_table);
3219 u32 rps_cpu_mask __read_mostly;
3220 EXPORT_SYMBOL(rps_cpu_mask);
3221
3222 struct static_key rps_needed __read_mostly;
3223
3224 static struct rps_dev_flow *
3225 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3226 struct rps_dev_flow *rflow, u16 next_cpu)
3227 {
3228 if (next_cpu < nr_cpu_ids) {
3229 #ifdef CONFIG_RFS_ACCEL
3230 struct netdev_rx_queue *rxqueue;
3231 struct rps_dev_flow_table *flow_table;
3232 struct rps_dev_flow *old_rflow;
3233 u32 flow_id;
3234 u16 rxq_index;
3235 int rc;
3236
3237 /* Should we steer this flow to a different hardware queue? */
3238 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3239 !(dev->features & NETIF_F_NTUPLE))
3240 goto out;
3241 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3242 if (rxq_index == skb_get_rx_queue(skb))
3243 goto out;
3244
3245 rxqueue = dev->_rx + rxq_index;
3246 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3247 if (!flow_table)
3248 goto out;
3249 flow_id = skb_get_hash(skb) & flow_table->mask;
3250 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3251 rxq_index, flow_id);
3252 if (rc < 0)
3253 goto out;
3254 old_rflow = rflow;
3255 rflow = &flow_table->flows[flow_id];
3256 rflow->filter = rc;
3257 if (old_rflow->filter == rflow->filter)
3258 old_rflow->filter = RPS_NO_FILTER;
3259 out:
3260 #endif
3261 rflow->last_qtail =
3262 per_cpu(softnet_data, next_cpu).input_queue_head;
3263 }
3264
3265 rflow->cpu = next_cpu;
3266 return rflow;
3267 }
3268
3269 /*
3270 * get_rps_cpu is called from netif_receive_skb and returns the target
3271 * CPU from the RPS map of the receiving queue for a given skb.
3272 * rcu_read_lock must be held on entry.
3273 */
3274 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3275 struct rps_dev_flow **rflowp)
3276 {
3277 const struct rps_sock_flow_table *sock_flow_table;
3278 struct netdev_rx_queue *rxqueue = dev->_rx;
3279 struct rps_dev_flow_table *flow_table;
3280 struct rps_map *map;
3281 int cpu = -1;
3282 u32 tcpu;
3283 u32 hash;
3284
3285 if (skb_rx_queue_recorded(skb)) {
3286 u16 index = skb_get_rx_queue(skb);
3287
3288 if (unlikely(index >= dev->real_num_rx_queues)) {
3289 WARN_ONCE(dev->real_num_rx_queues > 1,
3290 "%s received packet on queue %u, but number "
3291 "of RX queues is %u\n",
3292 dev->name, index, dev->real_num_rx_queues);
3293 goto done;
3294 }
3295 rxqueue += index;
3296 }
3297
3298 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3299
3300 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3301 map = rcu_dereference(rxqueue->rps_map);
3302 if (!flow_table && !map)
3303 goto done;
3304
3305 skb_reset_network_header(skb);
3306 hash = skb_get_hash(skb);
3307 if (!hash)
3308 goto done;
3309
3310 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3311 if (flow_table && sock_flow_table) {
3312 struct rps_dev_flow *rflow;
3313 u32 next_cpu;
3314 u32 ident;
3315
3316 /* First check into global flow table if there is a match */
3317 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3318 if ((ident ^ hash) & ~rps_cpu_mask)
3319 goto try_rps;
3320
3321 next_cpu = ident & rps_cpu_mask;
3322
3323 /* OK, now we know there is a match,
3324 * we can look at the local (per receive queue) flow table
3325 */
3326 rflow = &flow_table->flows[hash & flow_table->mask];
3327 tcpu = rflow->cpu;
3328
3329 /*
3330 * If the desired CPU (where last recvmsg was done) is
3331 * different from current CPU (one in the rx-queue flow
3332 * table entry), switch if one of the following holds:
3333 * - Current CPU is unset (>= nr_cpu_ids).
3334 * - Current CPU is offline.
3335 * - The current CPU's queue tail has advanced beyond the
3336 * last packet that was enqueued using this table entry.
3337 * This guarantees that all previous packets for the flow
3338 * have been dequeued, thus preserving in order delivery.
3339 */
3340 if (unlikely(tcpu != next_cpu) &&
3341 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3342 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3343 rflow->last_qtail)) >= 0)) {
3344 tcpu = next_cpu;
3345 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3346 }
3347
3348 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3349 *rflowp = rflow;
3350 cpu = tcpu;
3351 goto done;
3352 }
3353 }
3354
3355 try_rps:
3356
3357 if (map) {
3358 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3359 if (cpu_online(tcpu)) {
3360 cpu = tcpu;
3361 goto done;
3362 }
3363 }
3364
3365 done:
3366 return cpu;
3367 }
3368
3369 #ifdef CONFIG_RFS_ACCEL
3370
3371 /**
3372 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3373 * @dev: Device on which the filter was set
3374 * @rxq_index: RX queue index
3375 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3376 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3377 *
3378 * Drivers that implement ndo_rx_flow_steer() should periodically call
3379 * this function for each installed filter and remove the filters for
3380 * which it returns %true.
3381 */
3382 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3383 u32 flow_id, u16 filter_id)
3384 {
3385 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3386 struct rps_dev_flow_table *flow_table;
3387 struct rps_dev_flow *rflow;
3388 bool expire = true;
3389 unsigned int cpu;
3390
3391 rcu_read_lock();
3392 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3393 if (flow_table && flow_id <= flow_table->mask) {
3394 rflow = &flow_table->flows[flow_id];
3395 cpu = ACCESS_ONCE(rflow->cpu);
3396 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3397 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3398 rflow->last_qtail) <
3399 (int)(10 * flow_table->mask)))
3400 expire = false;
3401 }
3402 rcu_read_unlock();
3403 return expire;
3404 }
3405 EXPORT_SYMBOL(rps_may_expire_flow);
3406
3407 #endif /* CONFIG_RFS_ACCEL */
3408
3409 /* Called from hardirq (IPI) context */
3410 static void rps_trigger_softirq(void *data)
3411 {
3412 struct softnet_data *sd = data;
3413
3414 ____napi_schedule(sd, &sd->backlog);
3415 sd->received_rps++;
3416 }
3417
3418 #endif /* CONFIG_RPS */
3419
3420 /*
3421 * Check if this softnet_data structure is another cpu one
3422 * If yes, queue it to our IPI list and return 1
3423 * If no, return 0
3424 */
3425 static int rps_ipi_queued(struct softnet_data *sd)
3426 {
3427 #ifdef CONFIG_RPS
3428 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3429
3430 if (sd != mysd) {
3431 sd->rps_ipi_next = mysd->rps_ipi_list;
3432 mysd->rps_ipi_list = sd;
3433
3434 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3435 return 1;
3436 }
3437 #endif /* CONFIG_RPS */
3438 return 0;
3439 }
3440
3441 #ifdef CONFIG_NET_FLOW_LIMIT
3442 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3443 #endif
3444
3445 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3446 {
3447 #ifdef CONFIG_NET_FLOW_LIMIT
3448 struct sd_flow_limit *fl;
3449 struct softnet_data *sd;
3450 unsigned int old_flow, new_flow;
3451
3452 if (qlen < (netdev_max_backlog >> 1))
3453 return false;
3454
3455 sd = this_cpu_ptr(&softnet_data);
3456
3457 rcu_read_lock();
3458 fl = rcu_dereference(sd->flow_limit);
3459 if (fl) {
3460 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3461 old_flow = fl->history[fl->history_head];
3462 fl->history[fl->history_head] = new_flow;
3463
3464 fl->history_head++;
3465 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3466
3467 if (likely(fl->buckets[old_flow]))
3468 fl->buckets[old_flow]--;
3469
3470 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3471 fl->count++;
3472 rcu_read_unlock();
3473 return true;
3474 }
3475 }
3476 rcu_read_unlock();
3477 #endif
3478 return false;
3479 }
3480
3481 /*
3482 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3483 * queue (may be a remote CPU queue).
3484 */
3485 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3486 unsigned int *qtail)
3487 {
3488 struct softnet_data *sd;
3489 unsigned long flags;
3490 unsigned int qlen;
3491
3492 sd = &per_cpu(softnet_data, cpu);
3493
3494 local_irq_save(flags);
3495
3496 rps_lock(sd);
3497 if (!netif_running(skb->dev))
3498 goto drop;
3499 qlen = skb_queue_len(&sd->input_pkt_queue);
3500 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3501 if (qlen) {
3502 enqueue:
3503 __skb_queue_tail(&sd->input_pkt_queue, skb);
3504 input_queue_tail_incr_save(sd, qtail);
3505 rps_unlock(sd);
3506 local_irq_restore(flags);
3507 return NET_RX_SUCCESS;
3508 }
3509
3510 /* Schedule NAPI for backlog device
3511 * We can use non atomic operation since we own the queue lock
3512 */
3513 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3514 if (!rps_ipi_queued(sd))
3515 ____napi_schedule(sd, &sd->backlog);
3516 }
3517 goto enqueue;
3518 }
3519
3520 drop:
3521 sd->dropped++;
3522 rps_unlock(sd);
3523
3524 local_irq_restore(flags);
3525
3526 atomic_long_inc(&skb->dev->rx_dropped);
3527 kfree_skb(skb);
3528 return NET_RX_DROP;
3529 }
3530
3531 static int netif_rx_internal(struct sk_buff *skb)
3532 {
3533 int ret;
3534
3535 net_timestamp_check(netdev_tstamp_prequeue, skb);
3536
3537 trace_netif_rx(skb);
3538 #ifdef CONFIG_RPS
3539 if (static_key_false(&rps_needed)) {
3540 struct rps_dev_flow voidflow, *rflow = &voidflow;
3541 int cpu;
3542
3543 preempt_disable();
3544 rcu_read_lock();
3545
3546 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3547 if (cpu < 0)
3548 cpu = smp_processor_id();
3549
3550 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3551
3552 rcu_read_unlock();
3553 preempt_enable();
3554 } else
3555 #endif
3556 {
3557 unsigned int qtail;
3558 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3559 put_cpu();
3560 }
3561 return ret;
3562 }
3563
3564 /**
3565 * netif_rx - post buffer to the network code
3566 * @skb: buffer to post
3567 *
3568 * This function receives a packet from a device driver and queues it for
3569 * the upper (protocol) levels to process. It always succeeds. The buffer
3570 * may be dropped during processing for congestion control or by the
3571 * protocol layers.
3572 *
3573 * return values:
3574 * NET_RX_SUCCESS (no congestion)
3575 * NET_RX_DROP (packet was dropped)
3576 *
3577 */
3578
3579 int netif_rx(struct sk_buff *skb)
3580 {
3581 trace_netif_rx_entry(skb);
3582
3583 return netif_rx_internal(skb);
3584 }
3585 EXPORT_SYMBOL(netif_rx);
3586
3587 int netif_rx_ni(struct sk_buff *skb)
3588 {
3589 int err;
3590
3591 trace_netif_rx_ni_entry(skb);
3592
3593 preempt_disable();
3594 err = netif_rx_internal(skb);
3595 if (local_softirq_pending())
3596 do_softirq();
3597 preempt_enable();
3598
3599 return err;
3600 }
3601 EXPORT_SYMBOL(netif_rx_ni);
3602
3603 static void net_tx_action(struct softirq_action *h)
3604 {
3605 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3606
3607 if (sd->completion_queue) {
3608 struct sk_buff *clist;
3609
3610 local_irq_disable();
3611 clist = sd->completion_queue;
3612 sd->completion_queue = NULL;
3613 local_irq_enable();
3614
3615 while (clist) {
3616 struct sk_buff *skb = clist;
3617 clist = clist->next;
3618
3619 WARN_ON(atomic_read(&skb->users));
3620 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3621 trace_consume_skb(skb);
3622 else
3623 trace_kfree_skb(skb, net_tx_action);
3624 __kfree_skb(skb);
3625 }
3626 }
3627
3628 if (sd->output_queue) {
3629 struct Qdisc *head;
3630
3631 local_irq_disable();
3632 head = sd->output_queue;
3633 sd->output_queue = NULL;
3634 sd->output_queue_tailp = &sd->output_queue;
3635 local_irq_enable();
3636
3637 while (head) {
3638 struct Qdisc *q = head;
3639 spinlock_t *root_lock;
3640
3641 head = head->next_sched;
3642
3643 root_lock = qdisc_lock(q);
3644 if (spin_trylock(root_lock)) {
3645 smp_mb__before_atomic();
3646 clear_bit(__QDISC_STATE_SCHED,
3647 &q->state);
3648 qdisc_run(q);
3649 spin_unlock(root_lock);
3650 } else {
3651 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3652 &q->state)) {
3653 __netif_reschedule(q);
3654 } else {
3655 smp_mb__before_atomic();
3656 clear_bit(__QDISC_STATE_SCHED,
3657 &q->state);
3658 }
3659 }
3660 }
3661 }
3662 }
3663
3664 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3665 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3666 /* This hook is defined here for ATM LANE */
3667 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3668 unsigned char *addr) __read_mostly;
3669 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3670 #endif
3671
3672 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3673 struct packet_type **pt_prev,
3674 int *ret, struct net_device *orig_dev)
3675 {
3676 #ifdef CONFIG_NET_CLS_ACT
3677 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3678 struct tcf_result cl_res;
3679
3680 /* If there's at least one ingress present somewhere (so
3681 * we get here via enabled static key), remaining devices
3682 * that are not configured with an ingress qdisc will bail
3683 * out here.
3684 */
3685 if (!cl)
3686 return skb;
3687 if (*pt_prev) {
3688 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3689 *pt_prev = NULL;
3690 }
3691
3692 qdisc_skb_cb(skb)->pkt_len = skb->len;
3693 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3694 qdisc_bstats_cpu_update(cl->q, skb);
3695
3696 switch (tc_classify(skb, cl, &cl_res, false)) {
3697 case TC_ACT_OK:
3698 case TC_ACT_RECLASSIFY:
3699 skb->tc_index = TC_H_MIN(cl_res.classid);
3700 break;
3701 case TC_ACT_SHOT:
3702 qdisc_qstats_cpu_drop(cl->q);
3703 case TC_ACT_STOLEN:
3704 case TC_ACT_QUEUED:
3705 kfree_skb(skb);
3706 return NULL;
3707 case TC_ACT_REDIRECT:
3708 /* skb_mac_header check was done by cls/act_bpf, so
3709 * we can safely push the L2 header back before
3710 * redirecting to another netdev
3711 */
3712 __skb_push(skb, skb->mac_len);
3713 skb_do_redirect(skb);
3714 return NULL;
3715 default:
3716 break;
3717 }
3718 #endif /* CONFIG_NET_CLS_ACT */
3719 return skb;
3720 }
3721
3722 /**
3723 * netdev_rx_handler_register - register receive handler
3724 * @dev: device to register a handler for
3725 * @rx_handler: receive handler to register
3726 * @rx_handler_data: data pointer that is used by rx handler
3727 *
3728 * Register a receive handler for a device. This handler will then be
3729 * called from __netif_receive_skb. A negative errno code is returned
3730 * on a failure.
3731 *
3732 * The caller must hold the rtnl_mutex.
3733 *
3734 * For a general description of rx_handler, see enum rx_handler_result.
3735 */
3736 int netdev_rx_handler_register(struct net_device *dev,
3737 rx_handler_func_t *rx_handler,
3738 void *rx_handler_data)
3739 {
3740 ASSERT_RTNL();
3741
3742 if (dev->rx_handler)
3743 return -EBUSY;
3744
3745 /* Note: rx_handler_data must be set before rx_handler */
3746 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3747 rcu_assign_pointer(dev->rx_handler, rx_handler);
3748
3749 return 0;
3750 }
3751 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3752
3753 /**
3754 * netdev_rx_handler_unregister - unregister receive handler
3755 * @dev: device to unregister a handler from
3756 *
3757 * Unregister a receive handler from a device.
3758 *
3759 * The caller must hold the rtnl_mutex.
3760 */
3761 void netdev_rx_handler_unregister(struct net_device *dev)
3762 {
3763
3764 ASSERT_RTNL();
3765 RCU_INIT_POINTER(dev->rx_handler, NULL);
3766 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3767 * section has a guarantee to see a non NULL rx_handler_data
3768 * as well.
3769 */
3770 synchronize_net();
3771 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3772 }
3773 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3774
3775 /*
3776 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3777 * the special handling of PFMEMALLOC skbs.
3778 */
3779 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3780 {
3781 switch (skb->protocol) {
3782 case htons(ETH_P_ARP):
3783 case htons(ETH_P_IP):
3784 case htons(ETH_P_IPV6):
3785 case htons(ETH_P_8021Q):
3786 case htons(ETH_P_8021AD):
3787 return true;
3788 default:
3789 return false;
3790 }
3791 }
3792
3793 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3794 int *ret, struct net_device *orig_dev)
3795 {
3796 #ifdef CONFIG_NETFILTER_INGRESS
3797 if (nf_hook_ingress_active(skb)) {
3798 if (*pt_prev) {
3799 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3800 *pt_prev = NULL;
3801 }
3802
3803 return nf_hook_ingress(skb);
3804 }
3805 #endif /* CONFIG_NETFILTER_INGRESS */
3806 return 0;
3807 }
3808
3809 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3810 {
3811 struct packet_type *ptype, *pt_prev;
3812 rx_handler_func_t *rx_handler;
3813 struct net_device *orig_dev;
3814 bool deliver_exact = false;
3815 int ret = NET_RX_DROP;
3816 __be16 type;
3817
3818 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3819
3820 trace_netif_receive_skb(skb);
3821
3822 orig_dev = skb->dev;
3823
3824 skb_reset_network_header(skb);
3825 if (!skb_transport_header_was_set(skb))
3826 skb_reset_transport_header(skb);
3827 skb_reset_mac_len(skb);
3828
3829 pt_prev = NULL;
3830
3831 another_round:
3832 skb->skb_iif = skb->dev->ifindex;
3833
3834 __this_cpu_inc(softnet_data.processed);
3835
3836 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3837 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3838 skb = skb_vlan_untag(skb);
3839 if (unlikely(!skb))
3840 goto out;
3841 }
3842
3843 #ifdef CONFIG_NET_CLS_ACT
3844 if (skb->tc_verd & TC_NCLS) {
3845 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3846 goto ncls;
3847 }
3848 #endif
3849
3850 if (pfmemalloc)
3851 goto skip_taps;
3852
3853 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3854 if (pt_prev)
3855 ret = deliver_skb(skb, pt_prev, orig_dev);
3856 pt_prev = ptype;
3857 }
3858
3859 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3860 if (pt_prev)
3861 ret = deliver_skb(skb, pt_prev, orig_dev);
3862 pt_prev = ptype;
3863 }
3864
3865 skip_taps:
3866 #ifdef CONFIG_NET_INGRESS
3867 if (static_key_false(&ingress_needed)) {
3868 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3869 if (!skb)
3870 goto out;
3871
3872 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3873 goto out;
3874 }
3875 #endif
3876 #ifdef CONFIG_NET_CLS_ACT
3877 skb->tc_verd = 0;
3878 ncls:
3879 #endif
3880 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3881 goto drop;
3882
3883 if (skb_vlan_tag_present(skb)) {
3884 if (pt_prev) {
3885 ret = deliver_skb(skb, pt_prev, orig_dev);
3886 pt_prev = NULL;
3887 }
3888 if (vlan_do_receive(&skb))
3889 goto another_round;
3890 else if (unlikely(!skb))
3891 goto out;
3892 }
3893
3894 rx_handler = rcu_dereference(skb->dev->rx_handler);
3895 if (rx_handler) {
3896 if (pt_prev) {
3897 ret = deliver_skb(skb, pt_prev, orig_dev);
3898 pt_prev = NULL;
3899 }
3900 switch (rx_handler(&skb)) {
3901 case RX_HANDLER_CONSUMED:
3902 ret = NET_RX_SUCCESS;
3903 goto out;
3904 case RX_HANDLER_ANOTHER:
3905 goto another_round;
3906 case RX_HANDLER_EXACT:
3907 deliver_exact = true;
3908 case RX_HANDLER_PASS:
3909 break;
3910 default:
3911 BUG();
3912 }
3913 }
3914
3915 if (unlikely(skb_vlan_tag_present(skb))) {
3916 if (skb_vlan_tag_get_id(skb))
3917 skb->pkt_type = PACKET_OTHERHOST;
3918 /* Note: we might in the future use prio bits
3919 * and set skb->priority like in vlan_do_receive()
3920 * For the time being, just ignore Priority Code Point
3921 */
3922 skb->vlan_tci = 0;
3923 }
3924
3925 type = skb->protocol;
3926
3927 /* deliver only exact match when indicated */
3928 if (likely(!deliver_exact)) {
3929 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3930 &ptype_base[ntohs(type) &
3931 PTYPE_HASH_MASK]);
3932 }
3933
3934 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3935 &orig_dev->ptype_specific);
3936
3937 if (unlikely(skb->dev != orig_dev)) {
3938 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3939 &skb->dev->ptype_specific);
3940 }
3941
3942 if (pt_prev) {
3943 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3944 goto drop;
3945 else
3946 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3947 } else {
3948 drop:
3949 atomic_long_inc(&skb->dev->rx_dropped);
3950 kfree_skb(skb);
3951 /* Jamal, now you will not able to escape explaining
3952 * me how you were going to use this. :-)
3953 */
3954 ret = NET_RX_DROP;
3955 }
3956
3957 out:
3958 return ret;
3959 }
3960
3961 static int __netif_receive_skb(struct sk_buff *skb)
3962 {
3963 int ret;
3964
3965 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3966 unsigned long pflags = current->flags;
3967
3968 /*
3969 * PFMEMALLOC skbs are special, they should
3970 * - be delivered to SOCK_MEMALLOC sockets only
3971 * - stay away from userspace
3972 * - have bounded memory usage
3973 *
3974 * Use PF_MEMALLOC as this saves us from propagating the allocation
3975 * context down to all allocation sites.
3976 */
3977 current->flags |= PF_MEMALLOC;
3978 ret = __netif_receive_skb_core(skb, true);
3979 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3980 } else
3981 ret = __netif_receive_skb_core(skb, false);
3982
3983 return ret;
3984 }
3985
3986 static int netif_receive_skb_internal(struct sk_buff *skb)
3987 {
3988 int ret;
3989
3990 net_timestamp_check(netdev_tstamp_prequeue, skb);
3991
3992 if (skb_defer_rx_timestamp(skb))
3993 return NET_RX_SUCCESS;
3994
3995 rcu_read_lock();
3996
3997 #ifdef CONFIG_RPS
3998 if (static_key_false(&rps_needed)) {
3999 struct rps_dev_flow voidflow, *rflow = &voidflow;
4000 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4001
4002 if (cpu >= 0) {
4003 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4004 rcu_read_unlock();
4005 return ret;
4006 }
4007 }
4008 #endif
4009 ret = __netif_receive_skb(skb);
4010 rcu_read_unlock();
4011 return ret;
4012 }
4013
4014 /**
4015 * netif_receive_skb - process receive buffer from network
4016 * @skb: buffer to process
4017 *
4018 * netif_receive_skb() is the main receive data processing function.
4019 * It always succeeds. The buffer may be dropped during processing
4020 * for congestion control or by the protocol layers.
4021 *
4022 * This function may only be called from softirq context and interrupts
4023 * should be enabled.
4024 *
4025 * Return values (usually ignored):
4026 * NET_RX_SUCCESS: no congestion
4027 * NET_RX_DROP: packet was dropped
4028 */
4029 int netif_receive_skb(struct sk_buff *skb)
4030 {
4031 trace_netif_receive_skb_entry(skb);
4032
4033 return netif_receive_skb_internal(skb);
4034 }
4035 EXPORT_SYMBOL(netif_receive_skb);
4036
4037 /* Network device is going away, flush any packets still pending
4038 * Called with irqs disabled.
4039 */
4040 static void flush_backlog(void *arg)
4041 {
4042 struct net_device *dev = arg;
4043 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4044 struct sk_buff *skb, *tmp;
4045
4046 rps_lock(sd);
4047 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4048 if (skb->dev == dev) {
4049 __skb_unlink(skb, &sd->input_pkt_queue);
4050 kfree_skb(skb);
4051 input_queue_head_incr(sd);
4052 }
4053 }
4054 rps_unlock(sd);
4055
4056 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4057 if (skb->dev == dev) {
4058 __skb_unlink(skb, &sd->process_queue);
4059 kfree_skb(skb);
4060 input_queue_head_incr(sd);
4061 }
4062 }
4063 }
4064
4065 static int napi_gro_complete(struct sk_buff *skb)
4066 {
4067 struct packet_offload *ptype;
4068 __be16 type = skb->protocol;
4069 struct list_head *head = &offload_base;
4070 int err = -ENOENT;
4071
4072 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4073
4074 if (NAPI_GRO_CB(skb)->count == 1) {
4075 skb_shinfo(skb)->gso_size = 0;
4076 goto out;
4077 }
4078
4079 rcu_read_lock();
4080 list_for_each_entry_rcu(ptype, head, list) {
4081 if (ptype->type != type || !ptype->callbacks.gro_complete)
4082 continue;
4083
4084 err = ptype->callbacks.gro_complete(skb, 0);
4085 break;
4086 }
4087 rcu_read_unlock();
4088
4089 if (err) {
4090 WARN_ON(&ptype->list == head);
4091 kfree_skb(skb);
4092 return NET_RX_SUCCESS;
4093 }
4094
4095 out:
4096 return netif_receive_skb_internal(skb);
4097 }
4098
4099 /* napi->gro_list contains packets ordered by age.
4100 * youngest packets at the head of it.
4101 * Complete skbs in reverse order to reduce latencies.
4102 */
4103 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4104 {
4105 struct sk_buff *skb, *prev = NULL;
4106
4107 /* scan list and build reverse chain */
4108 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4109 skb->prev = prev;
4110 prev = skb;
4111 }
4112
4113 for (skb = prev; skb; skb = prev) {
4114 skb->next = NULL;
4115
4116 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4117 return;
4118
4119 prev = skb->prev;
4120 napi_gro_complete(skb);
4121 napi->gro_count--;
4122 }
4123
4124 napi->gro_list = NULL;
4125 }
4126 EXPORT_SYMBOL(napi_gro_flush);
4127
4128 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4129 {
4130 struct sk_buff *p;
4131 unsigned int maclen = skb->dev->hard_header_len;
4132 u32 hash = skb_get_hash_raw(skb);
4133
4134 for (p = napi->gro_list; p; p = p->next) {
4135 unsigned long diffs;
4136
4137 NAPI_GRO_CB(p)->flush = 0;
4138
4139 if (hash != skb_get_hash_raw(p)) {
4140 NAPI_GRO_CB(p)->same_flow = 0;
4141 continue;
4142 }
4143
4144 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4145 diffs |= p->vlan_tci ^ skb->vlan_tci;
4146 if (maclen == ETH_HLEN)
4147 diffs |= compare_ether_header(skb_mac_header(p),
4148 skb_mac_header(skb));
4149 else if (!diffs)
4150 diffs = memcmp(skb_mac_header(p),
4151 skb_mac_header(skb),
4152 maclen);
4153 NAPI_GRO_CB(p)->same_flow = !diffs;
4154 }
4155 }
4156
4157 static void skb_gro_reset_offset(struct sk_buff *skb)
4158 {
4159 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4160 const skb_frag_t *frag0 = &pinfo->frags[0];
4161
4162 NAPI_GRO_CB(skb)->data_offset = 0;
4163 NAPI_GRO_CB(skb)->frag0 = NULL;
4164 NAPI_GRO_CB(skb)->frag0_len = 0;
4165
4166 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4167 pinfo->nr_frags &&
4168 !PageHighMem(skb_frag_page(frag0))) {
4169 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4170 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4171 }
4172 }
4173
4174 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4175 {
4176 struct skb_shared_info *pinfo = skb_shinfo(skb);
4177
4178 BUG_ON(skb->end - skb->tail < grow);
4179
4180 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4181
4182 skb->data_len -= grow;
4183 skb->tail += grow;
4184
4185 pinfo->frags[0].page_offset += grow;
4186 skb_frag_size_sub(&pinfo->frags[0], grow);
4187
4188 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4189 skb_frag_unref(skb, 0);
4190 memmove(pinfo->frags, pinfo->frags + 1,
4191 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4192 }
4193 }
4194
4195 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4196 {
4197 struct sk_buff **pp = NULL;
4198 struct packet_offload *ptype;
4199 __be16 type = skb->protocol;
4200 struct list_head *head = &offload_base;
4201 int same_flow;
4202 enum gro_result ret;
4203 int grow;
4204
4205 if (!(skb->dev->features & NETIF_F_GRO))
4206 goto normal;
4207
4208 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4209 goto normal;
4210
4211 gro_list_prepare(napi, skb);
4212
4213 rcu_read_lock();
4214 list_for_each_entry_rcu(ptype, head, list) {
4215 if (ptype->type != type || !ptype->callbacks.gro_receive)
4216 continue;
4217
4218 skb_set_network_header(skb, skb_gro_offset(skb));
4219 skb_reset_mac_len(skb);
4220 NAPI_GRO_CB(skb)->same_flow = 0;
4221 NAPI_GRO_CB(skb)->flush = 0;
4222 NAPI_GRO_CB(skb)->free = 0;
4223 NAPI_GRO_CB(skb)->udp_mark = 0;
4224 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4225
4226 /* Setup for GRO checksum validation */
4227 switch (skb->ip_summed) {
4228 case CHECKSUM_COMPLETE:
4229 NAPI_GRO_CB(skb)->csum = skb->csum;
4230 NAPI_GRO_CB(skb)->csum_valid = 1;
4231 NAPI_GRO_CB(skb)->csum_cnt = 0;
4232 break;
4233 case CHECKSUM_UNNECESSARY:
4234 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4235 NAPI_GRO_CB(skb)->csum_valid = 0;
4236 break;
4237 default:
4238 NAPI_GRO_CB(skb)->csum_cnt = 0;
4239 NAPI_GRO_CB(skb)->csum_valid = 0;
4240 }
4241
4242 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4243 break;
4244 }
4245 rcu_read_unlock();
4246
4247 if (&ptype->list == head)
4248 goto normal;
4249
4250 same_flow = NAPI_GRO_CB(skb)->same_flow;
4251 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4252
4253 if (pp) {
4254 struct sk_buff *nskb = *pp;
4255
4256 *pp = nskb->next;
4257 nskb->next = NULL;
4258 napi_gro_complete(nskb);
4259 napi->gro_count--;
4260 }
4261
4262 if (same_flow)
4263 goto ok;
4264
4265 if (NAPI_GRO_CB(skb)->flush)
4266 goto normal;
4267
4268 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4269 struct sk_buff *nskb = napi->gro_list;
4270
4271 /* locate the end of the list to select the 'oldest' flow */
4272 while (nskb->next) {
4273 pp = &nskb->next;
4274 nskb = *pp;
4275 }
4276 *pp = NULL;
4277 nskb->next = NULL;
4278 napi_gro_complete(nskb);
4279 } else {
4280 napi->gro_count++;
4281 }
4282 NAPI_GRO_CB(skb)->count = 1;
4283 NAPI_GRO_CB(skb)->age = jiffies;
4284 NAPI_GRO_CB(skb)->last = skb;
4285 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4286 skb->next = napi->gro_list;
4287 napi->gro_list = skb;
4288 ret = GRO_HELD;
4289
4290 pull:
4291 grow = skb_gro_offset(skb) - skb_headlen(skb);
4292 if (grow > 0)
4293 gro_pull_from_frag0(skb, grow);
4294 ok:
4295 return ret;
4296
4297 normal:
4298 ret = GRO_NORMAL;
4299 goto pull;
4300 }
4301
4302 struct packet_offload *gro_find_receive_by_type(__be16 type)
4303 {
4304 struct list_head *offload_head = &offload_base;
4305 struct packet_offload *ptype;
4306
4307 list_for_each_entry_rcu(ptype, offload_head, list) {
4308 if (ptype->type != type || !ptype->callbacks.gro_receive)
4309 continue;
4310 return ptype;
4311 }
4312 return NULL;
4313 }
4314 EXPORT_SYMBOL(gro_find_receive_by_type);
4315
4316 struct packet_offload *gro_find_complete_by_type(__be16 type)
4317 {
4318 struct list_head *offload_head = &offload_base;
4319 struct packet_offload *ptype;
4320
4321 list_for_each_entry_rcu(ptype, offload_head, list) {
4322 if (ptype->type != type || !ptype->callbacks.gro_complete)
4323 continue;
4324 return ptype;
4325 }
4326 return NULL;
4327 }
4328 EXPORT_SYMBOL(gro_find_complete_by_type);
4329
4330 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4331 {
4332 switch (ret) {
4333 case GRO_NORMAL:
4334 if (netif_receive_skb_internal(skb))
4335 ret = GRO_DROP;
4336 break;
4337
4338 case GRO_DROP:
4339 kfree_skb(skb);
4340 break;
4341
4342 case GRO_MERGED_FREE:
4343 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4344 kmem_cache_free(skbuff_head_cache, skb);
4345 else
4346 __kfree_skb(skb);
4347 break;
4348
4349 case GRO_HELD:
4350 case GRO_MERGED:
4351 break;
4352 }
4353
4354 return ret;
4355 }
4356
4357 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4358 {
4359 skb_mark_napi_id(skb, napi);
4360 trace_napi_gro_receive_entry(skb);
4361
4362 skb_gro_reset_offset(skb);
4363
4364 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4365 }
4366 EXPORT_SYMBOL(napi_gro_receive);
4367
4368 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4369 {
4370 if (unlikely(skb->pfmemalloc)) {
4371 consume_skb(skb);
4372 return;
4373 }
4374 __skb_pull(skb, skb_headlen(skb));
4375 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4376 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4377 skb->vlan_tci = 0;
4378 skb->dev = napi->dev;
4379 skb->skb_iif = 0;
4380 skb->encapsulation = 0;
4381 skb_shinfo(skb)->gso_type = 0;
4382 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4383
4384 napi->skb = skb;
4385 }
4386
4387 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4388 {
4389 struct sk_buff *skb = napi->skb;
4390
4391 if (!skb) {
4392 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4393 if (skb) {
4394 napi->skb = skb;
4395 skb_mark_napi_id(skb, napi);
4396 }
4397 }
4398 return skb;
4399 }
4400 EXPORT_SYMBOL(napi_get_frags);
4401
4402 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4403 struct sk_buff *skb,
4404 gro_result_t ret)
4405 {
4406 switch (ret) {
4407 case GRO_NORMAL:
4408 case GRO_HELD:
4409 __skb_push(skb, ETH_HLEN);
4410 skb->protocol = eth_type_trans(skb, skb->dev);
4411 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4412 ret = GRO_DROP;
4413 break;
4414
4415 case GRO_DROP:
4416 case GRO_MERGED_FREE:
4417 napi_reuse_skb(napi, skb);
4418 break;
4419
4420 case GRO_MERGED:
4421 break;
4422 }
4423
4424 return ret;
4425 }
4426
4427 /* Upper GRO stack assumes network header starts at gro_offset=0
4428 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4429 * We copy ethernet header into skb->data to have a common layout.
4430 */
4431 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4432 {
4433 struct sk_buff *skb = napi->skb;
4434 const struct ethhdr *eth;
4435 unsigned int hlen = sizeof(*eth);
4436
4437 napi->skb = NULL;
4438
4439 skb_reset_mac_header(skb);
4440 skb_gro_reset_offset(skb);
4441
4442 eth = skb_gro_header_fast(skb, 0);
4443 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4444 eth = skb_gro_header_slow(skb, hlen, 0);
4445 if (unlikely(!eth)) {
4446 napi_reuse_skb(napi, skb);
4447 return NULL;
4448 }
4449 } else {
4450 gro_pull_from_frag0(skb, hlen);
4451 NAPI_GRO_CB(skb)->frag0 += hlen;
4452 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4453 }
4454 __skb_pull(skb, hlen);
4455
4456 /*
4457 * This works because the only protocols we care about don't require
4458 * special handling.
4459 * We'll fix it up properly in napi_frags_finish()
4460 */
4461 skb->protocol = eth->h_proto;
4462
4463 return skb;
4464 }
4465
4466 gro_result_t napi_gro_frags(struct napi_struct *napi)
4467 {
4468 struct sk_buff *skb = napi_frags_skb(napi);
4469
4470 if (!skb)
4471 return GRO_DROP;
4472
4473 trace_napi_gro_frags_entry(skb);
4474
4475 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4476 }
4477 EXPORT_SYMBOL(napi_gro_frags);
4478
4479 /* Compute the checksum from gro_offset and return the folded value
4480 * after adding in any pseudo checksum.
4481 */
4482 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4483 {
4484 __wsum wsum;
4485 __sum16 sum;
4486
4487 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4488
4489 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4490 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4491 if (likely(!sum)) {
4492 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4493 !skb->csum_complete_sw)
4494 netdev_rx_csum_fault(skb->dev);
4495 }
4496
4497 NAPI_GRO_CB(skb)->csum = wsum;
4498 NAPI_GRO_CB(skb)->csum_valid = 1;
4499
4500 return sum;
4501 }
4502 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4503
4504 /*
4505 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4506 * Note: called with local irq disabled, but exits with local irq enabled.
4507 */
4508 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4509 {
4510 #ifdef CONFIG_RPS
4511 struct softnet_data *remsd = sd->rps_ipi_list;
4512
4513 if (remsd) {
4514 sd->rps_ipi_list = NULL;
4515
4516 local_irq_enable();
4517
4518 /* Send pending IPI's to kick RPS processing on remote cpus. */
4519 while (remsd) {
4520 struct softnet_data *next = remsd->rps_ipi_next;
4521
4522 if (cpu_online(remsd->cpu))
4523 smp_call_function_single_async(remsd->cpu,
4524 &remsd->csd);
4525 remsd = next;
4526 }
4527 } else
4528 #endif
4529 local_irq_enable();
4530 }
4531
4532 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4533 {
4534 #ifdef CONFIG_RPS
4535 return sd->rps_ipi_list != NULL;
4536 #else
4537 return false;
4538 #endif
4539 }
4540
4541 static int process_backlog(struct napi_struct *napi, int quota)
4542 {
4543 int work = 0;
4544 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4545
4546 /* Check if we have pending ipi, its better to send them now,
4547 * not waiting net_rx_action() end.
4548 */
4549 if (sd_has_rps_ipi_waiting(sd)) {
4550 local_irq_disable();
4551 net_rps_action_and_irq_enable(sd);
4552 }
4553
4554 napi->weight = weight_p;
4555 local_irq_disable();
4556 while (1) {
4557 struct sk_buff *skb;
4558
4559 while ((skb = __skb_dequeue(&sd->process_queue))) {
4560 rcu_read_lock();
4561 local_irq_enable();
4562 __netif_receive_skb(skb);
4563 rcu_read_unlock();
4564 local_irq_disable();
4565 input_queue_head_incr(sd);
4566 if (++work >= quota) {
4567 local_irq_enable();
4568 return work;
4569 }
4570 }
4571
4572 rps_lock(sd);
4573 if (skb_queue_empty(&sd->input_pkt_queue)) {
4574 /*
4575 * Inline a custom version of __napi_complete().
4576 * only current cpu owns and manipulates this napi,
4577 * and NAPI_STATE_SCHED is the only possible flag set
4578 * on backlog.
4579 * We can use a plain write instead of clear_bit(),
4580 * and we dont need an smp_mb() memory barrier.
4581 */
4582 napi->state = 0;
4583 rps_unlock(sd);
4584
4585 break;
4586 }
4587
4588 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4589 &sd->process_queue);
4590 rps_unlock(sd);
4591 }
4592 local_irq_enable();
4593
4594 return work;
4595 }
4596
4597 /**
4598 * __napi_schedule - schedule for receive
4599 * @n: entry to schedule
4600 *
4601 * The entry's receive function will be scheduled to run.
4602 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4603 */
4604 void __napi_schedule(struct napi_struct *n)
4605 {
4606 unsigned long flags;
4607
4608 local_irq_save(flags);
4609 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4610 local_irq_restore(flags);
4611 }
4612 EXPORT_SYMBOL(__napi_schedule);
4613
4614 /**
4615 * __napi_schedule_irqoff - schedule for receive
4616 * @n: entry to schedule
4617 *
4618 * Variant of __napi_schedule() assuming hard irqs are masked
4619 */
4620 void __napi_schedule_irqoff(struct napi_struct *n)
4621 {
4622 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4623 }
4624 EXPORT_SYMBOL(__napi_schedule_irqoff);
4625
4626 void __napi_complete(struct napi_struct *n)
4627 {
4628 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4629
4630 list_del_init(&n->poll_list);
4631 smp_mb__before_atomic();
4632 clear_bit(NAPI_STATE_SCHED, &n->state);
4633 }
4634 EXPORT_SYMBOL(__napi_complete);
4635
4636 void napi_complete_done(struct napi_struct *n, int work_done)
4637 {
4638 unsigned long flags;
4639
4640 /*
4641 * don't let napi dequeue from the cpu poll list
4642 * just in case its running on a different cpu
4643 */
4644 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4645 return;
4646
4647 if (n->gro_list) {
4648 unsigned long timeout = 0;
4649
4650 if (work_done)
4651 timeout = n->dev->gro_flush_timeout;
4652
4653 if (timeout)
4654 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4655 HRTIMER_MODE_REL_PINNED);
4656 else
4657 napi_gro_flush(n, false);
4658 }
4659 if (likely(list_empty(&n->poll_list))) {
4660 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4661 } else {
4662 /* If n->poll_list is not empty, we need to mask irqs */
4663 local_irq_save(flags);
4664 __napi_complete(n);
4665 local_irq_restore(flags);
4666 }
4667 }
4668 EXPORT_SYMBOL(napi_complete_done);
4669
4670 /* must be called under rcu_read_lock(), as we dont take a reference */
4671 static struct napi_struct *napi_by_id(unsigned int napi_id)
4672 {
4673 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4674 struct napi_struct *napi;
4675
4676 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4677 if (napi->napi_id == napi_id)
4678 return napi;
4679
4680 return NULL;
4681 }
4682
4683 #if defined(CONFIG_NET_RX_BUSY_POLL)
4684 #define BUSY_POLL_BUDGET 8
4685 bool sk_busy_loop(struct sock *sk, int nonblock)
4686 {
4687 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4688 int (*busy_poll)(struct napi_struct *dev);
4689 struct napi_struct *napi;
4690 int rc = false;
4691
4692 rcu_read_lock();
4693
4694 napi = napi_by_id(sk->sk_napi_id);
4695 if (!napi)
4696 goto out;
4697
4698 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4699 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4700
4701 do {
4702 rc = 0;
4703 local_bh_disable();
4704 if (busy_poll) {
4705 rc = busy_poll(napi);
4706 } else if (napi_schedule_prep(napi)) {
4707 void *have = netpoll_poll_lock(napi);
4708
4709 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4710 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4711 trace_napi_poll(napi);
4712 if (rc == BUSY_POLL_BUDGET) {
4713 napi_complete_done(napi, rc);
4714 napi_schedule(napi);
4715 }
4716 }
4717 netpoll_poll_unlock(have);
4718 }
4719 if (rc > 0)
4720 NET_ADD_STATS_BH(sock_net(sk),
4721 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4722 local_bh_enable();
4723
4724 if (rc == LL_FLUSH_FAILED)
4725 break; /* permanent failure */
4726
4727 cpu_relax();
4728 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4729 !need_resched() && !busy_loop_timeout(end_time));
4730
4731 rc = !skb_queue_empty(&sk->sk_receive_queue);
4732 out:
4733 rcu_read_unlock();
4734 return rc;
4735 }
4736 EXPORT_SYMBOL(sk_busy_loop);
4737
4738 #endif /* CONFIG_NET_RX_BUSY_POLL */
4739
4740 void napi_hash_add(struct napi_struct *napi)
4741 {
4742 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4743 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4744 return;
4745
4746 spin_lock(&napi_hash_lock);
4747
4748 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4749 do {
4750 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4751 napi_gen_id = NR_CPUS + 1;
4752 } while (napi_by_id(napi_gen_id));
4753 napi->napi_id = napi_gen_id;
4754
4755 hlist_add_head_rcu(&napi->napi_hash_node,
4756 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4757
4758 spin_unlock(&napi_hash_lock);
4759 }
4760 EXPORT_SYMBOL_GPL(napi_hash_add);
4761
4762 /* Warning : caller is responsible to make sure rcu grace period
4763 * is respected before freeing memory containing @napi
4764 */
4765 bool napi_hash_del(struct napi_struct *napi)
4766 {
4767 bool rcu_sync_needed = false;
4768
4769 spin_lock(&napi_hash_lock);
4770
4771 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4772 rcu_sync_needed = true;
4773 hlist_del_rcu(&napi->napi_hash_node);
4774 }
4775 spin_unlock(&napi_hash_lock);
4776 return rcu_sync_needed;
4777 }
4778 EXPORT_SYMBOL_GPL(napi_hash_del);
4779
4780 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4781 {
4782 struct napi_struct *napi;
4783
4784 napi = container_of(timer, struct napi_struct, timer);
4785 if (napi->gro_list)
4786 napi_schedule(napi);
4787
4788 return HRTIMER_NORESTART;
4789 }
4790
4791 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4792 int (*poll)(struct napi_struct *, int), int weight)
4793 {
4794 INIT_LIST_HEAD(&napi->poll_list);
4795 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4796 napi->timer.function = napi_watchdog;
4797 napi->gro_count = 0;
4798 napi->gro_list = NULL;
4799 napi->skb = NULL;
4800 napi->poll = poll;
4801 if (weight > NAPI_POLL_WEIGHT)
4802 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4803 weight, dev->name);
4804 napi->weight = weight;
4805 list_add(&napi->dev_list, &dev->napi_list);
4806 napi->dev = dev;
4807 #ifdef CONFIG_NETPOLL
4808 spin_lock_init(&napi->poll_lock);
4809 napi->poll_owner = -1;
4810 #endif
4811 set_bit(NAPI_STATE_SCHED, &napi->state);
4812 napi_hash_add(napi);
4813 }
4814 EXPORT_SYMBOL(netif_napi_add);
4815
4816 void napi_disable(struct napi_struct *n)
4817 {
4818 might_sleep();
4819 set_bit(NAPI_STATE_DISABLE, &n->state);
4820
4821 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4822 msleep(1);
4823 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4824 msleep(1);
4825
4826 hrtimer_cancel(&n->timer);
4827
4828 clear_bit(NAPI_STATE_DISABLE, &n->state);
4829 }
4830 EXPORT_SYMBOL(napi_disable);
4831
4832 /* Must be called in process context */
4833 void netif_napi_del(struct napi_struct *napi)
4834 {
4835 might_sleep();
4836 if (napi_hash_del(napi))
4837 synchronize_net();
4838 list_del_init(&napi->dev_list);
4839 napi_free_frags(napi);
4840
4841 kfree_skb_list(napi->gro_list);
4842 napi->gro_list = NULL;
4843 napi->gro_count = 0;
4844 }
4845 EXPORT_SYMBOL(netif_napi_del);
4846
4847 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4848 {
4849 void *have;
4850 int work, weight;
4851
4852 list_del_init(&n->poll_list);
4853
4854 have = netpoll_poll_lock(n);
4855
4856 weight = n->weight;
4857
4858 /* This NAPI_STATE_SCHED test is for avoiding a race
4859 * with netpoll's poll_napi(). Only the entity which
4860 * obtains the lock and sees NAPI_STATE_SCHED set will
4861 * actually make the ->poll() call. Therefore we avoid
4862 * accidentally calling ->poll() when NAPI is not scheduled.
4863 */
4864 work = 0;
4865 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4866 work = n->poll(n, weight);
4867 trace_napi_poll(n);
4868 }
4869
4870 WARN_ON_ONCE(work > weight);
4871
4872 if (likely(work < weight))
4873 goto out_unlock;
4874
4875 /* Drivers must not modify the NAPI state if they
4876 * consume the entire weight. In such cases this code
4877 * still "owns" the NAPI instance and therefore can
4878 * move the instance around on the list at-will.
4879 */
4880 if (unlikely(napi_disable_pending(n))) {
4881 napi_complete(n);
4882 goto out_unlock;
4883 }
4884
4885 if (n->gro_list) {
4886 /* flush too old packets
4887 * If HZ < 1000, flush all packets.
4888 */
4889 napi_gro_flush(n, HZ >= 1000);
4890 }
4891
4892 /* Some drivers may have called napi_schedule
4893 * prior to exhausting their budget.
4894 */
4895 if (unlikely(!list_empty(&n->poll_list))) {
4896 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4897 n->dev ? n->dev->name : "backlog");
4898 goto out_unlock;
4899 }
4900
4901 list_add_tail(&n->poll_list, repoll);
4902
4903 out_unlock:
4904 netpoll_poll_unlock(have);
4905
4906 return work;
4907 }
4908
4909 static void net_rx_action(struct softirq_action *h)
4910 {
4911 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4912 unsigned long time_limit = jiffies + 2;
4913 int budget = netdev_budget;
4914 LIST_HEAD(list);
4915 LIST_HEAD(repoll);
4916
4917 local_irq_disable();
4918 list_splice_init(&sd->poll_list, &list);
4919 local_irq_enable();
4920
4921 for (;;) {
4922 struct napi_struct *n;
4923
4924 if (list_empty(&list)) {
4925 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4926 return;
4927 break;
4928 }
4929
4930 n = list_first_entry(&list, struct napi_struct, poll_list);
4931 budget -= napi_poll(n, &repoll);
4932
4933 /* If softirq window is exhausted then punt.
4934 * Allow this to run for 2 jiffies since which will allow
4935 * an average latency of 1.5/HZ.
4936 */
4937 if (unlikely(budget <= 0 ||
4938 time_after_eq(jiffies, time_limit))) {
4939 sd->time_squeeze++;
4940 break;
4941 }
4942 }
4943
4944 local_irq_disable();
4945
4946 list_splice_tail_init(&sd->poll_list, &list);
4947 list_splice_tail(&repoll, &list);
4948 list_splice(&list, &sd->poll_list);
4949 if (!list_empty(&sd->poll_list))
4950 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4951
4952 net_rps_action_and_irq_enable(sd);
4953 }
4954
4955 struct netdev_adjacent {
4956 struct net_device *dev;
4957
4958 /* upper master flag, there can only be one master device per list */
4959 bool master;
4960
4961 /* counter for the number of times this device was added to us */
4962 u16 ref_nr;
4963
4964 /* private field for the users */
4965 void *private;
4966
4967 struct list_head list;
4968 struct rcu_head rcu;
4969 };
4970
4971 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4972 struct list_head *adj_list)
4973 {
4974 struct netdev_adjacent *adj;
4975
4976 list_for_each_entry(adj, adj_list, list) {
4977 if (adj->dev == adj_dev)
4978 return adj;
4979 }
4980 return NULL;
4981 }
4982
4983 /**
4984 * netdev_has_upper_dev - Check if device is linked to an upper device
4985 * @dev: device
4986 * @upper_dev: upper device to check
4987 *
4988 * Find out if a device is linked to specified upper device and return true
4989 * in case it is. Note that this checks only immediate upper device,
4990 * not through a complete stack of devices. The caller must hold the RTNL lock.
4991 */
4992 bool netdev_has_upper_dev(struct net_device *dev,
4993 struct net_device *upper_dev)
4994 {
4995 ASSERT_RTNL();
4996
4997 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4998 }
4999 EXPORT_SYMBOL(netdev_has_upper_dev);
5000
5001 /**
5002 * netdev_has_any_upper_dev - Check if device is linked to some device
5003 * @dev: device
5004 *
5005 * Find out if a device is linked to an upper device and return true in case
5006 * it is. The caller must hold the RTNL lock.
5007 */
5008 static bool netdev_has_any_upper_dev(struct net_device *dev)
5009 {
5010 ASSERT_RTNL();
5011
5012 return !list_empty(&dev->all_adj_list.upper);
5013 }
5014
5015 /**
5016 * netdev_master_upper_dev_get - Get master upper device
5017 * @dev: device
5018 *
5019 * Find a master upper device and return pointer to it or NULL in case
5020 * it's not there. The caller must hold the RTNL lock.
5021 */
5022 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5023 {
5024 struct netdev_adjacent *upper;
5025
5026 ASSERT_RTNL();
5027
5028 if (list_empty(&dev->adj_list.upper))
5029 return NULL;
5030
5031 upper = list_first_entry(&dev->adj_list.upper,
5032 struct netdev_adjacent, list);
5033 if (likely(upper->master))
5034 return upper->dev;
5035 return NULL;
5036 }
5037 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5038
5039 void *netdev_adjacent_get_private(struct list_head *adj_list)
5040 {
5041 struct netdev_adjacent *adj;
5042
5043 adj = list_entry(adj_list, struct netdev_adjacent, list);
5044
5045 return adj->private;
5046 }
5047 EXPORT_SYMBOL(netdev_adjacent_get_private);
5048
5049 /**
5050 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5051 * @dev: device
5052 * @iter: list_head ** of the current position
5053 *
5054 * Gets the next device from the dev's upper list, starting from iter
5055 * position. The caller must hold RCU read lock.
5056 */
5057 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5058 struct list_head **iter)
5059 {
5060 struct netdev_adjacent *upper;
5061
5062 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5063
5064 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5065
5066 if (&upper->list == &dev->adj_list.upper)
5067 return NULL;
5068
5069 *iter = &upper->list;
5070
5071 return upper->dev;
5072 }
5073 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5074
5075 /**
5076 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5077 * @dev: device
5078 * @iter: list_head ** of the current position
5079 *
5080 * Gets the next device from the dev's upper list, starting from iter
5081 * position. The caller must hold RCU read lock.
5082 */
5083 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5084 struct list_head **iter)
5085 {
5086 struct netdev_adjacent *upper;
5087
5088 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5089
5090 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5091
5092 if (&upper->list == &dev->all_adj_list.upper)
5093 return NULL;
5094
5095 *iter = &upper->list;
5096
5097 return upper->dev;
5098 }
5099 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5100
5101 /**
5102 * netdev_lower_get_next_private - Get the next ->private from the
5103 * lower neighbour list
5104 * @dev: device
5105 * @iter: list_head ** of the current position
5106 *
5107 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5108 * list, starting from iter position. The caller must hold either hold the
5109 * RTNL lock or its own locking that guarantees that the neighbour lower
5110 * list will remain unchanged.
5111 */
5112 void *netdev_lower_get_next_private(struct net_device *dev,
5113 struct list_head **iter)
5114 {
5115 struct netdev_adjacent *lower;
5116
5117 lower = list_entry(*iter, struct netdev_adjacent, list);
5118
5119 if (&lower->list == &dev->adj_list.lower)
5120 return NULL;
5121
5122 *iter = lower->list.next;
5123
5124 return lower->private;
5125 }
5126 EXPORT_SYMBOL(netdev_lower_get_next_private);
5127
5128 /**
5129 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5130 * lower neighbour list, RCU
5131 * variant
5132 * @dev: device
5133 * @iter: list_head ** of the current position
5134 *
5135 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5136 * list, starting from iter position. The caller must hold RCU read lock.
5137 */
5138 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5139 struct list_head **iter)
5140 {
5141 struct netdev_adjacent *lower;
5142
5143 WARN_ON_ONCE(!rcu_read_lock_held());
5144
5145 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5146
5147 if (&lower->list == &dev->adj_list.lower)
5148 return NULL;
5149
5150 *iter = &lower->list;
5151
5152 return lower->private;
5153 }
5154 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5155
5156 /**
5157 * netdev_lower_get_next - Get the next device from the lower neighbour
5158 * list
5159 * @dev: device
5160 * @iter: list_head ** of the current position
5161 *
5162 * Gets the next netdev_adjacent from the dev's lower neighbour
5163 * list, starting from iter position. The caller must hold RTNL lock or
5164 * its own locking that guarantees that the neighbour lower
5165 * list will remain unchanged.
5166 */
5167 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5168 {
5169 struct netdev_adjacent *lower;
5170
5171 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5172
5173 if (&lower->list == &dev->adj_list.lower)
5174 return NULL;
5175
5176 *iter = &lower->list;
5177
5178 return lower->dev;
5179 }
5180 EXPORT_SYMBOL(netdev_lower_get_next);
5181
5182 /**
5183 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5184 * lower neighbour list, RCU
5185 * variant
5186 * @dev: device
5187 *
5188 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5189 * list. The caller must hold RCU read lock.
5190 */
5191 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5192 {
5193 struct netdev_adjacent *lower;
5194
5195 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5196 struct netdev_adjacent, list);
5197 if (lower)
5198 return lower->private;
5199 return NULL;
5200 }
5201 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5202
5203 /**
5204 * netdev_master_upper_dev_get_rcu - Get master upper device
5205 * @dev: device
5206 *
5207 * Find a master upper device and return pointer to it or NULL in case
5208 * it's not there. The caller must hold the RCU read lock.
5209 */
5210 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5211 {
5212 struct netdev_adjacent *upper;
5213
5214 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5215 struct netdev_adjacent, list);
5216 if (upper && likely(upper->master))
5217 return upper->dev;
5218 return NULL;
5219 }
5220 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5221
5222 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5223 struct net_device *adj_dev,
5224 struct list_head *dev_list)
5225 {
5226 char linkname[IFNAMSIZ+7];
5227 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5228 "upper_%s" : "lower_%s", adj_dev->name);
5229 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5230 linkname);
5231 }
5232 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5233 char *name,
5234 struct list_head *dev_list)
5235 {
5236 char linkname[IFNAMSIZ+7];
5237 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5238 "upper_%s" : "lower_%s", name);
5239 sysfs_remove_link(&(dev->dev.kobj), linkname);
5240 }
5241
5242 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5243 struct net_device *adj_dev,
5244 struct list_head *dev_list)
5245 {
5246 return (dev_list == &dev->adj_list.upper ||
5247 dev_list == &dev->adj_list.lower) &&
5248 net_eq(dev_net(dev), dev_net(adj_dev));
5249 }
5250
5251 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5252 struct net_device *adj_dev,
5253 struct list_head *dev_list,
5254 void *private, bool master)
5255 {
5256 struct netdev_adjacent *adj;
5257 int ret;
5258
5259 adj = __netdev_find_adj(adj_dev, dev_list);
5260
5261 if (adj) {
5262 adj->ref_nr++;
5263 return 0;
5264 }
5265
5266 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5267 if (!adj)
5268 return -ENOMEM;
5269
5270 adj->dev = adj_dev;
5271 adj->master = master;
5272 adj->ref_nr = 1;
5273 adj->private = private;
5274 dev_hold(adj_dev);
5275
5276 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5277 adj_dev->name, dev->name, adj_dev->name);
5278
5279 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5280 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5281 if (ret)
5282 goto free_adj;
5283 }
5284
5285 /* Ensure that master link is always the first item in list. */
5286 if (master) {
5287 ret = sysfs_create_link(&(dev->dev.kobj),
5288 &(adj_dev->dev.kobj), "master");
5289 if (ret)
5290 goto remove_symlinks;
5291
5292 list_add_rcu(&adj->list, dev_list);
5293 } else {
5294 list_add_tail_rcu(&adj->list, dev_list);
5295 }
5296
5297 return 0;
5298
5299 remove_symlinks:
5300 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5301 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5302 free_adj:
5303 kfree(adj);
5304 dev_put(adj_dev);
5305
5306 return ret;
5307 }
5308
5309 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5310 struct net_device *adj_dev,
5311 struct list_head *dev_list)
5312 {
5313 struct netdev_adjacent *adj;
5314
5315 adj = __netdev_find_adj(adj_dev, dev_list);
5316
5317 if (!adj) {
5318 pr_err("tried to remove device %s from %s\n",
5319 dev->name, adj_dev->name);
5320 BUG();
5321 }
5322
5323 if (adj->ref_nr > 1) {
5324 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5325 adj->ref_nr-1);
5326 adj->ref_nr--;
5327 return;
5328 }
5329
5330 if (adj->master)
5331 sysfs_remove_link(&(dev->dev.kobj), "master");
5332
5333 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5334 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5335
5336 list_del_rcu(&adj->list);
5337 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5338 adj_dev->name, dev->name, adj_dev->name);
5339 dev_put(adj_dev);
5340 kfree_rcu(adj, rcu);
5341 }
5342
5343 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5344 struct net_device *upper_dev,
5345 struct list_head *up_list,
5346 struct list_head *down_list,
5347 void *private, bool master)
5348 {
5349 int ret;
5350
5351 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5352 master);
5353 if (ret)
5354 return ret;
5355
5356 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5357 false);
5358 if (ret) {
5359 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5360 return ret;
5361 }
5362
5363 return 0;
5364 }
5365
5366 static int __netdev_adjacent_dev_link(struct net_device *dev,
5367 struct net_device *upper_dev)
5368 {
5369 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5370 &dev->all_adj_list.upper,
5371 &upper_dev->all_adj_list.lower,
5372 NULL, false);
5373 }
5374
5375 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5376 struct net_device *upper_dev,
5377 struct list_head *up_list,
5378 struct list_head *down_list)
5379 {
5380 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5381 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5382 }
5383
5384 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5385 struct net_device *upper_dev)
5386 {
5387 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5388 &dev->all_adj_list.upper,
5389 &upper_dev->all_adj_list.lower);
5390 }
5391
5392 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5393 struct net_device *upper_dev,
5394 void *private, bool master)
5395 {
5396 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5397
5398 if (ret)
5399 return ret;
5400
5401 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5402 &dev->adj_list.upper,
5403 &upper_dev->adj_list.lower,
5404 private, master);
5405 if (ret) {
5406 __netdev_adjacent_dev_unlink(dev, upper_dev);
5407 return ret;
5408 }
5409
5410 return 0;
5411 }
5412
5413 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5414 struct net_device *upper_dev)
5415 {
5416 __netdev_adjacent_dev_unlink(dev, upper_dev);
5417 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5418 &dev->adj_list.upper,
5419 &upper_dev->adj_list.lower);
5420 }
5421
5422 static int __netdev_upper_dev_link(struct net_device *dev,
5423 struct net_device *upper_dev, bool master,
5424 void *private)
5425 {
5426 struct netdev_notifier_changeupper_info changeupper_info;
5427 struct netdev_adjacent *i, *j, *to_i, *to_j;
5428 int ret = 0;
5429
5430 ASSERT_RTNL();
5431
5432 if (dev == upper_dev)
5433 return -EBUSY;
5434
5435 /* To prevent loops, check if dev is not upper device to upper_dev. */
5436 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5437 return -EBUSY;
5438
5439 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5440 return -EEXIST;
5441
5442 if (master && netdev_master_upper_dev_get(dev))
5443 return -EBUSY;
5444
5445 changeupper_info.upper_dev = upper_dev;
5446 changeupper_info.master = master;
5447 changeupper_info.linking = true;
5448
5449 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5450 &changeupper_info.info);
5451 ret = notifier_to_errno(ret);
5452 if (ret)
5453 return ret;
5454
5455 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5456 master);
5457 if (ret)
5458 return ret;
5459
5460 /* Now that we linked these devs, make all the upper_dev's
5461 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5462 * versa, and don't forget the devices itself. All of these
5463 * links are non-neighbours.
5464 */
5465 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5466 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5467 pr_debug("Interlinking %s with %s, non-neighbour\n",
5468 i->dev->name, j->dev->name);
5469 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5470 if (ret)
5471 goto rollback_mesh;
5472 }
5473 }
5474
5475 /* add dev to every upper_dev's upper device */
5476 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5477 pr_debug("linking %s's upper device %s with %s\n",
5478 upper_dev->name, i->dev->name, dev->name);
5479 ret = __netdev_adjacent_dev_link(dev, i->dev);
5480 if (ret)
5481 goto rollback_upper_mesh;
5482 }
5483
5484 /* add upper_dev to every dev's lower device */
5485 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5486 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5487 i->dev->name, upper_dev->name);
5488 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5489 if (ret)
5490 goto rollback_lower_mesh;
5491 }
5492
5493 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5494 &changeupper_info.info);
5495 ret = notifier_to_errno(ret);
5496 if (ret)
5497 goto rollback_lower_mesh;
5498
5499 return 0;
5500
5501 rollback_lower_mesh:
5502 to_i = i;
5503 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5504 if (i == to_i)
5505 break;
5506 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5507 }
5508
5509 i = NULL;
5510
5511 rollback_upper_mesh:
5512 to_i = i;
5513 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5514 if (i == to_i)
5515 break;
5516 __netdev_adjacent_dev_unlink(dev, i->dev);
5517 }
5518
5519 i = j = NULL;
5520
5521 rollback_mesh:
5522 to_i = i;
5523 to_j = j;
5524 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5525 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5526 if (i == to_i && j == to_j)
5527 break;
5528 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5529 }
5530 if (i == to_i)
5531 break;
5532 }
5533
5534 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5535
5536 return ret;
5537 }
5538
5539 /**
5540 * netdev_upper_dev_link - Add a link to the upper device
5541 * @dev: device
5542 * @upper_dev: new upper device
5543 *
5544 * Adds a link to device which is upper to this one. The caller must hold
5545 * the RTNL lock. On a failure a negative errno code is returned.
5546 * On success the reference counts are adjusted and the function
5547 * returns zero.
5548 */
5549 int netdev_upper_dev_link(struct net_device *dev,
5550 struct net_device *upper_dev)
5551 {
5552 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5553 }
5554 EXPORT_SYMBOL(netdev_upper_dev_link);
5555
5556 /**
5557 * netdev_master_upper_dev_link - Add a master link to the upper device
5558 * @dev: device
5559 * @upper_dev: new upper device
5560 *
5561 * Adds a link to device which is upper to this one. In this case, only
5562 * one master upper device can be linked, although other non-master devices
5563 * might be linked as well. The caller must hold the RTNL lock.
5564 * On a failure a negative errno code is returned. On success the reference
5565 * counts are adjusted and the function returns zero.
5566 */
5567 int netdev_master_upper_dev_link(struct net_device *dev,
5568 struct net_device *upper_dev)
5569 {
5570 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5571 }
5572 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5573
5574 int netdev_master_upper_dev_link_private(struct net_device *dev,
5575 struct net_device *upper_dev,
5576 void *private)
5577 {
5578 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5579 }
5580 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5581
5582 /**
5583 * netdev_upper_dev_unlink - Removes a link to upper device
5584 * @dev: device
5585 * @upper_dev: new upper device
5586 *
5587 * Removes a link to device which is upper to this one. The caller must hold
5588 * the RTNL lock.
5589 */
5590 void netdev_upper_dev_unlink(struct net_device *dev,
5591 struct net_device *upper_dev)
5592 {
5593 struct netdev_notifier_changeupper_info changeupper_info;
5594 struct netdev_adjacent *i, *j;
5595 ASSERT_RTNL();
5596
5597 changeupper_info.upper_dev = upper_dev;
5598 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5599 changeupper_info.linking = false;
5600
5601 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5602 &changeupper_info.info);
5603
5604 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5605
5606 /* Here is the tricky part. We must remove all dev's lower
5607 * devices from all upper_dev's upper devices and vice
5608 * versa, to maintain the graph relationship.
5609 */
5610 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5611 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5612 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5613
5614 /* remove also the devices itself from lower/upper device
5615 * list
5616 */
5617 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5618 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5619
5620 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5621 __netdev_adjacent_dev_unlink(dev, i->dev);
5622
5623 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5624 &changeupper_info.info);
5625 }
5626 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5627
5628 /**
5629 * netdev_bonding_info_change - Dispatch event about slave change
5630 * @dev: device
5631 * @bonding_info: info to dispatch
5632 *
5633 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5634 * The caller must hold the RTNL lock.
5635 */
5636 void netdev_bonding_info_change(struct net_device *dev,
5637 struct netdev_bonding_info *bonding_info)
5638 {
5639 struct netdev_notifier_bonding_info info;
5640
5641 memcpy(&info.bonding_info, bonding_info,
5642 sizeof(struct netdev_bonding_info));
5643 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5644 &info.info);
5645 }
5646 EXPORT_SYMBOL(netdev_bonding_info_change);
5647
5648 static void netdev_adjacent_add_links(struct net_device *dev)
5649 {
5650 struct netdev_adjacent *iter;
5651
5652 struct net *net = dev_net(dev);
5653
5654 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5655 if (!net_eq(net,dev_net(iter->dev)))
5656 continue;
5657 netdev_adjacent_sysfs_add(iter->dev, dev,
5658 &iter->dev->adj_list.lower);
5659 netdev_adjacent_sysfs_add(dev, iter->dev,
5660 &dev->adj_list.upper);
5661 }
5662
5663 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5664 if (!net_eq(net,dev_net(iter->dev)))
5665 continue;
5666 netdev_adjacent_sysfs_add(iter->dev, dev,
5667 &iter->dev->adj_list.upper);
5668 netdev_adjacent_sysfs_add(dev, iter->dev,
5669 &dev->adj_list.lower);
5670 }
5671 }
5672
5673 static void netdev_adjacent_del_links(struct net_device *dev)
5674 {
5675 struct netdev_adjacent *iter;
5676
5677 struct net *net = dev_net(dev);
5678
5679 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5680 if (!net_eq(net,dev_net(iter->dev)))
5681 continue;
5682 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5683 &iter->dev->adj_list.lower);
5684 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5685 &dev->adj_list.upper);
5686 }
5687
5688 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5689 if (!net_eq(net,dev_net(iter->dev)))
5690 continue;
5691 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5692 &iter->dev->adj_list.upper);
5693 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5694 &dev->adj_list.lower);
5695 }
5696 }
5697
5698 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5699 {
5700 struct netdev_adjacent *iter;
5701
5702 struct net *net = dev_net(dev);
5703
5704 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5705 if (!net_eq(net,dev_net(iter->dev)))
5706 continue;
5707 netdev_adjacent_sysfs_del(iter->dev, oldname,
5708 &iter->dev->adj_list.lower);
5709 netdev_adjacent_sysfs_add(iter->dev, dev,
5710 &iter->dev->adj_list.lower);
5711 }
5712
5713 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5714 if (!net_eq(net,dev_net(iter->dev)))
5715 continue;
5716 netdev_adjacent_sysfs_del(iter->dev, oldname,
5717 &iter->dev->adj_list.upper);
5718 netdev_adjacent_sysfs_add(iter->dev, dev,
5719 &iter->dev->adj_list.upper);
5720 }
5721 }
5722
5723 void *netdev_lower_dev_get_private(struct net_device *dev,
5724 struct net_device *lower_dev)
5725 {
5726 struct netdev_adjacent *lower;
5727
5728 if (!lower_dev)
5729 return NULL;
5730 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5731 if (!lower)
5732 return NULL;
5733
5734 return lower->private;
5735 }
5736 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5737
5738
5739 int dev_get_nest_level(struct net_device *dev,
5740 bool (*type_check)(struct net_device *dev))
5741 {
5742 struct net_device *lower = NULL;
5743 struct list_head *iter;
5744 int max_nest = -1;
5745 int nest;
5746
5747 ASSERT_RTNL();
5748
5749 netdev_for_each_lower_dev(dev, lower, iter) {
5750 nest = dev_get_nest_level(lower, type_check);
5751 if (max_nest < nest)
5752 max_nest = nest;
5753 }
5754
5755 if (type_check(dev))
5756 max_nest++;
5757
5758 return max_nest;
5759 }
5760 EXPORT_SYMBOL(dev_get_nest_level);
5761
5762 static void dev_change_rx_flags(struct net_device *dev, int flags)
5763 {
5764 const struct net_device_ops *ops = dev->netdev_ops;
5765
5766 if (ops->ndo_change_rx_flags)
5767 ops->ndo_change_rx_flags(dev, flags);
5768 }
5769
5770 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5771 {
5772 unsigned int old_flags = dev->flags;
5773 kuid_t uid;
5774 kgid_t gid;
5775
5776 ASSERT_RTNL();
5777
5778 dev->flags |= IFF_PROMISC;
5779 dev->promiscuity += inc;
5780 if (dev->promiscuity == 0) {
5781 /*
5782 * Avoid overflow.
5783 * If inc causes overflow, untouch promisc and return error.
5784 */
5785 if (inc < 0)
5786 dev->flags &= ~IFF_PROMISC;
5787 else {
5788 dev->promiscuity -= inc;
5789 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5790 dev->name);
5791 return -EOVERFLOW;
5792 }
5793 }
5794 if (dev->flags != old_flags) {
5795 pr_info("device %s %s promiscuous mode\n",
5796 dev->name,
5797 dev->flags & IFF_PROMISC ? "entered" : "left");
5798 if (audit_enabled) {
5799 current_uid_gid(&uid, &gid);
5800 audit_log(current->audit_context, GFP_ATOMIC,
5801 AUDIT_ANOM_PROMISCUOUS,
5802 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5803 dev->name, (dev->flags & IFF_PROMISC),
5804 (old_flags & IFF_PROMISC),
5805 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5806 from_kuid(&init_user_ns, uid),
5807 from_kgid(&init_user_ns, gid),
5808 audit_get_sessionid(current));
5809 }
5810
5811 dev_change_rx_flags(dev, IFF_PROMISC);
5812 }
5813 if (notify)
5814 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5815 return 0;
5816 }
5817
5818 /**
5819 * dev_set_promiscuity - update promiscuity count on a device
5820 * @dev: device
5821 * @inc: modifier
5822 *
5823 * Add or remove promiscuity from a device. While the count in the device
5824 * remains above zero the interface remains promiscuous. Once it hits zero
5825 * the device reverts back to normal filtering operation. A negative inc
5826 * value is used to drop promiscuity on the device.
5827 * Return 0 if successful or a negative errno code on error.
5828 */
5829 int dev_set_promiscuity(struct net_device *dev, int inc)
5830 {
5831 unsigned int old_flags = dev->flags;
5832 int err;
5833
5834 err = __dev_set_promiscuity(dev, inc, true);
5835 if (err < 0)
5836 return err;
5837 if (dev->flags != old_flags)
5838 dev_set_rx_mode(dev);
5839 return err;
5840 }
5841 EXPORT_SYMBOL(dev_set_promiscuity);
5842
5843 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5844 {
5845 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5846
5847 ASSERT_RTNL();
5848
5849 dev->flags |= IFF_ALLMULTI;
5850 dev->allmulti += inc;
5851 if (dev->allmulti == 0) {
5852 /*
5853 * Avoid overflow.
5854 * If inc causes overflow, untouch allmulti and return error.
5855 */
5856 if (inc < 0)
5857 dev->flags &= ~IFF_ALLMULTI;
5858 else {
5859 dev->allmulti -= inc;
5860 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5861 dev->name);
5862 return -EOVERFLOW;
5863 }
5864 }
5865 if (dev->flags ^ old_flags) {
5866 dev_change_rx_flags(dev, IFF_ALLMULTI);
5867 dev_set_rx_mode(dev);
5868 if (notify)
5869 __dev_notify_flags(dev, old_flags,
5870 dev->gflags ^ old_gflags);
5871 }
5872 return 0;
5873 }
5874
5875 /**
5876 * dev_set_allmulti - update allmulti count on a device
5877 * @dev: device
5878 * @inc: modifier
5879 *
5880 * Add or remove reception of all multicast frames to a device. While the
5881 * count in the device remains above zero the interface remains listening
5882 * to all interfaces. Once it hits zero the device reverts back to normal
5883 * filtering operation. A negative @inc value is used to drop the counter
5884 * when releasing a resource needing all multicasts.
5885 * Return 0 if successful or a negative errno code on error.
5886 */
5887
5888 int dev_set_allmulti(struct net_device *dev, int inc)
5889 {
5890 return __dev_set_allmulti(dev, inc, true);
5891 }
5892 EXPORT_SYMBOL(dev_set_allmulti);
5893
5894 /*
5895 * Upload unicast and multicast address lists to device and
5896 * configure RX filtering. When the device doesn't support unicast
5897 * filtering it is put in promiscuous mode while unicast addresses
5898 * are present.
5899 */
5900 void __dev_set_rx_mode(struct net_device *dev)
5901 {
5902 const struct net_device_ops *ops = dev->netdev_ops;
5903
5904 /* dev_open will call this function so the list will stay sane. */
5905 if (!(dev->flags&IFF_UP))
5906 return;
5907
5908 if (!netif_device_present(dev))
5909 return;
5910
5911 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5912 /* Unicast addresses changes may only happen under the rtnl,
5913 * therefore calling __dev_set_promiscuity here is safe.
5914 */
5915 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5916 __dev_set_promiscuity(dev, 1, false);
5917 dev->uc_promisc = true;
5918 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5919 __dev_set_promiscuity(dev, -1, false);
5920 dev->uc_promisc = false;
5921 }
5922 }
5923
5924 if (ops->ndo_set_rx_mode)
5925 ops->ndo_set_rx_mode(dev);
5926 }
5927
5928 void dev_set_rx_mode(struct net_device *dev)
5929 {
5930 netif_addr_lock_bh(dev);
5931 __dev_set_rx_mode(dev);
5932 netif_addr_unlock_bh(dev);
5933 }
5934
5935 /**
5936 * dev_get_flags - get flags reported to userspace
5937 * @dev: device
5938 *
5939 * Get the combination of flag bits exported through APIs to userspace.
5940 */
5941 unsigned int dev_get_flags(const struct net_device *dev)
5942 {
5943 unsigned int flags;
5944
5945 flags = (dev->flags & ~(IFF_PROMISC |
5946 IFF_ALLMULTI |
5947 IFF_RUNNING |
5948 IFF_LOWER_UP |
5949 IFF_DORMANT)) |
5950 (dev->gflags & (IFF_PROMISC |
5951 IFF_ALLMULTI));
5952
5953 if (netif_running(dev)) {
5954 if (netif_oper_up(dev))
5955 flags |= IFF_RUNNING;
5956 if (netif_carrier_ok(dev))
5957 flags |= IFF_LOWER_UP;
5958 if (netif_dormant(dev))
5959 flags |= IFF_DORMANT;
5960 }
5961
5962 return flags;
5963 }
5964 EXPORT_SYMBOL(dev_get_flags);
5965
5966 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5967 {
5968 unsigned int old_flags = dev->flags;
5969 int ret;
5970
5971 ASSERT_RTNL();
5972
5973 /*
5974 * Set the flags on our device.
5975 */
5976
5977 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5978 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5979 IFF_AUTOMEDIA)) |
5980 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5981 IFF_ALLMULTI));
5982
5983 /*
5984 * Load in the correct multicast list now the flags have changed.
5985 */
5986
5987 if ((old_flags ^ flags) & IFF_MULTICAST)
5988 dev_change_rx_flags(dev, IFF_MULTICAST);
5989
5990 dev_set_rx_mode(dev);
5991
5992 /*
5993 * Have we downed the interface. We handle IFF_UP ourselves
5994 * according to user attempts to set it, rather than blindly
5995 * setting it.
5996 */
5997
5998 ret = 0;
5999 if ((old_flags ^ flags) & IFF_UP)
6000 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6001
6002 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6003 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6004 unsigned int old_flags = dev->flags;
6005
6006 dev->gflags ^= IFF_PROMISC;
6007
6008 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6009 if (dev->flags != old_flags)
6010 dev_set_rx_mode(dev);
6011 }
6012
6013 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6014 is important. Some (broken) drivers set IFF_PROMISC, when
6015 IFF_ALLMULTI is requested not asking us and not reporting.
6016 */
6017 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6018 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6019
6020 dev->gflags ^= IFF_ALLMULTI;
6021 __dev_set_allmulti(dev, inc, false);
6022 }
6023
6024 return ret;
6025 }
6026
6027 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6028 unsigned int gchanges)
6029 {
6030 unsigned int changes = dev->flags ^ old_flags;
6031
6032 if (gchanges)
6033 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6034
6035 if (changes & IFF_UP) {
6036 if (dev->flags & IFF_UP)
6037 call_netdevice_notifiers(NETDEV_UP, dev);
6038 else
6039 call_netdevice_notifiers(NETDEV_DOWN, dev);
6040 }
6041
6042 if (dev->flags & IFF_UP &&
6043 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6044 struct netdev_notifier_change_info change_info;
6045
6046 change_info.flags_changed = changes;
6047 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6048 &change_info.info);
6049 }
6050 }
6051
6052 /**
6053 * dev_change_flags - change device settings
6054 * @dev: device
6055 * @flags: device state flags
6056 *
6057 * Change settings on device based state flags. The flags are
6058 * in the userspace exported format.
6059 */
6060 int dev_change_flags(struct net_device *dev, unsigned int flags)
6061 {
6062 int ret;
6063 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6064
6065 ret = __dev_change_flags(dev, flags);
6066 if (ret < 0)
6067 return ret;
6068
6069 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6070 __dev_notify_flags(dev, old_flags, changes);
6071 return ret;
6072 }
6073 EXPORT_SYMBOL(dev_change_flags);
6074
6075 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6076 {
6077 const struct net_device_ops *ops = dev->netdev_ops;
6078
6079 if (ops->ndo_change_mtu)
6080 return ops->ndo_change_mtu(dev, new_mtu);
6081
6082 dev->mtu = new_mtu;
6083 return 0;
6084 }
6085
6086 /**
6087 * dev_set_mtu - Change maximum transfer unit
6088 * @dev: device
6089 * @new_mtu: new transfer unit
6090 *
6091 * Change the maximum transfer size of the network device.
6092 */
6093 int dev_set_mtu(struct net_device *dev, int new_mtu)
6094 {
6095 int err, orig_mtu;
6096
6097 if (new_mtu == dev->mtu)
6098 return 0;
6099
6100 /* MTU must be positive. */
6101 if (new_mtu < 0)
6102 return -EINVAL;
6103
6104 if (!netif_device_present(dev))
6105 return -ENODEV;
6106
6107 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6108 err = notifier_to_errno(err);
6109 if (err)
6110 return err;
6111
6112 orig_mtu = dev->mtu;
6113 err = __dev_set_mtu(dev, new_mtu);
6114
6115 if (!err) {
6116 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6117 err = notifier_to_errno(err);
6118 if (err) {
6119 /* setting mtu back and notifying everyone again,
6120 * so that they have a chance to revert changes.
6121 */
6122 __dev_set_mtu(dev, orig_mtu);
6123 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6124 }
6125 }
6126 return err;
6127 }
6128 EXPORT_SYMBOL(dev_set_mtu);
6129
6130 /**
6131 * dev_set_group - Change group this device belongs to
6132 * @dev: device
6133 * @new_group: group this device should belong to
6134 */
6135 void dev_set_group(struct net_device *dev, int new_group)
6136 {
6137 dev->group = new_group;
6138 }
6139 EXPORT_SYMBOL(dev_set_group);
6140
6141 /**
6142 * dev_set_mac_address - Change Media Access Control Address
6143 * @dev: device
6144 * @sa: new address
6145 *
6146 * Change the hardware (MAC) address of the device
6147 */
6148 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6149 {
6150 const struct net_device_ops *ops = dev->netdev_ops;
6151 int err;
6152
6153 if (!ops->ndo_set_mac_address)
6154 return -EOPNOTSUPP;
6155 if (sa->sa_family != dev->type)
6156 return -EINVAL;
6157 if (!netif_device_present(dev))
6158 return -ENODEV;
6159 err = ops->ndo_set_mac_address(dev, sa);
6160 if (err)
6161 return err;
6162 dev->addr_assign_type = NET_ADDR_SET;
6163 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6164 add_device_randomness(dev->dev_addr, dev->addr_len);
6165 return 0;
6166 }
6167 EXPORT_SYMBOL(dev_set_mac_address);
6168
6169 /**
6170 * dev_change_carrier - Change device carrier
6171 * @dev: device
6172 * @new_carrier: new value
6173 *
6174 * Change device carrier
6175 */
6176 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6177 {
6178 const struct net_device_ops *ops = dev->netdev_ops;
6179
6180 if (!ops->ndo_change_carrier)
6181 return -EOPNOTSUPP;
6182 if (!netif_device_present(dev))
6183 return -ENODEV;
6184 return ops->ndo_change_carrier(dev, new_carrier);
6185 }
6186 EXPORT_SYMBOL(dev_change_carrier);
6187
6188 /**
6189 * dev_get_phys_port_id - Get device physical port ID
6190 * @dev: device
6191 * @ppid: port ID
6192 *
6193 * Get device physical port ID
6194 */
6195 int dev_get_phys_port_id(struct net_device *dev,
6196 struct netdev_phys_item_id *ppid)
6197 {
6198 const struct net_device_ops *ops = dev->netdev_ops;
6199
6200 if (!ops->ndo_get_phys_port_id)
6201 return -EOPNOTSUPP;
6202 return ops->ndo_get_phys_port_id(dev, ppid);
6203 }
6204 EXPORT_SYMBOL(dev_get_phys_port_id);
6205
6206 /**
6207 * dev_get_phys_port_name - Get device physical port name
6208 * @dev: device
6209 * @name: port name
6210 *
6211 * Get device physical port name
6212 */
6213 int dev_get_phys_port_name(struct net_device *dev,
6214 char *name, size_t len)
6215 {
6216 const struct net_device_ops *ops = dev->netdev_ops;
6217
6218 if (!ops->ndo_get_phys_port_name)
6219 return -EOPNOTSUPP;
6220 return ops->ndo_get_phys_port_name(dev, name, len);
6221 }
6222 EXPORT_SYMBOL(dev_get_phys_port_name);
6223
6224 /**
6225 * dev_change_proto_down - update protocol port state information
6226 * @dev: device
6227 * @proto_down: new value
6228 *
6229 * This info can be used by switch drivers to set the phys state of the
6230 * port.
6231 */
6232 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6233 {
6234 const struct net_device_ops *ops = dev->netdev_ops;
6235
6236 if (!ops->ndo_change_proto_down)
6237 return -EOPNOTSUPP;
6238 if (!netif_device_present(dev))
6239 return -ENODEV;
6240 return ops->ndo_change_proto_down(dev, proto_down);
6241 }
6242 EXPORT_SYMBOL(dev_change_proto_down);
6243
6244 /**
6245 * dev_new_index - allocate an ifindex
6246 * @net: the applicable net namespace
6247 *
6248 * Returns a suitable unique value for a new device interface
6249 * number. The caller must hold the rtnl semaphore or the
6250 * dev_base_lock to be sure it remains unique.
6251 */
6252 static int dev_new_index(struct net *net)
6253 {
6254 int ifindex = net->ifindex;
6255 for (;;) {
6256 if (++ifindex <= 0)
6257 ifindex = 1;
6258 if (!__dev_get_by_index(net, ifindex))
6259 return net->ifindex = ifindex;
6260 }
6261 }
6262
6263 /* Delayed registration/unregisteration */
6264 static LIST_HEAD(net_todo_list);
6265 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6266
6267 static void net_set_todo(struct net_device *dev)
6268 {
6269 list_add_tail(&dev->todo_list, &net_todo_list);
6270 dev_net(dev)->dev_unreg_count++;
6271 }
6272
6273 static void rollback_registered_many(struct list_head *head)
6274 {
6275 struct net_device *dev, *tmp;
6276 LIST_HEAD(close_head);
6277
6278 BUG_ON(dev_boot_phase);
6279 ASSERT_RTNL();
6280
6281 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6282 /* Some devices call without registering
6283 * for initialization unwind. Remove those
6284 * devices and proceed with the remaining.
6285 */
6286 if (dev->reg_state == NETREG_UNINITIALIZED) {
6287 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6288 dev->name, dev);
6289
6290 WARN_ON(1);
6291 list_del(&dev->unreg_list);
6292 continue;
6293 }
6294 dev->dismantle = true;
6295 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6296 }
6297
6298 /* If device is running, close it first. */
6299 list_for_each_entry(dev, head, unreg_list)
6300 list_add_tail(&dev->close_list, &close_head);
6301 dev_close_many(&close_head, true);
6302
6303 list_for_each_entry(dev, head, unreg_list) {
6304 /* And unlink it from device chain. */
6305 unlist_netdevice(dev);
6306
6307 dev->reg_state = NETREG_UNREGISTERING;
6308 on_each_cpu(flush_backlog, dev, 1);
6309 }
6310
6311 synchronize_net();
6312
6313 list_for_each_entry(dev, head, unreg_list) {
6314 struct sk_buff *skb = NULL;
6315
6316 /* Shutdown queueing discipline. */
6317 dev_shutdown(dev);
6318
6319
6320 /* Notify protocols, that we are about to destroy
6321 this device. They should clean all the things.
6322 */
6323 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6324
6325 if (!dev->rtnl_link_ops ||
6326 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6327 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6328 GFP_KERNEL);
6329
6330 /*
6331 * Flush the unicast and multicast chains
6332 */
6333 dev_uc_flush(dev);
6334 dev_mc_flush(dev);
6335
6336 if (dev->netdev_ops->ndo_uninit)
6337 dev->netdev_ops->ndo_uninit(dev);
6338
6339 if (skb)
6340 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6341
6342 /* Notifier chain MUST detach us all upper devices. */
6343 WARN_ON(netdev_has_any_upper_dev(dev));
6344
6345 /* Remove entries from kobject tree */
6346 netdev_unregister_kobject(dev);
6347 #ifdef CONFIG_XPS
6348 /* Remove XPS queueing entries */
6349 netif_reset_xps_queues_gt(dev, 0);
6350 #endif
6351 }
6352
6353 synchronize_net();
6354
6355 list_for_each_entry(dev, head, unreg_list)
6356 dev_put(dev);
6357 }
6358
6359 static void rollback_registered(struct net_device *dev)
6360 {
6361 LIST_HEAD(single);
6362
6363 list_add(&dev->unreg_list, &single);
6364 rollback_registered_many(&single);
6365 list_del(&single);
6366 }
6367
6368 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6369 struct net_device *upper, netdev_features_t features)
6370 {
6371 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6372 netdev_features_t feature;
6373 int feature_bit;
6374
6375 for_each_netdev_feature(&upper_disables, feature_bit) {
6376 feature = __NETIF_F_BIT(feature_bit);
6377 if (!(upper->wanted_features & feature)
6378 && (features & feature)) {
6379 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6380 &feature, upper->name);
6381 features &= ~feature;
6382 }
6383 }
6384
6385 return features;
6386 }
6387
6388 static void netdev_sync_lower_features(struct net_device *upper,
6389 struct net_device *lower, netdev_features_t features)
6390 {
6391 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6392 netdev_features_t feature;
6393 int feature_bit;
6394
6395 for_each_netdev_feature(&upper_disables, feature_bit) {
6396 feature = __NETIF_F_BIT(feature_bit);
6397 if (!(features & feature) && (lower->features & feature)) {
6398 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6399 &feature, lower->name);
6400 lower->wanted_features &= ~feature;
6401 netdev_update_features(lower);
6402
6403 if (unlikely(lower->features & feature))
6404 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6405 &feature, lower->name);
6406 }
6407 }
6408 }
6409
6410 static netdev_features_t netdev_fix_features(struct net_device *dev,
6411 netdev_features_t features)
6412 {
6413 /* Fix illegal checksum combinations */
6414 if ((features & NETIF_F_HW_CSUM) &&
6415 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6416 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6417 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6418 }
6419
6420 /* TSO requires that SG is present as well. */
6421 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6422 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6423 features &= ~NETIF_F_ALL_TSO;
6424 }
6425
6426 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6427 !(features & NETIF_F_IP_CSUM)) {
6428 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6429 features &= ~NETIF_F_TSO;
6430 features &= ~NETIF_F_TSO_ECN;
6431 }
6432
6433 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6434 !(features & NETIF_F_IPV6_CSUM)) {
6435 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6436 features &= ~NETIF_F_TSO6;
6437 }
6438
6439 /* TSO ECN requires that TSO is present as well. */
6440 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6441 features &= ~NETIF_F_TSO_ECN;
6442
6443 /* Software GSO depends on SG. */
6444 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6445 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6446 features &= ~NETIF_F_GSO;
6447 }
6448
6449 /* UFO needs SG and checksumming */
6450 if (features & NETIF_F_UFO) {
6451 /* maybe split UFO into V4 and V6? */
6452 if (!((features & NETIF_F_GEN_CSUM) ||
6453 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6454 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6455 netdev_dbg(dev,
6456 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6457 features &= ~NETIF_F_UFO;
6458 }
6459
6460 if (!(features & NETIF_F_SG)) {
6461 netdev_dbg(dev,
6462 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6463 features &= ~NETIF_F_UFO;
6464 }
6465 }
6466
6467 #ifdef CONFIG_NET_RX_BUSY_POLL
6468 if (dev->netdev_ops->ndo_busy_poll)
6469 features |= NETIF_F_BUSY_POLL;
6470 else
6471 #endif
6472 features &= ~NETIF_F_BUSY_POLL;
6473
6474 return features;
6475 }
6476
6477 int __netdev_update_features(struct net_device *dev)
6478 {
6479 struct net_device *upper, *lower;
6480 netdev_features_t features;
6481 struct list_head *iter;
6482 int err = -1;
6483
6484 ASSERT_RTNL();
6485
6486 features = netdev_get_wanted_features(dev);
6487
6488 if (dev->netdev_ops->ndo_fix_features)
6489 features = dev->netdev_ops->ndo_fix_features(dev, features);
6490
6491 /* driver might be less strict about feature dependencies */
6492 features = netdev_fix_features(dev, features);
6493
6494 /* some features can't be enabled if they're off an an upper device */
6495 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6496 features = netdev_sync_upper_features(dev, upper, features);
6497
6498 if (dev->features == features)
6499 goto sync_lower;
6500
6501 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6502 &dev->features, &features);
6503
6504 if (dev->netdev_ops->ndo_set_features)
6505 err = dev->netdev_ops->ndo_set_features(dev, features);
6506 else
6507 err = 0;
6508
6509 if (unlikely(err < 0)) {
6510 netdev_err(dev,
6511 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6512 err, &features, &dev->features);
6513 /* return non-0 since some features might have changed and
6514 * it's better to fire a spurious notification than miss it
6515 */
6516 return -1;
6517 }
6518
6519 sync_lower:
6520 /* some features must be disabled on lower devices when disabled
6521 * on an upper device (think: bonding master or bridge)
6522 */
6523 netdev_for_each_lower_dev(dev, lower, iter)
6524 netdev_sync_lower_features(dev, lower, features);
6525
6526 if (!err)
6527 dev->features = features;
6528
6529 return err < 0 ? 0 : 1;
6530 }
6531
6532 /**
6533 * netdev_update_features - recalculate device features
6534 * @dev: the device to check
6535 *
6536 * Recalculate dev->features set and send notifications if it
6537 * has changed. Should be called after driver or hardware dependent
6538 * conditions might have changed that influence the features.
6539 */
6540 void netdev_update_features(struct net_device *dev)
6541 {
6542 if (__netdev_update_features(dev))
6543 netdev_features_change(dev);
6544 }
6545 EXPORT_SYMBOL(netdev_update_features);
6546
6547 /**
6548 * netdev_change_features - recalculate device features
6549 * @dev: the device to check
6550 *
6551 * Recalculate dev->features set and send notifications even
6552 * if they have not changed. Should be called instead of
6553 * netdev_update_features() if also dev->vlan_features might
6554 * have changed to allow the changes to be propagated to stacked
6555 * VLAN devices.
6556 */
6557 void netdev_change_features(struct net_device *dev)
6558 {
6559 __netdev_update_features(dev);
6560 netdev_features_change(dev);
6561 }
6562 EXPORT_SYMBOL(netdev_change_features);
6563
6564 /**
6565 * netif_stacked_transfer_operstate - transfer operstate
6566 * @rootdev: the root or lower level device to transfer state from
6567 * @dev: the device to transfer operstate to
6568 *
6569 * Transfer operational state from root to device. This is normally
6570 * called when a stacking relationship exists between the root
6571 * device and the device(a leaf device).
6572 */
6573 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6574 struct net_device *dev)
6575 {
6576 if (rootdev->operstate == IF_OPER_DORMANT)
6577 netif_dormant_on(dev);
6578 else
6579 netif_dormant_off(dev);
6580
6581 if (netif_carrier_ok(rootdev)) {
6582 if (!netif_carrier_ok(dev))
6583 netif_carrier_on(dev);
6584 } else {
6585 if (netif_carrier_ok(dev))
6586 netif_carrier_off(dev);
6587 }
6588 }
6589 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6590
6591 #ifdef CONFIG_SYSFS
6592 static int netif_alloc_rx_queues(struct net_device *dev)
6593 {
6594 unsigned int i, count = dev->num_rx_queues;
6595 struct netdev_rx_queue *rx;
6596 size_t sz = count * sizeof(*rx);
6597
6598 BUG_ON(count < 1);
6599
6600 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6601 if (!rx) {
6602 rx = vzalloc(sz);
6603 if (!rx)
6604 return -ENOMEM;
6605 }
6606 dev->_rx = rx;
6607
6608 for (i = 0; i < count; i++)
6609 rx[i].dev = dev;
6610 return 0;
6611 }
6612 #endif
6613
6614 static void netdev_init_one_queue(struct net_device *dev,
6615 struct netdev_queue *queue, void *_unused)
6616 {
6617 /* Initialize queue lock */
6618 spin_lock_init(&queue->_xmit_lock);
6619 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6620 queue->xmit_lock_owner = -1;
6621 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6622 queue->dev = dev;
6623 #ifdef CONFIG_BQL
6624 dql_init(&queue->dql, HZ);
6625 #endif
6626 }
6627
6628 static void netif_free_tx_queues(struct net_device *dev)
6629 {
6630 kvfree(dev->_tx);
6631 }
6632
6633 static int netif_alloc_netdev_queues(struct net_device *dev)
6634 {
6635 unsigned int count = dev->num_tx_queues;
6636 struct netdev_queue *tx;
6637 size_t sz = count * sizeof(*tx);
6638
6639 if (count < 1 || count > 0xffff)
6640 return -EINVAL;
6641
6642 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6643 if (!tx) {
6644 tx = vzalloc(sz);
6645 if (!tx)
6646 return -ENOMEM;
6647 }
6648 dev->_tx = tx;
6649
6650 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6651 spin_lock_init(&dev->tx_global_lock);
6652
6653 return 0;
6654 }
6655
6656 void netif_tx_stop_all_queues(struct net_device *dev)
6657 {
6658 unsigned int i;
6659
6660 for (i = 0; i < dev->num_tx_queues; i++) {
6661 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6662 netif_tx_stop_queue(txq);
6663 }
6664 }
6665 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6666
6667 /**
6668 * register_netdevice - register a network device
6669 * @dev: device to register
6670 *
6671 * Take a completed network device structure and add it to the kernel
6672 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6673 * chain. 0 is returned on success. A negative errno code is returned
6674 * on a failure to set up the device, or if the name is a duplicate.
6675 *
6676 * Callers must hold the rtnl semaphore. You may want
6677 * register_netdev() instead of this.
6678 *
6679 * BUGS:
6680 * The locking appears insufficient to guarantee two parallel registers
6681 * will not get the same name.
6682 */
6683
6684 int register_netdevice(struct net_device *dev)
6685 {
6686 int ret;
6687 struct net *net = dev_net(dev);
6688
6689 BUG_ON(dev_boot_phase);
6690 ASSERT_RTNL();
6691
6692 might_sleep();
6693
6694 /* When net_device's are persistent, this will be fatal. */
6695 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6696 BUG_ON(!net);
6697
6698 spin_lock_init(&dev->addr_list_lock);
6699 netdev_set_addr_lockdep_class(dev);
6700
6701 ret = dev_get_valid_name(net, dev, dev->name);
6702 if (ret < 0)
6703 goto out;
6704
6705 /* Init, if this function is available */
6706 if (dev->netdev_ops->ndo_init) {
6707 ret = dev->netdev_ops->ndo_init(dev);
6708 if (ret) {
6709 if (ret > 0)
6710 ret = -EIO;
6711 goto out;
6712 }
6713 }
6714
6715 if (((dev->hw_features | dev->features) &
6716 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6717 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6718 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6719 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6720 ret = -EINVAL;
6721 goto err_uninit;
6722 }
6723
6724 ret = -EBUSY;
6725 if (!dev->ifindex)
6726 dev->ifindex = dev_new_index(net);
6727 else if (__dev_get_by_index(net, dev->ifindex))
6728 goto err_uninit;
6729
6730 /* Transfer changeable features to wanted_features and enable
6731 * software offloads (GSO and GRO).
6732 */
6733 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6734 dev->features |= NETIF_F_SOFT_FEATURES;
6735 dev->wanted_features = dev->features & dev->hw_features;
6736
6737 if (!(dev->flags & IFF_LOOPBACK)) {
6738 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6739 }
6740
6741 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6742 */
6743 dev->vlan_features |= NETIF_F_HIGHDMA;
6744
6745 /* Make NETIF_F_SG inheritable to tunnel devices.
6746 */
6747 dev->hw_enc_features |= NETIF_F_SG;
6748
6749 /* Make NETIF_F_SG inheritable to MPLS.
6750 */
6751 dev->mpls_features |= NETIF_F_SG;
6752
6753 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6754 ret = notifier_to_errno(ret);
6755 if (ret)
6756 goto err_uninit;
6757
6758 ret = netdev_register_kobject(dev);
6759 if (ret)
6760 goto err_uninit;
6761 dev->reg_state = NETREG_REGISTERED;
6762
6763 __netdev_update_features(dev);
6764
6765 /*
6766 * Default initial state at registry is that the
6767 * device is present.
6768 */
6769
6770 set_bit(__LINK_STATE_PRESENT, &dev->state);
6771
6772 linkwatch_init_dev(dev);
6773
6774 dev_init_scheduler(dev);
6775 dev_hold(dev);
6776 list_netdevice(dev);
6777 add_device_randomness(dev->dev_addr, dev->addr_len);
6778
6779 /* If the device has permanent device address, driver should
6780 * set dev_addr and also addr_assign_type should be set to
6781 * NET_ADDR_PERM (default value).
6782 */
6783 if (dev->addr_assign_type == NET_ADDR_PERM)
6784 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6785
6786 /* Notify protocols, that a new device appeared. */
6787 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6788 ret = notifier_to_errno(ret);
6789 if (ret) {
6790 rollback_registered(dev);
6791 dev->reg_state = NETREG_UNREGISTERED;
6792 }
6793 /*
6794 * Prevent userspace races by waiting until the network
6795 * device is fully setup before sending notifications.
6796 */
6797 if (!dev->rtnl_link_ops ||
6798 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6799 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6800
6801 out:
6802 return ret;
6803
6804 err_uninit:
6805 if (dev->netdev_ops->ndo_uninit)
6806 dev->netdev_ops->ndo_uninit(dev);
6807 goto out;
6808 }
6809 EXPORT_SYMBOL(register_netdevice);
6810
6811 /**
6812 * init_dummy_netdev - init a dummy network device for NAPI
6813 * @dev: device to init
6814 *
6815 * This takes a network device structure and initialize the minimum
6816 * amount of fields so it can be used to schedule NAPI polls without
6817 * registering a full blown interface. This is to be used by drivers
6818 * that need to tie several hardware interfaces to a single NAPI
6819 * poll scheduler due to HW limitations.
6820 */
6821 int init_dummy_netdev(struct net_device *dev)
6822 {
6823 /* Clear everything. Note we don't initialize spinlocks
6824 * are they aren't supposed to be taken by any of the
6825 * NAPI code and this dummy netdev is supposed to be
6826 * only ever used for NAPI polls
6827 */
6828 memset(dev, 0, sizeof(struct net_device));
6829
6830 /* make sure we BUG if trying to hit standard
6831 * register/unregister code path
6832 */
6833 dev->reg_state = NETREG_DUMMY;
6834
6835 /* NAPI wants this */
6836 INIT_LIST_HEAD(&dev->napi_list);
6837
6838 /* a dummy interface is started by default */
6839 set_bit(__LINK_STATE_PRESENT, &dev->state);
6840 set_bit(__LINK_STATE_START, &dev->state);
6841
6842 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6843 * because users of this 'device' dont need to change
6844 * its refcount.
6845 */
6846
6847 return 0;
6848 }
6849 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6850
6851
6852 /**
6853 * register_netdev - register a network device
6854 * @dev: device to register
6855 *
6856 * Take a completed network device structure and add it to the kernel
6857 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6858 * chain. 0 is returned on success. A negative errno code is returned
6859 * on a failure to set up the device, or if the name is a duplicate.
6860 *
6861 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6862 * and expands the device name if you passed a format string to
6863 * alloc_netdev.
6864 */
6865 int register_netdev(struct net_device *dev)
6866 {
6867 int err;
6868
6869 rtnl_lock();
6870 err = register_netdevice(dev);
6871 rtnl_unlock();
6872 return err;
6873 }
6874 EXPORT_SYMBOL(register_netdev);
6875
6876 int netdev_refcnt_read(const struct net_device *dev)
6877 {
6878 int i, refcnt = 0;
6879
6880 for_each_possible_cpu(i)
6881 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6882 return refcnt;
6883 }
6884 EXPORT_SYMBOL(netdev_refcnt_read);
6885
6886 /**
6887 * netdev_wait_allrefs - wait until all references are gone.
6888 * @dev: target net_device
6889 *
6890 * This is called when unregistering network devices.
6891 *
6892 * Any protocol or device that holds a reference should register
6893 * for netdevice notification, and cleanup and put back the
6894 * reference if they receive an UNREGISTER event.
6895 * We can get stuck here if buggy protocols don't correctly
6896 * call dev_put.
6897 */
6898 static void netdev_wait_allrefs(struct net_device *dev)
6899 {
6900 unsigned long rebroadcast_time, warning_time;
6901 int refcnt;
6902
6903 linkwatch_forget_dev(dev);
6904
6905 rebroadcast_time = warning_time = jiffies;
6906 refcnt = netdev_refcnt_read(dev);
6907
6908 while (refcnt != 0) {
6909 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6910 rtnl_lock();
6911
6912 /* Rebroadcast unregister notification */
6913 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6914
6915 __rtnl_unlock();
6916 rcu_barrier();
6917 rtnl_lock();
6918
6919 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6920 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6921 &dev->state)) {
6922 /* We must not have linkwatch events
6923 * pending on unregister. If this
6924 * happens, we simply run the queue
6925 * unscheduled, resulting in a noop
6926 * for this device.
6927 */
6928 linkwatch_run_queue();
6929 }
6930
6931 __rtnl_unlock();
6932
6933 rebroadcast_time = jiffies;
6934 }
6935
6936 msleep(250);
6937
6938 refcnt = netdev_refcnt_read(dev);
6939
6940 if (time_after(jiffies, warning_time + 10 * HZ)) {
6941 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6942 dev->name, refcnt);
6943 warning_time = jiffies;
6944 }
6945 }
6946 }
6947
6948 /* The sequence is:
6949 *
6950 * rtnl_lock();
6951 * ...
6952 * register_netdevice(x1);
6953 * register_netdevice(x2);
6954 * ...
6955 * unregister_netdevice(y1);
6956 * unregister_netdevice(y2);
6957 * ...
6958 * rtnl_unlock();
6959 * free_netdev(y1);
6960 * free_netdev(y2);
6961 *
6962 * We are invoked by rtnl_unlock().
6963 * This allows us to deal with problems:
6964 * 1) We can delete sysfs objects which invoke hotplug
6965 * without deadlocking with linkwatch via keventd.
6966 * 2) Since we run with the RTNL semaphore not held, we can sleep
6967 * safely in order to wait for the netdev refcnt to drop to zero.
6968 *
6969 * We must not return until all unregister events added during
6970 * the interval the lock was held have been completed.
6971 */
6972 void netdev_run_todo(void)
6973 {
6974 struct list_head list;
6975
6976 /* Snapshot list, allow later requests */
6977 list_replace_init(&net_todo_list, &list);
6978
6979 __rtnl_unlock();
6980
6981
6982 /* Wait for rcu callbacks to finish before next phase */
6983 if (!list_empty(&list))
6984 rcu_barrier();
6985
6986 while (!list_empty(&list)) {
6987 struct net_device *dev
6988 = list_first_entry(&list, struct net_device, todo_list);
6989 list_del(&dev->todo_list);
6990
6991 rtnl_lock();
6992 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6993 __rtnl_unlock();
6994
6995 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6996 pr_err("network todo '%s' but state %d\n",
6997 dev->name, dev->reg_state);
6998 dump_stack();
6999 continue;
7000 }
7001
7002 dev->reg_state = NETREG_UNREGISTERED;
7003
7004 netdev_wait_allrefs(dev);
7005
7006 /* paranoia */
7007 BUG_ON(netdev_refcnt_read(dev));
7008 BUG_ON(!list_empty(&dev->ptype_all));
7009 BUG_ON(!list_empty(&dev->ptype_specific));
7010 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7011 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7012 WARN_ON(dev->dn_ptr);
7013
7014 if (dev->destructor)
7015 dev->destructor(dev);
7016
7017 /* Report a network device has been unregistered */
7018 rtnl_lock();
7019 dev_net(dev)->dev_unreg_count--;
7020 __rtnl_unlock();
7021 wake_up(&netdev_unregistering_wq);
7022
7023 /* Free network device */
7024 kobject_put(&dev->dev.kobj);
7025 }
7026 }
7027
7028 /* Convert net_device_stats to rtnl_link_stats64. They have the same
7029 * fields in the same order, with only the type differing.
7030 */
7031 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7032 const struct net_device_stats *netdev_stats)
7033 {
7034 #if BITS_PER_LONG == 64
7035 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7036 memcpy(stats64, netdev_stats, sizeof(*stats64));
7037 #else
7038 size_t i, n = sizeof(*stats64) / sizeof(u64);
7039 const unsigned long *src = (const unsigned long *)netdev_stats;
7040 u64 *dst = (u64 *)stats64;
7041
7042 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7043 sizeof(*stats64) / sizeof(u64));
7044 for (i = 0; i < n; i++)
7045 dst[i] = src[i];
7046 #endif
7047 }
7048 EXPORT_SYMBOL(netdev_stats_to_stats64);
7049
7050 /**
7051 * dev_get_stats - get network device statistics
7052 * @dev: device to get statistics from
7053 * @storage: place to store stats
7054 *
7055 * Get network statistics from device. Return @storage.
7056 * The device driver may provide its own method by setting
7057 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7058 * otherwise the internal statistics structure is used.
7059 */
7060 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7061 struct rtnl_link_stats64 *storage)
7062 {
7063 const struct net_device_ops *ops = dev->netdev_ops;
7064
7065 if (ops->ndo_get_stats64) {
7066 memset(storage, 0, sizeof(*storage));
7067 ops->ndo_get_stats64(dev, storage);
7068 } else if (ops->ndo_get_stats) {
7069 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7070 } else {
7071 netdev_stats_to_stats64(storage, &dev->stats);
7072 }
7073 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7074 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7075 return storage;
7076 }
7077 EXPORT_SYMBOL(dev_get_stats);
7078
7079 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7080 {
7081 struct netdev_queue *queue = dev_ingress_queue(dev);
7082
7083 #ifdef CONFIG_NET_CLS_ACT
7084 if (queue)
7085 return queue;
7086 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7087 if (!queue)
7088 return NULL;
7089 netdev_init_one_queue(dev, queue, NULL);
7090 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7091 queue->qdisc_sleeping = &noop_qdisc;
7092 rcu_assign_pointer(dev->ingress_queue, queue);
7093 #endif
7094 return queue;
7095 }
7096
7097 static const struct ethtool_ops default_ethtool_ops;
7098
7099 void netdev_set_default_ethtool_ops(struct net_device *dev,
7100 const struct ethtool_ops *ops)
7101 {
7102 if (dev->ethtool_ops == &default_ethtool_ops)
7103 dev->ethtool_ops = ops;
7104 }
7105 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7106
7107 void netdev_freemem(struct net_device *dev)
7108 {
7109 char *addr = (char *)dev - dev->padded;
7110
7111 kvfree(addr);
7112 }
7113
7114 /**
7115 * alloc_netdev_mqs - allocate network device
7116 * @sizeof_priv: size of private data to allocate space for
7117 * @name: device name format string
7118 * @name_assign_type: origin of device name
7119 * @setup: callback to initialize device
7120 * @txqs: the number of TX subqueues to allocate
7121 * @rxqs: the number of RX subqueues to allocate
7122 *
7123 * Allocates a struct net_device with private data area for driver use
7124 * and performs basic initialization. Also allocates subqueue structs
7125 * for each queue on the device.
7126 */
7127 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7128 unsigned char name_assign_type,
7129 void (*setup)(struct net_device *),
7130 unsigned int txqs, unsigned int rxqs)
7131 {
7132 struct net_device *dev;
7133 size_t alloc_size;
7134 struct net_device *p;
7135
7136 BUG_ON(strlen(name) >= sizeof(dev->name));
7137
7138 if (txqs < 1) {
7139 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7140 return NULL;
7141 }
7142
7143 #ifdef CONFIG_SYSFS
7144 if (rxqs < 1) {
7145 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7146 return NULL;
7147 }
7148 #endif
7149
7150 alloc_size = sizeof(struct net_device);
7151 if (sizeof_priv) {
7152 /* ensure 32-byte alignment of private area */
7153 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7154 alloc_size += sizeof_priv;
7155 }
7156 /* ensure 32-byte alignment of whole construct */
7157 alloc_size += NETDEV_ALIGN - 1;
7158
7159 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7160 if (!p)
7161 p = vzalloc(alloc_size);
7162 if (!p)
7163 return NULL;
7164
7165 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7166 dev->padded = (char *)dev - (char *)p;
7167
7168 dev->pcpu_refcnt = alloc_percpu(int);
7169 if (!dev->pcpu_refcnt)
7170 goto free_dev;
7171
7172 if (dev_addr_init(dev))
7173 goto free_pcpu;
7174
7175 dev_mc_init(dev);
7176 dev_uc_init(dev);
7177
7178 dev_net_set(dev, &init_net);
7179
7180 dev->gso_max_size = GSO_MAX_SIZE;
7181 dev->gso_max_segs = GSO_MAX_SEGS;
7182 dev->gso_min_segs = 0;
7183
7184 INIT_LIST_HEAD(&dev->napi_list);
7185 INIT_LIST_HEAD(&dev->unreg_list);
7186 INIT_LIST_HEAD(&dev->close_list);
7187 INIT_LIST_HEAD(&dev->link_watch_list);
7188 INIT_LIST_HEAD(&dev->adj_list.upper);
7189 INIT_LIST_HEAD(&dev->adj_list.lower);
7190 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7191 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7192 INIT_LIST_HEAD(&dev->ptype_all);
7193 INIT_LIST_HEAD(&dev->ptype_specific);
7194 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7195 setup(dev);
7196
7197 if (!dev->tx_queue_len)
7198 dev->priv_flags |= IFF_NO_QUEUE;
7199
7200 dev->num_tx_queues = txqs;
7201 dev->real_num_tx_queues = txqs;
7202 if (netif_alloc_netdev_queues(dev))
7203 goto free_all;
7204
7205 #ifdef CONFIG_SYSFS
7206 dev->num_rx_queues = rxqs;
7207 dev->real_num_rx_queues = rxqs;
7208 if (netif_alloc_rx_queues(dev))
7209 goto free_all;
7210 #endif
7211
7212 strcpy(dev->name, name);
7213 dev->name_assign_type = name_assign_type;
7214 dev->group = INIT_NETDEV_GROUP;
7215 if (!dev->ethtool_ops)
7216 dev->ethtool_ops = &default_ethtool_ops;
7217
7218 nf_hook_ingress_init(dev);
7219
7220 return dev;
7221
7222 free_all:
7223 free_netdev(dev);
7224 return NULL;
7225
7226 free_pcpu:
7227 free_percpu(dev->pcpu_refcnt);
7228 free_dev:
7229 netdev_freemem(dev);
7230 return NULL;
7231 }
7232 EXPORT_SYMBOL(alloc_netdev_mqs);
7233
7234 /**
7235 * free_netdev - free network device
7236 * @dev: device
7237 *
7238 * This function does the last stage of destroying an allocated device
7239 * interface. The reference to the device object is released.
7240 * If this is the last reference then it will be freed.
7241 * Must be called in process context.
7242 */
7243 void free_netdev(struct net_device *dev)
7244 {
7245 struct napi_struct *p, *n;
7246
7247 might_sleep();
7248 netif_free_tx_queues(dev);
7249 #ifdef CONFIG_SYSFS
7250 kvfree(dev->_rx);
7251 #endif
7252
7253 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7254
7255 /* Flush device addresses */
7256 dev_addr_flush(dev);
7257
7258 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7259 netif_napi_del(p);
7260
7261 free_percpu(dev->pcpu_refcnt);
7262 dev->pcpu_refcnt = NULL;
7263
7264 /* Compatibility with error handling in drivers */
7265 if (dev->reg_state == NETREG_UNINITIALIZED) {
7266 netdev_freemem(dev);
7267 return;
7268 }
7269
7270 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7271 dev->reg_state = NETREG_RELEASED;
7272
7273 /* will free via device release */
7274 put_device(&dev->dev);
7275 }
7276 EXPORT_SYMBOL(free_netdev);
7277
7278 /**
7279 * synchronize_net - Synchronize with packet receive processing
7280 *
7281 * Wait for packets currently being received to be done.
7282 * Does not block later packets from starting.
7283 */
7284 void synchronize_net(void)
7285 {
7286 might_sleep();
7287 if (rtnl_is_locked())
7288 synchronize_rcu_expedited();
7289 else
7290 synchronize_rcu();
7291 }
7292 EXPORT_SYMBOL(synchronize_net);
7293
7294 /**
7295 * unregister_netdevice_queue - remove device from the kernel
7296 * @dev: device
7297 * @head: list
7298 *
7299 * This function shuts down a device interface and removes it
7300 * from the kernel tables.
7301 * If head not NULL, device is queued to be unregistered later.
7302 *
7303 * Callers must hold the rtnl semaphore. You may want
7304 * unregister_netdev() instead of this.
7305 */
7306
7307 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7308 {
7309 ASSERT_RTNL();
7310
7311 if (head) {
7312 list_move_tail(&dev->unreg_list, head);
7313 } else {
7314 rollback_registered(dev);
7315 /* Finish processing unregister after unlock */
7316 net_set_todo(dev);
7317 }
7318 }
7319 EXPORT_SYMBOL(unregister_netdevice_queue);
7320
7321 /**
7322 * unregister_netdevice_many - unregister many devices
7323 * @head: list of devices
7324 *
7325 * Note: As most callers use a stack allocated list_head,
7326 * we force a list_del() to make sure stack wont be corrupted later.
7327 */
7328 void unregister_netdevice_many(struct list_head *head)
7329 {
7330 struct net_device *dev;
7331
7332 if (!list_empty(head)) {
7333 rollback_registered_many(head);
7334 list_for_each_entry(dev, head, unreg_list)
7335 net_set_todo(dev);
7336 list_del(head);
7337 }
7338 }
7339 EXPORT_SYMBOL(unregister_netdevice_many);
7340
7341 /**
7342 * unregister_netdev - remove device from the kernel
7343 * @dev: device
7344 *
7345 * This function shuts down a device interface and removes it
7346 * from the kernel tables.
7347 *
7348 * This is just a wrapper for unregister_netdevice that takes
7349 * the rtnl semaphore. In general you want to use this and not
7350 * unregister_netdevice.
7351 */
7352 void unregister_netdev(struct net_device *dev)
7353 {
7354 rtnl_lock();
7355 unregister_netdevice(dev);
7356 rtnl_unlock();
7357 }
7358 EXPORT_SYMBOL(unregister_netdev);
7359
7360 /**
7361 * dev_change_net_namespace - move device to different nethost namespace
7362 * @dev: device
7363 * @net: network namespace
7364 * @pat: If not NULL name pattern to try if the current device name
7365 * is already taken in the destination network namespace.
7366 *
7367 * This function shuts down a device interface and moves it
7368 * to a new network namespace. On success 0 is returned, on
7369 * a failure a netagive errno code is returned.
7370 *
7371 * Callers must hold the rtnl semaphore.
7372 */
7373
7374 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7375 {
7376 int err;
7377
7378 ASSERT_RTNL();
7379
7380 /* Don't allow namespace local devices to be moved. */
7381 err = -EINVAL;
7382 if (dev->features & NETIF_F_NETNS_LOCAL)
7383 goto out;
7384
7385 /* Ensure the device has been registrered */
7386 if (dev->reg_state != NETREG_REGISTERED)
7387 goto out;
7388
7389 /* Get out if there is nothing todo */
7390 err = 0;
7391 if (net_eq(dev_net(dev), net))
7392 goto out;
7393
7394 /* Pick the destination device name, and ensure
7395 * we can use it in the destination network namespace.
7396 */
7397 err = -EEXIST;
7398 if (__dev_get_by_name(net, dev->name)) {
7399 /* We get here if we can't use the current device name */
7400 if (!pat)
7401 goto out;
7402 if (dev_get_valid_name(net, dev, pat) < 0)
7403 goto out;
7404 }
7405
7406 /*
7407 * And now a mini version of register_netdevice unregister_netdevice.
7408 */
7409
7410 /* If device is running close it first. */
7411 dev_close(dev);
7412
7413 /* And unlink it from device chain */
7414 err = -ENODEV;
7415 unlist_netdevice(dev);
7416
7417 synchronize_net();
7418
7419 /* Shutdown queueing discipline. */
7420 dev_shutdown(dev);
7421
7422 /* Notify protocols, that we are about to destroy
7423 this device. They should clean all the things.
7424
7425 Note that dev->reg_state stays at NETREG_REGISTERED.
7426 This is wanted because this way 8021q and macvlan know
7427 the device is just moving and can keep their slaves up.
7428 */
7429 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7430 rcu_barrier();
7431 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7432 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7433
7434 /*
7435 * Flush the unicast and multicast chains
7436 */
7437 dev_uc_flush(dev);
7438 dev_mc_flush(dev);
7439
7440 /* Send a netdev-removed uevent to the old namespace */
7441 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7442 netdev_adjacent_del_links(dev);
7443
7444 /* Actually switch the network namespace */
7445 dev_net_set(dev, net);
7446
7447 /* If there is an ifindex conflict assign a new one */
7448 if (__dev_get_by_index(net, dev->ifindex))
7449 dev->ifindex = dev_new_index(net);
7450
7451 /* Send a netdev-add uevent to the new namespace */
7452 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7453 netdev_adjacent_add_links(dev);
7454
7455 /* Fixup kobjects */
7456 err = device_rename(&dev->dev, dev->name);
7457 WARN_ON(err);
7458
7459 /* Add the device back in the hashes */
7460 list_netdevice(dev);
7461
7462 /* Notify protocols, that a new device appeared. */
7463 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7464
7465 /*
7466 * Prevent userspace races by waiting until the network
7467 * device is fully setup before sending notifications.
7468 */
7469 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7470
7471 synchronize_net();
7472 err = 0;
7473 out:
7474 return err;
7475 }
7476 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7477
7478 static int dev_cpu_callback(struct notifier_block *nfb,
7479 unsigned long action,
7480 void *ocpu)
7481 {
7482 struct sk_buff **list_skb;
7483 struct sk_buff *skb;
7484 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7485 struct softnet_data *sd, *oldsd;
7486
7487 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7488 return NOTIFY_OK;
7489
7490 local_irq_disable();
7491 cpu = smp_processor_id();
7492 sd = &per_cpu(softnet_data, cpu);
7493 oldsd = &per_cpu(softnet_data, oldcpu);
7494
7495 /* Find end of our completion_queue. */
7496 list_skb = &sd->completion_queue;
7497 while (*list_skb)
7498 list_skb = &(*list_skb)->next;
7499 /* Append completion queue from offline CPU. */
7500 *list_skb = oldsd->completion_queue;
7501 oldsd->completion_queue = NULL;
7502
7503 /* Append output queue from offline CPU. */
7504 if (oldsd->output_queue) {
7505 *sd->output_queue_tailp = oldsd->output_queue;
7506 sd->output_queue_tailp = oldsd->output_queue_tailp;
7507 oldsd->output_queue = NULL;
7508 oldsd->output_queue_tailp = &oldsd->output_queue;
7509 }
7510 /* Append NAPI poll list from offline CPU, with one exception :
7511 * process_backlog() must be called by cpu owning percpu backlog.
7512 * We properly handle process_queue & input_pkt_queue later.
7513 */
7514 while (!list_empty(&oldsd->poll_list)) {
7515 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7516 struct napi_struct,
7517 poll_list);
7518
7519 list_del_init(&napi->poll_list);
7520 if (napi->poll == process_backlog)
7521 napi->state = 0;
7522 else
7523 ____napi_schedule(sd, napi);
7524 }
7525
7526 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7527 local_irq_enable();
7528
7529 /* Process offline CPU's input_pkt_queue */
7530 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7531 netif_rx_ni(skb);
7532 input_queue_head_incr(oldsd);
7533 }
7534 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7535 netif_rx_ni(skb);
7536 input_queue_head_incr(oldsd);
7537 }
7538
7539 return NOTIFY_OK;
7540 }
7541
7542
7543 /**
7544 * netdev_increment_features - increment feature set by one
7545 * @all: current feature set
7546 * @one: new feature set
7547 * @mask: mask feature set
7548 *
7549 * Computes a new feature set after adding a device with feature set
7550 * @one to the master device with current feature set @all. Will not
7551 * enable anything that is off in @mask. Returns the new feature set.
7552 */
7553 netdev_features_t netdev_increment_features(netdev_features_t all,
7554 netdev_features_t one, netdev_features_t mask)
7555 {
7556 if (mask & NETIF_F_GEN_CSUM)
7557 mask |= NETIF_F_ALL_CSUM;
7558 mask |= NETIF_F_VLAN_CHALLENGED;
7559
7560 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7561 all &= one | ~NETIF_F_ALL_FOR_ALL;
7562
7563 /* If one device supports hw checksumming, set for all. */
7564 if (all & NETIF_F_GEN_CSUM)
7565 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7566
7567 return all;
7568 }
7569 EXPORT_SYMBOL(netdev_increment_features);
7570
7571 static struct hlist_head * __net_init netdev_create_hash(void)
7572 {
7573 int i;
7574 struct hlist_head *hash;
7575
7576 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7577 if (hash != NULL)
7578 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7579 INIT_HLIST_HEAD(&hash[i]);
7580
7581 return hash;
7582 }
7583
7584 /* Initialize per network namespace state */
7585 static int __net_init netdev_init(struct net *net)
7586 {
7587 if (net != &init_net)
7588 INIT_LIST_HEAD(&net->dev_base_head);
7589
7590 net->dev_name_head = netdev_create_hash();
7591 if (net->dev_name_head == NULL)
7592 goto err_name;
7593
7594 net->dev_index_head = netdev_create_hash();
7595 if (net->dev_index_head == NULL)
7596 goto err_idx;
7597
7598 return 0;
7599
7600 err_idx:
7601 kfree(net->dev_name_head);
7602 err_name:
7603 return -ENOMEM;
7604 }
7605
7606 /**
7607 * netdev_drivername - network driver for the device
7608 * @dev: network device
7609 *
7610 * Determine network driver for device.
7611 */
7612 const char *netdev_drivername(const struct net_device *dev)
7613 {
7614 const struct device_driver *driver;
7615 const struct device *parent;
7616 const char *empty = "";
7617
7618 parent = dev->dev.parent;
7619 if (!parent)
7620 return empty;
7621
7622 driver = parent->driver;
7623 if (driver && driver->name)
7624 return driver->name;
7625 return empty;
7626 }
7627
7628 static void __netdev_printk(const char *level, const struct net_device *dev,
7629 struct va_format *vaf)
7630 {
7631 if (dev && dev->dev.parent) {
7632 dev_printk_emit(level[1] - '0',
7633 dev->dev.parent,
7634 "%s %s %s%s: %pV",
7635 dev_driver_string(dev->dev.parent),
7636 dev_name(dev->dev.parent),
7637 netdev_name(dev), netdev_reg_state(dev),
7638 vaf);
7639 } else if (dev) {
7640 printk("%s%s%s: %pV",
7641 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7642 } else {
7643 printk("%s(NULL net_device): %pV", level, vaf);
7644 }
7645 }
7646
7647 void netdev_printk(const char *level, const struct net_device *dev,
7648 const char *format, ...)
7649 {
7650 struct va_format vaf;
7651 va_list args;
7652
7653 va_start(args, format);
7654
7655 vaf.fmt = format;
7656 vaf.va = &args;
7657
7658 __netdev_printk(level, dev, &vaf);
7659
7660 va_end(args);
7661 }
7662 EXPORT_SYMBOL(netdev_printk);
7663
7664 #define define_netdev_printk_level(func, level) \
7665 void func(const struct net_device *dev, const char *fmt, ...) \
7666 { \
7667 struct va_format vaf; \
7668 va_list args; \
7669 \
7670 va_start(args, fmt); \
7671 \
7672 vaf.fmt = fmt; \
7673 vaf.va = &args; \
7674 \
7675 __netdev_printk(level, dev, &vaf); \
7676 \
7677 va_end(args); \
7678 } \
7679 EXPORT_SYMBOL(func);
7680
7681 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7682 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7683 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7684 define_netdev_printk_level(netdev_err, KERN_ERR);
7685 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7686 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7687 define_netdev_printk_level(netdev_info, KERN_INFO);
7688
7689 static void __net_exit netdev_exit(struct net *net)
7690 {
7691 kfree(net->dev_name_head);
7692 kfree(net->dev_index_head);
7693 }
7694
7695 static struct pernet_operations __net_initdata netdev_net_ops = {
7696 .init = netdev_init,
7697 .exit = netdev_exit,
7698 };
7699
7700 static void __net_exit default_device_exit(struct net *net)
7701 {
7702 struct net_device *dev, *aux;
7703 /*
7704 * Push all migratable network devices back to the
7705 * initial network namespace
7706 */
7707 rtnl_lock();
7708 for_each_netdev_safe(net, dev, aux) {
7709 int err;
7710 char fb_name[IFNAMSIZ];
7711
7712 /* Ignore unmoveable devices (i.e. loopback) */
7713 if (dev->features & NETIF_F_NETNS_LOCAL)
7714 continue;
7715
7716 /* Leave virtual devices for the generic cleanup */
7717 if (dev->rtnl_link_ops)
7718 continue;
7719
7720 /* Push remaining network devices to init_net */
7721 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7722 err = dev_change_net_namespace(dev, &init_net, fb_name);
7723 if (err) {
7724 pr_emerg("%s: failed to move %s to init_net: %d\n",
7725 __func__, dev->name, err);
7726 BUG();
7727 }
7728 }
7729 rtnl_unlock();
7730 }
7731
7732 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7733 {
7734 /* Return with the rtnl_lock held when there are no network
7735 * devices unregistering in any network namespace in net_list.
7736 */
7737 struct net *net;
7738 bool unregistering;
7739 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7740
7741 add_wait_queue(&netdev_unregistering_wq, &wait);
7742 for (;;) {
7743 unregistering = false;
7744 rtnl_lock();
7745 list_for_each_entry(net, net_list, exit_list) {
7746 if (net->dev_unreg_count > 0) {
7747 unregistering = true;
7748 break;
7749 }
7750 }
7751 if (!unregistering)
7752 break;
7753 __rtnl_unlock();
7754
7755 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7756 }
7757 remove_wait_queue(&netdev_unregistering_wq, &wait);
7758 }
7759
7760 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7761 {
7762 /* At exit all network devices most be removed from a network
7763 * namespace. Do this in the reverse order of registration.
7764 * Do this across as many network namespaces as possible to
7765 * improve batching efficiency.
7766 */
7767 struct net_device *dev;
7768 struct net *net;
7769 LIST_HEAD(dev_kill_list);
7770
7771 /* To prevent network device cleanup code from dereferencing
7772 * loopback devices or network devices that have been freed
7773 * wait here for all pending unregistrations to complete,
7774 * before unregistring the loopback device and allowing the
7775 * network namespace be freed.
7776 *
7777 * The netdev todo list containing all network devices
7778 * unregistrations that happen in default_device_exit_batch
7779 * will run in the rtnl_unlock() at the end of
7780 * default_device_exit_batch.
7781 */
7782 rtnl_lock_unregistering(net_list);
7783 list_for_each_entry(net, net_list, exit_list) {
7784 for_each_netdev_reverse(net, dev) {
7785 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7786 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7787 else
7788 unregister_netdevice_queue(dev, &dev_kill_list);
7789 }
7790 }
7791 unregister_netdevice_many(&dev_kill_list);
7792 rtnl_unlock();
7793 }
7794
7795 static struct pernet_operations __net_initdata default_device_ops = {
7796 .exit = default_device_exit,
7797 .exit_batch = default_device_exit_batch,
7798 };
7799
7800 /*
7801 * Initialize the DEV module. At boot time this walks the device list and
7802 * unhooks any devices that fail to initialise (normally hardware not
7803 * present) and leaves us with a valid list of present and active devices.
7804 *
7805 */
7806
7807 /*
7808 * This is called single threaded during boot, so no need
7809 * to take the rtnl semaphore.
7810 */
7811 static int __init net_dev_init(void)
7812 {
7813 int i, rc = -ENOMEM;
7814
7815 BUG_ON(!dev_boot_phase);
7816
7817 if (dev_proc_init())
7818 goto out;
7819
7820 if (netdev_kobject_init())
7821 goto out;
7822
7823 INIT_LIST_HEAD(&ptype_all);
7824 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7825 INIT_LIST_HEAD(&ptype_base[i]);
7826
7827 INIT_LIST_HEAD(&offload_base);
7828
7829 if (register_pernet_subsys(&netdev_net_ops))
7830 goto out;
7831
7832 /*
7833 * Initialise the packet receive queues.
7834 */
7835
7836 for_each_possible_cpu(i) {
7837 struct softnet_data *sd = &per_cpu(softnet_data, i);
7838
7839 skb_queue_head_init(&sd->input_pkt_queue);
7840 skb_queue_head_init(&sd->process_queue);
7841 INIT_LIST_HEAD(&sd->poll_list);
7842 sd->output_queue_tailp = &sd->output_queue;
7843 #ifdef CONFIG_RPS
7844 sd->csd.func = rps_trigger_softirq;
7845 sd->csd.info = sd;
7846 sd->cpu = i;
7847 #endif
7848
7849 sd->backlog.poll = process_backlog;
7850 sd->backlog.weight = weight_p;
7851 }
7852
7853 dev_boot_phase = 0;
7854
7855 /* The loopback device is special if any other network devices
7856 * is present in a network namespace the loopback device must
7857 * be present. Since we now dynamically allocate and free the
7858 * loopback device ensure this invariant is maintained by
7859 * keeping the loopback device as the first device on the
7860 * list of network devices. Ensuring the loopback devices
7861 * is the first device that appears and the last network device
7862 * that disappears.
7863 */
7864 if (register_pernet_device(&loopback_net_ops))
7865 goto out;
7866
7867 if (register_pernet_device(&default_device_ops))
7868 goto out;
7869
7870 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7871 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7872
7873 hotcpu_notifier(dev_cpu_callback, 0);
7874 dst_subsys_init();
7875 rc = 0;
7876 out:
7877 return rc;
7878 }
7879
7880 subsys_initcall(net_dev_init);
This page took 0.181146 seconds and 6 git commands to generate.