Merge branch 'simplify_PRT' into release
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 #ifdef CONFIG_NET_DMA
174 struct net_dma {
175 struct dma_client client;
176 spinlock_t lock;
177 cpumask_t channel_mask;
178 struct dma_chan **channels;
179 };
180
181 static enum dma_state_client
182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
183 enum dma_state state);
184
185 static struct net_dma net_dma = {
186 .client = {
187 .event_callback = netdev_dma_event,
188 },
189 };
190 #endif
191
192 /*
193 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
194 * semaphore.
195 *
196 * Pure readers hold dev_base_lock for reading.
197 *
198 * Writers must hold the rtnl semaphore while they loop through the
199 * dev_base_head list, and hold dev_base_lock for writing when they do the
200 * actual updates. This allows pure readers to access the list even
201 * while a writer is preparing to update it.
202 *
203 * To put it another way, dev_base_lock is held for writing only to
204 * protect against pure readers; the rtnl semaphore provides the
205 * protection against other writers.
206 *
207 * See, for example usages, register_netdevice() and
208 * unregister_netdevice(), which must be called with the rtnl
209 * semaphore held.
210 */
211 DEFINE_RWLOCK(dev_base_lock);
212
213 EXPORT_SYMBOL(dev_base_lock);
214
215 #define NETDEV_HASHBITS 8
216 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
217
218 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
219 {
220 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
221 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
222 }
223
224 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
225 {
226 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
227 }
228
229 /* Device list insertion */
230 static int list_netdevice(struct net_device *dev)
231 {
232 struct net *net = dev_net(dev);
233
234 ASSERT_RTNL();
235
236 write_lock_bh(&dev_base_lock);
237 list_add_tail(&dev->dev_list, &net->dev_base_head);
238 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
239 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
240 write_unlock_bh(&dev_base_lock);
241 return 0;
242 }
243
244 /* Device list removal */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del(&dev->dev_list);
252 hlist_del(&dev->name_hlist);
253 hlist_del(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU(struct softnet_data, softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
308
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331 }
332
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351
352 /*******************************************************************************
353
354 Protocol management and registration routines
355
356 *******************************************************************************/
357
358 /*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374 /**
375 * dev_add_pack - add packet handler
376 * @pt: packet type declaration
377 *
378 * Add a protocol handler to the networking stack. The passed &packet_type
379 * is linked into kernel lists and may not be freed until it has been
380 * removed from the kernel lists.
381 *
382 * This call does not sleep therefore it can not
383 * guarantee all CPU's that are in middle of receiving packets
384 * will see the new packet type (until the next received packet).
385 */
386
387 void dev_add_pack(struct packet_type *pt)
388 {
389 int hash;
390
391 spin_lock_bh(&ptype_lock);
392 if (pt->type == htons(ETH_P_ALL))
393 list_add_rcu(&pt->list, &ptype_all);
394 else {
395 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 list_add_rcu(&pt->list, &ptype_base[hash]);
397 }
398 spin_unlock_bh(&ptype_lock);
399 }
400
401 /**
402 * __dev_remove_pack - remove packet handler
403 * @pt: packet type declaration
404 *
405 * Remove a protocol handler that was previously added to the kernel
406 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
407 * from the kernel lists and can be freed or reused once this function
408 * returns.
409 *
410 * The packet type might still be in use by receivers
411 * and must not be freed until after all the CPU's have gone
412 * through a quiescent state.
413 */
414 void __dev_remove_pack(struct packet_type *pt)
415 {
416 struct list_head *head;
417 struct packet_type *pt1;
418
419 spin_lock_bh(&ptype_lock);
420
421 if (pt->type == htons(ETH_P_ALL))
422 head = &ptype_all;
423 else
424 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock_bh(&ptype_lock);
436 }
437 /**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 __dev_remove_pack(pt);
452
453 synchronize_net();
454 }
455
456 /******************************************************************************
457
458 Device Boot-time Settings Routines
459
460 *******************************************************************************/
461
462 /* Boot time configuration table */
463 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
464
465 /**
466 * netdev_boot_setup_add - add new setup entry
467 * @name: name of the device
468 * @map: configured settings for the device
469 *
470 * Adds new setup entry to the dev_boot_setup list. The function
471 * returns 0 on error and 1 on success. This is a generic routine to
472 * all netdevices.
473 */
474 static int netdev_boot_setup_add(char *name, struct ifmap *map)
475 {
476 struct netdev_boot_setup *s;
477 int i;
478
479 s = dev_boot_setup;
480 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
481 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
482 memset(s[i].name, 0, sizeof(s[i].name));
483 strlcpy(s[i].name, name, IFNAMSIZ);
484 memcpy(&s[i].map, map, sizeof(s[i].map));
485 break;
486 }
487 }
488
489 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
490 }
491
492 /**
493 * netdev_boot_setup_check - check boot time settings
494 * @dev: the netdevice
495 *
496 * Check boot time settings for the device.
497 * The found settings are set for the device to be used
498 * later in the device probing.
499 * Returns 0 if no settings found, 1 if they are.
500 */
501 int netdev_boot_setup_check(struct net_device *dev)
502 {
503 struct netdev_boot_setup *s = dev_boot_setup;
504 int i;
505
506 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
507 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
508 !strcmp(dev->name, s[i].name)) {
509 dev->irq = s[i].map.irq;
510 dev->base_addr = s[i].map.base_addr;
511 dev->mem_start = s[i].map.mem_start;
512 dev->mem_end = s[i].map.mem_end;
513 return 1;
514 }
515 }
516 return 0;
517 }
518
519
520 /**
521 * netdev_boot_base - get address from boot time settings
522 * @prefix: prefix for network device
523 * @unit: id for network device
524 *
525 * Check boot time settings for the base address of device.
526 * The found settings are set for the device to be used
527 * later in the device probing.
528 * Returns 0 if no settings found.
529 */
530 unsigned long netdev_boot_base(const char *prefix, int unit)
531 {
532 const struct netdev_boot_setup *s = dev_boot_setup;
533 char name[IFNAMSIZ];
534 int i;
535
536 sprintf(name, "%s%d", prefix, unit);
537
538 /*
539 * If device already registered then return base of 1
540 * to indicate not to probe for this interface
541 */
542 if (__dev_get_by_name(&init_net, name))
543 return 1;
544
545 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
546 if (!strcmp(name, s[i].name))
547 return s[i].map.base_addr;
548 return 0;
549 }
550
551 /*
552 * Saves at boot time configured settings for any netdevice.
553 */
554 int __init netdev_boot_setup(char *str)
555 {
556 int ints[5];
557 struct ifmap map;
558
559 str = get_options(str, ARRAY_SIZE(ints), ints);
560 if (!str || !*str)
561 return 0;
562
563 /* Save settings */
564 memset(&map, 0, sizeof(map));
565 if (ints[0] > 0)
566 map.irq = ints[1];
567 if (ints[0] > 1)
568 map.base_addr = ints[2];
569 if (ints[0] > 2)
570 map.mem_start = ints[3];
571 if (ints[0] > 3)
572 map.mem_end = ints[4];
573
574 /* Add new entry to the list */
575 return netdev_boot_setup_add(str, &map);
576 }
577
578 __setup("netdev=", netdev_boot_setup);
579
580 /*******************************************************************************
581
582 Device Interface Subroutines
583
584 *******************************************************************************/
585
586 /**
587 * __dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. Must be called under RTNL semaphore
592 * or @dev_base_lock. If the name is found a pointer to the device
593 * is returned. If the name is not found then %NULL is returned. The
594 * reference counters are not incremented so the caller must be
595 * careful with locks.
596 */
597
598 struct net_device *__dev_get_by_name(struct net *net, const char *name)
599 {
600 struct hlist_node *p;
601
602 hlist_for_each(p, dev_name_hash(net, name)) {
603 struct net_device *dev
604 = hlist_entry(p, struct net_device, name_hlist);
605 if (!strncmp(dev->name, name, IFNAMSIZ))
606 return dev;
607 }
608 return NULL;
609 }
610
611 /**
612 * dev_get_by_name - find a device by its name
613 * @net: the applicable net namespace
614 * @name: name to find
615 *
616 * Find an interface by name. This can be called from any
617 * context and does its own locking. The returned handle has
618 * the usage count incremented and the caller must use dev_put() to
619 * release it when it is no longer needed. %NULL is returned if no
620 * matching device is found.
621 */
622
623 struct net_device *dev_get_by_name(struct net *net, const char *name)
624 {
625 struct net_device *dev;
626
627 read_lock(&dev_base_lock);
628 dev = __dev_get_by_name(net, name);
629 if (dev)
630 dev_hold(dev);
631 read_unlock(&dev_base_lock);
632 return dev;
633 }
634
635 /**
636 * __dev_get_by_index - find a device by its ifindex
637 * @net: the applicable net namespace
638 * @ifindex: index of device
639 *
640 * Search for an interface by index. Returns %NULL if the device
641 * is not found or a pointer to the device. The device has not
642 * had its reference counter increased so the caller must be careful
643 * about locking. The caller must hold either the RTNL semaphore
644 * or @dev_base_lock.
645 */
646
647 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct hlist_node *p;
650
651 hlist_for_each(p, dev_index_hash(net, ifindex)) {
652 struct net_device *dev
653 = hlist_entry(p, struct net_device, index_hlist);
654 if (dev->ifindex == ifindex)
655 return dev;
656 }
657 return NULL;
658 }
659
660
661 /**
662 * dev_get_by_index - find a device by its ifindex
663 * @net: the applicable net namespace
664 * @ifindex: index of device
665 *
666 * Search for an interface by index. Returns NULL if the device
667 * is not found or a pointer to the device. The device returned has
668 * had a reference added and the pointer is safe until the user calls
669 * dev_put to indicate they have finished with it.
670 */
671
672 struct net_device *dev_get_by_index(struct net *net, int ifindex)
673 {
674 struct net_device *dev;
675
676 read_lock(&dev_base_lock);
677 dev = __dev_get_by_index(net, ifindex);
678 if (dev)
679 dev_hold(dev);
680 read_unlock(&dev_base_lock);
681 return dev;
682 }
683
684 /**
685 * dev_getbyhwaddr - find a device by its hardware address
686 * @net: the applicable net namespace
687 * @type: media type of device
688 * @ha: hardware address
689 *
690 * Search for an interface by MAC address. Returns NULL if the device
691 * is not found or a pointer to the device. The caller must hold the
692 * rtnl semaphore. The returned device has not had its ref count increased
693 * and the caller must therefore be careful about locking
694 *
695 * BUGS:
696 * If the API was consistent this would be __dev_get_by_hwaddr
697 */
698
699 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
700 {
701 struct net_device *dev;
702
703 ASSERT_RTNL();
704
705 for_each_netdev(net, dev)
706 if (dev->type == type &&
707 !memcmp(dev->dev_addr, ha, dev->addr_len))
708 return dev;
709
710 return NULL;
711 }
712
713 EXPORT_SYMBOL(dev_getbyhwaddr);
714
715 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
716 {
717 struct net_device *dev;
718
719 ASSERT_RTNL();
720 for_each_netdev(net, dev)
721 if (dev->type == type)
722 return dev;
723
724 return NULL;
725 }
726
727 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
728
729 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
730 {
731 struct net_device *dev;
732
733 rtnl_lock();
734 dev = __dev_getfirstbyhwtype(net, type);
735 if (dev)
736 dev_hold(dev);
737 rtnl_unlock();
738 return dev;
739 }
740
741 EXPORT_SYMBOL(dev_getfirstbyhwtype);
742
743 /**
744 * dev_get_by_flags - find any device with given flags
745 * @net: the applicable net namespace
746 * @if_flags: IFF_* values
747 * @mask: bitmask of bits in if_flags to check
748 *
749 * Search for any interface with the given flags. Returns NULL if a device
750 * is not found or a pointer to the device. The device returned has
751 * had a reference added and the pointer is safe until the user calls
752 * dev_put to indicate they have finished with it.
753 */
754
755 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
756 {
757 struct net_device *dev, *ret;
758
759 ret = NULL;
760 read_lock(&dev_base_lock);
761 for_each_netdev(net, dev) {
762 if (((dev->flags ^ if_flags) & mask) == 0) {
763 dev_hold(dev);
764 ret = dev;
765 break;
766 }
767 }
768 read_unlock(&dev_base_lock);
769 return ret;
770 }
771
772 /**
773 * dev_valid_name - check if name is okay for network device
774 * @name: name string
775 *
776 * Network device names need to be valid file names to
777 * to allow sysfs to work. We also disallow any kind of
778 * whitespace.
779 */
780 int dev_valid_name(const char *name)
781 {
782 if (*name == '\0')
783 return 0;
784 if (strlen(name) >= IFNAMSIZ)
785 return 0;
786 if (!strcmp(name, ".") || !strcmp(name, ".."))
787 return 0;
788
789 while (*name) {
790 if (*name == '/' || isspace(*name))
791 return 0;
792 name++;
793 }
794 return 1;
795 }
796
797 /**
798 * __dev_alloc_name - allocate a name for a device
799 * @net: network namespace to allocate the device name in
800 * @name: name format string
801 * @buf: scratch buffer and result name string
802 *
803 * Passed a format string - eg "lt%d" it will try and find a suitable
804 * id. It scans list of devices to build up a free map, then chooses
805 * the first empty slot. The caller must hold the dev_base or rtnl lock
806 * while allocating the name and adding the device in order to avoid
807 * duplicates.
808 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
809 * Returns the number of the unit assigned or a negative errno code.
810 */
811
812 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
813 {
814 int i = 0;
815 const char *p;
816 const int max_netdevices = 8*PAGE_SIZE;
817 unsigned long *inuse;
818 struct net_device *d;
819
820 p = strnchr(name, IFNAMSIZ-1, '%');
821 if (p) {
822 /*
823 * Verify the string as this thing may have come from
824 * the user. There must be either one "%d" and no other "%"
825 * characters.
826 */
827 if (p[1] != 'd' || strchr(p + 2, '%'))
828 return -EINVAL;
829
830 /* Use one page as a bit array of possible slots */
831 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
832 if (!inuse)
833 return -ENOMEM;
834
835 for_each_netdev(net, d) {
836 if (!sscanf(d->name, name, &i))
837 continue;
838 if (i < 0 || i >= max_netdevices)
839 continue;
840
841 /* avoid cases where sscanf is not exact inverse of printf */
842 snprintf(buf, IFNAMSIZ, name, i);
843 if (!strncmp(buf, d->name, IFNAMSIZ))
844 set_bit(i, inuse);
845 }
846
847 i = find_first_zero_bit(inuse, max_netdevices);
848 free_page((unsigned long) inuse);
849 }
850
851 snprintf(buf, IFNAMSIZ, name, i);
852 if (!__dev_get_by_name(net, buf))
853 return i;
854
855 /* It is possible to run out of possible slots
856 * when the name is long and there isn't enough space left
857 * for the digits, or if all bits are used.
858 */
859 return -ENFILE;
860 }
861
862 /**
863 * dev_alloc_name - allocate a name for a device
864 * @dev: device
865 * @name: name format string
866 *
867 * Passed a format string - eg "lt%d" it will try and find a suitable
868 * id. It scans list of devices to build up a free map, then chooses
869 * the first empty slot. The caller must hold the dev_base or rtnl lock
870 * while allocating the name and adding the device in order to avoid
871 * duplicates.
872 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
873 * Returns the number of the unit assigned or a negative errno code.
874 */
875
876 int dev_alloc_name(struct net_device *dev, const char *name)
877 {
878 char buf[IFNAMSIZ];
879 struct net *net;
880 int ret;
881
882 BUG_ON(!dev_net(dev));
883 net = dev_net(dev);
884 ret = __dev_alloc_name(net, name, buf);
885 if (ret >= 0)
886 strlcpy(dev->name, buf, IFNAMSIZ);
887 return ret;
888 }
889
890
891 /**
892 * dev_change_name - change name of a device
893 * @dev: device
894 * @newname: name (or format string) must be at least IFNAMSIZ
895 *
896 * Change name of a device, can pass format strings "eth%d".
897 * for wildcarding.
898 */
899 int dev_change_name(struct net_device *dev, const char *newname)
900 {
901 char oldname[IFNAMSIZ];
902 int err = 0;
903 int ret;
904 struct net *net;
905
906 ASSERT_RTNL();
907 BUG_ON(!dev_net(dev));
908
909 net = dev_net(dev);
910 if (dev->flags & IFF_UP)
911 return -EBUSY;
912
913 if (!dev_valid_name(newname))
914 return -EINVAL;
915
916 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
917 return 0;
918
919 memcpy(oldname, dev->name, IFNAMSIZ);
920
921 if (strchr(newname, '%')) {
922 err = dev_alloc_name(dev, newname);
923 if (err < 0)
924 return err;
925 }
926 else if (__dev_get_by_name(net, newname))
927 return -EEXIST;
928 else
929 strlcpy(dev->name, newname, IFNAMSIZ);
930
931 rollback:
932 /* For now only devices in the initial network namespace
933 * are in sysfs.
934 */
935 if (net == &init_net) {
936 ret = device_rename(&dev->dev, dev->name);
937 if (ret) {
938 memcpy(dev->name, oldname, IFNAMSIZ);
939 return ret;
940 }
941 }
942
943 write_lock_bh(&dev_base_lock);
944 hlist_del(&dev->name_hlist);
945 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
946 write_unlock_bh(&dev_base_lock);
947
948 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
949 ret = notifier_to_errno(ret);
950
951 if (ret) {
952 if (err) {
953 printk(KERN_ERR
954 "%s: name change rollback failed: %d.\n",
955 dev->name, ret);
956 } else {
957 err = ret;
958 memcpy(dev->name, oldname, IFNAMSIZ);
959 goto rollback;
960 }
961 }
962
963 return err;
964 }
965
966 /**
967 * dev_set_alias - change ifalias of a device
968 * @dev: device
969 * @alias: name up to IFALIASZ
970 * @len: limit of bytes to copy from info
971 *
972 * Set ifalias for a device,
973 */
974 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
975 {
976 ASSERT_RTNL();
977
978 if (len >= IFALIASZ)
979 return -EINVAL;
980
981 if (!len) {
982 if (dev->ifalias) {
983 kfree(dev->ifalias);
984 dev->ifalias = NULL;
985 }
986 return 0;
987 }
988
989 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
990 if (!dev->ifalias)
991 return -ENOMEM;
992
993 strlcpy(dev->ifalias, alias, len+1);
994 return len;
995 }
996
997
998 /**
999 * netdev_features_change - device changes features
1000 * @dev: device to cause notification
1001 *
1002 * Called to indicate a device has changed features.
1003 */
1004 void netdev_features_change(struct net_device *dev)
1005 {
1006 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1007 }
1008 EXPORT_SYMBOL(netdev_features_change);
1009
1010 /**
1011 * netdev_state_change - device changes state
1012 * @dev: device to cause notification
1013 *
1014 * Called to indicate a device has changed state. This function calls
1015 * the notifier chains for netdev_chain and sends a NEWLINK message
1016 * to the routing socket.
1017 */
1018 void netdev_state_change(struct net_device *dev)
1019 {
1020 if (dev->flags & IFF_UP) {
1021 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1022 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1023 }
1024 }
1025
1026 void netdev_bonding_change(struct net_device *dev)
1027 {
1028 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1029 }
1030 EXPORT_SYMBOL(netdev_bonding_change);
1031
1032 /**
1033 * dev_load - load a network module
1034 * @net: the applicable net namespace
1035 * @name: name of interface
1036 *
1037 * If a network interface is not present and the process has suitable
1038 * privileges this function loads the module. If module loading is not
1039 * available in this kernel then it becomes a nop.
1040 */
1041
1042 void dev_load(struct net *net, const char *name)
1043 {
1044 struct net_device *dev;
1045
1046 read_lock(&dev_base_lock);
1047 dev = __dev_get_by_name(net, name);
1048 read_unlock(&dev_base_lock);
1049
1050 if (!dev && capable(CAP_SYS_MODULE))
1051 request_module("%s", name);
1052 }
1053
1054 /**
1055 * dev_open - prepare an interface for use.
1056 * @dev: device to open
1057 *
1058 * Takes a device from down to up state. The device's private open
1059 * function is invoked and then the multicast lists are loaded. Finally
1060 * the device is moved into the up state and a %NETDEV_UP message is
1061 * sent to the netdev notifier chain.
1062 *
1063 * Calling this function on an active interface is a nop. On a failure
1064 * a negative errno code is returned.
1065 */
1066 int dev_open(struct net_device *dev)
1067 {
1068 const struct net_device_ops *ops = dev->netdev_ops;
1069 int ret = 0;
1070
1071 ASSERT_RTNL();
1072
1073 /*
1074 * Is it already up?
1075 */
1076
1077 if (dev->flags & IFF_UP)
1078 return 0;
1079
1080 /*
1081 * Is it even present?
1082 */
1083 if (!netif_device_present(dev))
1084 return -ENODEV;
1085
1086 /*
1087 * Call device private open method
1088 */
1089 set_bit(__LINK_STATE_START, &dev->state);
1090
1091 if (ops->ndo_validate_addr)
1092 ret = ops->ndo_validate_addr(dev);
1093
1094 if (!ret && ops->ndo_open)
1095 ret = ops->ndo_open(dev);
1096
1097 /*
1098 * If it went open OK then:
1099 */
1100
1101 if (ret)
1102 clear_bit(__LINK_STATE_START, &dev->state);
1103 else {
1104 /*
1105 * Set the flags.
1106 */
1107 dev->flags |= IFF_UP;
1108
1109 /*
1110 * Initialize multicasting status
1111 */
1112 dev_set_rx_mode(dev);
1113
1114 /*
1115 * Wakeup transmit queue engine
1116 */
1117 dev_activate(dev);
1118
1119 /*
1120 * ... and announce new interface.
1121 */
1122 call_netdevice_notifiers(NETDEV_UP, dev);
1123 }
1124
1125 return ret;
1126 }
1127
1128 /**
1129 * dev_close - shutdown an interface.
1130 * @dev: device to shutdown
1131 *
1132 * This function moves an active device into down state. A
1133 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1134 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1135 * chain.
1136 */
1137 int dev_close(struct net_device *dev)
1138 {
1139 const struct net_device_ops *ops = dev->netdev_ops;
1140 ASSERT_RTNL();
1141
1142 might_sleep();
1143
1144 if (!(dev->flags & IFF_UP))
1145 return 0;
1146
1147 /*
1148 * Tell people we are going down, so that they can
1149 * prepare to death, when device is still operating.
1150 */
1151 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1152
1153 clear_bit(__LINK_STATE_START, &dev->state);
1154
1155 /* Synchronize to scheduled poll. We cannot touch poll list,
1156 * it can be even on different cpu. So just clear netif_running().
1157 *
1158 * dev->stop() will invoke napi_disable() on all of it's
1159 * napi_struct instances on this device.
1160 */
1161 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1162
1163 dev_deactivate(dev);
1164
1165 /*
1166 * Call the device specific close. This cannot fail.
1167 * Only if device is UP
1168 *
1169 * We allow it to be called even after a DETACH hot-plug
1170 * event.
1171 */
1172 if (ops->ndo_stop)
1173 ops->ndo_stop(dev);
1174
1175 /*
1176 * Device is now down.
1177 */
1178
1179 dev->flags &= ~IFF_UP;
1180
1181 /*
1182 * Tell people we are down
1183 */
1184 call_netdevice_notifiers(NETDEV_DOWN, dev);
1185
1186 return 0;
1187 }
1188
1189
1190 /**
1191 * dev_disable_lro - disable Large Receive Offload on a device
1192 * @dev: device
1193 *
1194 * Disable Large Receive Offload (LRO) on a net device. Must be
1195 * called under RTNL. This is needed if received packets may be
1196 * forwarded to another interface.
1197 */
1198 void dev_disable_lro(struct net_device *dev)
1199 {
1200 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1201 dev->ethtool_ops->set_flags) {
1202 u32 flags = dev->ethtool_ops->get_flags(dev);
1203 if (flags & ETH_FLAG_LRO) {
1204 flags &= ~ETH_FLAG_LRO;
1205 dev->ethtool_ops->set_flags(dev, flags);
1206 }
1207 }
1208 WARN_ON(dev->features & NETIF_F_LRO);
1209 }
1210 EXPORT_SYMBOL(dev_disable_lro);
1211
1212
1213 static int dev_boot_phase = 1;
1214
1215 /*
1216 * Device change register/unregister. These are not inline or static
1217 * as we export them to the world.
1218 */
1219
1220 /**
1221 * register_netdevice_notifier - register a network notifier block
1222 * @nb: notifier
1223 *
1224 * Register a notifier to be called when network device events occur.
1225 * The notifier passed is linked into the kernel structures and must
1226 * not be reused until it has been unregistered. A negative errno code
1227 * is returned on a failure.
1228 *
1229 * When registered all registration and up events are replayed
1230 * to the new notifier to allow device to have a race free
1231 * view of the network device list.
1232 */
1233
1234 int register_netdevice_notifier(struct notifier_block *nb)
1235 {
1236 struct net_device *dev;
1237 struct net_device *last;
1238 struct net *net;
1239 int err;
1240
1241 rtnl_lock();
1242 err = raw_notifier_chain_register(&netdev_chain, nb);
1243 if (err)
1244 goto unlock;
1245 if (dev_boot_phase)
1246 goto unlock;
1247 for_each_net(net) {
1248 for_each_netdev(net, dev) {
1249 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1250 err = notifier_to_errno(err);
1251 if (err)
1252 goto rollback;
1253
1254 if (!(dev->flags & IFF_UP))
1255 continue;
1256
1257 nb->notifier_call(nb, NETDEV_UP, dev);
1258 }
1259 }
1260
1261 unlock:
1262 rtnl_unlock();
1263 return err;
1264
1265 rollback:
1266 last = dev;
1267 for_each_net(net) {
1268 for_each_netdev(net, dev) {
1269 if (dev == last)
1270 break;
1271
1272 if (dev->flags & IFF_UP) {
1273 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1274 nb->notifier_call(nb, NETDEV_DOWN, dev);
1275 }
1276 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1277 }
1278 }
1279
1280 raw_notifier_chain_unregister(&netdev_chain, nb);
1281 goto unlock;
1282 }
1283
1284 /**
1285 * unregister_netdevice_notifier - unregister a network notifier block
1286 * @nb: notifier
1287 *
1288 * Unregister a notifier previously registered by
1289 * register_netdevice_notifier(). The notifier is unlinked into the
1290 * kernel structures and may then be reused. A negative errno code
1291 * is returned on a failure.
1292 */
1293
1294 int unregister_netdevice_notifier(struct notifier_block *nb)
1295 {
1296 int err;
1297
1298 rtnl_lock();
1299 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1300 rtnl_unlock();
1301 return err;
1302 }
1303
1304 /**
1305 * call_netdevice_notifiers - call all network notifier blocks
1306 * @val: value passed unmodified to notifier function
1307 * @dev: net_device pointer passed unmodified to notifier function
1308 *
1309 * Call all network notifier blocks. Parameters and return value
1310 * are as for raw_notifier_call_chain().
1311 */
1312
1313 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1314 {
1315 return raw_notifier_call_chain(&netdev_chain, val, dev);
1316 }
1317
1318 /* When > 0 there are consumers of rx skb time stamps */
1319 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1320
1321 void net_enable_timestamp(void)
1322 {
1323 atomic_inc(&netstamp_needed);
1324 }
1325
1326 void net_disable_timestamp(void)
1327 {
1328 atomic_dec(&netstamp_needed);
1329 }
1330
1331 static inline void net_timestamp(struct sk_buff *skb)
1332 {
1333 if (atomic_read(&netstamp_needed))
1334 __net_timestamp(skb);
1335 else
1336 skb->tstamp.tv64 = 0;
1337 }
1338
1339 /*
1340 * Support routine. Sends outgoing frames to any network
1341 * taps currently in use.
1342 */
1343
1344 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1345 {
1346 struct packet_type *ptype;
1347
1348 net_timestamp(skb);
1349
1350 rcu_read_lock();
1351 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1352 /* Never send packets back to the socket
1353 * they originated from - MvS (miquels@drinkel.ow.org)
1354 */
1355 if ((ptype->dev == dev || !ptype->dev) &&
1356 (ptype->af_packet_priv == NULL ||
1357 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1358 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1359 if (!skb2)
1360 break;
1361
1362 /* skb->nh should be correctly
1363 set by sender, so that the second statement is
1364 just protection against buggy protocols.
1365 */
1366 skb_reset_mac_header(skb2);
1367
1368 if (skb_network_header(skb2) < skb2->data ||
1369 skb2->network_header > skb2->tail) {
1370 if (net_ratelimit())
1371 printk(KERN_CRIT "protocol %04x is "
1372 "buggy, dev %s\n",
1373 skb2->protocol, dev->name);
1374 skb_reset_network_header(skb2);
1375 }
1376
1377 skb2->transport_header = skb2->network_header;
1378 skb2->pkt_type = PACKET_OUTGOING;
1379 ptype->func(skb2, skb->dev, ptype, skb->dev);
1380 }
1381 }
1382 rcu_read_unlock();
1383 }
1384
1385
1386 static inline void __netif_reschedule(struct Qdisc *q)
1387 {
1388 struct softnet_data *sd;
1389 unsigned long flags;
1390
1391 local_irq_save(flags);
1392 sd = &__get_cpu_var(softnet_data);
1393 q->next_sched = sd->output_queue;
1394 sd->output_queue = q;
1395 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1396 local_irq_restore(flags);
1397 }
1398
1399 void __netif_schedule(struct Qdisc *q)
1400 {
1401 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1402 __netif_reschedule(q);
1403 }
1404 EXPORT_SYMBOL(__netif_schedule);
1405
1406 void dev_kfree_skb_irq(struct sk_buff *skb)
1407 {
1408 if (atomic_dec_and_test(&skb->users)) {
1409 struct softnet_data *sd;
1410 unsigned long flags;
1411
1412 local_irq_save(flags);
1413 sd = &__get_cpu_var(softnet_data);
1414 skb->next = sd->completion_queue;
1415 sd->completion_queue = skb;
1416 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1417 local_irq_restore(flags);
1418 }
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_irq);
1421
1422 void dev_kfree_skb_any(struct sk_buff *skb)
1423 {
1424 if (in_irq() || irqs_disabled())
1425 dev_kfree_skb_irq(skb);
1426 else
1427 dev_kfree_skb(skb);
1428 }
1429 EXPORT_SYMBOL(dev_kfree_skb_any);
1430
1431
1432 /**
1433 * netif_device_detach - mark device as removed
1434 * @dev: network device
1435 *
1436 * Mark device as removed from system and therefore no longer available.
1437 */
1438 void netif_device_detach(struct net_device *dev)
1439 {
1440 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1441 netif_running(dev)) {
1442 netif_stop_queue(dev);
1443 }
1444 }
1445 EXPORT_SYMBOL(netif_device_detach);
1446
1447 /**
1448 * netif_device_attach - mark device as attached
1449 * @dev: network device
1450 *
1451 * Mark device as attached from system and restart if needed.
1452 */
1453 void netif_device_attach(struct net_device *dev)
1454 {
1455 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1456 netif_running(dev)) {
1457 netif_wake_queue(dev);
1458 __netdev_watchdog_up(dev);
1459 }
1460 }
1461 EXPORT_SYMBOL(netif_device_attach);
1462
1463 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1464 {
1465 return ((features & NETIF_F_GEN_CSUM) ||
1466 ((features & NETIF_F_IP_CSUM) &&
1467 protocol == htons(ETH_P_IP)) ||
1468 ((features & NETIF_F_IPV6_CSUM) &&
1469 protocol == htons(ETH_P_IPV6)));
1470 }
1471
1472 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1473 {
1474 if (can_checksum_protocol(dev->features, skb->protocol))
1475 return true;
1476
1477 if (skb->protocol == htons(ETH_P_8021Q)) {
1478 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1479 if (can_checksum_protocol(dev->features & dev->vlan_features,
1480 veh->h_vlan_encapsulated_proto))
1481 return true;
1482 }
1483
1484 return false;
1485 }
1486
1487 /*
1488 * Invalidate hardware checksum when packet is to be mangled, and
1489 * complete checksum manually on outgoing path.
1490 */
1491 int skb_checksum_help(struct sk_buff *skb)
1492 {
1493 __wsum csum;
1494 int ret = 0, offset;
1495
1496 if (skb->ip_summed == CHECKSUM_COMPLETE)
1497 goto out_set_summed;
1498
1499 if (unlikely(skb_shinfo(skb)->gso_size)) {
1500 /* Let GSO fix up the checksum. */
1501 goto out_set_summed;
1502 }
1503
1504 offset = skb->csum_start - skb_headroom(skb);
1505 BUG_ON(offset >= skb_headlen(skb));
1506 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1507
1508 offset += skb->csum_offset;
1509 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1510
1511 if (skb_cloned(skb) &&
1512 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1513 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1514 if (ret)
1515 goto out;
1516 }
1517
1518 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1519 out_set_summed:
1520 skb->ip_summed = CHECKSUM_NONE;
1521 out:
1522 return ret;
1523 }
1524
1525 /**
1526 * skb_gso_segment - Perform segmentation on skb.
1527 * @skb: buffer to segment
1528 * @features: features for the output path (see dev->features)
1529 *
1530 * This function segments the given skb and returns a list of segments.
1531 *
1532 * It may return NULL if the skb requires no segmentation. This is
1533 * only possible when GSO is used for verifying header integrity.
1534 */
1535 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1536 {
1537 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1538 struct packet_type *ptype;
1539 __be16 type = skb->protocol;
1540 int err;
1541
1542 skb_reset_mac_header(skb);
1543 skb->mac_len = skb->network_header - skb->mac_header;
1544 __skb_pull(skb, skb->mac_len);
1545
1546 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1547 if (skb_header_cloned(skb) &&
1548 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1549 return ERR_PTR(err);
1550 }
1551
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(ptype,
1554 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1555 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1556 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1557 err = ptype->gso_send_check(skb);
1558 segs = ERR_PTR(err);
1559 if (err || skb_gso_ok(skb, features))
1560 break;
1561 __skb_push(skb, (skb->data -
1562 skb_network_header(skb)));
1563 }
1564 segs = ptype->gso_segment(skb, features);
1565 break;
1566 }
1567 }
1568 rcu_read_unlock();
1569
1570 __skb_push(skb, skb->data - skb_mac_header(skb));
1571
1572 return segs;
1573 }
1574
1575 EXPORT_SYMBOL(skb_gso_segment);
1576
1577 /* Take action when hardware reception checksum errors are detected. */
1578 #ifdef CONFIG_BUG
1579 void netdev_rx_csum_fault(struct net_device *dev)
1580 {
1581 if (net_ratelimit()) {
1582 printk(KERN_ERR "%s: hw csum failure.\n",
1583 dev ? dev->name : "<unknown>");
1584 dump_stack();
1585 }
1586 }
1587 EXPORT_SYMBOL(netdev_rx_csum_fault);
1588 #endif
1589
1590 /* Actually, we should eliminate this check as soon as we know, that:
1591 * 1. IOMMU is present and allows to map all the memory.
1592 * 2. No high memory really exists on this machine.
1593 */
1594
1595 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1596 {
1597 #ifdef CONFIG_HIGHMEM
1598 int i;
1599
1600 if (dev->features & NETIF_F_HIGHDMA)
1601 return 0;
1602
1603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1604 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1605 return 1;
1606
1607 #endif
1608 return 0;
1609 }
1610
1611 struct dev_gso_cb {
1612 void (*destructor)(struct sk_buff *skb);
1613 };
1614
1615 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1616
1617 static void dev_gso_skb_destructor(struct sk_buff *skb)
1618 {
1619 struct dev_gso_cb *cb;
1620
1621 do {
1622 struct sk_buff *nskb = skb->next;
1623
1624 skb->next = nskb->next;
1625 nskb->next = NULL;
1626 kfree_skb(nskb);
1627 } while (skb->next);
1628
1629 cb = DEV_GSO_CB(skb);
1630 if (cb->destructor)
1631 cb->destructor(skb);
1632 }
1633
1634 /**
1635 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1636 * @skb: buffer to segment
1637 *
1638 * This function segments the given skb and stores the list of segments
1639 * in skb->next.
1640 */
1641 static int dev_gso_segment(struct sk_buff *skb)
1642 {
1643 struct net_device *dev = skb->dev;
1644 struct sk_buff *segs;
1645 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1646 NETIF_F_SG : 0);
1647
1648 segs = skb_gso_segment(skb, features);
1649
1650 /* Verifying header integrity only. */
1651 if (!segs)
1652 return 0;
1653
1654 if (IS_ERR(segs))
1655 return PTR_ERR(segs);
1656
1657 skb->next = segs;
1658 DEV_GSO_CB(skb)->destructor = skb->destructor;
1659 skb->destructor = dev_gso_skb_destructor;
1660
1661 return 0;
1662 }
1663
1664 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1665 struct netdev_queue *txq)
1666 {
1667 const struct net_device_ops *ops = dev->netdev_ops;
1668
1669 prefetch(&dev->netdev_ops->ndo_start_xmit);
1670 if (likely(!skb->next)) {
1671 if (!list_empty(&ptype_all))
1672 dev_queue_xmit_nit(skb, dev);
1673
1674 if (netif_needs_gso(dev, skb)) {
1675 if (unlikely(dev_gso_segment(skb)))
1676 goto out_kfree_skb;
1677 if (skb->next)
1678 goto gso;
1679 }
1680
1681 return ops->ndo_start_xmit(skb, dev);
1682 }
1683
1684 gso:
1685 do {
1686 struct sk_buff *nskb = skb->next;
1687 int rc;
1688
1689 skb->next = nskb->next;
1690 nskb->next = NULL;
1691 rc = ops->ndo_start_xmit(nskb, dev);
1692 if (unlikely(rc)) {
1693 nskb->next = skb->next;
1694 skb->next = nskb;
1695 return rc;
1696 }
1697 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1698 return NETDEV_TX_BUSY;
1699 } while (skb->next);
1700
1701 skb->destructor = DEV_GSO_CB(skb)->destructor;
1702
1703 out_kfree_skb:
1704 kfree_skb(skb);
1705 return 0;
1706 }
1707
1708 static u32 simple_tx_hashrnd;
1709 static int simple_tx_hashrnd_initialized = 0;
1710
1711 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1712 {
1713 u32 addr1, addr2, ports;
1714 u32 hash, ihl;
1715 u8 ip_proto = 0;
1716
1717 if (unlikely(!simple_tx_hashrnd_initialized)) {
1718 get_random_bytes(&simple_tx_hashrnd, 4);
1719 simple_tx_hashrnd_initialized = 1;
1720 }
1721
1722 switch (skb->protocol) {
1723 case htons(ETH_P_IP):
1724 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1725 ip_proto = ip_hdr(skb)->protocol;
1726 addr1 = ip_hdr(skb)->saddr;
1727 addr2 = ip_hdr(skb)->daddr;
1728 ihl = ip_hdr(skb)->ihl;
1729 break;
1730 case htons(ETH_P_IPV6):
1731 ip_proto = ipv6_hdr(skb)->nexthdr;
1732 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1733 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1734 ihl = (40 >> 2);
1735 break;
1736 default:
1737 return 0;
1738 }
1739
1740
1741 switch (ip_proto) {
1742 case IPPROTO_TCP:
1743 case IPPROTO_UDP:
1744 case IPPROTO_DCCP:
1745 case IPPROTO_ESP:
1746 case IPPROTO_AH:
1747 case IPPROTO_SCTP:
1748 case IPPROTO_UDPLITE:
1749 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1750 break;
1751
1752 default:
1753 ports = 0;
1754 break;
1755 }
1756
1757 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1758
1759 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1760 }
1761
1762 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1763 struct sk_buff *skb)
1764 {
1765 const struct net_device_ops *ops = dev->netdev_ops;
1766 u16 queue_index = 0;
1767
1768 if (ops->ndo_select_queue)
1769 queue_index = ops->ndo_select_queue(dev, skb);
1770 else if (dev->real_num_tx_queues > 1)
1771 queue_index = simple_tx_hash(dev, skb);
1772
1773 skb_set_queue_mapping(skb, queue_index);
1774 return netdev_get_tx_queue(dev, queue_index);
1775 }
1776
1777 /**
1778 * dev_queue_xmit - transmit a buffer
1779 * @skb: buffer to transmit
1780 *
1781 * Queue a buffer for transmission to a network device. The caller must
1782 * have set the device and priority and built the buffer before calling
1783 * this function. The function can be called from an interrupt.
1784 *
1785 * A negative errno code is returned on a failure. A success does not
1786 * guarantee the frame will be transmitted as it may be dropped due
1787 * to congestion or traffic shaping.
1788 *
1789 * -----------------------------------------------------------------------------------
1790 * I notice this method can also return errors from the queue disciplines,
1791 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1792 * be positive.
1793 *
1794 * Regardless of the return value, the skb is consumed, so it is currently
1795 * difficult to retry a send to this method. (You can bump the ref count
1796 * before sending to hold a reference for retry if you are careful.)
1797 *
1798 * When calling this method, interrupts MUST be enabled. This is because
1799 * the BH enable code must have IRQs enabled so that it will not deadlock.
1800 * --BLG
1801 */
1802 int dev_queue_xmit(struct sk_buff *skb)
1803 {
1804 struct net_device *dev = skb->dev;
1805 struct netdev_queue *txq;
1806 struct Qdisc *q;
1807 int rc = -ENOMEM;
1808
1809 /* GSO will handle the following emulations directly. */
1810 if (netif_needs_gso(dev, skb))
1811 goto gso;
1812
1813 if (skb_shinfo(skb)->frag_list &&
1814 !(dev->features & NETIF_F_FRAGLIST) &&
1815 __skb_linearize(skb))
1816 goto out_kfree_skb;
1817
1818 /* Fragmented skb is linearized if device does not support SG,
1819 * or if at least one of fragments is in highmem and device
1820 * does not support DMA from it.
1821 */
1822 if (skb_shinfo(skb)->nr_frags &&
1823 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1824 __skb_linearize(skb))
1825 goto out_kfree_skb;
1826
1827 /* If packet is not checksummed and device does not support
1828 * checksumming for this protocol, complete checksumming here.
1829 */
1830 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1831 skb_set_transport_header(skb, skb->csum_start -
1832 skb_headroom(skb));
1833 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1834 goto out_kfree_skb;
1835 }
1836
1837 gso:
1838 /* Disable soft irqs for various locks below. Also
1839 * stops preemption for RCU.
1840 */
1841 rcu_read_lock_bh();
1842
1843 txq = dev_pick_tx(dev, skb);
1844 q = rcu_dereference(txq->qdisc);
1845
1846 #ifdef CONFIG_NET_CLS_ACT
1847 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1848 #endif
1849 if (q->enqueue) {
1850 spinlock_t *root_lock = qdisc_lock(q);
1851
1852 spin_lock(root_lock);
1853
1854 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1855 kfree_skb(skb);
1856 rc = NET_XMIT_DROP;
1857 } else {
1858 rc = qdisc_enqueue_root(skb, q);
1859 qdisc_run(q);
1860 }
1861 spin_unlock(root_lock);
1862
1863 goto out;
1864 }
1865
1866 /* The device has no queue. Common case for software devices:
1867 loopback, all the sorts of tunnels...
1868
1869 Really, it is unlikely that netif_tx_lock protection is necessary
1870 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1871 counters.)
1872 However, it is possible, that they rely on protection
1873 made by us here.
1874
1875 Check this and shot the lock. It is not prone from deadlocks.
1876 Either shot noqueue qdisc, it is even simpler 8)
1877 */
1878 if (dev->flags & IFF_UP) {
1879 int cpu = smp_processor_id(); /* ok because BHs are off */
1880
1881 if (txq->xmit_lock_owner != cpu) {
1882
1883 HARD_TX_LOCK(dev, txq, cpu);
1884
1885 if (!netif_tx_queue_stopped(txq)) {
1886 rc = 0;
1887 if (!dev_hard_start_xmit(skb, dev, txq)) {
1888 HARD_TX_UNLOCK(dev, txq);
1889 goto out;
1890 }
1891 }
1892 HARD_TX_UNLOCK(dev, txq);
1893 if (net_ratelimit())
1894 printk(KERN_CRIT "Virtual device %s asks to "
1895 "queue packet!\n", dev->name);
1896 } else {
1897 /* Recursion is detected! It is possible,
1898 * unfortunately */
1899 if (net_ratelimit())
1900 printk(KERN_CRIT "Dead loop on virtual device "
1901 "%s, fix it urgently!\n", dev->name);
1902 }
1903 }
1904
1905 rc = -ENETDOWN;
1906 rcu_read_unlock_bh();
1907
1908 out_kfree_skb:
1909 kfree_skb(skb);
1910 return rc;
1911 out:
1912 rcu_read_unlock_bh();
1913 return rc;
1914 }
1915
1916
1917 /*=======================================================================
1918 Receiver routines
1919 =======================================================================*/
1920
1921 int netdev_max_backlog __read_mostly = 1000;
1922 int netdev_budget __read_mostly = 300;
1923 int weight_p __read_mostly = 64; /* old backlog weight */
1924
1925 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1926
1927
1928 /**
1929 * netif_rx - post buffer to the network code
1930 * @skb: buffer to post
1931 *
1932 * This function receives a packet from a device driver and queues it for
1933 * the upper (protocol) levels to process. It always succeeds. The buffer
1934 * may be dropped during processing for congestion control or by the
1935 * protocol layers.
1936 *
1937 * return values:
1938 * NET_RX_SUCCESS (no congestion)
1939 * NET_RX_DROP (packet was dropped)
1940 *
1941 */
1942
1943 int netif_rx(struct sk_buff *skb)
1944 {
1945 struct softnet_data *queue;
1946 unsigned long flags;
1947
1948 /* if netpoll wants it, pretend we never saw it */
1949 if (netpoll_rx(skb))
1950 return NET_RX_DROP;
1951
1952 if (!skb->tstamp.tv64)
1953 net_timestamp(skb);
1954
1955 /*
1956 * The code is rearranged so that the path is the most
1957 * short when CPU is congested, but is still operating.
1958 */
1959 local_irq_save(flags);
1960 queue = &__get_cpu_var(softnet_data);
1961
1962 __get_cpu_var(netdev_rx_stat).total++;
1963 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1964 if (queue->input_pkt_queue.qlen) {
1965 enqueue:
1966 __skb_queue_tail(&queue->input_pkt_queue, skb);
1967 local_irq_restore(flags);
1968 return NET_RX_SUCCESS;
1969 }
1970
1971 napi_schedule(&queue->backlog);
1972 goto enqueue;
1973 }
1974
1975 __get_cpu_var(netdev_rx_stat).dropped++;
1976 local_irq_restore(flags);
1977
1978 kfree_skb(skb);
1979 return NET_RX_DROP;
1980 }
1981
1982 int netif_rx_ni(struct sk_buff *skb)
1983 {
1984 int err;
1985
1986 preempt_disable();
1987 err = netif_rx(skb);
1988 if (local_softirq_pending())
1989 do_softirq();
1990 preempt_enable();
1991
1992 return err;
1993 }
1994
1995 EXPORT_SYMBOL(netif_rx_ni);
1996
1997 static void net_tx_action(struct softirq_action *h)
1998 {
1999 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2000
2001 if (sd->completion_queue) {
2002 struct sk_buff *clist;
2003
2004 local_irq_disable();
2005 clist = sd->completion_queue;
2006 sd->completion_queue = NULL;
2007 local_irq_enable();
2008
2009 while (clist) {
2010 struct sk_buff *skb = clist;
2011 clist = clist->next;
2012
2013 WARN_ON(atomic_read(&skb->users));
2014 __kfree_skb(skb);
2015 }
2016 }
2017
2018 if (sd->output_queue) {
2019 struct Qdisc *head;
2020
2021 local_irq_disable();
2022 head = sd->output_queue;
2023 sd->output_queue = NULL;
2024 local_irq_enable();
2025
2026 while (head) {
2027 struct Qdisc *q = head;
2028 spinlock_t *root_lock;
2029
2030 head = head->next_sched;
2031
2032 root_lock = qdisc_lock(q);
2033 if (spin_trylock(root_lock)) {
2034 smp_mb__before_clear_bit();
2035 clear_bit(__QDISC_STATE_SCHED,
2036 &q->state);
2037 qdisc_run(q);
2038 spin_unlock(root_lock);
2039 } else {
2040 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2041 &q->state)) {
2042 __netif_reschedule(q);
2043 } else {
2044 smp_mb__before_clear_bit();
2045 clear_bit(__QDISC_STATE_SCHED,
2046 &q->state);
2047 }
2048 }
2049 }
2050 }
2051 }
2052
2053 static inline int deliver_skb(struct sk_buff *skb,
2054 struct packet_type *pt_prev,
2055 struct net_device *orig_dev)
2056 {
2057 atomic_inc(&skb->users);
2058 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2059 }
2060
2061 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2062 /* These hooks defined here for ATM */
2063 struct net_bridge;
2064 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2065 unsigned char *addr);
2066 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2067
2068 /*
2069 * If bridge module is loaded call bridging hook.
2070 * returns NULL if packet was consumed.
2071 */
2072 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2073 struct sk_buff *skb) __read_mostly;
2074 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2075 struct packet_type **pt_prev, int *ret,
2076 struct net_device *orig_dev)
2077 {
2078 struct net_bridge_port *port;
2079
2080 if (skb->pkt_type == PACKET_LOOPBACK ||
2081 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2082 return skb;
2083
2084 if (*pt_prev) {
2085 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2086 *pt_prev = NULL;
2087 }
2088
2089 return br_handle_frame_hook(port, skb);
2090 }
2091 #else
2092 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2093 #endif
2094
2095 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2096 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2097 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2098
2099 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2100 struct packet_type **pt_prev,
2101 int *ret,
2102 struct net_device *orig_dev)
2103 {
2104 if (skb->dev->macvlan_port == NULL)
2105 return skb;
2106
2107 if (*pt_prev) {
2108 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2109 *pt_prev = NULL;
2110 }
2111 return macvlan_handle_frame_hook(skb);
2112 }
2113 #else
2114 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2115 #endif
2116
2117 #ifdef CONFIG_NET_CLS_ACT
2118 /* TODO: Maybe we should just force sch_ingress to be compiled in
2119 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2120 * a compare and 2 stores extra right now if we dont have it on
2121 * but have CONFIG_NET_CLS_ACT
2122 * NOTE: This doesnt stop any functionality; if you dont have
2123 * the ingress scheduler, you just cant add policies on ingress.
2124 *
2125 */
2126 static int ing_filter(struct sk_buff *skb)
2127 {
2128 struct net_device *dev = skb->dev;
2129 u32 ttl = G_TC_RTTL(skb->tc_verd);
2130 struct netdev_queue *rxq;
2131 int result = TC_ACT_OK;
2132 struct Qdisc *q;
2133
2134 if (MAX_RED_LOOP < ttl++) {
2135 printk(KERN_WARNING
2136 "Redir loop detected Dropping packet (%d->%d)\n",
2137 skb->iif, dev->ifindex);
2138 return TC_ACT_SHOT;
2139 }
2140
2141 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2142 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2143
2144 rxq = &dev->rx_queue;
2145
2146 q = rxq->qdisc;
2147 if (q != &noop_qdisc) {
2148 spin_lock(qdisc_lock(q));
2149 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2150 result = qdisc_enqueue_root(skb, q);
2151 spin_unlock(qdisc_lock(q));
2152 }
2153
2154 return result;
2155 }
2156
2157 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2158 struct packet_type **pt_prev,
2159 int *ret, struct net_device *orig_dev)
2160 {
2161 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2162 goto out;
2163
2164 if (*pt_prev) {
2165 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2166 *pt_prev = NULL;
2167 } else {
2168 /* Huh? Why does turning on AF_PACKET affect this? */
2169 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2170 }
2171
2172 switch (ing_filter(skb)) {
2173 case TC_ACT_SHOT:
2174 case TC_ACT_STOLEN:
2175 kfree_skb(skb);
2176 return NULL;
2177 }
2178
2179 out:
2180 skb->tc_verd = 0;
2181 return skb;
2182 }
2183 #endif
2184
2185 /*
2186 * netif_nit_deliver - deliver received packets to network taps
2187 * @skb: buffer
2188 *
2189 * This function is used to deliver incoming packets to network
2190 * taps. It should be used when the normal netif_receive_skb path
2191 * is bypassed, for example because of VLAN acceleration.
2192 */
2193 void netif_nit_deliver(struct sk_buff *skb)
2194 {
2195 struct packet_type *ptype;
2196
2197 if (list_empty(&ptype_all))
2198 return;
2199
2200 skb_reset_network_header(skb);
2201 skb_reset_transport_header(skb);
2202 skb->mac_len = skb->network_header - skb->mac_header;
2203
2204 rcu_read_lock();
2205 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2206 if (!ptype->dev || ptype->dev == skb->dev)
2207 deliver_skb(skb, ptype, skb->dev);
2208 }
2209 rcu_read_unlock();
2210 }
2211
2212 /**
2213 * netif_receive_skb - process receive buffer from network
2214 * @skb: buffer to process
2215 *
2216 * netif_receive_skb() is the main receive data processing function.
2217 * It always succeeds. The buffer may be dropped during processing
2218 * for congestion control or by the protocol layers.
2219 *
2220 * This function may only be called from softirq context and interrupts
2221 * should be enabled.
2222 *
2223 * Return values (usually ignored):
2224 * NET_RX_SUCCESS: no congestion
2225 * NET_RX_DROP: packet was dropped
2226 */
2227 int netif_receive_skb(struct sk_buff *skb)
2228 {
2229 struct packet_type *ptype, *pt_prev;
2230 struct net_device *orig_dev;
2231 struct net_device *null_or_orig;
2232 int ret = NET_RX_DROP;
2233 __be16 type;
2234
2235 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2236 return NET_RX_SUCCESS;
2237
2238 /* if we've gotten here through NAPI, check netpoll */
2239 if (netpoll_receive_skb(skb))
2240 return NET_RX_DROP;
2241
2242 if (!skb->tstamp.tv64)
2243 net_timestamp(skb);
2244
2245 if (!skb->iif)
2246 skb->iif = skb->dev->ifindex;
2247
2248 null_or_orig = NULL;
2249 orig_dev = skb->dev;
2250 if (orig_dev->master) {
2251 if (skb_bond_should_drop(skb))
2252 null_or_orig = orig_dev; /* deliver only exact match */
2253 else
2254 skb->dev = orig_dev->master;
2255 }
2256
2257 __get_cpu_var(netdev_rx_stat).total++;
2258
2259 skb_reset_network_header(skb);
2260 skb_reset_transport_header(skb);
2261 skb->mac_len = skb->network_header - skb->mac_header;
2262
2263 pt_prev = NULL;
2264
2265 rcu_read_lock();
2266
2267 /* Don't receive packets in an exiting network namespace */
2268 if (!net_alive(dev_net(skb->dev))) {
2269 kfree_skb(skb);
2270 goto out;
2271 }
2272
2273 #ifdef CONFIG_NET_CLS_ACT
2274 if (skb->tc_verd & TC_NCLS) {
2275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2276 goto ncls;
2277 }
2278 #endif
2279
2280 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2281 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2282 ptype->dev == orig_dev) {
2283 if (pt_prev)
2284 ret = deliver_skb(skb, pt_prev, orig_dev);
2285 pt_prev = ptype;
2286 }
2287 }
2288
2289 #ifdef CONFIG_NET_CLS_ACT
2290 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2291 if (!skb)
2292 goto out;
2293 ncls:
2294 #endif
2295
2296 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2300 if (!skb)
2301 goto out;
2302
2303 type = skb->protocol;
2304 list_for_each_entry_rcu(ptype,
2305 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2306 if (ptype->type == type &&
2307 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2308 ptype->dev == orig_dev)) {
2309 if (pt_prev)
2310 ret = deliver_skb(skb, pt_prev, orig_dev);
2311 pt_prev = ptype;
2312 }
2313 }
2314
2315 if (pt_prev) {
2316 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2317 } else {
2318 kfree_skb(skb);
2319 /* Jamal, now you will not able to escape explaining
2320 * me how you were going to use this. :-)
2321 */
2322 ret = NET_RX_DROP;
2323 }
2324
2325 out:
2326 rcu_read_unlock();
2327 return ret;
2328 }
2329
2330 /* Network device is going away, flush any packets still pending */
2331 static void flush_backlog(void *arg)
2332 {
2333 struct net_device *dev = arg;
2334 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2335 struct sk_buff *skb, *tmp;
2336
2337 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2338 if (skb->dev == dev) {
2339 __skb_unlink(skb, &queue->input_pkt_queue);
2340 kfree_skb(skb);
2341 }
2342 }
2343
2344 static int napi_gro_complete(struct sk_buff *skb)
2345 {
2346 struct packet_type *ptype;
2347 __be16 type = skb->protocol;
2348 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2349 int err = -ENOENT;
2350
2351 if (NAPI_GRO_CB(skb)->count == 1)
2352 goto out;
2353
2354 rcu_read_lock();
2355 list_for_each_entry_rcu(ptype, head, list) {
2356 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2357 continue;
2358
2359 err = ptype->gro_complete(skb);
2360 break;
2361 }
2362 rcu_read_unlock();
2363
2364 if (err) {
2365 WARN_ON(&ptype->list == head);
2366 kfree_skb(skb);
2367 return NET_RX_SUCCESS;
2368 }
2369
2370 out:
2371 skb_shinfo(skb)->gso_size = 0;
2372 __skb_push(skb, -skb_network_offset(skb));
2373 return netif_receive_skb(skb);
2374 }
2375
2376 void napi_gro_flush(struct napi_struct *napi)
2377 {
2378 struct sk_buff *skb, *next;
2379
2380 for (skb = napi->gro_list; skb; skb = next) {
2381 next = skb->next;
2382 skb->next = NULL;
2383 napi_gro_complete(skb);
2384 }
2385
2386 napi->gro_list = NULL;
2387 }
2388 EXPORT_SYMBOL(napi_gro_flush);
2389
2390 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2391 {
2392 struct sk_buff **pp = NULL;
2393 struct packet_type *ptype;
2394 __be16 type = skb->protocol;
2395 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2396 int count = 0;
2397 int same_flow;
2398 int mac_len;
2399 int free;
2400
2401 if (!(skb->dev->features & NETIF_F_GRO))
2402 goto normal;
2403
2404 rcu_read_lock();
2405 list_for_each_entry_rcu(ptype, head, list) {
2406 struct sk_buff *p;
2407
2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 continue;
2410
2411 skb_reset_network_header(skb);
2412 mac_len = skb->network_header - skb->mac_header;
2413 skb->mac_len = mac_len;
2414 NAPI_GRO_CB(skb)->same_flow = 0;
2415 NAPI_GRO_CB(skb)->flush = 0;
2416 NAPI_GRO_CB(skb)->free = 0;
2417
2418 for (p = napi->gro_list; p; p = p->next) {
2419 count++;
2420
2421 if (!NAPI_GRO_CB(p)->same_flow)
2422 continue;
2423
2424 if (p->mac_len != mac_len ||
2425 memcmp(skb_mac_header(p), skb_mac_header(skb),
2426 mac_len))
2427 NAPI_GRO_CB(p)->same_flow = 0;
2428 }
2429
2430 pp = ptype->gro_receive(&napi->gro_list, skb);
2431 break;
2432 }
2433 rcu_read_unlock();
2434
2435 if (&ptype->list == head)
2436 goto normal;
2437
2438 same_flow = NAPI_GRO_CB(skb)->same_flow;
2439 free = NAPI_GRO_CB(skb)->free;
2440
2441 if (pp) {
2442 struct sk_buff *nskb = *pp;
2443
2444 *pp = nskb->next;
2445 nskb->next = NULL;
2446 napi_gro_complete(nskb);
2447 count--;
2448 }
2449
2450 if (same_flow)
2451 goto ok;
2452
2453 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2454 __skb_push(skb, -skb_network_offset(skb));
2455 goto normal;
2456 }
2457
2458 NAPI_GRO_CB(skb)->count = 1;
2459 skb_shinfo(skb)->gso_size = skb->len;
2460 skb->next = napi->gro_list;
2461 napi->gro_list = skb;
2462
2463 ok:
2464 return free;
2465
2466 normal:
2467 return -1;
2468 }
2469 EXPORT_SYMBOL(dev_gro_receive);
2470
2471 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2472 {
2473 struct sk_buff *p;
2474
2475 for (p = napi->gro_list; p; p = p->next) {
2476 NAPI_GRO_CB(p)->same_flow = 1;
2477 NAPI_GRO_CB(p)->flush = 0;
2478 }
2479
2480 return dev_gro_receive(napi, skb);
2481 }
2482
2483 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2484 {
2485 switch (__napi_gro_receive(napi, skb)) {
2486 case -1:
2487 return netif_receive_skb(skb);
2488
2489 case 1:
2490 kfree_skb(skb);
2491 break;
2492 }
2493
2494 return NET_RX_SUCCESS;
2495 }
2496 EXPORT_SYMBOL(napi_gro_receive);
2497
2498 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2499 {
2500 skb_shinfo(skb)->nr_frags = 0;
2501
2502 skb->len -= skb->data_len;
2503 skb->truesize -= skb->data_len;
2504 skb->data_len = 0;
2505
2506 __skb_pull(skb, skb_headlen(skb));
2507 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2508
2509 napi->skb = skb;
2510 }
2511 EXPORT_SYMBOL(napi_reuse_skb);
2512
2513 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2514 struct napi_gro_fraginfo *info)
2515 {
2516 struct net_device *dev = napi->dev;
2517 struct sk_buff *skb = napi->skb;
2518
2519 napi->skb = NULL;
2520
2521 if (!skb) {
2522 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2523 if (!skb)
2524 goto out;
2525
2526 skb_reserve(skb, NET_IP_ALIGN);
2527 }
2528
2529 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2530 skb_shinfo(skb)->nr_frags = info->nr_frags;
2531 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2532
2533 skb->data_len = info->len;
2534 skb->len += info->len;
2535 skb->truesize += info->len;
2536
2537 if (!pskb_may_pull(skb, ETH_HLEN)) {
2538 napi_reuse_skb(napi, skb);
2539 goto out;
2540 }
2541
2542 skb->protocol = eth_type_trans(skb, dev);
2543
2544 skb->ip_summed = info->ip_summed;
2545 skb->csum = info->csum;
2546
2547 out:
2548 return skb;
2549 }
2550 EXPORT_SYMBOL(napi_fraginfo_skb);
2551
2552 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2553 {
2554 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2555 int err = NET_RX_DROP;
2556
2557 if (!skb)
2558 goto out;
2559
2560 err = NET_RX_SUCCESS;
2561
2562 switch (__napi_gro_receive(napi, skb)) {
2563 case -1:
2564 return netif_receive_skb(skb);
2565
2566 case 0:
2567 goto out;
2568 }
2569
2570 napi_reuse_skb(napi, skb);
2571
2572 out:
2573 return err;
2574 }
2575 EXPORT_SYMBOL(napi_gro_frags);
2576
2577 static int process_backlog(struct napi_struct *napi, int quota)
2578 {
2579 int work = 0;
2580 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2581 unsigned long start_time = jiffies;
2582
2583 napi->weight = weight_p;
2584 do {
2585 struct sk_buff *skb;
2586
2587 local_irq_disable();
2588 skb = __skb_dequeue(&queue->input_pkt_queue);
2589 if (!skb) {
2590 __napi_complete(napi);
2591 local_irq_enable();
2592 break;
2593 }
2594 local_irq_enable();
2595
2596 napi_gro_receive(napi, skb);
2597 } while (++work < quota && jiffies == start_time);
2598
2599 napi_gro_flush(napi);
2600
2601 return work;
2602 }
2603
2604 /**
2605 * __napi_schedule - schedule for receive
2606 * @n: entry to schedule
2607 *
2608 * The entry's receive function will be scheduled to run
2609 */
2610 void __napi_schedule(struct napi_struct *n)
2611 {
2612 unsigned long flags;
2613
2614 local_irq_save(flags);
2615 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2616 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2617 local_irq_restore(flags);
2618 }
2619 EXPORT_SYMBOL(__napi_schedule);
2620
2621 void __napi_complete(struct napi_struct *n)
2622 {
2623 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2624 BUG_ON(n->gro_list);
2625
2626 list_del(&n->poll_list);
2627 smp_mb__before_clear_bit();
2628 clear_bit(NAPI_STATE_SCHED, &n->state);
2629 }
2630 EXPORT_SYMBOL(__napi_complete);
2631
2632 void napi_complete(struct napi_struct *n)
2633 {
2634 unsigned long flags;
2635
2636 /*
2637 * don't let napi dequeue from the cpu poll list
2638 * just in case its running on a different cpu
2639 */
2640 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2641 return;
2642
2643 napi_gro_flush(n);
2644 local_irq_save(flags);
2645 __napi_complete(n);
2646 local_irq_restore(flags);
2647 }
2648 EXPORT_SYMBOL(napi_complete);
2649
2650 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2651 int (*poll)(struct napi_struct *, int), int weight)
2652 {
2653 INIT_LIST_HEAD(&napi->poll_list);
2654 napi->gro_list = NULL;
2655 napi->skb = NULL;
2656 napi->poll = poll;
2657 napi->weight = weight;
2658 list_add(&napi->dev_list, &dev->napi_list);
2659 napi->dev = dev;
2660 #ifdef CONFIG_NETPOLL
2661 spin_lock_init(&napi->poll_lock);
2662 napi->poll_owner = -1;
2663 #endif
2664 set_bit(NAPI_STATE_SCHED, &napi->state);
2665 }
2666 EXPORT_SYMBOL(netif_napi_add);
2667
2668 void netif_napi_del(struct napi_struct *napi)
2669 {
2670 struct sk_buff *skb, *next;
2671
2672 list_del_init(&napi->dev_list);
2673 kfree(napi->skb);
2674
2675 for (skb = napi->gro_list; skb; skb = next) {
2676 next = skb->next;
2677 skb->next = NULL;
2678 kfree_skb(skb);
2679 }
2680
2681 napi->gro_list = NULL;
2682 }
2683 EXPORT_SYMBOL(netif_napi_del);
2684
2685
2686 static void net_rx_action(struct softirq_action *h)
2687 {
2688 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2689 unsigned long time_limit = jiffies + 2;
2690 int budget = netdev_budget;
2691 void *have;
2692
2693 local_irq_disable();
2694
2695 while (!list_empty(list)) {
2696 struct napi_struct *n;
2697 int work, weight;
2698
2699 /* If softirq window is exhuasted then punt.
2700 * Allow this to run for 2 jiffies since which will allow
2701 * an average latency of 1.5/HZ.
2702 */
2703 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2704 goto softnet_break;
2705
2706 local_irq_enable();
2707
2708 /* Even though interrupts have been re-enabled, this
2709 * access is safe because interrupts can only add new
2710 * entries to the tail of this list, and only ->poll()
2711 * calls can remove this head entry from the list.
2712 */
2713 n = list_entry(list->next, struct napi_struct, poll_list);
2714
2715 have = netpoll_poll_lock(n);
2716
2717 weight = n->weight;
2718
2719 /* This NAPI_STATE_SCHED test is for avoiding a race
2720 * with netpoll's poll_napi(). Only the entity which
2721 * obtains the lock and sees NAPI_STATE_SCHED set will
2722 * actually make the ->poll() call. Therefore we avoid
2723 * accidently calling ->poll() when NAPI is not scheduled.
2724 */
2725 work = 0;
2726 if (test_bit(NAPI_STATE_SCHED, &n->state))
2727 work = n->poll(n, weight);
2728
2729 WARN_ON_ONCE(work > weight);
2730
2731 budget -= work;
2732
2733 local_irq_disable();
2734
2735 /* Drivers must not modify the NAPI state if they
2736 * consume the entire weight. In such cases this code
2737 * still "owns" the NAPI instance and therefore can
2738 * move the instance around on the list at-will.
2739 */
2740 if (unlikely(work == weight)) {
2741 if (unlikely(napi_disable_pending(n)))
2742 __napi_complete(n);
2743 else
2744 list_move_tail(&n->poll_list, list);
2745 }
2746
2747 netpoll_poll_unlock(have);
2748 }
2749 out:
2750 local_irq_enable();
2751
2752 #ifdef CONFIG_NET_DMA
2753 /*
2754 * There may not be any more sk_buffs coming right now, so push
2755 * any pending DMA copies to hardware
2756 */
2757 if (!cpus_empty(net_dma.channel_mask)) {
2758 int chan_idx;
2759 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2760 struct dma_chan *chan = net_dma.channels[chan_idx];
2761 if (chan)
2762 dma_async_memcpy_issue_pending(chan);
2763 }
2764 }
2765 #endif
2766
2767 return;
2768
2769 softnet_break:
2770 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2771 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2772 goto out;
2773 }
2774
2775 static gifconf_func_t * gifconf_list [NPROTO];
2776
2777 /**
2778 * register_gifconf - register a SIOCGIF handler
2779 * @family: Address family
2780 * @gifconf: Function handler
2781 *
2782 * Register protocol dependent address dumping routines. The handler
2783 * that is passed must not be freed or reused until it has been replaced
2784 * by another handler.
2785 */
2786 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2787 {
2788 if (family >= NPROTO)
2789 return -EINVAL;
2790 gifconf_list[family] = gifconf;
2791 return 0;
2792 }
2793
2794
2795 /*
2796 * Map an interface index to its name (SIOCGIFNAME)
2797 */
2798
2799 /*
2800 * We need this ioctl for efficient implementation of the
2801 * if_indextoname() function required by the IPv6 API. Without
2802 * it, we would have to search all the interfaces to find a
2803 * match. --pb
2804 */
2805
2806 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2807 {
2808 struct net_device *dev;
2809 struct ifreq ifr;
2810
2811 /*
2812 * Fetch the caller's info block.
2813 */
2814
2815 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2816 return -EFAULT;
2817
2818 read_lock(&dev_base_lock);
2819 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2820 if (!dev) {
2821 read_unlock(&dev_base_lock);
2822 return -ENODEV;
2823 }
2824
2825 strcpy(ifr.ifr_name, dev->name);
2826 read_unlock(&dev_base_lock);
2827
2828 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2829 return -EFAULT;
2830 return 0;
2831 }
2832
2833 /*
2834 * Perform a SIOCGIFCONF call. This structure will change
2835 * size eventually, and there is nothing I can do about it.
2836 * Thus we will need a 'compatibility mode'.
2837 */
2838
2839 static int dev_ifconf(struct net *net, char __user *arg)
2840 {
2841 struct ifconf ifc;
2842 struct net_device *dev;
2843 char __user *pos;
2844 int len;
2845 int total;
2846 int i;
2847
2848 /*
2849 * Fetch the caller's info block.
2850 */
2851
2852 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2853 return -EFAULT;
2854
2855 pos = ifc.ifc_buf;
2856 len = ifc.ifc_len;
2857
2858 /*
2859 * Loop over the interfaces, and write an info block for each.
2860 */
2861
2862 total = 0;
2863 for_each_netdev(net, dev) {
2864 for (i = 0; i < NPROTO; i++) {
2865 if (gifconf_list[i]) {
2866 int done;
2867 if (!pos)
2868 done = gifconf_list[i](dev, NULL, 0);
2869 else
2870 done = gifconf_list[i](dev, pos + total,
2871 len - total);
2872 if (done < 0)
2873 return -EFAULT;
2874 total += done;
2875 }
2876 }
2877 }
2878
2879 /*
2880 * All done. Write the updated control block back to the caller.
2881 */
2882 ifc.ifc_len = total;
2883
2884 /*
2885 * Both BSD and Solaris return 0 here, so we do too.
2886 */
2887 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2888 }
2889
2890 #ifdef CONFIG_PROC_FS
2891 /*
2892 * This is invoked by the /proc filesystem handler to display a device
2893 * in detail.
2894 */
2895 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2896 __acquires(dev_base_lock)
2897 {
2898 struct net *net = seq_file_net(seq);
2899 loff_t off;
2900 struct net_device *dev;
2901
2902 read_lock(&dev_base_lock);
2903 if (!*pos)
2904 return SEQ_START_TOKEN;
2905
2906 off = 1;
2907 for_each_netdev(net, dev)
2908 if (off++ == *pos)
2909 return dev;
2910
2911 return NULL;
2912 }
2913
2914 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2915 {
2916 struct net *net = seq_file_net(seq);
2917 ++*pos;
2918 return v == SEQ_START_TOKEN ?
2919 first_net_device(net) : next_net_device((struct net_device *)v);
2920 }
2921
2922 void dev_seq_stop(struct seq_file *seq, void *v)
2923 __releases(dev_base_lock)
2924 {
2925 read_unlock(&dev_base_lock);
2926 }
2927
2928 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2929 {
2930 const struct net_device_stats *stats = dev_get_stats(dev);
2931
2932 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2933 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2934 dev->name, stats->rx_bytes, stats->rx_packets,
2935 stats->rx_errors,
2936 stats->rx_dropped + stats->rx_missed_errors,
2937 stats->rx_fifo_errors,
2938 stats->rx_length_errors + stats->rx_over_errors +
2939 stats->rx_crc_errors + stats->rx_frame_errors,
2940 stats->rx_compressed, stats->multicast,
2941 stats->tx_bytes, stats->tx_packets,
2942 stats->tx_errors, stats->tx_dropped,
2943 stats->tx_fifo_errors, stats->collisions,
2944 stats->tx_carrier_errors +
2945 stats->tx_aborted_errors +
2946 stats->tx_window_errors +
2947 stats->tx_heartbeat_errors,
2948 stats->tx_compressed);
2949 }
2950
2951 /*
2952 * Called from the PROCfs module. This now uses the new arbitrary sized
2953 * /proc/net interface to create /proc/net/dev
2954 */
2955 static int dev_seq_show(struct seq_file *seq, void *v)
2956 {
2957 if (v == SEQ_START_TOKEN)
2958 seq_puts(seq, "Inter-| Receive "
2959 " | Transmit\n"
2960 " face |bytes packets errs drop fifo frame "
2961 "compressed multicast|bytes packets errs "
2962 "drop fifo colls carrier compressed\n");
2963 else
2964 dev_seq_printf_stats(seq, v);
2965 return 0;
2966 }
2967
2968 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2969 {
2970 struct netif_rx_stats *rc = NULL;
2971
2972 while (*pos < nr_cpu_ids)
2973 if (cpu_online(*pos)) {
2974 rc = &per_cpu(netdev_rx_stat, *pos);
2975 break;
2976 } else
2977 ++*pos;
2978 return rc;
2979 }
2980
2981 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2982 {
2983 return softnet_get_online(pos);
2984 }
2985
2986 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2987 {
2988 ++*pos;
2989 return softnet_get_online(pos);
2990 }
2991
2992 static void softnet_seq_stop(struct seq_file *seq, void *v)
2993 {
2994 }
2995
2996 static int softnet_seq_show(struct seq_file *seq, void *v)
2997 {
2998 struct netif_rx_stats *s = v;
2999
3000 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3001 s->total, s->dropped, s->time_squeeze, 0,
3002 0, 0, 0, 0, /* was fastroute */
3003 s->cpu_collision );
3004 return 0;
3005 }
3006
3007 static const struct seq_operations dev_seq_ops = {
3008 .start = dev_seq_start,
3009 .next = dev_seq_next,
3010 .stop = dev_seq_stop,
3011 .show = dev_seq_show,
3012 };
3013
3014 static int dev_seq_open(struct inode *inode, struct file *file)
3015 {
3016 return seq_open_net(inode, file, &dev_seq_ops,
3017 sizeof(struct seq_net_private));
3018 }
3019
3020 static const struct file_operations dev_seq_fops = {
3021 .owner = THIS_MODULE,
3022 .open = dev_seq_open,
3023 .read = seq_read,
3024 .llseek = seq_lseek,
3025 .release = seq_release_net,
3026 };
3027
3028 static const struct seq_operations softnet_seq_ops = {
3029 .start = softnet_seq_start,
3030 .next = softnet_seq_next,
3031 .stop = softnet_seq_stop,
3032 .show = softnet_seq_show,
3033 };
3034
3035 static int softnet_seq_open(struct inode *inode, struct file *file)
3036 {
3037 return seq_open(file, &softnet_seq_ops);
3038 }
3039
3040 static const struct file_operations softnet_seq_fops = {
3041 .owner = THIS_MODULE,
3042 .open = softnet_seq_open,
3043 .read = seq_read,
3044 .llseek = seq_lseek,
3045 .release = seq_release,
3046 };
3047
3048 static void *ptype_get_idx(loff_t pos)
3049 {
3050 struct packet_type *pt = NULL;
3051 loff_t i = 0;
3052 int t;
3053
3054 list_for_each_entry_rcu(pt, &ptype_all, list) {
3055 if (i == pos)
3056 return pt;
3057 ++i;
3058 }
3059
3060 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3061 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3062 if (i == pos)
3063 return pt;
3064 ++i;
3065 }
3066 }
3067 return NULL;
3068 }
3069
3070 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3071 __acquires(RCU)
3072 {
3073 rcu_read_lock();
3074 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3075 }
3076
3077 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3078 {
3079 struct packet_type *pt;
3080 struct list_head *nxt;
3081 int hash;
3082
3083 ++*pos;
3084 if (v == SEQ_START_TOKEN)
3085 return ptype_get_idx(0);
3086
3087 pt = v;
3088 nxt = pt->list.next;
3089 if (pt->type == htons(ETH_P_ALL)) {
3090 if (nxt != &ptype_all)
3091 goto found;
3092 hash = 0;
3093 nxt = ptype_base[0].next;
3094 } else
3095 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3096
3097 while (nxt == &ptype_base[hash]) {
3098 if (++hash >= PTYPE_HASH_SIZE)
3099 return NULL;
3100 nxt = ptype_base[hash].next;
3101 }
3102 found:
3103 return list_entry(nxt, struct packet_type, list);
3104 }
3105
3106 static void ptype_seq_stop(struct seq_file *seq, void *v)
3107 __releases(RCU)
3108 {
3109 rcu_read_unlock();
3110 }
3111
3112 static int ptype_seq_show(struct seq_file *seq, void *v)
3113 {
3114 struct packet_type *pt = v;
3115
3116 if (v == SEQ_START_TOKEN)
3117 seq_puts(seq, "Type Device Function\n");
3118 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3119 if (pt->type == htons(ETH_P_ALL))
3120 seq_puts(seq, "ALL ");
3121 else
3122 seq_printf(seq, "%04x", ntohs(pt->type));
3123
3124 seq_printf(seq, " %-8s %pF\n",
3125 pt->dev ? pt->dev->name : "", pt->func);
3126 }
3127
3128 return 0;
3129 }
3130
3131 static const struct seq_operations ptype_seq_ops = {
3132 .start = ptype_seq_start,
3133 .next = ptype_seq_next,
3134 .stop = ptype_seq_stop,
3135 .show = ptype_seq_show,
3136 };
3137
3138 static int ptype_seq_open(struct inode *inode, struct file *file)
3139 {
3140 return seq_open_net(inode, file, &ptype_seq_ops,
3141 sizeof(struct seq_net_private));
3142 }
3143
3144 static const struct file_operations ptype_seq_fops = {
3145 .owner = THIS_MODULE,
3146 .open = ptype_seq_open,
3147 .read = seq_read,
3148 .llseek = seq_lseek,
3149 .release = seq_release_net,
3150 };
3151
3152
3153 static int __net_init dev_proc_net_init(struct net *net)
3154 {
3155 int rc = -ENOMEM;
3156
3157 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3158 goto out;
3159 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3160 goto out_dev;
3161 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3162 goto out_softnet;
3163
3164 if (wext_proc_init(net))
3165 goto out_ptype;
3166 rc = 0;
3167 out:
3168 return rc;
3169 out_ptype:
3170 proc_net_remove(net, "ptype");
3171 out_softnet:
3172 proc_net_remove(net, "softnet_stat");
3173 out_dev:
3174 proc_net_remove(net, "dev");
3175 goto out;
3176 }
3177
3178 static void __net_exit dev_proc_net_exit(struct net *net)
3179 {
3180 wext_proc_exit(net);
3181
3182 proc_net_remove(net, "ptype");
3183 proc_net_remove(net, "softnet_stat");
3184 proc_net_remove(net, "dev");
3185 }
3186
3187 static struct pernet_operations __net_initdata dev_proc_ops = {
3188 .init = dev_proc_net_init,
3189 .exit = dev_proc_net_exit,
3190 };
3191
3192 static int __init dev_proc_init(void)
3193 {
3194 return register_pernet_subsys(&dev_proc_ops);
3195 }
3196 #else
3197 #define dev_proc_init() 0
3198 #endif /* CONFIG_PROC_FS */
3199
3200
3201 /**
3202 * netdev_set_master - set up master/slave pair
3203 * @slave: slave device
3204 * @master: new master device
3205 *
3206 * Changes the master device of the slave. Pass %NULL to break the
3207 * bonding. The caller must hold the RTNL semaphore. On a failure
3208 * a negative errno code is returned. On success the reference counts
3209 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3210 * function returns zero.
3211 */
3212 int netdev_set_master(struct net_device *slave, struct net_device *master)
3213 {
3214 struct net_device *old = slave->master;
3215
3216 ASSERT_RTNL();
3217
3218 if (master) {
3219 if (old)
3220 return -EBUSY;
3221 dev_hold(master);
3222 }
3223
3224 slave->master = master;
3225
3226 synchronize_net();
3227
3228 if (old)
3229 dev_put(old);
3230
3231 if (master)
3232 slave->flags |= IFF_SLAVE;
3233 else
3234 slave->flags &= ~IFF_SLAVE;
3235
3236 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3237 return 0;
3238 }
3239
3240 static void dev_change_rx_flags(struct net_device *dev, int flags)
3241 {
3242 const struct net_device_ops *ops = dev->netdev_ops;
3243
3244 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3245 ops->ndo_change_rx_flags(dev, flags);
3246 }
3247
3248 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3249 {
3250 unsigned short old_flags = dev->flags;
3251 uid_t uid;
3252 gid_t gid;
3253
3254 ASSERT_RTNL();
3255
3256 dev->flags |= IFF_PROMISC;
3257 dev->promiscuity += inc;
3258 if (dev->promiscuity == 0) {
3259 /*
3260 * Avoid overflow.
3261 * If inc causes overflow, untouch promisc and return error.
3262 */
3263 if (inc < 0)
3264 dev->flags &= ~IFF_PROMISC;
3265 else {
3266 dev->promiscuity -= inc;
3267 printk(KERN_WARNING "%s: promiscuity touches roof, "
3268 "set promiscuity failed, promiscuity feature "
3269 "of device might be broken.\n", dev->name);
3270 return -EOVERFLOW;
3271 }
3272 }
3273 if (dev->flags != old_flags) {
3274 printk(KERN_INFO "device %s %s promiscuous mode\n",
3275 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3276 "left");
3277 if (audit_enabled) {
3278 current_uid_gid(&uid, &gid);
3279 audit_log(current->audit_context, GFP_ATOMIC,
3280 AUDIT_ANOM_PROMISCUOUS,
3281 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3282 dev->name, (dev->flags & IFF_PROMISC),
3283 (old_flags & IFF_PROMISC),
3284 audit_get_loginuid(current),
3285 uid, gid,
3286 audit_get_sessionid(current));
3287 }
3288
3289 dev_change_rx_flags(dev, IFF_PROMISC);
3290 }
3291 return 0;
3292 }
3293
3294 /**
3295 * dev_set_promiscuity - update promiscuity count on a device
3296 * @dev: device
3297 * @inc: modifier
3298 *
3299 * Add or remove promiscuity from a device. While the count in the device
3300 * remains above zero the interface remains promiscuous. Once it hits zero
3301 * the device reverts back to normal filtering operation. A negative inc
3302 * value is used to drop promiscuity on the device.
3303 * Return 0 if successful or a negative errno code on error.
3304 */
3305 int dev_set_promiscuity(struct net_device *dev, int inc)
3306 {
3307 unsigned short old_flags = dev->flags;
3308 int err;
3309
3310 err = __dev_set_promiscuity(dev, inc);
3311 if (err < 0)
3312 return err;
3313 if (dev->flags != old_flags)
3314 dev_set_rx_mode(dev);
3315 return err;
3316 }
3317
3318 /**
3319 * dev_set_allmulti - update allmulti count on a device
3320 * @dev: device
3321 * @inc: modifier
3322 *
3323 * Add or remove reception of all multicast frames to a device. While the
3324 * count in the device remains above zero the interface remains listening
3325 * to all interfaces. Once it hits zero the device reverts back to normal
3326 * filtering operation. A negative @inc value is used to drop the counter
3327 * when releasing a resource needing all multicasts.
3328 * Return 0 if successful or a negative errno code on error.
3329 */
3330
3331 int dev_set_allmulti(struct net_device *dev, int inc)
3332 {
3333 unsigned short old_flags = dev->flags;
3334
3335 ASSERT_RTNL();
3336
3337 dev->flags |= IFF_ALLMULTI;
3338 dev->allmulti += inc;
3339 if (dev->allmulti == 0) {
3340 /*
3341 * Avoid overflow.
3342 * If inc causes overflow, untouch allmulti and return error.
3343 */
3344 if (inc < 0)
3345 dev->flags &= ~IFF_ALLMULTI;
3346 else {
3347 dev->allmulti -= inc;
3348 printk(KERN_WARNING "%s: allmulti touches roof, "
3349 "set allmulti failed, allmulti feature of "
3350 "device might be broken.\n", dev->name);
3351 return -EOVERFLOW;
3352 }
3353 }
3354 if (dev->flags ^ old_flags) {
3355 dev_change_rx_flags(dev, IFF_ALLMULTI);
3356 dev_set_rx_mode(dev);
3357 }
3358 return 0;
3359 }
3360
3361 /*
3362 * Upload unicast and multicast address lists to device and
3363 * configure RX filtering. When the device doesn't support unicast
3364 * filtering it is put in promiscuous mode while unicast addresses
3365 * are present.
3366 */
3367 void __dev_set_rx_mode(struct net_device *dev)
3368 {
3369 const struct net_device_ops *ops = dev->netdev_ops;
3370
3371 /* dev_open will call this function so the list will stay sane. */
3372 if (!(dev->flags&IFF_UP))
3373 return;
3374
3375 if (!netif_device_present(dev))
3376 return;
3377
3378 if (ops->ndo_set_rx_mode)
3379 ops->ndo_set_rx_mode(dev);
3380 else {
3381 /* Unicast addresses changes may only happen under the rtnl,
3382 * therefore calling __dev_set_promiscuity here is safe.
3383 */
3384 if (dev->uc_count > 0 && !dev->uc_promisc) {
3385 __dev_set_promiscuity(dev, 1);
3386 dev->uc_promisc = 1;
3387 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3388 __dev_set_promiscuity(dev, -1);
3389 dev->uc_promisc = 0;
3390 }
3391
3392 if (ops->ndo_set_multicast_list)
3393 ops->ndo_set_multicast_list(dev);
3394 }
3395 }
3396
3397 void dev_set_rx_mode(struct net_device *dev)
3398 {
3399 netif_addr_lock_bh(dev);
3400 __dev_set_rx_mode(dev);
3401 netif_addr_unlock_bh(dev);
3402 }
3403
3404 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3405 void *addr, int alen, int glbl)
3406 {
3407 struct dev_addr_list *da;
3408
3409 for (; (da = *list) != NULL; list = &da->next) {
3410 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3411 alen == da->da_addrlen) {
3412 if (glbl) {
3413 int old_glbl = da->da_gusers;
3414 da->da_gusers = 0;
3415 if (old_glbl == 0)
3416 break;
3417 }
3418 if (--da->da_users)
3419 return 0;
3420
3421 *list = da->next;
3422 kfree(da);
3423 (*count)--;
3424 return 0;
3425 }
3426 }
3427 return -ENOENT;
3428 }
3429
3430 int __dev_addr_add(struct dev_addr_list **list, int *count,
3431 void *addr, int alen, int glbl)
3432 {
3433 struct dev_addr_list *da;
3434
3435 for (da = *list; da != NULL; da = da->next) {
3436 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3437 da->da_addrlen == alen) {
3438 if (glbl) {
3439 int old_glbl = da->da_gusers;
3440 da->da_gusers = 1;
3441 if (old_glbl)
3442 return 0;
3443 }
3444 da->da_users++;
3445 return 0;
3446 }
3447 }
3448
3449 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3450 if (da == NULL)
3451 return -ENOMEM;
3452 memcpy(da->da_addr, addr, alen);
3453 da->da_addrlen = alen;
3454 da->da_users = 1;
3455 da->da_gusers = glbl ? 1 : 0;
3456 da->next = *list;
3457 *list = da;
3458 (*count)++;
3459 return 0;
3460 }
3461
3462 /**
3463 * dev_unicast_delete - Release secondary unicast address.
3464 * @dev: device
3465 * @addr: address to delete
3466 * @alen: length of @addr
3467 *
3468 * Release reference to a secondary unicast address and remove it
3469 * from the device if the reference count drops to zero.
3470 *
3471 * The caller must hold the rtnl_mutex.
3472 */
3473 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3474 {
3475 int err;
3476
3477 ASSERT_RTNL();
3478
3479 netif_addr_lock_bh(dev);
3480 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3481 if (!err)
3482 __dev_set_rx_mode(dev);
3483 netif_addr_unlock_bh(dev);
3484 return err;
3485 }
3486 EXPORT_SYMBOL(dev_unicast_delete);
3487
3488 /**
3489 * dev_unicast_add - add a secondary unicast address
3490 * @dev: device
3491 * @addr: address to add
3492 * @alen: length of @addr
3493 *
3494 * Add a secondary unicast address to the device or increase
3495 * the reference count if it already exists.
3496 *
3497 * The caller must hold the rtnl_mutex.
3498 */
3499 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3500 {
3501 int err;
3502
3503 ASSERT_RTNL();
3504
3505 netif_addr_lock_bh(dev);
3506 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3507 if (!err)
3508 __dev_set_rx_mode(dev);
3509 netif_addr_unlock_bh(dev);
3510 return err;
3511 }
3512 EXPORT_SYMBOL(dev_unicast_add);
3513
3514 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3515 struct dev_addr_list **from, int *from_count)
3516 {
3517 struct dev_addr_list *da, *next;
3518 int err = 0;
3519
3520 da = *from;
3521 while (da != NULL) {
3522 next = da->next;
3523 if (!da->da_synced) {
3524 err = __dev_addr_add(to, to_count,
3525 da->da_addr, da->da_addrlen, 0);
3526 if (err < 0)
3527 break;
3528 da->da_synced = 1;
3529 da->da_users++;
3530 } else if (da->da_users == 1) {
3531 __dev_addr_delete(to, to_count,
3532 da->da_addr, da->da_addrlen, 0);
3533 __dev_addr_delete(from, from_count,
3534 da->da_addr, da->da_addrlen, 0);
3535 }
3536 da = next;
3537 }
3538 return err;
3539 }
3540
3541 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3542 struct dev_addr_list **from, int *from_count)
3543 {
3544 struct dev_addr_list *da, *next;
3545
3546 da = *from;
3547 while (da != NULL) {
3548 next = da->next;
3549 if (da->da_synced) {
3550 __dev_addr_delete(to, to_count,
3551 da->da_addr, da->da_addrlen, 0);
3552 da->da_synced = 0;
3553 __dev_addr_delete(from, from_count,
3554 da->da_addr, da->da_addrlen, 0);
3555 }
3556 da = next;
3557 }
3558 }
3559
3560 /**
3561 * dev_unicast_sync - Synchronize device's unicast list to another device
3562 * @to: destination device
3563 * @from: source device
3564 *
3565 * Add newly added addresses to the destination device and release
3566 * addresses that have no users left. The source device must be
3567 * locked by netif_tx_lock_bh.
3568 *
3569 * This function is intended to be called from the dev->set_rx_mode
3570 * function of layered software devices.
3571 */
3572 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3573 {
3574 int err = 0;
3575
3576 netif_addr_lock_bh(to);
3577 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3578 &from->uc_list, &from->uc_count);
3579 if (!err)
3580 __dev_set_rx_mode(to);
3581 netif_addr_unlock_bh(to);
3582 return err;
3583 }
3584 EXPORT_SYMBOL(dev_unicast_sync);
3585
3586 /**
3587 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3588 * @to: destination device
3589 * @from: source device
3590 *
3591 * Remove all addresses that were added to the destination device by
3592 * dev_unicast_sync(). This function is intended to be called from the
3593 * dev->stop function of layered software devices.
3594 */
3595 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3596 {
3597 netif_addr_lock_bh(from);
3598 netif_addr_lock(to);
3599
3600 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3601 &from->uc_list, &from->uc_count);
3602 __dev_set_rx_mode(to);
3603
3604 netif_addr_unlock(to);
3605 netif_addr_unlock_bh(from);
3606 }
3607 EXPORT_SYMBOL(dev_unicast_unsync);
3608
3609 static void __dev_addr_discard(struct dev_addr_list **list)
3610 {
3611 struct dev_addr_list *tmp;
3612
3613 while (*list != NULL) {
3614 tmp = *list;
3615 *list = tmp->next;
3616 if (tmp->da_users > tmp->da_gusers)
3617 printk("__dev_addr_discard: address leakage! "
3618 "da_users=%d\n", tmp->da_users);
3619 kfree(tmp);
3620 }
3621 }
3622
3623 static void dev_addr_discard(struct net_device *dev)
3624 {
3625 netif_addr_lock_bh(dev);
3626
3627 __dev_addr_discard(&dev->uc_list);
3628 dev->uc_count = 0;
3629
3630 __dev_addr_discard(&dev->mc_list);
3631 dev->mc_count = 0;
3632
3633 netif_addr_unlock_bh(dev);
3634 }
3635
3636 /**
3637 * dev_get_flags - get flags reported to userspace
3638 * @dev: device
3639 *
3640 * Get the combination of flag bits exported through APIs to userspace.
3641 */
3642 unsigned dev_get_flags(const struct net_device *dev)
3643 {
3644 unsigned flags;
3645
3646 flags = (dev->flags & ~(IFF_PROMISC |
3647 IFF_ALLMULTI |
3648 IFF_RUNNING |
3649 IFF_LOWER_UP |
3650 IFF_DORMANT)) |
3651 (dev->gflags & (IFF_PROMISC |
3652 IFF_ALLMULTI));
3653
3654 if (netif_running(dev)) {
3655 if (netif_oper_up(dev))
3656 flags |= IFF_RUNNING;
3657 if (netif_carrier_ok(dev))
3658 flags |= IFF_LOWER_UP;
3659 if (netif_dormant(dev))
3660 flags |= IFF_DORMANT;
3661 }
3662
3663 return flags;
3664 }
3665
3666 /**
3667 * dev_change_flags - change device settings
3668 * @dev: device
3669 * @flags: device state flags
3670 *
3671 * Change settings on device based state flags. The flags are
3672 * in the userspace exported format.
3673 */
3674 int dev_change_flags(struct net_device *dev, unsigned flags)
3675 {
3676 int ret, changes;
3677 int old_flags = dev->flags;
3678
3679 ASSERT_RTNL();
3680
3681 /*
3682 * Set the flags on our device.
3683 */
3684
3685 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3686 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3687 IFF_AUTOMEDIA)) |
3688 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3689 IFF_ALLMULTI));
3690
3691 /*
3692 * Load in the correct multicast list now the flags have changed.
3693 */
3694
3695 if ((old_flags ^ flags) & IFF_MULTICAST)
3696 dev_change_rx_flags(dev, IFF_MULTICAST);
3697
3698 dev_set_rx_mode(dev);
3699
3700 /*
3701 * Have we downed the interface. We handle IFF_UP ourselves
3702 * according to user attempts to set it, rather than blindly
3703 * setting it.
3704 */
3705
3706 ret = 0;
3707 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3708 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3709
3710 if (!ret)
3711 dev_set_rx_mode(dev);
3712 }
3713
3714 if (dev->flags & IFF_UP &&
3715 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3716 IFF_VOLATILE)))
3717 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3718
3719 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3720 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3721 dev->gflags ^= IFF_PROMISC;
3722 dev_set_promiscuity(dev, inc);
3723 }
3724
3725 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3726 is important. Some (broken) drivers set IFF_PROMISC, when
3727 IFF_ALLMULTI is requested not asking us and not reporting.
3728 */
3729 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3730 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3731 dev->gflags ^= IFF_ALLMULTI;
3732 dev_set_allmulti(dev, inc);
3733 }
3734
3735 /* Exclude state transition flags, already notified */
3736 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3737 if (changes)
3738 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3739
3740 return ret;
3741 }
3742
3743 /**
3744 * dev_set_mtu - Change maximum transfer unit
3745 * @dev: device
3746 * @new_mtu: new transfer unit
3747 *
3748 * Change the maximum transfer size of the network device.
3749 */
3750 int dev_set_mtu(struct net_device *dev, int new_mtu)
3751 {
3752 const struct net_device_ops *ops = dev->netdev_ops;
3753 int err;
3754
3755 if (new_mtu == dev->mtu)
3756 return 0;
3757
3758 /* MTU must be positive. */
3759 if (new_mtu < 0)
3760 return -EINVAL;
3761
3762 if (!netif_device_present(dev))
3763 return -ENODEV;
3764
3765 err = 0;
3766 if (ops->ndo_change_mtu)
3767 err = ops->ndo_change_mtu(dev, new_mtu);
3768 else
3769 dev->mtu = new_mtu;
3770
3771 if (!err && dev->flags & IFF_UP)
3772 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3773 return err;
3774 }
3775
3776 /**
3777 * dev_set_mac_address - Change Media Access Control Address
3778 * @dev: device
3779 * @sa: new address
3780 *
3781 * Change the hardware (MAC) address of the device
3782 */
3783 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3784 {
3785 const struct net_device_ops *ops = dev->netdev_ops;
3786 int err;
3787
3788 if (!ops->ndo_set_mac_address)
3789 return -EOPNOTSUPP;
3790 if (sa->sa_family != dev->type)
3791 return -EINVAL;
3792 if (!netif_device_present(dev))
3793 return -ENODEV;
3794 err = ops->ndo_set_mac_address(dev, sa);
3795 if (!err)
3796 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3797 return err;
3798 }
3799
3800 /*
3801 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3802 */
3803 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3804 {
3805 int err;
3806 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3807
3808 if (!dev)
3809 return -ENODEV;
3810
3811 switch (cmd) {
3812 case SIOCGIFFLAGS: /* Get interface flags */
3813 ifr->ifr_flags = dev_get_flags(dev);
3814 return 0;
3815
3816 case SIOCGIFMETRIC: /* Get the metric on the interface
3817 (currently unused) */
3818 ifr->ifr_metric = 0;
3819 return 0;
3820
3821 case SIOCGIFMTU: /* Get the MTU of a device */
3822 ifr->ifr_mtu = dev->mtu;
3823 return 0;
3824
3825 case SIOCGIFHWADDR:
3826 if (!dev->addr_len)
3827 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3828 else
3829 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3830 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3831 ifr->ifr_hwaddr.sa_family = dev->type;
3832 return 0;
3833
3834 case SIOCGIFSLAVE:
3835 err = -EINVAL;
3836 break;
3837
3838 case SIOCGIFMAP:
3839 ifr->ifr_map.mem_start = dev->mem_start;
3840 ifr->ifr_map.mem_end = dev->mem_end;
3841 ifr->ifr_map.base_addr = dev->base_addr;
3842 ifr->ifr_map.irq = dev->irq;
3843 ifr->ifr_map.dma = dev->dma;
3844 ifr->ifr_map.port = dev->if_port;
3845 return 0;
3846
3847 case SIOCGIFINDEX:
3848 ifr->ifr_ifindex = dev->ifindex;
3849 return 0;
3850
3851 case SIOCGIFTXQLEN:
3852 ifr->ifr_qlen = dev->tx_queue_len;
3853 return 0;
3854
3855 default:
3856 /* dev_ioctl() should ensure this case
3857 * is never reached
3858 */
3859 WARN_ON(1);
3860 err = -EINVAL;
3861 break;
3862
3863 }
3864 return err;
3865 }
3866
3867 /*
3868 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3869 */
3870 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3871 {
3872 int err;
3873 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3874 const struct net_device_ops *ops;
3875
3876 if (!dev)
3877 return -ENODEV;
3878
3879 ops = dev->netdev_ops;
3880
3881 switch (cmd) {
3882 case SIOCSIFFLAGS: /* Set interface flags */
3883 return dev_change_flags(dev, ifr->ifr_flags);
3884
3885 case SIOCSIFMETRIC: /* Set the metric on the interface
3886 (currently unused) */
3887 return -EOPNOTSUPP;
3888
3889 case SIOCSIFMTU: /* Set the MTU of a device */
3890 return dev_set_mtu(dev, ifr->ifr_mtu);
3891
3892 case SIOCSIFHWADDR:
3893 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3894
3895 case SIOCSIFHWBROADCAST:
3896 if (ifr->ifr_hwaddr.sa_family != dev->type)
3897 return -EINVAL;
3898 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3899 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3900 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3901 return 0;
3902
3903 case SIOCSIFMAP:
3904 if (ops->ndo_set_config) {
3905 if (!netif_device_present(dev))
3906 return -ENODEV;
3907 return ops->ndo_set_config(dev, &ifr->ifr_map);
3908 }
3909 return -EOPNOTSUPP;
3910
3911 case SIOCADDMULTI:
3912 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3913 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3914 return -EINVAL;
3915 if (!netif_device_present(dev))
3916 return -ENODEV;
3917 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3918 dev->addr_len, 1);
3919
3920 case SIOCDELMULTI:
3921 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3922 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3923 return -EINVAL;
3924 if (!netif_device_present(dev))
3925 return -ENODEV;
3926 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3927 dev->addr_len, 1);
3928
3929 case SIOCSIFTXQLEN:
3930 if (ifr->ifr_qlen < 0)
3931 return -EINVAL;
3932 dev->tx_queue_len = ifr->ifr_qlen;
3933 return 0;
3934
3935 case SIOCSIFNAME:
3936 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3937 return dev_change_name(dev, ifr->ifr_newname);
3938
3939 /*
3940 * Unknown or private ioctl
3941 */
3942
3943 default:
3944 if ((cmd >= SIOCDEVPRIVATE &&
3945 cmd <= SIOCDEVPRIVATE + 15) ||
3946 cmd == SIOCBONDENSLAVE ||
3947 cmd == SIOCBONDRELEASE ||
3948 cmd == SIOCBONDSETHWADDR ||
3949 cmd == SIOCBONDSLAVEINFOQUERY ||
3950 cmd == SIOCBONDINFOQUERY ||
3951 cmd == SIOCBONDCHANGEACTIVE ||
3952 cmd == SIOCGMIIPHY ||
3953 cmd == SIOCGMIIREG ||
3954 cmd == SIOCSMIIREG ||
3955 cmd == SIOCBRADDIF ||
3956 cmd == SIOCBRDELIF ||
3957 cmd == SIOCWANDEV) {
3958 err = -EOPNOTSUPP;
3959 if (ops->ndo_do_ioctl) {
3960 if (netif_device_present(dev))
3961 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3962 else
3963 err = -ENODEV;
3964 }
3965 } else
3966 err = -EINVAL;
3967
3968 }
3969 return err;
3970 }
3971
3972 /*
3973 * This function handles all "interface"-type I/O control requests. The actual
3974 * 'doing' part of this is dev_ifsioc above.
3975 */
3976
3977 /**
3978 * dev_ioctl - network device ioctl
3979 * @net: the applicable net namespace
3980 * @cmd: command to issue
3981 * @arg: pointer to a struct ifreq in user space
3982 *
3983 * Issue ioctl functions to devices. This is normally called by the
3984 * user space syscall interfaces but can sometimes be useful for
3985 * other purposes. The return value is the return from the syscall if
3986 * positive or a negative errno code on error.
3987 */
3988
3989 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3990 {
3991 struct ifreq ifr;
3992 int ret;
3993 char *colon;
3994
3995 /* One special case: SIOCGIFCONF takes ifconf argument
3996 and requires shared lock, because it sleeps writing
3997 to user space.
3998 */
3999
4000 if (cmd == SIOCGIFCONF) {
4001 rtnl_lock();
4002 ret = dev_ifconf(net, (char __user *) arg);
4003 rtnl_unlock();
4004 return ret;
4005 }
4006 if (cmd == SIOCGIFNAME)
4007 return dev_ifname(net, (struct ifreq __user *)arg);
4008
4009 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4010 return -EFAULT;
4011
4012 ifr.ifr_name[IFNAMSIZ-1] = 0;
4013
4014 colon = strchr(ifr.ifr_name, ':');
4015 if (colon)
4016 *colon = 0;
4017
4018 /*
4019 * See which interface the caller is talking about.
4020 */
4021
4022 switch (cmd) {
4023 /*
4024 * These ioctl calls:
4025 * - can be done by all.
4026 * - atomic and do not require locking.
4027 * - return a value
4028 */
4029 case SIOCGIFFLAGS:
4030 case SIOCGIFMETRIC:
4031 case SIOCGIFMTU:
4032 case SIOCGIFHWADDR:
4033 case SIOCGIFSLAVE:
4034 case SIOCGIFMAP:
4035 case SIOCGIFINDEX:
4036 case SIOCGIFTXQLEN:
4037 dev_load(net, ifr.ifr_name);
4038 read_lock(&dev_base_lock);
4039 ret = dev_ifsioc_locked(net, &ifr, cmd);
4040 read_unlock(&dev_base_lock);
4041 if (!ret) {
4042 if (colon)
4043 *colon = ':';
4044 if (copy_to_user(arg, &ifr,
4045 sizeof(struct ifreq)))
4046 ret = -EFAULT;
4047 }
4048 return ret;
4049
4050 case SIOCETHTOOL:
4051 dev_load(net, ifr.ifr_name);
4052 rtnl_lock();
4053 ret = dev_ethtool(net, &ifr);
4054 rtnl_unlock();
4055 if (!ret) {
4056 if (colon)
4057 *colon = ':';
4058 if (copy_to_user(arg, &ifr,
4059 sizeof(struct ifreq)))
4060 ret = -EFAULT;
4061 }
4062 return ret;
4063
4064 /*
4065 * These ioctl calls:
4066 * - require superuser power.
4067 * - require strict serialization.
4068 * - return a value
4069 */
4070 case SIOCGMIIPHY:
4071 case SIOCGMIIREG:
4072 case SIOCSIFNAME:
4073 if (!capable(CAP_NET_ADMIN))
4074 return -EPERM;
4075 dev_load(net, ifr.ifr_name);
4076 rtnl_lock();
4077 ret = dev_ifsioc(net, &ifr, cmd);
4078 rtnl_unlock();
4079 if (!ret) {
4080 if (colon)
4081 *colon = ':';
4082 if (copy_to_user(arg, &ifr,
4083 sizeof(struct ifreq)))
4084 ret = -EFAULT;
4085 }
4086 return ret;
4087
4088 /*
4089 * These ioctl calls:
4090 * - require superuser power.
4091 * - require strict serialization.
4092 * - do not return a value
4093 */
4094 case SIOCSIFFLAGS:
4095 case SIOCSIFMETRIC:
4096 case SIOCSIFMTU:
4097 case SIOCSIFMAP:
4098 case SIOCSIFHWADDR:
4099 case SIOCSIFSLAVE:
4100 case SIOCADDMULTI:
4101 case SIOCDELMULTI:
4102 case SIOCSIFHWBROADCAST:
4103 case SIOCSIFTXQLEN:
4104 case SIOCSMIIREG:
4105 case SIOCBONDENSLAVE:
4106 case SIOCBONDRELEASE:
4107 case SIOCBONDSETHWADDR:
4108 case SIOCBONDCHANGEACTIVE:
4109 case SIOCBRADDIF:
4110 case SIOCBRDELIF:
4111 if (!capable(CAP_NET_ADMIN))
4112 return -EPERM;
4113 /* fall through */
4114 case SIOCBONDSLAVEINFOQUERY:
4115 case SIOCBONDINFOQUERY:
4116 dev_load(net, ifr.ifr_name);
4117 rtnl_lock();
4118 ret = dev_ifsioc(net, &ifr, cmd);
4119 rtnl_unlock();
4120 return ret;
4121
4122 case SIOCGIFMEM:
4123 /* Get the per device memory space. We can add this but
4124 * currently do not support it */
4125 case SIOCSIFMEM:
4126 /* Set the per device memory buffer space.
4127 * Not applicable in our case */
4128 case SIOCSIFLINK:
4129 return -EINVAL;
4130
4131 /*
4132 * Unknown or private ioctl.
4133 */
4134 default:
4135 if (cmd == SIOCWANDEV ||
4136 (cmd >= SIOCDEVPRIVATE &&
4137 cmd <= SIOCDEVPRIVATE + 15)) {
4138 dev_load(net, ifr.ifr_name);
4139 rtnl_lock();
4140 ret = dev_ifsioc(net, &ifr, cmd);
4141 rtnl_unlock();
4142 if (!ret && copy_to_user(arg, &ifr,
4143 sizeof(struct ifreq)))
4144 ret = -EFAULT;
4145 return ret;
4146 }
4147 /* Take care of Wireless Extensions */
4148 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4149 return wext_handle_ioctl(net, &ifr, cmd, arg);
4150 return -EINVAL;
4151 }
4152 }
4153
4154
4155 /**
4156 * dev_new_index - allocate an ifindex
4157 * @net: the applicable net namespace
4158 *
4159 * Returns a suitable unique value for a new device interface
4160 * number. The caller must hold the rtnl semaphore or the
4161 * dev_base_lock to be sure it remains unique.
4162 */
4163 static int dev_new_index(struct net *net)
4164 {
4165 static int ifindex;
4166 for (;;) {
4167 if (++ifindex <= 0)
4168 ifindex = 1;
4169 if (!__dev_get_by_index(net, ifindex))
4170 return ifindex;
4171 }
4172 }
4173
4174 /* Delayed registration/unregisteration */
4175 static LIST_HEAD(net_todo_list);
4176
4177 static void net_set_todo(struct net_device *dev)
4178 {
4179 list_add_tail(&dev->todo_list, &net_todo_list);
4180 }
4181
4182 static void rollback_registered(struct net_device *dev)
4183 {
4184 BUG_ON(dev_boot_phase);
4185 ASSERT_RTNL();
4186
4187 /* Some devices call without registering for initialization unwind. */
4188 if (dev->reg_state == NETREG_UNINITIALIZED) {
4189 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4190 "was registered\n", dev->name, dev);
4191
4192 WARN_ON(1);
4193 return;
4194 }
4195
4196 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4197
4198 /* If device is running, close it first. */
4199 dev_close(dev);
4200
4201 /* And unlink it from device chain. */
4202 unlist_netdevice(dev);
4203
4204 dev->reg_state = NETREG_UNREGISTERING;
4205
4206 synchronize_net();
4207
4208 /* Shutdown queueing discipline. */
4209 dev_shutdown(dev);
4210
4211
4212 /* Notify protocols, that we are about to destroy
4213 this device. They should clean all the things.
4214 */
4215 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4216
4217 /*
4218 * Flush the unicast and multicast chains
4219 */
4220 dev_addr_discard(dev);
4221
4222 if (dev->netdev_ops->ndo_uninit)
4223 dev->netdev_ops->ndo_uninit(dev);
4224
4225 /* Notifier chain MUST detach us from master device. */
4226 WARN_ON(dev->master);
4227
4228 /* Remove entries from kobject tree */
4229 netdev_unregister_kobject(dev);
4230
4231 synchronize_net();
4232
4233 dev_put(dev);
4234 }
4235
4236 static void __netdev_init_queue_locks_one(struct net_device *dev,
4237 struct netdev_queue *dev_queue,
4238 void *_unused)
4239 {
4240 spin_lock_init(&dev_queue->_xmit_lock);
4241 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4242 dev_queue->xmit_lock_owner = -1;
4243 }
4244
4245 static void netdev_init_queue_locks(struct net_device *dev)
4246 {
4247 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4248 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4249 }
4250
4251 unsigned long netdev_fix_features(unsigned long features, const char *name)
4252 {
4253 /* Fix illegal SG+CSUM combinations. */
4254 if ((features & NETIF_F_SG) &&
4255 !(features & NETIF_F_ALL_CSUM)) {
4256 if (name)
4257 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4258 "checksum feature.\n", name);
4259 features &= ~NETIF_F_SG;
4260 }
4261
4262 /* TSO requires that SG is present as well. */
4263 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4264 if (name)
4265 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4266 "SG feature.\n", name);
4267 features &= ~NETIF_F_TSO;
4268 }
4269
4270 if (features & NETIF_F_UFO) {
4271 if (!(features & NETIF_F_GEN_CSUM)) {
4272 if (name)
4273 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4274 "since no NETIF_F_HW_CSUM feature.\n",
4275 name);
4276 features &= ~NETIF_F_UFO;
4277 }
4278
4279 if (!(features & NETIF_F_SG)) {
4280 if (name)
4281 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4282 "since no NETIF_F_SG feature.\n", name);
4283 features &= ~NETIF_F_UFO;
4284 }
4285 }
4286
4287 return features;
4288 }
4289 EXPORT_SYMBOL(netdev_fix_features);
4290
4291 /**
4292 * register_netdevice - register a network device
4293 * @dev: device to register
4294 *
4295 * Take a completed network device structure and add it to the kernel
4296 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4297 * chain. 0 is returned on success. A negative errno code is returned
4298 * on a failure to set up the device, or if the name is a duplicate.
4299 *
4300 * Callers must hold the rtnl semaphore. You may want
4301 * register_netdev() instead of this.
4302 *
4303 * BUGS:
4304 * The locking appears insufficient to guarantee two parallel registers
4305 * will not get the same name.
4306 */
4307
4308 int register_netdevice(struct net_device *dev)
4309 {
4310 struct hlist_head *head;
4311 struct hlist_node *p;
4312 int ret;
4313 struct net *net = dev_net(dev);
4314
4315 BUG_ON(dev_boot_phase);
4316 ASSERT_RTNL();
4317
4318 might_sleep();
4319
4320 /* When net_device's are persistent, this will be fatal. */
4321 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4322 BUG_ON(!net);
4323
4324 spin_lock_init(&dev->addr_list_lock);
4325 netdev_set_addr_lockdep_class(dev);
4326 netdev_init_queue_locks(dev);
4327
4328 dev->iflink = -1;
4329
4330 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4331 /* Netdevice_ops API compatiability support.
4332 * This is temporary until all network devices are converted.
4333 */
4334 if (dev->netdev_ops) {
4335 const struct net_device_ops *ops = dev->netdev_ops;
4336
4337 dev->init = ops->ndo_init;
4338 dev->uninit = ops->ndo_uninit;
4339 dev->open = ops->ndo_open;
4340 dev->change_rx_flags = ops->ndo_change_rx_flags;
4341 dev->set_rx_mode = ops->ndo_set_rx_mode;
4342 dev->set_multicast_list = ops->ndo_set_multicast_list;
4343 dev->set_mac_address = ops->ndo_set_mac_address;
4344 dev->validate_addr = ops->ndo_validate_addr;
4345 dev->do_ioctl = ops->ndo_do_ioctl;
4346 dev->set_config = ops->ndo_set_config;
4347 dev->change_mtu = ops->ndo_change_mtu;
4348 dev->tx_timeout = ops->ndo_tx_timeout;
4349 dev->get_stats = ops->ndo_get_stats;
4350 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4351 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4352 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4353 #ifdef CONFIG_NET_POLL_CONTROLLER
4354 dev->poll_controller = ops->ndo_poll_controller;
4355 #endif
4356 } else {
4357 char drivername[64];
4358 pr_info("%s (%s): not using net_device_ops yet\n",
4359 dev->name, netdev_drivername(dev, drivername, 64));
4360
4361 /* This works only because net_device_ops and the
4362 compatiablity structure are the same. */
4363 dev->netdev_ops = (void *) &(dev->init);
4364 }
4365 #endif
4366
4367 /* Init, if this function is available */
4368 if (dev->netdev_ops->ndo_init) {
4369 ret = dev->netdev_ops->ndo_init(dev);
4370 if (ret) {
4371 if (ret > 0)
4372 ret = -EIO;
4373 goto out;
4374 }
4375 }
4376
4377 if (!dev_valid_name(dev->name)) {
4378 ret = -EINVAL;
4379 goto err_uninit;
4380 }
4381
4382 dev->ifindex = dev_new_index(net);
4383 if (dev->iflink == -1)
4384 dev->iflink = dev->ifindex;
4385
4386 /* Check for existence of name */
4387 head = dev_name_hash(net, dev->name);
4388 hlist_for_each(p, head) {
4389 struct net_device *d
4390 = hlist_entry(p, struct net_device, name_hlist);
4391 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4392 ret = -EEXIST;
4393 goto err_uninit;
4394 }
4395 }
4396
4397 /* Fix illegal checksum combinations */
4398 if ((dev->features & NETIF_F_HW_CSUM) &&
4399 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4400 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4401 dev->name);
4402 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4403 }
4404
4405 if ((dev->features & NETIF_F_NO_CSUM) &&
4406 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4407 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4408 dev->name);
4409 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4410 }
4411
4412 dev->features = netdev_fix_features(dev->features, dev->name);
4413
4414 /* Enable software GSO if SG is supported. */
4415 if (dev->features & NETIF_F_SG)
4416 dev->features |= NETIF_F_GSO;
4417
4418 netdev_initialize_kobject(dev);
4419 ret = netdev_register_kobject(dev);
4420 if (ret)
4421 goto err_uninit;
4422 dev->reg_state = NETREG_REGISTERED;
4423
4424 /*
4425 * Default initial state at registry is that the
4426 * device is present.
4427 */
4428
4429 set_bit(__LINK_STATE_PRESENT, &dev->state);
4430
4431 dev_init_scheduler(dev);
4432 dev_hold(dev);
4433 list_netdevice(dev);
4434
4435 /* Notify protocols, that a new device appeared. */
4436 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4437 ret = notifier_to_errno(ret);
4438 if (ret) {
4439 rollback_registered(dev);
4440 dev->reg_state = NETREG_UNREGISTERED;
4441 }
4442
4443 out:
4444 return ret;
4445
4446 err_uninit:
4447 if (dev->netdev_ops->ndo_uninit)
4448 dev->netdev_ops->ndo_uninit(dev);
4449 goto out;
4450 }
4451
4452 /**
4453 * register_netdev - register a network device
4454 * @dev: device to register
4455 *
4456 * Take a completed network device structure and add it to the kernel
4457 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4458 * chain. 0 is returned on success. A negative errno code is returned
4459 * on a failure to set up the device, or if the name is a duplicate.
4460 *
4461 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4462 * and expands the device name if you passed a format string to
4463 * alloc_netdev.
4464 */
4465 int register_netdev(struct net_device *dev)
4466 {
4467 int err;
4468
4469 rtnl_lock();
4470
4471 /*
4472 * If the name is a format string the caller wants us to do a
4473 * name allocation.
4474 */
4475 if (strchr(dev->name, '%')) {
4476 err = dev_alloc_name(dev, dev->name);
4477 if (err < 0)
4478 goto out;
4479 }
4480
4481 err = register_netdevice(dev);
4482 out:
4483 rtnl_unlock();
4484 return err;
4485 }
4486 EXPORT_SYMBOL(register_netdev);
4487
4488 /*
4489 * netdev_wait_allrefs - wait until all references are gone.
4490 *
4491 * This is called when unregistering network devices.
4492 *
4493 * Any protocol or device that holds a reference should register
4494 * for netdevice notification, and cleanup and put back the
4495 * reference if they receive an UNREGISTER event.
4496 * We can get stuck here if buggy protocols don't correctly
4497 * call dev_put.
4498 */
4499 static void netdev_wait_allrefs(struct net_device *dev)
4500 {
4501 unsigned long rebroadcast_time, warning_time;
4502
4503 rebroadcast_time = warning_time = jiffies;
4504 while (atomic_read(&dev->refcnt) != 0) {
4505 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4506 rtnl_lock();
4507
4508 /* Rebroadcast unregister notification */
4509 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4510
4511 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4512 &dev->state)) {
4513 /* We must not have linkwatch events
4514 * pending on unregister. If this
4515 * happens, we simply run the queue
4516 * unscheduled, resulting in a noop
4517 * for this device.
4518 */
4519 linkwatch_run_queue();
4520 }
4521
4522 __rtnl_unlock();
4523
4524 rebroadcast_time = jiffies;
4525 }
4526
4527 msleep(250);
4528
4529 if (time_after(jiffies, warning_time + 10 * HZ)) {
4530 printk(KERN_EMERG "unregister_netdevice: "
4531 "waiting for %s to become free. Usage "
4532 "count = %d\n",
4533 dev->name, atomic_read(&dev->refcnt));
4534 warning_time = jiffies;
4535 }
4536 }
4537 }
4538
4539 /* The sequence is:
4540 *
4541 * rtnl_lock();
4542 * ...
4543 * register_netdevice(x1);
4544 * register_netdevice(x2);
4545 * ...
4546 * unregister_netdevice(y1);
4547 * unregister_netdevice(y2);
4548 * ...
4549 * rtnl_unlock();
4550 * free_netdev(y1);
4551 * free_netdev(y2);
4552 *
4553 * We are invoked by rtnl_unlock().
4554 * This allows us to deal with problems:
4555 * 1) We can delete sysfs objects which invoke hotplug
4556 * without deadlocking with linkwatch via keventd.
4557 * 2) Since we run with the RTNL semaphore not held, we can sleep
4558 * safely in order to wait for the netdev refcnt to drop to zero.
4559 *
4560 * We must not return until all unregister events added during
4561 * the interval the lock was held have been completed.
4562 */
4563 void netdev_run_todo(void)
4564 {
4565 struct list_head list;
4566
4567 /* Snapshot list, allow later requests */
4568 list_replace_init(&net_todo_list, &list);
4569
4570 __rtnl_unlock();
4571
4572 while (!list_empty(&list)) {
4573 struct net_device *dev
4574 = list_entry(list.next, struct net_device, todo_list);
4575 list_del(&dev->todo_list);
4576
4577 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4578 printk(KERN_ERR "network todo '%s' but state %d\n",
4579 dev->name, dev->reg_state);
4580 dump_stack();
4581 continue;
4582 }
4583
4584 dev->reg_state = NETREG_UNREGISTERED;
4585
4586 on_each_cpu(flush_backlog, dev, 1);
4587
4588 netdev_wait_allrefs(dev);
4589
4590 /* paranoia */
4591 BUG_ON(atomic_read(&dev->refcnt));
4592 WARN_ON(dev->ip_ptr);
4593 WARN_ON(dev->ip6_ptr);
4594 WARN_ON(dev->dn_ptr);
4595
4596 if (dev->destructor)
4597 dev->destructor(dev);
4598
4599 /* Free network device */
4600 kobject_put(&dev->dev.kobj);
4601 }
4602 }
4603
4604 /**
4605 * dev_get_stats - get network device statistics
4606 * @dev: device to get statistics from
4607 *
4608 * Get network statistics from device. The device driver may provide
4609 * its own method by setting dev->netdev_ops->get_stats; otherwise
4610 * the internal statistics structure is used.
4611 */
4612 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4613 {
4614 const struct net_device_ops *ops = dev->netdev_ops;
4615
4616 if (ops->ndo_get_stats)
4617 return ops->ndo_get_stats(dev);
4618 else
4619 return &dev->stats;
4620 }
4621 EXPORT_SYMBOL(dev_get_stats);
4622
4623 static void netdev_init_one_queue(struct net_device *dev,
4624 struct netdev_queue *queue,
4625 void *_unused)
4626 {
4627 queue->dev = dev;
4628 }
4629
4630 static void netdev_init_queues(struct net_device *dev)
4631 {
4632 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4633 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4634 spin_lock_init(&dev->tx_global_lock);
4635 }
4636
4637 /**
4638 * alloc_netdev_mq - allocate network device
4639 * @sizeof_priv: size of private data to allocate space for
4640 * @name: device name format string
4641 * @setup: callback to initialize device
4642 * @queue_count: the number of subqueues to allocate
4643 *
4644 * Allocates a struct net_device with private data area for driver use
4645 * and performs basic initialization. Also allocates subquue structs
4646 * for each queue on the device at the end of the netdevice.
4647 */
4648 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4649 void (*setup)(struct net_device *), unsigned int queue_count)
4650 {
4651 struct netdev_queue *tx;
4652 struct net_device *dev;
4653 size_t alloc_size;
4654 void *p;
4655
4656 BUG_ON(strlen(name) >= sizeof(dev->name));
4657
4658 alloc_size = sizeof(struct net_device);
4659 if (sizeof_priv) {
4660 /* ensure 32-byte alignment of private area */
4661 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4662 alloc_size += sizeof_priv;
4663 }
4664 /* ensure 32-byte alignment of whole construct */
4665 alloc_size += NETDEV_ALIGN_CONST;
4666
4667 p = kzalloc(alloc_size, GFP_KERNEL);
4668 if (!p) {
4669 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4670 return NULL;
4671 }
4672
4673 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4674 if (!tx) {
4675 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4676 "tx qdiscs.\n");
4677 kfree(p);
4678 return NULL;
4679 }
4680
4681 dev = (struct net_device *)
4682 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4683 dev->padded = (char *)dev - (char *)p;
4684 dev_net_set(dev, &init_net);
4685
4686 dev->_tx = tx;
4687 dev->num_tx_queues = queue_count;
4688 dev->real_num_tx_queues = queue_count;
4689
4690 dev->gso_max_size = GSO_MAX_SIZE;
4691
4692 netdev_init_queues(dev);
4693
4694 INIT_LIST_HEAD(&dev->napi_list);
4695 setup(dev);
4696 strcpy(dev->name, name);
4697 return dev;
4698 }
4699 EXPORT_SYMBOL(alloc_netdev_mq);
4700
4701 /**
4702 * free_netdev - free network device
4703 * @dev: device
4704 *
4705 * This function does the last stage of destroying an allocated device
4706 * interface. The reference to the device object is released.
4707 * If this is the last reference then it will be freed.
4708 */
4709 void free_netdev(struct net_device *dev)
4710 {
4711 struct napi_struct *p, *n;
4712
4713 release_net(dev_net(dev));
4714
4715 kfree(dev->_tx);
4716
4717 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4718 netif_napi_del(p);
4719
4720 /* Compatibility with error handling in drivers */
4721 if (dev->reg_state == NETREG_UNINITIALIZED) {
4722 kfree((char *)dev - dev->padded);
4723 return;
4724 }
4725
4726 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4727 dev->reg_state = NETREG_RELEASED;
4728
4729 /* will free via device release */
4730 put_device(&dev->dev);
4731 }
4732
4733 /**
4734 * synchronize_net - Synchronize with packet receive processing
4735 *
4736 * Wait for packets currently being received to be done.
4737 * Does not block later packets from starting.
4738 */
4739 void synchronize_net(void)
4740 {
4741 might_sleep();
4742 synchronize_rcu();
4743 }
4744
4745 /**
4746 * unregister_netdevice - remove device from the kernel
4747 * @dev: device
4748 *
4749 * This function shuts down a device interface and removes it
4750 * from the kernel tables.
4751 *
4752 * Callers must hold the rtnl semaphore. You may want
4753 * unregister_netdev() instead of this.
4754 */
4755
4756 void unregister_netdevice(struct net_device *dev)
4757 {
4758 ASSERT_RTNL();
4759
4760 rollback_registered(dev);
4761 /* Finish processing unregister after unlock */
4762 net_set_todo(dev);
4763 }
4764
4765 /**
4766 * unregister_netdev - remove device from the kernel
4767 * @dev: device
4768 *
4769 * This function shuts down a device interface and removes it
4770 * from the kernel tables.
4771 *
4772 * This is just a wrapper for unregister_netdevice that takes
4773 * the rtnl semaphore. In general you want to use this and not
4774 * unregister_netdevice.
4775 */
4776 void unregister_netdev(struct net_device *dev)
4777 {
4778 rtnl_lock();
4779 unregister_netdevice(dev);
4780 rtnl_unlock();
4781 }
4782
4783 EXPORT_SYMBOL(unregister_netdev);
4784
4785 /**
4786 * dev_change_net_namespace - move device to different nethost namespace
4787 * @dev: device
4788 * @net: network namespace
4789 * @pat: If not NULL name pattern to try if the current device name
4790 * is already taken in the destination network namespace.
4791 *
4792 * This function shuts down a device interface and moves it
4793 * to a new network namespace. On success 0 is returned, on
4794 * a failure a netagive errno code is returned.
4795 *
4796 * Callers must hold the rtnl semaphore.
4797 */
4798
4799 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4800 {
4801 char buf[IFNAMSIZ];
4802 const char *destname;
4803 int err;
4804
4805 ASSERT_RTNL();
4806
4807 /* Don't allow namespace local devices to be moved. */
4808 err = -EINVAL;
4809 if (dev->features & NETIF_F_NETNS_LOCAL)
4810 goto out;
4811
4812 #ifdef CONFIG_SYSFS
4813 /* Don't allow real devices to be moved when sysfs
4814 * is enabled.
4815 */
4816 err = -EINVAL;
4817 if (dev->dev.parent)
4818 goto out;
4819 #endif
4820
4821 /* Ensure the device has been registrered */
4822 err = -EINVAL;
4823 if (dev->reg_state != NETREG_REGISTERED)
4824 goto out;
4825
4826 /* Get out if there is nothing todo */
4827 err = 0;
4828 if (net_eq(dev_net(dev), net))
4829 goto out;
4830
4831 /* Pick the destination device name, and ensure
4832 * we can use it in the destination network namespace.
4833 */
4834 err = -EEXIST;
4835 destname = dev->name;
4836 if (__dev_get_by_name(net, destname)) {
4837 /* We get here if we can't use the current device name */
4838 if (!pat)
4839 goto out;
4840 if (!dev_valid_name(pat))
4841 goto out;
4842 if (strchr(pat, '%')) {
4843 if (__dev_alloc_name(net, pat, buf) < 0)
4844 goto out;
4845 destname = buf;
4846 } else
4847 destname = pat;
4848 if (__dev_get_by_name(net, destname))
4849 goto out;
4850 }
4851
4852 /*
4853 * And now a mini version of register_netdevice unregister_netdevice.
4854 */
4855
4856 /* If device is running close it first. */
4857 dev_close(dev);
4858
4859 /* And unlink it from device chain */
4860 err = -ENODEV;
4861 unlist_netdevice(dev);
4862
4863 synchronize_net();
4864
4865 /* Shutdown queueing discipline. */
4866 dev_shutdown(dev);
4867
4868 /* Notify protocols, that we are about to destroy
4869 this device. They should clean all the things.
4870 */
4871 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4872
4873 /*
4874 * Flush the unicast and multicast chains
4875 */
4876 dev_addr_discard(dev);
4877
4878 netdev_unregister_kobject(dev);
4879
4880 /* Actually switch the network namespace */
4881 dev_net_set(dev, net);
4882
4883 /* Assign the new device name */
4884 if (destname != dev->name)
4885 strcpy(dev->name, destname);
4886
4887 /* If there is an ifindex conflict assign a new one */
4888 if (__dev_get_by_index(net, dev->ifindex)) {
4889 int iflink = (dev->iflink == dev->ifindex);
4890 dev->ifindex = dev_new_index(net);
4891 if (iflink)
4892 dev->iflink = dev->ifindex;
4893 }
4894
4895 /* Fixup kobjects */
4896 err = netdev_register_kobject(dev);
4897 WARN_ON(err);
4898
4899 /* Add the device back in the hashes */
4900 list_netdevice(dev);
4901
4902 /* Notify protocols, that a new device appeared. */
4903 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4904
4905 synchronize_net();
4906 err = 0;
4907 out:
4908 return err;
4909 }
4910
4911 static int dev_cpu_callback(struct notifier_block *nfb,
4912 unsigned long action,
4913 void *ocpu)
4914 {
4915 struct sk_buff **list_skb;
4916 struct Qdisc **list_net;
4917 struct sk_buff *skb;
4918 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4919 struct softnet_data *sd, *oldsd;
4920
4921 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4922 return NOTIFY_OK;
4923
4924 local_irq_disable();
4925 cpu = smp_processor_id();
4926 sd = &per_cpu(softnet_data, cpu);
4927 oldsd = &per_cpu(softnet_data, oldcpu);
4928
4929 /* Find end of our completion_queue. */
4930 list_skb = &sd->completion_queue;
4931 while (*list_skb)
4932 list_skb = &(*list_skb)->next;
4933 /* Append completion queue from offline CPU. */
4934 *list_skb = oldsd->completion_queue;
4935 oldsd->completion_queue = NULL;
4936
4937 /* Find end of our output_queue. */
4938 list_net = &sd->output_queue;
4939 while (*list_net)
4940 list_net = &(*list_net)->next_sched;
4941 /* Append output queue from offline CPU. */
4942 *list_net = oldsd->output_queue;
4943 oldsd->output_queue = NULL;
4944
4945 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4946 local_irq_enable();
4947
4948 /* Process offline CPU's input_pkt_queue */
4949 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4950 netif_rx(skb);
4951
4952 return NOTIFY_OK;
4953 }
4954
4955 #ifdef CONFIG_NET_DMA
4956 /**
4957 * net_dma_rebalance - try to maintain one DMA channel per CPU
4958 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4959 *
4960 * This is called when the number of channels allocated to the net_dma client
4961 * changes. The net_dma client tries to have one DMA channel per CPU.
4962 */
4963
4964 static void net_dma_rebalance(struct net_dma *net_dma)
4965 {
4966 unsigned int cpu, i, n, chan_idx;
4967 struct dma_chan *chan;
4968
4969 if (cpus_empty(net_dma->channel_mask)) {
4970 for_each_online_cpu(cpu)
4971 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4972 return;
4973 }
4974
4975 i = 0;
4976 cpu = first_cpu(cpu_online_map);
4977
4978 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4979 chan = net_dma->channels[chan_idx];
4980
4981 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4982 + (i < (num_online_cpus() %
4983 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4984
4985 while(n) {
4986 per_cpu(softnet_data, cpu).net_dma = chan;
4987 cpu = next_cpu(cpu, cpu_online_map);
4988 n--;
4989 }
4990 i++;
4991 }
4992 }
4993
4994 /**
4995 * netdev_dma_event - event callback for the net_dma_client
4996 * @client: should always be net_dma_client
4997 * @chan: DMA channel for the event
4998 * @state: DMA state to be handled
4999 */
5000 static enum dma_state_client
5001 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
5002 enum dma_state state)
5003 {
5004 int i, found = 0, pos = -1;
5005 struct net_dma *net_dma =
5006 container_of(client, struct net_dma, client);
5007 enum dma_state_client ack = DMA_DUP; /* default: take no action */
5008
5009 spin_lock(&net_dma->lock);
5010 switch (state) {
5011 case DMA_RESOURCE_AVAILABLE:
5012 for (i = 0; i < nr_cpu_ids; i++)
5013 if (net_dma->channels[i] == chan) {
5014 found = 1;
5015 break;
5016 } else if (net_dma->channels[i] == NULL && pos < 0)
5017 pos = i;
5018
5019 if (!found && pos >= 0) {
5020 ack = DMA_ACK;
5021 net_dma->channels[pos] = chan;
5022 cpu_set(pos, net_dma->channel_mask);
5023 net_dma_rebalance(net_dma);
5024 }
5025 break;
5026 case DMA_RESOURCE_REMOVED:
5027 for (i = 0; i < nr_cpu_ids; i++)
5028 if (net_dma->channels[i] == chan) {
5029 found = 1;
5030 pos = i;
5031 break;
5032 }
5033
5034 if (found) {
5035 ack = DMA_ACK;
5036 cpu_clear(pos, net_dma->channel_mask);
5037 net_dma->channels[i] = NULL;
5038 net_dma_rebalance(net_dma);
5039 }
5040 break;
5041 default:
5042 break;
5043 }
5044 spin_unlock(&net_dma->lock);
5045
5046 return ack;
5047 }
5048
5049 /**
5050 * netdev_dma_register - register the networking subsystem as a DMA client
5051 */
5052 static int __init netdev_dma_register(void)
5053 {
5054 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
5055 GFP_KERNEL);
5056 if (unlikely(!net_dma.channels)) {
5057 printk(KERN_NOTICE
5058 "netdev_dma: no memory for net_dma.channels\n");
5059 return -ENOMEM;
5060 }
5061 spin_lock_init(&net_dma.lock);
5062 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
5063 dma_async_client_register(&net_dma.client);
5064 dma_async_client_chan_request(&net_dma.client);
5065 return 0;
5066 }
5067
5068 #else
5069 static int __init netdev_dma_register(void) { return -ENODEV; }
5070 #endif /* CONFIG_NET_DMA */
5071
5072 /**
5073 * netdev_increment_features - increment feature set by one
5074 * @all: current feature set
5075 * @one: new feature set
5076 * @mask: mask feature set
5077 *
5078 * Computes a new feature set after adding a device with feature set
5079 * @one to the master device with current feature set @all. Will not
5080 * enable anything that is off in @mask. Returns the new feature set.
5081 */
5082 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5083 unsigned long mask)
5084 {
5085 /* If device needs checksumming, downgrade to it. */
5086 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5087 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5088 else if (mask & NETIF_F_ALL_CSUM) {
5089 /* If one device supports v4/v6 checksumming, set for all. */
5090 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5091 !(all & NETIF_F_GEN_CSUM)) {
5092 all &= ~NETIF_F_ALL_CSUM;
5093 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5094 }
5095
5096 /* If one device supports hw checksumming, set for all. */
5097 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5098 all &= ~NETIF_F_ALL_CSUM;
5099 all |= NETIF_F_HW_CSUM;
5100 }
5101 }
5102
5103 one |= NETIF_F_ALL_CSUM;
5104
5105 one |= all & NETIF_F_ONE_FOR_ALL;
5106 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5107 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5108
5109 return all;
5110 }
5111 EXPORT_SYMBOL(netdev_increment_features);
5112
5113 static struct hlist_head *netdev_create_hash(void)
5114 {
5115 int i;
5116 struct hlist_head *hash;
5117
5118 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5119 if (hash != NULL)
5120 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5121 INIT_HLIST_HEAD(&hash[i]);
5122
5123 return hash;
5124 }
5125
5126 /* Initialize per network namespace state */
5127 static int __net_init netdev_init(struct net *net)
5128 {
5129 INIT_LIST_HEAD(&net->dev_base_head);
5130
5131 net->dev_name_head = netdev_create_hash();
5132 if (net->dev_name_head == NULL)
5133 goto err_name;
5134
5135 net->dev_index_head = netdev_create_hash();
5136 if (net->dev_index_head == NULL)
5137 goto err_idx;
5138
5139 return 0;
5140
5141 err_idx:
5142 kfree(net->dev_name_head);
5143 err_name:
5144 return -ENOMEM;
5145 }
5146
5147 /**
5148 * netdev_drivername - network driver for the device
5149 * @dev: network device
5150 * @buffer: buffer for resulting name
5151 * @len: size of buffer
5152 *
5153 * Determine network driver for device.
5154 */
5155 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5156 {
5157 const struct device_driver *driver;
5158 const struct device *parent;
5159
5160 if (len <= 0 || !buffer)
5161 return buffer;
5162 buffer[0] = 0;
5163
5164 parent = dev->dev.parent;
5165
5166 if (!parent)
5167 return buffer;
5168
5169 driver = parent->driver;
5170 if (driver && driver->name)
5171 strlcpy(buffer, driver->name, len);
5172 return buffer;
5173 }
5174
5175 static void __net_exit netdev_exit(struct net *net)
5176 {
5177 kfree(net->dev_name_head);
5178 kfree(net->dev_index_head);
5179 }
5180
5181 static struct pernet_operations __net_initdata netdev_net_ops = {
5182 .init = netdev_init,
5183 .exit = netdev_exit,
5184 };
5185
5186 static void __net_exit default_device_exit(struct net *net)
5187 {
5188 struct net_device *dev;
5189 /*
5190 * Push all migratable of the network devices back to the
5191 * initial network namespace
5192 */
5193 rtnl_lock();
5194 restart:
5195 for_each_netdev(net, dev) {
5196 int err;
5197 char fb_name[IFNAMSIZ];
5198
5199 /* Ignore unmoveable devices (i.e. loopback) */
5200 if (dev->features & NETIF_F_NETNS_LOCAL)
5201 continue;
5202
5203 /* Delete virtual devices */
5204 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5205 dev->rtnl_link_ops->dellink(dev);
5206 goto restart;
5207 }
5208
5209 /* Push remaing network devices to init_net */
5210 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5211 err = dev_change_net_namespace(dev, &init_net, fb_name);
5212 if (err) {
5213 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5214 __func__, dev->name, err);
5215 BUG();
5216 }
5217 goto restart;
5218 }
5219 rtnl_unlock();
5220 }
5221
5222 static struct pernet_operations __net_initdata default_device_ops = {
5223 .exit = default_device_exit,
5224 };
5225
5226 /*
5227 * Initialize the DEV module. At boot time this walks the device list and
5228 * unhooks any devices that fail to initialise (normally hardware not
5229 * present) and leaves us with a valid list of present and active devices.
5230 *
5231 */
5232
5233 /*
5234 * This is called single threaded during boot, so no need
5235 * to take the rtnl semaphore.
5236 */
5237 static int __init net_dev_init(void)
5238 {
5239 int i, rc = -ENOMEM;
5240
5241 BUG_ON(!dev_boot_phase);
5242
5243 if (dev_proc_init())
5244 goto out;
5245
5246 if (netdev_kobject_init())
5247 goto out;
5248
5249 INIT_LIST_HEAD(&ptype_all);
5250 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5251 INIT_LIST_HEAD(&ptype_base[i]);
5252
5253 if (register_pernet_subsys(&netdev_net_ops))
5254 goto out;
5255
5256 /*
5257 * Initialise the packet receive queues.
5258 */
5259
5260 for_each_possible_cpu(i) {
5261 struct softnet_data *queue;
5262
5263 queue = &per_cpu(softnet_data, i);
5264 skb_queue_head_init(&queue->input_pkt_queue);
5265 queue->completion_queue = NULL;
5266 INIT_LIST_HEAD(&queue->poll_list);
5267
5268 queue->backlog.poll = process_backlog;
5269 queue->backlog.weight = weight_p;
5270 queue->backlog.gro_list = NULL;
5271 }
5272
5273 dev_boot_phase = 0;
5274
5275 /* The loopback device is special if any other network devices
5276 * is present in a network namespace the loopback device must
5277 * be present. Since we now dynamically allocate and free the
5278 * loopback device ensure this invariant is maintained by
5279 * keeping the loopback device as the first device on the
5280 * list of network devices. Ensuring the loopback devices
5281 * is the first device that appears and the last network device
5282 * that disappears.
5283 */
5284 if (register_pernet_device(&loopback_net_ops))
5285 goto out;
5286
5287 if (register_pernet_device(&default_device_ops))
5288 goto out;
5289
5290 netdev_dma_register();
5291
5292 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5293 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5294
5295 hotcpu_notifier(dev_cpu_callback, 0);
5296 dst_init();
5297 dev_mcast_init();
5298 rc = 0;
5299 out:
5300 return rc;
5301 }
5302
5303 subsys_initcall(net_dev_init);
5304
5305 EXPORT_SYMBOL(__dev_get_by_index);
5306 EXPORT_SYMBOL(__dev_get_by_name);
5307 EXPORT_SYMBOL(__dev_remove_pack);
5308 EXPORT_SYMBOL(dev_valid_name);
5309 EXPORT_SYMBOL(dev_add_pack);
5310 EXPORT_SYMBOL(dev_alloc_name);
5311 EXPORT_SYMBOL(dev_close);
5312 EXPORT_SYMBOL(dev_get_by_flags);
5313 EXPORT_SYMBOL(dev_get_by_index);
5314 EXPORT_SYMBOL(dev_get_by_name);
5315 EXPORT_SYMBOL(dev_open);
5316 EXPORT_SYMBOL(dev_queue_xmit);
5317 EXPORT_SYMBOL(dev_remove_pack);
5318 EXPORT_SYMBOL(dev_set_allmulti);
5319 EXPORT_SYMBOL(dev_set_promiscuity);
5320 EXPORT_SYMBOL(dev_change_flags);
5321 EXPORT_SYMBOL(dev_set_mtu);
5322 EXPORT_SYMBOL(dev_set_mac_address);
5323 EXPORT_SYMBOL(free_netdev);
5324 EXPORT_SYMBOL(netdev_boot_setup_check);
5325 EXPORT_SYMBOL(netdev_set_master);
5326 EXPORT_SYMBOL(netdev_state_change);
5327 EXPORT_SYMBOL(netif_receive_skb);
5328 EXPORT_SYMBOL(netif_rx);
5329 EXPORT_SYMBOL(register_gifconf);
5330 EXPORT_SYMBOL(register_netdevice);
5331 EXPORT_SYMBOL(register_netdevice_notifier);
5332 EXPORT_SYMBOL(skb_checksum_help);
5333 EXPORT_SYMBOL(synchronize_net);
5334 EXPORT_SYMBOL(unregister_netdevice);
5335 EXPORT_SYMBOL(unregister_netdevice_notifier);
5336 EXPORT_SYMBOL(net_enable_timestamp);
5337 EXPORT_SYMBOL(net_disable_timestamp);
5338 EXPORT_SYMBOL(dev_get_flags);
5339
5340 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5341 EXPORT_SYMBOL(br_handle_frame_hook);
5342 EXPORT_SYMBOL(br_fdb_get_hook);
5343 EXPORT_SYMBOL(br_fdb_put_hook);
5344 #endif
5345
5346 EXPORT_SYMBOL(dev_load);
5347
5348 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.239587 seconds and 6 git commands to generate.