Merge remote branch 'nouveau/drm-nouveau-next' of /ssd/git/drm-nouveau-next into...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device.
753 * The caller must hold RCU or RTNL.
754 * The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 */
758
759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
760 const char *ha)
761 {
762 struct net_device *dev;
763
764 for_each_netdev_rcu(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close_many(struct list_head *head)
1227 {
1228 struct net_device *dev;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list, it
1243 * can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249 }
1250
1251 dev_deactivate_many(head);
1252
1253 list_for_each_entry(dev, head, unreg_list) {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255
1256 /*
1257 * Call the device specific close. This cannot fail.
1258 * Only if device is UP
1259 *
1260 * We allow it to be called even after a DETACH hot-plug
1261 * event.
1262 */
1263 if (ops->ndo_stop)
1264 ops->ndo_stop(dev);
1265
1266 /*
1267 * Device is now down.
1268 */
1269
1270 dev->flags &= ~IFF_UP;
1271
1272 /*
1273 * Shutdown NET_DMA
1274 */
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 LIST_HEAD(single);
1284
1285 list_add(&dev->unreg_list, &single);
1286 return __dev_close_many(&single);
1287 }
1288
1289 int dev_close_many(struct list_head *head)
1290 {
1291 struct net_device *dev, *tmp;
1292 LIST_HEAD(tmp_list);
1293
1294 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1295 if (!(dev->flags & IFF_UP))
1296 list_move(&dev->unreg_list, &tmp_list);
1297
1298 __dev_close_many(head);
1299
1300 /*
1301 * Tell people we are down
1302 */
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 LIST_HEAD(single);
1325
1326 list_add(&dev->unreg_list, &single);
1327 dev_close_many(&single);
1328
1329 return 0;
1330 }
1331 EXPORT_SYMBOL(dev_close);
1332
1333
1334 /**
1335 * dev_disable_lro - disable Large Receive Offload on a device
1336 * @dev: device
1337 *
1338 * Disable Large Receive Offload (LRO) on a net device. Must be
1339 * called under RTNL. This is needed if received packets may be
1340 * forwarded to another interface.
1341 */
1342 void dev_disable_lro(struct net_device *dev)
1343 {
1344 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1345 dev->ethtool_ops->set_flags) {
1346 u32 flags = dev->ethtool_ops->get_flags(dev);
1347 if (flags & ETH_FLAG_LRO) {
1348 flags &= ~ETH_FLAG_LRO;
1349 dev->ethtool_ops->set_flags(dev, flags);
1350 }
1351 }
1352 WARN_ON(dev->features & NETIF_F_LRO);
1353 }
1354 EXPORT_SYMBOL(dev_disable_lro);
1355
1356
1357 static int dev_boot_phase = 1;
1358
1359 /*
1360 * Device change register/unregister. These are not inline or static
1361 * as we export them to the world.
1362 */
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 break;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1422 }
1423 }
1424
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 */
1439
1440 int unregister_netdevice_notifier(struct notifier_block *nb)
1441 {
1442 int err;
1443
1444 rtnl_lock();
1445 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1446 rtnl_unlock();
1447 return err;
1448 }
1449 EXPORT_SYMBOL(unregister_netdevice_notifier);
1450
1451 /**
1452 * call_netdevice_notifiers - call all network notifier blocks
1453 * @val: value passed unmodified to notifier function
1454 * @dev: net_device pointer passed unmodified to notifier function
1455 *
1456 * Call all network notifier blocks. Parameters and return value
1457 * are as for raw_notifier_call_chain().
1458 */
1459
1460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1461 {
1462 ASSERT_RTNL();
1463 return raw_notifier_call_chain(&netdev_chain, val, dev);
1464 }
1465
1466 /* When > 0 there are consumers of rx skb time stamps */
1467 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1468
1469 void net_enable_timestamp(void)
1470 {
1471 atomic_inc(&netstamp_needed);
1472 }
1473 EXPORT_SYMBOL(net_enable_timestamp);
1474
1475 void net_disable_timestamp(void)
1476 {
1477 atomic_dec(&netstamp_needed);
1478 }
1479 EXPORT_SYMBOL(net_disable_timestamp);
1480
1481 static inline void net_timestamp_set(struct sk_buff *skb)
1482 {
1483 if (atomic_read(&netstamp_needed))
1484 __net_timestamp(skb);
1485 else
1486 skb->tstamp.tv64 = 0;
1487 }
1488
1489 static inline void net_timestamp_check(struct sk_buff *skb)
1490 {
1491 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1492 __net_timestamp(skb);
1493 }
1494
1495 /**
1496 * dev_forward_skb - loopback an skb to another netif
1497 *
1498 * @dev: destination network device
1499 * @skb: buffer to forward
1500 *
1501 * return values:
1502 * NET_RX_SUCCESS (no congestion)
1503 * NET_RX_DROP (packet was dropped, but freed)
1504 *
1505 * dev_forward_skb can be used for injecting an skb from the
1506 * start_xmit function of one device into the receive queue
1507 * of another device.
1508 *
1509 * The receiving device may be in another namespace, so
1510 * we have to clear all information in the skb that could
1511 * impact namespace isolation.
1512 */
1513 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1514 {
1515 skb_orphan(skb);
1516 nf_reset(skb);
1517
1518 if (unlikely(!(dev->flags & IFF_UP) ||
1519 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1520 atomic_long_inc(&dev->rx_dropped);
1521 kfree_skb(skb);
1522 return NET_RX_DROP;
1523 }
1524 skb_set_dev(skb, dev);
1525 skb->tstamp.tv64 = 0;
1526 skb->pkt_type = PACKET_HOST;
1527 skb->protocol = eth_type_trans(skb, dev);
1528 return netif_rx(skb);
1529 }
1530 EXPORT_SYMBOL_GPL(dev_forward_skb);
1531
1532 static inline int deliver_skb(struct sk_buff *skb,
1533 struct packet_type *pt_prev,
1534 struct net_device *orig_dev)
1535 {
1536 atomic_inc(&skb->users);
1537 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1538 }
1539
1540 /*
1541 * Support routine. Sends outgoing frames to any network
1542 * taps currently in use.
1543 */
1544
1545 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1546 {
1547 struct packet_type *ptype;
1548 struct sk_buff *skb2 = NULL;
1549 struct packet_type *pt_prev = NULL;
1550
1551 rcu_read_lock();
1552 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1553 /* Never send packets back to the socket
1554 * they originated from - MvS (miquels@drinkel.ow.org)
1555 */
1556 if ((ptype->dev == dev || !ptype->dev) &&
1557 (ptype->af_packet_priv == NULL ||
1558 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1559 if (pt_prev) {
1560 deliver_skb(skb2, pt_prev, skb->dev);
1561 pt_prev = ptype;
1562 continue;
1563 }
1564
1565 skb2 = skb_clone(skb, GFP_ATOMIC);
1566 if (!skb2)
1567 break;
1568
1569 net_timestamp_set(skb2);
1570
1571 /* skb->nh should be correctly
1572 set by sender, so that the second statement is
1573 just protection against buggy protocols.
1574 */
1575 skb_reset_mac_header(skb2);
1576
1577 if (skb_network_header(skb2) < skb2->data ||
1578 skb2->network_header > skb2->tail) {
1579 if (net_ratelimit())
1580 printk(KERN_CRIT "protocol %04x is "
1581 "buggy, dev %s\n",
1582 ntohs(skb2->protocol),
1583 dev->name);
1584 skb_reset_network_header(skb2);
1585 }
1586
1587 skb2->transport_header = skb2->network_header;
1588 skb2->pkt_type = PACKET_OUTGOING;
1589 pt_prev = ptype;
1590 }
1591 }
1592 if (pt_prev)
1593 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1594 rcu_read_unlock();
1595 }
1596
1597 /*
1598 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1599 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1600 */
1601 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1602 {
1603 int rc;
1604
1605 if (txq < 1 || txq > dev->num_tx_queues)
1606 return -EINVAL;
1607
1608 if (dev->reg_state == NETREG_REGISTERED) {
1609 ASSERT_RTNL();
1610
1611 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1612 txq);
1613 if (rc)
1614 return rc;
1615
1616 if (txq < dev->real_num_tx_queues)
1617 qdisc_reset_all_tx_gt(dev, txq);
1618 }
1619
1620 dev->real_num_tx_queues = txq;
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1624
1625 #ifdef CONFIG_RPS
1626 /**
1627 * netif_set_real_num_rx_queues - set actual number of RX queues used
1628 * @dev: Network device
1629 * @rxq: Actual number of RX queues
1630 *
1631 * This must be called either with the rtnl_lock held or before
1632 * registration of the net device. Returns 0 on success, or a
1633 * negative error code. If called before registration, it always
1634 * succeeds.
1635 */
1636 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1637 {
1638 int rc;
1639
1640 if (rxq < 1 || rxq > dev->num_rx_queues)
1641 return -EINVAL;
1642
1643 if (dev->reg_state == NETREG_REGISTERED) {
1644 ASSERT_RTNL();
1645
1646 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1647 rxq);
1648 if (rc)
1649 return rc;
1650 }
1651
1652 dev->real_num_rx_queues = rxq;
1653 return 0;
1654 }
1655 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1656 #endif
1657
1658 static inline void __netif_reschedule(struct Qdisc *q)
1659 {
1660 struct softnet_data *sd;
1661 unsigned long flags;
1662
1663 local_irq_save(flags);
1664 sd = &__get_cpu_var(softnet_data);
1665 q->next_sched = NULL;
1666 *sd->output_queue_tailp = q;
1667 sd->output_queue_tailp = &q->next_sched;
1668 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1669 local_irq_restore(flags);
1670 }
1671
1672 void __netif_schedule(struct Qdisc *q)
1673 {
1674 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1675 __netif_reschedule(q);
1676 }
1677 EXPORT_SYMBOL(__netif_schedule);
1678
1679 void dev_kfree_skb_irq(struct sk_buff *skb)
1680 {
1681 if (atomic_dec_and_test(&skb->users)) {
1682 struct softnet_data *sd;
1683 unsigned long flags;
1684
1685 local_irq_save(flags);
1686 sd = &__get_cpu_var(softnet_data);
1687 skb->next = sd->completion_queue;
1688 sd->completion_queue = skb;
1689 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1690 local_irq_restore(flags);
1691 }
1692 }
1693 EXPORT_SYMBOL(dev_kfree_skb_irq);
1694
1695 void dev_kfree_skb_any(struct sk_buff *skb)
1696 {
1697 if (in_irq() || irqs_disabled())
1698 dev_kfree_skb_irq(skb);
1699 else
1700 dev_kfree_skb(skb);
1701 }
1702 EXPORT_SYMBOL(dev_kfree_skb_any);
1703
1704
1705 /**
1706 * netif_device_detach - mark device as removed
1707 * @dev: network device
1708 *
1709 * Mark device as removed from system and therefore no longer available.
1710 */
1711 void netif_device_detach(struct net_device *dev)
1712 {
1713 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1714 netif_running(dev)) {
1715 netif_tx_stop_all_queues(dev);
1716 }
1717 }
1718 EXPORT_SYMBOL(netif_device_detach);
1719
1720 /**
1721 * netif_device_attach - mark device as attached
1722 * @dev: network device
1723 *
1724 * Mark device as attached from system and restart if needed.
1725 */
1726 void netif_device_attach(struct net_device *dev)
1727 {
1728 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1729 netif_running(dev)) {
1730 netif_tx_wake_all_queues(dev);
1731 __netdev_watchdog_up(dev);
1732 }
1733 }
1734 EXPORT_SYMBOL(netif_device_attach);
1735
1736 /**
1737 * skb_dev_set -- assign a new device to a buffer
1738 * @skb: buffer for the new device
1739 * @dev: network device
1740 *
1741 * If an skb is owned by a device already, we have to reset
1742 * all data private to the namespace a device belongs to
1743 * before assigning it a new device.
1744 */
1745 #ifdef CONFIG_NET_NS
1746 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 skb_dst_drop(skb);
1749 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1750 secpath_reset(skb);
1751 nf_reset(skb);
1752 skb_init_secmark(skb);
1753 skb->mark = 0;
1754 skb->priority = 0;
1755 skb->nf_trace = 0;
1756 skb->ipvs_property = 0;
1757 #ifdef CONFIG_NET_SCHED
1758 skb->tc_index = 0;
1759 #endif
1760 }
1761 skb->dev = dev;
1762 }
1763 EXPORT_SYMBOL(skb_set_dev);
1764 #endif /* CONFIG_NET_NS */
1765
1766 /*
1767 * Invalidate hardware checksum when packet is to be mangled, and
1768 * complete checksum manually on outgoing path.
1769 */
1770 int skb_checksum_help(struct sk_buff *skb)
1771 {
1772 __wsum csum;
1773 int ret = 0, offset;
1774
1775 if (skb->ip_summed == CHECKSUM_COMPLETE)
1776 goto out_set_summed;
1777
1778 if (unlikely(skb_shinfo(skb)->gso_size)) {
1779 /* Let GSO fix up the checksum. */
1780 goto out_set_summed;
1781 }
1782
1783 offset = skb_checksum_start_offset(skb);
1784 BUG_ON(offset >= skb_headlen(skb));
1785 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1786
1787 offset += skb->csum_offset;
1788 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1789
1790 if (skb_cloned(skb) &&
1791 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1792 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1793 if (ret)
1794 goto out;
1795 }
1796
1797 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1798 out_set_summed:
1799 skb->ip_summed = CHECKSUM_NONE;
1800 out:
1801 return ret;
1802 }
1803 EXPORT_SYMBOL(skb_checksum_help);
1804
1805 /**
1806 * skb_gso_segment - Perform segmentation on skb.
1807 * @skb: buffer to segment
1808 * @features: features for the output path (see dev->features)
1809 *
1810 * This function segments the given skb and returns a list of segments.
1811 *
1812 * It may return NULL if the skb requires no segmentation. This is
1813 * only possible when GSO is used for verifying header integrity.
1814 */
1815 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1816 {
1817 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1818 struct packet_type *ptype;
1819 __be16 type = skb->protocol;
1820 int vlan_depth = ETH_HLEN;
1821 int err;
1822
1823 while (type == htons(ETH_P_8021Q)) {
1824 struct vlan_hdr *vh;
1825
1826 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1827 return ERR_PTR(-EINVAL);
1828
1829 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1830 type = vh->h_vlan_encapsulated_proto;
1831 vlan_depth += VLAN_HLEN;
1832 }
1833
1834 skb_reset_mac_header(skb);
1835 skb->mac_len = skb->network_header - skb->mac_header;
1836 __skb_pull(skb, skb->mac_len);
1837
1838 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1839 struct net_device *dev = skb->dev;
1840 struct ethtool_drvinfo info = {};
1841
1842 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1843 dev->ethtool_ops->get_drvinfo(dev, &info);
1844
1845 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1846 info.driver, dev ? dev->features : 0L,
1847 skb->sk ? skb->sk->sk_route_caps : 0L,
1848 skb->len, skb->data_len, skb->ip_summed);
1849
1850 if (skb_header_cloned(skb) &&
1851 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1852 return ERR_PTR(err);
1853 }
1854
1855 rcu_read_lock();
1856 list_for_each_entry_rcu(ptype,
1857 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1858 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1859 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1860 err = ptype->gso_send_check(skb);
1861 segs = ERR_PTR(err);
1862 if (err || skb_gso_ok(skb, features))
1863 break;
1864 __skb_push(skb, (skb->data -
1865 skb_network_header(skb)));
1866 }
1867 segs = ptype->gso_segment(skb, features);
1868 break;
1869 }
1870 }
1871 rcu_read_unlock();
1872
1873 __skb_push(skb, skb->data - skb_mac_header(skb));
1874
1875 return segs;
1876 }
1877 EXPORT_SYMBOL(skb_gso_segment);
1878
1879 /* Take action when hardware reception checksum errors are detected. */
1880 #ifdef CONFIG_BUG
1881 void netdev_rx_csum_fault(struct net_device *dev)
1882 {
1883 if (net_ratelimit()) {
1884 printk(KERN_ERR "%s: hw csum failure.\n",
1885 dev ? dev->name : "<unknown>");
1886 dump_stack();
1887 }
1888 }
1889 EXPORT_SYMBOL(netdev_rx_csum_fault);
1890 #endif
1891
1892 /* Actually, we should eliminate this check as soon as we know, that:
1893 * 1. IOMMU is present and allows to map all the memory.
1894 * 2. No high memory really exists on this machine.
1895 */
1896
1897 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1898 {
1899 #ifdef CONFIG_HIGHMEM
1900 int i;
1901 if (!(dev->features & NETIF_F_HIGHDMA)) {
1902 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1903 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1904 return 1;
1905 }
1906
1907 if (PCI_DMA_BUS_IS_PHYS) {
1908 struct device *pdev = dev->dev.parent;
1909
1910 if (!pdev)
1911 return 0;
1912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1913 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1914 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1915 return 1;
1916 }
1917 }
1918 #endif
1919 return 0;
1920 }
1921
1922 struct dev_gso_cb {
1923 void (*destructor)(struct sk_buff *skb);
1924 };
1925
1926 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1927
1928 static void dev_gso_skb_destructor(struct sk_buff *skb)
1929 {
1930 struct dev_gso_cb *cb;
1931
1932 do {
1933 struct sk_buff *nskb = skb->next;
1934
1935 skb->next = nskb->next;
1936 nskb->next = NULL;
1937 kfree_skb(nskb);
1938 } while (skb->next);
1939
1940 cb = DEV_GSO_CB(skb);
1941 if (cb->destructor)
1942 cb->destructor(skb);
1943 }
1944
1945 /**
1946 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1947 * @skb: buffer to segment
1948 * @features: device features as applicable to this skb
1949 *
1950 * This function segments the given skb and stores the list of segments
1951 * in skb->next.
1952 */
1953 static int dev_gso_segment(struct sk_buff *skb, int features)
1954 {
1955 struct sk_buff *segs;
1956
1957 segs = skb_gso_segment(skb, features);
1958
1959 /* Verifying header integrity only. */
1960 if (!segs)
1961 return 0;
1962
1963 if (IS_ERR(segs))
1964 return PTR_ERR(segs);
1965
1966 skb->next = segs;
1967 DEV_GSO_CB(skb)->destructor = skb->destructor;
1968 skb->destructor = dev_gso_skb_destructor;
1969
1970 return 0;
1971 }
1972
1973 /*
1974 * Try to orphan skb early, right before transmission by the device.
1975 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1976 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1977 */
1978 static inline void skb_orphan_try(struct sk_buff *skb)
1979 {
1980 struct sock *sk = skb->sk;
1981
1982 if (sk && !skb_shinfo(skb)->tx_flags) {
1983 /* skb_tx_hash() wont be able to get sk.
1984 * We copy sk_hash into skb->rxhash
1985 */
1986 if (!skb->rxhash)
1987 skb->rxhash = sk->sk_hash;
1988 skb_orphan(skb);
1989 }
1990 }
1991
1992 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1993 {
1994 return ((features & NETIF_F_GEN_CSUM) ||
1995 ((features & NETIF_F_V4_CSUM) &&
1996 protocol == htons(ETH_P_IP)) ||
1997 ((features & NETIF_F_V6_CSUM) &&
1998 protocol == htons(ETH_P_IPV6)) ||
1999 ((features & NETIF_F_FCOE_CRC) &&
2000 protocol == htons(ETH_P_FCOE)));
2001 }
2002
2003 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2004 {
2005 if (!can_checksum_protocol(features, protocol)) {
2006 features &= ~NETIF_F_ALL_CSUM;
2007 features &= ~NETIF_F_SG;
2008 } else if (illegal_highdma(skb->dev, skb)) {
2009 features &= ~NETIF_F_SG;
2010 }
2011
2012 return features;
2013 }
2014
2015 int netif_skb_features(struct sk_buff *skb)
2016 {
2017 __be16 protocol = skb->protocol;
2018 int features = skb->dev->features;
2019
2020 if (protocol == htons(ETH_P_8021Q)) {
2021 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2022 protocol = veh->h_vlan_encapsulated_proto;
2023 } else if (!vlan_tx_tag_present(skb)) {
2024 return harmonize_features(skb, protocol, features);
2025 }
2026
2027 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2028
2029 if (protocol != htons(ETH_P_8021Q)) {
2030 return harmonize_features(skb, protocol, features);
2031 } else {
2032 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2033 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2034 return harmonize_features(skb, protocol, features);
2035 }
2036 }
2037 EXPORT_SYMBOL(netif_skb_features);
2038
2039 /*
2040 * Returns true if either:
2041 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2042 * 2. skb is fragmented and the device does not support SG, or if
2043 * at least one of fragments is in highmem and device does not
2044 * support DMA from it.
2045 */
2046 static inline int skb_needs_linearize(struct sk_buff *skb,
2047 int features)
2048 {
2049 return skb_is_nonlinear(skb) &&
2050 ((skb_has_frag_list(skb) &&
2051 !(features & NETIF_F_FRAGLIST)) ||
2052 (skb_shinfo(skb)->nr_frags &&
2053 !(features & NETIF_F_SG)));
2054 }
2055
2056 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2057 struct netdev_queue *txq)
2058 {
2059 const struct net_device_ops *ops = dev->netdev_ops;
2060 int rc = NETDEV_TX_OK;
2061
2062 if (likely(!skb->next)) {
2063 int features;
2064
2065 /*
2066 * If device doesnt need skb->dst, release it right now while
2067 * its hot in this cpu cache
2068 */
2069 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2070 skb_dst_drop(skb);
2071
2072 if (!list_empty(&ptype_all))
2073 dev_queue_xmit_nit(skb, dev);
2074
2075 skb_orphan_try(skb);
2076
2077 features = netif_skb_features(skb);
2078
2079 if (vlan_tx_tag_present(skb) &&
2080 !(features & NETIF_F_HW_VLAN_TX)) {
2081 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2082 if (unlikely(!skb))
2083 goto out;
2084
2085 skb->vlan_tci = 0;
2086 }
2087
2088 if (netif_needs_gso(skb, features)) {
2089 if (unlikely(dev_gso_segment(skb, features)))
2090 goto out_kfree_skb;
2091 if (skb->next)
2092 goto gso;
2093 } else {
2094 if (skb_needs_linearize(skb, features) &&
2095 __skb_linearize(skb))
2096 goto out_kfree_skb;
2097
2098 /* If packet is not checksummed and device does not
2099 * support checksumming for this protocol, complete
2100 * checksumming here.
2101 */
2102 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2103 skb_set_transport_header(skb,
2104 skb_checksum_start_offset(skb));
2105 if (!(features & NETIF_F_ALL_CSUM) &&
2106 skb_checksum_help(skb))
2107 goto out_kfree_skb;
2108 }
2109 }
2110
2111 rc = ops->ndo_start_xmit(skb, dev);
2112 trace_net_dev_xmit(skb, rc);
2113 if (rc == NETDEV_TX_OK)
2114 txq_trans_update(txq);
2115 return rc;
2116 }
2117
2118 gso:
2119 do {
2120 struct sk_buff *nskb = skb->next;
2121
2122 skb->next = nskb->next;
2123 nskb->next = NULL;
2124
2125 /*
2126 * If device doesnt need nskb->dst, release it right now while
2127 * its hot in this cpu cache
2128 */
2129 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2130 skb_dst_drop(nskb);
2131
2132 rc = ops->ndo_start_xmit(nskb, dev);
2133 trace_net_dev_xmit(nskb, rc);
2134 if (unlikely(rc != NETDEV_TX_OK)) {
2135 if (rc & ~NETDEV_TX_MASK)
2136 goto out_kfree_gso_skb;
2137 nskb->next = skb->next;
2138 skb->next = nskb;
2139 return rc;
2140 }
2141 txq_trans_update(txq);
2142 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2143 return NETDEV_TX_BUSY;
2144 } while (skb->next);
2145
2146 out_kfree_gso_skb:
2147 if (likely(skb->next == NULL))
2148 skb->destructor = DEV_GSO_CB(skb)->destructor;
2149 out_kfree_skb:
2150 kfree_skb(skb);
2151 out:
2152 return rc;
2153 }
2154
2155 static u32 hashrnd __read_mostly;
2156
2157 /*
2158 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2159 * to be used as a distribution range.
2160 */
2161 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2162 unsigned int num_tx_queues)
2163 {
2164 u32 hash;
2165
2166 if (skb_rx_queue_recorded(skb)) {
2167 hash = skb_get_rx_queue(skb);
2168 while (unlikely(hash >= num_tx_queues))
2169 hash -= num_tx_queues;
2170 return hash;
2171 }
2172
2173 if (skb->sk && skb->sk->sk_hash)
2174 hash = skb->sk->sk_hash;
2175 else
2176 hash = (__force u16) skb->protocol ^ skb->rxhash;
2177 hash = jhash_1word(hash, hashrnd);
2178
2179 return (u16) (((u64) hash * num_tx_queues) >> 32);
2180 }
2181 EXPORT_SYMBOL(__skb_tx_hash);
2182
2183 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2184 {
2185 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2186 if (net_ratelimit()) {
2187 pr_warning("%s selects TX queue %d, but "
2188 "real number of TX queues is %d\n",
2189 dev->name, queue_index, dev->real_num_tx_queues);
2190 }
2191 return 0;
2192 }
2193 return queue_index;
2194 }
2195
2196 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 #ifdef CONFIG_XPS
2199 struct xps_dev_maps *dev_maps;
2200 struct xps_map *map;
2201 int queue_index = -1;
2202
2203 rcu_read_lock();
2204 dev_maps = rcu_dereference(dev->xps_maps);
2205 if (dev_maps) {
2206 map = rcu_dereference(
2207 dev_maps->cpu_map[raw_smp_processor_id()]);
2208 if (map) {
2209 if (map->len == 1)
2210 queue_index = map->queues[0];
2211 else {
2212 u32 hash;
2213 if (skb->sk && skb->sk->sk_hash)
2214 hash = skb->sk->sk_hash;
2215 else
2216 hash = (__force u16) skb->protocol ^
2217 skb->rxhash;
2218 hash = jhash_1word(hash, hashrnd);
2219 queue_index = map->queues[
2220 ((u64)hash * map->len) >> 32];
2221 }
2222 if (unlikely(queue_index >= dev->real_num_tx_queues))
2223 queue_index = -1;
2224 }
2225 }
2226 rcu_read_unlock();
2227
2228 return queue_index;
2229 #else
2230 return -1;
2231 #endif
2232 }
2233
2234 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2235 struct sk_buff *skb)
2236 {
2237 int queue_index;
2238 const struct net_device_ops *ops = dev->netdev_ops;
2239
2240 if (dev->real_num_tx_queues == 1)
2241 queue_index = 0;
2242 else if (ops->ndo_select_queue) {
2243 queue_index = ops->ndo_select_queue(dev, skb);
2244 queue_index = dev_cap_txqueue(dev, queue_index);
2245 } else {
2246 struct sock *sk = skb->sk;
2247 queue_index = sk_tx_queue_get(sk);
2248
2249 if (queue_index < 0 || skb->ooo_okay ||
2250 queue_index >= dev->real_num_tx_queues) {
2251 int old_index = queue_index;
2252
2253 queue_index = get_xps_queue(dev, skb);
2254 if (queue_index < 0)
2255 queue_index = skb_tx_hash(dev, skb);
2256
2257 if (queue_index != old_index && sk) {
2258 struct dst_entry *dst =
2259 rcu_dereference_check(sk->sk_dst_cache, 1);
2260
2261 if (dst && skb_dst(skb) == dst)
2262 sk_tx_queue_set(sk, queue_index);
2263 }
2264 }
2265 }
2266
2267 skb_set_queue_mapping(skb, queue_index);
2268 return netdev_get_tx_queue(dev, queue_index);
2269 }
2270
2271 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2272 struct net_device *dev,
2273 struct netdev_queue *txq)
2274 {
2275 spinlock_t *root_lock = qdisc_lock(q);
2276 bool contended = qdisc_is_running(q);
2277 int rc;
2278
2279 /*
2280 * Heuristic to force contended enqueues to serialize on a
2281 * separate lock before trying to get qdisc main lock.
2282 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2283 * and dequeue packets faster.
2284 */
2285 if (unlikely(contended))
2286 spin_lock(&q->busylock);
2287
2288 spin_lock(root_lock);
2289 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2290 kfree_skb(skb);
2291 rc = NET_XMIT_DROP;
2292 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2293 qdisc_run_begin(q)) {
2294 /*
2295 * This is a work-conserving queue; there are no old skbs
2296 * waiting to be sent out; and the qdisc is not running -
2297 * xmit the skb directly.
2298 */
2299 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2300 skb_dst_force(skb);
2301
2302 qdisc_skb_cb(skb)->pkt_len = skb->len;
2303 qdisc_bstats_update(q, skb);
2304
2305 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2306 if (unlikely(contended)) {
2307 spin_unlock(&q->busylock);
2308 contended = false;
2309 }
2310 __qdisc_run(q);
2311 } else
2312 qdisc_run_end(q);
2313
2314 rc = NET_XMIT_SUCCESS;
2315 } else {
2316 skb_dst_force(skb);
2317 rc = qdisc_enqueue_root(skb, q);
2318 if (qdisc_run_begin(q)) {
2319 if (unlikely(contended)) {
2320 spin_unlock(&q->busylock);
2321 contended = false;
2322 }
2323 __qdisc_run(q);
2324 }
2325 }
2326 spin_unlock(root_lock);
2327 if (unlikely(contended))
2328 spin_unlock(&q->busylock);
2329 return rc;
2330 }
2331
2332 static DEFINE_PER_CPU(int, xmit_recursion);
2333 #define RECURSION_LIMIT 10
2334
2335 /**
2336 * dev_queue_xmit - transmit a buffer
2337 * @skb: buffer to transmit
2338 *
2339 * Queue a buffer for transmission to a network device. The caller must
2340 * have set the device and priority and built the buffer before calling
2341 * this function. The function can be called from an interrupt.
2342 *
2343 * A negative errno code is returned on a failure. A success does not
2344 * guarantee the frame will be transmitted as it may be dropped due
2345 * to congestion or traffic shaping.
2346 *
2347 * -----------------------------------------------------------------------------------
2348 * I notice this method can also return errors from the queue disciplines,
2349 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2350 * be positive.
2351 *
2352 * Regardless of the return value, the skb is consumed, so it is currently
2353 * difficult to retry a send to this method. (You can bump the ref count
2354 * before sending to hold a reference for retry if you are careful.)
2355 *
2356 * When calling this method, interrupts MUST be enabled. This is because
2357 * the BH enable code must have IRQs enabled so that it will not deadlock.
2358 * --BLG
2359 */
2360 int dev_queue_xmit(struct sk_buff *skb)
2361 {
2362 struct net_device *dev = skb->dev;
2363 struct netdev_queue *txq;
2364 struct Qdisc *q;
2365 int rc = -ENOMEM;
2366
2367 /* Disable soft irqs for various locks below. Also
2368 * stops preemption for RCU.
2369 */
2370 rcu_read_lock_bh();
2371
2372 txq = dev_pick_tx(dev, skb);
2373 q = rcu_dereference_bh(txq->qdisc);
2374
2375 #ifdef CONFIG_NET_CLS_ACT
2376 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2377 #endif
2378 trace_net_dev_queue(skb);
2379 if (q->enqueue) {
2380 rc = __dev_xmit_skb(skb, q, dev, txq);
2381 goto out;
2382 }
2383
2384 /* The device has no queue. Common case for software devices:
2385 loopback, all the sorts of tunnels...
2386
2387 Really, it is unlikely that netif_tx_lock protection is necessary
2388 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2389 counters.)
2390 However, it is possible, that they rely on protection
2391 made by us here.
2392
2393 Check this and shot the lock. It is not prone from deadlocks.
2394 Either shot noqueue qdisc, it is even simpler 8)
2395 */
2396 if (dev->flags & IFF_UP) {
2397 int cpu = smp_processor_id(); /* ok because BHs are off */
2398
2399 if (txq->xmit_lock_owner != cpu) {
2400
2401 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2402 goto recursion_alert;
2403
2404 HARD_TX_LOCK(dev, txq, cpu);
2405
2406 if (!netif_tx_queue_stopped(txq)) {
2407 __this_cpu_inc(xmit_recursion);
2408 rc = dev_hard_start_xmit(skb, dev, txq);
2409 __this_cpu_dec(xmit_recursion);
2410 if (dev_xmit_complete(rc)) {
2411 HARD_TX_UNLOCK(dev, txq);
2412 goto out;
2413 }
2414 }
2415 HARD_TX_UNLOCK(dev, txq);
2416 if (net_ratelimit())
2417 printk(KERN_CRIT "Virtual device %s asks to "
2418 "queue packet!\n", dev->name);
2419 } else {
2420 /* Recursion is detected! It is possible,
2421 * unfortunately
2422 */
2423 recursion_alert:
2424 if (net_ratelimit())
2425 printk(KERN_CRIT "Dead loop on virtual device "
2426 "%s, fix it urgently!\n", dev->name);
2427 }
2428 }
2429
2430 rc = -ENETDOWN;
2431 rcu_read_unlock_bh();
2432
2433 kfree_skb(skb);
2434 return rc;
2435 out:
2436 rcu_read_unlock_bh();
2437 return rc;
2438 }
2439 EXPORT_SYMBOL(dev_queue_xmit);
2440
2441
2442 /*=======================================================================
2443 Receiver routines
2444 =======================================================================*/
2445
2446 int netdev_max_backlog __read_mostly = 1000;
2447 int netdev_tstamp_prequeue __read_mostly = 1;
2448 int netdev_budget __read_mostly = 300;
2449 int weight_p __read_mostly = 64; /* old backlog weight */
2450
2451 /* Called with irq disabled */
2452 static inline void ____napi_schedule(struct softnet_data *sd,
2453 struct napi_struct *napi)
2454 {
2455 list_add_tail(&napi->poll_list, &sd->poll_list);
2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 }
2458
2459 /*
2460 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2461 * and src/dst port numbers. Returns a non-zero hash number on success
2462 * and 0 on failure.
2463 */
2464 __u32 __skb_get_rxhash(struct sk_buff *skb)
2465 {
2466 int nhoff, hash = 0, poff;
2467 struct ipv6hdr *ip6;
2468 struct iphdr *ip;
2469 u8 ip_proto;
2470 u32 addr1, addr2, ihl;
2471 union {
2472 u32 v32;
2473 u16 v16[2];
2474 } ports;
2475
2476 nhoff = skb_network_offset(skb);
2477
2478 switch (skb->protocol) {
2479 case __constant_htons(ETH_P_IP):
2480 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2481 goto done;
2482
2483 ip = (struct iphdr *) (skb->data + nhoff);
2484 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2485 ip_proto = 0;
2486 else
2487 ip_proto = ip->protocol;
2488 addr1 = (__force u32) ip->saddr;
2489 addr2 = (__force u32) ip->daddr;
2490 ihl = ip->ihl;
2491 break;
2492 case __constant_htons(ETH_P_IPV6):
2493 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2494 goto done;
2495
2496 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2497 ip_proto = ip6->nexthdr;
2498 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2499 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2500 ihl = (40 >> 2);
2501 break;
2502 default:
2503 goto done;
2504 }
2505
2506 ports.v32 = 0;
2507 poff = proto_ports_offset(ip_proto);
2508 if (poff >= 0) {
2509 nhoff += ihl * 4 + poff;
2510 if (pskb_may_pull(skb, nhoff + 4)) {
2511 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2512 if (ports.v16[1] < ports.v16[0])
2513 swap(ports.v16[0], ports.v16[1]);
2514 }
2515 }
2516
2517 /* get a consistent hash (same value on both flow directions) */
2518 if (addr2 < addr1)
2519 swap(addr1, addr2);
2520
2521 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2522 if (!hash)
2523 hash = 1;
2524
2525 done:
2526 return hash;
2527 }
2528 EXPORT_SYMBOL(__skb_get_rxhash);
2529
2530 #ifdef CONFIG_RPS
2531
2532 /* One global table that all flow-based protocols share. */
2533 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2534 EXPORT_SYMBOL(rps_sock_flow_table);
2535
2536 /*
2537 * get_rps_cpu is called from netif_receive_skb and returns the target
2538 * CPU from the RPS map of the receiving queue for a given skb.
2539 * rcu_read_lock must be held on entry.
2540 */
2541 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2542 struct rps_dev_flow **rflowp)
2543 {
2544 struct netdev_rx_queue *rxqueue;
2545 struct rps_map *map;
2546 struct rps_dev_flow_table *flow_table;
2547 struct rps_sock_flow_table *sock_flow_table;
2548 int cpu = -1;
2549 u16 tcpu;
2550
2551 if (skb_rx_queue_recorded(skb)) {
2552 u16 index = skb_get_rx_queue(skb);
2553 if (unlikely(index >= dev->real_num_rx_queues)) {
2554 WARN_ONCE(dev->real_num_rx_queues > 1,
2555 "%s received packet on queue %u, but number "
2556 "of RX queues is %u\n",
2557 dev->name, index, dev->real_num_rx_queues);
2558 goto done;
2559 }
2560 rxqueue = dev->_rx + index;
2561 } else
2562 rxqueue = dev->_rx;
2563
2564 map = rcu_dereference(rxqueue->rps_map);
2565 if (map) {
2566 if (map->len == 1) {
2567 tcpu = map->cpus[0];
2568 if (cpu_online(tcpu))
2569 cpu = tcpu;
2570 goto done;
2571 }
2572 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2573 goto done;
2574 }
2575
2576 skb_reset_network_header(skb);
2577 if (!skb_get_rxhash(skb))
2578 goto done;
2579
2580 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2581 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2582 if (flow_table && sock_flow_table) {
2583 u16 next_cpu;
2584 struct rps_dev_flow *rflow;
2585
2586 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2587 tcpu = rflow->cpu;
2588
2589 next_cpu = sock_flow_table->ents[skb->rxhash &
2590 sock_flow_table->mask];
2591
2592 /*
2593 * If the desired CPU (where last recvmsg was done) is
2594 * different from current CPU (one in the rx-queue flow
2595 * table entry), switch if one of the following holds:
2596 * - Current CPU is unset (equal to RPS_NO_CPU).
2597 * - Current CPU is offline.
2598 * - The current CPU's queue tail has advanced beyond the
2599 * last packet that was enqueued using this table entry.
2600 * This guarantees that all previous packets for the flow
2601 * have been dequeued, thus preserving in order delivery.
2602 */
2603 if (unlikely(tcpu != next_cpu) &&
2604 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2605 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2606 rflow->last_qtail)) >= 0)) {
2607 tcpu = rflow->cpu = next_cpu;
2608 if (tcpu != RPS_NO_CPU)
2609 rflow->last_qtail = per_cpu(softnet_data,
2610 tcpu).input_queue_head;
2611 }
2612 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2613 *rflowp = rflow;
2614 cpu = tcpu;
2615 goto done;
2616 }
2617 }
2618
2619 if (map) {
2620 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2621
2622 if (cpu_online(tcpu)) {
2623 cpu = tcpu;
2624 goto done;
2625 }
2626 }
2627
2628 done:
2629 return cpu;
2630 }
2631
2632 /* Called from hardirq (IPI) context */
2633 static void rps_trigger_softirq(void *data)
2634 {
2635 struct softnet_data *sd = data;
2636
2637 ____napi_schedule(sd, &sd->backlog);
2638 sd->received_rps++;
2639 }
2640
2641 #endif /* CONFIG_RPS */
2642
2643 /*
2644 * Check if this softnet_data structure is another cpu one
2645 * If yes, queue it to our IPI list and return 1
2646 * If no, return 0
2647 */
2648 static int rps_ipi_queued(struct softnet_data *sd)
2649 {
2650 #ifdef CONFIG_RPS
2651 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2652
2653 if (sd != mysd) {
2654 sd->rps_ipi_next = mysd->rps_ipi_list;
2655 mysd->rps_ipi_list = sd;
2656
2657 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2658 return 1;
2659 }
2660 #endif /* CONFIG_RPS */
2661 return 0;
2662 }
2663
2664 /*
2665 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2666 * queue (may be a remote CPU queue).
2667 */
2668 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2669 unsigned int *qtail)
2670 {
2671 struct softnet_data *sd;
2672 unsigned long flags;
2673
2674 sd = &per_cpu(softnet_data, cpu);
2675
2676 local_irq_save(flags);
2677
2678 rps_lock(sd);
2679 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2680 if (skb_queue_len(&sd->input_pkt_queue)) {
2681 enqueue:
2682 __skb_queue_tail(&sd->input_pkt_queue, skb);
2683 input_queue_tail_incr_save(sd, qtail);
2684 rps_unlock(sd);
2685 local_irq_restore(flags);
2686 return NET_RX_SUCCESS;
2687 }
2688
2689 /* Schedule NAPI for backlog device
2690 * We can use non atomic operation since we own the queue lock
2691 */
2692 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2693 if (!rps_ipi_queued(sd))
2694 ____napi_schedule(sd, &sd->backlog);
2695 }
2696 goto enqueue;
2697 }
2698
2699 sd->dropped++;
2700 rps_unlock(sd);
2701
2702 local_irq_restore(flags);
2703
2704 atomic_long_inc(&skb->dev->rx_dropped);
2705 kfree_skb(skb);
2706 return NET_RX_DROP;
2707 }
2708
2709 /**
2710 * netif_rx - post buffer to the network code
2711 * @skb: buffer to post
2712 *
2713 * This function receives a packet from a device driver and queues it for
2714 * the upper (protocol) levels to process. It always succeeds. The buffer
2715 * may be dropped during processing for congestion control or by the
2716 * protocol layers.
2717 *
2718 * return values:
2719 * NET_RX_SUCCESS (no congestion)
2720 * NET_RX_DROP (packet was dropped)
2721 *
2722 */
2723
2724 int netif_rx(struct sk_buff *skb)
2725 {
2726 int ret;
2727
2728 /* if netpoll wants it, pretend we never saw it */
2729 if (netpoll_rx(skb))
2730 return NET_RX_DROP;
2731
2732 if (netdev_tstamp_prequeue)
2733 net_timestamp_check(skb);
2734
2735 trace_netif_rx(skb);
2736 #ifdef CONFIG_RPS
2737 {
2738 struct rps_dev_flow voidflow, *rflow = &voidflow;
2739 int cpu;
2740
2741 preempt_disable();
2742 rcu_read_lock();
2743
2744 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2745 if (cpu < 0)
2746 cpu = smp_processor_id();
2747
2748 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2749
2750 rcu_read_unlock();
2751 preempt_enable();
2752 }
2753 #else
2754 {
2755 unsigned int qtail;
2756 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2757 put_cpu();
2758 }
2759 #endif
2760 return ret;
2761 }
2762 EXPORT_SYMBOL(netif_rx);
2763
2764 int netif_rx_ni(struct sk_buff *skb)
2765 {
2766 int err;
2767
2768 preempt_disable();
2769 err = netif_rx(skb);
2770 if (local_softirq_pending())
2771 do_softirq();
2772 preempt_enable();
2773
2774 return err;
2775 }
2776 EXPORT_SYMBOL(netif_rx_ni);
2777
2778 static void net_tx_action(struct softirq_action *h)
2779 {
2780 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2781
2782 if (sd->completion_queue) {
2783 struct sk_buff *clist;
2784
2785 local_irq_disable();
2786 clist = sd->completion_queue;
2787 sd->completion_queue = NULL;
2788 local_irq_enable();
2789
2790 while (clist) {
2791 struct sk_buff *skb = clist;
2792 clist = clist->next;
2793
2794 WARN_ON(atomic_read(&skb->users));
2795 trace_kfree_skb(skb, net_tx_action);
2796 __kfree_skb(skb);
2797 }
2798 }
2799
2800 if (sd->output_queue) {
2801 struct Qdisc *head;
2802
2803 local_irq_disable();
2804 head = sd->output_queue;
2805 sd->output_queue = NULL;
2806 sd->output_queue_tailp = &sd->output_queue;
2807 local_irq_enable();
2808
2809 while (head) {
2810 struct Qdisc *q = head;
2811 spinlock_t *root_lock;
2812
2813 head = head->next_sched;
2814
2815 root_lock = qdisc_lock(q);
2816 if (spin_trylock(root_lock)) {
2817 smp_mb__before_clear_bit();
2818 clear_bit(__QDISC_STATE_SCHED,
2819 &q->state);
2820 qdisc_run(q);
2821 spin_unlock(root_lock);
2822 } else {
2823 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2824 &q->state)) {
2825 __netif_reschedule(q);
2826 } else {
2827 smp_mb__before_clear_bit();
2828 clear_bit(__QDISC_STATE_SCHED,
2829 &q->state);
2830 }
2831 }
2832 }
2833 }
2834 }
2835
2836 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2837 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2838 /* This hook is defined here for ATM LANE */
2839 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2840 unsigned char *addr) __read_mostly;
2841 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2842 #endif
2843
2844 #ifdef CONFIG_NET_CLS_ACT
2845 /* TODO: Maybe we should just force sch_ingress to be compiled in
2846 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2847 * a compare and 2 stores extra right now if we dont have it on
2848 * but have CONFIG_NET_CLS_ACT
2849 * NOTE: This doesnt stop any functionality; if you dont have
2850 * the ingress scheduler, you just cant add policies on ingress.
2851 *
2852 */
2853 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2854 {
2855 struct net_device *dev = skb->dev;
2856 u32 ttl = G_TC_RTTL(skb->tc_verd);
2857 int result = TC_ACT_OK;
2858 struct Qdisc *q;
2859
2860 if (unlikely(MAX_RED_LOOP < ttl++)) {
2861 if (net_ratelimit())
2862 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2863 skb->skb_iif, dev->ifindex);
2864 return TC_ACT_SHOT;
2865 }
2866
2867 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2868 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2869
2870 q = rxq->qdisc;
2871 if (q != &noop_qdisc) {
2872 spin_lock(qdisc_lock(q));
2873 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2874 result = qdisc_enqueue_root(skb, q);
2875 spin_unlock(qdisc_lock(q));
2876 }
2877
2878 return result;
2879 }
2880
2881 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2882 struct packet_type **pt_prev,
2883 int *ret, struct net_device *orig_dev)
2884 {
2885 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2886
2887 if (!rxq || rxq->qdisc == &noop_qdisc)
2888 goto out;
2889
2890 if (*pt_prev) {
2891 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2892 *pt_prev = NULL;
2893 }
2894
2895 switch (ing_filter(skb, rxq)) {
2896 case TC_ACT_SHOT:
2897 case TC_ACT_STOLEN:
2898 kfree_skb(skb);
2899 return NULL;
2900 }
2901
2902 out:
2903 skb->tc_verd = 0;
2904 return skb;
2905 }
2906 #endif
2907
2908 /**
2909 * netdev_rx_handler_register - register receive handler
2910 * @dev: device to register a handler for
2911 * @rx_handler: receive handler to register
2912 * @rx_handler_data: data pointer that is used by rx handler
2913 *
2914 * Register a receive hander for a device. This handler will then be
2915 * called from __netif_receive_skb. A negative errno code is returned
2916 * on a failure.
2917 *
2918 * The caller must hold the rtnl_mutex.
2919 */
2920 int netdev_rx_handler_register(struct net_device *dev,
2921 rx_handler_func_t *rx_handler,
2922 void *rx_handler_data)
2923 {
2924 ASSERT_RTNL();
2925
2926 if (dev->rx_handler)
2927 return -EBUSY;
2928
2929 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2930 rcu_assign_pointer(dev->rx_handler, rx_handler);
2931
2932 return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2935
2936 /**
2937 * netdev_rx_handler_unregister - unregister receive handler
2938 * @dev: device to unregister a handler from
2939 *
2940 * Unregister a receive hander from a device.
2941 *
2942 * The caller must hold the rtnl_mutex.
2943 */
2944 void netdev_rx_handler_unregister(struct net_device *dev)
2945 {
2946
2947 ASSERT_RTNL();
2948 rcu_assign_pointer(dev->rx_handler, NULL);
2949 rcu_assign_pointer(dev->rx_handler_data, NULL);
2950 }
2951 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2952
2953 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2954 struct net_device *master)
2955 {
2956 if (skb->pkt_type == PACKET_HOST) {
2957 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2958
2959 memcpy(dest, master->dev_addr, ETH_ALEN);
2960 }
2961 }
2962
2963 /* On bonding slaves other than the currently active slave, suppress
2964 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2965 * ARP on active-backup slaves with arp_validate enabled.
2966 */
2967 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2968 {
2969 struct net_device *dev = skb->dev;
2970
2971 if (master->priv_flags & IFF_MASTER_ARPMON)
2972 dev->last_rx = jiffies;
2973
2974 if ((master->priv_flags & IFF_MASTER_ALB) &&
2975 (master->priv_flags & IFF_BRIDGE_PORT)) {
2976 /* Do address unmangle. The local destination address
2977 * will be always the one master has. Provides the right
2978 * functionality in a bridge.
2979 */
2980 skb_bond_set_mac_by_master(skb, master);
2981 }
2982
2983 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2984 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2985 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2986 return 0;
2987
2988 if (master->priv_flags & IFF_MASTER_ALB) {
2989 if (skb->pkt_type != PACKET_BROADCAST &&
2990 skb->pkt_type != PACKET_MULTICAST)
2991 return 0;
2992 }
2993 if (master->priv_flags & IFF_MASTER_8023AD &&
2994 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2995 return 0;
2996
2997 return 1;
2998 }
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(__skb_bond_should_drop);
3002
3003 static int __netif_receive_skb(struct sk_buff *skb)
3004 {
3005 struct packet_type *ptype, *pt_prev;
3006 rx_handler_func_t *rx_handler;
3007 struct net_device *orig_dev;
3008 struct net_device *master;
3009 struct net_device *null_or_orig;
3010 struct net_device *orig_or_bond;
3011 int ret = NET_RX_DROP;
3012 __be16 type;
3013
3014 if (!netdev_tstamp_prequeue)
3015 net_timestamp_check(skb);
3016
3017 trace_netif_receive_skb(skb);
3018
3019 /* if we've gotten here through NAPI, check netpoll */
3020 if (netpoll_receive_skb(skb))
3021 return NET_RX_DROP;
3022
3023 if (!skb->skb_iif)
3024 skb->skb_iif = skb->dev->ifindex;
3025
3026 /*
3027 * bonding note: skbs received on inactive slaves should only
3028 * be delivered to pkt handlers that are exact matches. Also
3029 * the deliver_no_wcard flag will be set. If packet handlers
3030 * are sensitive to duplicate packets these skbs will need to
3031 * be dropped at the handler.
3032 */
3033 null_or_orig = NULL;
3034 orig_dev = skb->dev;
3035 master = ACCESS_ONCE(orig_dev->master);
3036 if (skb->deliver_no_wcard)
3037 null_or_orig = orig_dev;
3038 else if (master) {
3039 if (skb_bond_should_drop(skb, master)) {
3040 skb->deliver_no_wcard = 1;
3041 null_or_orig = orig_dev; /* deliver only exact match */
3042 } else
3043 skb->dev = master;
3044 }
3045
3046 __this_cpu_inc(softnet_data.processed);
3047 skb_reset_network_header(skb);
3048 skb_reset_transport_header(skb);
3049 skb->mac_len = skb->network_header - skb->mac_header;
3050
3051 pt_prev = NULL;
3052
3053 rcu_read_lock();
3054
3055 #ifdef CONFIG_NET_CLS_ACT
3056 if (skb->tc_verd & TC_NCLS) {
3057 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3058 goto ncls;
3059 }
3060 #endif
3061
3062 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3063 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3064 ptype->dev == orig_dev) {
3065 if (pt_prev)
3066 ret = deliver_skb(skb, pt_prev, orig_dev);
3067 pt_prev = ptype;
3068 }
3069 }
3070
3071 #ifdef CONFIG_NET_CLS_ACT
3072 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3073 if (!skb)
3074 goto out;
3075 ncls:
3076 #endif
3077
3078 /* Handle special case of bridge or macvlan */
3079 rx_handler = rcu_dereference(skb->dev->rx_handler);
3080 if (rx_handler) {
3081 if (pt_prev) {
3082 ret = deliver_skb(skb, pt_prev, orig_dev);
3083 pt_prev = NULL;
3084 }
3085 skb = rx_handler(skb);
3086 if (!skb)
3087 goto out;
3088 }
3089
3090 if (vlan_tx_tag_present(skb)) {
3091 if (pt_prev) {
3092 ret = deliver_skb(skb, pt_prev, orig_dev);
3093 pt_prev = NULL;
3094 }
3095 if (vlan_hwaccel_do_receive(&skb)) {
3096 ret = __netif_receive_skb(skb);
3097 goto out;
3098 } else if (unlikely(!skb))
3099 goto out;
3100 }
3101
3102 /*
3103 * Make sure frames received on VLAN interfaces stacked on
3104 * bonding interfaces still make their way to any base bonding
3105 * device that may have registered for a specific ptype. The
3106 * handler may have to adjust skb->dev and orig_dev.
3107 */
3108 orig_or_bond = orig_dev;
3109 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3110 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3111 orig_or_bond = vlan_dev_real_dev(skb->dev);
3112 }
3113
3114 type = skb->protocol;
3115 list_for_each_entry_rcu(ptype,
3116 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3117 if (ptype->type == type && (ptype->dev == null_or_orig ||
3118 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3119 ptype->dev == orig_or_bond)) {
3120 if (pt_prev)
3121 ret = deliver_skb(skb, pt_prev, orig_dev);
3122 pt_prev = ptype;
3123 }
3124 }
3125
3126 if (pt_prev) {
3127 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3128 } else {
3129 atomic_long_inc(&skb->dev->rx_dropped);
3130 kfree_skb(skb);
3131 /* Jamal, now you will not able to escape explaining
3132 * me how you were going to use this. :-)
3133 */
3134 ret = NET_RX_DROP;
3135 }
3136
3137 out:
3138 rcu_read_unlock();
3139 return ret;
3140 }
3141
3142 /**
3143 * netif_receive_skb - process receive buffer from network
3144 * @skb: buffer to process
3145 *
3146 * netif_receive_skb() is the main receive data processing function.
3147 * It always succeeds. The buffer may be dropped during processing
3148 * for congestion control or by the protocol layers.
3149 *
3150 * This function may only be called from softirq context and interrupts
3151 * should be enabled.
3152 *
3153 * Return values (usually ignored):
3154 * NET_RX_SUCCESS: no congestion
3155 * NET_RX_DROP: packet was dropped
3156 */
3157 int netif_receive_skb(struct sk_buff *skb)
3158 {
3159 if (netdev_tstamp_prequeue)
3160 net_timestamp_check(skb);
3161
3162 if (skb_defer_rx_timestamp(skb))
3163 return NET_RX_SUCCESS;
3164
3165 #ifdef CONFIG_RPS
3166 {
3167 struct rps_dev_flow voidflow, *rflow = &voidflow;
3168 int cpu, ret;
3169
3170 rcu_read_lock();
3171
3172 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3173
3174 if (cpu >= 0) {
3175 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3176 rcu_read_unlock();
3177 } else {
3178 rcu_read_unlock();
3179 ret = __netif_receive_skb(skb);
3180 }
3181
3182 return ret;
3183 }
3184 #else
3185 return __netif_receive_skb(skb);
3186 #endif
3187 }
3188 EXPORT_SYMBOL(netif_receive_skb);
3189
3190 /* Network device is going away, flush any packets still pending
3191 * Called with irqs disabled.
3192 */
3193 static void flush_backlog(void *arg)
3194 {
3195 struct net_device *dev = arg;
3196 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3197 struct sk_buff *skb, *tmp;
3198
3199 rps_lock(sd);
3200 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3201 if (skb->dev == dev) {
3202 __skb_unlink(skb, &sd->input_pkt_queue);
3203 kfree_skb(skb);
3204 input_queue_head_incr(sd);
3205 }
3206 }
3207 rps_unlock(sd);
3208
3209 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3210 if (skb->dev == dev) {
3211 __skb_unlink(skb, &sd->process_queue);
3212 kfree_skb(skb);
3213 input_queue_head_incr(sd);
3214 }
3215 }
3216 }
3217
3218 static int napi_gro_complete(struct sk_buff *skb)
3219 {
3220 struct packet_type *ptype;
3221 __be16 type = skb->protocol;
3222 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3223 int err = -ENOENT;
3224
3225 if (NAPI_GRO_CB(skb)->count == 1) {
3226 skb_shinfo(skb)->gso_size = 0;
3227 goto out;
3228 }
3229
3230 rcu_read_lock();
3231 list_for_each_entry_rcu(ptype, head, list) {
3232 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3233 continue;
3234
3235 err = ptype->gro_complete(skb);
3236 break;
3237 }
3238 rcu_read_unlock();
3239
3240 if (err) {
3241 WARN_ON(&ptype->list == head);
3242 kfree_skb(skb);
3243 return NET_RX_SUCCESS;
3244 }
3245
3246 out:
3247 return netif_receive_skb(skb);
3248 }
3249
3250 inline void napi_gro_flush(struct napi_struct *napi)
3251 {
3252 struct sk_buff *skb, *next;
3253
3254 for (skb = napi->gro_list; skb; skb = next) {
3255 next = skb->next;
3256 skb->next = NULL;
3257 napi_gro_complete(skb);
3258 }
3259
3260 napi->gro_count = 0;
3261 napi->gro_list = NULL;
3262 }
3263 EXPORT_SYMBOL(napi_gro_flush);
3264
3265 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3266 {
3267 struct sk_buff **pp = NULL;
3268 struct packet_type *ptype;
3269 __be16 type = skb->protocol;
3270 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3271 int same_flow;
3272 int mac_len;
3273 enum gro_result ret;
3274
3275 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3276 goto normal;
3277
3278 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3279 goto normal;
3280
3281 rcu_read_lock();
3282 list_for_each_entry_rcu(ptype, head, list) {
3283 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3284 continue;
3285
3286 skb_set_network_header(skb, skb_gro_offset(skb));
3287 mac_len = skb->network_header - skb->mac_header;
3288 skb->mac_len = mac_len;
3289 NAPI_GRO_CB(skb)->same_flow = 0;
3290 NAPI_GRO_CB(skb)->flush = 0;
3291 NAPI_GRO_CB(skb)->free = 0;
3292
3293 pp = ptype->gro_receive(&napi->gro_list, skb);
3294 break;
3295 }
3296 rcu_read_unlock();
3297
3298 if (&ptype->list == head)
3299 goto normal;
3300
3301 same_flow = NAPI_GRO_CB(skb)->same_flow;
3302 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3303
3304 if (pp) {
3305 struct sk_buff *nskb = *pp;
3306
3307 *pp = nskb->next;
3308 nskb->next = NULL;
3309 napi_gro_complete(nskb);
3310 napi->gro_count--;
3311 }
3312
3313 if (same_flow)
3314 goto ok;
3315
3316 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3317 goto normal;
3318
3319 napi->gro_count++;
3320 NAPI_GRO_CB(skb)->count = 1;
3321 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3322 skb->next = napi->gro_list;
3323 napi->gro_list = skb;
3324 ret = GRO_HELD;
3325
3326 pull:
3327 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3328 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3329
3330 BUG_ON(skb->end - skb->tail < grow);
3331
3332 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3333
3334 skb->tail += grow;
3335 skb->data_len -= grow;
3336
3337 skb_shinfo(skb)->frags[0].page_offset += grow;
3338 skb_shinfo(skb)->frags[0].size -= grow;
3339
3340 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3341 put_page(skb_shinfo(skb)->frags[0].page);
3342 memmove(skb_shinfo(skb)->frags,
3343 skb_shinfo(skb)->frags + 1,
3344 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3345 }
3346 }
3347
3348 ok:
3349 return ret;
3350
3351 normal:
3352 ret = GRO_NORMAL;
3353 goto pull;
3354 }
3355 EXPORT_SYMBOL(dev_gro_receive);
3356
3357 static inline gro_result_t
3358 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3359 {
3360 struct sk_buff *p;
3361
3362 for (p = napi->gro_list; p; p = p->next) {
3363 unsigned long diffs;
3364
3365 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3366 diffs |= p->vlan_tci ^ skb->vlan_tci;
3367 diffs |= compare_ether_header(skb_mac_header(p),
3368 skb_gro_mac_header(skb));
3369 NAPI_GRO_CB(p)->same_flow = !diffs;
3370 NAPI_GRO_CB(p)->flush = 0;
3371 }
3372
3373 return dev_gro_receive(napi, skb);
3374 }
3375
3376 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3377 {
3378 switch (ret) {
3379 case GRO_NORMAL:
3380 if (netif_receive_skb(skb))
3381 ret = GRO_DROP;
3382 break;
3383
3384 case GRO_DROP:
3385 case GRO_MERGED_FREE:
3386 kfree_skb(skb);
3387 break;
3388
3389 case GRO_HELD:
3390 case GRO_MERGED:
3391 break;
3392 }
3393
3394 return ret;
3395 }
3396 EXPORT_SYMBOL(napi_skb_finish);
3397
3398 void skb_gro_reset_offset(struct sk_buff *skb)
3399 {
3400 NAPI_GRO_CB(skb)->data_offset = 0;
3401 NAPI_GRO_CB(skb)->frag0 = NULL;
3402 NAPI_GRO_CB(skb)->frag0_len = 0;
3403
3404 if (skb->mac_header == skb->tail &&
3405 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3406 NAPI_GRO_CB(skb)->frag0 =
3407 page_address(skb_shinfo(skb)->frags[0].page) +
3408 skb_shinfo(skb)->frags[0].page_offset;
3409 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3410 }
3411 }
3412 EXPORT_SYMBOL(skb_gro_reset_offset);
3413
3414 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3415 {
3416 skb_gro_reset_offset(skb);
3417
3418 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3419 }
3420 EXPORT_SYMBOL(napi_gro_receive);
3421
3422 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3423 {
3424 __skb_pull(skb, skb_headlen(skb));
3425 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3426 skb->vlan_tci = 0;
3427
3428 napi->skb = skb;
3429 }
3430
3431 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3432 {
3433 struct sk_buff *skb = napi->skb;
3434
3435 if (!skb) {
3436 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3437 if (skb)
3438 napi->skb = skb;
3439 }
3440 return skb;
3441 }
3442 EXPORT_SYMBOL(napi_get_frags);
3443
3444 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3445 gro_result_t ret)
3446 {
3447 switch (ret) {
3448 case GRO_NORMAL:
3449 case GRO_HELD:
3450 skb->protocol = eth_type_trans(skb, skb->dev);
3451
3452 if (ret == GRO_HELD)
3453 skb_gro_pull(skb, -ETH_HLEN);
3454 else if (netif_receive_skb(skb))
3455 ret = GRO_DROP;
3456 break;
3457
3458 case GRO_DROP:
3459 case GRO_MERGED_FREE:
3460 napi_reuse_skb(napi, skb);
3461 break;
3462
3463 case GRO_MERGED:
3464 break;
3465 }
3466
3467 return ret;
3468 }
3469 EXPORT_SYMBOL(napi_frags_finish);
3470
3471 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3472 {
3473 struct sk_buff *skb = napi->skb;
3474 struct ethhdr *eth;
3475 unsigned int hlen;
3476 unsigned int off;
3477
3478 napi->skb = NULL;
3479
3480 skb_reset_mac_header(skb);
3481 skb_gro_reset_offset(skb);
3482
3483 off = skb_gro_offset(skb);
3484 hlen = off + sizeof(*eth);
3485 eth = skb_gro_header_fast(skb, off);
3486 if (skb_gro_header_hard(skb, hlen)) {
3487 eth = skb_gro_header_slow(skb, hlen, off);
3488 if (unlikely(!eth)) {
3489 napi_reuse_skb(napi, skb);
3490 skb = NULL;
3491 goto out;
3492 }
3493 }
3494
3495 skb_gro_pull(skb, sizeof(*eth));
3496
3497 /*
3498 * This works because the only protocols we care about don't require
3499 * special handling. We'll fix it up properly at the end.
3500 */
3501 skb->protocol = eth->h_proto;
3502
3503 out:
3504 return skb;
3505 }
3506 EXPORT_SYMBOL(napi_frags_skb);
3507
3508 gro_result_t napi_gro_frags(struct napi_struct *napi)
3509 {
3510 struct sk_buff *skb = napi_frags_skb(napi);
3511
3512 if (!skb)
3513 return GRO_DROP;
3514
3515 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3516 }
3517 EXPORT_SYMBOL(napi_gro_frags);
3518
3519 /*
3520 * net_rps_action sends any pending IPI's for rps.
3521 * Note: called with local irq disabled, but exits with local irq enabled.
3522 */
3523 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3524 {
3525 #ifdef CONFIG_RPS
3526 struct softnet_data *remsd = sd->rps_ipi_list;
3527
3528 if (remsd) {
3529 sd->rps_ipi_list = NULL;
3530
3531 local_irq_enable();
3532
3533 /* Send pending IPI's to kick RPS processing on remote cpus. */
3534 while (remsd) {
3535 struct softnet_data *next = remsd->rps_ipi_next;
3536
3537 if (cpu_online(remsd->cpu))
3538 __smp_call_function_single(remsd->cpu,
3539 &remsd->csd, 0);
3540 remsd = next;
3541 }
3542 } else
3543 #endif
3544 local_irq_enable();
3545 }
3546
3547 static int process_backlog(struct napi_struct *napi, int quota)
3548 {
3549 int work = 0;
3550 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3551
3552 #ifdef CONFIG_RPS
3553 /* Check if we have pending ipi, its better to send them now,
3554 * not waiting net_rx_action() end.
3555 */
3556 if (sd->rps_ipi_list) {
3557 local_irq_disable();
3558 net_rps_action_and_irq_enable(sd);
3559 }
3560 #endif
3561 napi->weight = weight_p;
3562 local_irq_disable();
3563 while (work < quota) {
3564 struct sk_buff *skb;
3565 unsigned int qlen;
3566
3567 while ((skb = __skb_dequeue(&sd->process_queue))) {
3568 local_irq_enable();
3569 __netif_receive_skb(skb);
3570 local_irq_disable();
3571 input_queue_head_incr(sd);
3572 if (++work >= quota) {
3573 local_irq_enable();
3574 return work;
3575 }
3576 }
3577
3578 rps_lock(sd);
3579 qlen = skb_queue_len(&sd->input_pkt_queue);
3580 if (qlen)
3581 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3582 &sd->process_queue);
3583
3584 if (qlen < quota - work) {
3585 /*
3586 * Inline a custom version of __napi_complete().
3587 * only current cpu owns and manipulates this napi,
3588 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3589 * we can use a plain write instead of clear_bit(),
3590 * and we dont need an smp_mb() memory barrier.
3591 */
3592 list_del(&napi->poll_list);
3593 napi->state = 0;
3594
3595 quota = work + qlen;
3596 }
3597 rps_unlock(sd);
3598 }
3599 local_irq_enable();
3600
3601 return work;
3602 }
3603
3604 /**
3605 * __napi_schedule - schedule for receive
3606 * @n: entry to schedule
3607 *
3608 * The entry's receive function will be scheduled to run
3609 */
3610 void __napi_schedule(struct napi_struct *n)
3611 {
3612 unsigned long flags;
3613
3614 local_irq_save(flags);
3615 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3616 local_irq_restore(flags);
3617 }
3618 EXPORT_SYMBOL(__napi_schedule);
3619
3620 void __napi_complete(struct napi_struct *n)
3621 {
3622 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3623 BUG_ON(n->gro_list);
3624
3625 list_del(&n->poll_list);
3626 smp_mb__before_clear_bit();
3627 clear_bit(NAPI_STATE_SCHED, &n->state);
3628 }
3629 EXPORT_SYMBOL(__napi_complete);
3630
3631 void napi_complete(struct napi_struct *n)
3632 {
3633 unsigned long flags;
3634
3635 /*
3636 * don't let napi dequeue from the cpu poll list
3637 * just in case its running on a different cpu
3638 */
3639 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3640 return;
3641
3642 napi_gro_flush(n);
3643 local_irq_save(flags);
3644 __napi_complete(n);
3645 local_irq_restore(flags);
3646 }
3647 EXPORT_SYMBOL(napi_complete);
3648
3649 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3650 int (*poll)(struct napi_struct *, int), int weight)
3651 {
3652 INIT_LIST_HEAD(&napi->poll_list);
3653 napi->gro_count = 0;
3654 napi->gro_list = NULL;
3655 napi->skb = NULL;
3656 napi->poll = poll;
3657 napi->weight = weight;
3658 list_add(&napi->dev_list, &dev->napi_list);
3659 napi->dev = dev;
3660 #ifdef CONFIG_NETPOLL
3661 spin_lock_init(&napi->poll_lock);
3662 napi->poll_owner = -1;
3663 #endif
3664 set_bit(NAPI_STATE_SCHED, &napi->state);
3665 }
3666 EXPORT_SYMBOL(netif_napi_add);
3667
3668 void netif_napi_del(struct napi_struct *napi)
3669 {
3670 struct sk_buff *skb, *next;
3671
3672 list_del_init(&napi->dev_list);
3673 napi_free_frags(napi);
3674
3675 for (skb = napi->gro_list; skb; skb = next) {
3676 next = skb->next;
3677 skb->next = NULL;
3678 kfree_skb(skb);
3679 }
3680
3681 napi->gro_list = NULL;
3682 napi->gro_count = 0;
3683 }
3684 EXPORT_SYMBOL(netif_napi_del);
3685
3686 static void net_rx_action(struct softirq_action *h)
3687 {
3688 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3689 unsigned long time_limit = jiffies + 2;
3690 int budget = netdev_budget;
3691 void *have;
3692
3693 local_irq_disable();
3694
3695 while (!list_empty(&sd->poll_list)) {
3696 struct napi_struct *n;
3697 int work, weight;
3698
3699 /* If softirq window is exhuasted then punt.
3700 * Allow this to run for 2 jiffies since which will allow
3701 * an average latency of 1.5/HZ.
3702 */
3703 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3704 goto softnet_break;
3705
3706 local_irq_enable();
3707
3708 /* Even though interrupts have been re-enabled, this
3709 * access is safe because interrupts can only add new
3710 * entries to the tail of this list, and only ->poll()
3711 * calls can remove this head entry from the list.
3712 */
3713 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3714
3715 have = netpoll_poll_lock(n);
3716
3717 weight = n->weight;
3718
3719 /* This NAPI_STATE_SCHED test is for avoiding a race
3720 * with netpoll's poll_napi(). Only the entity which
3721 * obtains the lock and sees NAPI_STATE_SCHED set will
3722 * actually make the ->poll() call. Therefore we avoid
3723 * accidently calling ->poll() when NAPI is not scheduled.
3724 */
3725 work = 0;
3726 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3727 work = n->poll(n, weight);
3728 trace_napi_poll(n);
3729 }
3730
3731 WARN_ON_ONCE(work > weight);
3732
3733 budget -= work;
3734
3735 local_irq_disable();
3736
3737 /* Drivers must not modify the NAPI state if they
3738 * consume the entire weight. In such cases this code
3739 * still "owns" the NAPI instance and therefore can
3740 * move the instance around on the list at-will.
3741 */
3742 if (unlikely(work == weight)) {
3743 if (unlikely(napi_disable_pending(n))) {
3744 local_irq_enable();
3745 napi_complete(n);
3746 local_irq_disable();
3747 } else
3748 list_move_tail(&n->poll_list, &sd->poll_list);
3749 }
3750
3751 netpoll_poll_unlock(have);
3752 }
3753 out:
3754 net_rps_action_and_irq_enable(sd);
3755
3756 #ifdef CONFIG_NET_DMA
3757 /*
3758 * There may not be any more sk_buffs coming right now, so push
3759 * any pending DMA copies to hardware
3760 */
3761 dma_issue_pending_all();
3762 #endif
3763
3764 return;
3765
3766 softnet_break:
3767 sd->time_squeeze++;
3768 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3769 goto out;
3770 }
3771
3772 static gifconf_func_t *gifconf_list[NPROTO];
3773
3774 /**
3775 * register_gifconf - register a SIOCGIF handler
3776 * @family: Address family
3777 * @gifconf: Function handler
3778 *
3779 * Register protocol dependent address dumping routines. The handler
3780 * that is passed must not be freed or reused until it has been replaced
3781 * by another handler.
3782 */
3783 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3784 {
3785 if (family >= NPROTO)
3786 return -EINVAL;
3787 gifconf_list[family] = gifconf;
3788 return 0;
3789 }
3790 EXPORT_SYMBOL(register_gifconf);
3791
3792
3793 /*
3794 * Map an interface index to its name (SIOCGIFNAME)
3795 */
3796
3797 /*
3798 * We need this ioctl for efficient implementation of the
3799 * if_indextoname() function required by the IPv6 API. Without
3800 * it, we would have to search all the interfaces to find a
3801 * match. --pb
3802 */
3803
3804 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3805 {
3806 struct net_device *dev;
3807 struct ifreq ifr;
3808
3809 /*
3810 * Fetch the caller's info block.
3811 */
3812
3813 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3814 return -EFAULT;
3815
3816 rcu_read_lock();
3817 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3818 if (!dev) {
3819 rcu_read_unlock();
3820 return -ENODEV;
3821 }
3822
3823 strcpy(ifr.ifr_name, dev->name);
3824 rcu_read_unlock();
3825
3826 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3827 return -EFAULT;
3828 return 0;
3829 }
3830
3831 /*
3832 * Perform a SIOCGIFCONF call. This structure will change
3833 * size eventually, and there is nothing I can do about it.
3834 * Thus we will need a 'compatibility mode'.
3835 */
3836
3837 static int dev_ifconf(struct net *net, char __user *arg)
3838 {
3839 struct ifconf ifc;
3840 struct net_device *dev;
3841 char __user *pos;
3842 int len;
3843 int total;
3844 int i;
3845
3846 /*
3847 * Fetch the caller's info block.
3848 */
3849
3850 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3851 return -EFAULT;
3852
3853 pos = ifc.ifc_buf;
3854 len = ifc.ifc_len;
3855
3856 /*
3857 * Loop over the interfaces, and write an info block for each.
3858 */
3859
3860 total = 0;
3861 for_each_netdev(net, dev) {
3862 for (i = 0; i < NPROTO; i++) {
3863 if (gifconf_list[i]) {
3864 int done;
3865 if (!pos)
3866 done = gifconf_list[i](dev, NULL, 0);
3867 else
3868 done = gifconf_list[i](dev, pos + total,
3869 len - total);
3870 if (done < 0)
3871 return -EFAULT;
3872 total += done;
3873 }
3874 }
3875 }
3876
3877 /*
3878 * All done. Write the updated control block back to the caller.
3879 */
3880 ifc.ifc_len = total;
3881
3882 /*
3883 * Both BSD and Solaris return 0 here, so we do too.
3884 */
3885 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3886 }
3887
3888 #ifdef CONFIG_PROC_FS
3889 /*
3890 * This is invoked by the /proc filesystem handler to display a device
3891 * in detail.
3892 */
3893 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3894 __acquires(RCU)
3895 {
3896 struct net *net = seq_file_net(seq);
3897 loff_t off;
3898 struct net_device *dev;
3899
3900 rcu_read_lock();
3901 if (!*pos)
3902 return SEQ_START_TOKEN;
3903
3904 off = 1;
3905 for_each_netdev_rcu(net, dev)
3906 if (off++ == *pos)
3907 return dev;
3908
3909 return NULL;
3910 }
3911
3912 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3913 {
3914 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3915 first_net_device(seq_file_net(seq)) :
3916 next_net_device((struct net_device *)v);
3917
3918 ++*pos;
3919 return rcu_dereference(dev);
3920 }
3921
3922 void dev_seq_stop(struct seq_file *seq, void *v)
3923 __releases(RCU)
3924 {
3925 rcu_read_unlock();
3926 }
3927
3928 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3929 {
3930 struct rtnl_link_stats64 temp;
3931 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3932
3933 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3934 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3935 dev->name, stats->rx_bytes, stats->rx_packets,
3936 stats->rx_errors,
3937 stats->rx_dropped + stats->rx_missed_errors,
3938 stats->rx_fifo_errors,
3939 stats->rx_length_errors + stats->rx_over_errors +
3940 stats->rx_crc_errors + stats->rx_frame_errors,
3941 stats->rx_compressed, stats->multicast,
3942 stats->tx_bytes, stats->tx_packets,
3943 stats->tx_errors, stats->tx_dropped,
3944 stats->tx_fifo_errors, stats->collisions,
3945 stats->tx_carrier_errors +
3946 stats->tx_aborted_errors +
3947 stats->tx_window_errors +
3948 stats->tx_heartbeat_errors,
3949 stats->tx_compressed);
3950 }
3951
3952 /*
3953 * Called from the PROCfs module. This now uses the new arbitrary sized
3954 * /proc/net interface to create /proc/net/dev
3955 */
3956 static int dev_seq_show(struct seq_file *seq, void *v)
3957 {
3958 if (v == SEQ_START_TOKEN)
3959 seq_puts(seq, "Inter-| Receive "
3960 " | Transmit\n"
3961 " face |bytes packets errs drop fifo frame "
3962 "compressed multicast|bytes packets errs "
3963 "drop fifo colls carrier compressed\n");
3964 else
3965 dev_seq_printf_stats(seq, v);
3966 return 0;
3967 }
3968
3969 static struct softnet_data *softnet_get_online(loff_t *pos)
3970 {
3971 struct softnet_data *sd = NULL;
3972
3973 while (*pos < nr_cpu_ids)
3974 if (cpu_online(*pos)) {
3975 sd = &per_cpu(softnet_data, *pos);
3976 break;
3977 } else
3978 ++*pos;
3979 return sd;
3980 }
3981
3982 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3983 {
3984 return softnet_get_online(pos);
3985 }
3986
3987 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3988 {
3989 ++*pos;
3990 return softnet_get_online(pos);
3991 }
3992
3993 static void softnet_seq_stop(struct seq_file *seq, void *v)
3994 {
3995 }
3996
3997 static int softnet_seq_show(struct seq_file *seq, void *v)
3998 {
3999 struct softnet_data *sd = v;
4000
4001 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4002 sd->processed, sd->dropped, sd->time_squeeze, 0,
4003 0, 0, 0, 0, /* was fastroute */
4004 sd->cpu_collision, sd->received_rps);
4005 return 0;
4006 }
4007
4008 static const struct seq_operations dev_seq_ops = {
4009 .start = dev_seq_start,
4010 .next = dev_seq_next,
4011 .stop = dev_seq_stop,
4012 .show = dev_seq_show,
4013 };
4014
4015 static int dev_seq_open(struct inode *inode, struct file *file)
4016 {
4017 return seq_open_net(inode, file, &dev_seq_ops,
4018 sizeof(struct seq_net_private));
4019 }
4020
4021 static const struct file_operations dev_seq_fops = {
4022 .owner = THIS_MODULE,
4023 .open = dev_seq_open,
4024 .read = seq_read,
4025 .llseek = seq_lseek,
4026 .release = seq_release_net,
4027 };
4028
4029 static const struct seq_operations softnet_seq_ops = {
4030 .start = softnet_seq_start,
4031 .next = softnet_seq_next,
4032 .stop = softnet_seq_stop,
4033 .show = softnet_seq_show,
4034 };
4035
4036 static int softnet_seq_open(struct inode *inode, struct file *file)
4037 {
4038 return seq_open(file, &softnet_seq_ops);
4039 }
4040
4041 static const struct file_operations softnet_seq_fops = {
4042 .owner = THIS_MODULE,
4043 .open = softnet_seq_open,
4044 .read = seq_read,
4045 .llseek = seq_lseek,
4046 .release = seq_release,
4047 };
4048
4049 static void *ptype_get_idx(loff_t pos)
4050 {
4051 struct packet_type *pt = NULL;
4052 loff_t i = 0;
4053 int t;
4054
4055 list_for_each_entry_rcu(pt, &ptype_all, list) {
4056 if (i == pos)
4057 return pt;
4058 ++i;
4059 }
4060
4061 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4062 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4063 if (i == pos)
4064 return pt;
4065 ++i;
4066 }
4067 }
4068 return NULL;
4069 }
4070
4071 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4072 __acquires(RCU)
4073 {
4074 rcu_read_lock();
4075 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4076 }
4077
4078 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4079 {
4080 struct packet_type *pt;
4081 struct list_head *nxt;
4082 int hash;
4083
4084 ++*pos;
4085 if (v == SEQ_START_TOKEN)
4086 return ptype_get_idx(0);
4087
4088 pt = v;
4089 nxt = pt->list.next;
4090 if (pt->type == htons(ETH_P_ALL)) {
4091 if (nxt != &ptype_all)
4092 goto found;
4093 hash = 0;
4094 nxt = ptype_base[0].next;
4095 } else
4096 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4097
4098 while (nxt == &ptype_base[hash]) {
4099 if (++hash >= PTYPE_HASH_SIZE)
4100 return NULL;
4101 nxt = ptype_base[hash].next;
4102 }
4103 found:
4104 return list_entry(nxt, struct packet_type, list);
4105 }
4106
4107 static void ptype_seq_stop(struct seq_file *seq, void *v)
4108 __releases(RCU)
4109 {
4110 rcu_read_unlock();
4111 }
4112
4113 static int ptype_seq_show(struct seq_file *seq, void *v)
4114 {
4115 struct packet_type *pt = v;
4116
4117 if (v == SEQ_START_TOKEN)
4118 seq_puts(seq, "Type Device Function\n");
4119 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4120 if (pt->type == htons(ETH_P_ALL))
4121 seq_puts(seq, "ALL ");
4122 else
4123 seq_printf(seq, "%04x", ntohs(pt->type));
4124
4125 seq_printf(seq, " %-8s %pF\n",
4126 pt->dev ? pt->dev->name : "", pt->func);
4127 }
4128
4129 return 0;
4130 }
4131
4132 static const struct seq_operations ptype_seq_ops = {
4133 .start = ptype_seq_start,
4134 .next = ptype_seq_next,
4135 .stop = ptype_seq_stop,
4136 .show = ptype_seq_show,
4137 };
4138
4139 static int ptype_seq_open(struct inode *inode, struct file *file)
4140 {
4141 return seq_open_net(inode, file, &ptype_seq_ops,
4142 sizeof(struct seq_net_private));
4143 }
4144
4145 static const struct file_operations ptype_seq_fops = {
4146 .owner = THIS_MODULE,
4147 .open = ptype_seq_open,
4148 .read = seq_read,
4149 .llseek = seq_lseek,
4150 .release = seq_release_net,
4151 };
4152
4153
4154 static int __net_init dev_proc_net_init(struct net *net)
4155 {
4156 int rc = -ENOMEM;
4157
4158 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4159 goto out;
4160 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4161 goto out_dev;
4162 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4163 goto out_softnet;
4164
4165 if (wext_proc_init(net))
4166 goto out_ptype;
4167 rc = 0;
4168 out:
4169 return rc;
4170 out_ptype:
4171 proc_net_remove(net, "ptype");
4172 out_softnet:
4173 proc_net_remove(net, "softnet_stat");
4174 out_dev:
4175 proc_net_remove(net, "dev");
4176 goto out;
4177 }
4178
4179 static void __net_exit dev_proc_net_exit(struct net *net)
4180 {
4181 wext_proc_exit(net);
4182
4183 proc_net_remove(net, "ptype");
4184 proc_net_remove(net, "softnet_stat");
4185 proc_net_remove(net, "dev");
4186 }
4187
4188 static struct pernet_operations __net_initdata dev_proc_ops = {
4189 .init = dev_proc_net_init,
4190 .exit = dev_proc_net_exit,
4191 };
4192
4193 static int __init dev_proc_init(void)
4194 {
4195 return register_pernet_subsys(&dev_proc_ops);
4196 }
4197 #else
4198 #define dev_proc_init() 0
4199 #endif /* CONFIG_PROC_FS */
4200
4201
4202 /**
4203 * netdev_set_master - set up master/slave pair
4204 * @slave: slave device
4205 * @master: new master device
4206 *
4207 * Changes the master device of the slave. Pass %NULL to break the
4208 * bonding. The caller must hold the RTNL semaphore. On a failure
4209 * a negative errno code is returned. On success the reference counts
4210 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4211 * function returns zero.
4212 */
4213 int netdev_set_master(struct net_device *slave, struct net_device *master)
4214 {
4215 struct net_device *old = slave->master;
4216
4217 ASSERT_RTNL();
4218
4219 if (master) {
4220 if (old)
4221 return -EBUSY;
4222 dev_hold(master);
4223 }
4224
4225 slave->master = master;
4226
4227 if (old) {
4228 synchronize_net();
4229 dev_put(old);
4230 }
4231 if (master)
4232 slave->flags |= IFF_SLAVE;
4233 else
4234 slave->flags &= ~IFF_SLAVE;
4235
4236 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4237 return 0;
4238 }
4239 EXPORT_SYMBOL(netdev_set_master);
4240
4241 static void dev_change_rx_flags(struct net_device *dev, int flags)
4242 {
4243 const struct net_device_ops *ops = dev->netdev_ops;
4244
4245 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4246 ops->ndo_change_rx_flags(dev, flags);
4247 }
4248
4249 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4250 {
4251 unsigned short old_flags = dev->flags;
4252 uid_t uid;
4253 gid_t gid;
4254
4255 ASSERT_RTNL();
4256
4257 dev->flags |= IFF_PROMISC;
4258 dev->promiscuity += inc;
4259 if (dev->promiscuity == 0) {
4260 /*
4261 * Avoid overflow.
4262 * If inc causes overflow, untouch promisc and return error.
4263 */
4264 if (inc < 0)
4265 dev->flags &= ~IFF_PROMISC;
4266 else {
4267 dev->promiscuity -= inc;
4268 printk(KERN_WARNING "%s: promiscuity touches roof, "
4269 "set promiscuity failed, promiscuity feature "
4270 "of device might be broken.\n", dev->name);
4271 return -EOVERFLOW;
4272 }
4273 }
4274 if (dev->flags != old_flags) {
4275 printk(KERN_INFO "device %s %s promiscuous mode\n",
4276 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4277 "left");
4278 if (audit_enabled) {
4279 current_uid_gid(&uid, &gid);
4280 audit_log(current->audit_context, GFP_ATOMIC,
4281 AUDIT_ANOM_PROMISCUOUS,
4282 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4283 dev->name, (dev->flags & IFF_PROMISC),
4284 (old_flags & IFF_PROMISC),
4285 audit_get_loginuid(current),
4286 uid, gid,
4287 audit_get_sessionid(current));
4288 }
4289
4290 dev_change_rx_flags(dev, IFF_PROMISC);
4291 }
4292 return 0;
4293 }
4294
4295 /**
4296 * dev_set_promiscuity - update promiscuity count on a device
4297 * @dev: device
4298 * @inc: modifier
4299 *
4300 * Add or remove promiscuity from a device. While the count in the device
4301 * remains above zero the interface remains promiscuous. Once it hits zero
4302 * the device reverts back to normal filtering operation. A negative inc
4303 * value is used to drop promiscuity on the device.
4304 * Return 0 if successful or a negative errno code on error.
4305 */
4306 int dev_set_promiscuity(struct net_device *dev, int inc)
4307 {
4308 unsigned short old_flags = dev->flags;
4309 int err;
4310
4311 err = __dev_set_promiscuity(dev, inc);
4312 if (err < 0)
4313 return err;
4314 if (dev->flags != old_flags)
4315 dev_set_rx_mode(dev);
4316 return err;
4317 }
4318 EXPORT_SYMBOL(dev_set_promiscuity);
4319
4320 /**
4321 * dev_set_allmulti - update allmulti count on a device
4322 * @dev: device
4323 * @inc: modifier
4324 *
4325 * Add or remove reception of all multicast frames to a device. While the
4326 * count in the device remains above zero the interface remains listening
4327 * to all interfaces. Once it hits zero the device reverts back to normal
4328 * filtering operation. A negative @inc value is used to drop the counter
4329 * when releasing a resource needing all multicasts.
4330 * Return 0 if successful or a negative errno code on error.
4331 */
4332
4333 int dev_set_allmulti(struct net_device *dev, int inc)
4334 {
4335 unsigned short old_flags = dev->flags;
4336
4337 ASSERT_RTNL();
4338
4339 dev->flags |= IFF_ALLMULTI;
4340 dev->allmulti += inc;
4341 if (dev->allmulti == 0) {
4342 /*
4343 * Avoid overflow.
4344 * If inc causes overflow, untouch allmulti and return error.
4345 */
4346 if (inc < 0)
4347 dev->flags &= ~IFF_ALLMULTI;
4348 else {
4349 dev->allmulti -= inc;
4350 printk(KERN_WARNING "%s: allmulti touches roof, "
4351 "set allmulti failed, allmulti feature of "
4352 "device might be broken.\n", dev->name);
4353 return -EOVERFLOW;
4354 }
4355 }
4356 if (dev->flags ^ old_flags) {
4357 dev_change_rx_flags(dev, IFF_ALLMULTI);
4358 dev_set_rx_mode(dev);
4359 }
4360 return 0;
4361 }
4362 EXPORT_SYMBOL(dev_set_allmulti);
4363
4364 /*
4365 * Upload unicast and multicast address lists to device and
4366 * configure RX filtering. When the device doesn't support unicast
4367 * filtering it is put in promiscuous mode while unicast addresses
4368 * are present.
4369 */
4370 void __dev_set_rx_mode(struct net_device *dev)
4371 {
4372 const struct net_device_ops *ops = dev->netdev_ops;
4373
4374 /* dev_open will call this function so the list will stay sane. */
4375 if (!(dev->flags&IFF_UP))
4376 return;
4377
4378 if (!netif_device_present(dev))
4379 return;
4380
4381 if (ops->ndo_set_rx_mode)
4382 ops->ndo_set_rx_mode(dev);
4383 else {
4384 /* Unicast addresses changes may only happen under the rtnl,
4385 * therefore calling __dev_set_promiscuity here is safe.
4386 */
4387 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4388 __dev_set_promiscuity(dev, 1);
4389 dev->uc_promisc = 1;
4390 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4391 __dev_set_promiscuity(dev, -1);
4392 dev->uc_promisc = 0;
4393 }
4394
4395 if (ops->ndo_set_multicast_list)
4396 ops->ndo_set_multicast_list(dev);
4397 }
4398 }
4399
4400 void dev_set_rx_mode(struct net_device *dev)
4401 {
4402 netif_addr_lock_bh(dev);
4403 __dev_set_rx_mode(dev);
4404 netif_addr_unlock_bh(dev);
4405 }
4406
4407 /**
4408 * dev_get_flags - get flags reported to userspace
4409 * @dev: device
4410 *
4411 * Get the combination of flag bits exported through APIs to userspace.
4412 */
4413 unsigned dev_get_flags(const struct net_device *dev)
4414 {
4415 unsigned flags;
4416
4417 flags = (dev->flags & ~(IFF_PROMISC |
4418 IFF_ALLMULTI |
4419 IFF_RUNNING |
4420 IFF_LOWER_UP |
4421 IFF_DORMANT)) |
4422 (dev->gflags & (IFF_PROMISC |
4423 IFF_ALLMULTI));
4424
4425 if (netif_running(dev)) {
4426 if (netif_oper_up(dev))
4427 flags |= IFF_RUNNING;
4428 if (netif_carrier_ok(dev))
4429 flags |= IFF_LOWER_UP;
4430 if (netif_dormant(dev))
4431 flags |= IFF_DORMANT;
4432 }
4433
4434 return flags;
4435 }
4436 EXPORT_SYMBOL(dev_get_flags);
4437
4438 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4439 {
4440 int old_flags = dev->flags;
4441 int ret;
4442
4443 ASSERT_RTNL();
4444
4445 /*
4446 * Set the flags on our device.
4447 */
4448
4449 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4450 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4451 IFF_AUTOMEDIA)) |
4452 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4453 IFF_ALLMULTI));
4454
4455 /*
4456 * Load in the correct multicast list now the flags have changed.
4457 */
4458
4459 if ((old_flags ^ flags) & IFF_MULTICAST)
4460 dev_change_rx_flags(dev, IFF_MULTICAST);
4461
4462 dev_set_rx_mode(dev);
4463
4464 /*
4465 * Have we downed the interface. We handle IFF_UP ourselves
4466 * according to user attempts to set it, rather than blindly
4467 * setting it.
4468 */
4469
4470 ret = 0;
4471 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4472 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4473
4474 if (!ret)
4475 dev_set_rx_mode(dev);
4476 }
4477
4478 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4479 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4480
4481 dev->gflags ^= IFF_PROMISC;
4482 dev_set_promiscuity(dev, inc);
4483 }
4484
4485 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4486 is important. Some (broken) drivers set IFF_PROMISC, when
4487 IFF_ALLMULTI is requested not asking us and not reporting.
4488 */
4489 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4490 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4491
4492 dev->gflags ^= IFF_ALLMULTI;
4493 dev_set_allmulti(dev, inc);
4494 }
4495
4496 return ret;
4497 }
4498
4499 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4500 {
4501 unsigned int changes = dev->flags ^ old_flags;
4502
4503 if (changes & IFF_UP) {
4504 if (dev->flags & IFF_UP)
4505 call_netdevice_notifiers(NETDEV_UP, dev);
4506 else
4507 call_netdevice_notifiers(NETDEV_DOWN, dev);
4508 }
4509
4510 if (dev->flags & IFF_UP &&
4511 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4512 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4513 }
4514
4515 /**
4516 * dev_change_flags - change device settings
4517 * @dev: device
4518 * @flags: device state flags
4519 *
4520 * Change settings on device based state flags. The flags are
4521 * in the userspace exported format.
4522 */
4523 int dev_change_flags(struct net_device *dev, unsigned flags)
4524 {
4525 int ret, changes;
4526 int old_flags = dev->flags;
4527
4528 ret = __dev_change_flags(dev, flags);
4529 if (ret < 0)
4530 return ret;
4531
4532 changes = old_flags ^ dev->flags;
4533 if (changes)
4534 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4535
4536 __dev_notify_flags(dev, old_flags);
4537 return ret;
4538 }
4539 EXPORT_SYMBOL(dev_change_flags);
4540
4541 /**
4542 * dev_set_mtu - Change maximum transfer unit
4543 * @dev: device
4544 * @new_mtu: new transfer unit
4545 *
4546 * Change the maximum transfer size of the network device.
4547 */
4548 int dev_set_mtu(struct net_device *dev, int new_mtu)
4549 {
4550 const struct net_device_ops *ops = dev->netdev_ops;
4551 int err;
4552
4553 if (new_mtu == dev->mtu)
4554 return 0;
4555
4556 /* MTU must be positive. */
4557 if (new_mtu < 0)
4558 return -EINVAL;
4559
4560 if (!netif_device_present(dev))
4561 return -ENODEV;
4562
4563 err = 0;
4564 if (ops->ndo_change_mtu)
4565 err = ops->ndo_change_mtu(dev, new_mtu);
4566 else
4567 dev->mtu = new_mtu;
4568
4569 if (!err && dev->flags & IFF_UP)
4570 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4571 return err;
4572 }
4573 EXPORT_SYMBOL(dev_set_mtu);
4574
4575 /**
4576 * dev_set_mac_address - Change Media Access Control Address
4577 * @dev: device
4578 * @sa: new address
4579 *
4580 * Change the hardware (MAC) address of the device
4581 */
4582 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4583 {
4584 const struct net_device_ops *ops = dev->netdev_ops;
4585 int err;
4586
4587 if (!ops->ndo_set_mac_address)
4588 return -EOPNOTSUPP;
4589 if (sa->sa_family != dev->type)
4590 return -EINVAL;
4591 if (!netif_device_present(dev))
4592 return -ENODEV;
4593 err = ops->ndo_set_mac_address(dev, sa);
4594 if (!err)
4595 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4596 return err;
4597 }
4598 EXPORT_SYMBOL(dev_set_mac_address);
4599
4600 /*
4601 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4602 */
4603 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4604 {
4605 int err;
4606 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4607
4608 if (!dev)
4609 return -ENODEV;
4610
4611 switch (cmd) {
4612 case SIOCGIFFLAGS: /* Get interface flags */
4613 ifr->ifr_flags = (short) dev_get_flags(dev);
4614 return 0;
4615
4616 case SIOCGIFMETRIC: /* Get the metric on the interface
4617 (currently unused) */
4618 ifr->ifr_metric = 0;
4619 return 0;
4620
4621 case SIOCGIFMTU: /* Get the MTU of a device */
4622 ifr->ifr_mtu = dev->mtu;
4623 return 0;
4624
4625 case SIOCGIFHWADDR:
4626 if (!dev->addr_len)
4627 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4628 else
4629 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4630 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4631 ifr->ifr_hwaddr.sa_family = dev->type;
4632 return 0;
4633
4634 case SIOCGIFSLAVE:
4635 err = -EINVAL;
4636 break;
4637
4638 case SIOCGIFMAP:
4639 ifr->ifr_map.mem_start = dev->mem_start;
4640 ifr->ifr_map.mem_end = dev->mem_end;
4641 ifr->ifr_map.base_addr = dev->base_addr;
4642 ifr->ifr_map.irq = dev->irq;
4643 ifr->ifr_map.dma = dev->dma;
4644 ifr->ifr_map.port = dev->if_port;
4645 return 0;
4646
4647 case SIOCGIFINDEX:
4648 ifr->ifr_ifindex = dev->ifindex;
4649 return 0;
4650
4651 case SIOCGIFTXQLEN:
4652 ifr->ifr_qlen = dev->tx_queue_len;
4653 return 0;
4654
4655 default:
4656 /* dev_ioctl() should ensure this case
4657 * is never reached
4658 */
4659 WARN_ON(1);
4660 err = -EINVAL;
4661 break;
4662
4663 }
4664 return err;
4665 }
4666
4667 /*
4668 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4669 */
4670 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4671 {
4672 int err;
4673 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4674 const struct net_device_ops *ops;
4675
4676 if (!dev)
4677 return -ENODEV;
4678
4679 ops = dev->netdev_ops;
4680
4681 switch (cmd) {
4682 case SIOCSIFFLAGS: /* Set interface flags */
4683 return dev_change_flags(dev, ifr->ifr_flags);
4684
4685 case SIOCSIFMETRIC: /* Set the metric on the interface
4686 (currently unused) */
4687 return -EOPNOTSUPP;
4688
4689 case SIOCSIFMTU: /* Set the MTU of a device */
4690 return dev_set_mtu(dev, ifr->ifr_mtu);
4691
4692 case SIOCSIFHWADDR:
4693 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4694
4695 case SIOCSIFHWBROADCAST:
4696 if (ifr->ifr_hwaddr.sa_family != dev->type)
4697 return -EINVAL;
4698 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4699 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4700 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4701 return 0;
4702
4703 case SIOCSIFMAP:
4704 if (ops->ndo_set_config) {
4705 if (!netif_device_present(dev))
4706 return -ENODEV;
4707 return ops->ndo_set_config(dev, &ifr->ifr_map);
4708 }
4709 return -EOPNOTSUPP;
4710
4711 case SIOCADDMULTI:
4712 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4713 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4714 return -EINVAL;
4715 if (!netif_device_present(dev))
4716 return -ENODEV;
4717 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4718
4719 case SIOCDELMULTI:
4720 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4721 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4722 return -EINVAL;
4723 if (!netif_device_present(dev))
4724 return -ENODEV;
4725 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4726
4727 case SIOCSIFTXQLEN:
4728 if (ifr->ifr_qlen < 0)
4729 return -EINVAL;
4730 dev->tx_queue_len = ifr->ifr_qlen;
4731 return 0;
4732
4733 case SIOCSIFNAME:
4734 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4735 return dev_change_name(dev, ifr->ifr_newname);
4736
4737 /*
4738 * Unknown or private ioctl
4739 */
4740 default:
4741 if ((cmd >= SIOCDEVPRIVATE &&
4742 cmd <= SIOCDEVPRIVATE + 15) ||
4743 cmd == SIOCBONDENSLAVE ||
4744 cmd == SIOCBONDRELEASE ||
4745 cmd == SIOCBONDSETHWADDR ||
4746 cmd == SIOCBONDSLAVEINFOQUERY ||
4747 cmd == SIOCBONDINFOQUERY ||
4748 cmd == SIOCBONDCHANGEACTIVE ||
4749 cmd == SIOCGMIIPHY ||
4750 cmd == SIOCGMIIREG ||
4751 cmd == SIOCSMIIREG ||
4752 cmd == SIOCBRADDIF ||
4753 cmd == SIOCBRDELIF ||
4754 cmd == SIOCSHWTSTAMP ||
4755 cmd == SIOCWANDEV) {
4756 err = -EOPNOTSUPP;
4757 if (ops->ndo_do_ioctl) {
4758 if (netif_device_present(dev))
4759 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4760 else
4761 err = -ENODEV;
4762 }
4763 } else
4764 err = -EINVAL;
4765
4766 }
4767 return err;
4768 }
4769
4770 /*
4771 * This function handles all "interface"-type I/O control requests. The actual
4772 * 'doing' part of this is dev_ifsioc above.
4773 */
4774
4775 /**
4776 * dev_ioctl - network device ioctl
4777 * @net: the applicable net namespace
4778 * @cmd: command to issue
4779 * @arg: pointer to a struct ifreq in user space
4780 *
4781 * Issue ioctl functions to devices. This is normally called by the
4782 * user space syscall interfaces but can sometimes be useful for
4783 * other purposes. The return value is the return from the syscall if
4784 * positive or a negative errno code on error.
4785 */
4786
4787 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4788 {
4789 struct ifreq ifr;
4790 int ret;
4791 char *colon;
4792
4793 /* One special case: SIOCGIFCONF takes ifconf argument
4794 and requires shared lock, because it sleeps writing
4795 to user space.
4796 */
4797
4798 if (cmd == SIOCGIFCONF) {
4799 rtnl_lock();
4800 ret = dev_ifconf(net, (char __user *) arg);
4801 rtnl_unlock();
4802 return ret;
4803 }
4804 if (cmd == SIOCGIFNAME)
4805 return dev_ifname(net, (struct ifreq __user *)arg);
4806
4807 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4808 return -EFAULT;
4809
4810 ifr.ifr_name[IFNAMSIZ-1] = 0;
4811
4812 colon = strchr(ifr.ifr_name, ':');
4813 if (colon)
4814 *colon = 0;
4815
4816 /*
4817 * See which interface the caller is talking about.
4818 */
4819
4820 switch (cmd) {
4821 /*
4822 * These ioctl calls:
4823 * - can be done by all.
4824 * - atomic and do not require locking.
4825 * - return a value
4826 */
4827 case SIOCGIFFLAGS:
4828 case SIOCGIFMETRIC:
4829 case SIOCGIFMTU:
4830 case SIOCGIFHWADDR:
4831 case SIOCGIFSLAVE:
4832 case SIOCGIFMAP:
4833 case SIOCGIFINDEX:
4834 case SIOCGIFTXQLEN:
4835 dev_load(net, ifr.ifr_name);
4836 rcu_read_lock();
4837 ret = dev_ifsioc_locked(net, &ifr, cmd);
4838 rcu_read_unlock();
4839 if (!ret) {
4840 if (colon)
4841 *colon = ':';
4842 if (copy_to_user(arg, &ifr,
4843 sizeof(struct ifreq)))
4844 ret = -EFAULT;
4845 }
4846 return ret;
4847
4848 case SIOCETHTOOL:
4849 dev_load(net, ifr.ifr_name);
4850 rtnl_lock();
4851 ret = dev_ethtool(net, &ifr);
4852 rtnl_unlock();
4853 if (!ret) {
4854 if (colon)
4855 *colon = ':';
4856 if (copy_to_user(arg, &ifr,
4857 sizeof(struct ifreq)))
4858 ret = -EFAULT;
4859 }
4860 return ret;
4861
4862 /*
4863 * These ioctl calls:
4864 * - require superuser power.
4865 * - require strict serialization.
4866 * - return a value
4867 */
4868 case SIOCGMIIPHY:
4869 case SIOCGMIIREG:
4870 case SIOCSIFNAME:
4871 if (!capable(CAP_NET_ADMIN))
4872 return -EPERM;
4873 dev_load(net, ifr.ifr_name);
4874 rtnl_lock();
4875 ret = dev_ifsioc(net, &ifr, cmd);
4876 rtnl_unlock();
4877 if (!ret) {
4878 if (colon)
4879 *colon = ':';
4880 if (copy_to_user(arg, &ifr,
4881 sizeof(struct ifreq)))
4882 ret = -EFAULT;
4883 }
4884 return ret;
4885
4886 /*
4887 * These ioctl calls:
4888 * - require superuser power.
4889 * - require strict serialization.
4890 * - do not return a value
4891 */
4892 case SIOCSIFFLAGS:
4893 case SIOCSIFMETRIC:
4894 case SIOCSIFMTU:
4895 case SIOCSIFMAP:
4896 case SIOCSIFHWADDR:
4897 case SIOCSIFSLAVE:
4898 case SIOCADDMULTI:
4899 case SIOCDELMULTI:
4900 case SIOCSIFHWBROADCAST:
4901 case SIOCSIFTXQLEN:
4902 case SIOCSMIIREG:
4903 case SIOCBONDENSLAVE:
4904 case SIOCBONDRELEASE:
4905 case SIOCBONDSETHWADDR:
4906 case SIOCBONDCHANGEACTIVE:
4907 case SIOCBRADDIF:
4908 case SIOCBRDELIF:
4909 case SIOCSHWTSTAMP:
4910 if (!capable(CAP_NET_ADMIN))
4911 return -EPERM;
4912 /* fall through */
4913 case SIOCBONDSLAVEINFOQUERY:
4914 case SIOCBONDINFOQUERY:
4915 dev_load(net, ifr.ifr_name);
4916 rtnl_lock();
4917 ret = dev_ifsioc(net, &ifr, cmd);
4918 rtnl_unlock();
4919 return ret;
4920
4921 case SIOCGIFMEM:
4922 /* Get the per device memory space. We can add this but
4923 * currently do not support it */
4924 case SIOCSIFMEM:
4925 /* Set the per device memory buffer space.
4926 * Not applicable in our case */
4927 case SIOCSIFLINK:
4928 return -EINVAL;
4929
4930 /*
4931 * Unknown or private ioctl.
4932 */
4933 default:
4934 if (cmd == SIOCWANDEV ||
4935 (cmd >= SIOCDEVPRIVATE &&
4936 cmd <= SIOCDEVPRIVATE + 15)) {
4937 dev_load(net, ifr.ifr_name);
4938 rtnl_lock();
4939 ret = dev_ifsioc(net, &ifr, cmd);
4940 rtnl_unlock();
4941 if (!ret && copy_to_user(arg, &ifr,
4942 sizeof(struct ifreq)))
4943 ret = -EFAULT;
4944 return ret;
4945 }
4946 /* Take care of Wireless Extensions */
4947 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4948 return wext_handle_ioctl(net, &ifr, cmd, arg);
4949 return -EINVAL;
4950 }
4951 }
4952
4953
4954 /**
4955 * dev_new_index - allocate an ifindex
4956 * @net: the applicable net namespace
4957 *
4958 * Returns a suitable unique value for a new device interface
4959 * number. The caller must hold the rtnl semaphore or the
4960 * dev_base_lock to be sure it remains unique.
4961 */
4962 static int dev_new_index(struct net *net)
4963 {
4964 static int ifindex;
4965 for (;;) {
4966 if (++ifindex <= 0)
4967 ifindex = 1;
4968 if (!__dev_get_by_index(net, ifindex))
4969 return ifindex;
4970 }
4971 }
4972
4973 /* Delayed registration/unregisteration */
4974 static LIST_HEAD(net_todo_list);
4975
4976 static void net_set_todo(struct net_device *dev)
4977 {
4978 list_add_tail(&dev->todo_list, &net_todo_list);
4979 }
4980
4981 static void rollback_registered_many(struct list_head *head)
4982 {
4983 struct net_device *dev, *tmp;
4984
4985 BUG_ON(dev_boot_phase);
4986 ASSERT_RTNL();
4987
4988 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4989 /* Some devices call without registering
4990 * for initialization unwind. Remove those
4991 * devices and proceed with the remaining.
4992 */
4993 if (dev->reg_state == NETREG_UNINITIALIZED) {
4994 pr_debug("unregister_netdevice: device %s/%p never "
4995 "was registered\n", dev->name, dev);
4996
4997 WARN_ON(1);
4998 list_del(&dev->unreg_list);
4999 continue;
5000 }
5001
5002 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5003 }
5004
5005 /* If device is running, close it first. */
5006 dev_close_many(head);
5007
5008 list_for_each_entry(dev, head, unreg_list) {
5009 /* And unlink it from device chain. */
5010 unlist_netdevice(dev);
5011
5012 dev->reg_state = NETREG_UNREGISTERING;
5013 }
5014
5015 synchronize_net();
5016
5017 list_for_each_entry(dev, head, unreg_list) {
5018 /* Shutdown queueing discipline. */
5019 dev_shutdown(dev);
5020
5021
5022 /* Notify protocols, that we are about to destroy
5023 this device. They should clean all the things.
5024 */
5025 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5026
5027 if (!dev->rtnl_link_ops ||
5028 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5029 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5030
5031 /*
5032 * Flush the unicast and multicast chains
5033 */
5034 dev_uc_flush(dev);
5035 dev_mc_flush(dev);
5036
5037 if (dev->netdev_ops->ndo_uninit)
5038 dev->netdev_ops->ndo_uninit(dev);
5039
5040 /* Notifier chain MUST detach us from master device. */
5041 WARN_ON(dev->master);
5042
5043 /* Remove entries from kobject tree */
5044 netdev_unregister_kobject(dev);
5045 }
5046
5047 /* Process any work delayed until the end of the batch */
5048 dev = list_first_entry(head, struct net_device, unreg_list);
5049 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5050
5051 rcu_barrier();
5052
5053 list_for_each_entry(dev, head, unreg_list)
5054 dev_put(dev);
5055 }
5056
5057 static void rollback_registered(struct net_device *dev)
5058 {
5059 LIST_HEAD(single);
5060
5061 list_add(&dev->unreg_list, &single);
5062 rollback_registered_many(&single);
5063 }
5064
5065 unsigned long netdev_fix_features(unsigned long features, const char *name)
5066 {
5067 /* Fix illegal SG+CSUM combinations. */
5068 if ((features & NETIF_F_SG) &&
5069 !(features & NETIF_F_ALL_CSUM)) {
5070 if (name)
5071 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5072 "checksum feature.\n", name);
5073 features &= ~NETIF_F_SG;
5074 }
5075
5076 /* TSO requires that SG is present as well. */
5077 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5078 if (name)
5079 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5080 "SG feature.\n", name);
5081 features &= ~NETIF_F_TSO;
5082 }
5083
5084 if (features & NETIF_F_UFO) {
5085 /* maybe split UFO into V4 and V6? */
5086 if (!((features & NETIF_F_GEN_CSUM) ||
5087 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5088 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5089 if (name)
5090 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5091 "since no checksum offload features.\n",
5092 name);
5093 features &= ~NETIF_F_UFO;
5094 }
5095
5096 if (!(features & NETIF_F_SG)) {
5097 if (name)
5098 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5099 "since no NETIF_F_SG feature.\n", name);
5100 features &= ~NETIF_F_UFO;
5101 }
5102 }
5103
5104 return features;
5105 }
5106 EXPORT_SYMBOL(netdev_fix_features);
5107
5108 /**
5109 * netif_stacked_transfer_operstate - transfer operstate
5110 * @rootdev: the root or lower level device to transfer state from
5111 * @dev: the device to transfer operstate to
5112 *
5113 * Transfer operational state from root to device. This is normally
5114 * called when a stacking relationship exists between the root
5115 * device and the device(a leaf device).
5116 */
5117 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5118 struct net_device *dev)
5119 {
5120 if (rootdev->operstate == IF_OPER_DORMANT)
5121 netif_dormant_on(dev);
5122 else
5123 netif_dormant_off(dev);
5124
5125 if (netif_carrier_ok(rootdev)) {
5126 if (!netif_carrier_ok(dev))
5127 netif_carrier_on(dev);
5128 } else {
5129 if (netif_carrier_ok(dev))
5130 netif_carrier_off(dev);
5131 }
5132 }
5133 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5134
5135 #ifdef CONFIG_RPS
5136 static int netif_alloc_rx_queues(struct net_device *dev)
5137 {
5138 unsigned int i, count = dev->num_rx_queues;
5139 struct netdev_rx_queue *rx;
5140
5141 BUG_ON(count < 1);
5142
5143 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5144 if (!rx) {
5145 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5146 return -ENOMEM;
5147 }
5148 dev->_rx = rx;
5149
5150 for (i = 0; i < count; i++)
5151 rx[i].dev = dev;
5152 return 0;
5153 }
5154 #endif
5155
5156 static void netdev_init_one_queue(struct net_device *dev,
5157 struct netdev_queue *queue, void *_unused)
5158 {
5159 /* Initialize queue lock */
5160 spin_lock_init(&queue->_xmit_lock);
5161 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5162 queue->xmit_lock_owner = -1;
5163 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5164 queue->dev = dev;
5165 }
5166
5167 static int netif_alloc_netdev_queues(struct net_device *dev)
5168 {
5169 unsigned int count = dev->num_tx_queues;
5170 struct netdev_queue *tx;
5171
5172 BUG_ON(count < 1);
5173
5174 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5175 if (!tx) {
5176 pr_err("netdev: Unable to allocate %u tx queues.\n",
5177 count);
5178 return -ENOMEM;
5179 }
5180 dev->_tx = tx;
5181
5182 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5183 spin_lock_init(&dev->tx_global_lock);
5184
5185 return 0;
5186 }
5187
5188 /**
5189 * register_netdevice - register a network device
5190 * @dev: device to register
5191 *
5192 * Take a completed network device structure and add it to the kernel
5193 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5194 * chain. 0 is returned on success. A negative errno code is returned
5195 * on a failure to set up the device, or if the name is a duplicate.
5196 *
5197 * Callers must hold the rtnl semaphore. You may want
5198 * register_netdev() instead of this.
5199 *
5200 * BUGS:
5201 * The locking appears insufficient to guarantee two parallel registers
5202 * will not get the same name.
5203 */
5204
5205 int register_netdevice(struct net_device *dev)
5206 {
5207 int ret;
5208 struct net *net = dev_net(dev);
5209
5210 BUG_ON(dev_boot_phase);
5211 ASSERT_RTNL();
5212
5213 might_sleep();
5214
5215 /* When net_device's are persistent, this will be fatal. */
5216 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5217 BUG_ON(!net);
5218
5219 spin_lock_init(&dev->addr_list_lock);
5220 netdev_set_addr_lockdep_class(dev);
5221
5222 dev->iflink = -1;
5223
5224 /* Init, if this function is available */
5225 if (dev->netdev_ops->ndo_init) {
5226 ret = dev->netdev_ops->ndo_init(dev);
5227 if (ret) {
5228 if (ret > 0)
5229 ret = -EIO;
5230 goto out;
5231 }
5232 }
5233
5234 ret = dev_get_valid_name(dev, dev->name, 0);
5235 if (ret)
5236 goto err_uninit;
5237
5238 dev->ifindex = dev_new_index(net);
5239 if (dev->iflink == -1)
5240 dev->iflink = dev->ifindex;
5241
5242 /* Fix illegal checksum combinations */
5243 if ((dev->features & NETIF_F_HW_CSUM) &&
5244 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5245 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5246 dev->name);
5247 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5248 }
5249
5250 if ((dev->features & NETIF_F_NO_CSUM) &&
5251 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5252 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5253 dev->name);
5254 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5255 }
5256
5257 dev->features = netdev_fix_features(dev->features, dev->name);
5258
5259 /* Enable software GSO if SG is supported. */
5260 if (dev->features & NETIF_F_SG)
5261 dev->features |= NETIF_F_GSO;
5262
5263 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5264 * vlan_dev_init() will do the dev->features check, so these features
5265 * are enabled only if supported by underlying device.
5266 */
5267 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5268
5269 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5270 ret = notifier_to_errno(ret);
5271 if (ret)
5272 goto err_uninit;
5273
5274 ret = netdev_register_kobject(dev);
5275 if (ret)
5276 goto err_uninit;
5277 dev->reg_state = NETREG_REGISTERED;
5278
5279 /*
5280 * Default initial state at registry is that the
5281 * device is present.
5282 */
5283
5284 set_bit(__LINK_STATE_PRESENT, &dev->state);
5285
5286 dev_init_scheduler(dev);
5287 dev_hold(dev);
5288 list_netdevice(dev);
5289
5290 /* Notify protocols, that a new device appeared. */
5291 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5292 ret = notifier_to_errno(ret);
5293 if (ret) {
5294 rollback_registered(dev);
5295 dev->reg_state = NETREG_UNREGISTERED;
5296 }
5297 /*
5298 * Prevent userspace races by waiting until the network
5299 * device is fully setup before sending notifications.
5300 */
5301 if (!dev->rtnl_link_ops ||
5302 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5303 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5304
5305 out:
5306 return ret;
5307
5308 err_uninit:
5309 if (dev->netdev_ops->ndo_uninit)
5310 dev->netdev_ops->ndo_uninit(dev);
5311 goto out;
5312 }
5313 EXPORT_SYMBOL(register_netdevice);
5314
5315 /**
5316 * init_dummy_netdev - init a dummy network device for NAPI
5317 * @dev: device to init
5318 *
5319 * This takes a network device structure and initialize the minimum
5320 * amount of fields so it can be used to schedule NAPI polls without
5321 * registering a full blown interface. This is to be used by drivers
5322 * that need to tie several hardware interfaces to a single NAPI
5323 * poll scheduler due to HW limitations.
5324 */
5325 int init_dummy_netdev(struct net_device *dev)
5326 {
5327 /* Clear everything. Note we don't initialize spinlocks
5328 * are they aren't supposed to be taken by any of the
5329 * NAPI code and this dummy netdev is supposed to be
5330 * only ever used for NAPI polls
5331 */
5332 memset(dev, 0, sizeof(struct net_device));
5333
5334 /* make sure we BUG if trying to hit standard
5335 * register/unregister code path
5336 */
5337 dev->reg_state = NETREG_DUMMY;
5338
5339 /* NAPI wants this */
5340 INIT_LIST_HEAD(&dev->napi_list);
5341
5342 /* a dummy interface is started by default */
5343 set_bit(__LINK_STATE_PRESENT, &dev->state);
5344 set_bit(__LINK_STATE_START, &dev->state);
5345
5346 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5347 * because users of this 'device' dont need to change
5348 * its refcount.
5349 */
5350
5351 return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5354
5355
5356 /**
5357 * register_netdev - register a network device
5358 * @dev: device to register
5359 *
5360 * Take a completed network device structure and add it to the kernel
5361 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5362 * chain. 0 is returned on success. A negative errno code is returned
5363 * on a failure to set up the device, or if the name is a duplicate.
5364 *
5365 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5366 * and expands the device name if you passed a format string to
5367 * alloc_netdev.
5368 */
5369 int register_netdev(struct net_device *dev)
5370 {
5371 int err;
5372
5373 rtnl_lock();
5374
5375 /*
5376 * If the name is a format string the caller wants us to do a
5377 * name allocation.
5378 */
5379 if (strchr(dev->name, '%')) {
5380 err = dev_alloc_name(dev, dev->name);
5381 if (err < 0)
5382 goto out;
5383 }
5384
5385 err = register_netdevice(dev);
5386 out:
5387 rtnl_unlock();
5388 return err;
5389 }
5390 EXPORT_SYMBOL(register_netdev);
5391
5392 int netdev_refcnt_read(const struct net_device *dev)
5393 {
5394 int i, refcnt = 0;
5395
5396 for_each_possible_cpu(i)
5397 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5398 return refcnt;
5399 }
5400 EXPORT_SYMBOL(netdev_refcnt_read);
5401
5402 /*
5403 * netdev_wait_allrefs - wait until all references are gone.
5404 *
5405 * This is called when unregistering network devices.
5406 *
5407 * Any protocol or device that holds a reference should register
5408 * for netdevice notification, and cleanup and put back the
5409 * reference if they receive an UNREGISTER event.
5410 * We can get stuck here if buggy protocols don't correctly
5411 * call dev_put.
5412 */
5413 static void netdev_wait_allrefs(struct net_device *dev)
5414 {
5415 unsigned long rebroadcast_time, warning_time;
5416 int refcnt;
5417
5418 linkwatch_forget_dev(dev);
5419
5420 rebroadcast_time = warning_time = jiffies;
5421 refcnt = netdev_refcnt_read(dev);
5422
5423 while (refcnt != 0) {
5424 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5425 rtnl_lock();
5426
5427 /* Rebroadcast unregister notification */
5428 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5429 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5430 * should have already handle it the first time */
5431
5432 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5433 &dev->state)) {
5434 /* We must not have linkwatch events
5435 * pending on unregister. If this
5436 * happens, we simply run the queue
5437 * unscheduled, resulting in a noop
5438 * for this device.
5439 */
5440 linkwatch_run_queue();
5441 }
5442
5443 __rtnl_unlock();
5444
5445 rebroadcast_time = jiffies;
5446 }
5447
5448 msleep(250);
5449
5450 refcnt = netdev_refcnt_read(dev);
5451
5452 if (time_after(jiffies, warning_time + 10 * HZ)) {
5453 printk(KERN_EMERG "unregister_netdevice: "
5454 "waiting for %s to become free. Usage "
5455 "count = %d\n",
5456 dev->name, refcnt);
5457 warning_time = jiffies;
5458 }
5459 }
5460 }
5461
5462 /* The sequence is:
5463 *
5464 * rtnl_lock();
5465 * ...
5466 * register_netdevice(x1);
5467 * register_netdevice(x2);
5468 * ...
5469 * unregister_netdevice(y1);
5470 * unregister_netdevice(y2);
5471 * ...
5472 * rtnl_unlock();
5473 * free_netdev(y1);
5474 * free_netdev(y2);
5475 *
5476 * We are invoked by rtnl_unlock().
5477 * This allows us to deal with problems:
5478 * 1) We can delete sysfs objects which invoke hotplug
5479 * without deadlocking with linkwatch via keventd.
5480 * 2) Since we run with the RTNL semaphore not held, we can sleep
5481 * safely in order to wait for the netdev refcnt to drop to zero.
5482 *
5483 * We must not return until all unregister events added during
5484 * the interval the lock was held have been completed.
5485 */
5486 void netdev_run_todo(void)
5487 {
5488 struct list_head list;
5489
5490 /* Snapshot list, allow later requests */
5491 list_replace_init(&net_todo_list, &list);
5492
5493 __rtnl_unlock();
5494
5495 while (!list_empty(&list)) {
5496 struct net_device *dev
5497 = list_first_entry(&list, struct net_device, todo_list);
5498 list_del(&dev->todo_list);
5499
5500 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5501 printk(KERN_ERR "network todo '%s' but state %d\n",
5502 dev->name, dev->reg_state);
5503 dump_stack();
5504 continue;
5505 }
5506
5507 dev->reg_state = NETREG_UNREGISTERED;
5508
5509 on_each_cpu(flush_backlog, dev, 1);
5510
5511 netdev_wait_allrefs(dev);
5512
5513 /* paranoia */
5514 BUG_ON(netdev_refcnt_read(dev));
5515 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5516 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5517 WARN_ON(dev->dn_ptr);
5518
5519 if (dev->destructor)
5520 dev->destructor(dev);
5521
5522 /* Free network device */
5523 kobject_put(&dev->dev.kobj);
5524 }
5525 }
5526
5527 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5528 * fields in the same order, with only the type differing.
5529 */
5530 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5531 const struct net_device_stats *netdev_stats)
5532 {
5533 #if BITS_PER_LONG == 64
5534 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5535 memcpy(stats64, netdev_stats, sizeof(*stats64));
5536 #else
5537 size_t i, n = sizeof(*stats64) / sizeof(u64);
5538 const unsigned long *src = (const unsigned long *)netdev_stats;
5539 u64 *dst = (u64 *)stats64;
5540
5541 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5542 sizeof(*stats64) / sizeof(u64));
5543 for (i = 0; i < n; i++)
5544 dst[i] = src[i];
5545 #endif
5546 }
5547
5548 /**
5549 * dev_get_stats - get network device statistics
5550 * @dev: device to get statistics from
5551 * @storage: place to store stats
5552 *
5553 * Get network statistics from device. Return @storage.
5554 * The device driver may provide its own method by setting
5555 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5556 * otherwise the internal statistics structure is used.
5557 */
5558 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5559 struct rtnl_link_stats64 *storage)
5560 {
5561 const struct net_device_ops *ops = dev->netdev_ops;
5562
5563 if (ops->ndo_get_stats64) {
5564 memset(storage, 0, sizeof(*storage));
5565 ops->ndo_get_stats64(dev, storage);
5566 } else if (ops->ndo_get_stats) {
5567 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5568 } else {
5569 netdev_stats_to_stats64(storage, &dev->stats);
5570 }
5571 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5572 return storage;
5573 }
5574 EXPORT_SYMBOL(dev_get_stats);
5575
5576 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5577 {
5578 struct netdev_queue *queue = dev_ingress_queue(dev);
5579
5580 #ifdef CONFIG_NET_CLS_ACT
5581 if (queue)
5582 return queue;
5583 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5584 if (!queue)
5585 return NULL;
5586 netdev_init_one_queue(dev, queue, NULL);
5587 queue->qdisc = &noop_qdisc;
5588 queue->qdisc_sleeping = &noop_qdisc;
5589 rcu_assign_pointer(dev->ingress_queue, queue);
5590 #endif
5591 return queue;
5592 }
5593
5594 /**
5595 * alloc_netdev_mqs - allocate network device
5596 * @sizeof_priv: size of private data to allocate space for
5597 * @name: device name format string
5598 * @setup: callback to initialize device
5599 * @txqs: the number of TX subqueues to allocate
5600 * @rxqs: the number of RX subqueues to allocate
5601 *
5602 * Allocates a struct net_device with private data area for driver use
5603 * and performs basic initialization. Also allocates subquue structs
5604 * for each queue on the device.
5605 */
5606 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5607 void (*setup)(struct net_device *),
5608 unsigned int txqs, unsigned int rxqs)
5609 {
5610 struct net_device *dev;
5611 size_t alloc_size;
5612 struct net_device *p;
5613
5614 BUG_ON(strlen(name) >= sizeof(dev->name));
5615
5616 if (txqs < 1) {
5617 pr_err("alloc_netdev: Unable to allocate device "
5618 "with zero queues.\n");
5619 return NULL;
5620 }
5621
5622 #ifdef CONFIG_RPS
5623 if (rxqs < 1) {
5624 pr_err("alloc_netdev: Unable to allocate device "
5625 "with zero RX queues.\n");
5626 return NULL;
5627 }
5628 #endif
5629
5630 alloc_size = sizeof(struct net_device);
5631 if (sizeof_priv) {
5632 /* ensure 32-byte alignment of private area */
5633 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5634 alloc_size += sizeof_priv;
5635 }
5636 /* ensure 32-byte alignment of whole construct */
5637 alloc_size += NETDEV_ALIGN - 1;
5638
5639 p = kzalloc(alloc_size, GFP_KERNEL);
5640 if (!p) {
5641 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5642 return NULL;
5643 }
5644
5645 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5646 dev->padded = (char *)dev - (char *)p;
5647
5648 dev->pcpu_refcnt = alloc_percpu(int);
5649 if (!dev->pcpu_refcnt)
5650 goto free_p;
5651
5652 if (dev_addr_init(dev))
5653 goto free_pcpu;
5654
5655 dev_mc_init(dev);
5656 dev_uc_init(dev);
5657
5658 dev_net_set(dev, &init_net);
5659
5660 dev->num_tx_queues = txqs;
5661 dev->real_num_tx_queues = txqs;
5662 if (netif_alloc_netdev_queues(dev))
5663 goto free_pcpu;
5664
5665 #ifdef CONFIG_RPS
5666 dev->num_rx_queues = rxqs;
5667 dev->real_num_rx_queues = rxqs;
5668 if (netif_alloc_rx_queues(dev))
5669 goto free_pcpu;
5670 #endif
5671
5672 dev->gso_max_size = GSO_MAX_SIZE;
5673
5674 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5675 dev->ethtool_ntuple_list.count = 0;
5676 INIT_LIST_HEAD(&dev->napi_list);
5677 INIT_LIST_HEAD(&dev->unreg_list);
5678 INIT_LIST_HEAD(&dev->link_watch_list);
5679 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5680 setup(dev);
5681 strcpy(dev->name, name);
5682 return dev;
5683
5684 free_pcpu:
5685 free_percpu(dev->pcpu_refcnt);
5686 kfree(dev->_tx);
5687 #ifdef CONFIG_RPS
5688 kfree(dev->_rx);
5689 #endif
5690
5691 free_p:
5692 kfree(p);
5693 return NULL;
5694 }
5695 EXPORT_SYMBOL(alloc_netdev_mqs);
5696
5697 /**
5698 * free_netdev - free network device
5699 * @dev: device
5700 *
5701 * This function does the last stage of destroying an allocated device
5702 * interface. The reference to the device object is released.
5703 * If this is the last reference then it will be freed.
5704 */
5705 void free_netdev(struct net_device *dev)
5706 {
5707 struct napi_struct *p, *n;
5708
5709 release_net(dev_net(dev));
5710
5711 kfree(dev->_tx);
5712 #ifdef CONFIG_RPS
5713 kfree(dev->_rx);
5714 #endif
5715
5716 kfree(rcu_dereference_raw(dev->ingress_queue));
5717
5718 /* Flush device addresses */
5719 dev_addr_flush(dev);
5720
5721 /* Clear ethtool n-tuple list */
5722 ethtool_ntuple_flush(dev);
5723
5724 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5725 netif_napi_del(p);
5726
5727 free_percpu(dev->pcpu_refcnt);
5728 dev->pcpu_refcnt = NULL;
5729
5730 /* Compatibility with error handling in drivers */
5731 if (dev->reg_state == NETREG_UNINITIALIZED) {
5732 kfree((char *)dev - dev->padded);
5733 return;
5734 }
5735
5736 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5737 dev->reg_state = NETREG_RELEASED;
5738
5739 /* will free via device release */
5740 put_device(&dev->dev);
5741 }
5742 EXPORT_SYMBOL(free_netdev);
5743
5744 /**
5745 * synchronize_net - Synchronize with packet receive processing
5746 *
5747 * Wait for packets currently being received to be done.
5748 * Does not block later packets from starting.
5749 */
5750 void synchronize_net(void)
5751 {
5752 might_sleep();
5753 synchronize_rcu();
5754 }
5755 EXPORT_SYMBOL(synchronize_net);
5756
5757 /**
5758 * unregister_netdevice_queue - remove device from the kernel
5759 * @dev: device
5760 * @head: list
5761 *
5762 * This function shuts down a device interface and removes it
5763 * from the kernel tables.
5764 * If head not NULL, device is queued to be unregistered later.
5765 *
5766 * Callers must hold the rtnl semaphore. You may want
5767 * unregister_netdev() instead of this.
5768 */
5769
5770 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5771 {
5772 ASSERT_RTNL();
5773
5774 if (head) {
5775 list_move_tail(&dev->unreg_list, head);
5776 } else {
5777 rollback_registered(dev);
5778 /* Finish processing unregister after unlock */
5779 net_set_todo(dev);
5780 }
5781 }
5782 EXPORT_SYMBOL(unregister_netdevice_queue);
5783
5784 /**
5785 * unregister_netdevice_many - unregister many devices
5786 * @head: list of devices
5787 */
5788 void unregister_netdevice_many(struct list_head *head)
5789 {
5790 struct net_device *dev;
5791
5792 if (!list_empty(head)) {
5793 rollback_registered_many(head);
5794 list_for_each_entry(dev, head, unreg_list)
5795 net_set_todo(dev);
5796 }
5797 }
5798 EXPORT_SYMBOL(unregister_netdevice_many);
5799
5800 /**
5801 * unregister_netdev - remove device from the kernel
5802 * @dev: device
5803 *
5804 * This function shuts down a device interface and removes it
5805 * from the kernel tables.
5806 *
5807 * This is just a wrapper for unregister_netdevice that takes
5808 * the rtnl semaphore. In general you want to use this and not
5809 * unregister_netdevice.
5810 */
5811 void unregister_netdev(struct net_device *dev)
5812 {
5813 rtnl_lock();
5814 unregister_netdevice(dev);
5815 rtnl_unlock();
5816 }
5817 EXPORT_SYMBOL(unregister_netdev);
5818
5819 /**
5820 * dev_change_net_namespace - move device to different nethost namespace
5821 * @dev: device
5822 * @net: network namespace
5823 * @pat: If not NULL name pattern to try if the current device name
5824 * is already taken in the destination network namespace.
5825 *
5826 * This function shuts down a device interface and moves it
5827 * to a new network namespace. On success 0 is returned, on
5828 * a failure a netagive errno code is returned.
5829 *
5830 * Callers must hold the rtnl semaphore.
5831 */
5832
5833 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5834 {
5835 int err;
5836
5837 ASSERT_RTNL();
5838
5839 /* Don't allow namespace local devices to be moved. */
5840 err = -EINVAL;
5841 if (dev->features & NETIF_F_NETNS_LOCAL)
5842 goto out;
5843
5844 /* Ensure the device has been registrered */
5845 err = -EINVAL;
5846 if (dev->reg_state != NETREG_REGISTERED)
5847 goto out;
5848
5849 /* Get out if there is nothing todo */
5850 err = 0;
5851 if (net_eq(dev_net(dev), net))
5852 goto out;
5853
5854 /* Pick the destination device name, and ensure
5855 * we can use it in the destination network namespace.
5856 */
5857 err = -EEXIST;
5858 if (__dev_get_by_name(net, dev->name)) {
5859 /* We get here if we can't use the current device name */
5860 if (!pat)
5861 goto out;
5862 if (dev_get_valid_name(dev, pat, 1))
5863 goto out;
5864 }
5865
5866 /*
5867 * And now a mini version of register_netdevice unregister_netdevice.
5868 */
5869
5870 /* If device is running close it first. */
5871 dev_close(dev);
5872
5873 /* And unlink it from device chain */
5874 err = -ENODEV;
5875 unlist_netdevice(dev);
5876
5877 synchronize_net();
5878
5879 /* Shutdown queueing discipline. */
5880 dev_shutdown(dev);
5881
5882 /* Notify protocols, that we are about to destroy
5883 this device. They should clean all the things.
5884
5885 Note that dev->reg_state stays at NETREG_REGISTERED.
5886 This is wanted because this way 8021q and macvlan know
5887 the device is just moving and can keep their slaves up.
5888 */
5889 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5890 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5891
5892 /*
5893 * Flush the unicast and multicast chains
5894 */
5895 dev_uc_flush(dev);
5896 dev_mc_flush(dev);
5897
5898 /* Actually switch the network namespace */
5899 dev_net_set(dev, net);
5900
5901 /* If there is an ifindex conflict assign a new one */
5902 if (__dev_get_by_index(net, dev->ifindex)) {
5903 int iflink = (dev->iflink == dev->ifindex);
5904 dev->ifindex = dev_new_index(net);
5905 if (iflink)
5906 dev->iflink = dev->ifindex;
5907 }
5908
5909 /* Fixup kobjects */
5910 err = device_rename(&dev->dev, dev->name);
5911 WARN_ON(err);
5912
5913 /* Add the device back in the hashes */
5914 list_netdevice(dev);
5915
5916 /* Notify protocols, that a new device appeared. */
5917 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5918
5919 /*
5920 * Prevent userspace races by waiting until the network
5921 * device is fully setup before sending notifications.
5922 */
5923 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5924
5925 synchronize_net();
5926 err = 0;
5927 out:
5928 return err;
5929 }
5930 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5931
5932 static int dev_cpu_callback(struct notifier_block *nfb,
5933 unsigned long action,
5934 void *ocpu)
5935 {
5936 struct sk_buff **list_skb;
5937 struct sk_buff *skb;
5938 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5939 struct softnet_data *sd, *oldsd;
5940
5941 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5942 return NOTIFY_OK;
5943
5944 local_irq_disable();
5945 cpu = smp_processor_id();
5946 sd = &per_cpu(softnet_data, cpu);
5947 oldsd = &per_cpu(softnet_data, oldcpu);
5948
5949 /* Find end of our completion_queue. */
5950 list_skb = &sd->completion_queue;
5951 while (*list_skb)
5952 list_skb = &(*list_skb)->next;
5953 /* Append completion queue from offline CPU. */
5954 *list_skb = oldsd->completion_queue;
5955 oldsd->completion_queue = NULL;
5956
5957 /* Append output queue from offline CPU. */
5958 if (oldsd->output_queue) {
5959 *sd->output_queue_tailp = oldsd->output_queue;
5960 sd->output_queue_tailp = oldsd->output_queue_tailp;
5961 oldsd->output_queue = NULL;
5962 oldsd->output_queue_tailp = &oldsd->output_queue;
5963 }
5964
5965 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5966 local_irq_enable();
5967
5968 /* Process offline CPU's input_pkt_queue */
5969 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5970 netif_rx(skb);
5971 input_queue_head_incr(oldsd);
5972 }
5973 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5974 netif_rx(skb);
5975 input_queue_head_incr(oldsd);
5976 }
5977
5978 return NOTIFY_OK;
5979 }
5980
5981
5982 /**
5983 * netdev_increment_features - increment feature set by one
5984 * @all: current feature set
5985 * @one: new feature set
5986 * @mask: mask feature set
5987 *
5988 * Computes a new feature set after adding a device with feature set
5989 * @one to the master device with current feature set @all. Will not
5990 * enable anything that is off in @mask. Returns the new feature set.
5991 */
5992 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5993 unsigned long mask)
5994 {
5995 /* If device needs checksumming, downgrade to it. */
5996 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5997 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5998 else if (mask & NETIF_F_ALL_CSUM) {
5999 /* If one device supports v4/v6 checksumming, set for all. */
6000 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6001 !(all & NETIF_F_GEN_CSUM)) {
6002 all &= ~NETIF_F_ALL_CSUM;
6003 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6004 }
6005
6006 /* If one device supports hw checksumming, set for all. */
6007 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6008 all &= ~NETIF_F_ALL_CSUM;
6009 all |= NETIF_F_HW_CSUM;
6010 }
6011 }
6012
6013 one |= NETIF_F_ALL_CSUM;
6014
6015 one |= all & NETIF_F_ONE_FOR_ALL;
6016 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6017 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6018
6019 return all;
6020 }
6021 EXPORT_SYMBOL(netdev_increment_features);
6022
6023 static struct hlist_head *netdev_create_hash(void)
6024 {
6025 int i;
6026 struct hlist_head *hash;
6027
6028 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6029 if (hash != NULL)
6030 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6031 INIT_HLIST_HEAD(&hash[i]);
6032
6033 return hash;
6034 }
6035
6036 /* Initialize per network namespace state */
6037 static int __net_init netdev_init(struct net *net)
6038 {
6039 INIT_LIST_HEAD(&net->dev_base_head);
6040
6041 net->dev_name_head = netdev_create_hash();
6042 if (net->dev_name_head == NULL)
6043 goto err_name;
6044
6045 net->dev_index_head = netdev_create_hash();
6046 if (net->dev_index_head == NULL)
6047 goto err_idx;
6048
6049 return 0;
6050
6051 err_idx:
6052 kfree(net->dev_name_head);
6053 err_name:
6054 return -ENOMEM;
6055 }
6056
6057 /**
6058 * netdev_drivername - network driver for the device
6059 * @dev: network device
6060 * @buffer: buffer for resulting name
6061 * @len: size of buffer
6062 *
6063 * Determine network driver for device.
6064 */
6065 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6066 {
6067 const struct device_driver *driver;
6068 const struct device *parent;
6069
6070 if (len <= 0 || !buffer)
6071 return buffer;
6072 buffer[0] = 0;
6073
6074 parent = dev->dev.parent;
6075
6076 if (!parent)
6077 return buffer;
6078
6079 driver = parent->driver;
6080 if (driver && driver->name)
6081 strlcpy(buffer, driver->name, len);
6082 return buffer;
6083 }
6084
6085 static int __netdev_printk(const char *level, const struct net_device *dev,
6086 struct va_format *vaf)
6087 {
6088 int r;
6089
6090 if (dev && dev->dev.parent)
6091 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6092 netdev_name(dev), vaf);
6093 else if (dev)
6094 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6095 else
6096 r = printk("%s(NULL net_device): %pV", level, vaf);
6097
6098 return r;
6099 }
6100
6101 int netdev_printk(const char *level, const struct net_device *dev,
6102 const char *format, ...)
6103 {
6104 struct va_format vaf;
6105 va_list args;
6106 int r;
6107
6108 va_start(args, format);
6109
6110 vaf.fmt = format;
6111 vaf.va = &args;
6112
6113 r = __netdev_printk(level, dev, &vaf);
6114 va_end(args);
6115
6116 return r;
6117 }
6118 EXPORT_SYMBOL(netdev_printk);
6119
6120 #define define_netdev_printk_level(func, level) \
6121 int func(const struct net_device *dev, const char *fmt, ...) \
6122 { \
6123 int r; \
6124 struct va_format vaf; \
6125 va_list args; \
6126 \
6127 va_start(args, fmt); \
6128 \
6129 vaf.fmt = fmt; \
6130 vaf.va = &args; \
6131 \
6132 r = __netdev_printk(level, dev, &vaf); \
6133 va_end(args); \
6134 \
6135 return r; \
6136 } \
6137 EXPORT_SYMBOL(func);
6138
6139 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6140 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6141 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6142 define_netdev_printk_level(netdev_err, KERN_ERR);
6143 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6144 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6145 define_netdev_printk_level(netdev_info, KERN_INFO);
6146
6147 static void __net_exit netdev_exit(struct net *net)
6148 {
6149 kfree(net->dev_name_head);
6150 kfree(net->dev_index_head);
6151 }
6152
6153 static struct pernet_operations __net_initdata netdev_net_ops = {
6154 .init = netdev_init,
6155 .exit = netdev_exit,
6156 };
6157
6158 static void __net_exit default_device_exit(struct net *net)
6159 {
6160 struct net_device *dev, *aux;
6161 /*
6162 * Push all migratable network devices back to the
6163 * initial network namespace
6164 */
6165 rtnl_lock();
6166 for_each_netdev_safe(net, dev, aux) {
6167 int err;
6168 char fb_name[IFNAMSIZ];
6169
6170 /* Ignore unmoveable devices (i.e. loopback) */
6171 if (dev->features & NETIF_F_NETNS_LOCAL)
6172 continue;
6173
6174 /* Leave virtual devices for the generic cleanup */
6175 if (dev->rtnl_link_ops)
6176 continue;
6177
6178 /* Push remaing network devices to init_net */
6179 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6180 err = dev_change_net_namespace(dev, &init_net, fb_name);
6181 if (err) {
6182 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6183 __func__, dev->name, err);
6184 BUG();
6185 }
6186 }
6187 rtnl_unlock();
6188 }
6189
6190 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6191 {
6192 /* At exit all network devices most be removed from a network
6193 * namespace. Do this in the reverse order of registration.
6194 * Do this across as many network namespaces as possible to
6195 * improve batching efficiency.
6196 */
6197 struct net_device *dev;
6198 struct net *net;
6199 LIST_HEAD(dev_kill_list);
6200
6201 rtnl_lock();
6202 list_for_each_entry(net, net_list, exit_list) {
6203 for_each_netdev_reverse(net, dev) {
6204 if (dev->rtnl_link_ops)
6205 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6206 else
6207 unregister_netdevice_queue(dev, &dev_kill_list);
6208 }
6209 }
6210 unregister_netdevice_many(&dev_kill_list);
6211 rtnl_unlock();
6212 }
6213
6214 static struct pernet_operations __net_initdata default_device_ops = {
6215 .exit = default_device_exit,
6216 .exit_batch = default_device_exit_batch,
6217 };
6218
6219 /*
6220 * Initialize the DEV module. At boot time this walks the device list and
6221 * unhooks any devices that fail to initialise (normally hardware not
6222 * present) and leaves us with a valid list of present and active devices.
6223 *
6224 */
6225
6226 /*
6227 * This is called single threaded during boot, so no need
6228 * to take the rtnl semaphore.
6229 */
6230 static int __init net_dev_init(void)
6231 {
6232 int i, rc = -ENOMEM;
6233
6234 BUG_ON(!dev_boot_phase);
6235
6236 if (dev_proc_init())
6237 goto out;
6238
6239 if (netdev_kobject_init())
6240 goto out;
6241
6242 INIT_LIST_HEAD(&ptype_all);
6243 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6244 INIT_LIST_HEAD(&ptype_base[i]);
6245
6246 if (register_pernet_subsys(&netdev_net_ops))
6247 goto out;
6248
6249 /*
6250 * Initialise the packet receive queues.
6251 */
6252
6253 for_each_possible_cpu(i) {
6254 struct softnet_data *sd = &per_cpu(softnet_data, i);
6255
6256 memset(sd, 0, sizeof(*sd));
6257 skb_queue_head_init(&sd->input_pkt_queue);
6258 skb_queue_head_init(&sd->process_queue);
6259 sd->completion_queue = NULL;
6260 INIT_LIST_HEAD(&sd->poll_list);
6261 sd->output_queue = NULL;
6262 sd->output_queue_tailp = &sd->output_queue;
6263 #ifdef CONFIG_RPS
6264 sd->csd.func = rps_trigger_softirq;
6265 sd->csd.info = sd;
6266 sd->csd.flags = 0;
6267 sd->cpu = i;
6268 #endif
6269
6270 sd->backlog.poll = process_backlog;
6271 sd->backlog.weight = weight_p;
6272 sd->backlog.gro_list = NULL;
6273 sd->backlog.gro_count = 0;
6274 }
6275
6276 dev_boot_phase = 0;
6277
6278 /* The loopback device is special if any other network devices
6279 * is present in a network namespace the loopback device must
6280 * be present. Since we now dynamically allocate and free the
6281 * loopback device ensure this invariant is maintained by
6282 * keeping the loopback device as the first device on the
6283 * list of network devices. Ensuring the loopback devices
6284 * is the first device that appears and the last network device
6285 * that disappears.
6286 */
6287 if (register_pernet_device(&loopback_net_ops))
6288 goto out;
6289
6290 if (register_pernet_device(&default_device_ops))
6291 goto out;
6292
6293 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6294 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6295
6296 hotcpu_notifier(dev_cpu_callback, 0);
6297 dst_init();
6298 dev_mcast_init();
6299 rc = 0;
6300 out:
6301 return rc;
6302 }
6303
6304 subsys_initcall(net_dev_init);
6305
6306 static int __init initialize_hashrnd(void)
6307 {
6308 get_random_bytes(&hashrnd, sizeof(hashrnd));
6309 return 0;
6310 }
6311
6312 late_initcall_sync(initialize_hashrnd);
6313
This page took 0.158525 seconds and 6 git commands to generate.