Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)) ||
1461 ((features & NETIF_F_FCOE_CRC) &&
1462 protocol == htons(ETH_P_FCOE)));
1463 }
1464
1465 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1466 {
1467 if (can_checksum_protocol(dev->features, skb->protocol))
1468 return true;
1469
1470 if (skb->protocol == htons(ETH_P_8021Q)) {
1471 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1472 if (can_checksum_protocol(dev->features & dev->vlan_features,
1473 veh->h_vlan_encapsulated_proto))
1474 return true;
1475 }
1476
1477 return false;
1478 }
1479
1480 /*
1481 * Invalidate hardware checksum when packet is to be mangled, and
1482 * complete checksum manually on outgoing path.
1483 */
1484 int skb_checksum_help(struct sk_buff *skb)
1485 {
1486 __wsum csum;
1487 int ret = 0, offset;
1488
1489 if (skb->ip_summed == CHECKSUM_COMPLETE)
1490 goto out_set_summed;
1491
1492 if (unlikely(skb_shinfo(skb)->gso_size)) {
1493 /* Let GSO fix up the checksum. */
1494 goto out_set_summed;
1495 }
1496
1497 offset = skb->csum_start - skb_headroom(skb);
1498 BUG_ON(offset >= skb_headlen(skb));
1499 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1500
1501 offset += skb->csum_offset;
1502 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1503
1504 if (skb_cloned(skb) &&
1505 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1506 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1507 if (ret)
1508 goto out;
1509 }
1510
1511 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1512 out_set_summed:
1513 skb->ip_summed = CHECKSUM_NONE;
1514 out:
1515 return ret;
1516 }
1517
1518 /**
1519 * skb_gso_segment - Perform segmentation on skb.
1520 * @skb: buffer to segment
1521 * @features: features for the output path (see dev->features)
1522 *
1523 * This function segments the given skb and returns a list of segments.
1524 *
1525 * It may return NULL if the skb requires no segmentation. This is
1526 * only possible when GSO is used for verifying header integrity.
1527 */
1528 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1529 {
1530 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1531 struct packet_type *ptype;
1532 __be16 type = skb->protocol;
1533 int err;
1534
1535 skb_reset_mac_header(skb);
1536 skb->mac_len = skb->network_header - skb->mac_header;
1537 __skb_pull(skb, skb->mac_len);
1538
1539 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1540 struct net_device *dev = skb->dev;
1541 struct ethtool_drvinfo info = {};
1542
1543 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1544 dev->ethtool_ops->get_drvinfo(dev, &info);
1545
1546 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1547 "ip_summed=%d",
1548 info.driver, dev ? dev->features : 0L,
1549 skb->sk ? skb->sk->sk_route_caps : 0L,
1550 skb->len, skb->data_len, skb->ip_summed);
1551
1552 if (skb_header_cloned(skb) &&
1553 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1554 return ERR_PTR(err);
1555 }
1556
1557 rcu_read_lock();
1558 list_for_each_entry_rcu(ptype,
1559 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1560 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1561 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1562 err = ptype->gso_send_check(skb);
1563 segs = ERR_PTR(err);
1564 if (err || skb_gso_ok(skb, features))
1565 break;
1566 __skb_push(skb, (skb->data -
1567 skb_network_header(skb)));
1568 }
1569 segs = ptype->gso_segment(skb, features);
1570 break;
1571 }
1572 }
1573 rcu_read_unlock();
1574
1575 __skb_push(skb, skb->data - skb_mac_header(skb));
1576
1577 return segs;
1578 }
1579
1580 EXPORT_SYMBOL(skb_gso_segment);
1581
1582 /* Take action when hardware reception checksum errors are detected. */
1583 #ifdef CONFIG_BUG
1584 void netdev_rx_csum_fault(struct net_device *dev)
1585 {
1586 if (net_ratelimit()) {
1587 printk(KERN_ERR "%s: hw csum failure.\n",
1588 dev ? dev->name : "<unknown>");
1589 dump_stack();
1590 }
1591 }
1592 EXPORT_SYMBOL(netdev_rx_csum_fault);
1593 #endif
1594
1595 /* Actually, we should eliminate this check as soon as we know, that:
1596 * 1. IOMMU is present and allows to map all the memory.
1597 * 2. No high memory really exists on this machine.
1598 */
1599
1600 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 #ifdef CONFIG_HIGHMEM
1603 int i;
1604
1605 if (dev->features & NETIF_F_HIGHDMA)
1606 return 0;
1607
1608 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1609 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1610 return 1;
1611
1612 #endif
1613 return 0;
1614 }
1615
1616 struct dev_gso_cb {
1617 void (*destructor)(struct sk_buff *skb);
1618 };
1619
1620 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1621
1622 static void dev_gso_skb_destructor(struct sk_buff *skb)
1623 {
1624 struct dev_gso_cb *cb;
1625
1626 do {
1627 struct sk_buff *nskb = skb->next;
1628
1629 skb->next = nskb->next;
1630 nskb->next = NULL;
1631 kfree_skb(nskb);
1632 } while (skb->next);
1633
1634 cb = DEV_GSO_CB(skb);
1635 if (cb->destructor)
1636 cb->destructor(skb);
1637 }
1638
1639 /**
1640 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1641 * @skb: buffer to segment
1642 *
1643 * This function segments the given skb and stores the list of segments
1644 * in skb->next.
1645 */
1646 static int dev_gso_segment(struct sk_buff *skb)
1647 {
1648 struct net_device *dev = skb->dev;
1649 struct sk_buff *segs;
1650 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1651 NETIF_F_SG : 0);
1652
1653 segs = skb_gso_segment(skb, features);
1654
1655 /* Verifying header integrity only. */
1656 if (!segs)
1657 return 0;
1658
1659 if (IS_ERR(segs))
1660 return PTR_ERR(segs);
1661
1662 skb->next = segs;
1663 DEV_GSO_CB(skb)->destructor = skb->destructor;
1664 skb->destructor = dev_gso_skb_destructor;
1665
1666 return 0;
1667 }
1668
1669 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1670 struct netdev_queue *txq)
1671 {
1672 const struct net_device_ops *ops = dev->netdev_ops;
1673 int rc;
1674
1675 if (likely(!skb->next)) {
1676 if (!list_empty(&ptype_all))
1677 dev_queue_xmit_nit(skb, dev);
1678
1679 if (netif_needs_gso(dev, skb)) {
1680 if (unlikely(dev_gso_segment(skb)))
1681 goto out_kfree_skb;
1682 if (skb->next)
1683 goto gso;
1684 }
1685
1686 rc = ops->ndo_start_xmit(skb, dev);
1687 /*
1688 * TODO: if skb_orphan() was called by
1689 * dev->hard_start_xmit() (for example, the unmodified
1690 * igb driver does that; bnx2 doesn't), then
1691 * skb_tx_software_timestamp() will be unable to send
1692 * back the time stamp.
1693 *
1694 * How can this be prevented? Always create another
1695 * reference to the socket before calling
1696 * dev->hard_start_xmit()? Prevent that skb_orphan()
1697 * does anything in dev->hard_start_xmit() by clearing
1698 * the skb destructor before the call and restoring it
1699 * afterwards, then doing the skb_orphan() ourselves?
1700 */
1701 return rc;
1702 }
1703
1704 gso:
1705 do {
1706 struct sk_buff *nskb = skb->next;
1707
1708 skb->next = nskb->next;
1709 nskb->next = NULL;
1710 rc = ops->ndo_start_xmit(nskb, dev);
1711 if (unlikely(rc)) {
1712 nskb->next = skb->next;
1713 skb->next = nskb;
1714 return rc;
1715 }
1716 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1717 return NETDEV_TX_BUSY;
1718 } while (skb->next);
1719
1720 skb->destructor = DEV_GSO_CB(skb)->destructor;
1721
1722 out_kfree_skb:
1723 kfree_skb(skb);
1724 return 0;
1725 }
1726
1727 static u32 skb_tx_hashrnd;
1728
1729 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1730 {
1731 u32 hash;
1732
1733 if (skb_rx_queue_recorded(skb)) {
1734 hash = skb_get_rx_queue(skb);
1735 } else if (skb->sk && skb->sk->sk_hash) {
1736 hash = skb->sk->sk_hash;
1737 } else
1738 hash = skb->protocol;
1739
1740 hash = jhash_1word(hash, skb_tx_hashrnd);
1741
1742 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1743 }
1744 EXPORT_SYMBOL(skb_tx_hash);
1745
1746 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1747 struct sk_buff *skb)
1748 {
1749 const struct net_device_ops *ops = dev->netdev_ops;
1750 u16 queue_index = 0;
1751
1752 if (ops->ndo_select_queue)
1753 queue_index = ops->ndo_select_queue(dev, skb);
1754 else if (dev->real_num_tx_queues > 1)
1755 queue_index = skb_tx_hash(dev, skb);
1756
1757 skb_set_queue_mapping(skb, queue_index);
1758 return netdev_get_tx_queue(dev, queue_index);
1759 }
1760
1761 /**
1762 * dev_queue_xmit - transmit a buffer
1763 * @skb: buffer to transmit
1764 *
1765 * Queue a buffer for transmission to a network device. The caller must
1766 * have set the device and priority and built the buffer before calling
1767 * this function. The function can be called from an interrupt.
1768 *
1769 * A negative errno code is returned on a failure. A success does not
1770 * guarantee the frame will be transmitted as it may be dropped due
1771 * to congestion or traffic shaping.
1772 *
1773 * -----------------------------------------------------------------------------------
1774 * I notice this method can also return errors from the queue disciplines,
1775 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1776 * be positive.
1777 *
1778 * Regardless of the return value, the skb is consumed, so it is currently
1779 * difficult to retry a send to this method. (You can bump the ref count
1780 * before sending to hold a reference for retry if you are careful.)
1781 *
1782 * When calling this method, interrupts MUST be enabled. This is because
1783 * the BH enable code must have IRQs enabled so that it will not deadlock.
1784 * --BLG
1785 */
1786 int dev_queue_xmit(struct sk_buff *skb)
1787 {
1788 struct net_device *dev = skb->dev;
1789 struct netdev_queue *txq;
1790 struct Qdisc *q;
1791 int rc = -ENOMEM;
1792
1793 /* GSO will handle the following emulations directly. */
1794 if (netif_needs_gso(dev, skb))
1795 goto gso;
1796
1797 if (skb_shinfo(skb)->frag_list &&
1798 !(dev->features & NETIF_F_FRAGLIST) &&
1799 __skb_linearize(skb))
1800 goto out_kfree_skb;
1801
1802 /* Fragmented skb is linearized if device does not support SG,
1803 * or if at least one of fragments is in highmem and device
1804 * does not support DMA from it.
1805 */
1806 if (skb_shinfo(skb)->nr_frags &&
1807 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1808 __skb_linearize(skb))
1809 goto out_kfree_skb;
1810
1811 /* If packet is not checksummed and device does not support
1812 * checksumming for this protocol, complete checksumming here.
1813 */
1814 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1815 skb_set_transport_header(skb, skb->csum_start -
1816 skb_headroom(skb));
1817 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1818 goto out_kfree_skb;
1819 }
1820
1821 gso:
1822 /* Disable soft irqs for various locks below. Also
1823 * stops preemption for RCU.
1824 */
1825 rcu_read_lock_bh();
1826
1827 txq = dev_pick_tx(dev, skb);
1828 q = rcu_dereference(txq->qdisc);
1829
1830 #ifdef CONFIG_NET_CLS_ACT
1831 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1832 #endif
1833 if (q->enqueue) {
1834 spinlock_t *root_lock = qdisc_lock(q);
1835
1836 spin_lock(root_lock);
1837
1838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1839 kfree_skb(skb);
1840 rc = NET_XMIT_DROP;
1841 } else {
1842 rc = qdisc_enqueue_root(skb, q);
1843 qdisc_run(q);
1844 }
1845 spin_unlock(root_lock);
1846
1847 goto out;
1848 }
1849
1850 /* The device has no queue. Common case for software devices:
1851 loopback, all the sorts of tunnels...
1852
1853 Really, it is unlikely that netif_tx_lock protection is necessary
1854 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1855 counters.)
1856 However, it is possible, that they rely on protection
1857 made by us here.
1858
1859 Check this and shot the lock. It is not prone from deadlocks.
1860 Either shot noqueue qdisc, it is even simpler 8)
1861 */
1862 if (dev->flags & IFF_UP) {
1863 int cpu = smp_processor_id(); /* ok because BHs are off */
1864
1865 if (txq->xmit_lock_owner != cpu) {
1866
1867 HARD_TX_LOCK(dev, txq, cpu);
1868
1869 if (!netif_tx_queue_stopped(txq)) {
1870 rc = 0;
1871 if (!dev_hard_start_xmit(skb, dev, txq)) {
1872 HARD_TX_UNLOCK(dev, txq);
1873 goto out;
1874 }
1875 }
1876 HARD_TX_UNLOCK(dev, txq);
1877 if (net_ratelimit())
1878 printk(KERN_CRIT "Virtual device %s asks to "
1879 "queue packet!\n", dev->name);
1880 } else {
1881 /* Recursion is detected! It is possible,
1882 * unfortunately */
1883 if (net_ratelimit())
1884 printk(KERN_CRIT "Dead loop on virtual device "
1885 "%s, fix it urgently!\n", dev->name);
1886 }
1887 }
1888
1889 rc = -ENETDOWN;
1890 rcu_read_unlock_bh();
1891
1892 out_kfree_skb:
1893 kfree_skb(skb);
1894 return rc;
1895 out:
1896 rcu_read_unlock_bh();
1897 return rc;
1898 }
1899
1900
1901 /*=======================================================================
1902 Receiver routines
1903 =======================================================================*/
1904
1905 int netdev_max_backlog __read_mostly = 1000;
1906 int netdev_budget __read_mostly = 300;
1907 int weight_p __read_mostly = 64; /* old backlog weight */
1908
1909 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1910
1911
1912 /**
1913 * netif_rx - post buffer to the network code
1914 * @skb: buffer to post
1915 *
1916 * This function receives a packet from a device driver and queues it for
1917 * the upper (protocol) levels to process. It always succeeds. The buffer
1918 * may be dropped during processing for congestion control or by the
1919 * protocol layers.
1920 *
1921 * return values:
1922 * NET_RX_SUCCESS (no congestion)
1923 * NET_RX_DROP (packet was dropped)
1924 *
1925 */
1926
1927 int netif_rx(struct sk_buff *skb)
1928 {
1929 struct softnet_data *queue;
1930 unsigned long flags;
1931
1932 /* if netpoll wants it, pretend we never saw it */
1933 if (netpoll_rx(skb))
1934 return NET_RX_DROP;
1935
1936 if (!skb->tstamp.tv64)
1937 net_timestamp(skb);
1938
1939 /*
1940 * The code is rearranged so that the path is the most
1941 * short when CPU is congested, but is still operating.
1942 */
1943 local_irq_save(flags);
1944 queue = &__get_cpu_var(softnet_data);
1945
1946 __get_cpu_var(netdev_rx_stat).total++;
1947 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1948 if (queue->input_pkt_queue.qlen) {
1949 enqueue:
1950 __skb_queue_tail(&queue->input_pkt_queue, skb);
1951 local_irq_restore(flags);
1952 return NET_RX_SUCCESS;
1953 }
1954
1955 napi_schedule(&queue->backlog);
1956 goto enqueue;
1957 }
1958
1959 __get_cpu_var(netdev_rx_stat).dropped++;
1960 local_irq_restore(flags);
1961
1962 kfree_skb(skb);
1963 return NET_RX_DROP;
1964 }
1965
1966 int netif_rx_ni(struct sk_buff *skb)
1967 {
1968 int err;
1969
1970 preempt_disable();
1971 err = netif_rx(skb);
1972 if (local_softirq_pending())
1973 do_softirq();
1974 preempt_enable();
1975
1976 return err;
1977 }
1978
1979 EXPORT_SYMBOL(netif_rx_ni);
1980
1981 static void net_tx_action(struct softirq_action *h)
1982 {
1983 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1984
1985 if (sd->completion_queue) {
1986 struct sk_buff *clist;
1987
1988 local_irq_disable();
1989 clist = sd->completion_queue;
1990 sd->completion_queue = NULL;
1991 local_irq_enable();
1992
1993 while (clist) {
1994 struct sk_buff *skb = clist;
1995 clist = clist->next;
1996
1997 WARN_ON(atomic_read(&skb->users));
1998 __kfree_skb(skb);
1999 }
2000 }
2001
2002 if (sd->output_queue) {
2003 struct Qdisc *head;
2004
2005 local_irq_disable();
2006 head = sd->output_queue;
2007 sd->output_queue = NULL;
2008 local_irq_enable();
2009
2010 while (head) {
2011 struct Qdisc *q = head;
2012 spinlock_t *root_lock;
2013
2014 head = head->next_sched;
2015
2016 root_lock = qdisc_lock(q);
2017 if (spin_trylock(root_lock)) {
2018 smp_mb__before_clear_bit();
2019 clear_bit(__QDISC_STATE_SCHED,
2020 &q->state);
2021 qdisc_run(q);
2022 spin_unlock(root_lock);
2023 } else {
2024 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2025 &q->state)) {
2026 __netif_reschedule(q);
2027 } else {
2028 smp_mb__before_clear_bit();
2029 clear_bit(__QDISC_STATE_SCHED,
2030 &q->state);
2031 }
2032 }
2033 }
2034 }
2035 }
2036
2037 static inline int deliver_skb(struct sk_buff *skb,
2038 struct packet_type *pt_prev,
2039 struct net_device *orig_dev)
2040 {
2041 atomic_inc(&skb->users);
2042 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2043 }
2044
2045 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2046 /* These hooks defined here for ATM */
2047 struct net_bridge;
2048 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2049 unsigned char *addr);
2050 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2051
2052 /*
2053 * If bridge module is loaded call bridging hook.
2054 * returns NULL if packet was consumed.
2055 */
2056 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2057 struct sk_buff *skb) __read_mostly;
2058 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2059 struct packet_type **pt_prev, int *ret,
2060 struct net_device *orig_dev)
2061 {
2062 struct net_bridge_port *port;
2063
2064 if (skb->pkt_type == PACKET_LOOPBACK ||
2065 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2066 return skb;
2067
2068 if (*pt_prev) {
2069 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2070 *pt_prev = NULL;
2071 }
2072
2073 return br_handle_frame_hook(port, skb);
2074 }
2075 #else
2076 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2077 #endif
2078
2079 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2080 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2081 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2082
2083 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2084 struct packet_type **pt_prev,
2085 int *ret,
2086 struct net_device *orig_dev)
2087 {
2088 if (skb->dev->macvlan_port == NULL)
2089 return skb;
2090
2091 if (*pt_prev) {
2092 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2093 *pt_prev = NULL;
2094 }
2095 return macvlan_handle_frame_hook(skb);
2096 }
2097 #else
2098 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2099 #endif
2100
2101 #ifdef CONFIG_NET_CLS_ACT
2102 /* TODO: Maybe we should just force sch_ingress to be compiled in
2103 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2104 * a compare and 2 stores extra right now if we dont have it on
2105 * but have CONFIG_NET_CLS_ACT
2106 * NOTE: This doesnt stop any functionality; if you dont have
2107 * the ingress scheduler, you just cant add policies on ingress.
2108 *
2109 */
2110 static int ing_filter(struct sk_buff *skb)
2111 {
2112 struct net_device *dev = skb->dev;
2113 u32 ttl = G_TC_RTTL(skb->tc_verd);
2114 struct netdev_queue *rxq;
2115 int result = TC_ACT_OK;
2116 struct Qdisc *q;
2117
2118 if (MAX_RED_LOOP < ttl++) {
2119 printk(KERN_WARNING
2120 "Redir loop detected Dropping packet (%d->%d)\n",
2121 skb->iif, dev->ifindex);
2122 return TC_ACT_SHOT;
2123 }
2124
2125 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2126 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2127
2128 rxq = &dev->rx_queue;
2129
2130 q = rxq->qdisc;
2131 if (q != &noop_qdisc) {
2132 spin_lock(qdisc_lock(q));
2133 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2134 result = qdisc_enqueue_root(skb, q);
2135 spin_unlock(qdisc_lock(q));
2136 }
2137
2138 return result;
2139 }
2140
2141 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2142 struct packet_type **pt_prev,
2143 int *ret, struct net_device *orig_dev)
2144 {
2145 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2146 goto out;
2147
2148 if (*pt_prev) {
2149 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2150 *pt_prev = NULL;
2151 } else {
2152 /* Huh? Why does turning on AF_PACKET affect this? */
2153 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2154 }
2155
2156 switch (ing_filter(skb)) {
2157 case TC_ACT_SHOT:
2158 case TC_ACT_STOLEN:
2159 kfree_skb(skb);
2160 return NULL;
2161 }
2162
2163 out:
2164 skb->tc_verd = 0;
2165 return skb;
2166 }
2167 #endif
2168
2169 /*
2170 * netif_nit_deliver - deliver received packets to network taps
2171 * @skb: buffer
2172 *
2173 * This function is used to deliver incoming packets to network
2174 * taps. It should be used when the normal netif_receive_skb path
2175 * is bypassed, for example because of VLAN acceleration.
2176 */
2177 void netif_nit_deliver(struct sk_buff *skb)
2178 {
2179 struct packet_type *ptype;
2180
2181 if (list_empty(&ptype_all))
2182 return;
2183
2184 skb_reset_network_header(skb);
2185 skb_reset_transport_header(skb);
2186 skb->mac_len = skb->network_header - skb->mac_header;
2187
2188 rcu_read_lock();
2189 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2190 if (!ptype->dev || ptype->dev == skb->dev)
2191 deliver_skb(skb, ptype, skb->dev);
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 /**
2197 * netif_receive_skb - process receive buffer from network
2198 * @skb: buffer to process
2199 *
2200 * netif_receive_skb() is the main receive data processing function.
2201 * It always succeeds. The buffer may be dropped during processing
2202 * for congestion control or by the protocol layers.
2203 *
2204 * This function may only be called from softirq context and interrupts
2205 * should be enabled.
2206 *
2207 * Return values (usually ignored):
2208 * NET_RX_SUCCESS: no congestion
2209 * NET_RX_DROP: packet was dropped
2210 */
2211 int netif_receive_skb(struct sk_buff *skb)
2212 {
2213 struct packet_type *ptype, *pt_prev;
2214 struct net_device *orig_dev;
2215 struct net_device *null_or_orig;
2216 int ret = NET_RX_DROP;
2217 __be16 type;
2218
2219 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2220 return NET_RX_SUCCESS;
2221
2222 /* if we've gotten here through NAPI, check netpoll */
2223 if (netpoll_receive_skb(skb))
2224 return NET_RX_DROP;
2225
2226 if (!skb->tstamp.tv64)
2227 net_timestamp(skb);
2228
2229 if (!skb->iif)
2230 skb->iif = skb->dev->ifindex;
2231
2232 null_or_orig = NULL;
2233 orig_dev = skb->dev;
2234 if (orig_dev->master) {
2235 if (skb_bond_should_drop(skb))
2236 null_or_orig = orig_dev; /* deliver only exact match */
2237 else
2238 skb->dev = orig_dev->master;
2239 }
2240
2241 __get_cpu_var(netdev_rx_stat).total++;
2242
2243 skb_reset_network_header(skb);
2244 skb_reset_transport_header(skb);
2245 skb->mac_len = skb->network_header - skb->mac_header;
2246
2247 pt_prev = NULL;
2248
2249 rcu_read_lock();
2250
2251 #ifdef CONFIG_NET_CLS_ACT
2252 if (skb->tc_verd & TC_NCLS) {
2253 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2254 goto ncls;
2255 }
2256 #endif
2257
2258 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2259 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2260 ptype->dev == orig_dev) {
2261 if (pt_prev)
2262 ret = deliver_skb(skb, pt_prev, orig_dev);
2263 pt_prev = ptype;
2264 }
2265 }
2266
2267 #ifdef CONFIG_NET_CLS_ACT
2268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2269 if (!skb)
2270 goto out;
2271 ncls:
2272 #endif
2273
2274 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2275 if (!skb)
2276 goto out;
2277 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2278 if (!skb)
2279 goto out;
2280
2281 skb_orphan(skb);
2282
2283 type = skb->protocol;
2284 list_for_each_entry_rcu(ptype,
2285 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2286 if (ptype->type == type &&
2287 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2288 ptype->dev == orig_dev)) {
2289 if (pt_prev)
2290 ret = deliver_skb(skb, pt_prev, orig_dev);
2291 pt_prev = ptype;
2292 }
2293 }
2294
2295 if (pt_prev) {
2296 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2297 } else {
2298 kfree_skb(skb);
2299 /* Jamal, now you will not able to escape explaining
2300 * me how you were going to use this. :-)
2301 */
2302 ret = NET_RX_DROP;
2303 }
2304
2305 out:
2306 rcu_read_unlock();
2307 return ret;
2308 }
2309
2310 /* Network device is going away, flush any packets still pending */
2311 static void flush_backlog(void *arg)
2312 {
2313 struct net_device *dev = arg;
2314 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2315 struct sk_buff *skb, *tmp;
2316
2317 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2318 if (skb->dev == dev) {
2319 __skb_unlink(skb, &queue->input_pkt_queue);
2320 kfree_skb(skb);
2321 }
2322 }
2323
2324 static int napi_gro_complete(struct sk_buff *skb)
2325 {
2326 struct packet_type *ptype;
2327 __be16 type = skb->protocol;
2328 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2329 int err = -ENOENT;
2330
2331 if (NAPI_GRO_CB(skb)->count == 1)
2332 goto out;
2333
2334 rcu_read_lock();
2335 list_for_each_entry_rcu(ptype, head, list) {
2336 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2337 continue;
2338
2339 err = ptype->gro_complete(skb);
2340 break;
2341 }
2342 rcu_read_unlock();
2343
2344 if (err) {
2345 WARN_ON(&ptype->list == head);
2346 kfree_skb(skb);
2347 return NET_RX_SUCCESS;
2348 }
2349
2350 out:
2351 skb_shinfo(skb)->gso_size = 0;
2352 return netif_receive_skb(skb);
2353 }
2354
2355 void napi_gro_flush(struct napi_struct *napi)
2356 {
2357 struct sk_buff *skb, *next;
2358
2359 for (skb = napi->gro_list; skb; skb = next) {
2360 next = skb->next;
2361 skb->next = NULL;
2362 napi_gro_complete(skb);
2363 }
2364
2365 napi->gro_count = 0;
2366 napi->gro_list = NULL;
2367 }
2368 EXPORT_SYMBOL(napi_gro_flush);
2369
2370 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2371 {
2372 unsigned int offset = skb_gro_offset(skb);
2373
2374 hlen += offset;
2375 if (hlen <= skb_headlen(skb))
2376 return skb->data + offset;
2377
2378 if (unlikely(!skb_shinfo(skb)->nr_frags ||
2379 skb_shinfo(skb)->frags[0].size <=
2380 hlen - skb_headlen(skb) ||
2381 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2382 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2383
2384 return page_address(skb_shinfo(skb)->frags[0].page) +
2385 skb_shinfo(skb)->frags[0].page_offset +
2386 offset - skb_headlen(skb);
2387 }
2388 EXPORT_SYMBOL(skb_gro_header);
2389
2390 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2391 {
2392 struct sk_buff **pp = NULL;
2393 struct packet_type *ptype;
2394 __be16 type = skb->protocol;
2395 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2396 int same_flow;
2397 int mac_len;
2398 int ret;
2399
2400 if (!(skb->dev->features & NETIF_F_GRO))
2401 goto normal;
2402
2403 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2404 goto normal;
2405
2406 rcu_read_lock();
2407 list_for_each_entry_rcu(ptype, head, list) {
2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 continue;
2410
2411 skb_set_network_header(skb, skb_gro_offset(skb));
2412 mac_len = skb->network_header - skb->mac_header;
2413 skb->mac_len = mac_len;
2414 NAPI_GRO_CB(skb)->same_flow = 0;
2415 NAPI_GRO_CB(skb)->flush = 0;
2416 NAPI_GRO_CB(skb)->free = 0;
2417
2418 pp = ptype->gro_receive(&napi->gro_list, skb);
2419 break;
2420 }
2421 rcu_read_unlock();
2422
2423 if (&ptype->list == head)
2424 goto normal;
2425
2426 same_flow = NAPI_GRO_CB(skb)->same_flow;
2427 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2428
2429 if (pp) {
2430 struct sk_buff *nskb = *pp;
2431
2432 *pp = nskb->next;
2433 nskb->next = NULL;
2434 napi_gro_complete(nskb);
2435 napi->gro_count--;
2436 }
2437
2438 if (same_flow)
2439 goto ok;
2440
2441 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2442 goto normal;
2443
2444 napi->gro_count++;
2445 NAPI_GRO_CB(skb)->count = 1;
2446 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2447 skb->next = napi->gro_list;
2448 napi->gro_list = skb;
2449 ret = GRO_HELD;
2450
2451 pull:
2452 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2453 if (napi->gro_list == skb)
2454 napi->gro_list = skb->next;
2455 ret = GRO_DROP;
2456 }
2457
2458 ok:
2459 return ret;
2460
2461 normal:
2462 ret = GRO_NORMAL;
2463 goto pull;
2464 }
2465 EXPORT_SYMBOL(dev_gro_receive);
2466
2467 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2468 {
2469 struct sk_buff *p;
2470
2471 if (netpoll_rx_on(skb))
2472 return GRO_NORMAL;
2473
2474 for (p = napi->gro_list; p; p = p->next) {
2475 NAPI_GRO_CB(p)->same_flow = !compare_ether_header(
2476 skb_mac_header(p), skb_gro_mac_header(skb));
2477 NAPI_GRO_CB(p)->flush = 0;
2478 }
2479
2480 return dev_gro_receive(napi, skb);
2481 }
2482
2483 int napi_skb_finish(int ret, struct sk_buff *skb)
2484 {
2485 int err = NET_RX_SUCCESS;
2486
2487 switch (ret) {
2488 case GRO_NORMAL:
2489 return netif_receive_skb(skb);
2490
2491 case GRO_DROP:
2492 err = NET_RX_DROP;
2493 /* fall through */
2494
2495 case GRO_MERGED_FREE:
2496 kfree_skb(skb);
2497 break;
2498 }
2499
2500 return err;
2501 }
2502 EXPORT_SYMBOL(napi_skb_finish);
2503
2504 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2505 {
2506 skb_gro_reset_offset(skb);
2507
2508 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2509 }
2510 EXPORT_SYMBOL(napi_gro_receive);
2511
2512 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2513 {
2514 __skb_pull(skb, skb_headlen(skb));
2515 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2516
2517 napi->skb = skb;
2518 }
2519 EXPORT_SYMBOL(napi_reuse_skb);
2520
2521 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2522 struct napi_gro_fraginfo *info)
2523 {
2524 struct net_device *dev = napi->dev;
2525 struct sk_buff *skb = napi->skb;
2526 struct ethhdr *eth;
2527 skb_frag_t *frag;
2528 int i;
2529
2530 napi->skb = NULL;
2531
2532 if (!skb) {
2533 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2534 if (!skb)
2535 goto out;
2536
2537 skb_reserve(skb, NET_IP_ALIGN);
2538 }
2539
2540 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2541 frag = &info->frags[info->nr_frags - 1];
2542
2543 for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) {
2544 skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2545 frag->size);
2546 frag++;
2547 }
2548 skb_shinfo(skb)->nr_frags = info->nr_frags;
2549
2550 skb->data_len = info->len;
2551 skb->len += info->len;
2552 skb->truesize += info->len;
2553
2554 skb_reset_mac_header(skb);
2555 skb_gro_reset_offset(skb);
2556
2557 eth = skb_gro_header(skb, sizeof(*eth));
2558 if (!eth) {
2559 napi_reuse_skb(napi, skb);
2560 skb = NULL;
2561 goto out;
2562 }
2563
2564 skb_gro_pull(skb, sizeof(*eth));
2565
2566 /*
2567 * This works because the only protocols we care about don't require
2568 * special handling. We'll fix it up properly at the end.
2569 */
2570 skb->protocol = eth->h_proto;
2571
2572 skb->ip_summed = info->ip_summed;
2573 skb->csum = info->csum;
2574
2575 out:
2576 return skb;
2577 }
2578 EXPORT_SYMBOL(napi_fraginfo_skb);
2579
2580 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2581 {
2582 int err = NET_RX_SUCCESS;
2583
2584 switch (ret) {
2585 case GRO_NORMAL:
2586 case GRO_HELD:
2587 skb->protocol = eth_type_trans(skb, napi->dev);
2588
2589 if (ret == GRO_NORMAL)
2590 return netif_receive_skb(skb);
2591
2592 skb_gro_pull(skb, -ETH_HLEN);
2593 break;
2594
2595 case GRO_DROP:
2596 err = NET_RX_DROP;
2597 /* fall through */
2598
2599 case GRO_MERGED_FREE:
2600 napi_reuse_skb(napi, skb);
2601 break;
2602 }
2603
2604 return err;
2605 }
2606 EXPORT_SYMBOL(napi_frags_finish);
2607
2608 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2609 {
2610 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2611
2612 if (!skb)
2613 return NET_RX_DROP;
2614
2615 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2616 }
2617 EXPORT_SYMBOL(napi_gro_frags);
2618
2619 static int process_backlog(struct napi_struct *napi, int quota)
2620 {
2621 int work = 0;
2622 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2623 unsigned long start_time = jiffies;
2624
2625 napi->weight = weight_p;
2626 do {
2627 struct sk_buff *skb;
2628
2629 local_irq_disable();
2630 skb = __skb_dequeue(&queue->input_pkt_queue);
2631 if (!skb) {
2632 __napi_complete(napi);
2633 local_irq_enable();
2634 break;
2635 }
2636 local_irq_enable();
2637
2638 netif_receive_skb(skb);
2639 } while (++work < quota && jiffies == start_time);
2640
2641 return work;
2642 }
2643
2644 /**
2645 * __napi_schedule - schedule for receive
2646 * @n: entry to schedule
2647 *
2648 * The entry's receive function will be scheduled to run
2649 */
2650 void __napi_schedule(struct napi_struct *n)
2651 {
2652 unsigned long flags;
2653
2654 local_irq_save(flags);
2655 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2656 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2657 local_irq_restore(flags);
2658 }
2659 EXPORT_SYMBOL(__napi_schedule);
2660
2661 void __napi_complete(struct napi_struct *n)
2662 {
2663 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2664 BUG_ON(n->gro_list);
2665
2666 list_del(&n->poll_list);
2667 smp_mb__before_clear_bit();
2668 clear_bit(NAPI_STATE_SCHED, &n->state);
2669 }
2670 EXPORT_SYMBOL(__napi_complete);
2671
2672 void napi_complete(struct napi_struct *n)
2673 {
2674 unsigned long flags;
2675
2676 /*
2677 * don't let napi dequeue from the cpu poll list
2678 * just in case its running on a different cpu
2679 */
2680 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2681 return;
2682
2683 napi_gro_flush(n);
2684 local_irq_save(flags);
2685 __napi_complete(n);
2686 local_irq_restore(flags);
2687 }
2688 EXPORT_SYMBOL(napi_complete);
2689
2690 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2691 int (*poll)(struct napi_struct *, int), int weight)
2692 {
2693 INIT_LIST_HEAD(&napi->poll_list);
2694 napi->gro_count = 0;
2695 napi->gro_list = NULL;
2696 napi->skb = NULL;
2697 napi->poll = poll;
2698 napi->weight = weight;
2699 list_add(&napi->dev_list, &dev->napi_list);
2700 napi->dev = dev;
2701 #ifdef CONFIG_NETPOLL
2702 spin_lock_init(&napi->poll_lock);
2703 napi->poll_owner = -1;
2704 #endif
2705 set_bit(NAPI_STATE_SCHED, &napi->state);
2706 }
2707 EXPORT_SYMBOL(netif_napi_add);
2708
2709 void netif_napi_del(struct napi_struct *napi)
2710 {
2711 struct sk_buff *skb, *next;
2712
2713 list_del_init(&napi->dev_list);
2714 kfree_skb(napi->skb);
2715
2716 for (skb = napi->gro_list; skb; skb = next) {
2717 next = skb->next;
2718 skb->next = NULL;
2719 kfree_skb(skb);
2720 }
2721
2722 napi->gro_list = NULL;
2723 napi->gro_count = 0;
2724 }
2725 EXPORT_SYMBOL(netif_napi_del);
2726
2727
2728 static void net_rx_action(struct softirq_action *h)
2729 {
2730 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2731 unsigned long time_limit = jiffies + 2;
2732 int budget = netdev_budget;
2733 void *have;
2734
2735 local_irq_disable();
2736
2737 while (!list_empty(list)) {
2738 struct napi_struct *n;
2739 int work, weight;
2740
2741 /* If softirq window is exhuasted then punt.
2742 * Allow this to run for 2 jiffies since which will allow
2743 * an average latency of 1.5/HZ.
2744 */
2745 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2746 goto softnet_break;
2747
2748 local_irq_enable();
2749
2750 /* Even though interrupts have been re-enabled, this
2751 * access is safe because interrupts can only add new
2752 * entries to the tail of this list, and only ->poll()
2753 * calls can remove this head entry from the list.
2754 */
2755 n = list_entry(list->next, struct napi_struct, poll_list);
2756
2757 have = netpoll_poll_lock(n);
2758
2759 weight = n->weight;
2760
2761 /* This NAPI_STATE_SCHED test is for avoiding a race
2762 * with netpoll's poll_napi(). Only the entity which
2763 * obtains the lock and sees NAPI_STATE_SCHED set will
2764 * actually make the ->poll() call. Therefore we avoid
2765 * accidently calling ->poll() when NAPI is not scheduled.
2766 */
2767 work = 0;
2768 if (test_bit(NAPI_STATE_SCHED, &n->state))
2769 work = n->poll(n, weight);
2770
2771 WARN_ON_ONCE(work > weight);
2772
2773 budget -= work;
2774
2775 local_irq_disable();
2776
2777 /* Drivers must not modify the NAPI state if they
2778 * consume the entire weight. In such cases this code
2779 * still "owns" the NAPI instance and therefore can
2780 * move the instance around on the list at-will.
2781 */
2782 if (unlikely(work == weight)) {
2783 if (unlikely(napi_disable_pending(n)))
2784 __napi_complete(n);
2785 else
2786 list_move_tail(&n->poll_list, list);
2787 }
2788
2789 netpoll_poll_unlock(have);
2790 }
2791 out:
2792 local_irq_enable();
2793
2794 #ifdef CONFIG_NET_DMA
2795 /*
2796 * There may not be any more sk_buffs coming right now, so push
2797 * any pending DMA copies to hardware
2798 */
2799 dma_issue_pending_all();
2800 #endif
2801
2802 return;
2803
2804 softnet_break:
2805 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2806 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2807 goto out;
2808 }
2809
2810 static gifconf_func_t * gifconf_list [NPROTO];
2811
2812 /**
2813 * register_gifconf - register a SIOCGIF handler
2814 * @family: Address family
2815 * @gifconf: Function handler
2816 *
2817 * Register protocol dependent address dumping routines. The handler
2818 * that is passed must not be freed or reused until it has been replaced
2819 * by another handler.
2820 */
2821 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2822 {
2823 if (family >= NPROTO)
2824 return -EINVAL;
2825 gifconf_list[family] = gifconf;
2826 return 0;
2827 }
2828
2829
2830 /*
2831 * Map an interface index to its name (SIOCGIFNAME)
2832 */
2833
2834 /*
2835 * We need this ioctl for efficient implementation of the
2836 * if_indextoname() function required by the IPv6 API. Without
2837 * it, we would have to search all the interfaces to find a
2838 * match. --pb
2839 */
2840
2841 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2842 {
2843 struct net_device *dev;
2844 struct ifreq ifr;
2845
2846 /*
2847 * Fetch the caller's info block.
2848 */
2849
2850 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2851 return -EFAULT;
2852
2853 read_lock(&dev_base_lock);
2854 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2855 if (!dev) {
2856 read_unlock(&dev_base_lock);
2857 return -ENODEV;
2858 }
2859
2860 strcpy(ifr.ifr_name, dev->name);
2861 read_unlock(&dev_base_lock);
2862
2863 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2864 return -EFAULT;
2865 return 0;
2866 }
2867
2868 /*
2869 * Perform a SIOCGIFCONF call. This structure will change
2870 * size eventually, and there is nothing I can do about it.
2871 * Thus we will need a 'compatibility mode'.
2872 */
2873
2874 static int dev_ifconf(struct net *net, char __user *arg)
2875 {
2876 struct ifconf ifc;
2877 struct net_device *dev;
2878 char __user *pos;
2879 int len;
2880 int total;
2881 int i;
2882
2883 /*
2884 * Fetch the caller's info block.
2885 */
2886
2887 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2888 return -EFAULT;
2889
2890 pos = ifc.ifc_buf;
2891 len = ifc.ifc_len;
2892
2893 /*
2894 * Loop over the interfaces, and write an info block for each.
2895 */
2896
2897 total = 0;
2898 for_each_netdev(net, dev) {
2899 for (i = 0; i < NPROTO; i++) {
2900 if (gifconf_list[i]) {
2901 int done;
2902 if (!pos)
2903 done = gifconf_list[i](dev, NULL, 0);
2904 else
2905 done = gifconf_list[i](dev, pos + total,
2906 len - total);
2907 if (done < 0)
2908 return -EFAULT;
2909 total += done;
2910 }
2911 }
2912 }
2913
2914 /*
2915 * All done. Write the updated control block back to the caller.
2916 */
2917 ifc.ifc_len = total;
2918
2919 /*
2920 * Both BSD and Solaris return 0 here, so we do too.
2921 */
2922 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2923 }
2924
2925 #ifdef CONFIG_PROC_FS
2926 /*
2927 * This is invoked by the /proc filesystem handler to display a device
2928 * in detail.
2929 */
2930 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2931 __acquires(dev_base_lock)
2932 {
2933 struct net *net = seq_file_net(seq);
2934 loff_t off;
2935 struct net_device *dev;
2936
2937 read_lock(&dev_base_lock);
2938 if (!*pos)
2939 return SEQ_START_TOKEN;
2940
2941 off = 1;
2942 for_each_netdev(net, dev)
2943 if (off++ == *pos)
2944 return dev;
2945
2946 return NULL;
2947 }
2948
2949 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2950 {
2951 struct net *net = seq_file_net(seq);
2952 ++*pos;
2953 return v == SEQ_START_TOKEN ?
2954 first_net_device(net) : next_net_device((struct net_device *)v);
2955 }
2956
2957 void dev_seq_stop(struct seq_file *seq, void *v)
2958 __releases(dev_base_lock)
2959 {
2960 read_unlock(&dev_base_lock);
2961 }
2962
2963 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2964 {
2965 const struct net_device_stats *stats = dev_get_stats(dev);
2966
2967 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2968 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2969 dev->name, stats->rx_bytes, stats->rx_packets,
2970 stats->rx_errors,
2971 stats->rx_dropped + stats->rx_missed_errors,
2972 stats->rx_fifo_errors,
2973 stats->rx_length_errors + stats->rx_over_errors +
2974 stats->rx_crc_errors + stats->rx_frame_errors,
2975 stats->rx_compressed, stats->multicast,
2976 stats->tx_bytes, stats->tx_packets,
2977 stats->tx_errors, stats->tx_dropped,
2978 stats->tx_fifo_errors, stats->collisions,
2979 stats->tx_carrier_errors +
2980 stats->tx_aborted_errors +
2981 stats->tx_window_errors +
2982 stats->tx_heartbeat_errors,
2983 stats->tx_compressed);
2984 }
2985
2986 /*
2987 * Called from the PROCfs module. This now uses the new arbitrary sized
2988 * /proc/net interface to create /proc/net/dev
2989 */
2990 static int dev_seq_show(struct seq_file *seq, void *v)
2991 {
2992 if (v == SEQ_START_TOKEN)
2993 seq_puts(seq, "Inter-| Receive "
2994 " | Transmit\n"
2995 " face |bytes packets errs drop fifo frame "
2996 "compressed multicast|bytes packets errs "
2997 "drop fifo colls carrier compressed\n");
2998 else
2999 dev_seq_printf_stats(seq, v);
3000 return 0;
3001 }
3002
3003 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3004 {
3005 struct netif_rx_stats *rc = NULL;
3006
3007 while (*pos < nr_cpu_ids)
3008 if (cpu_online(*pos)) {
3009 rc = &per_cpu(netdev_rx_stat, *pos);
3010 break;
3011 } else
3012 ++*pos;
3013 return rc;
3014 }
3015
3016 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3017 {
3018 return softnet_get_online(pos);
3019 }
3020
3021 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3022 {
3023 ++*pos;
3024 return softnet_get_online(pos);
3025 }
3026
3027 static void softnet_seq_stop(struct seq_file *seq, void *v)
3028 {
3029 }
3030
3031 static int softnet_seq_show(struct seq_file *seq, void *v)
3032 {
3033 struct netif_rx_stats *s = v;
3034
3035 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3036 s->total, s->dropped, s->time_squeeze, 0,
3037 0, 0, 0, 0, /* was fastroute */
3038 s->cpu_collision );
3039 return 0;
3040 }
3041
3042 static const struct seq_operations dev_seq_ops = {
3043 .start = dev_seq_start,
3044 .next = dev_seq_next,
3045 .stop = dev_seq_stop,
3046 .show = dev_seq_show,
3047 };
3048
3049 static int dev_seq_open(struct inode *inode, struct file *file)
3050 {
3051 return seq_open_net(inode, file, &dev_seq_ops,
3052 sizeof(struct seq_net_private));
3053 }
3054
3055 static const struct file_operations dev_seq_fops = {
3056 .owner = THIS_MODULE,
3057 .open = dev_seq_open,
3058 .read = seq_read,
3059 .llseek = seq_lseek,
3060 .release = seq_release_net,
3061 };
3062
3063 static const struct seq_operations softnet_seq_ops = {
3064 .start = softnet_seq_start,
3065 .next = softnet_seq_next,
3066 .stop = softnet_seq_stop,
3067 .show = softnet_seq_show,
3068 };
3069
3070 static int softnet_seq_open(struct inode *inode, struct file *file)
3071 {
3072 return seq_open(file, &softnet_seq_ops);
3073 }
3074
3075 static const struct file_operations softnet_seq_fops = {
3076 .owner = THIS_MODULE,
3077 .open = softnet_seq_open,
3078 .read = seq_read,
3079 .llseek = seq_lseek,
3080 .release = seq_release,
3081 };
3082
3083 static void *ptype_get_idx(loff_t pos)
3084 {
3085 struct packet_type *pt = NULL;
3086 loff_t i = 0;
3087 int t;
3088
3089 list_for_each_entry_rcu(pt, &ptype_all, list) {
3090 if (i == pos)
3091 return pt;
3092 ++i;
3093 }
3094
3095 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3096 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3097 if (i == pos)
3098 return pt;
3099 ++i;
3100 }
3101 }
3102 return NULL;
3103 }
3104
3105 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3106 __acquires(RCU)
3107 {
3108 rcu_read_lock();
3109 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3110 }
3111
3112 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3113 {
3114 struct packet_type *pt;
3115 struct list_head *nxt;
3116 int hash;
3117
3118 ++*pos;
3119 if (v == SEQ_START_TOKEN)
3120 return ptype_get_idx(0);
3121
3122 pt = v;
3123 nxt = pt->list.next;
3124 if (pt->type == htons(ETH_P_ALL)) {
3125 if (nxt != &ptype_all)
3126 goto found;
3127 hash = 0;
3128 nxt = ptype_base[0].next;
3129 } else
3130 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3131
3132 while (nxt == &ptype_base[hash]) {
3133 if (++hash >= PTYPE_HASH_SIZE)
3134 return NULL;
3135 nxt = ptype_base[hash].next;
3136 }
3137 found:
3138 return list_entry(nxt, struct packet_type, list);
3139 }
3140
3141 static void ptype_seq_stop(struct seq_file *seq, void *v)
3142 __releases(RCU)
3143 {
3144 rcu_read_unlock();
3145 }
3146
3147 static int ptype_seq_show(struct seq_file *seq, void *v)
3148 {
3149 struct packet_type *pt = v;
3150
3151 if (v == SEQ_START_TOKEN)
3152 seq_puts(seq, "Type Device Function\n");
3153 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3154 if (pt->type == htons(ETH_P_ALL))
3155 seq_puts(seq, "ALL ");
3156 else
3157 seq_printf(seq, "%04x", ntohs(pt->type));
3158
3159 seq_printf(seq, " %-8s %pF\n",
3160 pt->dev ? pt->dev->name : "", pt->func);
3161 }
3162
3163 return 0;
3164 }
3165
3166 static const struct seq_operations ptype_seq_ops = {
3167 .start = ptype_seq_start,
3168 .next = ptype_seq_next,
3169 .stop = ptype_seq_stop,
3170 .show = ptype_seq_show,
3171 };
3172
3173 static int ptype_seq_open(struct inode *inode, struct file *file)
3174 {
3175 return seq_open_net(inode, file, &ptype_seq_ops,
3176 sizeof(struct seq_net_private));
3177 }
3178
3179 static const struct file_operations ptype_seq_fops = {
3180 .owner = THIS_MODULE,
3181 .open = ptype_seq_open,
3182 .read = seq_read,
3183 .llseek = seq_lseek,
3184 .release = seq_release_net,
3185 };
3186
3187
3188 static int __net_init dev_proc_net_init(struct net *net)
3189 {
3190 int rc = -ENOMEM;
3191
3192 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3193 goto out;
3194 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3195 goto out_dev;
3196 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3197 goto out_softnet;
3198
3199 if (wext_proc_init(net))
3200 goto out_ptype;
3201 rc = 0;
3202 out:
3203 return rc;
3204 out_ptype:
3205 proc_net_remove(net, "ptype");
3206 out_softnet:
3207 proc_net_remove(net, "softnet_stat");
3208 out_dev:
3209 proc_net_remove(net, "dev");
3210 goto out;
3211 }
3212
3213 static void __net_exit dev_proc_net_exit(struct net *net)
3214 {
3215 wext_proc_exit(net);
3216
3217 proc_net_remove(net, "ptype");
3218 proc_net_remove(net, "softnet_stat");
3219 proc_net_remove(net, "dev");
3220 }
3221
3222 static struct pernet_operations __net_initdata dev_proc_ops = {
3223 .init = dev_proc_net_init,
3224 .exit = dev_proc_net_exit,
3225 };
3226
3227 static int __init dev_proc_init(void)
3228 {
3229 return register_pernet_subsys(&dev_proc_ops);
3230 }
3231 #else
3232 #define dev_proc_init() 0
3233 #endif /* CONFIG_PROC_FS */
3234
3235
3236 /**
3237 * netdev_set_master - set up master/slave pair
3238 * @slave: slave device
3239 * @master: new master device
3240 *
3241 * Changes the master device of the slave. Pass %NULL to break the
3242 * bonding. The caller must hold the RTNL semaphore. On a failure
3243 * a negative errno code is returned. On success the reference counts
3244 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3245 * function returns zero.
3246 */
3247 int netdev_set_master(struct net_device *slave, struct net_device *master)
3248 {
3249 struct net_device *old = slave->master;
3250
3251 ASSERT_RTNL();
3252
3253 if (master) {
3254 if (old)
3255 return -EBUSY;
3256 dev_hold(master);
3257 }
3258
3259 slave->master = master;
3260
3261 synchronize_net();
3262
3263 if (old)
3264 dev_put(old);
3265
3266 if (master)
3267 slave->flags |= IFF_SLAVE;
3268 else
3269 slave->flags &= ~IFF_SLAVE;
3270
3271 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3272 return 0;
3273 }
3274
3275 static void dev_change_rx_flags(struct net_device *dev, int flags)
3276 {
3277 const struct net_device_ops *ops = dev->netdev_ops;
3278
3279 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3280 ops->ndo_change_rx_flags(dev, flags);
3281 }
3282
3283 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3284 {
3285 unsigned short old_flags = dev->flags;
3286 uid_t uid;
3287 gid_t gid;
3288
3289 ASSERT_RTNL();
3290
3291 dev->flags |= IFF_PROMISC;
3292 dev->promiscuity += inc;
3293 if (dev->promiscuity == 0) {
3294 /*
3295 * Avoid overflow.
3296 * If inc causes overflow, untouch promisc and return error.
3297 */
3298 if (inc < 0)
3299 dev->flags &= ~IFF_PROMISC;
3300 else {
3301 dev->promiscuity -= inc;
3302 printk(KERN_WARNING "%s: promiscuity touches roof, "
3303 "set promiscuity failed, promiscuity feature "
3304 "of device might be broken.\n", dev->name);
3305 return -EOVERFLOW;
3306 }
3307 }
3308 if (dev->flags != old_flags) {
3309 printk(KERN_INFO "device %s %s promiscuous mode\n",
3310 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3311 "left");
3312 if (audit_enabled) {
3313 current_uid_gid(&uid, &gid);
3314 audit_log(current->audit_context, GFP_ATOMIC,
3315 AUDIT_ANOM_PROMISCUOUS,
3316 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3317 dev->name, (dev->flags & IFF_PROMISC),
3318 (old_flags & IFF_PROMISC),
3319 audit_get_loginuid(current),
3320 uid, gid,
3321 audit_get_sessionid(current));
3322 }
3323
3324 dev_change_rx_flags(dev, IFF_PROMISC);
3325 }
3326 return 0;
3327 }
3328
3329 /**
3330 * dev_set_promiscuity - update promiscuity count on a device
3331 * @dev: device
3332 * @inc: modifier
3333 *
3334 * Add or remove promiscuity from a device. While the count in the device
3335 * remains above zero the interface remains promiscuous. Once it hits zero
3336 * the device reverts back to normal filtering operation. A negative inc
3337 * value is used to drop promiscuity on the device.
3338 * Return 0 if successful or a negative errno code on error.
3339 */
3340 int dev_set_promiscuity(struct net_device *dev, int inc)
3341 {
3342 unsigned short old_flags = dev->flags;
3343 int err;
3344
3345 err = __dev_set_promiscuity(dev, inc);
3346 if (err < 0)
3347 return err;
3348 if (dev->flags != old_flags)
3349 dev_set_rx_mode(dev);
3350 return err;
3351 }
3352
3353 /**
3354 * dev_set_allmulti - update allmulti count on a device
3355 * @dev: device
3356 * @inc: modifier
3357 *
3358 * Add or remove reception of all multicast frames to a device. While the
3359 * count in the device remains above zero the interface remains listening
3360 * to all interfaces. Once it hits zero the device reverts back to normal
3361 * filtering operation. A negative @inc value is used to drop the counter
3362 * when releasing a resource needing all multicasts.
3363 * Return 0 if successful or a negative errno code on error.
3364 */
3365
3366 int dev_set_allmulti(struct net_device *dev, int inc)
3367 {
3368 unsigned short old_flags = dev->flags;
3369
3370 ASSERT_RTNL();
3371
3372 dev->flags |= IFF_ALLMULTI;
3373 dev->allmulti += inc;
3374 if (dev->allmulti == 0) {
3375 /*
3376 * Avoid overflow.
3377 * If inc causes overflow, untouch allmulti and return error.
3378 */
3379 if (inc < 0)
3380 dev->flags &= ~IFF_ALLMULTI;
3381 else {
3382 dev->allmulti -= inc;
3383 printk(KERN_WARNING "%s: allmulti touches roof, "
3384 "set allmulti failed, allmulti feature of "
3385 "device might be broken.\n", dev->name);
3386 return -EOVERFLOW;
3387 }
3388 }
3389 if (dev->flags ^ old_flags) {
3390 dev_change_rx_flags(dev, IFF_ALLMULTI);
3391 dev_set_rx_mode(dev);
3392 }
3393 return 0;
3394 }
3395
3396 /*
3397 * Upload unicast and multicast address lists to device and
3398 * configure RX filtering. When the device doesn't support unicast
3399 * filtering it is put in promiscuous mode while unicast addresses
3400 * are present.
3401 */
3402 void __dev_set_rx_mode(struct net_device *dev)
3403 {
3404 const struct net_device_ops *ops = dev->netdev_ops;
3405
3406 /* dev_open will call this function so the list will stay sane. */
3407 if (!(dev->flags&IFF_UP))
3408 return;
3409
3410 if (!netif_device_present(dev))
3411 return;
3412
3413 if (ops->ndo_set_rx_mode)
3414 ops->ndo_set_rx_mode(dev);
3415 else {
3416 /* Unicast addresses changes may only happen under the rtnl,
3417 * therefore calling __dev_set_promiscuity here is safe.
3418 */
3419 if (dev->uc_count > 0 && !dev->uc_promisc) {
3420 __dev_set_promiscuity(dev, 1);
3421 dev->uc_promisc = 1;
3422 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3423 __dev_set_promiscuity(dev, -1);
3424 dev->uc_promisc = 0;
3425 }
3426
3427 if (ops->ndo_set_multicast_list)
3428 ops->ndo_set_multicast_list(dev);
3429 }
3430 }
3431
3432 void dev_set_rx_mode(struct net_device *dev)
3433 {
3434 netif_addr_lock_bh(dev);
3435 __dev_set_rx_mode(dev);
3436 netif_addr_unlock_bh(dev);
3437 }
3438
3439 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3440 void *addr, int alen, int glbl)
3441 {
3442 struct dev_addr_list *da;
3443
3444 for (; (da = *list) != NULL; list = &da->next) {
3445 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3446 alen == da->da_addrlen) {
3447 if (glbl) {
3448 int old_glbl = da->da_gusers;
3449 da->da_gusers = 0;
3450 if (old_glbl == 0)
3451 break;
3452 }
3453 if (--da->da_users)
3454 return 0;
3455
3456 *list = da->next;
3457 kfree(da);
3458 (*count)--;
3459 return 0;
3460 }
3461 }
3462 return -ENOENT;
3463 }
3464
3465 int __dev_addr_add(struct dev_addr_list **list, int *count,
3466 void *addr, int alen, int glbl)
3467 {
3468 struct dev_addr_list *da;
3469
3470 for (da = *list; da != NULL; da = da->next) {
3471 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3472 da->da_addrlen == alen) {
3473 if (glbl) {
3474 int old_glbl = da->da_gusers;
3475 da->da_gusers = 1;
3476 if (old_glbl)
3477 return 0;
3478 }
3479 da->da_users++;
3480 return 0;
3481 }
3482 }
3483
3484 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3485 if (da == NULL)
3486 return -ENOMEM;
3487 memcpy(da->da_addr, addr, alen);
3488 da->da_addrlen = alen;
3489 da->da_users = 1;
3490 da->da_gusers = glbl ? 1 : 0;
3491 da->next = *list;
3492 *list = da;
3493 (*count)++;
3494 return 0;
3495 }
3496
3497 /**
3498 * dev_unicast_delete - Release secondary unicast address.
3499 * @dev: device
3500 * @addr: address to delete
3501 * @alen: length of @addr
3502 *
3503 * Release reference to a secondary unicast address and remove it
3504 * from the device if the reference count drops to zero.
3505 *
3506 * The caller must hold the rtnl_mutex.
3507 */
3508 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3509 {
3510 int err;
3511
3512 ASSERT_RTNL();
3513
3514 netif_addr_lock_bh(dev);
3515 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3516 if (!err)
3517 __dev_set_rx_mode(dev);
3518 netif_addr_unlock_bh(dev);
3519 return err;
3520 }
3521 EXPORT_SYMBOL(dev_unicast_delete);
3522
3523 /**
3524 * dev_unicast_add - add a secondary unicast address
3525 * @dev: device
3526 * @addr: address to add
3527 * @alen: length of @addr
3528 *
3529 * Add a secondary unicast address to the device or increase
3530 * the reference count if it already exists.
3531 *
3532 * The caller must hold the rtnl_mutex.
3533 */
3534 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3535 {
3536 int err;
3537
3538 ASSERT_RTNL();
3539
3540 netif_addr_lock_bh(dev);
3541 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3542 if (!err)
3543 __dev_set_rx_mode(dev);
3544 netif_addr_unlock_bh(dev);
3545 return err;
3546 }
3547 EXPORT_SYMBOL(dev_unicast_add);
3548
3549 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3550 struct dev_addr_list **from, int *from_count)
3551 {
3552 struct dev_addr_list *da, *next;
3553 int err = 0;
3554
3555 da = *from;
3556 while (da != NULL) {
3557 next = da->next;
3558 if (!da->da_synced) {
3559 err = __dev_addr_add(to, to_count,
3560 da->da_addr, da->da_addrlen, 0);
3561 if (err < 0)
3562 break;
3563 da->da_synced = 1;
3564 da->da_users++;
3565 } else if (da->da_users == 1) {
3566 __dev_addr_delete(to, to_count,
3567 da->da_addr, da->da_addrlen, 0);
3568 __dev_addr_delete(from, from_count,
3569 da->da_addr, da->da_addrlen, 0);
3570 }
3571 da = next;
3572 }
3573 return err;
3574 }
3575
3576 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3577 struct dev_addr_list **from, int *from_count)
3578 {
3579 struct dev_addr_list *da, *next;
3580
3581 da = *from;
3582 while (da != NULL) {
3583 next = da->next;
3584 if (da->da_synced) {
3585 __dev_addr_delete(to, to_count,
3586 da->da_addr, da->da_addrlen, 0);
3587 da->da_synced = 0;
3588 __dev_addr_delete(from, from_count,
3589 da->da_addr, da->da_addrlen, 0);
3590 }
3591 da = next;
3592 }
3593 }
3594
3595 /**
3596 * dev_unicast_sync - Synchronize device's unicast list to another device
3597 * @to: destination device
3598 * @from: source device
3599 *
3600 * Add newly added addresses to the destination device and release
3601 * addresses that have no users left. The source device must be
3602 * locked by netif_tx_lock_bh.
3603 *
3604 * This function is intended to be called from the dev->set_rx_mode
3605 * function of layered software devices.
3606 */
3607 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3608 {
3609 int err = 0;
3610
3611 netif_addr_lock_bh(to);
3612 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3613 &from->uc_list, &from->uc_count);
3614 if (!err)
3615 __dev_set_rx_mode(to);
3616 netif_addr_unlock_bh(to);
3617 return err;
3618 }
3619 EXPORT_SYMBOL(dev_unicast_sync);
3620
3621 /**
3622 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3623 * @to: destination device
3624 * @from: source device
3625 *
3626 * Remove all addresses that were added to the destination device by
3627 * dev_unicast_sync(). This function is intended to be called from the
3628 * dev->stop function of layered software devices.
3629 */
3630 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3631 {
3632 netif_addr_lock_bh(from);
3633 netif_addr_lock(to);
3634
3635 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3636 &from->uc_list, &from->uc_count);
3637 __dev_set_rx_mode(to);
3638
3639 netif_addr_unlock(to);
3640 netif_addr_unlock_bh(from);
3641 }
3642 EXPORT_SYMBOL(dev_unicast_unsync);
3643
3644 static void __dev_addr_discard(struct dev_addr_list **list)
3645 {
3646 struct dev_addr_list *tmp;
3647
3648 while (*list != NULL) {
3649 tmp = *list;
3650 *list = tmp->next;
3651 if (tmp->da_users > tmp->da_gusers)
3652 printk("__dev_addr_discard: address leakage! "
3653 "da_users=%d\n", tmp->da_users);
3654 kfree(tmp);
3655 }
3656 }
3657
3658 static void dev_addr_discard(struct net_device *dev)
3659 {
3660 netif_addr_lock_bh(dev);
3661
3662 __dev_addr_discard(&dev->uc_list);
3663 dev->uc_count = 0;
3664
3665 __dev_addr_discard(&dev->mc_list);
3666 dev->mc_count = 0;
3667
3668 netif_addr_unlock_bh(dev);
3669 }
3670
3671 /**
3672 * dev_get_flags - get flags reported to userspace
3673 * @dev: device
3674 *
3675 * Get the combination of flag bits exported through APIs to userspace.
3676 */
3677 unsigned dev_get_flags(const struct net_device *dev)
3678 {
3679 unsigned flags;
3680
3681 flags = (dev->flags & ~(IFF_PROMISC |
3682 IFF_ALLMULTI |
3683 IFF_RUNNING |
3684 IFF_LOWER_UP |
3685 IFF_DORMANT)) |
3686 (dev->gflags & (IFF_PROMISC |
3687 IFF_ALLMULTI));
3688
3689 if (netif_running(dev)) {
3690 if (netif_oper_up(dev))
3691 flags |= IFF_RUNNING;
3692 if (netif_carrier_ok(dev))
3693 flags |= IFF_LOWER_UP;
3694 if (netif_dormant(dev))
3695 flags |= IFF_DORMANT;
3696 }
3697
3698 return flags;
3699 }
3700
3701 /**
3702 * dev_change_flags - change device settings
3703 * @dev: device
3704 * @flags: device state flags
3705 *
3706 * Change settings on device based state flags. The flags are
3707 * in the userspace exported format.
3708 */
3709 int dev_change_flags(struct net_device *dev, unsigned flags)
3710 {
3711 int ret, changes;
3712 int old_flags = dev->flags;
3713
3714 ASSERT_RTNL();
3715
3716 /*
3717 * Set the flags on our device.
3718 */
3719
3720 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3721 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3722 IFF_AUTOMEDIA)) |
3723 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3724 IFF_ALLMULTI));
3725
3726 /*
3727 * Load in the correct multicast list now the flags have changed.
3728 */
3729
3730 if ((old_flags ^ flags) & IFF_MULTICAST)
3731 dev_change_rx_flags(dev, IFF_MULTICAST);
3732
3733 dev_set_rx_mode(dev);
3734
3735 /*
3736 * Have we downed the interface. We handle IFF_UP ourselves
3737 * according to user attempts to set it, rather than blindly
3738 * setting it.
3739 */
3740
3741 ret = 0;
3742 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3743 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3744
3745 if (!ret)
3746 dev_set_rx_mode(dev);
3747 }
3748
3749 if (dev->flags & IFF_UP &&
3750 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3751 IFF_VOLATILE)))
3752 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3753
3754 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3755 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3756 dev->gflags ^= IFF_PROMISC;
3757 dev_set_promiscuity(dev, inc);
3758 }
3759
3760 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3761 is important. Some (broken) drivers set IFF_PROMISC, when
3762 IFF_ALLMULTI is requested not asking us and not reporting.
3763 */
3764 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3765 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3766 dev->gflags ^= IFF_ALLMULTI;
3767 dev_set_allmulti(dev, inc);
3768 }
3769
3770 /* Exclude state transition flags, already notified */
3771 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3772 if (changes)
3773 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3774
3775 return ret;
3776 }
3777
3778 /**
3779 * dev_set_mtu - Change maximum transfer unit
3780 * @dev: device
3781 * @new_mtu: new transfer unit
3782 *
3783 * Change the maximum transfer size of the network device.
3784 */
3785 int dev_set_mtu(struct net_device *dev, int new_mtu)
3786 {
3787 const struct net_device_ops *ops = dev->netdev_ops;
3788 int err;
3789
3790 if (new_mtu == dev->mtu)
3791 return 0;
3792
3793 /* MTU must be positive. */
3794 if (new_mtu < 0)
3795 return -EINVAL;
3796
3797 if (!netif_device_present(dev))
3798 return -ENODEV;
3799
3800 err = 0;
3801 if (ops->ndo_change_mtu)
3802 err = ops->ndo_change_mtu(dev, new_mtu);
3803 else
3804 dev->mtu = new_mtu;
3805
3806 if (!err && dev->flags & IFF_UP)
3807 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3808 return err;
3809 }
3810
3811 /**
3812 * dev_set_mac_address - Change Media Access Control Address
3813 * @dev: device
3814 * @sa: new address
3815 *
3816 * Change the hardware (MAC) address of the device
3817 */
3818 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3819 {
3820 const struct net_device_ops *ops = dev->netdev_ops;
3821 int err;
3822
3823 if (!ops->ndo_set_mac_address)
3824 return -EOPNOTSUPP;
3825 if (sa->sa_family != dev->type)
3826 return -EINVAL;
3827 if (!netif_device_present(dev))
3828 return -ENODEV;
3829 err = ops->ndo_set_mac_address(dev, sa);
3830 if (!err)
3831 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3832 return err;
3833 }
3834
3835 /*
3836 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3837 */
3838 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3839 {
3840 int err;
3841 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3842
3843 if (!dev)
3844 return -ENODEV;
3845
3846 switch (cmd) {
3847 case SIOCGIFFLAGS: /* Get interface flags */
3848 ifr->ifr_flags = dev_get_flags(dev);
3849 return 0;
3850
3851 case SIOCGIFMETRIC: /* Get the metric on the interface
3852 (currently unused) */
3853 ifr->ifr_metric = 0;
3854 return 0;
3855
3856 case SIOCGIFMTU: /* Get the MTU of a device */
3857 ifr->ifr_mtu = dev->mtu;
3858 return 0;
3859
3860 case SIOCGIFHWADDR:
3861 if (!dev->addr_len)
3862 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3863 else
3864 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3865 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3866 ifr->ifr_hwaddr.sa_family = dev->type;
3867 return 0;
3868
3869 case SIOCGIFSLAVE:
3870 err = -EINVAL;
3871 break;
3872
3873 case SIOCGIFMAP:
3874 ifr->ifr_map.mem_start = dev->mem_start;
3875 ifr->ifr_map.mem_end = dev->mem_end;
3876 ifr->ifr_map.base_addr = dev->base_addr;
3877 ifr->ifr_map.irq = dev->irq;
3878 ifr->ifr_map.dma = dev->dma;
3879 ifr->ifr_map.port = dev->if_port;
3880 return 0;
3881
3882 case SIOCGIFINDEX:
3883 ifr->ifr_ifindex = dev->ifindex;
3884 return 0;
3885
3886 case SIOCGIFTXQLEN:
3887 ifr->ifr_qlen = dev->tx_queue_len;
3888 return 0;
3889
3890 default:
3891 /* dev_ioctl() should ensure this case
3892 * is never reached
3893 */
3894 WARN_ON(1);
3895 err = -EINVAL;
3896 break;
3897
3898 }
3899 return err;
3900 }
3901
3902 /*
3903 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3904 */
3905 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3906 {
3907 int err;
3908 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3909 const struct net_device_ops *ops;
3910
3911 if (!dev)
3912 return -ENODEV;
3913
3914 ops = dev->netdev_ops;
3915
3916 switch (cmd) {
3917 case SIOCSIFFLAGS: /* Set interface flags */
3918 return dev_change_flags(dev, ifr->ifr_flags);
3919
3920 case SIOCSIFMETRIC: /* Set the metric on the interface
3921 (currently unused) */
3922 return -EOPNOTSUPP;
3923
3924 case SIOCSIFMTU: /* Set the MTU of a device */
3925 return dev_set_mtu(dev, ifr->ifr_mtu);
3926
3927 case SIOCSIFHWADDR:
3928 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3929
3930 case SIOCSIFHWBROADCAST:
3931 if (ifr->ifr_hwaddr.sa_family != dev->type)
3932 return -EINVAL;
3933 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3934 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3935 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3936 return 0;
3937
3938 case SIOCSIFMAP:
3939 if (ops->ndo_set_config) {
3940 if (!netif_device_present(dev))
3941 return -ENODEV;
3942 return ops->ndo_set_config(dev, &ifr->ifr_map);
3943 }
3944 return -EOPNOTSUPP;
3945
3946 case SIOCADDMULTI:
3947 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3948 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3949 return -EINVAL;
3950 if (!netif_device_present(dev))
3951 return -ENODEV;
3952 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3953 dev->addr_len, 1);
3954
3955 case SIOCDELMULTI:
3956 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3957 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3958 return -EINVAL;
3959 if (!netif_device_present(dev))
3960 return -ENODEV;
3961 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3962 dev->addr_len, 1);
3963
3964 case SIOCSIFTXQLEN:
3965 if (ifr->ifr_qlen < 0)
3966 return -EINVAL;
3967 dev->tx_queue_len = ifr->ifr_qlen;
3968 return 0;
3969
3970 case SIOCSIFNAME:
3971 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3972 return dev_change_name(dev, ifr->ifr_newname);
3973
3974 /*
3975 * Unknown or private ioctl
3976 */
3977
3978 default:
3979 if ((cmd >= SIOCDEVPRIVATE &&
3980 cmd <= SIOCDEVPRIVATE + 15) ||
3981 cmd == SIOCBONDENSLAVE ||
3982 cmd == SIOCBONDRELEASE ||
3983 cmd == SIOCBONDSETHWADDR ||
3984 cmd == SIOCBONDSLAVEINFOQUERY ||
3985 cmd == SIOCBONDINFOQUERY ||
3986 cmd == SIOCBONDCHANGEACTIVE ||
3987 cmd == SIOCGMIIPHY ||
3988 cmd == SIOCGMIIREG ||
3989 cmd == SIOCSMIIREG ||
3990 cmd == SIOCBRADDIF ||
3991 cmd == SIOCBRDELIF ||
3992 cmd == SIOCSHWTSTAMP ||
3993 cmd == SIOCWANDEV) {
3994 err = -EOPNOTSUPP;
3995 if (ops->ndo_do_ioctl) {
3996 if (netif_device_present(dev))
3997 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3998 else
3999 err = -ENODEV;
4000 }
4001 } else
4002 err = -EINVAL;
4003
4004 }
4005 return err;
4006 }
4007
4008 /*
4009 * This function handles all "interface"-type I/O control requests. The actual
4010 * 'doing' part of this is dev_ifsioc above.
4011 */
4012
4013 /**
4014 * dev_ioctl - network device ioctl
4015 * @net: the applicable net namespace
4016 * @cmd: command to issue
4017 * @arg: pointer to a struct ifreq in user space
4018 *
4019 * Issue ioctl functions to devices. This is normally called by the
4020 * user space syscall interfaces but can sometimes be useful for
4021 * other purposes. The return value is the return from the syscall if
4022 * positive or a negative errno code on error.
4023 */
4024
4025 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4026 {
4027 struct ifreq ifr;
4028 int ret;
4029 char *colon;
4030
4031 /* One special case: SIOCGIFCONF takes ifconf argument
4032 and requires shared lock, because it sleeps writing
4033 to user space.
4034 */
4035
4036 if (cmd == SIOCGIFCONF) {
4037 rtnl_lock();
4038 ret = dev_ifconf(net, (char __user *) arg);
4039 rtnl_unlock();
4040 return ret;
4041 }
4042 if (cmd == SIOCGIFNAME)
4043 return dev_ifname(net, (struct ifreq __user *)arg);
4044
4045 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4046 return -EFAULT;
4047
4048 ifr.ifr_name[IFNAMSIZ-1] = 0;
4049
4050 colon = strchr(ifr.ifr_name, ':');
4051 if (colon)
4052 *colon = 0;
4053
4054 /*
4055 * See which interface the caller is talking about.
4056 */
4057
4058 switch (cmd) {
4059 /*
4060 * These ioctl calls:
4061 * - can be done by all.
4062 * - atomic and do not require locking.
4063 * - return a value
4064 */
4065 case SIOCGIFFLAGS:
4066 case SIOCGIFMETRIC:
4067 case SIOCGIFMTU:
4068 case SIOCGIFHWADDR:
4069 case SIOCGIFSLAVE:
4070 case SIOCGIFMAP:
4071 case SIOCGIFINDEX:
4072 case SIOCGIFTXQLEN:
4073 dev_load(net, ifr.ifr_name);
4074 read_lock(&dev_base_lock);
4075 ret = dev_ifsioc_locked(net, &ifr, cmd);
4076 read_unlock(&dev_base_lock);
4077 if (!ret) {
4078 if (colon)
4079 *colon = ':';
4080 if (copy_to_user(arg, &ifr,
4081 sizeof(struct ifreq)))
4082 ret = -EFAULT;
4083 }
4084 return ret;
4085
4086 case SIOCETHTOOL:
4087 dev_load(net, ifr.ifr_name);
4088 rtnl_lock();
4089 ret = dev_ethtool(net, &ifr);
4090 rtnl_unlock();
4091 if (!ret) {
4092 if (colon)
4093 *colon = ':';
4094 if (copy_to_user(arg, &ifr,
4095 sizeof(struct ifreq)))
4096 ret = -EFAULT;
4097 }
4098 return ret;
4099
4100 /*
4101 * These ioctl calls:
4102 * - require superuser power.
4103 * - require strict serialization.
4104 * - return a value
4105 */
4106 case SIOCGMIIPHY:
4107 case SIOCGMIIREG:
4108 case SIOCSIFNAME:
4109 if (!capable(CAP_NET_ADMIN))
4110 return -EPERM;
4111 dev_load(net, ifr.ifr_name);
4112 rtnl_lock();
4113 ret = dev_ifsioc(net, &ifr, cmd);
4114 rtnl_unlock();
4115 if (!ret) {
4116 if (colon)
4117 *colon = ':';
4118 if (copy_to_user(arg, &ifr,
4119 sizeof(struct ifreq)))
4120 ret = -EFAULT;
4121 }
4122 return ret;
4123
4124 /*
4125 * These ioctl calls:
4126 * - require superuser power.
4127 * - require strict serialization.
4128 * - do not return a value
4129 */
4130 case SIOCSIFFLAGS:
4131 case SIOCSIFMETRIC:
4132 case SIOCSIFMTU:
4133 case SIOCSIFMAP:
4134 case SIOCSIFHWADDR:
4135 case SIOCSIFSLAVE:
4136 case SIOCADDMULTI:
4137 case SIOCDELMULTI:
4138 case SIOCSIFHWBROADCAST:
4139 case SIOCSIFTXQLEN:
4140 case SIOCSMIIREG:
4141 case SIOCBONDENSLAVE:
4142 case SIOCBONDRELEASE:
4143 case SIOCBONDSETHWADDR:
4144 case SIOCBONDCHANGEACTIVE:
4145 case SIOCBRADDIF:
4146 case SIOCBRDELIF:
4147 case SIOCSHWTSTAMP:
4148 if (!capable(CAP_NET_ADMIN))
4149 return -EPERM;
4150 /* fall through */
4151 case SIOCBONDSLAVEINFOQUERY:
4152 case SIOCBONDINFOQUERY:
4153 dev_load(net, ifr.ifr_name);
4154 rtnl_lock();
4155 ret = dev_ifsioc(net, &ifr, cmd);
4156 rtnl_unlock();
4157 return ret;
4158
4159 case SIOCGIFMEM:
4160 /* Get the per device memory space. We can add this but
4161 * currently do not support it */
4162 case SIOCSIFMEM:
4163 /* Set the per device memory buffer space.
4164 * Not applicable in our case */
4165 case SIOCSIFLINK:
4166 return -EINVAL;
4167
4168 /*
4169 * Unknown or private ioctl.
4170 */
4171 default:
4172 if (cmd == SIOCWANDEV ||
4173 (cmd >= SIOCDEVPRIVATE &&
4174 cmd <= SIOCDEVPRIVATE + 15)) {
4175 dev_load(net, ifr.ifr_name);
4176 rtnl_lock();
4177 ret = dev_ifsioc(net, &ifr, cmd);
4178 rtnl_unlock();
4179 if (!ret && copy_to_user(arg, &ifr,
4180 sizeof(struct ifreq)))
4181 ret = -EFAULT;
4182 return ret;
4183 }
4184 /* Take care of Wireless Extensions */
4185 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4186 return wext_handle_ioctl(net, &ifr, cmd, arg);
4187 return -EINVAL;
4188 }
4189 }
4190
4191
4192 /**
4193 * dev_new_index - allocate an ifindex
4194 * @net: the applicable net namespace
4195 *
4196 * Returns a suitable unique value for a new device interface
4197 * number. The caller must hold the rtnl semaphore or the
4198 * dev_base_lock to be sure it remains unique.
4199 */
4200 static int dev_new_index(struct net *net)
4201 {
4202 static int ifindex;
4203 for (;;) {
4204 if (++ifindex <= 0)
4205 ifindex = 1;
4206 if (!__dev_get_by_index(net, ifindex))
4207 return ifindex;
4208 }
4209 }
4210
4211 /* Delayed registration/unregisteration */
4212 static LIST_HEAD(net_todo_list);
4213
4214 static void net_set_todo(struct net_device *dev)
4215 {
4216 list_add_tail(&dev->todo_list, &net_todo_list);
4217 }
4218
4219 static void rollback_registered(struct net_device *dev)
4220 {
4221 BUG_ON(dev_boot_phase);
4222 ASSERT_RTNL();
4223
4224 /* Some devices call without registering for initialization unwind. */
4225 if (dev->reg_state == NETREG_UNINITIALIZED) {
4226 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4227 "was registered\n", dev->name, dev);
4228
4229 WARN_ON(1);
4230 return;
4231 }
4232
4233 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4234
4235 /* If device is running, close it first. */
4236 dev_close(dev);
4237
4238 /* And unlink it from device chain. */
4239 unlist_netdevice(dev);
4240
4241 dev->reg_state = NETREG_UNREGISTERING;
4242
4243 synchronize_net();
4244
4245 /* Shutdown queueing discipline. */
4246 dev_shutdown(dev);
4247
4248
4249 /* Notify protocols, that we are about to destroy
4250 this device. They should clean all the things.
4251 */
4252 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4253
4254 /*
4255 * Flush the unicast and multicast chains
4256 */
4257 dev_addr_discard(dev);
4258
4259 if (dev->netdev_ops->ndo_uninit)
4260 dev->netdev_ops->ndo_uninit(dev);
4261
4262 /* Notifier chain MUST detach us from master device. */
4263 WARN_ON(dev->master);
4264
4265 /* Remove entries from kobject tree */
4266 netdev_unregister_kobject(dev);
4267
4268 synchronize_net();
4269
4270 dev_put(dev);
4271 }
4272
4273 static void __netdev_init_queue_locks_one(struct net_device *dev,
4274 struct netdev_queue *dev_queue,
4275 void *_unused)
4276 {
4277 spin_lock_init(&dev_queue->_xmit_lock);
4278 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4279 dev_queue->xmit_lock_owner = -1;
4280 }
4281
4282 static void netdev_init_queue_locks(struct net_device *dev)
4283 {
4284 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4285 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4286 }
4287
4288 unsigned long netdev_fix_features(unsigned long features, const char *name)
4289 {
4290 /* Fix illegal SG+CSUM combinations. */
4291 if ((features & NETIF_F_SG) &&
4292 !(features & NETIF_F_ALL_CSUM)) {
4293 if (name)
4294 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4295 "checksum feature.\n", name);
4296 features &= ~NETIF_F_SG;
4297 }
4298
4299 /* TSO requires that SG is present as well. */
4300 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4301 if (name)
4302 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4303 "SG feature.\n", name);
4304 features &= ~NETIF_F_TSO;
4305 }
4306
4307 if (features & NETIF_F_UFO) {
4308 if (!(features & NETIF_F_GEN_CSUM)) {
4309 if (name)
4310 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4311 "since no NETIF_F_HW_CSUM feature.\n",
4312 name);
4313 features &= ~NETIF_F_UFO;
4314 }
4315
4316 if (!(features & NETIF_F_SG)) {
4317 if (name)
4318 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4319 "since no NETIF_F_SG feature.\n", name);
4320 features &= ~NETIF_F_UFO;
4321 }
4322 }
4323
4324 return features;
4325 }
4326 EXPORT_SYMBOL(netdev_fix_features);
4327
4328 /* Some devices need to (re-)set their netdev_ops inside
4329 * ->init() or similar. If that happens, we have to setup
4330 * the compat pointers again.
4331 */
4332 void netdev_resync_ops(struct net_device *dev)
4333 {
4334 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4335 const struct net_device_ops *ops = dev->netdev_ops;
4336
4337 dev->init = ops->ndo_init;
4338 dev->uninit = ops->ndo_uninit;
4339 dev->open = ops->ndo_open;
4340 dev->change_rx_flags = ops->ndo_change_rx_flags;
4341 dev->set_rx_mode = ops->ndo_set_rx_mode;
4342 dev->set_multicast_list = ops->ndo_set_multicast_list;
4343 dev->set_mac_address = ops->ndo_set_mac_address;
4344 dev->validate_addr = ops->ndo_validate_addr;
4345 dev->do_ioctl = ops->ndo_do_ioctl;
4346 dev->set_config = ops->ndo_set_config;
4347 dev->change_mtu = ops->ndo_change_mtu;
4348 dev->neigh_setup = ops->ndo_neigh_setup;
4349 dev->tx_timeout = ops->ndo_tx_timeout;
4350 dev->get_stats = ops->ndo_get_stats;
4351 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4352 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4353 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4354 #ifdef CONFIG_NET_POLL_CONTROLLER
4355 dev->poll_controller = ops->ndo_poll_controller;
4356 #endif
4357 #endif
4358 }
4359 EXPORT_SYMBOL(netdev_resync_ops);
4360
4361 /**
4362 * register_netdevice - register a network device
4363 * @dev: device to register
4364 *
4365 * Take a completed network device structure and add it to the kernel
4366 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4367 * chain. 0 is returned on success. A negative errno code is returned
4368 * on a failure to set up the device, or if the name is a duplicate.
4369 *
4370 * Callers must hold the rtnl semaphore. You may want
4371 * register_netdev() instead of this.
4372 *
4373 * BUGS:
4374 * The locking appears insufficient to guarantee two parallel registers
4375 * will not get the same name.
4376 */
4377
4378 int register_netdevice(struct net_device *dev)
4379 {
4380 struct hlist_head *head;
4381 struct hlist_node *p;
4382 int ret;
4383 struct net *net = dev_net(dev);
4384
4385 BUG_ON(dev_boot_phase);
4386 ASSERT_RTNL();
4387
4388 might_sleep();
4389
4390 /* When net_device's are persistent, this will be fatal. */
4391 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4392 BUG_ON(!net);
4393
4394 spin_lock_init(&dev->addr_list_lock);
4395 netdev_set_addr_lockdep_class(dev);
4396 netdev_init_queue_locks(dev);
4397
4398 dev->iflink = -1;
4399
4400 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4401 /* Netdevice_ops API compatiability support.
4402 * This is temporary until all network devices are converted.
4403 */
4404 if (dev->netdev_ops) {
4405 netdev_resync_ops(dev);
4406 } else {
4407 char drivername[64];
4408 pr_info("%s (%s): not using net_device_ops yet\n",
4409 dev->name, netdev_drivername(dev, drivername, 64));
4410
4411 /* This works only because net_device_ops and the
4412 compatiablity structure are the same. */
4413 dev->netdev_ops = (void *) &(dev->init);
4414 }
4415 #endif
4416
4417 /* Init, if this function is available */
4418 if (dev->netdev_ops->ndo_init) {
4419 ret = dev->netdev_ops->ndo_init(dev);
4420 if (ret) {
4421 if (ret > 0)
4422 ret = -EIO;
4423 goto out;
4424 }
4425 }
4426
4427 if (!dev_valid_name(dev->name)) {
4428 ret = -EINVAL;
4429 goto err_uninit;
4430 }
4431
4432 dev->ifindex = dev_new_index(net);
4433 if (dev->iflink == -1)
4434 dev->iflink = dev->ifindex;
4435
4436 /* Check for existence of name */
4437 head = dev_name_hash(net, dev->name);
4438 hlist_for_each(p, head) {
4439 struct net_device *d
4440 = hlist_entry(p, struct net_device, name_hlist);
4441 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4442 ret = -EEXIST;
4443 goto err_uninit;
4444 }
4445 }
4446
4447 /* Fix illegal checksum combinations */
4448 if ((dev->features & NETIF_F_HW_CSUM) &&
4449 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4450 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4451 dev->name);
4452 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4453 }
4454
4455 if ((dev->features & NETIF_F_NO_CSUM) &&
4456 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4457 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4458 dev->name);
4459 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4460 }
4461
4462 dev->features = netdev_fix_features(dev->features, dev->name);
4463
4464 /* Enable software GSO if SG is supported. */
4465 if (dev->features & NETIF_F_SG)
4466 dev->features |= NETIF_F_GSO;
4467
4468 netdev_initialize_kobject(dev);
4469 ret = netdev_register_kobject(dev);
4470 if (ret)
4471 goto err_uninit;
4472 dev->reg_state = NETREG_REGISTERED;
4473
4474 /*
4475 * Default initial state at registry is that the
4476 * device is present.
4477 */
4478
4479 set_bit(__LINK_STATE_PRESENT, &dev->state);
4480
4481 dev_init_scheduler(dev);
4482 dev_hold(dev);
4483 list_netdevice(dev);
4484
4485 /* Notify protocols, that a new device appeared. */
4486 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4487 ret = notifier_to_errno(ret);
4488 if (ret) {
4489 rollback_registered(dev);
4490 dev->reg_state = NETREG_UNREGISTERED;
4491 }
4492
4493 out:
4494 return ret;
4495
4496 err_uninit:
4497 if (dev->netdev_ops->ndo_uninit)
4498 dev->netdev_ops->ndo_uninit(dev);
4499 goto out;
4500 }
4501
4502 /**
4503 * init_dummy_netdev - init a dummy network device for NAPI
4504 * @dev: device to init
4505 *
4506 * This takes a network device structure and initialize the minimum
4507 * amount of fields so it can be used to schedule NAPI polls without
4508 * registering a full blown interface. This is to be used by drivers
4509 * that need to tie several hardware interfaces to a single NAPI
4510 * poll scheduler due to HW limitations.
4511 */
4512 int init_dummy_netdev(struct net_device *dev)
4513 {
4514 /* Clear everything. Note we don't initialize spinlocks
4515 * are they aren't supposed to be taken by any of the
4516 * NAPI code and this dummy netdev is supposed to be
4517 * only ever used for NAPI polls
4518 */
4519 memset(dev, 0, sizeof(struct net_device));
4520
4521 /* make sure we BUG if trying to hit standard
4522 * register/unregister code path
4523 */
4524 dev->reg_state = NETREG_DUMMY;
4525
4526 /* initialize the ref count */
4527 atomic_set(&dev->refcnt, 1);
4528
4529 /* NAPI wants this */
4530 INIT_LIST_HEAD(&dev->napi_list);
4531
4532 /* a dummy interface is started by default */
4533 set_bit(__LINK_STATE_PRESENT, &dev->state);
4534 set_bit(__LINK_STATE_START, &dev->state);
4535
4536 return 0;
4537 }
4538 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4539
4540
4541 /**
4542 * register_netdev - register a network device
4543 * @dev: device to register
4544 *
4545 * Take a completed network device structure and add it to the kernel
4546 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4547 * chain. 0 is returned on success. A negative errno code is returned
4548 * on a failure to set up the device, or if the name is a duplicate.
4549 *
4550 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4551 * and expands the device name if you passed a format string to
4552 * alloc_netdev.
4553 */
4554 int register_netdev(struct net_device *dev)
4555 {
4556 int err;
4557
4558 rtnl_lock();
4559
4560 /*
4561 * If the name is a format string the caller wants us to do a
4562 * name allocation.
4563 */
4564 if (strchr(dev->name, '%')) {
4565 err = dev_alloc_name(dev, dev->name);
4566 if (err < 0)
4567 goto out;
4568 }
4569
4570 err = register_netdevice(dev);
4571 out:
4572 rtnl_unlock();
4573 return err;
4574 }
4575 EXPORT_SYMBOL(register_netdev);
4576
4577 /*
4578 * netdev_wait_allrefs - wait until all references are gone.
4579 *
4580 * This is called when unregistering network devices.
4581 *
4582 * Any protocol or device that holds a reference should register
4583 * for netdevice notification, and cleanup and put back the
4584 * reference if they receive an UNREGISTER event.
4585 * We can get stuck here if buggy protocols don't correctly
4586 * call dev_put.
4587 */
4588 static void netdev_wait_allrefs(struct net_device *dev)
4589 {
4590 unsigned long rebroadcast_time, warning_time;
4591
4592 rebroadcast_time = warning_time = jiffies;
4593 while (atomic_read(&dev->refcnt) != 0) {
4594 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4595 rtnl_lock();
4596
4597 /* Rebroadcast unregister notification */
4598 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4599
4600 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4601 &dev->state)) {
4602 /* We must not have linkwatch events
4603 * pending on unregister. If this
4604 * happens, we simply run the queue
4605 * unscheduled, resulting in a noop
4606 * for this device.
4607 */
4608 linkwatch_run_queue();
4609 }
4610
4611 __rtnl_unlock();
4612
4613 rebroadcast_time = jiffies;
4614 }
4615
4616 msleep(250);
4617
4618 if (time_after(jiffies, warning_time + 10 * HZ)) {
4619 printk(KERN_EMERG "unregister_netdevice: "
4620 "waiting for %s to become free. Usage "
4621 "count = %d\n",
4622 dev->name, atomic_read(&dev->refcnt));
4623 warning_time = jiffies;
4624 }
4625 }
4626 }
4627
4628 /* The sequence is:
4629 *
4630 * rtnl_lock();
4631 * ...
4632 * register_netdevice(x1);
4633 * register_netdevice(x2);
4634 * ...
4635 * unregister_netdevice(y1);
4636 * unregister_netdevice(y2);
4637 * ...
4638 * rtnl_unlock();
4639 * free_netdev(y1);
4640 * free_netdev(y2);
4641 *
4642 * We are invoked by rtnl_unlock().
4643 * This allows us to deal with problems:
4644 * 1) We can delete sysfs objects which invoke hotplug
4645 * without deadlocking with linkwatch via keventd.
4646 * 2) Since we run with the RTNL semaphore not held, we can sleep
4647 * safely in order to wait for the netdev refcnt to drop to zero.
4648 *
4649 * We must not return until all unregister events added during
4650 * the interval the lock was held have been completed.
4651 */
4652 void netdev_run_todo(void)
4653 {
4654 struct list_head list;
4655
4656 /* Snapshot list, allow later requests */
4657 list_replace_init(&net_todo_list, &list);
4658
4659 __rtnl_unlock();
4660
4661 while (!list_empty(&list)) {
4662 struct net_device *dev
4663 = list_entry(list.next, struct net_device, todo_list);
4664 list_del(&dev->todo_list);
4665
4666 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4667 printk(KERN_ERR "network todo '%s' but state %d\n",
4668 dev->name, dev->reg_state);
4669 dump_stack();
4670 continue;
4671 }
4672
4673 dev->reg_state = NETREG_UNREGISTERED;
4674
4675 on_each_cpu(flush_backlog, dev, 1);
4676
4677 netdev_wait_allrefs(dev);
4678
4679 /* paranoia */
4680 BUG_ON(atomic_read(&dev->refcnt));
4681 WARN_ON(dev->ip_ptr);
4682 WARN_ON(dev->ip6_ptr);
4683 WARN_ON(dev->dn_ptr);
4684
4685 if (dev->destructor)
4686 dev->destructor(dev);
4687
4688 /* Free network device */
4689 kobject_put(&dev->dev.kobj);
4690 }
4691 }
4692
4693 /**
4694 * dev_get_stats - get network device statistics
4695 * @dev: device to get statistics from
4696 *
4697 * Get network statistics from device. The device driver may provide
4698 * its own method by setting dev->netdev_ops->get_stats; otherwise
4699 * the internal statistics structure is used.
4700 */
4701 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4702 {
4703 const struct net_device_ops *ops = dev->netdev_ops;
4704
4705 if (ops->ndo_get_stats)
4706 return ops->ndo_get_stats(dev);
4707 else
4708 return &dev->stats;
4709 }
4710 EXPORT_SYMBOL(dev_get_stats);
4711
4712 static void netdev_init_one_queue(struct net_device *dev,
4713 struct netdev_queue *queue,
4714 void *_unused)
4715 {
4716 queue->dev = dev;
4717 }
4718
4719 static void netdev_init_queues(struct net_device *dev)
4720 {
4721 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4722 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4723 spin_lock_init(&dev->tx_global_lock);
4724 }
4725
4726 /**
4727 * alloc_netdev_mq - allocate network device
4728 * @sizeof_priv: size of private data to allocate space for
4729 * @name: device name format string
4730 * @setup: callback to initialize device
4731 * @queue_count: the number of subqueues to allocate
4732 *
4733 * Allocates a struct net_device with private data area for driver use
4734 * and performs basic initialization. Also allocates subquue structs
4735 * for each queue on the device at the end of the netdevice.
4736 */
4737 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4738 void (*setup)(struct net_device *), unsigned int queue_count)
4739 {
4740 struct netdev_queue *tx;
4741 struct net_device *dev;
4742 size_t alloc_size;
4743 void *p;
4744
4745 BUG_ON(strlen(name) >= sizeof(dev->name));
4746
4747 alloc_size = sizeof(struct net_device);
4748 if (sizeof_priv) {
4749 /* ensure 32-byte alignment of private area */
4750 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4751 alloc_size += sizeof_priv;
4752 }
4753 /* ensure 32-byte alignment of whole construct */
4754 alloc_size += NETDEV_ALIGN_CONST;
4755
4756 p = kzalloc(alloc_size, GFP_KERNEL);
4757 if (!p) {
4758 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4759 return NULL;
4760 }
4761
4762 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4763 if (!tx) {
4764 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4765 "tx qdiscs.\n");
4766 kfree(p);
4767 return NULL;
4768 }
4769
4770 dev = (struct net_device *)
4771 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4772 dev->padded = (char *)dev - (char *)p;
4773 dev_net_set(dev, &init_net);
4774
4775 dev->_tx = tx;
4776 dev->num_tx_queues = queue_count;
4777 dev->real_num_tx_queues = queue_count;
4778
4779 dev->gso_max_size = GSO_MAX_SIZE;
4780
4781 netdev_init_queues(dev);
4782
4783 INIT_LIST_HEAD(&dev->napi_list);
4784 setup(dev);
4785 strcpy(dev->name, name);
4786 return dev;
4787 }
4788 EXPORT_SYMBOL(alloc_netdev_mq);
4789
4790 /**
4791 * free_netdev - free network device
4792 * @dev: device
4793 *
4794 * This function does the last stage of destroying an allocated device
4795 * interface. The reference to the device object is released.
4796 * If this is the last reference then it will be freed.
4797 */
4798 void free_netdev(struct net_device *dev)
4799 {
4800 struct napi_struct *p, *n;
4801
4802 release_net(dev_net(dev));
4803
4804 kfree(dev->_tx);
4805
4806 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4807 netif_napi_del(p);
4808
4809 /* Compatibility with error handling in drivers */
4810 if (dev->reg_state == NETREG_UNINITIALIZED) {
4811 kfree((char *)dev - dev->padded);
4812 return;
4813 }
4814
4815 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4816 dev->reg_state = NETREG_RELEASED;
4817
4818 /* will free via device release */
4819 put_device(&dev->dev);
4820 }
4821
4822 /**
4823 * synchronize_net - Synchronize with packet receive processing
4824 *
4825 * Wait for packets currently being received to be done.
4826 * Does not block later packets from starting.
4827 */
4828 void synchronize_net(void)
4829 {
4830 might_sleep();
4831 synchronize_rcu();
4832 }
4833
4834 /**
4835 * unregister_netdevice - remove device from the kernel
4836 * @dev: device
4837 *
4838 * This function shuts down a device interface and removes it
4839 * from the kernel tables.
4840 *
4841 * Callers must hold the rtnl semaphore. You may want
4842 * unregister_netdev() instead of this.
4843 */
4844
4845 void unregister_netdevice(struct net_device *dev)
4846 {
4847 ASSERT_RTNL();
4848
4849 rollback_registered(dev);
4850 /* Finish processing unregister after unlock */
4851 net_set_todo(dev);
4852 }
4853
4854 /**
4855 * unregister_netdev - remove device from the kernel
4856 * @dev: device
4857 *
4858 * This function shuts down a device interface and removes it
4859 * from the kernel tables.
4860 *
4861 * This is just a wrapper for unregister_netdevice that takes
4862 * the rtnl semaphore. In general you want to use this and not
4863 * unregister_netdevice.
4864 */
4865 void unregister_netdev(struct net_device *dev)
4866 {
4867 rtnl_lock();
4868 unregister_netdevice(dev);
4869 rtnl_unlock();
4870 }
4871
4872 EXPORT_SYMBOL(unregister_netdev);
4873
4874 /**
4875 * dev_change_net_namespace - move device to different nethost namespace
4876 * @dev: device
4877 * @net: network namespace
4878 * @pat: If not NULL name pattern to try if the current device name
4879 * is already taken in the destination network namespace.
4880 *
4881 * This function shuts down a device interface and moves it
4882 * to a new network namespace. On success 0 is returned, on
4883 * a failure a netagive errno code is returned.
4884 *
4885 * Callers must hold the rtnl semaphore.
4886 */
4887
4888 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4889 {
4890 char buf[IFNAMSIZ];
4891 const char *destname;
4892 int err;
4893
4894 ASSERT_RTNL();
4895
4896 /* Don't allow namespace local devices to be moved. */
4897 err = -EINVAL;
4898 if (dev->features & NETIF_F_NETNS_LOCAL)
4899 goto out;
4900
4901 #ifdef CONFIG_SYSFS
4902 /* Don't allow real devices to be moved when sysfs
4903 * is enabled.
4904 */
4905 err = -EINVAL;
4906 if (dev->dev.parent)
4907 goto out;
4908 #endif
4909
4910 /* Ensure the device has been registrered */
4911 err = -EINVAL;
4912 if (dev->reg_state != NETREG_REGISTERED)
4913 goto out;
4914
4915 /* Get out if there is nothing todo */
4916 err = 0;
4917 if (net_eq(dev_net(dev), net))
4918 goto out;
4919
4920 /* Pick the destination device name, and ensure
4921 * we can use it in the destination network namespace.
4922 */
4923 err = -EEXIST;
4924 destname = dev->name;
4925 if (__dev_get_by_name(net, destname)) {
4926 /* We get here if we can't use the current device name */
4927 if (!pat)
4928 goto out;
4929 if (!dev_valid_name(pat))
4930 goto out;
4931 if (strchr(pat, '%')) {
4932 if (__dev_alloc_name(net, pat, buf) < 0)
4933 goto out;
4934 destname = buf;
4935 } else
4936 destname = pat;
4937 if (__dev_get_by_name(net, destname))
4938 goto out;
4939 }
4940
4941 /*
4942 * And now a mini version of register_netdevice unregister_netdevice.
4943 */
4944
4945 /* If device is running close it first. */
4946 dev_close(dev);
4947
4948 /* And unlink it from device chain */
4949 err = -ENODEV;
4950 unlist_netdevice(dev);
4951
4952 synchronize_net();
4953
4954 /* Shutdown queueing discipline. */
4955 dev_shutdown(dev);
4956
4957 /* Notify protocols, that we are about to destroy
4958 this device. They should clean all the things.
4959 */
4960 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4961
4962 /*
4963 * Flush the unicast and multicast chains
4964 */
4965 dev_addr_discard(dev);
4966
4967 netdev_unregister_kobject(dev);
4968
4969 /* Actually switch the network namespace */
4970 dev_net_set(dev, net);
4971
4972 /* Assign the new device name */
4973 if (destname != dev->name)
4974 strcpy(dev->name, destname);
4975
4976 /* If there is an ifindex conflict assign a new one */
4977 if (__dev_get_by_index(net, dev->ifindex)) {
4978 int iflink = (dev->iflink == dev->ifindex);
4979 dev->ifindex = dev_new_index(net);
4980 if (iflink)
4981 dev->iflink = dev->ifindex;
4982 }
4983
4984 /* Fixup kobjects */
4985 err = netdev_register_kobject(dev);
4986 WARN_ON(err);
4987
4988 /* Add the device back in the hashes */
4989 list_netdevice(dev);
4990
4991 /* Notify protocols, that a new device appeared. */
4992 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4993
4994 synchronize_net();
4995 err = 0;
4996 out:
4997 return err;
4998 }
4999
5000 static int dev_cpu_callback(struct notifier_block *nfb,
5001 unsigned long action,
5002 void *ocpu)
5003 {
5004 struct sk_buff **list_skb;
5005 struct Qdisc **list_net;
5006 struct sk_buff *skb;
5007 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5008 struct softnet_data *sd, *oldsd;
5009
5010 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5011 return NOTIFY_OK;
5012
5013 local_irq_disable();
5014 cpu = smp_processor_id();
5015 sd = &per_cpu(softnet_data, cpu);
5016 oldsd = &per_cpu(softnet_data, oldcpu);
5017
5018 /* Find end of our completion_queue. */
5019 list_skb = &sd->completion_queue;
5020 while (*list_skb)
5021 list_skb = &(*list_skb)->next;
5022 /* Append completion queue from offline CPU. */
5023 *list_skb = oldsd->completion_queue;
5024 oldsd->completion_queue = NULL;
5025
5026 /* Find end of our output_queue. */
5027 list_net = &sd->output_queue;
5028 while (*list_net)
5029 list_net = &(*list_net)->next_sched;
5030 /* Append output queue from offline CPU. */
5031 *list_net = oldsd->output_queue;
5032 oldsd->output_queue = NULL;
5033
5034 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5035 local_irq_enable();
5036
5037 /* Process offline CPU's input_pkt_queue */
5038 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5039 netif_rx(skb);
5040
5041 return NOTIFY_OK;
5042 }
5043
5044
5045 /**
5046 * netdev_increment_features - increment feature set by one
5047 * @all: current feature set
5048 * @one: new feature set
5049 * @mask: mask feature set
5050 *
5051 * Computes a new feature set after adding a device with feature set
5052 * @one to the master device with current feature set @all. Will not
5053 * enable anything that is off in @mask. Returns the new feature set.
5054 */
5055 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5056 unsigned long mask)
5057 {
5058 /* If device needs checksumming, downgrade to it. */
5059 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5060 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5061 else if (mask & NETIF_F_ALL_CSUM) {
5062 /* If one device supports v4/v6 checksumming, set for all. */
5063 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5064 !(all & NETIF_F_GEN_CSUM)) {
5065 all &= ~NETIF_F_ALL_CSUM;
5066 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5067 }
5068
5069 /* If one device supports hw checksumming, set for all. */
5070 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5071 all &= ~NETIF_F_ALL_CSUM;
5072 all |= NETIF_F_HW_CSUM;
5073 }
5074 }
5075
5076 one |= NETIF_F_ALL_CSUM;
5077
5078 one |= all & NETIF_F_ONE_FOR_ALL;
5079 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5080 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5081
5082 return all;
5083 }
5084 EXPORT_SYMBOL(netdev_increment_features);
5085
5086 static struct hlist_head *netdev_create_hash(void)
5087 {
5088 int i;
5089 struct hlist_head *hash;
5090
5091 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5092 if (hash != NULL)
5093 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5094 INIT_HLIST_HEAD(&hash[i]);
5095
5096 return hash;
5097 }
5098
5099 /* Initialize per network namespace state */
5100 static int __net_init netdev_init(struct net *net)
5101 {
5102 INIT_LIST_HEAD(&net->dev_base_head);
5103
5104 net->dev_name_head = netdev_create_hash();
5105 if (net->dev_name_head == NULL)
5106 goto err_name;
5107
5108 net->dev_index_head = netdev_create_hash();
5109 if (net->dev_index_head == NULL)
5110 goto err_idx;
5111
5112 return 0;
5113
5114 err_idx:
5115 kfree(net->dev_name_head);
5116 err_name:
5117 return -ENOMEM;
5118 }
5119
5120 /**
5121 * netdev_drivername - network driver for the device
5122 * @dev: network device
5123 * @buffer: buffer for resulting name
5124 * @len: size of buffer
5125 *
5126 * Determine network driver for device.
5127 */
5128 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5129 {
5130 const struct device_driver *driver;
5131 const struct device *parent;
5132
5133 if (len <= 0 || !buffer)
5134 return buffer;
5135 buffer[0] = 0;
5136
5137 parent = dev->dev.parent;
5138
5139 if (!parent)
5140 return buffer;
5141
5142 driver = parent->driver;
5143 if (driver && driver->name)
5144 strlcpy(buffer, driver->name, len);
5145 return buffer;
5146 }
5147
5148 static void __net_exit netdev_exit(struct net *net)
5149 {
5150 kfree(net->dev_name_head);
5151 kfree(net->dev_index_head);
5152 }
5153
5154 static struct pernet_operations __net_initdata netdev_net_ops = {
5155 .init = netdev_init,
5156 .exit = netdev_exit,
5157 };
5158
5159 static void __net_exit default_device_exit(struct net *net)
5160 {
5161 struct net_device *dev;
5162 /*
5163 * Push all migratable of the network devices back to the
5164 * initial network namespace
5165 */
5166 rtnl_lock();
5167 restart:
5168 for_each_netdev(net, dev) {
5169 int err;
5170 char fb_name[IFNAMSIZ];
5171
5172 /* Ignore unmoveable devices (i.e. loopback) */
5173 if (dev->features & NETIF_F_NETNS_LOCAL)
5174 continue;
5175
5176 /* Delete virtual devices */
5177 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5178 dev->rtnl_link_ops->dellink(dev);
5179 goto restart;
5180 }
5181
5182 /* Push remaing network devices to init_net */
5183 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5184 err = dev_change_net_namespace(dev, &init_net, fb_name);
5185 if (err) {
5186 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5187 __func__, dev->name, err);
5188 BUG();
5189 }
5190 goto restart;
5191 }
5192 rtnl_unlock();
5193 }
5194
5195 static struct pernet_operations __net_initdata default_device_ops = {
5196 .exit = default_device_exit,
5197 };
5198
5199 /*
5200 * Initialize the DEV module. At boot time this walks the device list and
5201 * unhooks any devices that fail to initialise (normally hardware not
5202 * present) and leaves us with a valid list of present and active devices.
5203 *
5204 */
5205
5206 /*
5207 * This is called single threaded during boot, so no need
5208 * to take the rtnl semaphore.
5209 */
5210 static int __init net_dev_init(void)
5211 {
5212 int i, rc = -ENOMEM;
5213
5214 BUG_ON(!dev_boot_phase);
5215
5216 if (dev_proc_init())
5217 goto out;
5218
5219 if (netdev_kobject_init())
5220 goto out;
5221
5222 INIT_LIST_HEAD(&ptype_all);
5223 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5224 INIT_LIST_HEAD(&ptype_base[i]);
5225
5226 if (register_pernet_subsys(&netdev_net_ops))
5227 goto out;
5228
5229 /*
5230 * Initialise the packet receive queues.
5231 */
5232
5233 for_each_possible_cpu(i) {
5234 struct softnet_data *queue;
5235
5236 queue = &per_cpu(softnet_data, i);
5237 skb_queue_head_init(&queue->input_pkt_queue);
5238 queue->completion_queue = NULL;
5239 INIT_LIST_HEAD(&queue->poll_list);
5240
5241 queue->backlog.poll = process_backlog;
5242 queue->backlog.weight = weight_p;
5243 queue->backlog.gro_list = NULL;
5244 queue->backlog.gro_count = 0;
5245 }
5246
5247 dev_boot_phase = 0;
5248
5249 /* The loopback device is special if any other network devices
5250 * is present in a network namespace the loopback device must
5251 * be present. Since we now dynamically allocate and free the
5252 * loopback device ensure this invariant is maintained by
5253 * keeping the loopback device as the first device on the
5254 * list of network devices. Ensuring the loopback devices
5255 * is the first device that appears and the last network device
5256 * that disappears.
5257 */
5258 if (register_pernet_device(&loopback_net_ops))
5259 goto out;
5260
5261 if (register_pernet_device(&default_device_ops))
5262 goto out;
5263
5264 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5265 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5266
5267 hotcpu_notifier(dev_cpu_callback, 0);
5268 dst_init();
5269 dev_mcast_init();
5270 rc = 0;
5271 out:
5272 return rc;
5273 }
5274
5275 subsys_initcall(net_dev_init);
5276
5277 static int __init initialize_hashrnd(void)
5278 {
5279 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5280 return 0;
5281 }
5282
5283 late_initcall_sync(initialize_hashrnd);
5284
5285 EXPORT_SYMBOL(__dev_get_by_index);
5286 EXPORT_SYMBOL(__dev_get_by_name);
5287 EXPORT_SYMBOL(__dev_remove_pack);
5288 EXPORT_SYMBOL(dev_valid_name);
5289 EXPORT_SYMBOL(dev_add_pack);
5290 EXPORT_SYMBOL(dev_alloc_name);
5291 EXPORT_SYMBOL(dev_close);
5292 EXPORT_SYMBOL(dev_get_by_flags);
5293 EXPORT_SYMBOL(dev_get_by_index);
5294 EXPORT_SYMBOL(dev_get_by_name);
5295 EXPORT_SYMBOL(dev_open);
5296 EXPORT_SYMBOL(dev_queue_xmit);
5297 EXPORT_SYMBOL(dev_remove_pack);
5298 EXPORT_SYMBOL(dev_set_allmulti);
5299 EXPORT_SYMBOL(dev_set_promiscuity);
5300 EXPORT_SYMBOL(dev_change_flags);
5301 EXPORT_SYMBOL(dev_set_mtu);
5302 EXPORT_SYMBOL(dev_set_mac_address);
5303 EXPORT_SYMBOL(free_netdev);
5304 EXPORT_SYMBOL(netdev_boot_setup_check);
5305 EXPORT_SYMBOL(netdev_set_master);
5306 EXPORT_SYMBOL(netdev_state_change);
5307 EXPORT_SYMBOL(netif_receive_skb);
5308 EXPORT_SYMBOL(netif_rx);
5309 EXPORT_SYMBOL(register_gifconf);
5310 EXPORT_SYMBOL(register_netdevice);
5311 EXPORT_SYMBOL(register_netdevice_notifier);
5312 EXPORT_SYMBOL(skb_checksum_help);
5313 EXPORT_SYMBOL(synchronize_net);
5314 EXPORT_SYMBOL(unregister_netdevice);
5315 EXPORT_SYMBOL(unregister_netdevice_notifier);
5316 EXPORT_SYMBOL(net_enable_timestamp);
5317 EXPORT_SYMBOL(net_disable_timestamp);
5318 EXPORT_SYMBOL(dev_get_flags);
5319
5320 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5321 EXPORT_SYMBOL(br_handle_frame_hook);
5322 EXPORT_SYMBOL(br_fdb_get_hook);
5323 EXPORT_SYMBOL(br_fdb_put_hook);
5324 #endif
5325
5326 EXPORT_SYMBOL(dev_load);
5327
5328 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.258236 seconds and 6 git commands to generate.