bnx2x: function descriptions format fixed
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 if (!netif_device_present(dev))
1144 return -ENODEV;
1145
1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 ret = notifier_to_errno(ret);
1148 if (ret)
1149 return ret;
1150
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 dev->flags |= IFF_UP;
1163 net_dmaengine_get();
1164 dev_set_rx_mode(dev);
1165 dev_activate(dev);
1166 }
1167
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_open - prepare an interface for use.
1173 * @dev: device to open
1174 *
1175 * Takes a device from down to up state. The device's private open
1176 * function is invoked and then the multicast lists are loaded. Finally
1177 * the device is moved into the up state and a %NETDEV_UP message is
1178 * sent to the netdev notifier chain.
1179 *
1180 * Calling this function on an active interface is a nop. On a failure
1181 * a negative errno code is returned.
1182 */
1183 int dev_open(struct net_device *dev)
1184 {
1185 int ret;
1186
1187 if (dev->flags & IFF_UP)
1188 return 0;
1189
1190 ret = __dev_open(dev);
1191 if (ret < 0)
1192 return ret;
1193
1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 call_netdevice_notifiers(NETDEV_UP, dev);
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 static int __dev_close_many(struct list_head *head)
1202 {
1203 struct net_device *dev;
1204
1205 ASSERT_RTNL();
1206 might_sleep();
1207
1208 list_for_each_entry(dev, head, unreg_list) {
1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1210
1211 clear_bit(__LINK_STATE_START, &dev->state);
1212
1213 /* Synchronize to scheduled poll. We cannot touch poll list, it
1214 * can be even on different cpu. So just clear netif_running().
1215 *
1216 * dev->stop() will invoke napi_disable() on all of it's
1217 * napi_struct instances on this device.
1218 */
1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1220 }
1221
1222 dev_deactivate_many(head);
1223
1224 list_for_each_entry(dev, head, unreg_list) {
1225 const struct net_device_ops *ops = dev->netdev_ops;
1226
1227 /*
1228 * Call the device specific close. This cannot fail.
1229 * Only if device is UP
1230 *
1231 * We allow it to be called even after a DETACH hot-plug
1232 * event.
1233 */
1234 if (ops->ndo_stop)
1235 ops->ndo_stop(dev);
1236
1237 dev->flags &= ~IFF_UP;
1238 net_dmaengine_put();
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int __dev_close(struct net_device *dev)
1245 {
1246 int retval;
1247 LIST_HEAD(single);
1248
1249 list_add(&dev->unreg_list, &single);
1250 retval = __dev_close_many(&single);
1251 list_del(&single);
1252 return retval;
1253 }
1254
1255 static int dev_close_many(struct list_head *head)
1256 {
1257 struct net_device *dev, *tmp;
1258 LIST_HEAD(tmp_list);
1259
1260 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 if (!(dev->flags & IFF_UP))
1262 list_move(&dev->unreg_list, &tmp_list);
1263
1264 __dev_close_many(head);
1265
1266 list_for_each_entry(dev, head, unreg_list) {
1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 call_netdevice_notifiers(NETDEV_DOWN, dev);
1269 }
1270
1271 /* rollback_registered_many needs the complete original list */
1272 list_splice(&tmp_list, head);
1273 return 0;
1274 }
1275
1276 /**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285 int dev_close(struct net_device *dev)
1286 {
1287 LIST_HEAD(single);
1288
1289 list_add(&dev->unreg_list, &single);
1290 dev_close_many(&single);
1291 list_del(&single);
1292 return 0;
1293 }
1294 EXPORT_SYMBOL(dev_close);
1295
1296
1297 /**
1298 * dev_disable_lro - disable Large Receive Offload on a device
1299 * @dev: device
1300 *
1301 * Disable Large Receive Offload (LRO) on a net device. Must be
1302 * called under RTNL. This is needed if received packets may be
1303 * forwarded to another interface.
1304 */
1305 void dev_disable_lro(struct net_device *dev)
1306 {
1307 u32 flags;
1308
1309 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1310 flags = dev->ethtool_ops->get_flags(dev);
1311 else
1312 flags = ethtool_op_get_flags(dev);
1313
1314 if (!(flags & ETH_FLAG_LRO))
1315 return;
1316
1317 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1318 if (unlikely(dev->features & NETIF_F_LRO))
1319 netdev_WARN(dev, "failed to disable LRO!\n");
1320 }
1321 EXPORT_SYMBOL(dev_disable_lro);
1322
1323
1324 static int dev_boot_phase = 1;
1325
1326 /**
1327 * register_netdevice_notifier - register a network notifier block
1328 * @nb: notifier
1329 *
1330 * Register a notifier to be called when network device events occur.
1331 * The notifier passed is linked into the kernel structures and must
1332 * not be reused until it has been unregistered. A negative errno code
1333 * is returned on a failure.
1334 *
1335 * When registered all registration and up events are replayed
1336 * to the new notifier to allow device to have a race free
1337 * view of the network device list.
1338 */
1339
1340 int register_netdevice_notifier(struct notifier_block *nb)
1341 {
1342 struct net_device *dev;
1343 struct net_device *last;
1344 struct net *net;
1345 int err;
1346
1347 rtnl_lock();
1348 err = raw_notifier_chain_register(&netdev_chain, nb);
1349 if (err)
1350 goto unlock;
1351 if (dev_boot_phase)
1352 goto unlock;
1353 for_each_net(net) {
1354 for_each_netdev(net, dev) {
1355 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1356 err = notifier_to_errno(err);
1357 if (err)
1358 goto rollback;
1359
1360 if (!(dev->flags & IFF_UP))
1361 continue;
1362
1363 nb->notifier_call(nb, NETDEV_UP, dev);
1364 }
1365 }
1366
1367 unlock:
1368 rtnl_unlock();
1369 return err;
1370
1371 rollback:
1372 last = dev;
1373 for_each_net(net) {
1374 for_each_netdev(net, dev) {
1375 if (dev == last)
1376 break;
1377
1378 if (dev->flags & IFF_UP) {
1379 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1380 nb->notifier_call(nb, NETDEV_DOWN, dev);
1381 }
1382 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1383 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1384 }
1385 }
1386
1387 raw_notifier_chain_unregister(&netdev_chain, nb);
1388 goto unlock;
1389 }
1390 EXPORT_SYMBOL(register_netdevice_notifier);
1391
1392 /**
1393 * unregister_netdevice_notifier - unregister a network notifier block
1394 * @nb: notifier
1395 *
1396 * Unregister a notifier previously registered by
1397 * register_netdevice_notifier(). The notifier is unlinked into the
1398 * kernel structures and may then be reused. A negative errno code
1399 * is returned on a failure.
1400 */
1401
1402 int unregister_netdevice_notifier(struct notifier_block *nb)
1403 {
1404 int err;
1405
1406 rtnl_lock();
1407 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1408 rtnl_unlock();
1409 return err;
1410 }
1411 EXPORT_SYMBOL(unregister_netdevice_notifier);
1412
1413 /**
1414 * call_netdevice_notifiers - call all network notifier blocks
1415 * @val: value passed unmodified to notifier function
1416 * @dev: net_device pointer passed unmodified to notifier function
1417 *
1418 * Call all network notifier blocks. Parameters and return value
1419 * are as for raw_notifier_call_chain().
1420 */
1421
1422 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1423 {
1424 ASSERT_RTNL();
1425 return raw_notifier_call_chain(&netdev_chain, val, dev);
1426 }
1427 EXPORT_SYMBOL(call_netdevice_notifiers);
1428
1429 /* When > 0 there are consumers of rx skb time stamps */
1430 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1431
1432 void net_enable_timestamp(void)
1433 {
1434 atomic_inc(&netstamp_needed);
1435 }
1436 EXPORT_SYMBOL(net_enable_timestamp);
1437
1438 void net_disable_timestamp(void)
1439 {
1440 atomic_dec(&netstamp_needed);
1441 }
1442 EXPORT_SYMBOL(net_disable_timestamp);
1443
1444 static inline void net_timestamp_set(struct sk_buff *skb)
1445 {
1446 if (atomic_read(&netstamp_needed))
1447 __net_timestamp(skb);
1448 else
1449 skb->tstamp.tv64 = 0;
1450 }
1451
1452 static inline void net_timestamp_check(struct sk_buff *skb)
1453 {
1454 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1455 __net_timestamp(skb);
1456 }
1457
1458 static inline bool is_skb_forwardable(struct net_device *dev,
1459 struct sk_buff *skb)
1460 {
1461 unsigned int len;
1462
1463 if (!(dev->flags & IFF_UP))
1464 return false;
1465
1466 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1467 if (skb->len <= len)
1468 return true;
1469
1470 /* if TSO is enabled, we don't care about the length as the packet
1471 * could be forwarded without being segmented before
1472 */
1473 if (skb_is_gso(skb))
1474 return true;
1475
1476 return false;
1477 }
1478
1479 /**
1480 * dev_forward_skb - loopback an skb to another netif
1481 *
1482 * @dev: destination network device
1483 * @skb: buffer to forward
1484 *
1485 * return values:
1486 * NET_RX_SUCCESS (no congestion)
1487 * NET_RX_DROP (packet was dropped, but freed)
1488 *
1489 * dev_forward_skb can be used for injecting an skb from the
1490 * start_xmit function of one device into the receive queue
1491 * of another device.
1492 *
1493 * The receiving device may be in another namespace, so
1494 * we have to clear all information in the skb that could
1495 * impact namespace isolation.
1496 */
1497 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1498 {
1499 skb_orphan(skb);
1500 nf_reset(skb);
1501
1502 if (unlikely(!is_skb_forwardable(dev, skb))) {
1503 atomic_long_inc(&dev->rx_dropped);
1504 kfree_skb(skb);
1505 return NET_RX_DROP;
1506 }
1507 skb_set_dev(skb, dev);
1508 skb->tstamp.tv64 = 0;
1509 skb->pkt_type = PACKET_HOST;
1510 skb->protocol = eth_type_trans(skb, dev);
1511 return netif_rx(skb);
1512 }
1513 EXPORT_SYMBOL_GPL(dev_forward_skb);
1514
1515 static inline int deliver_skb(struct sk_buff *skb,
1516 struct packet_type *pt_prev,
1517 struct net_device *orig_dev)
1518 {
1519 atomic_inc(&skb->users);
1520 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1521 }
1522
1523 /*
1524 * Support routine. Sends outgoing frames to any network
1525 * taps currently in use.
1526 */
1527
1528 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1529 {
1530 struct packet_type *ptype;
1531 struct sk_buff *skb2 = NULL;
1532 struct packet_type *pt_prev = NULL;
1533
1534 rcu_read_lock();
1535 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1536 /* Never send packets back to the socket
1537 * they originated from - MvS (miquels@drinkel.ow.org)
1538 */
1539 if ((ptype->dev == dev || !ptype->dev) &&
1540 (ptype->af_packet_priv == NULL ||
1541 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1542 if (pt_prev) {
1543 deliver_skb(skb2, pt_prev, skb->dev);
1544 pt_prev = ptype;
1545 continue;
1546 }
1547
1548 skb2 = skb_clone(skb, GFP_ATOMIC);
1549 if (!skb2)
1550 break;
1551
1552 net_timestamp_set(skb2);
1553
1554 /* skb->nh should be correctly
1555 set by sender, so that the second statement is
1556 just protection against buggy protocols.
1557 */
1558 skb_reset_mac_header(skb2);
1559
1560 if (skb_network_header(skb2) < skb2->data ||
1561 skb2->network_header > skb2->tail) {
1562 if (net_ratelimit())
1563 printk(KERN_CRIT "protocol %04x is "
1564 "buggy, dev %s\n",
1565 ntohs(skb2->protocol),
1566 dev->name);
1567 skb_reset_network_header(skb2);
1568 }
1569
1570 skb2->transport_header = skb2->network_header;
1571 skb2->pkt_type = PACKET_OUTGOING;
1572 pt_prev = ptype;
1573 }
1574 }
1575 if (pt_prev)
1576 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1577 rcu_read_unlock();
1578 }
1579
1580 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1581 * @dev: Network device
1582 * @txq: number of queues available
1583 *
1584 * If real_num_tx_queues is changed the tc mappings may no longer be
1585 * valid. To resolve this verify the tc mapping remains valid and if
1586 * not NULL the mapping. With no priorities mapping to this
1587 * offset/count pair it will no longer be used. In the worst case TC0
1588 * is invalid nothing can be done so disable priority mappings. If is
1589 * expected that drivers will fix this mapping if they can before
1590 * calling netif_set_real_num_tx_queues.
1591 */
1592 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1593 {
1594 int i;
1595 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1596
1597 /* If TC0 is invalidated disable TC mapping */
1598 if (tc->offset + tc->count > txq) {
1599 pr_warning("Number of in use tx queues changed "
1600 "invalidating tc mappings. Priority "
1601 "traffic classification disabled!\n");
1602 dev->num_tc = 0;
1603 return;
1604 }
1605
1606 /* Invalidated prio to tc mappings set to TC0 */
1607 for (i = 1; i < TC_BITMASK + 1; i++) {
1608 int q = netdev_get_prio_tc_map(dev, i);
1609
1610 tc = &dev->tc_to_txq[q];
1611 if (tc->offset + tc->count > txq) {
1612 pr_warning("Number of in use tx queues "
1613 "changed. Priority %i to tc "
1614 "mapping %i is no longer valid "
1615 "setting map to 0\n",
1616 i, q);
1617 netdev_set_prio_tc_map(dev, i, 0);
1618 }
1619 }
1620 }
1621
1622 /*
1623 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1624 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1625 */
1626 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1627 {
1628 int rc;
1629
1630 if (txq < 1 || txq > dev->num_tx_queues)
1631 return -EINVAL;
1632
1633 if (dev->reg_state == NETREG_REGISTERED ||
1634 dev->reg_state == NETREG_UNREGISTERING) {
1635 ASSERT_RTNL();
1636
1637 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1638 txq);
1639 if (rc)
1640 return rc;
1641
1642 if (dev->num_tc)
1643 netif_setup_tc(dev, txq);
1644
1645 if (txq < dev->real_num_tx_queues)
1646 qdisc_reset_all_tx_gt(dev, txq);
1647 }
1648
1649 dev->real_num_tx_queues = txq;
1650 return 0;
1651 }
1652 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1653
1654 #ifdef CONFIG_RPS
1655 /**
1656 * netif_set_real_num_rx_queues - set actual number of RX queues used
1657 * @dev: Network device
1658 * @rxq: Actual number of RX queues
1659 *
1660 * This must be called either with the rtnl_lock held or before
1661 * registration of the net device. Returns 0 on success, or a
1662 * negative error code. If called before registration, it always
1663 * succeeds.
1664 */
1665 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1666 {
1667 int rc;
1668
1669 if (rxq < 1 || rxq > dev->num_rx_queues)
1670 return -EINVAL;
1671
1672 if (dev->reg_state == NETREG_REGISTERED) {
1673 ASSERT_RTNL();
1674
1675 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1676 rxq);
1677 if (rc)
1678 return rc;
1679 }
1680
1681 dev->real_num_rx_queues = rxq;
1682 return 0;
1683 }
1684 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1685 #endif
1686
1687 static inline void __netif_reschedule(struct Qdisc *q)
1688 {
1689 struct softnet_data *sd;
1690 unsigned long flags;
1691
1692 local_irq_save(flags);
1693 sd = &__get_cpu_var(softnet_data);
1694 q->next_sched = NULL;
1695 *sd->output_queue_tailp = q;
1696 sd->output_queue_tailp = &q->next_sched;
1697 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1698 local_irq_restore(flags);
1699 }
1700
1701 void __netif_schedule(struct Qdisc *q)
1702 {
1703 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1704 __netif_reschedule(q);
1705 }
1706 EXPORT_SYMBOL(__netif_schedule);
1707
1708 void dev_kfree_skb_irq(struct sk_buff *skb)
1709 {
1710 if (atomic_dec_and_test(&skb->users)) {
1711 struct softnet_data *sd;
1712 unsigned long flags;
1713
1714 local_irq_save(flags);
1715 sd = &__get_cpu_var(softnet_data);
1716 skb->next = sd->completion_queue;
1717 sd->completion_queue = skb;
1718 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1719 local_irq_restore(flags);
1720 }
1721 }
1722 EXPORT_SYMBOL(dev_kfree_skb_irq);
1723
1724 void dev_kfree_skb_any(struct sk_buff *skb)
1725 {
1726 if (in_irq() || irqs_disabled())
1727 dev_kfree_skb_irq(skb);
1728 else
1729 dev_kfree_skb(skb);
1730 }
1731 EXPORT_SYMBOL(dev_kfree_skb_any);
1732
1733
1734 /**
1735 * netif_device_detach - mark device as removed
1736 * @dev: network device
1737 *
1738 * Mark device as removed from system and therefore no longer available.
1739 */
1740 void netif_device_detach(struct net_device *dev)
1741 {
1742 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1743 netif_running(dev)) {
1744 netif_tx_stop_all_queues(dev);
1745 }
1746 }
1747 EXPORT_SYMBOL(netif_device_detach);
1748
1749 /**
1750 * netif_device_attach - mark device as attached
1751 * @dev: network device
1752 *
1753 * Mark device as attached from system and restart if needed.
1754 */
1755 void netif_device_attach(struct net_device *dev)
1756 {
1757 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1758 netif_running(dev)) {
1759 netif_tx_wake_all_queues(dev);
1760 __netdev_watchdog_up(dev);
1761 }
1762 }
1763 EXPORT_SYMBOL(netif_device_attach);
1764
1765 /**
1766 * skb_dev_set -- assign a new device to a buffer
1767 * @skb: buffer for the new device
1768 * @dev: network device
1769 *
1770 * If an skb is owned by a device already, we have to reset
1771 * all data private to the namespace a device belongs to
1772 * before assigning it a new device.
1773 */
1774 #ifdef CONFIG_NET_NS
1775 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1776 {
1777 skb_dst_drop(skb);
1778 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1779 secpath_reset(skb);
1780 nf_reset(skb);
1781 skb_init_secmark(skb);
1782 skb->mark = 0;
1783 skb->priority = 0;
1784 skb->nf_trace = 0;
1785 skb->ipvs_property = 0;
1786 #ifdef CONFIG_NET_SCHED
1787 skb->tc_index = 0;
1788 #endif
1789 }
1790 skb->dev = dev;
1791 }
1792 EXPORT_SYMBOL(skb_set_dev);
1793 #endif /* CONFIG_NET_NS */
1794
1795 /*
1796 * Invalidate hardware checksum when packet is to be mangled, and
1797 * complete checksum manually on outgoing path.
1798 */
1799 int skb_checksum_help(struct sk_buff *skb)
1800 {
1801 __wsum csum;
1802 int ret = 0, offset;
1803
1804 if (skb->ip_summed == CHECKSUM_COMPLETE)
1805 goto out_set_summed;
1806
1807 if (unlikely(skb_shinfo(skb)->gso_size)) {
1808 /* Let GSO fix up the checksum. */
1809 goto out_set_summed;
1810 }
1811
1812 offset = skb_checksum_start_offset(skb);
1813 BUG_ON(offset >= skb_headlen(skb));
1814 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1815
1816 offset += skb->csum_offset;
1817 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1818
1819 if (skb_cloned(skb) &&
1820 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1821 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1822 if (ret)
1823 goto out;
1824 }
1825
1826 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1827 out_set_summed:
1828 skb->ip_summed = CHECKSUM_NONE;
1829 out:
1830 return ret;
1831 }
1832 EXPORT_SYMBOL(skb_checksum_help);
1833
1834 /**
1835 * skb_gso_segment - Perform segmentation on skb.
1836 * @skb: buffer to segment
1837 * @features: features for the output path (see dev->features)
1838 *
1839 * This function segments the given skb and returns a list of segments.
1840 *
1841 * It may return NULL if the skb requires no segmentation. This is
1842 * only possible when GSO is used for verifying header integrity.
1843 */
1844 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1845 {
1846 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1847 struct packet_type *ptype;
1848 __be16 type = skb->protocol;
1849 int vlan_depth = ETH_HLEN;
1850 int err;
1851
1852 while (type == htons(ETH_P_8021Q)) {
1853 struct vlan_hdr *vh;
1854
1855 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1856 return ERR_PTR(-EINVAL);
1857
1858 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1859 type = vh->h_vlan_encapsulated_proto;
1860 vlan_depth += VLAN_HLEN;
1861 }
1862
1863 skb_reset_mac_header(skb);
1864 skb->mac_len = skb->network_header - skb->mac_header;
1865 __skb_pull(skb, skb->mac_len);
1866
1867 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1868 struct net_device *dev = skb->dev;
1869 struct ethtool_drvinfo info = {};
1870
1871 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1872 dev->ethtool_ops->get_drvinfo(dev, &info);
1873
1874 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1875 info.driver, dev ? dev->features : 0L,
1876 skb->sk ? skb->sk->sk_route_caps : 0L,
1877 skb->len, skb->data_len, skb->ip_summed);
1878
1879 if (skb_header_cloned(skb) &&
1880 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1881 return ERR_PTR(err);
1882 }
1883
1884 rcu_read_lock();
1885 list_for_each_entry_rcu(ptype,
1886 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1887 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1889 err = ptype->gso_send_check(skb);
1890 segs = ERR_PTR(err);
1891 if (err || skb_gso_ok(skb, features))
1892 break;
1893 __skb_push(skb, (skb->data -
1894 skb_network_header(skb)));
1895 }
1896 segs = ptype->gso_segment(skb, features);
1897 break;
1898 }
1899 }
1900 rcu_read_unlock();
1901
1902 __skb_push(skb, skb->data - skb_mac_header(skb));
1903
1904 return segs;
1905 }
1906 EXPORT_SYMBOL(skb_gso_segment);
1907
1908 /* Take action when hardware reception checksum errors are detected. */
1909 #ifdef CONFIG_BUG
1910 void netdev_rx_csum_fault(struct net_device *dev)
1911 {
1912 if (net_ratelimit()) {
1913 printk(KERN_ERR "%s: hw csum failure.\n",
1914 dev ? dev->name : "<unknown>");
1915 dump_stack();
1916 }
1917 }
1918 EXPORT_SYMBOL(netdev_rx_csum_fault);
1919 #endif
1920
1921 /* Actually, we should eliminate this check as soon as we know, that:
1922 * 1. IOMMU is present and allows to map all the memory.
1923 * 2. No high memory really exists on this machine.
1924 */
1925
1926 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1927 {
1928 #ifdef CONFIG_HIGHMEM
1929 int i;
1930 if (!(dev->features & NETIF_F_HIGHDMA)) {
1931 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1932 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1933 return 1;
1934 }
1935
1936 if (PCI_DMA_BUS_IS_PHYS) {
1937 struct device *pdev = dev->dev.parent;
1938
1939 if (!pdev)
1940 return 0;
1941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1942 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1943 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1944 return 1;
1945 }
1946 }
1947 #endif
1948 return 0;
1949 }
1950
1951 struct dev_gso_cb {
1952 void (*destructor)(struct sk_buff *skb);
1953 };
1954
1955 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1956
1957 static void dev_gso_skb_destructor(struct sk_buff *skb)
1958 {
1959 struct dev_gso_cb *cb;
1960
1961 do {
1962 struct sk_buff *nskb = skb->next;
1963
1964 skb->next = nskb->next;
1965 nskb->next = NULL;
1966 kfree_skb(nskb);
1967 } while (skb->next);
1968
1969 cb = DEV_GSO_CB(skb);
1970 if (cb->destructor)
1971 cb->destructor(skb);
1972 }
1973
1974 /**
1975 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1976 * @skb: buffer to segment
1977 * @features: device features as applicable to this skb
1978 *
1979 * This function segments the given skb and stores the list of segments
1980 * in skb->next.
1981 */
1982 static int dev_gso_segment(struct sk_buff *skb, int features)
1983 {
1984 struct sk_buff *segs;
1985
1986 segs = skb_gso_segment(skb, features);
1987
1988 /* Verifying header integrity only. */
1989 if (!segs)
1990 return 0;
1991
1992 if (IS_ERR(segs))
1993 return PTR_ERR(segs);
1994
1995 skb->next = segs;
1996 DEV_GSO_CB(skb)->destructor = skb->destructor;
1997 skb->destructor = dev_gso_skb_destructor;
1998
1999 return 0;
2000 }
2001
2002 /*
2003 * Try to orphan skb early, right before transmission by the device.
2004 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2005 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2006 */
2007 static inline void skb_orphan_try(struct sk_buff *skb)
2008 {
2009 struct sock *sk = skb->sk;
2010
2011 if (sk && !skb_shinfo(skb)->tx_flags) {
2012 /* skb_tx_hash() wont be able to get sk.
2013 * We copy sk_hash into skb->rxhash
2014 */
2015 if (!skb->rxhash)
2016 skb->rxhash = sk->sk_hash;
2017 skb_orphan(skb);
2018 }
2019 }
2020
2021 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2022 {
2023 return ((features & NETIF_F_GEN_CSUM) ||
2024 ((features & NETIF_F_V4_CSUM) &&
2025 protocol == htons(ETH_P_IP)) ||
2026 ((features & NETIF_F_V6_CSUM) &&
2027 protocol == htons(ETH_P_IPV6)) ||
2028 ((features & NETIF_F_FCOE_CRC) &&
2029 protocol == htons(ETH_P_FCOE)));
2030 }
2031
2032 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2033 {
2034 if (!can_checksum_protocol(features, protocol)) {
2035 features &= ~NETIF_F_ALL_CSUM;
2036 features &= ~NETIF_F_SG;
2037 } else if (illegal_highdma(skb->dev, skb)) {
2038 features &= ~NETIF_F_SG;
2039 }
2040
2041 return features;
2042 }
2043
2044 u32 netif_skb_features(struct sk_buff *skb)
2045 {
2046 __be16 protocol = skb->protocol;
2047 u32 features = skb->dev->features;
2048
2049 if (protocol == htons(ETH_P_8021Q)) {
2050 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2051 protocol = veh->h_vlan_encapsulated_proto;
2052 } else if (!vlan_tx_tag_present(skb)) {
2053 return harmonize_features(skb, protocol, features);
2054 }
2055
2056 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2057
2058 if (protocol != htons(ETH_P_8021Q)) {
2059 return harmonize_features(skb, protocol, features);
2060 } else {
2061 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2062 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2063 return harmonize_features(skb, protocol, features);
2064 }
2065 }
2066 EXPORT_SYMBOL(netif_skb_features);
2067
2068 /*
2069 * Returns true if either:
2070 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2071 * 2. skb is fragmented and the device does not support SG, or if
2072 * at least one of fragments is in highmem and device does not
2073 * support DMA from it.
2074 */
2075 static inline int skb_needs_linearize(struct sk_buff *skb,
2076 int features)
2077 {
2078 return skb_is_nonlinear(skb) &&
2079 ((skb_has_frag_list(skb) &&
2080 !(features & NETIF_F_FRAGLIST)) ||
2081 (skb_shinfo(skb)->nr_frags &&
2082 !(features & NETIF_F_SG)));
2083 }
2084
2085 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2086 struct netdev_queue *txq)
2087 {
2088 const struct net_device_ops *ops = dev->netdev_ops;
2089 int rc = NETDEV_TX_OK;
2090
2091 if (likely(!skb->next)) {
2092 u32 features;
2093
2094 /*
2095 * If device doesn't need skb->dst, release it right now while
2096 * its hot in this cpu cache
2097 */
2098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2099 skb_dst_drop(skb);
2100
2101 if (!list_empty(&ptype_all))
2102 dev_queue_xmit_nit(skb, dev);
2103
2104 skb_orphan_try(skb);
2105
2106 features = netif_skb_features(skb);
2107
2108 if (vlan_tx_tag_present(skb) &&
2109 !(features & NETIF_F_HW_VLAN_TX)) {
2110 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2111 if (unlikely(!skb))
2112 goto out;
2113
2114 skb->vlan_tci = 0;
2115 }
2116
2117 if (netif_needs_gso(skb, features)) {
2118 if (unlikely(dev_gso_segment(skb, features)))
2119 goto out_kfree_skb;
2120 if (skb->next)
2121 goto gso;
2122 } else {
2123 if (skb_needs_linearize(skb, features) &&
2124 __skb_linearize(skb))
2125 goto out_kfree_skb;
2126
2127 /* If packet is not checksummed and device does not
2128 * support checksumming for this protocol, complete
2129 * checksumming here.
2130 */
2131 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2132 skb_set_transport_header(skb,
2133 skb_checksum_start_offset(skb));
2134 if (!(features & NETIF_F_ALL_CSUM) &&
2135 skb_checksum_help(skb))
2136 goto out_kfree_skb;
2137 }
2138 }
2139
2140 rc = ops->ndo_start_xmit(skb, dev);
2141 trace_net_dev_xmit(skb, rc);
2142 if (rc == NETDEV_TX_OK)
2143 txq_trans_update(txq);
2144 return rc;
2145 }
2146
2147 gso:
2148 do {
2149 struct sk_buff *nskb = skb->next;
2150
2151 skb->next = nskb->next;
2152 nskb->next = NULL;
2153
2154 /*
2155 * If device doesn't need nskb->dst, release it right now while
2156 * its hot in this cpu cache
2157 */
2158 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2159 skb_dst_drop(nskb);
2160
2161 rc = ops->ndo_start_xmit(nskb, dev);
2162 trace_net_dev_xmit(nskb, rc);
2163 if (unlikely(rc != NETDEV_TX_OK)) {
2164 if (rc & ~NETDEV_TX_MASK)
2165 goto out_kfree_gso_skb;
2166 nskb->next = skb->next;
2167 skb->next = nskb;
2168 return rc;
2169 }
2170 txq_trans_update(txq);
2171 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2172 return NETDEV_TX_BUSY;
2173 } while (skb->next);
2174
2175 out_kfree_gso_skb:
2176 if (likely(skb->next == NULL))
2177 skb->destructor = DEV_GSO_CB(skb)->destructor;
2178 out_kfree_skb:
2179 kfree_skb(skb);
2180 out:
2181 return rc;
2182 }
2183
2184 static u32 hashrnd __read_mostly;
2185
2186 /*
2187 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2188 * to be used as a distribution range.
2189 */
2190 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2191 unsigned int num_tx_queues)
2192 {
2193 u32 hash;
2194 u16 qoffset = 0;
2195 u16 qcount = num_tx_queues;
2196
2197 if (skb_rx_queue_recorded(skb)) {
2198 hash = skb_get_rx_queue(skb);
2199 while (unlikely(hash >= num_tx_queues))
2200 hash -= num_tx_queues;
2201 return hash;
2202 }
2203
2204 if (dev->num_tc) {
2205 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2206 qoffset = dev->tc_to_txq[tc].offset;
2207 qcount = dev->tc_to_txq[tc].count;
2208 }
2209
2210 if (skb->sk && skb->sk->sk_hash)
2211 hash = skb->sk->sk_hash;
2212 else
2213 hash = (__force u16) skb->protocol ^ skb->rxhash;
2214 hash = jhash_1word(hash, hashrnd);
2215
2216 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2217 }
2218 EXPORT_SYMBOL(__skb_tx_hash);
2219
2220 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2221 {
2222 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2223 if (net_ratelimit()) {
2224 pr_warning("%s selects TX queue %d, but "
2225 "real number of TX queues is %d\n",
2226 dev->name, queue_index, dev->real_num_tx_queues);
2227 }
2228 return 0;
2229 }
2230 return queue_index;
2231 }
2232
2233 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2234 {
2235 #ifdef CONFIG_XPS
2236 struct xps_dev_maps *dev_maps;
2237 struct xps_map *map;
2238 int queue_index = -1;
2239
2240 rcu_read_lock();
2241 dev_maps = rcu_dereference(dev->xps_maps);
2242 if (dev_maps) {
2243 map = rcu_dereference(
2244 dev_maps->cpu_map[raw_smp_processor_id()]);
2245 if (map) {
2246 if (map->len == 1)
2247 queue_index = map->queues[0];
2248 else {
2249 u32 hash;
2250 if (skb->sk && skb->sk->sk_hash)
2251 hash = skb->sk->sk_hash;
2252 else
2253 hash = (__force u16) skb->protocol ^
2254 skb->rxhash;
2255 hash = jhash_1word(hash, hashrnd);
2256 queue_index = map->queues[
2257 ((u64)hash * map->len) >> 32];
2258 }
2259 if (unlikely(queue_index >= dev->real_num_tx_queues))
2260 queue_index = -1;
2261 }
2262 }
2263 rcu_read_unlock();
2264
2265 return queue_index;
2266 #else
2267 return -1;
2268 #endif
2269 }
2270
2271 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2272 struct sk_buff *skb)
2273 {
2274 int queue_index;
2275 const struct net_device_ops *ops = dev->netdev_ops;
2276
2277 if (dev->real_num_tx_queues == 1)
2278 queue_index = 0;
2279 else if (ops->ndo_select_queue) {
2280 queue_index = ops->ndo_select_queue(dev, skb);
2281 queue_index = dev_cap_txqueue(dev, queue_index);
2282 } else {
2283 struct sock *sk = skb->sk;
2284 queue_index = sk_tx_queue_get(sk);
2285
2286 if (queue_index < 0 || skb->ooo_okay ||
2287 queue_index >= dev->real_num_tx_queues) {
2288 int old_index = queue_index;
2289
2290 queue_index = get_xps_queue(dev, skb);
2291 if (queue_index < 0)
2292 queue_index = skb_tx_hash(dev, skb);
2293
2294 if (queue_index != old_index && sk) {
2295 struct dst_entry *dst =
2296 rcu_dereference_check(sk->sk_dst_cache, 1);
2297
2298 if (dst && skb_dst(skb) == dst)
2299 sk_tx_queue_set(sk, queue_index);
2300 }
2301 }
2302 }
2303
2304 skb_set_queue_mapping(skb, queue_index);
2305 return netdev_get_tx_queue(dev, queue_index);
2306 }
2307
2308 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2309 struct net_device *dev,
2310 struct netdev_queue *txq)
2311 {
2312 spinlock_t *root_lock = qdisc_lock(q);
2313 bool contended;
2314 int rc;
2315
2316 qdisc_skb_cb(skb)->pkt_len = skb->len;
2317 qdisc_calculate_pkt_len(skb, q);
2318 /*
2319 * Heuristic to force contended enqueues to serialize on a
2320 * separate lock before trying to get qdisc main lock.
2321 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2322 * and dequeue packets faster.
2323 */
2324 contended = qdisc_is_running(q);
2325 if (unlikely(contended))
2326 spin_lock(&q->busylock);
2327
2328 spin_lock(root_lock);
2329 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2330 kfree_skb(skb);
2331 rc = NET_XMIT_DROP;
2332 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2333 qdisc_run_begin(q)) {
2334 /*
2335 * This is a work-conserving queue; there are no old skbs
2336 * waiting to be sent out; and the qdisc is not running -
2337 * xmit the skb directly.
2338 */
2339 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2340 skb_dst_force(skb);
2341
2342 qdisc_bstats_update(q, skb);
2343
2344 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2345 if (unlikely(contended)) {
2346 spin_unlock(&q->busylock);
2347 contended = false;
2348 }
2349 __qdisc_run(q);
2350 } else
2351 qdisc_run_end(q);
2352
2353 rc = NET_XMIT_SUCCESS;
2354 } else {
2355 skb_dst_force(skb);
2356 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2357 if (qdisc_run_begin(q)) {
2358 if (unlikely(contended)) {
2359 spin_unlock(&q->busylock);
2360 contended = false;
2361 }
2362 __qdisc_run(q);
2363 }
2364 }
2365 spin_unlock(root_lock);
2366 if (unlikely(contended))
2367 spin_unlock(&q->busylock);
2368 return rc;
2369 }
2370
2371 static DEFINE_PER_CPU(int, xmit_recursion);
2372 #define RECURSION_LIMIT 10
2373
2374 /**
2375 * dev_queue_xmit - transmit a buffer
2376 * @skb: buffer to transmit
2377 *
2378 * Queue a buffer for transmission to a network device. The caller must
2379 * have set the device and priority and built the buffer before calling
2380 * this function. The function can be called from an interrupt.
2381 *
2382 * A negative errno code is returned on a failure. A success does not
2383 * guarantee the frame will be transmitted as it may be dropped due
2384 * to congestion or traffic shaping.
2385 *
2386 * -----------------------------------------------------------------------------------
2387 * I notice this method can also return errors from the queue disciplines,
2388 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2389 * be positive.
2390 *
2391 * Regardless of the return value, the skb is consumed, so it is currently
2392 * difficult to retry a send to this method. (You can bump the ref count
2393 * before sending to hold a reference for retry if you are careful.)
2394 *
2395 * When calling this method, interrupts MUST be enabled. This is because
2396 * the BH enable code must have IRQs enabled so that it will not deadlock.
2397 * --BLG
2398 */
2399 int dev_queue_xmit(struct sk_buff *skb)
2400 {
2401 struct net_device *dev = skb->dev;
2402 struct netdev_queue *txq;
2403 struct Qdisc *q;
2404 int rc = -ENOMEM;
2405
2406 /* Disable soft irqs for various locks below. Also
2407 * stops preemption for RCU.
2408 */
2409 rcu_read_lock_bh();
2410
2411 txq = dev_pick_tx(dev, skb);
2412 q = rcu_dereference_bh(txq->qdisc);
2413
2414 #ifdef CONFIG_NET_CLS_ACT
2415 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2416 #endif
2417 trace_net_dev_queue(skb);
2418 if (q->enqueue) {
2419 rc = __dev_xmit_skb(skb, q, dev, txq);
2420 goto out;
2421 }
2422
2423 /* The device has no queue. Common case for software devices:
2424 loopback, all the sorts of tunnels...
2425
2426 Really, it is unlikely that netif_tx_lock protection is necessary
2427 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2428 counters.)
2429 However, it is possible, that they rely on protection
2430 made by us here.
2431
2432 Check this and shot the lock. It is not prone from deadlocks.
2433 Either shot noqueue qdisc, it is even simpler 8)
2434 */
2435 if (dev->flags & IFF_UP) {
2436 int cpu = smp_processor_id(); /* ok because BHs are off */
2437
2438 if (txq->xmit_lock_owner != cpu) {
2439
2440 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2441 goto recursion_alert;
2442
2443 HARD_TX_LOCK(dev, txq, cpu);
2444
2445 if (!netif_tx_queue_stopped(txq)) {
2446 __this_cpu_inc(xmit_recursion);
2447 rc = dev_hard_start_xmit(skb, dev, txq);
2448 __this_cpu_dec(xmit_recursion);
2449 if (dev_xmit_complete(rc)) {
2450 HARD_TX_UNLOCK(dev, txq);
2451 goto out;
2452 }
2453 }
2454 HARD_TX_UNLOCK(dev, txq);
2455 if (net_ratelimit())
2456 printk(KERN_CRIT "Virtual device %s asks to "
2457 "queue packet!\n", dev->name);
2458 } else {
2459 /* Recursion is detected! It is possible,
2460 * unfortunately
2461 */
2462 recursion_alert:
2463 if (net_ratelimit())
2464 printk(KERN_CRIT "Dead loop on virtual device "
2465 "%s, fix it urgently!\n", dev->name);
2466 }
2467 }
2468
2469 rc = -ENETDOWN;
2470 rcu_read_unlock_bh();
2471
2472 kfree_skb(skb);
2473 return rc;
2474 out:
2475 rcu_read_unlock_bh();
2476 return rc;
2477 }
2478 EXPORT_SYMBOL(dev_queue_xmit);
2479
2480
2481 /*=======================================================================
2482 Receiver routines
2483 =======================================================================*/
2484
2485 int netdev_max_backlog __read_mostly = 1000;
2486 int netdev_tstamp_prequeue __read_mostly = 1;
2487 int netdev_budget __read_mostly = 300;
2488 int weight_p __read_mostly = 64; /* old backlog weight */
2489
2490 /* Called with irq disabled */
2491 static inline void ____napi_schedule(struct softnet_data *sd,
2492 struct napi_struct *napi)
2493 {
2494 list_add_tail(&napi->poll_list, &sd->poll_list);
2495 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2496 }
2497
2498 /*
2499 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2500 * and src/dst port numbers. Returns a non-zero hash number on success
2501 * and 0 on failure.
2502 */
2503 __u32 __skb_get_rxhash(struct sk_buff *skb)
2504 {
2505 int nhoff, hash = 0, poff;
2506 const struct ipv6hdr *ip6;
2507 const struct iphdr *ip;
2508 u8 ip_proto;
2509 u32 addr1, addr2, ihl;
2510 union {
2511 u32 v32;
2512 u16 v16[2];
2513 } ports;
2514
2515 nhoff = skb_network_offset(skb);
2516
2517 switch (skb->protocol) {
2518 case __constant_htons(ETH_P_IP):
2519 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2520 goto done;
2521
2522 ip = (const struct iphdr *) (skb->data + nhoff);
2523 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2524 ip_proto = 0;
2525 else
2526 ip_proto = ip->protocol;
2527 addr1 = (__force u32) ip->saddr;
2528 addr2 = (__force u32) ip->daddr;
2529 ihl = ip->ihl;
2530 break;
2531 case __constant_htons(ETH_P_IPV6):
2532 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2533 goto done;
2534
2535 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2536 ip_proto = ip6->nexthdr;
2537 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2538 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2539 ihl = (40 >> 2);
2540 break;
2541 default:
2542 goto done;
2543 }
2544
2545 ports.v32 = 0;
2546 poff = proto_ports_offset(ip_proto);
2547 if (poff >= 0) {
2548 nhoff += ihl * 4 + poff;
2549 if (pskb_may_pull(skb, nhoff + 4)) {
2550 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2551 if (ports.v16[1] < ports.v16[0])
2552 swap(ports.v16[0], ports.v16[1]);
2553 }
2554 }
2555
2556 /* get a consistent hash (same value on both flow directions) */
2557 if (addr2 < addr1)
2558 swap(addr1, addr2);
2559
2560 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2561 if (!hash)
2562 hash = 1;
2563
2564 done:
2565 return hash;
2566 }
2567 EXPORT_SYMBOL(__skb_get_rxhash);
2568
2569 #ifdef CONFIG_RPS
2570
2571 /* One global table that all flow-based protocols share. */
2572 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2573 EXPORT_SYMBOL(rps_sock_flow_table);
2574
2575 static struct rps_dev_flow *
2576 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2577 struct rps_dev_flow *rflow, u16 next_cpu)
2578 {
2579 u16 tcpu;
2580
2581 tcpu = rflow->cpu = next_cpu;
2582 if (tcpu != RPS_NO_CPU) {
2583 #ifdef CONFIG_RFS_ACCEL
2584 struct netdev_rx_queue *rxqueue;
2585 struct rps_dev_flow_table *flow_table;
2586 struct rps_dev_flow *old_rflow;
2587 u32 flow_id;
2588 u16 rxq_index;
2589 int rc;
2590
2591 /* Should we steer this flow to a different hardware queue? */
2592 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2593 !(dev->features & NETIF_F_NTUPLE))
2594 goto out;
2595 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2596 if (rxq_index == skb_get_rx_queue(skb))
2597 goto out;
2598
2599 rxqueue = dev->_rx + rxq_index;
2600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2601 if (!flow_table)
2602 goto out;
2603 flow_id = skb->rxhash & flow_table->mask;
2604 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2605 rxq_index, flow_id);
2606 if (rc < 0)
2607 goto out;
2608 old_rflow = rflow;
2609 rflow = &flow_table->flows[flow_id];
2610 rflow->cpu = next_cpu;
2611 rflow->filter = rc;
2612 if (old_rflow->filter == rflow->filter)
2613 old_rflow->filter = RPS_NO_FILTER;
2614 out:
2615 #endif
2616 rflow->last_qtail =
2617 per_cpu(softnet_data, tcpu).input_queue_head;
2618 }
2619
2620 return rflow;
2621 }
2622
2623 /*
2624 * get_rps_cpu is called from netif_receive_skb and returns the target
2625 * CPU from the RPS map of the receiving queue for a given skb.
2626 * rcu_read_lock must be held on entry.
2627 */
2628 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2629 struct rps_dev_flow **rflowp)
2630 {
2631 struct netdev_rx_queue *rxqueue;
2632 struct rps_map *map;
2633 struct rps_dev_flow_table *flow_table;
2634 struct rps_sock_flow_table *sock_flow_table;
2635 int cpu = -1;
2636 u16 tcpu;
2637
2638 if (skb_rx_queue_recorded(skb)) {
2639 u16 index = skb_get_rx_queue(skb);
2640 if (unlikely(index >= dev->real_num_rx_queues)) {
2641 WARN_ONCE(dev->real_num_rx_queues > 1,
2642 "%s received packet on queue %u, but number "
2643 "of RX queues is %u\n",
2644 dev->name, index, dev->real_num_rx_queues);
2645 goto done;
2646 }
2647 rxqueue = dev->_rx + index;
2648 } else
2649 rxqueue = dev->_rx;
2650
2651 map = rcu_dereference(rxqueue->rps_map);
2652 if (map) {
2653 if (map->len == 1 &&
2654 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2655 tcpu = map->cpus[0];
2656 if (cpu_online(tcpu))
2657 cpu = tcpu;
2658 goto done;
2659 }
2660 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2661 goto done;
2662 }
2663
2664 skb_reset_network_header(skb);
2665 if (!skb_get_rxhash(skb))
2666 goto done;
2667
2668 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2669 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2670 if (flow_table && sock_flow_table) {
2671 u16 next_cpu;
2672 struct rps_dev_flow *rflow;
2673
2674 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2675 tcpu = rflow->cpu;
2676
2677 next_cpu = sock_flow_table->ents[skb->rxhash &
2678 sock_flow_table->mask];
2679
2680 /*
2681 * If the desired CPU (where last recvmsg was done) is
2682 * different from current CPU (one in the rx-queue flow
2683 * table entry), switch if one of the following holds:
2684 * - Current CPU is unset (equal to RPS_NO_CPU).
2685 * - Current CPU is offline.
2686 * - The current CPU's queue tail has advanced beyond the
2687 * last packet that was enqueued using this table entry.
2688 * This guarantees that all previous packets for the flow
2689 * have been dequeued, thus preserving in order delivery.
2690 */
2691 if (unlikely(tcpu != next_cpu) &&
2692 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2693 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2694 rflow->last_qtail)) >= 0))
2695 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2696
2697 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2698 *rflowp = rflow;
2699 cpu = tcpu;
2700 goto done;
2701 }
2702 }
2703
2704 if (map) {
2705 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2706
2707 if (cpu_online(tcpu)) {
2708 cpu = tcpu;
2709 goto done;
2710 }
2711 }
2712
2713 done:
2714 return cpu;
2715 }
2716
2717 #ifdef CONFIG_RFS_ACCEL
2718
2719 /**
2720 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2721 * @dev: Device on which the filter was set
2722 * @rxq_index: RX queue index
2723 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2724 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2725 *
2726 * Drivers that implement ndo_rx_flow_steer() should periodically call
2727 * this function for each installed filter and remove the filters for
2728 * which it returns %true.
2729 */
2730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2731 u32 flow_id, u16 filter_id)
2732 {
2733 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2734 struct rps_dev_flow_table *flow_table;
2735 struct rps_dev_flow *rflow;
2736 bool expire = true;
2737 int cpu;
2738
2739 rcu_read_lock();
2740 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2741 if (flow_table && flow_id <= flow_table->mask) {
2742 rflow = &flow_table->flows[flow_id];
2743 cpu = ACCESS_ONCE(rflow->cpu);
2744 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2745 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2746 rflow->last_qtail) <
2747 (int)(10 * flow_table->mask)))
2748 expire = false;
2749 }
2750 rcu_read_unlock();
2751 return expire;
2752 }
2753 EXPORT_SYMBOL(rps_may_expire_flow);
2754
2755 #endif /* CONFIG_RFS_ACCEL */
2756
2757 /* Called from hardirq (IPI) context */
2758 static void rps_trigger_softirq(void *data)
2759 {
2760 struct softnet_data *sd = data;
2761
2762 ____napi_schedule(sd, &sd->backlog);
2763 sd->received_rps++;
2764 }
2765
2766 #endif /* CONFIG_RPS */
2767
2768 /*
2769 * Check if this softnet_data structure is another cpu one
2770 * If yes, queue it to our IPI list and return 1
2771 * If no, return 0
2772 */
2773 static int rps_ipi_queued(struct softnet_data *sd)
2774 {
2775 #ifdef CONFIG_RPS
2776 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2777
2778 if (sd != mysd) {
2779 sd->rps_ipi_next = mysd->rps_ipi_list;
2780 mysd->rps_ipi_list = sd;
2781
2782 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2783 return 1;
2784 }
2785 #endif /* CONFIG_RPS */
2786 return 0;
2787 }
2788
2789 /*
2790 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2791 * queue (may be a remote CPU queue).
2792 */
2793 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2794 unsigned int *qtail)
2795 {
2796 struct softnet_data *sd;
2797 unsigned long flags;
2798
2799 sd = &per_cpu(softnet_data, cpu);
2800
2801 local_irq_save(flags);
2802
2803 rps_lock(sd);
2804 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2805 if (skb_queue_len(&sd->input_pkt_queue)) {
2806 enqueue:
2807 __skb_queue_tail(&sd->input_pkt_queue, skb);
2808 input_queue_tail_incr_save(sd, qtail);
2809 rps_unlock(sd);
2810 local_irq_restore(flags);
2811 return NET_RX_SUCCESS;
2812 }
2813
2814 /* Schedule NAPI for backlog device
2815 * We can use non atomic operation since we own the queue lock
2816 */
2817 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2818 if (!rps_ipi_queued(sd))
2819 ____napi_schedule(sd, &sd->backlog);
2820 }
2821 goto enqueue;
2822 }
2823
2824 sd->dropped++;
2825 rps_unlock(sd);
2826
2827 local_irq_restore(flags);
2828
2829 atomic_long_inc(&skb->dev->rx_dropped);
2830 kfree_skb(skb);
2831 return NET_RX_DROP;
2832 }
2833
2834 /**
2835 * netif_rx - post buffer to the network code
2836 * @skb: buffer to post
2837 *
2838 * This function receives a packet from a device driver and queues it for
2839 * the upper (protocol) levels to process. It always succeeds. The buffer
2840 * may be dropped during processing for congestion control or by the
2841 * protocol layers.
2842 *
2843 * return values:
2844 * NET_RX_SUCCESS (no congestion)
2845 * NET_RX_DROP (packet was dropped)
2846 *
2847 */
2848
2849 int netif_rx(struct sk_buff *skb)
2850 {
2851 int ret;
2852
2853 /* if netpoll wants it, pretend we never saw it */
2854 if (netpoll_rx(skb))
2855 return NET_RX_DROP;
2856
2857 if (netdev_tstamp_prequeue)
2858 net_timestamp_check(skb);
2859
2860 trace_netif_rx(skb);
2861 #ifdef CONFIG_RPS
2862 {
2863 struct rps_dev_flow voidflow, *rflow = &voidflow;
2864 int cpu;
2865
2866 preempt_disable();
2867 rcu_read_lock();
2868
2869 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2870 if (cpu < 0)
2871 cpu = smp_processor_id();
2872
2873 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2874
2875 rcu_read_unlock();
2876 preempt_enable();
2877 }
2878 #else
2879 {
2880 unsigned int qtail;
2881 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2882 put_cpu();
2883 }
2884 #endif
2885 return ret;
2886 }
2887 EXPORT_SYMBOL(netif_rx);
2888
2889 int netif_rx_ni(struct sk_buff *skb)
2890 {
2891 int err;
2892
2893 preempt_disable();
2894 err = netif_rx(skb);
2895 if (local_softirq_pending())
2896 do_softirq();
2897 preempt_enable();
2898
2899 return err;
2900 }
2901 EXPORT_SYMBOL(netif_rx_ni);
2902
2903 static void net_tx_action(struct softirq_action *h)
2904 {
2905 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2906
2907 if (sd->completion_queue) {
2908 struct sk_buff *clist;
2909
2910 local_irq_disable();
2911 clist = sd->completion_queue;
2912 sd->completion_queue = NULL;
2913 local_irq_enable();
2914
2915 while (clist) {
2916 struct sk_buff *skb = clist;
2917 clist = clist->next;
2918
2919 WARN_ON(atomic_read(&skb->users));
2920 trace_kfree_skb(skb, net_tx_action);
2921 __kfree_skb(skb);
2922 }
2923 }
2924
2925 if (sd->output_queue) {
2926 struct Qdisc *head;
2927
2928 local_irq_disable();
2929 head = sd->output_queue;
2930 sd->output_queue = NULL;
2931 sd->output_queue_tailp = &sd->output_queue;
2932 local_irq_enable();
2933
2934 while (head) {
2935 struct Qdisc *q = head;
2936 spinlock_t *root_lock;
2937
2938 head = head->next_sched;
2939
2940 root_lock = qdisc_lock(q);
2941 if (spin_trylock(root_lock)) {
2942 smp_mb__before_clear_bit();
2943 clear_bit(__QDISC_STATE_SCHED,
2944 &q->state);
2945 qdisc_run(q);
2946 spin_unlock(root_lock);
2947 } else {
2948 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2949 &q->state)) {
2950 __netif_reschedule(q);
2951 } else {
2952 smp_mb__before_clear_bit();
2953 clear_bit(__QDISC_STATE_SCHED,
2954 &q->state);
2955 }
2956 }
2957 }
2958 }
2959 }
2960
2961 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2962 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2963 /* This hook is defined here for ATM LANE */
2964 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2965 unsigned char *addr) __read_mostly;
2966 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2967 #endif
2968
2969 #ifdef CONFIG_NET_CLS_ACT
2970 /* TODO: Maybe we should just force sch_ingress to be compiled in
2971 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2972 * a compare and 2 stores extra right now if we dont have it on
2973 * but have CONFIG_NET_CLS_ACT
2974 * NOTE: This doesn't stop any functionality; if you dont have
2975 * the ingress scheduler, you just can't add policies on ingress.
2976 *
2977 */
2978 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2979 {
2980 struct net_device *dev = skb->dev;
2981 u32 ttl = G_TC_RTTL(skb->tc_verd);
2982 int result = TC_ACT_OK;
2983 struct Qdisc *q;
2984
2985 if (unlikely(MAX_RED_LOOP < ttl++)) {
2986 if (net_ratelimit())
2987 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2988 skb->skb_iif, dev->ifindex);
2989 return TC_ACT_SHOT;
2990 }
2991
2992 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2993 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2994
2995 q = rxq->qdisc;
2996 if (q != &noop_qdisc) {
2997 spin_lock(qdisc_lock(q));
2998 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2999 result = qdisc_enqueue_root(skb, q);
3000 spin_unlock(qdisc_lock(q));
3001 }
3002
3003 return result;
3004 }
3005
3006 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3007 struct packet_type **pt_prev,
3008 int *ret, struct net_device *orig_dev)
3009 {
3010 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3011
3012 if (!rxq || rxq->qdisc == &noop_qdisc)
3013 goto out;
3014
3015 if (*pt_prev) {
3016 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3017 *pt_prev = NULL;
3018 }
3019
3020 switch (ing_filter(skb, rxq)) {
3021 case TC_ACT_SHOT:
3022 case TC_ACT_STOLEN:
3023 kfree_skb(skb);
3024 return NULL;
3025 }
3026
3027 out:
3028 skb->tc_verd = 0;
3029 return skb;
3030 }
3031 #endif
3032
3033 /**
3034 * netdev_rx_handler_register - register receive handler
3035 * @dev: device to register a handler for
3036 * @rx_handler: receive handler to register
3037 * @rx_handler_data: data pointer that is used by rx handler
3038 *
3039 * Register a receive hander for a device. This handler will then be
3040 * called from __netif_receive_skb. A negative errno code is returned
3041 * on a failure.
3042 *
3043 * The caller must hold the rtnl_mutex.
3044 *
3045 * For a general description of rx_handler, see enum rx_handler_result.
3046 */
3047 int netdev_rx_handler_register(struct net_device *dev,
3048 rx_handler_func_t *rx_handler,
3049 void *rx_handler_data)
3050 {
3051 ASSERT_RTNL();
3052
3053 if (dev->rx_handler)
3054 return -EBUSY;
3055
3056 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3057 rcu_assign_pointer(dev->rx_handler, rx_handler);
3058
3059 return 0;
3060 }
3061 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3062
3063 /**
3064 * netdev_rx_handler_unregister - unregister receive handler
3065 * @dev: device to unregister a handler from
3066 *
3067 * Unregister a receive hander from a device.
3068 *
3069 * The caller must hold the rtnl_mutex.
3070 */
3071 void netdev_rx_handler_unregister(struct net_device *dev)
3072 {
3073
3074 ASSERT_RTNL();
3075 rcu_assign_pointer(dev->rx_handler, NULL);
3076 rcu_assign_pointer(dev->rx_handler_data, NULL);
3077 }
3078 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3079
3080 static int __netif_receive_skb(struct sk_buff *skb)
3081 {
3082 struct packet_type *ptype, *pt_prev;
3083 rx_handler_func_t *rx_handler;
3084 struct net_device *orig_dev;
3085 struct net_device *null_or_dev;
3086 bool deliver_exact = false;
3087 int ret = NET_RX_DROP;
3088 __be16 type;
3089
3090 if (!netdev_tstamp_prequeue)
3091 net_timestamp_check(skb);
3092
3093 trace_netif_receive_skb(skb);
3094
3095 /* if we've gotten here through NAPI, check netpoll */
3096 if (netpoll_receive_skb(skb))
3097 return NET_RX_DROP;
3098
3099 if (!skb->skb_iif)
3100 skb->skb_iif = skb->dev->ifindex;
3101 orig_dev = skb->dev;
3102
3103 skb_reset_network_header(skb);
3104 skb_reset_transport_header(skb);
3105 skb->mac_len = skb->network_header - skb->mac_header;
3106
3107 pt_prev = NULL;
3108
3109 rcu_read_lock();
3110
3111 another_round:
3112
3113 __this_cpu_inc(softnet_data.processed);
3114
3115 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3116 skb = vlan_untag(skb);
3117 if (unlikely(!skb))
3118 goto out;
3119 }
3120
3121 #ifdef CONFIG_NET_CLS_ACT
3122 if (skb->tc_verd & TC_NCLS) {
3123 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3124 goto ncls;
3125 }
3126 #endif
3127
3128 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3129 if (!ptype->dev || ptype->dev == skb->dev) {
3130 if (pt_prev)
3131 ret = deliver_skb(skb, pt_prev, orig_dev);
3132 pt_prev = ptype;
3133 }
3134 }
3135
3136 #ifdef CONFIG_NET_CLS_ACT
3137 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3138 if (!skb)
3139 goto out;
3140 ncls:
3141 #endif
3142
3143 rx_handler = rcu_dereference(skb->dev->rx_handler);
3144 if (rx_handler) {
3145 if (pt_prev) {
3146 ret = deliver_skb(skb, pt_prev, orig_dev);
3147 pt_prev = NULL;
3148 }
3149 switch (rx_handler(&skb)) {
3150 case RX_HANDLER_CONSUMED:
3151 goto out;
3152 case RX_HANDLER_ANOTHER:
3153 goto another_round;
3154 case RX_HANDLER_EXACT:
3155 deliver_exact = true;
3156 case RX_HANDLER_PASS:
3157 break;
3158 default:
3159 BUG();
3160 }
3161 }
3162
3163 if (vlan_tx_tag_present(skb)) {
3164 if (pt_prev) {
3165 ret = deliver_skb(skb, pt_prev, orig_dev);
3166 pt_prev = NULL;
3167 }
3168 if (vlan_do_receive(&skb)) {
3169 ret = __netif_receive_skb(skb);
3170 goto out;
3171 } else if (unlikely(!skb))
3172 goto out;
3173 }
3174
3175 /* deliver only exact match when indicated */
3176 null_or_dev = deliver_exact ? skb->dev : NULL;
3177
3178 type = skb->protocol;
3179 list_for_each_entry_rcu(ptype,
3180 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3181 if (ptype->type == type &&
3182 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3183 ptype->dev == orig_dev)) {
3184 if (pt_prev)
3185 ret = deliver_skb(skb, pt_prev, orig_dev);
3186 pt_prev = ptype;
3187 }
3188 }
3189
3190 if (pt_prev) {
3191 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3192 } else {
3193 atomic_long_inc(&skb->dev->rx_dropped);
3194 kfree_skb(skb);
3195 /* Jamal, now you will not able to escape explaining
3196 * me how you were going to use this. :-)
3197 */
3198 ret = NET_RX_DROP;
3199 }
3200
3201 out:
3202 rcu_read_unlock();
3203 return ret;
3204 }
3205
3206 /**
3207 * netif_receive_skb - process receive buffer from network
3208 * @skb: buffer to process
3209 *
3210 * netif_receive_skb() is the main receive data processing function.
3211 * It always succeeds. The buffer may be dropped during processing
3212 * for congestion control or by the protocol layers.
3213 *
3214 * This function may only be called from softirq context and interrupts
3215 * should be enabled.
3216 *
3217 * Return values (usually ignored):
3218 * NET_RX_SUCCESS: no congestion
3219 * NET_RX_DROP: packet was dropped
3220 */
3221 int netif_receive_skb(struct sk_buff *skb)
3222 {
3223 if (netdev_tstamp_prequeue)
3224 net_timestamp_check(skb);
3225
3226 if (skb_defer_rx_timestamp(skb))
3227 return NET_RX_SUCCESS;
3228
3229 #ifdef CONFIG_RPS
3230 {
3231 struct rps_dev_flow voidflow, *rflow = &voidflow;
3232 int cpu, ret;
3233
3234 rcu_read_lock();
3235
3236 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3237
3238 if (cpu >= 0) {
3239 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3240 rcu_read_unlock();
3241 } else {
3242 rcu_read_unlock();
3243 ret = __netif_receive_skb(skb);
3244 }
3245
3246 return ret;
3247 }
3248 #else
3249 return __netif_receive_skb(skb);
3250 #endif
3251 }
3252 EXPORT_SYMBOL(netif_receive_skb);
3253
3254 /* Network device is going away, flush any packets still pending
3255 * Called with irqs disabled.
3256 */
3257 static void flush_backlog(void *arg)
3258 {
3259 struct net_device *dev = arg;
3260 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3261 struct sk_buff *skb, *tmp;
3262
3263 rps_lock(sd);
3264 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3265 if (skb->dev == dev) {
3266 __skb_unlink(skb, &sd->input_pkt_queue);
3267 kfree_skb(skb);
3268 input_queue_head_incr(sd);
3269 }
3270 }
3271 rps_unlock(sd);
3272
3273 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3274 if (skb->dev == dev) {
3275 __skb_unlink(skb, &sd->process_queue);
3276 kfree_skb(skb);
3277 input_queue_head_incr(sd);
3278 }
3279 }
3280 }
3281
3282 static int napi_gro_complete(struct sk_buff *skb)
3283 {
3284 struct packet_type *ptype;
3285 __be16 type = skb->protocol;
3286 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3287 int err = -ENOENT;
3288
3289 if (NAPI_GRO_CB(skb)->count == 1) {
3290 skb_shinfo(skb)->gso_size = 0;
3291 goto out;
3292 }
3293
3294 rcu_read_lock();
3295 list_for_each_entry_rcu(ptype, head, list) {
3296 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3297 continue;
3298
3299 err = ptype->gro_complete(skb);
3300 break;
3301 }
3302 rcu_read_unlock();
3303
3304 if (err) {
3305 WARN_ON(&ptype->list == head);
3306 kfree_skb(skb);
3307 return NET_RX_SUCCESS;
3308 }
3309
3310 out:
3311 return netif_receive_skb(skb);
3312 }
3313
3314 inline void napi_gro_flush(struct napi_struct *napi)
3315 {
3316 struct sk_buff *skb, *next;
3317
3318 for (skb = napi->gro_list; skb; skb = next) {
3319 next = skb->next;
3320 skb->next = NULL;
3321 napi_gro_complete(skb);
3322 }
3323
3324 napi->gro_count = 0;
3325 napi->gro_list = NULL;
3326 }
3327 EXPORT_SYMBOL(napi_gro_flush);
3328
3329 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3330 {
3331 struct sk_buff **pp = NULL;
3332 struct packet_type *ptype;
3333 __be16 type = skb->protocol;
3334 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3335 int same_flow;
3336 int mac_len;
3337 enum gro_result ret;
3338
3339 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3340 goto normal;
3341
3342 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3343 goto normal;
3344
3345 rcu_read_lock();
3346 list_for_each_entry_rcu(ptype, head, list) {
3347 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3348 continue;
3349
3350 skb_set_network_header(skb, skb_gro_offset(skb));
3351 mac_len = skb->network_header - skb->mac_header;
3352 skb->mac_len = mac_len;
3353 NAPI_GRO_CB(skb)->same_flow = 0;
3354 NAPI_GRO_CB(skb)->flush = 0;
3355 NAPI_GRO_CB(skb)->free = 0;
3356
3357 pp = ptype->gro_receive(&napi->gro_list, skb);
3358 break;
3359 }
3360 rcu_read_unlock();
3361
3362 if (&ptype->list == head)
3363 goto normal;
3364
3365 same_flow = NAPI_GRO_CB(skb)->same_flow;
3366 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3367
3368 if (pp) {
3369 struct sk_buff *nskb = *pp;
3370
3371 *pp = nskb->next;
3372 nskb->next = NULL;
3373 napi_gro_complete(nskb);
3374 napi->gro_count--;
3375 }
3376
3377 if (same_flow)
3378 goto ok;
3379
3380 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3381 goto normal;
3382
3383 napi->gro_count++;
3384 NAPI_GRO_CB(skb)->count = 1;
3385 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3386 skb->next = napi->gro_list;
3387 napi->gro_list = skb;
3388 ret = GRO_HELD;
3389
3390 pull:
3391 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3392 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3393
3394 BUG_ON(skb->end - skb->tail < grow);
3395
3396 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3397
3398 skb->tail += grow;
3399 skb->data_len -= grow;
3400
3401 skb_shinfo(skb)->frags[0].page_offset += grow;
3402 skb_shinfo(skb)->frags[0].size -= grow;
3403
3404 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3405 put_page(skb_shinfo(skb)->frags[0].page);
3406 memmove(skb_shinfo(skb)->frags,
3407 skb_shinfo(skb)->frags + 1,
3408 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3409 }
3410 }
3411
3412 ok:
3413 return ret;
3414
3415 normal:
3416 ret = GRO_NORMAL;
3417 goto pull;
3418 }
3419 EXPORT_SYMBOL(dev_gro_receive);
3420
3421 static inline gro_result_t
3422 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3423 {
3424 struct sk_buff *p;
3425
3426 for (p = napi->gro_list; p; p = p->next) {
3427 unsigned long diffs;
3428
3429 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3430 diffs |= p->vlan_tci ^ skb->vlan_tci;
3431 diffs |= compare_ether_header(skb_mac_header(p),
3432 skb_gro_mac_header(skb));
3433 NAPI_GRO_CB(p)->same_flow = !diffs;
3434 NAPI_GRO_CB(p)->flush = 0;
3435 }
3436
3437 return dev_gro_receive(napi, skb);
3438 }
3439
3440 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3441 {
3442 switch (ret) {
3443 case GRO_NORMAL:
3444 if (netif_receive_skb(skb))
3445 ret = GRO_DROP;
3446 break;
3447
3448 case GRO_DROP:
3449 case GRO_MERGED_FREE:
3450 kfree_skb(skb);
3451 break;
3452
3453 case GRO_HELD:
3454 case GRO_MERGED:
3455 break;
3456 }
3457
3458 return ret;
3459 }
3460 EXPORT_SYMBOL(napi_skb_finish);
3461
3462 void skb_gro_reset_offset(struct sk_buff *skb)
3463 {
3464 NAPI_GRO_CB(skb)->data_offset = 0;
3465 NAPI_GRO_CB(skb)->frag0 = NULL;
3466 NAPI_GRO_CB(skb)->frag0_len = 0;
3467
3468 if (skb->mac_header == skb->tail &&
3469 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3470 NAPI_GRO_CB(skb)->frag0 =
3471 page_address(skb_shinfo(skb)->frags[0].page) +
3472 skb_shinfo(skb)->frags[0].page_offset;
3473 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3474 }
3475 }
3476 EXPORT_SYMBOL(skb_gro_reset_offset);
3477
3478 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3479 {
3480 skb_gro_reset_offset(skb);
3481
3482 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3483 }
3484 EXPORT_SYMBOL(napi_gro_receive);
3485
3486 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3487 {
3488 __skb_pull(skb, skb_headlen(skb));
3489 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3490 skb->vlan_tci = 0;
3491 skb->dev = napi->dev;
3492 skb->skb_iif = 0;
3493
3494 napi->skb = skb;
3495 }
3496
3497 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3498 {
3499 struct sk_buff *skb = napi->skb;
3500
3501 if (!skb) {
3502 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3503 if (skb)
3504 napi->skb = skb;
3505 }
3506 return skb;
3507 }
3508 EXPORT_SYMBOL(napi_get_frags);
3509
3510 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3511 gro_result_t ret)
3512 {
3513 switch (ret) {
3514 case GRO_NORMAL:
3515 case GRO_HELD:
3516 skb->protocol = eth_type_trans(skb, skb->dev);
3517
3518 if (ret == GRO_HELD)
3519 skb_gro_pull(skb, -ETH_HLEN);
3520 else if (netif_receive_skb(skb))
3521 ret = GRO_DROP;
3522 break;
3523
3524 case GRO_DROP:
3525 case GRO_MERGED_FREE:
3526 napi_reuse_skb(napi, skb);
3527 break;
3528
3529 case GRO_MERGED:
3530 break;
3531 }
3532
3533 return ret;
3534 }
3535 EXPORT_SYMBOL(napi_frags_finish);
3536
3537 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3538 {
3539 struct sk_buff *skb = napi->skb;
3540 struct ethhdr *eth;
3541 unsigned int hlen;
3542 unsigned int off;
3543
3544 napi->skb = NULL;
3545
3546 skb_reset_mac_header(skb);
3547 skb_gro_reset_offset(skb);
3548
3549 off = skb_gro_offset(skb);
3550 hlen = off + sizeof(*eth);
3551 eth = skb_gro_header_fast(skb, off);
3552 if (skb_gro_header_hard(skb, hlen)) {
3553 eth = skb_gro_header_slow(skb, hlen, off);
3554 if (unlikely(!eth)) {
3555 napi_reuse_skb(napi, skb);
3556 skb = NULL;
3557 goto out;
3558 }
3559 }
3560
3561 skb_gro_pull(skb, sizeof(*eth));
3562
3563 /*
3564 * This works because the only protocols we care about don't require
3565 * special handling. We'll fix it up properly at the end.
3566 */
3567 skb->protocol = eth->h_proto;
3568
3569 out:
3570 return skb;
3571 }
3572 EXPORT_SYMBOL(napi_frags_skb);
3573
3574 gro_result_t napi_gro_frags(struct napi_struct *napi)
3575 {
3576 struct sk_buff *skb = napi_frags_skb(napi);
3577
3578 if (!skb)
3579 return GRO_DROP;
3580
3581 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3582 }
3583 EXPORT_SYMBOL(napi_gro_frags);
3584
3585 /*
3586 * net_rps_action sends any pending IPI's for rps.
3587 * Note: called with local irq disabled, but exits with local irq enabled.
3588 */
3589 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3590 {
3591 #ifdef CONFIG_RPS
3592 struct softnet_data *remsd = sd->rps_ipi_list;
3593
3594 if (remsd) {
3595 sd->rps_ipi_list = NULL;
3596
3597 local_irq_enable();
3598
3599 /* Send pending IPI's to kick RPS processing on remote cpus. */
3600 while (remsd) {
3601 struct softnet_data *next = remsd->rps_ipi_next;
3602
3603 if (cpu_online(remsd->cpu))
3604 __smp_call_function_single(remsd->cpu,
3605 &remsd->csd, 0);
3606 remsd = next;
3607 }
3608 } else
3609 #endif
3610 local_irq_enable();
3611 }
3612
3613 static int process_backlog(struct napi_struct *napi, int quota)
3614 {
3615 int work = 0;
3616 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3617
3618 #ifdef CONFIG_RPS
3619 /* Check if we have pending ipi, its better to send them now,
3620 * not waiting net_rx_action() end.
3621 */
3622 if (sd->rps_ipi_list) {
3623 local_irq_disable();
3624 net_rps_action_and_irq_enable(sd);
3625 }
3626 #endif
3627 napi->weight = weight_p;
3628 local_irq_disable();
3629 while (work < quota) {
3630 struct sk_buff *skb;
3631 unsigned int qlen;
3632
3633 while ((skb = __skb_dequeue(&sd->process_queue))) {
3634 local_irq_enable();
3635 __netif_receive_skb(skb);
3636 local_irq_disable();
3637 input_queue_head_incr(sd);
3638 if (++work >= quota) {
3639 local_irq_enable();
3640 return work;
3641 }
3642 }
3643
3644 rps_lock(sd);
3645 qlen = skb_queue_len(&sd->input_pkt_queue);
3646 if (qlen)
3647 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3648 &sd->process_queue);
3649
3650 if (qlen < quota - work) {
3651 /*
3652 * Inline a custom version of __napi_complete().
3653 * only current cpu owns and manipulates this napi,
3654 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3655 * we can use a plain write instead of clear_bit(),
3656 * and we dont need an smp_mb() memory barrier.
3657 */
3658 list_del(&napi->poll_list);
3659 napi->state = 0;
3660
3661 quota = work + qlen;
3662 }
3663 rps_unlock(sd);
3664 }
3665 local_irq_enable();
3666
3667 return work;
3668 }
3669
3670 /**
3671 * __napi_schedule - schedule for receive
3672 * @n: entry to schedule
3673 *
3674 * The entry's receive function will be scheduled to run
3675 */
3676 void __napi_schedule(struct napi_struct *n)
3677 {
3678 unsigned long flags;
3679
3680 local_irq_save(flags);
3681 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3682 local_irq_restore(flags);
3683 }
3684 EXPORT_SYMBOL(__napi_schedule);
3685
3686 void __napi_complete(struct napi_struct *n)
3687 {
3688 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3689 BUG_ON(n->gro_list);
3690
3691 list_del(&n->poll_list);
3692 smp_mb__before_clear_bit();
3693 clear_bit(NAPI_STATE_SCHED, &n->state);
3694 }
3695 EXPORT_SYMBOL(__napi_complete);
3696
3697 void napi_complete(struct napi_struct *n)
3698 {
3699 unsigned long flags;
3700
3701 /*
3702 * don't let napi dequeue from the cpu poll list
3703 * just in case its running on a different cpu
3704 */
3705 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3706 return;
3707
3708 napi_gro_flush(n);
3709 local_irq_save(flags);
3710 __napi_complete(n);
3711 local_irq_restore(flags);
3712 }
3713 EXPORT_SYMBOL(napi_complete);
3714
3715 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3716 int (*poll)(struct napi_struct *, int), int weight)
3717 {
3718 INIT_LIST_HEAD(&napi->poll_list);
3719 napi->gro_count = 0;
3720 napi->gro_list = NULL;
3721 napi->skb = NULL;
3722 napi->poll = poll;
3723 napi->weight = weight;
3724 list_add(&napi->dev_list, &dev->napi_list);
3725 napi->dev = dev;
3726 #ifdef CONFIG_NETPOLL
3727 spin_lock_init(&napi->poll_lock);
3728 napi->poll_owner = -1;
3729 #endif
3730 set_bit(NAPI_STATE_SCHED, &napi->state);
3731 }
3732 EXPORT_SYMBOL(netif_napi_add);
3733
3734 void netif_napi_del(struct napi_struct *napi)
3735 {
3736 struct sk_buff *skb, *next;
3737
3738 list_del_init(&napi->dev_list);
3739 napi_free_frags(napi);
3740
3741 for (skb = napi->gro_list; skb; skb = next) {
3742 next = skb->next;
3743 skb->next = NULL;
3744 kfree_skb(skb);
3745 }
3746
3747 napi->gro_list = NULL;
3748 napi->gro_count = 0;
3749 }
3750 EXPORT_SYMBOL(netif_napi_del);
3751
3752 static void net_rx_action(struct softirq_action *h)
3753 {
3754 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3755 unsigned long time_limit = jiffies + 2;
3756 int budget = netdev_budget;
3757 void *have;
3758
3759 local_irq_disable();
3760
3761 while (!list_empty(&sd->poll_list)) {
3762 struct napi_struct *n;
3763 int work, weight;
3764
3765 /* If softirq window is exhuasted then punt.
3766 * Allow this to run for 2 jiffies since which will allow
3767 * an average latency of 1.5/HZ.
3768 */
3769 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3770 goto softnet_break;
3771
3772 local_irq_enable();
3773
3774 /* Even though interrupts have been re-enabled, this
3775 * access is safe because interrupts can only add new
3776 * entries to the tail of this list, and only ->poll()
3777 * calls can remove this head entry from the list.
3778 */
3779 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3780
3781 have = netpoll_poll_lock(n);
3782
3783 weight = n->weight;
3784
3785 /* This NAPI_STATE_SCHED test is for avoiding a race
3786 * with netpoll's poll_napi(). Only the entity which
3787 * obtains the lock and sees NAPI_STATE_SCHED set will
3788 * actually make the ->poll() call. Therefore we avoid
3789 * accidentally calling ->poll() when NAPI is not scheduled.
3790 */
3791 work = 0;
3792 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3793 work = n->poll(n, weight);
3794 trace_napi_poll(n);
3795 }
3796
3797 WARN_ON_ONCE(work > weight);
3798
3799 budget -= work;
3800
3801 local_irq_disable();
3802
3803 /* Drivers must not modify the NAPI state if they
3804 * consume the entire weight. In such cases this code
3805 * still "owns" the NAPI instance and therefore can
3806 * move the instance around on the list at-will.
3807 */
3808 if (unlikely(work == weight)) {
3809 if (unlikely(napi_disable_pending(n))) {
3810 local_irq_enable();
3811 napi_complete(n);
3812 local_irq_disable();
3813 } else
3814 list_move_tail(&n->poll_list, &sd->poll_list);
3815 }
3816
3817 netpoll_poll_unlock(have);
3818 }
3819 out:
3820 net_rps_action_and_irq_enable(sd);
3821
3822 #ifdef CONFIG_NET_DMA
3823 /*
3824 * There may not be any more sk_buffs coming right now, so push
3825 * any pending DMA copies to hardware
3826 */
3827 dma_issue_pending_all();
3828 #endif
3829
3830 return;
3831
3832 softnet_break:
3833 sd->time_squeeze++;
3834 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3835 goto out;
3836 }
3837
3838 static gifconf_func_t *gifconf_list[NPROTO];
3839
3840 /**
3841 * register_gifconf - register a SIOCGIF handler
3842 * @family: Address family
3843 * @gifconf: Function handler
3844 *
3845 * Register protocol dependent address dumping routines. The handler
3846 * that is passed must not be freed or reused until it has been replaced
3847 * by another handler.
3848 */
3849 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3850 {
3851 if (family >= NPROTO)
3852 return -EINVAL;
3853 gifconf_list[family] = gifconf;
3854 return 0;
3855 }
3856 EXPORT_SYMBOL(register_gifconf);
3857
3858
3859 /*
3860 * Map an interface index to its name (SIOCGIFNAME)
3861 */
3862
3863 /*
3864 * We need this ioctl for efficient implementation of the
3865 * if_indextoname() function required by the IPv6 API. Without
3866 * it, we would have to search all the interfaces to find a
3867 * match. --pb
3868 */
3869
3870 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3871 {
3872 struct net_device *dev;
3873 struct ifreq ifr;
3874
3875 /*
3876 * Fetch the caller's info block.
3877 */
3878
3879 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3880 return -EFAULT;
3881
3882 rcu_read_lock();
3883 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3884 if (!dev) {
3885 rcu_read_unlock();
3886 return -ENODEV;
3887 }
3888
3889 strcpy(ifr.ifr_name, dev->name);
3890 rcu_read_unlock();
3891
3892 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3893 return -EFAULT;
3894 return 0;
3895 }
3896
3897 /*
3898 * Perform a SIOCGIFCONF call. This structure will change
3899 * size eventually, and there is nothing I can do about it.
3900 * Thus we will need a 'compatibility mode'.
3901 */
3902
3903 static int dev_ifconf(struct net *net, char __user *arg)
3904 {
3905 struct ifconf ifc;
3906 struct net_device *dev;
3907 char __user *pos;
3908 int len;
3909 int total;
3910 int i;
3911
3912 /*
3913 * Fetch the caller's info block.
3914 */
3915
3916 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3917 return -EFAULT;
3918
3919 pos = ifc.ifc_buf;
3920 len = ifc.ifc_len;
3921
3922 /*
3923 * Loop over the interfaces, and write an info block for each.
3924 */
3925
3926 total = 0;
3927 for_each_netdev(net, dev) {
3928 for (i = 0; i < NPROTO; i++) {
3929 if (gifconf_list[i]) {
3930 int done;
3931 if (!pos)
3932 done = gifconf_list[i](dev, NULL, 0);
3933 else
3934 done = gifconf_list[i](dev, pos + total,
3935 len - total);
3936 if (done < 0)
3937 return -EFAULT;
3938 total += done;
3939 }
3940 }
3941 }
3942
3943 /*
3944 * All done. Write the updated control block back to the caller.
3945 */
3946 ifc.ifc_len = total;
3947
3948 /*
3949 * Both BSD and Solaris return 0 here, so we do too.
3950 */
3951 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3952 }
3953
3954 #ifdef CONFIG_PROC_FS
3955 /*
3956 * This is invoked by the /proc filesystem handler to display a device
3957 * in detail.
3958 */
3959 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3960 __acquires(RCU)
3961 {
3962 struct net *net = seq_file_net(seq);
3963 loff_t off;
3964 struct net_device *dev;
3965
3966 rcu_read_lock();
3967 if (!*pos)
3968 return SEQ_START_TOKEN;
3969
3970 off = 1;
3971 for_each_netdev_rcu(net, dev)
3972 if (off++ == *pos)
3973 return dev;
3974
3975 return NULL;
3976 }
3977
3978 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3979 {
3980 struct net_device *dev = v;
3981
3982 if (v == SEQ_START_TOKEN)
3983 dev = first_net_device_rcu(seq_file_net(seq));
3984 else
3985 dev = next_net_device_rcu(dev);
3986
3987 ++*pos;
3988 return dev;
3989 }
3990
3991 void dev_seq_stop(struct seq_file *seq, void *v)
3992 __releases(RCU)
3993 {
3994 rcu_read_unlock();
3995 }
3996
3997 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3998 {
3999 struct rtnl_link_stats64 temp;
4000 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4001
4002 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4003 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4004 dev->name, stats->rx_bytes, stats->rx_packets,
4005 stats->rx_errors,
4006 stats->rx_dropped + stats->rx_missed_errors,
4007 stats->rx_fifo_errors,
4008 stats->rx_length_errors + stats->rx_over_errors +
4009 stats->rx_crc_errors + stats->rx_frame_errors,
4010 stats->rx_compressed, stats->multicast,
4011 stats->tx_bytes, stats->tx_packets,
4012 stats->tx_errors, stats->tx_dropped,
4013 stats->tx_fifo_errors, stats->collisions,
4014 stats->tx_carrier_errors +
4015 stats->tx_aborted_errors +
4016 stats->tx_window_errors +
4017 stats->tx_heartbeat_errors,
4018 stats->tx_compressed);
4019 }
4020
4021 /*
4022 * Called from the PROCfs module. This now uses the new arbitrary sized
4023 * /proc/net interface to create /proc/net/dev
4024 */
4025 static int dev_seq_show(struct seq_file *seq, void *v)
4026 {
4027 if (v == SEQ_START_TOKEN)
4028 seq_puts(seq, "Inter-| Receive "
4029 " | Transmit\n"
4030 " face |bytes packets errs drop fifo frame "
4031 "compressed multicast|bytes packets errs "
4032 "drop fifo colls carrier compressed\n");
4033 else
4034 dev_seq_printf_stats(seq, v);
4035 return 0;
4036 }
4037
4038 static struct softnet_data *softnet_get_online(loff_t *pos)
4039 {
4040 struct softnet_data *sd = NULL;
4041
4042 while (*pos < nr_cpu_ids)
4043 if (cpu_online(*pos)) {
4044 sd = &per_cpu(softnet_data, *pos);
4045 break;
4046 } else
4047 ++*pos;
4048 return sd;
4049 }
4050
4051 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4052 {
4053 return softnet_get_online(pos);
4054 }
4055
4056 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4057 {
4058 ++*pos;
4059 return softnet_get_online(pos);
4060 }
4061
4062 static void softnet_seq_stop(struct seq_file *seq, void *v)
4063 {
4064 }
4065
4066 static int softnet_seq_show(struct seq_file *seq, void *v)
4067 {
4068 struct softnet_data *sd = v;
4069
4070 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4071 sd->processed, sd->dropped, sd->time_squeeze, 0,
4072 0, 0, 0, 0, /* was fastroute */
4073 sd->cpu_collision, sd->received_rps);
4074 return 0;
4075 }
4076
4077 static const struct seq_operations dev_seq_ops = {
4078 .start = dev_seq_start,
4079 .next = dev_seq_next,
4080 .stop = dev_seq_stop,
4081 .show = dev_seq_show,
4082 };
4083
4084 static int dev_seq_open(struct inode *inode, struct file *file)
4085 {
4086 return seq_open_net(inode, file, &dev_seq_ops,
4087 sizeof(struct seq_net_private));
4088 }
4089
4090 static const struct file_operations dev_seq_fops = {
4091 .owner = THIS_MODULE,
4092 .open = dev_seq_open,
4093 .read = seq_read,
4094 .llseek = seq_lseek,
4095 .release = seq_release_net,
4096 };
4097
4098 static const struct seq_operations softnet_seq_ops = {
4099 .start = softnet_seq_start,
4100 .next = softnet_seq_next,
4101 .stop = softnet_seq_stop,
4102 .show = softnet_seq_show,
4103 };
4104
4105 static int softnet_seq_open(struct inode *inode, struct file *file)
4106 {
4107 return seq_open(file, &softnet_seq_ops);
4108 }
4109
4110 static const struct file_operations softnet_seq_fops = {
4111 .owner = THIS_MODULE,
4112 .open = softnet_seq_open,
4113 .read = seq_read,
4114 .llseek = seq_lseek,
4115 .release = seq_release,
4116 };
4117
4118 static void *ptype_get_idx(loff_t pos)
4119 {
4120 struct packet_type *pt = NULL;
4121 loff_t i = 0;
4122 int t;
4123
4124 list_for_each_entry_rcu(pt, &ptype_all, list) {
4125 if (i == pos)
4126 return pt;
4127 ++i;
4128 }
4129
4130 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4131 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4132 if (i == pos)
4133 return pt;
4134 ++i;
4135 }
4136 }
4137 return NULL;
4138 }
4139
4140 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4141 __acquires(RCU)
4142 {
4143 rcu_read_lock();
4144 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4145 }
4146
4147 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4148 {
4149 struct packet_type *pt;
4150 struct list_head *nxt;
4151 int hash;
4152
4153 ++*pos;
4154 if (v == SEQ_START_TOKEN)
4155 return ptype_get_idx(0);
4156
4157 pt = v;
4158 nxt = pt->list.next;
4159 if (pt->type == htons(ETH_P_ALL)) {
4160 if (nxt != &ptype_all)
4161 goto found;
4162 hash = 0;
4163 nxt = ptype_base[0].next;
4164 } else
4165 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4166
4167 while (nxt == &ptype_base[hash]) {
4168 if (++hash >= PTYPE_HASH_SIZE)
4169 return NULL;
4170 nxt = ptype_base[hash].next;
4171 }
4172 found:
4173 return list_entry(nxt, struct packet_type, list);
4174 }
4175
4176 static void ptype_seq_stop(struct seq_file *seq, void *v)
4177 __releases(RCU)
4178 {
4179 rcu_read_unlock();
4180 }
4181
4182 static int ptype_seq_show(struct seq_file *seq, void *v)
4183 {
4184 struct packet_type *pt = v;
4185
4186 if (v == SEQ_START_TOKEN)
4187 seq_puts(seq, "Type Device Function\n");
4188 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4189 if (pt->type == htons(ETH_P_ALL))
4190 seq_puts(seq, "ALL ");
4191 else
4192 seq_printf(seq, "%04x", ntohs(pt->type));
4193
4194 seq_printf(seq, " %-8s %pF\n",
4195 pt->dev ? pt->dev->name : "", pt->func);
4196 }
4197
4198 return 0;
4199 }
4200
4201 static const struct seq_operations ptype_seq_ops = {
4202 .start = ptype_seq_start,
4203 .next = ptype_seq_next,
4204 .stop = ptype_seq_stop,
4205 .show = ptype_seq_show,
4206 };
4207
4208 static int ptype_seq_open(struct inode *inode, struct file *file)
4209 {
4210 return seq_open_net(inode, file, &ptype_seq_ops,
4211 sizeof(struct seq_net_private));
4212 }
4213
4214 static const struct file_operations ptype_seq_fops = {
4215 .owner = THIS_MODULE,
4216 .open = ptype_seq_open,
4217 .read = seq_read,
4218 .llseek = seq_lseek,
4219 .release = seq_release_net,
4220 };
4221
4222
4223 static int __net_init dev_proc_net_init(struct net *net)
4224 {
4225 int rc = -ENOMEM;
4226
4227 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4228 goto out;
4229 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4230 goto out_dev;
4231 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4232 goto out_softnet;
4233
4234 if (wext_proc_init(net))
4235 goto out_ptype;
4236 rc = 0;
4237 out:
4238 return rc;
4239 out_ptype:
4240 proc_net_remove(net, "ptype");
4241 out_softnet:
4242 proc_net_remove(net, "softnet_stat");
4243 out_dev:
4244 proc_net_remove(net, "dev");
4245 goto out;
4246 }
4247
4248 static void __net_exit dev_proc_net_exit(struct net *net)
4249 {
4250 wext_proc_exit(net);
4251
4252 proc_net_remove(net, "ptype");
4253 proc_net_remove(net, "softnet_stat");
4254 proc_net_remove(net, "dev");
4255 }
4256
4257 static struct pernet_operations __net_initdata dev_proc_ops = {
4258 .init = dev_proc_net_init,
4259 .exit = dev_proc_net_exit,
4260 };
4261
4262 static int __init dev_proc_init(void)
4263 {
4264 return register_pernet_subsys(&dev_proc_ops);
4265 }
4266 #else
4267 #define dev_proc_init() 0
4268 #endif /* CONFIG_PROC_FS */
4269
4270
4271 /**
4272 * netdev_set_master - set up master pointer
4273 * @slave: slave device
4274 * @master: new master device
4275 *
4276 * Changes the master device of the slave. Pass %NULL to break the
4277 * bonding. The caller must hold the RTNL semaphore. On a failure
4278 * a negative errno code is returned. On success the reference counts
4279 * are adjusted and the function returns zero.
4280 */
4281 int netdev_set_master(struct net_device *slave, struct net_device *master)
4282 {
4283 struct net_device *old = slave->master;
4284
4285 ASSERT_RTNL();
4286
4287 if (master) {
4288 if (old)
4289 return -EBUSY;
4290 dev_hold(master);
4291 }
4292
4293 slave->master = master;
4294
4295 if (old) {
4296 synchronize_net();
4297 dev_put(old);
4298 }
4299 return 0;
4300 }
4301 EXPORT_SYMBOL(netdev_set_master);
4302
4303 /**
4304 * netdev_set_bond_master - set up bonding master/slave pair
4305 * @slave: slave device
4306 * @master: new master device
4307 *
4308 * Changes the master device of the slave. Pass %NULL to break the
4309 * bonding. The caller must hold the RTNL semaphore. On a failure
4310 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4311 * to the routing socket and the function returns zero.
4312 */
4313 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4314 {
4315 int err;
4316
4317 ASSERT_RTNL();
4318
4319 err = netdev_set_master(slave, master);
4320 if (err)
4321 return err;
4322 if (master)
4323 slave->flags |= IFF_SLAVE;
4324 else
4325 slave->flags &= ~IFF_SLAVE;
4326
4327 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4328 return 0;
4329 }
4330 EXPORT_SYMBOL(netdev_set_bond_master);
4331
4332 static void dev_change_rx_flags(struct net_device *dev, int flags)
4333 {
4334 const struct net_device_ops *ops = dev->netdev_ops;
4335
4336 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4337 ops->ndo_change_rx_flags(dev, flags);
4338 }
4339
4340 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4341 {
4342 unsigned short old_flags = dev->flags;
4343 uid_t uid;
4344 gid_t gid;
4345
4346 ASSERT_RTNL();
4347
4348 dev->flags |= IFF_PROMISC;
4349 dev->promiscuity += inc;
4350 if (dev->promiscuity == 0) {
4351 /*
4352 * Avoid overflow.
4353 * If inc causes overflow, untouch promisc and return error.
4354 */
4355 if (inc < 0)
4356 dev->flags &= ~IFF_PROMISC;
4357 else {
4358 dev->promiscuity -= inc;
4359 printk(KERN_WARNING "%s: promiscuity touches roof, "
4360 "set promiscuity failed, promiscuity feature "
4361 "of device might be broken.\n", dev->name);
4362 return -EOVERFLOW;
4363 }
4364 }
4365 if (dev->flags != old_flags) {
4366 printk(KERN_INFO "device %s %s promiscuous mode\n",
4367 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4368 "left");
4369 if (audit_enabled) {
4370 current_uid_gid(&uid, &gid);
4371 audit_log(current->audit_context, GFP_ATOMIC,
4372 AUDIT_ANOM_PROMISCUOUS,
4373 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4374 dev->name, (dev->flags & IFF_PROMISC),
4375 (old_flags & IFF_PROMISC),
4376 audit_get_loginuid(current),
4377 uid, gid,
4378 audit_get_sessionid(current));
4379 }
4380
4381 dev_change_rx_flags(dev, IFF_PROMISC);
4382 }
4383 return 0;
4384 }
4385
4386 /**
4387 * dev_set_promiscuity - update promiscuity count on a device
4388 * @dev: device
4389 * @inc: modifier
4390 *
4391 * Add or remove promiscuity from a device. While the count in the device
4392 * remains above zero the interface remains promiscuous. Once it hits zero
4393 * the device reverts back to normal filtering operation. A negative inc
4394 * value is used to drop promiscuity on the device.
4395 * Return 0 if successful or a negative errno code on error.
4396 */
4397 int dev_set_promiscuity(struct net_device *dev, int inc)
4398 {
4399 unsigned short old_flags = dev->flags;
4400 int err;
4401
4402 err = __dev_set_promiscuity(dev, inc);
4403 if (err < 0)
4404 return err;
4405 if (dev->flags != old_flags)
4406 dev_set_rx_mode(dev);
4407 return err;
4408 }
4409 EXPORT_SYMBOL(dev_set_promiscuity);
4410
4411 /**
4412 * dev_set_allmulti - update allmulti count on a device
4413 * @dev: device
4414 * @inc: modifier
4415 *
4416 * Add or remove reception of all multicast frames to a device. While the
4417 * count in the device remains above zero the interface remains listening
4418 * to all interfaces. Once it hits zero the device reverts back to normal
4419 * filtering operation. A negative @inc value is used to drop the counter
4420 * when releasing a resource needing all multicasts.
4421 * Return 0 if successful or a negative errno code on error.
4422 */
4423
4424 int dev_set_allmulti(struct net_device *dev, int inc)
4425 {
4426 unsigned short old_flags = dev->flags;
4427
4428 ASSERT_RTNL();
4429
4430 dev->flags |= IFF_ALLMULTI;
4431 dev->allmulti += inc;
4432 if (dev->allmulti == 0) {
4433 /*
4434 * Avoid overflow.
4435 * If inc causes overflow, untouch allmulti and return error.
4436 */
4437 if (inc < 0)
4438 dev->flags &= ~IFF_ALLMULTI;
4439 else {
4440 dev->allmulti -= inc;
4441 printk(KERN_WARNING "%s: allmulti touches roof, "
4442 "set allmulti failed, allmulti feature of "
4443 "device might be broken.\n", dev->name);
4444 return -EOVERFLOW;
4445 }
4446 }
4447 if (dev->flags ^ old_flags) {
4448 dev_change_rx_flags(dev, IFF_ALLMULTI);
4449 dev_set_rx_mode(dev);
4450 }
4451 return 0;
4452 }
4453 EXPORT_SYMBOL(dev_set_allmulti);
4454
4455 /*
4456 * Upload unicast and multicast address lists to device and
4457 * configure RX filtering. When the device doesn't support unicast
4458 * filtering it is put in promiscuous mode while unicast addresses
4459 * are present.
4460 */
4461 void __dev_set_rx_mode(struct net_device *dev)
4462 {
4463 const struct net_device_ops *ops = dev->netdev_ops;
4464
4465 /* dev_open will call this function so the list will stay sane. */
4466 if (!(dev->flags&IFF_UP))
4467 return;
4468
4469 if (!netif_device_present(dev))
4470 return;
4471
4472 if (ops->ndo_set_rx_mode)
4473 ops->ndo_set_rx_mode(dev);
4474 else {
4475 /* Unicast addresses changes may only happen under the rtnl,
4476 * therefore calling __dev_set_promiscuity here is safe.
4477 */
4478 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4479 __dev_set_promiscuity(dev, 1);
4480 dev->uc_promisc = 1;
4481 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4482 __dev_set_promiscuity(dev, -1);
4483 dev->uc_promisc = 0;
4484 }
4485
4486 if (ops->ndo_set_multicast_list)
4487 ops->ndo_set_multicast_list(dev);
4488 }
4489 }
4490
4491 void dev_set_rx_mode(struct net_device *dev)
4492 {
4493 netif_addr_lock_bh(dev);
4494 __dev_set_rx_mode(dev);
4495 netif_addr_unlock_bh(dev);
4496 }
4497
4498 /**
4499 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4500 * @dev: device
4501 * @cmd: memory area for ethtool_ops::get_settings() result
4502 *
4503 * The cmd arg is initialized properly (cleared and
4504 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4505 *
4506 * Return device's ethtool_ops::get_settings() result value or
4507 * -EOPNOTSUPP when device doesn't expose
4508 * ethtool_ops::get_settings() operation.
4509 */
4510 int dev_ethtool_get_settings(struct net_device *dev,
4511 struct ethtool_cmd *cmd)
4512 {
4513 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4514 return -EOPNOTSUPP;
4515
4516 memset(cmd, 0, sizeof(struct ethtool_cmd));
4517 cmd->cmd = ETHTOOL_GSET;
4518 return dev->ethtool_ops->get_settings(dev, cmd);
4519 }
4520 EXPORT_SYMBOL(dev_ethtool_get_settings);
4521
4522 /**
4523 * dev_get_flags - get flags reported to userspace
4524 * @dev: device
4525 *
4526 * Get the combination of flag bits exported through APIs to userspace.
4527 */
4528 unsigned dev_get_flags(const struct net_device *dev)
4529 {
4530 unsigned flags;
4531
4532 flags = (dev->flags & ~(IFF_PROMISC |
4533 IFF_ALLMULTI |
4534 IFF_RUNNING |
4535 IFF_LOWER_UP |
4536 IFF_DORMANT)) |
4537 (dev->gflags & (IFF_PROMISC |
4538 IFF_ALLMULTI));
4539
4540 if (netif_running(dev)) {
4541 if (netif_oper_up(dev))
4542 flags |= IFF_RUNNING;
4543 if (netif_carrier_ok(dev))
4544 flags |= IFF_LOWER_UP;
4545 if (netif_dormant(dev))
4546 flags |= IFF_DORMANT;
4547 }
4548
4549 return flags;
4550 }
4551 EXPORT_SYMBOL(dev_get_flags);
4552
4553 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4554 {
4555 int old_flags = dev->flags;
4556 int ret;
4557
4558 ASSERT_RTNL();
4559
4560 /*
4561 * Set the flags on our device.
4562 */
4563
4564 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4565 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4566 IFF_AUTOMEDIA)) |
4567 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4568 IFF_ALLMULTI));
4569
4570 /*
4571 * Load in the correct multicast list now the flags have changed.
4572 */
4573
4574 if ((old_flags ^ flags) & IFF_MULTICAST)
4575 dev_change_rx_flags(dev, IFF_MULTICAST);
4576
4577 dev_set_rx_mode(dev);
4578
4579 /*
4580 * Have we downed the interface. We handle IFF_UP ourselves
4581 * according to user attempts to set it, rather than blindly
4582 * setting it.
4583 */
4584
4585 ret = 0;
4586 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4587 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4588
4589 if (!ret)
4590 dev_set_rx_mode(dev);
4591 }
4592
4593 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4594 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4595
4596 dev->gflags ^= IFF_PROMISC;
4597 dev_set_promiscuity(dev, inc);
4598 }
4599
4600 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4601 is important. Some (broken) drivers set IFF_PROMISC, when
4602 IFF_ALLMULTI is requested not asking us and not reporting.
4603 */
4604 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4605 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4606
4607 dev->gflags ^= IFF_ALLMULTI;
4608 dev_set_allmulti(dev, inc);
4609 }
4610
4611 return ret;
4612 }
4613
4614 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4615 {
4616 unsigned int changes = dev->flags ^ old_flags;
4617
4618 if (changes & IFF_UP) {
4619 if (dev->flags & IFF_UP)
4620 call_netdevice_notifiers(NETDEV_UP, dev);
4621 else
4622 call_netdevice_notifiers(NETDEV_DOWN, dev);
4623 }
4624
4625 if (dev->flags & IFF_UP &&
4626 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4627 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4628 }
4629
4630 /**
4631 * dev_change_flags - change device settings
4632 * @dev: device
4633 * @flags: device state flags
4634 *
4635 * Change settings on device based state flags. The flags are
4636 * in the userspace exported format.
4637 */
4638 int dev_change_flags(struct net_device *dev, unsigned flags)
4639 {
4640 int ret, changes;
4641 int old_flags = dev->flags;
4642
4643 ret = __dev_change_flags(dev, flags);
4644 if (ret < 0)
4645 return ret;
4646
4647 changes = old_flags ^ dev->flags;
4648 if (changes)
4649 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4650
4651 __dev_notify_flags(dev, old_flags);
4652 return ret;
4653 }
4654 EXPORT_SYMBOL(dev_change_flags);
4655
4656 /**
4657 * dev_set_mtu - Change maximum transfer unit
4658 * @dev: device
4659 * @new_mtu: new transfer unit
4660 *
4661 * Change the maximum transfer size of the network device.
4662 */
4663 int dev_set_mtu(struct net_device *dev, int new_mtu)
4664 {
4665 const struct net_device_ops *ops = dev->netdev_ops;
4666 int err;
4667
4668 if (new_mtu == dev->mtu)
4669 return 0;
4670
4671 /* MTU must be positive. */
4672 if (new_mtu < 0)
4673 return -EINVAL;
4674
4675 if (!netif_device_present(dev))
4676 return -ENODEV;
4677
4678 err = 0;
4679 if (ops->ndo_change_mtu)
4680 err = ops->ndo_change_mtu(dev, new_mtu);
4681 else
4682 dev->mtu = new_mtu;
4683
4684 if (!err && dev->flags & IFF_UP)
4685 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4686 return err;
4687 }
4688 EXPORT_SYMBOL(dev_set_mtu);
4689
4690 /**
4691 * dev_set_group - Change group this device belongs to
4692 * @dev: device
4693 * @new_group: group this device should belong to
4694 */
4695 void dev_set_group(struct net_device *dev, int new_group)
4696 {
4697 dev->group = new_group;
4698 }
4699 EXPORT_SYMBOL(dev_set_group);
4700
4701 /**
4702 * dev_set_mac_address - Change Media Access Control Address
4703 * @dev: device
4704 * @sa: new address
4705 *
4706 * Change the hardware (MAC) address of the device
4707 */
4708 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4709 {
4710 const struct net_device_ops *ops = dev->netdev_ops;
4711 int err;
4712
4713 if (!ops->ndo_set_mac_address)
4714 return -EOPNOTSUPP;
4715 if (sa->sa_family != dev->type)
4716 return -EINVAL;
4717 if (!netif_device_present(dev))
4718 return -ENODEV;
4719 err = ops->ndo_set_mac_address(dev, sa);
4720 if (!err)
4721 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4722 return err;
4723 }
4724 EXPORT_SYMBOL(dev_set_mac_address);
4725
4726 /*
4727 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4728 */
4729 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4730 {
4731 int err;
4732 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4733
4734 if (!dev)
4735 return -ENODEV;
4736
4737 switch (cmd) {
4738 case SIOCGIFFLAGS: /* Get interface flags */
4739 ifr->ifr_flags = (short) dev_get_flags(dev);
4740 return 0;
4741
4742 case SIOCGIFMETRIC: /* Get the metric on the interface
4743 (currently unused) */
4744 ifr->ifr_metric = 0;
4745 return 0;
4746
4747 case SIOCGIFMTU: /* Get the MTU of a device */
4748 ifr->ifr_mtu = dev->mtu;
4749 return 0;
4750
4751 case SIOCGIFHWADDR:
4752 if (!dev->addr_len)
4753 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4754 else
4755 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4756 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4757 ifr->ifr_hwaddr.sa_family = dev->type;
4758 return 0;
4759
4760 case SIOCGIFSLAVE:
4761 err = -EINVAL;
4762 break;
4763
4764 case SIOCGIFMAP:
4765 ifr->ifr_map.mem_start = dev->mem_start;
4766 ifr->ifr_map.mem_end = dev->mem_end;
4767 ifr->ifr_map.base_addr = dev->base_addr;
4768 ifr->ifr_map.irq = dev->irq;
4769 ifr->ifr_map.dma = dev->dma;
4770 ifr->ifr_map.port = dev->if_port;
4771 return 0;
4772
4773 case SIOCGIFINDEX:
4774 ifr->ifr_ifindex = dev->ifindex;
4775 return 0;
4776
4777 case SIOCGIFTXQLEN:
4778 ifr->ifr_qlen = dev->tx_queue_len;
4779 return 0;
4780
4781 default:
4782 /* dev_ioctl() should ensure this case
4783 * is never reached
4784 */
4785 WARN_ON(1);
4786 err = -EINVAL;
4787 break;
4788
4789 }
4790 return err;
4791 }
4792
4793 /*
4794 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4795 */
4796 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4797 {
4798 int err;
4799 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4800 const struct net_device_ops *ops;
4801
4802 if (!dev)
4803 return -ENODEV;
4804
4805 ops = dev->netdev_ops;
4806
4807 switch (cmd) {
4808 case SIOCSIFFLAGS: /* Set interface flags */
4809 return dev_change_flags(dev, ifr->ifr_flags);
4810
4811 case SIOCSIFMETRIC: /* Set the metric on the interface
4812 (currently unused) */
4813 return -EOPNOTSUPP;
4814
4815 case SIOCSIFMTU: /* Set the MTU of a device */
4816 return dev_set_mtu(dev, ifr->ifr_mtu);
4817
4818 case SIOCSIFHWADDR:
4819 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4820
4821 case SIOCSIFHWBROADCAST:
4822 if (ifr->ifr_hwaddr.sa_family != dev->type)
4823 return -EINVAL;
4824 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4825 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4826 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4827 return 0;
4828
4829 case SIOCSIFMAP:
4830 if (ops->ndo_set_config) {
4831 if (!netif_device_present(dev))
4832 return -ENODEV;
4833 return ops->ndo_set_config(dev, &ifr->ifr_map);
4834 }
4835 return -EOPNOTSUPP;
4836
4837 case SIOCADDMULTI:
4838 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4839 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4840 return -EINVAL;
4841 if (!netif_device_present(dev))
4842 return -ENODEV;
4843 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4844
4845 case SIOCDELMULTI:
4846 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4847 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4848 return -EINVAL;
4849 if (!netif_device_present(dev))
4850 return -ENODEV;
4851 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4852
4853 case SIOCSIFTXQLEN:
4854 if (ifr->ifr_qlen < 0)
4855 return -EINVAL;
4856 dev->tx_queue_len = ifr->ifr_qlen;
4857 return 0;
4858
4859 case SIOCSIFNAME:
4860 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4861 return dev_change_name(dev, ifr->ifr_newname);
4862
4863 /*
4864 * Unknown or private ioctl
4865 */
4866 default:
4867 if ((cmd >= SIOCDEVPRIVATE &&
4868 cmd <= SIOCDEVPRIVATE + 15) ||
4869 cmd == SIOCBONDENSLAVE ||
4870 cmd == SIOCBONDRELEASE ||
4871 cmd == SIOCBONDSETHWADDR ||
4872 cmd == SIOCBONDSLAVEINFOQUERY ||
4873 cmd == SIOCBONDINFOQUERY ||
4874 cmd == SIOCBONDCHANGEACTIVE ||
4875 cmd == SIOCGMIIPHY ||
4876 cmd == SIOCGMIIREG ||
4877 cmd == SIOCSMIIREG ||
4878 cmd == SIOCBRADDIF ||
4879 cmd == SIOCBRDELIF ||
4880 cmd == SIOCSHWTSTAMP ||
4881 cmd == SIOCWANDEV) {
4882 err = -EOPNOTSUPP;
4883 if (ops->ndo_do_ioctl) {
4884 if (netif_device_present(dev))
4885 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4886 else
4887 err = -ENODEV;
4888 }
4889 } else
4890 err = -EINVAL;
4891
4892 }
4893 return err;
4894 }
4895
4896 /*
4897 * This function handles all "interface"-type I/O control requests. The actual
4898 * 'doing' part of this is dev_ifsioc above.
4899 */
4900
4901 /**
4902 * dev_ioctl - network device ioctl
4903 * @net: the applicable net namespace
4904 * @cmd: command to issue
4905 * @arg: pointer to a struct ifreq in user space
4906 *
4907 * Issue ioctl functions to devices. This is normally called by the
4908 * user space syscall interfaces but can sometimes be useful for
4909 * other purposes. The return value is the return from the syscall if
4910 * positive or a negative errno code on error.
4911 */
4912
4913 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4914 {
4915 struct ifreq ifr;
4916 int ret;
4917 char *colon;
4918
4919 /* One special case: SIOCGIFCONF takes ifconf argument
4920 and requires shared lock, because it sleeps writing
4921 to user space.
4922 */
4923
4924 if (cmd == SIOCGIFCONF) {
4925 rtnl_lock();
4926 ret = dev_ifconf(net, (char __user *) arg);
4927 rtnl_unlock();
4928 return ret;
4929 }
4930 if (cmd == SIOCGIFNAME)
4931 return dev_ifname(net, (struct ifreq __user *)arg);
4932
4933 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4934 return -EFAULT;
4935
4936 ifr.ifr_name[IFNAMSIZ-1] = 0;
4937
4938 colon = strchr(ifr.ifr_name, ':');
4939 if (colon)
4940 *colon = 0;
4941
4942 /*
4943 * See which interface the caller is talking about.
4944 */
4945
4946 switch (cmd) {
4947 /*
4948 * These ioctl calls:
4949 * - can be done by all.
4950 * - atomic and do not require locking.
4951 * - return a value
4952 */
4953 case SIOCGIFFLAGS:
4954 case SIOCGIFMETRIC:
4955 case SIOCGIFMTU:
4956 case SIOCGIFHWADDR:
4957 case SIOCGIFSLAVE:
4958 case SIOCGIFMAP:
4959 case SIOCGIFINDEX:
4960 case SIOCGIFTXQLEN:
4961 dev_load(net, ifr.ifr_name);
4962 rcu_read_lock();
4963 ret = dev_ifsioc_locked(net, &ifr, cmd);
4964 rcu_read_unlock();
4965 if (!ret) {
4966 if (colon)
4967 *colon = ':';
4968 if (copy_to_user(arg, &ifr,
4969 sizeof(struct ifreq)))
4970 ret = -EFAULT;
4971 }
4972 return ret;
4973
4974 case SIOCETHTOOL:
4975 dev_load(net, ifr.ifr_name);
4976 rtnl_lock();
4977 ret = dev_ethtool(net, &ifr);
4978 rtnl_unlock();
4979 if (!ret) {
4980 if (colon)
4981 *colon = ':';
4982 if (copy_to_user(arg, &ifr,
4983 sizeof(struct ifreq)))
4984 ret = -EFAULT;
4985 }
4986 return ret;
4987
4988 /*
4989 * These ioctl calls:
4990 * - require superuser power.
4991 * - require strict serialization.
4992 * - return a value
4993 */
4994 case SIOCGMIIPHY:
4995 case SIOCGMIIREG:
4996 case SIOCSIFNAME:
4997 if (!capable(CAP_NET_ADMIN))
4998 return -EPERM;
4999 dev_load(net, ifr.ifr_name);
5000 rtnl_lock();
5001 ret = dev_ifsioc(net, &ifr, cmd);
5002 rtnl_unlock();
5003 if (!ret) {
5004 if (colon)
5005 *colon = ':';
5006 if (copy_to_user(arg, &ifr,
5007 sizeof(struct ifreq)))
5008 ret = -EFAULT;
5009 }
5010 return ret;
5011
5012 /*
5013 * These ioctl calls:
5014 * - require superuser power.
5015 * - require strict serialization.
5016 * - do not return a value
5017 */
5018 case SIOCSIFFLAGS:
5019 case SIOCSIFMETRIC:
5020 case SIOCSIFMTU:
5021 case SIOCSIFMAP:
5022 case SIOCSIFHWADDR:
5023 case SIOCSIFSLAVE:
5024 case SIOCADDMULTI:
5025 case SIOCDELMULTI:
5026 case SIOCSIFHWBROADCAST:
5027 case SIOCSIFTXQLEN:
5028 case SIOCSMIIREG:
5029 case SIOCBONDENSLAVE:
5030 case SIOCBONDRELEASE:
5031 case SIOCBONDSETHWADDR:
5032 case SIOCBONDCHANGEACTIVE:
5033 case SIOCBRADDIF:
5034 case SIOCBRDELIF:
5035 case SIOCSHWTSTAMP:
5036 if (!capable(CAP_NET_ADMIN))
5037 return -EPERM;
5038 /* fall through */
5039 case SIOCBONDSLAVEINFOQUERY:
5040 case SIOCBONDINFOQUERY:
5041 dev_load(net, ifr.ifr_name);
5042 rtnl_lock();
5043 ret = dev_ifsioc(net, &ifr, cmd);
5044 rtnl_unlock();
5045 return ret;
5046
5047 case SIOCGIFMEM:
5048 /* Get the per device memory space. We can add this but
5049 * currently do not support it */
5050 case SIOCSIFMEM:
5051 /* Set the per device memory buffer space.
5052 * Not applicable in our case */
5053 case SIOCSIFLINK:
5054 return -EINVAL;
5055
5056 /*
5057 * Unknown or private ioctl.
5058 */
5059 default:
5060 if (cmd == SIOCWANDEV ||
5061 (cmd >= SIOCDEVPRIVATE &&
5062 cmd <= SIOCDEVPRIVATE + 15)) {
5063 dev_load(net, ifr.ifr_name);
5064 rtnl_lock();
5065 ret = dev_ifsioc(net, &ifr, cmd);
5066 rtnl_unlock();
5067 if (!ret && copy_to_user(arg, &ifr,
5068 sizeof(struct ifreq)))
5069 ret = -EFAULT;
5070 return ret;
5071 }
5072 /* Take care of Wireless Extensions */
5073 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5074 return wext_handle_ioctl(net, &ifr, cmd, arg);
5075 return -EINVAL;
5076 }
5077 }
5078
5079
5080 /**
5081 * dev_new_index - allocate an ifindex
5082 * @net: the applicable net namespace
5083 *
5084 * Returns a suitable unique value for a new device interface
5085 * number. The caller must hold the rtnl semaphore or the
5086 * dev_base_lock to be sure it remains unique.
5087 */
5088 static int dev_new_index(struct net *net)
5089 {
5090 static int ifindex;
5091 for (;;) {
5092 if (++ifindex <= 0)
5093 ifindex = 1;
5094 if (!__dev_get_by_index(net, ifindex))
5095 return ifindex;
5096 }
5097 }
5098
5099 /* Delayed registration/unregisteration */
5100 static LIST_HEAD(net_todo_list);
5101
5102 static void net_set_todo(struct net_device *dev)
5103 {
5104 list_add_tail(&dev->todo_list, &net_todo_list);
5105 }
5106
5107 static void rollback_registered_many(struct list_head *head)
5108 {
5109 struct net_device *dev, *tmp;
5110
5111 BUG_ON(dev_boot_phase);
5112 ASSERT_RTNL();
5113
5114 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5115 /* Some devices call without registering
5116 * for initialization unwind. Remove those
5117 * devices and proceed with the remaining.
5118 */
5119 if (dev->reg_state == NETREG_UNINITIALIZED) {
5120 pr_debug("unregister_netdevice: device %s/%p never "
5121 "was registered\n", dev->name, dev);
5122
5123 WARN_ON(1);
5124 list_del(&dev->unreg_list);
5125 continue;
5126 }
5127
5128 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5129 }
5130
5131 /* If device is running, close it first. */
5132 dev_close_many(head);
5133
5134 list_for_each_entry(dev, head, unreg_list) {
5135 /* And unlink it from device chain. */
5136 unlist_netdevice(dev);
5137
5138 dev->reg_state = NETREG_UNREGISTERING;
5139 }
5140
5141 synchronize_net();
5142
5143 list_for_each_entry(dev, head, unreg_list) {
5144 /* Shutdown queueing discipline. */
5145 dev_shutdown(dev);
5146
5147
5148 /* Notify protocols, that we are about to destroy
5149 this device. They should clean all the things.
5150 */
5151 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5152
5153 if (!dev->rtnl_link_ops ||
5154 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5155 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5156
5157 /*
5158 * Flush the unicast and multicast chains
5159 */
5160 dev_uc_flush(dev);
5161 dev_mc_flush(dev);
5162
5163 if (dev->netdev_ops->ndo_uninit)
5164 dev->netdev_ops->ndo_uninit(dev);
5165
5166 /* Notifier chain MUST detach us from master device. */
5167 WARN_ON(dev->master);
5168
5169 /* Remove entries from kobject tree */
5170 netdev_unregister_kobject(dev);
5171 }
5172
5173 /* Process any work delayed until the end of the batch */
5174 dev = list_first_entry(head, struct net_device, unreg_list);
5175 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5176
5177 rcu_barrier();
5178
5179 list_for_each_entry(dev, head, unreg_list)
5180 dev_put(dev);
5181 }
5182
5183 static void rollback_registered(struct net_device *dev)
5184 {
5185 LIST_HEAD(single);
5186
5187 list_add(&dev->unreg_list, &single);
5188 rollback_registered_many(&single);
5189 list_del(&single);
5190 }
5191
5192 u32 netdev_fix_features(struct net_device *dev, u32 features)
5193 {
5194 /* Fix illegal checksum combinations */
5195 if ((features & NETIF_F_HW_CSUM) &&
5196 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5197 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5198 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5199 }
5200
5201 if ((features & NETIF_F_NO_CSUM) &&
5202 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5203 netdev_info(dev, "mixed no checksumming and other settings.\n");
5204 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5205 }
5206
5207 /* Fix illegal SG+CSUM combinations. */
5208 if ((features & NETIF_F_SG) &&
5209 !(features & NETIF_F_ALL_CSUM)) {
5210 netdev_info(dev,
5211 "Dropping NETIF_F_SG since no checksum feature.\n");
5212 features &= ~NETIF_F_SG;
5213 }
5214
5215 /* TSO requires that SG is present as well. */
5216 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5217 netdev_info(dev, "Dropping TSO features since no SG feature.\n");
5218 features &= ~NETIF_F_ALL_TSO;
5219 }
5220
5221 /* TSO ECN requires that TSO is present as well. */
5222 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5223 features &= ~NETIF_F_TSO_ECN;
5224
5225 /* Software GSO depends on SG. */
5226 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5227 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5228 features &= ~NETIF_F_GSO;
5229 }
5230
5231 /* UFO needs SG and checksumming */
5232 if (features & NETIF_F_UFO) {
5233 /* maybe split UFO into V4 and V6? */
5234 if (!((features & NETIF_F_GEN_CSUM) ||
5235 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5236 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5237 netdev_info(dev,
5238 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5239 features &= ~NETIF_F_UFO;
5240 }
5241
5242 if (!(features & NETIF_F_SG)) {
5243 netdev_info(dev,
5244 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5245 features &= ~NETIF_F_UFO;
5246 }
5247 }
5248
5249 return features;
5250 }
5251 EXPORT_SYMBOL(netdev_fix_features);
5252
5253 int __netdev_update_features(struct net_device *dev)
5254 {
5255 u32 features;
5256 int err = 0;
5257
5258 ASSERT_RTNL();
5259
5260 features = netdev_get_wanted_features(dev);
5261
5262 if (dev->netdev_ops->ndo_fix_features)
5263 features = dev->netdev_ops->ndo_fix_features(dev, features);
5264
5265 /* driver might be less strict about feature dependencies */
5266 features = netdev_fix_features(dev, features);
5267
5268 if (dev->features == features)
5269 return 0;
5270
5271 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5272 dev->features, features);
5273
5274 if (dev->netdev_ops->ndo_set_features)
5275 err = dev->netdev_ops->ndo_set_features(dev, features);
5276
5277 if (unlikely(err < 0)) {
5278 netdev_err(dev,
5279 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5280 err, features, dev->features);
5281 return -1;
5282 }
5283
5284 if (!err)
5285 dev->features = features;
5286
5287 return 1;
5288 }
5289
5290 void netdev_update_features(struct net_device *dev)
5291 {
5292 if (__netdev_update_features(dev))
5293 netdev_features_change(dev);
5294 }
5295 EXPORT_SYMBOL(netdev_update_features);
5296
5297 /**
5298 * netif_stacked_transfer_operstate - transfer operstate
5299 * @rootdev: the root or lower level device to transfer state from
5300 * @dev: the device to transfer operstate to
5301 *
5302 * Transfer operational state from root to device. This is normally
5303 * called when a stacking relationship exists between the root
5304 * device and the device(a leaf device).
5305 */
5306 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5307 struct net_device *dev)
5308 {
5309 if (rootdev->operstate == IF_OPER_DORMANT)
5310 netif_dormant_on(dev);
5311 else
5312 netif_dormant_off(dev);
5313
5314 if (netif_carrier_ok(rootdev)) {
5315 if (!netif_carrier_ok(dev))
5316 netif_carrier_on(dev);
5317 } else {
5318 if (netif_carrier_ok(dev))
5319 netif_carrier_off(dev);
5320 }
5321 }
5322 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5323
5324 #ifdef CONFIG_RPS
5325 static int netif_alloc_rx_queues(struct net_device *dev)
5326 {
5327 unsigned int i, count = dev->num_rx_queues;
5328 struct netdev_rx_queue *rx;
5329
5330 BUG_ON(count < 1);
5331
5332 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5333 if (!rx) {
5334 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5335 return -ENOMEM;
5336 }
5337 dev->_rx = rx;
5338
5339 for (i = 0; i < count; i++)
5340 rx[i].dev = dev;
5341 return 0;
5342 }
5343 #endif
5344
5345 static void netdev_init_one_queue(struct net_device *dev,
5346 struct netdev_queue *queue, void *_unused)
5347 {
5348 /* Initialize queue lock */
5349 spin_lock_init(&queue->_xmit_lock);
5350 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5351 queue->xmit_lock_owner = -1;
5352 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5353 queue->dev = dev;
5354 }
5355
5356 static int netif_alloc_netdev_queues(struct net_device *dev)
5357 {
5358 unsigned int count = dev->num_tx_queues;
5359 struct netdev_queue *tx;
5360
5361 BUG_ON(count < 1);
5362
5363 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5364 if (!tx) {
5365 pr_err("netdev: Unable to allocate %u tx queues.\n",
5366 count);
5367 return -ENOMEM;
5368 }
5369 dev->_tx = tx;
5370
5371 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5372 spin_lock_init(&dev->tx_global_lock);
5373
5374 return 0;
5375 }
5376
5377 /**
5378 * register_netdevice - register a network device
5379 * @dev: device to register
5380 *
5381 * Take a completed network device structure and add it to the kernel
5382 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5383 * chain. 0 is returned on success. A negative errno code is returned
5384 * on a failure to set up the device, or if the name is a duplicate.
5385 *
5386 * Callers must hold the rtnl semaphore. You may want
5387 * register_netdev() instead of this.
5388 *
5389 * BUGS:
5390 * The locking appears insufficient to guarantee two parallel registers
5391 * will not get the same name.
5392 */
5393
5394 int register_netdevice(struct net_device *dev)
5395 {
5396 int ret;
5397 struct net *net = dev_net(dev);
5398
5399 BUG_ON(dev_boot_phase);
5400 ASSERT_RTNL();
5401
5402 might_sleep();
5403
5404 /* When net_device's are persistent, this will be fatal. */
5405 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5406 BUG_ON(!net);
5407
5408 spin_lock_init(&dev->addr_list_lock);
5409 netdev_set_addr_lockdep_class(dev);
5410
5411 dev->iflink = -1;
5412
5413 /* Init, if this function is available */
5414 if (dev->netdev_ops->ndo_init) {
5415 ret = dev->netdev_ops->ndo_init(dev);
5416 if (ret) {
5417 if (ret > 0)
5418 ret = -EIO;
5419 goto out;
5420 }
5421 }
5422
5423 ret = dev_get_valid_name(dev, dev->name, 0);
5424 if (ret)
5425 goto err_uninit;
5426
5427 dev->ifindex = dev_new_index(net);
5428 if (dev->iflink == -1)
5429 dev->iflink = dev->ifindex;
5430
5431 /* Transfer changeable features to wanted_features and enable
5432 * software offloads (GSO and GRO).
5433 */
5434 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5435 dev->features |= NETIF_F_SOFT_FEATURES;
5436 dev->wanted_features = dev->features & dev->hw_features;
5437
5438 /* Avoid warning from netdev_fix_features() for GSO without SG */
5439 if (!(dev->wanted_features & NETIF_F_SG)) {
5440 dev->wanted_features &= ~NETIF_F_GSO;
5441 dev->features &= ~NETIF_F_GSO;
5442 }
5443
5444 /* Turn on no cache copy if HW is doing checksum */
5445 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5446 if ((dev->features & NETIF_F_ALL_CSUM) &&
5447 !(dev->features & NETIF_F_NO_CSUM)) {
5448 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5449 dev->features |= NETIF_F_NOCACHE_COPY;
5450 }
5451
5452 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5453 * vlan_dev_init() will do the dev->features check, so these features
5454 * are enabled only if supported by underlying device.
5455 */
5456 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5457
5458 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5459 ret = notifier_to_errno(ret);
5460 if (ret)
5461 goto err_uninit;
5462
5463 ret = netdev_register_kobject(dev);
5464 if (ret)
5465 goto err_uninit;
5466 dev->reg_state = NETREG_REGISTERED;
5467
5468 __netdev_update_features(dev);
5469
5470 /*
5471 * Default initial state at registry is that the
5472 * device is present.
5473 */
5474
5475 set_bit(__LINK_STATE_PRESENT, &dev->state);
5476
5477 dev_init_scheduler(dev);
5478 dev_hold(dev);
5479 list_netdevice(dev);
5480
5481 /* Notify protocols, that a new device appeared. */
5482 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5483 ret = notifier_to_errno(ret);
5484 if (ret) {
5485 rollback_registered(dev);
5486 dev->reg_state = NETREG_UNREGISTERED;
5487 }
5488 /*
5489 * Prevent userspace races by waiting until the network
5490 * device is fully setup before sending notifications.
5491 */
5492 if (!dev->rtnl_link_ops ||
5493 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5494 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5495
5496 out:
5497 return ret;
5498
5499 err_uninit:
5500 if (dev->netdev_ops->ndo_uninit)
5501 dev->netdev_ops->ndo_uninit(dev);
5502 goto out;
5503 }
5504 EXPORT_SYMBOL(register_netdevice);
5505
5506 /**
5507 * init_dummy_netdev - init a dummy network device for NAPI
5508 * @dev: device to init
5509 *
5510 * This takes a network device structure and initialize the minimum
5511 * amount of fields so it can be used to schedule NAPI polls without
5512 * registering a full blown interface. This is to be used by drivers
5513 * that need to tie several hardware interfaces to a single NAPI
5514 * poll scheduler due to HW limitations.
5515 */
5516 int init_dummy_netdev(struct net_device *dev)
5517 {
5518 /* Clear everything. Note we don't initialize spinlocks
5519 * are they aren't supposed to be taken by any of the
5520 * NAPI code and this dummy netdev is supposed to be
5521 * only ever used for NAPI polls
5522 */
5523 memset(dev, 0, sizeof(struct net_device));
5524
5525 /* make sure we BUG if trying to hit standard
5526 * register/unregister code path
5527 */
5528 dev->reg_state = NETREG_DUMMY;
5529
5530 /* NAPI wants this */
5531 INIT_LIST_HEAD(&dev->napi_list);
5532
5533 /* a dummy interface is started by default */
5534 set_bit(__LINK_STATE_PRESENT, &dev->state);
5535 set_bit(__LINK_STATE_START, &dev->state);
5536
5537 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5538 * because users of this 'device' dont need to change
5539 * its refcount.
5540 */
5541
5542 return 0;
5543 }
5544 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5545
5546
5547 /**
5548 * register_netdev - register a network device
5549 * @dev: device to register
5550 *
5551 * Take a completed network device structure and add it to the kernel
5552 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5553 * chain. 0 is returned on success. A negative errno code is returned
5554 * on a failure to set up the device, or if the name is a duplicate.
5555 *
5556 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5557 * and expands the device name if you passed a format string to
5558 * alloc_netdev.
5559 */
5560 int register_netdev(struct net_device *dev)
5561 {
5562 int err;
5563
5564 rtnl_lock();
5565
5566 /*
5567 * If the name is a format string the caller wants us to do a
5568 * name allocation.
5569 */
5570 if (strchr(dev->name, '%')) {
5571 err = dev_alloc_name(dev, dev->name);
5572 if (err < 0)
5573 goto out;
5574 }
5575
5576 err = register_netdevice(dev);
5577 out:
5578 rtnl_unlock();
5579 return err;
5580 }
5581 EXPORT_SYMBOL(register_netdev);
5582
5583 int netdev_refcnt_read(const struct net_device *dev)
5584 {
5585 int i, refcnt = 0;
5586
5587 for_each_possible_cpu(i)
5588 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5589 return refcnt;
5590 }
5591 EXPORT_SYMBOL(netdev_refcnt_read);
5592
5593 /*
5594 * netdev_wait_allrefs - wait until all references are gone.
5595 *
5596 * This is called when unregistering network devices.
5597 *
5598 * Any protocol or device that holds a reference should register
5599 * for netdevice notification, and cleanup and put back the
5600 * reference if they receive an UNREGISTER event.
5601 * We can get stuck here if buggy protocols don't correctly
5602 * call dev_put.
5603 */
5604 static void netdev_wait_allrefs(struct net_device *dev)
5605 {
5606 unsigned long rebroadcast_time, warning_time;
5607 int refcnt;
5608
5609 linkwatch_forget_dev(dev);
5610
5611 rebroadcast_time = warning_time = jiffies;
5612 refcnt = netdev_refcnt_read(dev);
5613
5614 while (refcnt != 0) {
5615 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5616 rtnl_lock();
5617
5618 /* Rebroadcast unregister notification */
5619 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5620 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5621 * should have already handle it the first time */
5622
5623 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5624 &dev->state)) {
5625 /* We must not have linkwatch events
5626 * pending on unregister. If this
5627 * happens, we simply run the queue
5628 * unscheduled, resulting in a noop
5629 * for this device.
5630 */
5631 linkwatch_run_queue();
5632 }
5633
5634 __rtnl_unlock();
5635
5636 rebroadcast_time = jiffies;
5637 }
5638
5639 msleep(250);
5640
5641 refcnt = netdev_refcnt_read(dev);
5642
5643 if (time_after(jiffies, warning_time + 10 * HZ)) {
5644 printk(KERN_EMERG "unregister_netdevice: "
5645 "waiting for %s to become free. Usage "
5646 "count = %d\n",
5647 dev->name, refcnt);
5648 warning_time = jiffies;
5649 }
5650 }
5651 }
5652
5653 /* The sequence is:
5654 *
5655 * rtnl_lock();
5656 * ...
5657 * register_netdevice(x1);
5658 * register_netdevice(x2);
5659 * ...
5660 * unregister_netdevice(y1);
5661 * unregister_netdevice(y2);
5662 * ...
5663 * rtnl_unlock();
5664 * free_netdev(y1);
5665 * free_netdev(y2);
5666 *
5667 * We are invoked by rtnl_unlock().
5668 * This allows us to deal with problems:
5669 * 1) We can delete sysfs objects which invoke hotplug
5670 * without deadlocking with linkwatch via keventd.
5671 * 2) Since we run with the RTNL semaphore not held, we can sleep
5672 * safely in order to wait for the netdev refcnt to drop to zero.
5673 *
5674 * We must not return until all unregister events added during
5675 * the interval the lock was held have been completed.
5676 */
5677 void netdev_run_todo(void)
5678 {
5679 struct list_head list;
5680
5681 /* Snapshot list, allow later requests */
5682 list_replace_init(&net_todo_list, &list);
5683
5684 __rtnl_unlock();
5685
5686 while (!list_empty(&list)) {
5687 struct net_device *dev
5688 = list_first_entry(&list, struct net_device, todo_list);
5689 list_del(&dev->todo_list);
5690
5691 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5692 printk(KERN_ERR "network todo '%s' but state %d\n",
5693 dev->name, dev->reg_state);
5694 dump_stack();
5695 continue;
5696 }
5697
5698 dev->reg_state = NETREG_UNREGISTERED;
5699
5700 on_each_cpu(flush_backlog, dev, 1);
5701
5702 netdev_wait_allrefs(dev);
5703
5704 /* paranoia */
5705 BUG_ON(netdev_refcnt_read(dev));
5706 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5707 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5708 WARN_ON(dev->dn_ptr);
5709
5710 if (dev->destructor)
5711 dev->destructor(dev);
5712
5713 /* Free network device */
5714 kobject_put(&dev->dev.kobj);
5715 }
5716 }
5717
5718 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5719 * fields in the same order, with only the type differing.
5720 */
5721 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5722 const struct net_device_stats *netdev_stats)
5723 {
5724 #if BITS_PER_LONG == 64
5725 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5726 memcpy(stats64, netdev_stats, sizeof(*stats64));
5727 #else
5728 size_t i, n = sizeof(*stats64) / sizeof(u64);
5729 const unsigned long *src = (const unsigned long *)netdev_stats;
5730 u64 *dst = (u64 *)stats64;
5731
5732 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5733 sizeof(*stats64) / sizeof(u64));
5734 for (i = 0; i < n; i++)
5735 dst[i] = src[i];
5736 #endif
5737 }
5738
5739 /**
5740 * dev_get_stats - get network device statistics
5741 * @dev: device to get statistics from
5742 * @storage: place to store stats
5743 *
5744 * Get network statistics from device. Return @storage.
5745 * The device driver may provide its own method by setting
5746 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5747 * otherwise the internal statistics structure is used.
5748 */
5749 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5750 struct rtnl_link_stats64 *storage)
5751 {
5752 const struct net_device_ops *ops = dev->netdev_ops;
5753
5754 if (ops->ndo_get_stats64) {
5755 memset(storage, 0, sizeof(*storage));
5756 ops->ndo_get_stats64(dev, storage);
5757 } else if (ops->ndo_get_stats) {
5758 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5759 } else {
5760 netdev_stats_to_stats64(storage, &dev->stats);
5761 }
5762 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5763 return storage;
5764 }
5765 EXPORT_SYMBOL(dev_get_stats);
5766
5767 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5768 {
5769 struct netdev_queue *queue = dev_ingress_queue(dev);
5770
5771 #ifdef CONFIG_NET_CLS_ACT
5772 if (queue)
5773 return queue;
5774 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5775 if (!queue)
5776 return NULL;
5777 netdev_init_one_queue(dev, queue, NULL);
5778 queue->qdisc = &noop_qdisc;
5779 queue->qdisc_sleeping = &noop_qdisc;
5780 rcu_assign_pointer(dev->ingress_queue, queue);
5781 #endif
5782 return queue;
5783 }
5784
5785 /**
5786 * alloc_netdev_mqs - allocate network device
5787 * @sizeof_priv: size of private data to allocate space for
5788 * @name: device name format string
5789 * @setup: callback to initialize device
5790 * @txqs: the number of TX subqueues to allocate
5791 * @rxqs: the number of RX subqueues to allocate
5792 *
5793 * Allocates a struct net_device with private data area for driver use
5794 * and performs basic initialization. Also allocates subquue structs
5795 * for each queue on the device.
5796 */
5797 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5798 void (*setup)(struct net_device *),
5799 unsigned int txqs, unsigned int rxqs)
5800 {
5801 struct net_device *dev;
5802 size_t alloc_size;
5803 struct net_device *p;
5804
5805 BUG_ON(strlen(name) >= sizeof(dev->name));
5806
5807 if (txqs < 1) {
5808 pr_err("alloc_netdev: Unable to allocate device "
5809 "with zero queues.\n");
5810 return NULL;
5811 }
5812
5813 #ifdef CONFIG_RPS
5814 if (rxqs < 1) {
5815 pr_err("alloc_netdev: Unable to allocate device "
5816 "with zero RX queues.\n");
5817 return NULL;
5818 }
5819 #endif
5820
5821 alloc_size = sizeof(struct net_device);
5822 if (sizeof_priv) {
5823 /* ensure 32-byte alignment of private area */
5824 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5825 alloc_size += sizeof_priv;
5826 }
5827 /* ensure 32-byte alignment of whole construct */
5828 alloc_size += NETDEV_ALIGN - 1;
5829
5830 p = kzalloc(alloc_size, GFP_KERNEL);
5831 if (!p) {
5832 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5833 return NULL;
5834 }
5835
5836 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5837 dev->padded = (char *)dev - (char *)p;
5838
5839 dev->pcpu_refcnt = alloc_percpu(int);
5840 if (!dev->pcpu_refcnt)
5841 goto free_p;
5842
5843 if (dev_addr_init(dev))
5844 goto free_pcpu;
5845
5846 dev_mc_init(dev);
5847 dev_uc_init(dev);
5848
5849 dev_net_set(dev, &init_net);
5850
5851 dev->gso_max_size = GSO_MAX_SIZE;
5852
5853 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5854 dev->ethtool_ntuple_list.count = 0;
5855 INIT_LIST_HEAD(&dev->napi_list);
5856 INIT_LIST_HEAD(&dev->unreg_list);
5857 INIT_LIST_HEAD(&dev->link_watch_list);
5858 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5859 setup(dev);
5860
5861 dev->num_tx_queues = txqs;
5862 dev->real_num_tx_queues = txqs;
5863 if (netif_alloc_netdev_queues(dev))
5864 goto free_all;
5865
5866 #ifdef CONFIG_RPS
5867 dev->num_rx_queues = rxqs;
5868 dev->real_num_rx_queues = rxqs;
5869 if (netif_alloc_rx_queues(dev))
5870 goto free_all;
5871 #endif
5872
5873 strcpy(dev->name, name);
5874 dev->group = INIT_NETDEV_GROUP;
5875 return dev;
5876
5877 free_all:
5878 free_netdev(dev);
5879 return NULL;
5880
5881 free_pcpu:
5882 free_percpu(dev->pcpu_refcnt);
5883 kfree(dev->_tx);
5884 #ifdef CONFIG_RPS
5885 kfree(dev->_rx);
5886 #endif
5887
5888 free_p:
5889 kfree(p);
5890 return NULL;
5891 }
5892 EXPORT_SYMBOL(alloc_netdev_mqs);
5893
5894 /**
5895 * free_netdev - free network device
5896 * @dev: device
5897 *
5898 * This function does the last stage of destroying an allocated device
5899 * interface. The reference to the device object is released.
5900 * If this is the last reference then it will be freed.
5901 */
5902 void free_netdev(struct net_device *dev)
5903 {
5904 struct napi_struct *p, *n;
5905
5906 release_net(dev_net(dev));
5907
5908 kfree(dev->_tx);
5909 #ifdef CONFIG_RPS
5910 kfree(dev->_rx);
5911 #endif
5912
5913 kfree(rcu_dereference_raw(dev->ingress_queue));
5914
5915 /* Flush device addresses */
5916 dev_addr_flush(dev);
5917
5918 /* Clear ethtool n-tuple list */
5919 ethtool_ntuple_flush(dev);
5920
5921 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5922 netif_napi_del(p);
5923
5924 free_percpu(dev->pcpu_refcnt);
5925 dev->pcpu_refcnt = NULL;
5926
5927 /* Compatibility with error handling in drivers */
5928 if (dev->reg_state == NETREG_UNINITIALIZED) {
5929 kfree((char *)dev - dev->padded);
5930 return;
5931 }
5932
5933 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5934 dev->reg_state = NETREG_RELEASED;
5935
5936 /* will free via device release */
5937 put_device(&dev->dev);
5938 }
5939 EXPORT_SYMBOL(free_netdev);
5940
5941 /**
5942 * synchronize_net - Synchronize with packet receive processing
5943 *
5944 * Wait for packets currently being received to be done.
5945 * Does not block later packets from starting.
5946 */
5947 void synchronize_net(void)
5948 {
5949 might_sleep();
5950 synchronize_rcu();
5951 }
5952 EXPORT_SYMBOL(synchronize_net);
5953
5954 /**
5955 * unregister_netdevice_queue - remove device from the kernel
5956 * @dev: device
5957 * @head: list
5958 *
5959 * This function shuts down a device interface and removes it
5960 * from the kernel tables.
5961 * If head not NULL, device is queued to be unregistered later.
5962 *
5963 * Callers must hold the rtnl semaphore. You may want
5964 * unregister_netdev() instead of this.
5965 */
5966
5967 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5968 {
5969 ASSERT_RTNL();
5970
5971 if (head) {
5972 list_move_tail(&dev->unreg_list, head);
5973 } else {
5974 rollback_registered(dev);
5975 /* Finish processing unregister after unlock */
5976 net_set_todo(dev);
5977 }
5978 }
5979 EXPORT_SYMBOL(unregister_netdevice_queue);
5980
5981 /**
5982 * unregister_netdevice_many - unregister many devices
5983 * @head: list of devices
5984 */
5985 void unregister_netdevice_many(struct list_head *head)
5986 {
5987 struct net_device *dev;
5988
5989 if (!list_empty(head)) {
5990 rollback_registered_many(head);
5991 list_for_each_entry(dev, head, unreg_list)
5992 net_set_todo(dev);
5993 }
5994 }
5995 EXPORT_SYMBOL(unregister_netdevice_many);
5996
5997 /**
5998 * unregister_netdev - remove device from the kernel
5999 * @dev: device
6000 *
6001 * This function shuts down a device interface and removes it
6002 * from the kernel tables.
6003 *
6004 * This is just a wrapper for unregister_netdevice that takes
6005 * the rtnl semaphore. In general you want to use this and not
6006 * unregister_netdevice.
6007 */
6008 void unregister_netdev(struct net_device *dev)
6009 {
6010 rtnl_lock();
6011 unregister_netdevice(dev);
6012 rtnl_unlock();
6013 }
6014 EXPORT_SYMBOL(unregister_netdev);
6015
6016 /**
6017 * dev_change_net_namespace - move device to different nethost namespace
6018 * @dev: device
6019 * @net: network namespace
6020 * @pat: If not NULL name pattern to try if the current device name
6021 * is already taken in the destination network namespace.
6022 *
6023 * This function shuts down a device interface and moves it
6024 * to a new network namespace. On success 0 is returned, on
6025 * a failure a netagive errno code is returned.
6026 *
6027 * Callers must hold the rtnl semaphore.
6028 */
6029
6030 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6031 {
6032 int err;
6033
6034 ASSERT_RTNL();
6035
6036 /* Don't allow namespace local devices to be moved. */
6037 err = -EINVAL;
6038 if (dev->features & NETIF_F_NETNS_LOCAL)
6039 goto out;
6040
6041 /* Ensure the device has been registrered */
6042 err = -EINVAL;
6043 if (dev->reg_state != NETREG_REGISTERED)
6044 goto out;
6045
6046 /* Get out if there is nothing todo */
6047 err = 0;
6048 if (net_eq(dev_net(dev), net))
6049 goto out;
6050
6051 /* Pick the destination device name, and ensure
6052 * we can use it in the destination network namespace.
6053 */
6054 err = -EEXIST;
6055 if (__dev_get_by_name(net, dev->name)) {
6056 /* We get here if we can't use the current device name */
6057 if (!pat)
6058 goto out;
6059 if (dev_get_valid_name(dev, pat, 1))
6060 goto out;
6061 }
6062
6063 /*
6064 * And now a mini version of register_netdevice unregister_netdevice.
6065 */
6066
6067 /* If device is running close it first. */
6068 dev_close(dev);
6069
6070 /* And unlink it from device chain */
6071 err = -ENODEV;
6072 unlist_netdevice(dev);
6073
6074 synchronize_net();
6075
6076 /* Shutdown queueing discipline. */
6077 dev_shutdown(dev);
6078
6079 /* Notify protocols, that we are about to destroy
6080 this device. They should clean all the things.
6081
6082 Note that dev->reg_state stays at NETREG_REGISTERED.
6083 This is wanted because this way 8021q and macvlan know
6084 the device is just moving and can keep their slaves up.
6085 */
6086 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6087 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6088
6089 /*
6090 * Flush the unicast and multicast chains
6091 */
6092 dev_uc_flush(dev);
6093 dev_mc_flush(dev);
6094
6095 /* Actually switch the network namespace */
6096 dev_net_set(dev, net);
6097
6098 /* If there is an ifindex conflict assign a new one */
6099 if (__dev_get_by_index(net, dev->ifindex)) {
6100 int iflink = (dev->iflink == dev->ifindex);
6101 dev->ifindex = dev_new_index(net);
6102 if (iflink)
6103 dev->iflink = dev->ifindex;
6104 }
6105
6106 /* Fixup kobjects */
6107 err = device_rename(&dev->dev, dev->name);
6108 WARN_ON(err);
6109
6110 /* Add the device back in the hashes */
6111 list_netdevice(dev);
6112
6113 /* Notify protocols, that a new device appeared. */
6114 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6115
6116 /*
6117 * Prevent userspace races by waiting until the network
6118 * device is fully setup before sending notifications.
6119 */
6120 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6121
6122 synchronize_net();
6123 err = 0;
6124 out:
6125 return err;
6126 }
6127 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6128
6129 static int dev_cpu_callback(struct notifier_block *nfb,
6130 unsigned long action,
6131 void *ocpu)
6132 {
6133 struct sk_buff **list_skb;
6134 struct sk_buff *skb;
6135 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6136 struct softnet_data *sd, *oldsd;
6137
6138 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6139 return NOTIFY_OK;
6140
6141 local_irq_disable();
6142 cpu = smp_processor_id();
6143 sd = &per_cpu(softnet_data, cpu);
6144 oldsd = &per_cpu(softnet_data, oldcpu);
6145
6146 /* Find end of our completion_queue. */
6147 list_skb = &sd->completion_queue;
6148 while (*list_skb)
6149 list_skb = &(*list_skb)->next;
6150 /* Append completion queue from offline CPU. */
6151 *list_skb = oldsd->completion_queue;
6152 oldsd->completion_queue = NULL;
6153
6154 /* Append output queue from offline CPU. */
6155 if (oldsd->output_queue) {
6156 *sd->output_queue_tailp = oldsd->output_queue;
6157 sd->output_queue_tailp = oldsd->output_queue_tailp;
6158 oldsd->output_queue = NULL;
6159 oldsd->output_queue_tailp = &oldsd->output_queue;
6160 }
6161
6162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6163 local_irq_enable();
6164
6165 /* Process offline CPU's input_pkt_queue */
6166 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6167 netif_rx(skb);
6168 input_queue_head_incr(oldsd);
6169 }
6170 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6171 netif_rx(skb);
6172 input_queue_head_incr(oldsd);
6173 }
6174
6175 return NOTIFY_OK;
6176 }
6177
6178
6179 /**
6180 * netdev_increment_features - increment feature set by one
6181 * @all: current feature set
6182 * @one: new feature set
6183 * @mask: mask feature set
6184 *
6185 * Computes a new feature set after adding a device with feature set
6186 * @one to the master device with current feature set @all. Will not
6187 * enable anything that is off in @mask. Returns the new feature set.
6188 */
6189 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6190 {
6191 if (mask & NETIF_F_GEN_CSUM)
6192 mask |= NETIF_F_ALL_CSUM;
6193 mask |= NETIF_F_VLAN_CHALLENGED;
6194
6195 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6196 all &= one | ~NETIF_F_ALL_FOR_ALL;
6197
6198 /* If device needs checksumming, downgrade to it. */
6199 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6200 all &= ~NETIF_F_NO_CSUM;
6201
6202 /* If one device supports hw checksumming, set for all. */
6203 if (all & NETIF_F_GEN_CSUM)
6204 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6205
6206 return all;
6207 }
6208 EXPORT_SYMBOL(netdev_increment_features);
6209
6210 static struct hlist_head *netdev_create_hash(void)
6211 {
6212 int i;
6213 struct hlist_head *hash;
6214
6215 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6216 if (hash != NULL)
6217 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6218 INIT_HLIST_HEAD(&hash[i]);
6219
6220 return hash;
6221 }
6222
6223 /* Initialize per network namespace state */
6224 static int __net_init netdev_init(struct net *net)
6225 {
6226 INIT_LIST_HEAD(&net->dev_base_head);
6227
6228 net->dev_name_head = netdev_create_hash();
6229 if (net->dev_name_head == NULL)
6230 goto err_name;
6231
6232 net->dev_index_head = netdev_create_hash();
6233 if (net->dev_index_head == NULL)
6234 goto err_idx;
6235
6236 return 0;
6237
6238 err_idx:
6239 kfree(net->dev_name_head);
6240 err_name:
6241 return -ENOMEM;
6242 }
6243
6244 /**
6245 * netdev_drivername - network driver for the device
6246 * @dev: network device
6247 * @buffer: buffer for resulting name
6248 * @len: size of buffer
6249 *
6250 * Determine network driver for device.
6251 */
6252 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6253 {
6254 const struct device_driver *driver;
6255 const struct device *parent;
6256
6257 if (len <= 0 || !buffer)
6258 return buffer;
6259 buffer[0] = 0;
6260
6261 parent = dev->dev.parent;
6262
6263 if (!parent)
6264 return buffer;
6265
6266 driver = parent->driver;
6267 if (driver && driver->name)
6268 strlcpy(buffer, driver->name, len);
6269 return buffer;
6270 }
6271
6272 static int __netdev_printk(const char *level, const struct net_device *dev,
6273 struct va_format *vaf)
6274 {
6275 int r;
6276
6277 if (dev && dev->dev.parent)
6278 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6279 netdev_name(dev), vaf);
6280 else if (dev)
6281 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6282 else
6283 r = printk("%s(NULL net_device): %pV", level, vaf);
6284
6285 return r;
6286 }
6287
6288 int netdev_printk(const char *level, const struct net_device *dev,
6289 const char *format, ...)
6290 {
6291 struct va_format vaf;
6292 va_list args;
6293 int r;
6294
6295 va_start(args, format);
6296
6297 vaf.fmt = format;
6298 vaf.va = &args;
6299
6300 r = __netdev_printk(level, dev, &vaf);
6301 va_end(args);
6302
6303 return r;
6304 }
6305 EXPORT_SYMBOL(netdev_printk);
6306
6307 #define define_netdev_printk_level(func, level) \
6308 int func(const struct net_device *dev, const char *fmt, ...) \
6309 { \
6310 int r; \
6311 struct va_format vaf; \
6312 va_list args; \
6313 \
6314 va_start(args, fmt); \
6315 \
6316 vaf.fmt = fmt; \
6317 vaf.va = &args; \
6318 \
6319 r = __netdev_printk(level, dev, &vaf); \
6320 va_end(args); \
6321 \
6322 return r; \
6323 } \
6324 EXPORT_SYMBOL(func);
6325
6326 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6327 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6328 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6329 define_netdev_printk_level(netdev_err, KERN_ERR);
6330 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6331 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6332 define_netdev_printk_level(netdev_info, KERN_INFO);
6333
6334 static void __net_exit netdev_exit(struct net *net)
6335 {
6336 kfree(net->dev_name_head);
6337 kfree(net->dev_index_head);
6338 }
6339
6340 static struct pernet_operations __net_initdata netdev_net_ops = {
6341 .init = netdev_init,
6342 .exit = netdev_exit,
6343 };
6344
6345 static void __net_exit default_device_exit(struct net *net)
6346 {
6347 struct net_device *dev, *aux;
6348 /*
6349 * Push all migratable network devices back to the
6350 * initial network namespace
6351 */
6352 rtnl_lock();
6353 for_each_netdev_safe(net, dev, aux) {
6354 int err;
6355 char fb_name[IFNAMSIZ];
6356
6357 /* Ignore unmoveable devices (i.e. loopback) */
6358 if (dev->features & NETIF_F_NETNS_LOCAL)
6359 continue;
6360
6361 /* Leave virtual devices for the generic cleanup */
6362 if (dev->rtnl_link_ops)
6363 continue;
6364
6365 /* Push remaining network devices to init_net */
6366 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6367 err = dev_change_net_namespace(dev, &init_net, fb_name);
6368 if (err) {
6369 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6370 __func__, dev->name, err);
6371 BUG();
6372 }
6373 }
6374 rtnl_unlock();
6375 }
6376
6377 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6378 {
6379 /* At exit all network devices most be removed from a network
6380 * namespace. Do this in the reverse order of registration.
6381 * Do this across as many network namespaces as possible to
6382 * improve batching efficiency.
6383 */
6384 struct net_device *dev;
6385 struct net *net;
6386 LIST_HEAD(dev_kill_list);
6387
6388 rtnl_lock();
6389 list_for_each_entry(net, net_list, exit_list) {
6390 for_each_netdev_reverse(net, dev) {
6391 if (dev->rtnl_link_ops)
6392 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6393 else
6394 unregister_netdevice_queue(dev, &dev_kill_list);
6395 }
6396 }
6397 unregister_netdevice_many(&dev_kill_list);
6398 list_del(&dev_kill_list);
6399 rtnl_unlock();
6400 }
6401
6402 static struct pernet_operations __net_initdata default_device_ops = {
6403 .exit = default_device_exit,
6404 .exit_batch = default_device_exit_batch,
6405 };
6406
6407 /*
6408 * Initialize the DEV module. At boot time this walks the device list and
6409 * unhooks any devices that fail to initialise (normally hardware not
6410 * present) and leaves us with a valid list of present and active devices.
6411 *
6412 */
6413
6414 /*
6415 * This is called single threaded during boot, so no need
6416 * to take the rtnl semaphore.
6417 */
6418 static int __init net_dev_init(void)
6419 {
6420 int i, rc = -ENOMEM;
6421
6422 BUG_ON(!dev_boot_phase);
6423
6424 if (dev_proc_init())
6425 goto out;
6426
6427 if (netdev_kobject_init())
6428 goto out;
6429
6430 INIT_LIST_HEAD(&ptype_all);
6431 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6432 INIT_LIST_HEAD(&ptype_base[i]);
6433
6434 if (register_pernet_subsys(&netdev_net_ops))
6435 goto out;
6436
6437 /*
6438 * Initialise the packet receive queues.
6439 */
6440
6441 for_each_possible_cpu(i) {
6442 struct softnet_data *sd = &per_cpu(softnet_data, i);
6443
6444 memset(sd, 0, sizeof(*sd));
6445 skb_queue_head_init(&sd->input_pkt_queue);
6446 skb_queue_head_init(&sd->process_queue);
6447 sd->completion_queue = NULL;
6448 INIT_LIST_HEAD(&sd->poll_list);
6449 sd->output_queue = NULL;
6450 sd->output_queue_tailp = &sd->output_queue;
6451 #ifdef CONFIG_RPS
6452 sd->csd.func = rps_trigger_softirq;
6453 sd->csd.info = sd;
6454 sd->csd.flags = 0;
6455 sd->cpu = i;
6456 #endif
6457
6458 sd->backlog.poll = process_backlog;
6459 sd->backlog.weight = weight_p;
6460 sd->backlog.gro_list = NULL;
6461 sd->backlog.gro_count = 0;
6462 }
6463
6464 dev_boot_phase = 0;
6465
6466 /* The loopback device is special if any other network devices
6467 * is present in a network namespace the loopback device must
6468 * be present. Since we now dynamically allocate and free the
6469 * loopback device ensure this invariant is maintained by
6470 * keeping the loopback device as the first device on the
6471 * list of network devices. Ensuring the loopback devices
6472 * is the first device that appears and the last network device
6473 * that disappears.
6474 */
6475 if (register_pernet_device(&loopback_net_ops))
6476 goto out;
6477
6478 if (register_pernet_device(&default_device_ops))
6479 goto out;
6480
6481 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6482 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6483
6484 hotcpu_notifier(dev_cpu_callback, 0);
6485 dst_init();
6486 dev_mcast_init();
6487 rc = 0;
6488 out:
6489 return rc;
6490 }
6491
6492 subsys_initcall(net_dev_init);
6493
6494 static int __init initialize_hashrnd(void)
6495 {
6496 get_random_bytes(&hashrnd, sizeof(hashrnd));
6497 return 0;
6498 }
6499
6500 late_initcall_sync(initialize_hashrnd);
6501
This page took 0.567983 seconds and 6 git commands to generate.