gro: Fix handling of headers that extend over the tail
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 #ifdef CONFIG_NET_CLS_ACT
1340 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1341 net_timestamp(skb);
1342 #else
1343 net_timestamp(skb);
1344 #endif
1345
1346 rcu_read_lock();
1347 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1348 /* Never send packets back to the socket
1349 * they originated from - MvS (miquels@drinkel.ow.org)
1350 */
1351 if ((ptype->dev == dev || !ptype->dev) &&
1352 (ptype->af_packet_priv == NULL ||
1353 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1354 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1355 if (!skb2)
1356 break;
1357
1358 /* skb->nh should be correctly
1359 set by sender, so that the second statement is
1360 just protection against buggy protocols.
1361 */
1362 skb_reset_mac_header(skb2);
1363
1364 if (skb_network_header(skb2) < skb2->data ||
1365 skb2->network_header > skb2->tail) {
1366 if (net_ratelimit())
1367 printk(KERN_CRIT "protocol %04x is "
1368 "buggy, dev %s\n",
1369 skb2->protocol, dev->name);
1370 skb_reset_network_header(skb2);
1371 }
1372
1373 skb2->transport_header = skb2->network_header;
1374 skb2->pkt_type = PACKET_OUTGOING;
1375 ptype->func(skb2, skb->dev, ptype, skb->dev);
1376 }
1377 }
1378 rcu_read_unlock();
1379 }
1380
1381
1382 static inline void __netif_reschedule(struct Qdisc *q)
1383 {
1384 struct softnet_data *sd;
1385 unsigned long flags;
1386
1387 local_irq_save(flags);
1388 sd = &__get_cpu_var(softnet_data);
1389 q->next_sched = sd->output_queue;
1390 sd->output_queue = q;
1391 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1392 local_irq_restore(flags);
1393 }
1394
1395 void __netif_schedule(struct Qdisc *q)
1396 {
1397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1398 __netif_reschedule(q);
1399 }
1400 EXPORT_SYMBOL(__netif_schedule);
1401
1402 void dev_kfree_skb_irq(struct sk_buff *skb)
1403 {
1404 if (atomic_dec_and_test(&skb->users)) {
1405 struct softnet_data *sd;
1406 unsigned long flags;
1407
1408 local_irq_save(flags);
1409 sd = &__get_cpu_var(softnet_data);
1410 skb->next = sd->completion_queue;
1411 sd->completion_queue = skb;
1412 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1413 local_irq_restore(flags);
1414 }
1415 }
1416 EXPORT_SYMBOL(dev_kfree_skb_irq);
1417
1418 void dev_kfree_skb_any(struct sk_buff *skb)
1419 {
1420 if (in_irq() || irqs_disabled())
1421 dev_kfree_skb_irq(skb);
1422 else
1423 dev_kfree_skb(skb);
1424 }
1425 EXPORT_SYMBOL(dev_kfree_skb_any);
1426
1427
1428 /**
1429 * netif_device_detach - mark device as removed
1430 * @dev: network device
1431 *
1432 * Mark device as removed from system and therefore no longer available.
1433 */
1434 void netif_device_detach(struct net_device *dev)
1435 {
1436 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1437 netif_running(dev)) {
1438 netif_tx_stop_all_queues(dev);
1439 }
1440 }
1441 EXPORT_SYMBOL(netif_device_detach);
1442
1443 /**
1444 * netif_device_attach - mark device as attached
1445 * @dev: network device
1446 *
1447 * Mark device as attached from system and restart if needed.
1448 */
1449 void netif_device_attach(struct net_device *dev)
1450 {
1451 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1452 netif_running(dev)) {
1453 netif_tx_wake_all_queues(dev);
1454 __netdev_watchdog_up(dev);
1455 }
1456 }
1457 EXPORT_SYMBOL(netif_device_attach);
1458
1459 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1460 {
1461 return ((features & NETIF_F_GEN_CSUM) ||
1462 ((features & NETIF_F_IP_CSUM) &&
1463 protocol == htons(ETH_P_IP)) ||
1464 ((features & NETIF_F_IPV6_CSUM) &&
1465 protocol == htons(ETH_P_IPV6)) ||
1466 ((features & NETIF_F_FCOE_CRC) &&
1467 protocol == htons(ETH_P_FCOE)));
1468 }
1469
1470 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1471 {
1472 if (can_checksum_protocol(dev->features, skb->protocol))
1473 return true;
1474
1475 if (skb->protocol == htons(ETH_P_8021Q)) {
1476 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1477 if (can_checksum_protocol(dev->features & dev->vlan_features,
1478 veh->h_vlan_encapsulated_proto))
1479 return true;
1480 }
1481
1482 return false;
1483 }
1484
1485 /*
1486 * Invalidate hardware checksum when packet is to be mangled, and
1487 * complete checksum manually on outgoing path.
1488 */
1489 int skb_checksum_help(struct sk_buff *skb)
1490 {
1491 __wsum csum;
1492 int ret = 0, offset;
1493
1494 if (skb->ip_summed == CHECKSUM_COMPLETE)
1495 goto out_set_summed;
1496
1497 if (unlikely(skb_shinfo(skb)->gso_size)) {
1498 /* Let GSO fix up the checksum. */
1499 goto out_set_summed;
1500 }
1501
1502 offset = skb->csum_start - skb_headroom(skb);
1503 BUG_ON(offset >= skb_headlen(skb));
1504 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1505
1506 offset += skb->csum_offset;
1507 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1508
1509 if (skb_cloned(skb) &&
1510 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1511 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1512 if (ret)
1513 goto out;
1514 }
1515
1516 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1517 out_set_summed:
1518 skb->ip_summed = CHECKSUM_NONE;
1519 out:
1520 return ret;
1521 }
1522
1523 /**
1524 * skb_gso_segment - Perform segmentation on skb.
1525 * @skb: buffer to segment
1526 * @features: features for the output path (see dev->features)
1527 *
1528 * This function segments the given skb and returns a list of segments.
1529 *
1530 * It may return NULL if the skb requires no segmentation. This is
1531 * only possible when GSO is used for verifying header integrity.
1532 */
1533 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1534 {
1535 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1536 struct packet_type *ptype;
1537 __be16 type = skb->protocol;
1538 int err;
1539
1540 skb_reset_mac_header(skb);
1541 skb->mac_len = skb->network_header - skb->mac_header;
1542 __skb_pull(skb, skb->mac_len);
1543
1544 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1545 struct net_device *dev = skb->dev;
1546 struct ethtool_drvinfo info = {};
1547
1548 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1549 dev->ethtool_ops->get_drvinfo(dev, &info);
1550
1551 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1552 "ip_summed=%d",
1553 info.driver, dev ? dev->features : 0L,
1554 skb->sk ? skb->sk->sk_route_caps : 0L,
1555 skb->len, skb->data_len, skb->ip_summed);
1556
1557 if (skb_header_cloned(skb) &&
1558 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1559 return ERR_PTR(err);
1560 }
1561
1562 rcu_read_lock();
1563 list_for_each_entry_rcu(ptype,
1564 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1565 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1566 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1567 err = ptype->gso_send_check(skb);
1568 segs = ERR_PTR(err);
1569 if (err || skb_gso_ok(skb, features))
1570 break;
1571 __skb_push(skb, (skb->data -
1572 skb_network_header(skb)));
1573 }
1574 segs = ptype->gso_segment(skb, features);
1575 break;
1576 }
1577 }
1578 rcu_read_unlock();
1579
1580 __skb_push(skb, skb->data - skb_mac_header(skb));
1581
1582 return segs;
1583 }
1584
1585 EXPORT_SYMBOL(skb_gso_segment);
1586
1587 /* Take action when hardware reception checksum errors are detected. */
1588 #ifdef CONFIG_BUG
1589 void netdev_rx_csum_fault(struct net_device *dev)
1590 {
1591 if (net_ratelimit()) {
1592 printk(KERN_ERR "%s: hw csum failure.\n",
1593 dev ? dev->name : "<unknown>");
1594 dump_stack();
1595 }
1596 }
1597 EXPORT_SYMBOL(netdev_rx_csum_fault);
1598 #endif
1599
1600 /* Actually, we should eliminate this check as soon as we know, that:
1601 * 1. IOMMU is present and allows to map all the memory.
1602 * 2. No high memory really exists on this machine.
1603 */
1604
1605 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1606 {
1607 #ifdef CONFIG_HIGHMEM
1608 int i;
1609
1610 if (dev->features & NETIF_F_HIGHDMA)
1611 return 0;
1612
1613 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1614 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1615 return 1;
1616
1617 #endif
1618 return 0;
1619 }
1620
1621 struct dev_gso_cb {
1622 void (*destructor)(struct sk_buff *skb);
1623 };
1624
1625 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1626
1627 static void dev_gso_skb_destructor(struct sk_buff *skb)
1628 {
1629 struct dev_gso_cb *cb;
1630
1631 do {
1632 struct sk_buff *nskb = skb->next;
1633
1634 skb->next = nskb->next;
1635 nskb->next = NULL;
1636 kfree_skb(nskb);
1637 } while (skb->next);
1638
1639 cb = DEV_GSO_CB(skb);
1640 if (cb->destructor)
1641 cb->destructor(skb);
1642 }
1643
1644 /**
1645 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1646 * @skb: buffer to segment
1647 *
1648 * This function segments the given skb and stores the list of segments
1649 * in skb->next.
1650 */
1651 static int dev_gso_segment(struct sk_buff *skb)
1652 {
1653 struct net_device *dev = skb->dev;
1654 struct sk_buff *segs;
1655 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1656 NETIF_F_SG : 0);
1657
1658 segs = skb_gso_segment(skb, features);
1659
1660 /* Verifying header integrity only. */
1661 if (!segs)
1662 return 0;
1663
1664 if (IS_ERR(segs))
1665 return PTR_ERR(segs);
1666
1667 skb->next = segs;
1668 DEV_GSO_CB(skb)->destructor = skb->destructor;
1669 skb->destructor = dev_gso_skb_destructor;
1670
1671 return 0;
1672 }
1673
1674 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1675 struct netdev_queue *txq)
1676 {
1677 const struct net_device_ops *ops = dev->netdev_ops;
1678 int rc;
1679
1680 if (likely(!skb->next)) {
1681 if (!list_empty(&ptype_all))
1682 dev_queue_xmit_nit(skb, dev);
1683
1684 if (netif_needs_gso(dev, skb)) {
1685 if (unlikely(dev_gso_segment(skb)))
1686 goto out_kfree_skb;
1687 if (skb->next)
1688 goto gso;
1689 }
1690
1691 rc = ops->ndo_start_xmit(skb, dev);
1692 /*
1693 * TODO: if skb_orphan() was called by
1694 * dev->hard_start_xmit() (for example, the unmodified
1695 * igb driver does that; bnx2 doesn't), then
1696 * skb_tx_software_timestamp() will be unable to send
1697 * back the time stamp.
1698 *
1699 * How can this be prevented? Always create another
1700 * reference to the socket before calling
1701 * dev->hard_start_xmit()? Prevent that skb_orphan()
1702 * does anything in dev->hard_start_xmit() by clearing
1703 * the skb destructor before the call and restoring it
1704 * afterwards, then doing the skb_orphan() ourselves?
1705 */
1706 return rc;
1707 }
1708
1709 gso:
1710 do {
1711 struct sk_buff *nskb = skb->next;
1712
1713 skb->next = nskb->next;
1714 nskb->next = NULL;
1715 rc = ops->ndo_start_xmit(nskb, dev);
1716 if (unlikely(rc)) {
1717 nskb->next = skb->next;
1718 skb->next = nskb;
1719 return rc;
1720 }
1721 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1722 return NETDEV_TX_BUSY;
1723 } while (skb->next);
1724
1725 skb->destructor = DEV_GSO_CB(skb)->destructor;
1726
1727 out_kfree_skb:
1728 kfree_skb(skb);
1729 return 0;
1730 }
1731
1732 static u32 skb_tx_hashrnd;
1733
1734 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1735 {
1736 u32 hash;
1737
1738 if (skb_rx_queue_recorded(skb)) {
1739 hash = skb_get_rx_queue(skb);
1740 } else if (skb->sk && skb->sk->sk_hash) {
1741 hash = skb->sk->sk_hash;
1742 } else
1743 hash = skb->protocol;
1744
1745 hash = jhash_1word(hash, skb_tx_hashrnd);
1746
1747 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1748 }
1749 EXPORT_SYMBOL(skb_tx_hash);
1750
1751 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1752 struct sk_buff *skb)
1753 {
1754 const struct net_device_ops *ops = dev->netdev_ops;
1755 u16 queue_index = 0;
1756
1757 if (ops->ndo_select_queue)
1758 queue_index = ops->ndo_select_queue(dev, skb);
1759 else if (dev->real_num_tx_queues > 1)
1760 queue_index = skb_tx_hash(dev, skb);
1761
1762 skb_set_queue_mapping(skb, queue_index);
1763 return netdev_get_tx_queue(dev, queue_index);
1764 }
1765
1766 /**
1767 * dev_queue_xmit - transmit a buffer
1768 * @skb: buffer to transmit
1769 *
1770 * Queue a buffer for transmission to a network device. The caller must
1771 * have set the device and priority and built the buffer before calling
1772 * this function. The function can be called from an interrupt.
1773 *
1774 * A negative errno code is returned on a failure. A success does not
1775 * guarantee the frame will be transmitted as it may be dropped due
1776 * to congestion or traffic shaping.
1777 *
1778 * -----------------------------------------------------------------------------------
1779 * I notice this method can also return errors from the queue disciplines,
1780 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1781 * be positive.
1782 *
1783 * Regardless of the return value, the skb is consumed, so it is currently
1784 * difficult to retry a send to this method. (You can bump the ref count
1785 * before sending to hold a reference for retry if you are careful.)
1786 *
1787 * When calling this method, interrupts MUST be enabled. This is because
1788 * the BH enable code must have IRQs enabled so that it will not deadlock.
1789 * --BLG
1790 */
1791 int dev_queue_xmit(struct sk_buff *skb)
1792 {
1793 struct net_device *dev = skb->dev;
1794 struct netdev_queue *txq;
1795 struct Qdisc *q;
1796 int rc = -ENOMEM;
1797
1798 /* GSO will handle the following emulations directly. */
1799 if (netif_needs_gso(dev, skb))
1800 goto gso;
1801
1802 if (skb_shinfo(skb)->frag_list &&
1803 !(dev->features & NETIF_F_FRAGLIST) &&
1804 __skb_linearize(skb))
1805 goto out_kfree_skb;
1806
1807 /* Fragmented skb is linearized if device does not support SG,
1808 * or if at least one of fragments is in highmem and device
1809 * does not support DMA from it.
1810 */
1811 if (skb_shinfo(skb)->nr_frags &&
1812 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1813 __skb_linearize(skb))
1814 goto out_kfree_skb;
1815
1816 /* If packet is not checksummed and device does not support
1817 * checksumming for this protocol, complete checksumming here.
1818 */
1819 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1820 skb_set_transport_header(skb, skb->csum_start -
1821 skb_headroom(skb));
1822 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1823 goto out_kfree_skb;
1824 }
1825
1826 gso:
1827 /* Disable soft irqs for various locks below. Also
1828 * stops preemption for RCU.
1829 */
1830 rcu_read_lock_bh();
1831
1832 txq = dev_pick_tx(dev, skb);
1833 q = rcu_dereference(txq->qdisc);
1834
1835 #ifdef CONFIG_NET_CLS_ACT
1836 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1837 #endif
1838 if (q->enqueue) {
1839 spinlock_t *root_lock = qdisc_lock(q);
1840
1841 spin_lock(root_lock);
1842
1843 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1844 kfree_skb(skb);
1845 rc = NET_XMIT_DROP;
1846 } else {
1847 rc = qdisc_enqueue_root(skb, q);
1848 qdisc_run(q);
1849 }
1850 spin_unlock(root_lock);
1851
1852 goto out;
1853 }
1854
1855 /* The device has no queue. Common case for software devices:
1856 loopback, all the sorts of tunnels...
1857
1858 Really, it is unlikely that netif_tx_lock protection is necessary
1859 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1860 counters.)
1861 However, it is possible, that they rely on protection
1862 made by us here.
1863
1864 Check this and shot the lock. It is not prone from deadlocks.
1865 Either shot noqueue qdisc, it is even simpler 8)
1866 */
1867 if (dev->flags & IFF_UP) {
1868 int cpu = smp_processor_id(); /* ok because BHs are off */
1869
1870 if (txq->xmit_lock_owner != cpu) {
1871
1872 HARD_TX_LOCK(dev, txq, cpu);
1873
1874 if (!netif_tx_queue_stopped(txq)) {
1875 rc = 0;
1876 if (!dev_hard_start_xmit(skb, dev, txq)) {
1877 HARD_TX_UNLOCK(dev, txq);
1878 goto out;
1879 }
1880 }
1881 HARD_TX_UNLOCK(dev, txq);
1882 if (net_ratelimit())
1883 printk(KERN_CRIT "Virtual device %s asks to "
1884 "queue packet!\n", dev->name);
1885 } else {
1886 /* Recursion is detected! It is possible,
1887 * unfortunately */
1888 if (net_ratelimit())
1889 printk(KERN_CRIT "Dead loop on virtual device "
1890 "%s, fix it urgently!\n", dev->name);
1891 }
1892 }
1893
1894 rc = -ENETDOWN;
1895 rcu_read_unlock_bh();
1896
1897 out_kfree_skb:
1898 kfree_skb(skb);
1899 return rc;
1900 out:
1901 rcu_read_unlock_bh();
1902 return rc;
1903 }
1904
1905
1906 /*=======================================================================
1907 Receiver routines
1908 =======================================================================*/
1909
1910 int netdev_max_backlog __read_mostly = 1000;
1911 int netdev_budget __read_mostly = 300;
1912 int weight_p __read_mostly = 64; /* old backlog weight */
1913
1914 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1915
1916
1917 /**
1918 * netif_rx - post buffer to the network code
1919 * @skb: buffer to post
1920 *
1921 * This function receives a packet from a device driver and queues it for
1922 * the upper (protocol) levels to process. It always succeeds. The buffer
1923 * may be dropped during processing for congestion control or by the
1924 * protocol layers.
1925 *
1926 * return values:
1927 * NET_RX_SUCCESS (no congestion)
1928 * NET_RX_DROP (packet was dropped)
1929 *
1930 */
1931
1932 int netif_rx(struct sk_buff *skb)
1933 {
1934 struct softnet_data *queue;
1935 unsigned long flags;
1936
1937 /* if netpoll wants it, pretend we never saw it */
1938 if (netpoll_rx(skb))
1939 return NET_RX_DROP;
1940
1941 if (!skb->tstamp.tv64)
1942 net_timestamp(skb);
1943
1944 /*
1945 * The code is rearranged so that the path is the most
1946 * short when CPU is congested, but is still operating.
1947 */
1948 local_irq_save(flags);
1949 queue = &__get_cpu_var(softnet_data);
1950
1951 __get_cpu_var(netdev_rx_stat).total++;
1952 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1953 if (queue->input_pkt_queue.qlen) {
1954 enqueue:
1955 __skb_queue_tail(&queue->input_pkt_queue, skb);
1956 local_irq_restore(flags);
1957 return NET_RX_SUCCESS;
1958 }
1959
1960 napi_schedule(&queue->backlog);
1961 goto enqueue;
1962 }
1963
1964 __get_cpu_var(netdev_rx_stat).dropped++;
1965 local_irq_restore(flags);
1966
1967 kfree_skb(skb);
1968 return NET_RX_DROP;
1969 }
1970
1971 int netif_rx_ni(struct sk_buff *skb)
1972 {
1973 int err;
1974
1975 preempt_disable();
1976 err = netif_rx(skb);
1977 if (local_softirq_pending())
1978 do_softirq();
1979 preempt_enable();
1980
1981 return err;
1982 }
1983
1984 EXPORT_SYMBOL(netif_rx_ni);
1985
1986 static void net_tx_action(struct softirq_action *h)
1987 {
1988 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1989
1990 if (sd->completion_queue) {
1991 struct sk_buff *clist;
1992
1993 local_irq_disable();
1994 clist = sd->completion_queue;
1995 sd->completion_queue = NULL;
1996 local_irq_enable();
1997
1998 while (clist) {
1999 struct sk_buff *skb = clist;
2000 clist = clist->next;
2001
2002 WARN_ON(atomic_read(&skb->users));
2003 __kfree_skb(skb);
2004 }
2005 }
2006
2007 if (sd->output_queue) {
2008 struct Qdisc *head;
2009
2010 local_irq_disable();
2011 head = sd->output_queue;
2012 sd->output_queue = NULL;
2013 local_irq_enable();
2014
2015 while (head) {
2016 struct Qdisc *q = head;
2017 spinlock_t *root_lock;
2018
2019 head = head->next_sched;
2020
2021 root_lock = qdisc_lock(q);
2022 if (spin_trylock(root_lock)) {
2023 smp_mb__before_clear_bit();
2024 clear_bit(__QDISC_STATE_SCHED,
2025 &q->state);
2026 qdisc_run(q);
2027 spin_unlock(root_lock);
2028 } else {
2029 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2030 &q->state)) {
2031 __netif_reschedule(q);
2032 } else {
2033 smp_mb__before_clear_bit();
2034 clear_bit(__QDISC_STATE_SCHED,
2035 &q->state);
2036 }
2037 }
2038 }
2039 }
2040 }
2041
2042 static inline int deliver_skb(struct sk_buff *skb,
2043 struct packet_type *pt_prev,
2044 struct net_device *orig_dev)
2045 {
2046 atomic_inc(&skb->users);
2047 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2048 }
2049
2050 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2051 /* These hooks defined here for ATM */
2052 struct net_bridge;
2053 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2054 unsigned char *addr);
2055 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2056
2057 /*
2058 * If bridge module is loaded call bridging hook.
2059 * returns NULL if packet was consumed.
2060 */
2061 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2062 struct sk_buff *skb) __read_mostly;
2063 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2064 struct packet_type **pt_prev, int *ret,
2065 struct net_device *orig_dev)
2066 {
2067 struct net_bridge_port *port;
2068
2069 if (skb->pkt_type == PACKET_LOOPBACK ||
2070 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2071 return skb;
2072
2073 if (*pt_prev) {
2074 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2075 *pt_prev = NULL;
2076 }
2077
2078 return br_handle_frame_hook(port, skb);
2079 }
2080 #else
2081 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2082 #endif
2083
2084 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2085 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2086 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2087
2088 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2089 struct packet_type **pt_prev,
2090 int *ret,
2091 struct net_device *orig_dev)
2092 {
2093 if (skb->dev->macvlan_port == NULL)
2094 return skb;
2095
2096 if (*pt_prev) {
2097 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2098 *pt_prev = NULL;
2099 }
2100 return macvlan_handle_frame_hook(skb);
2101 }
2102 #else
2103 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2104 #endif
2105
2106 #ifdef CONFIG_NET_CLS_ACT
2107 /* TODO: Maybe we should just force sch_ingress to be compiled in
2108 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2109 * a compare and 2 stores extra right now if we dont have it on
2110 * but have CONFIG_NET_CLS_ACT
2111 * NOTE: This doesnt stop any functionality; if you dont have
2112 * the ingress scheduler, you just cant add policies on ingress.
2113 *
2114 */
2115 static int ing_filter(struct sk_buff *skb)
2116 {
2117 struct net_device *dev = skb->dev;
2118 u32 ttl = G_TC_RTTL(skb->tc_verd);
2119 struct netdev_queue *rxq;
2120 int result = TC_ACT_OK;
2121 struct Qdisc *q;
2122
2123 if (MAX_RED_LOOP < ttl++) {
2124 printk(KERN_WARNING
2125 "Redir loop detected Dropping packet (%d->%d)\n",
2126 skb->iif, dev->ifindex);
2127 return TC_ACT_SHOT;
2128 }
2129
2130 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2131 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2132
2133 rxq = &dev->rx_queue;
2134
2135 q = rxq->qdisc;
2136 if (q != &noop_qdisc) {
2137 spin_lock(qdisc_lock(q));
2138 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2139 result = qdisc_enqueue_root(skb, q);
2140 spin_unlock(qdisc_lock(q));
2141 }
2142
2143 return result;
2144 }
2145
2146 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2147 struct packet_type **pt_prev,
2148 int *ret, struct net_device *orig_dev)
2149 {
2150 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2151 goto out;
2152
2153 if (*pt_prev) {
2154 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2155 *pt_prev = NULL;
2156 } else {
2157 /* Huh? Why does turning on AF_PACKET affect this? */
2158 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2159 }
2160
2161 switch (ing_filter(skb)) {
2162 case TC_ACT_SHOT:
2163 case TC_ACT_STOLEN:
2164 kfree_skb(skb);
2165 return NULL;
2166 }
2167
2168 out:
2169 skb->tc_verd = 0;
2170 return skb;
2171 }
2172 #endif
2173
2174 /*
2175 * netif_nit_deliver - deliver received packets to network taps
2176 * @skb: buffer
2177 *
2178 * This function is used to deliver incoming packets to network
2179 * taps. It should be used when the normal netif_receive_skb path
2180 * is bypassed, for example because of VLAN acceleration.
2181 */
2182 void netif_nit_deliver(struct sk_buff *skb)
2183 {
2184 struct packet_type *ptype;
2185
2186 if (list_empty(&ptype_all))
2187 return;
2188
2189 skb_reset_network_header(skb);
2190 skb_reset_transport_header(skb);
2191 skb->mac_len = skb->network_header - skb->mac_header;
2192
2193 rcu_read_lock();
2194 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2195 if (!ptype->dev || ptype->dev == skb->dev)
2196 deliver_skb(skb, ptype, skb->dev);
2197 }
2198 rcu_read_unlock();
2199 }
2200
2201 /**
2202 * netif_receive_skb - process receive buffer from network
2203 * @skb: buffer to process
2204 *
2205 * netif_receive_skb() is the main receive data processing function.
2206 * It always succeeds. The buffer may be dropped during processing
2207 * for congestion control or by the protocol layers.
2208 *
2209 * This function may only be called from softirq context and interrupts
2210 * should be enabled.
2211 *
2212 * Return values (usually ignored):
2213 * NET_RX_SUCCESS: no congestion
2214 * NET_RX_DROP: packet was dropped
2215 */
2216 int netif_receive_skb(struct sk_buff *skb)
2217 {
2218 struct packet_type *ptype, *pt_prev;
2219 struct net_device *orig_dev;
2220 struct net_device *null_or_orig;
2221 int ret = NET_RX_DROP;
2222 __be16 type;
2223
2224 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2225 return NET_RX_SUCCESS;
2226
2227 /* if we've gotten here through NAPI, check netpoll */
2228 if (netpoll_receive_skb(skb))
2229 return NET_RX_DROP;
2230
2231 if (!skb->tstamp.tv64)
2232 net_timestamp(skb);
2233
2234 if (!skb->iif)
2235 skb->iif = skb->dev->ifindex;
2236
2237 null_or_orig = NULL;
2238 orig_dev = skb->dev;
2239 if (orig_dev->master) {
2240 if (skb_bond_should_drop(skb))
2241 null_or_orig = orig_dev; /* deliver only exact match */
2242 else
2243 skb->dev = orig_dev->master;
2244 }
2245
2246 __get_cpu_var(netdev_rx_stat).total++;
2247
2248 skb_reset_network_header(skb);
2249 skb_reset_transport_header(skb);
2250 skb->mac_len = skb->network_header - skb->mac_header;
2251
2252 pt_prev = NULL;
2253
2254 rcu_read_lock();
2255
2256 #ifdef CONFIG_NET_CLS_ACT
2257 if (skb->tc_verd & TC_NCLS) {
2258 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2259 goto ncls;
2260 }
2261 #endif
2262
2263 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2264 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2265 ptype->dev == orig_dev) {
2266 if (pt_prev)
2267 ret = deliver_skb(skb, pt_prev, orig_dev);
2268 pt_prev = ptype;
2269 }
2270 }
2271
2272 #ifdef CONFIG_NET_CLS_ACT
2273 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2274 if (!skb)
2275 goto out;
2276 ncls:
2277 #endif
2278
2279 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2280 if (!skb)
2281 goto out;
2282 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2283 if (!skb)
2284 goto out;
2285
2286 skb_orphan(skb);
2287
2288 type = skb->protocol;
2289 list_for_each_entry_rcu(ptype,
2290 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2291 if (ptype->type == type &&
2292 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2293 ptype->dev == orig_dev)) {
2294 if (pt_prev)
2295 ret = deliver_skb(skb, pt_prev, orig_dev);
2296 pt_prev = ptype;
2297 }
2298 }
2299
2300 if (pt_prev) {
2301 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2302 } else {
2303 kfree_skb(skb);
2304 /* Jamal, now you will not able to escape explaining
2305 * me how you were going to use this. :-)
2306 */
2307 ret = NET_RX_DROP;
2308 }
2309
2310 out:
2311 rcu_read_unlock();
2312 return ret;
2313 }
2314
2315 /* Network device is going away, flush any packets still pending */
2316 static void flush_backlog(void *arg)
2317 {
2318 struct net_device *dev = arg;
2319 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2320 struct sk_buff *skb, *tmp;
2321
2322 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2323 if (skb->dev == dev) {
2324 __skb_unlink(skb, &queue->input_pkt_queue);
2325 kfree_skb(skb);
2326 }
2327 }
2328
2329 static int napi_gro_complete(struct sk_buff *skb)
2330 {
2331 struct packet_type *ptype;
2332 __be16 type = skb->protocol;
2333 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2334 int err = -ENOENT;
2335
2336 if (NAPI_GRO_CB(skb)->count == 1) {
2337 skb_shinfo(skb)->gso_size = 0;
2338 goto out;
2339 }
2340
2341 rcu_read_lock();
2342 list_for_each_entry_rcu(ptype, head, list) {
2343 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2344 continue;
2345
2346 err = ptype->gro_complete(skb);
2347 break;
2348 }
2349 rcu_read_unlock();
2350
2351 if (err) {
2352 WARN_ON(&ptype->list == head);
2353 kfree_skb(skb);
2354 return NET_RX_SUCCESS;
2355 }
2356
2357 out:
2358 return netif_receive_skb(skb);
2359 }
2360
2361 void napi_gro_flush(struct napi_struct *napi)
2362 {
2363 struct sk_buff *skb, *next;
2364
2365 for (skb = napi->gro_list; skb; skb = next) {
2366 next = skb->next;
2367 skb->next = NULL;
2368 napi_gro_complete(skb);
2369 }
2370
2371 napi->gro_count = 0;
2372 napi->gro_list = NULL;
2373 }
2374 EXPORT_SYMBOL(napi_gro_flush);
2375
2376 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2377 {
2378 unsigned int offset = skb_gro_offset(skb);
2379
2380 hlen += offset;
2381 if (unlikely(skb_headlen(skb) ||
2382 skb_shinfo(skb)->frags[0].size < hlen ||
2383 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2384 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2385
2386 return page_address(skb_shinfo(skb)->frags[0].page) +
2387 skb_shinfo(skb)->frags[0].page_offset + offset;
2388 }
2389 EXPORT_SYMBOL(skb_gro_header);
2390
2391 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2392 {
2393 struct sk_buff **pp = NULL;
2394 struct packet_type *ptype;
2395 __be16 type = skb->protocol;
2396 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2397 int same_flow;
2398 int mac_len;
2399 int ret;
2400
2401 if (!(skb->dev->features & NETIF_F_GRO))
2402 goto normal;
2403
2404 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2405 goto normal;
2406
2407 rcu_read_lock();
2408 list_for_each_entry_rcu(ptype, head, list) {
2409 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2410 continue;
2411
2412 skb_set_network_header(skb, skb_gro_offset(skb));
2413 mac_len = skb->network_header - skb->mac_header;
2414 skb->mac_len = mac_len;
2415 NAPI_GRO_CB(skb)->same_flow = 0;
2416 NAPI_GRO_CB(skb)->flush = 0;
2417 NAPI_GRO_CB(skb)->free = 0;
2418
2419 pp = ptype->gro_receive(&napi->gro_list, skb);
2420 break;
2421 }
2422 rcu_read_unlock();
2423
2424 if (&ptype->list == head)
2425 goto normal;
2426
2427 same_flow = NAPI_GRO_CB(skb)->same_flow;
2428 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2429
2430 if (pp) {
2431 struct sk_buff *nskb = *pp;
2432
2433 *pp = nskb->next;
2434 nskb->next = NULL;
2435 napi_gro_complete(nskb);
2436 napi->gro_count--;
2437 }
2438
2439 if (same_flow)
2440 goto ok;
2441
2442 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2443 goto normal;
2444
2445 napi->gro_count++;
2446 NAPI_GRO_CB(skb)->count = 1;
2447 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2448 skb->next = napi->gro_list;
2449 napi->gro_list = skb;
2450 ret = GRO_HELD;
2451
2452 pull:
2453 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2454 if (napi->gro_list == skb)
2455 napi->gro_list = skb->next;
2456 ret = GRO_DROP;
2457 }
2458
2459 ok:
2460 return ret;
2461
2462 normal:
2463 ret = GRO_NORMAL;
2464 goto pull;
2465 }
2466 EXPORT_SYMBOL(dev_gro_receive);
2467
2468 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2469 {
2470 struct sk_buff *p;
2471
2472 if (netpoll_rx_on(skb))
2473 return GRO_NORMAL;
2474
2475 for (p = napi->gro_list; p; p = p->next) {
2476 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2477 && !compare_ether_header(skb_mac_header(p),
2478 skb_gro_mac_header(skb));
2479 NAPI_GRO_CB(p)->flush = 0;
2480 }
2481
2482 return dev_gro_receive(napi, skb);
2483 }
2484
2485 int napi_skb_finish(int ret, struct sk_buff *skb)
2486 {
2487 int err = NET_RX_SUCCESS;
2488
2489 switch (ret) {
2490 case GRO_NORMAL:
2491 return netif_receive_skb(skb);
2492
2493 case GRO_DROP:
2494 err = NET_RX_DROP;
2495 /* fall through */
2496
2497 case GRO_MERGED_FREE:
2498 kfree_skb(skb);
2499 break;
2500 }
2501
2502 return err;
2503 }
2504 EXPORT_SYMBOL(napi_skb_finish);
2505
2506 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2507 {
2508 skb_gro_reset_offset(skb);
2509
2510 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2511 }
2512 EXPORT_SYMBOL(napi_gro_receive);
2513
2514 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2515 {
2516 __skb_pull(skb, skb_headlen(skb));
2517 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2518
2519 napi->skb = skb;
2520 }
2521 EXPORT_SYMBOL(napi_reuse_skb);
2522
2523 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2524 {
2525 struct net_device *dev = napi->dev;
2526 struct sk_buff *skb = napi->skb;
2527
2528 if (!skb) {
2529 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2530 if (!skb)
2531 goto out;
2532
2533 skb_reserve(skb, NET_IP_ALIGN);
2534
2535 napi->skb = skb;
2536 }
2537
2538 out:
2539 return skb;
2540 }
2541 EXPORT_SYMBOL(napi_get_frags);
2542
2543 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2544 {
2545 int err = NET_RX_SUCCESS;
2546
2547 switch (ret) {
2548 case GRO_NORMAL:
2549 case GRO_HELD:
2550 skb->protocol = eth_type_trans(skb, napi->dev);
2551
2552 if (ret == GRO_NORMAL)
2553 return netif_receive_skb(skb);
2554
2555 skb_gro_pull(skb, -ETH_HLEN);
2556 break;
2557
2558 case GRO_DROP:
2559 err = NET_RX_DROP;
2560 /* fall through */
2561
2562 case GRO_MERGED_FREE:
2563 napi_reuse_skb(napi, skb);
2564 break;
2565 }
2566
2567 return err;
2568 }
2569 EXPORT_SYMBOL(napi_frags_finish);
2570
2571 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2572 {
2573 struct sk_buff *skb = napi->skb;
2574 struct ethhdr *eth;
2575
2576 napi->skb = NULL;
2577
2578 skb_reset_mac_header(skb);
2579 skb_gro_reset_offset(skb);
2580
2581 eth = skb_gro_header(skb, sizeof(*eth));
2582 if (!eth) {
2583 napi_reuse_skb(napi, skb);
2584 skb = NULL;
2585 goto out;
2586 }
2587
2588 skb_gro_pull(skb, sizeof(*eth));
2589
2590 /*
2591 * This works because the only protocols we care about don't require
2592 * special handling. We'll fix it up properly at the end.
2593 */
2594 skb->protocol = eth->h_proto;
2595
2596 out:
2597 return skb;
2598 }
2599 EXPORT_SYMBOL(napi_frags_skb);
2600
2601 int napi_gro_frags(struct napi_struct *napi)
2602 {
2603 struct sk_buff *skb = napi_frags_skb(napi);
2604
2605 if (!skb)
2606 return NET_RX_DROP;
2607
2608 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2609 }
2610 EXPORT_SYMBOL(napi_gro_frags);
2611
2612 static int process_backlog(struct napi_struct *napi, int quota)
2613 {
2614 int work = 0;
2615 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2616 unsigned long start_time = jiffies;
2617
2618 napi->weight = weight_p;
2619 do {
2620 struct sk_buff *skb;
2621
2622 local_irq_disable();
2623 skb = __skb_dequeue(&queue->input_pkt_queue);
2624 if (!skb) {
2625 __napi_complete(napi);
2626 local_irq_enable();
2627 break;
2628 }
2629 local_irq_enable();
2630
2631 netif_receive_skb(skb);
2632 } while (++work < quota && jiffies == start_time);
2633
2634 return work;
2635 }
2636
2637 /**
2638 * __napi_schedule - schedule for receive
2639 * @n: entry to schedule
2640 *
2641 * The entry's receive function will be scheduled to run
2642 */
2643 void __napi_schedule(struct napi_struct *n)
2644 {
2645 unsigned long flags;
2646
2647 local_irq_save(flags);
2648 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2649 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2650 local_irq_restore(flags);
2651 }
2652 EXPORT_SYMBOL(__napi_schedule);
2653
2654 void __napi_complete(struct napi_struct *n)
2655 {
2656 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2657 BUG_ON(n->gro_list);
2658
2659 list_del(&n->poll_list);
2660 smp_mb__before_clear_bit();
2661 clear_bit(NAPI_STATE_SCHED, &n->state);
2662 }
2663 EXPORT_SYMBOL(__napi_complete);
2664
2665 void napi_complete(struct napi_struct *n)
2666 {
2667 unsigned long flags;
2668
2669 /*
2670 * don't let napi dequeue from the cpu poll list
2671 * just in case its running on a different cpu
2672 */
2673 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2674 return;
2675
2676 napi_gro_flush(n);
2677 local_irq_save(flags);
2678 __napi_complete(n);
2679 local_irq_restore(flags);
2680 }
2681 EXPORT_SYMBOL(napi_complete);
2682
2683 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2684 int (*poll)(struct napi_struct *, int), int weight)
2685 {
2686 INIT_LIST_HEAD(&napi->poll_list);
2687 napi->gro_count = 0;
2688 napi->gro_list = NULL;
2689 napi->skb = NULL;
2690 napi->poll = poll;
2691 napi->weight = weight;
2692 list_add(&napi->dev_list, &dev->napi_list);
2693 napi->dev = dev;
2694 #ifdef CONFIG_NETPOLL
2695 spin_lock_init(&napi->poll_lock);
2696 napi->poll_owner = -1;
2697 #endif
2698 set_bit(NAPI_STATE_SCHED, &napi->state);
2699 }
2700 EXPORT_SYMBOL(netif_napi_add);
2701
2702 void netif_napi_del(struct napi_struct *napi)
2703 {
2704 struct sk_buff *skb, *next;
2705
2706 list_del_init(&napi->dev_list);
2707 napi_free_frags(napi);
2708
2709 for (skb = napi->gro_list; skb; skb = next) {
2710 next = skb->next;
2711 skb->next = NULL;
2712 kfree_skb(skb);
2713 }
2714
2715 napi->gro_list = NULL;
2716 napi->gro_count = 0;
2717 }
2718 EXPORT_SYMBOL(netif_napi_del);
2719
2720
2721 static void net_rx_action(struct softirq_action *h)
2722 {
2723 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2724 unsigned long time_limit = jiffies + 2;
2725 int budget = netdev_budget;
2726 void *have;
2727
2728 local_irq_disable();
2729
2730 while (!list_empty(list)) {
2731 struct napi_struct *n;
2732 int work, weight;
2733
2734 /* If softirq window is exhuasted then punt.
2735 * Allow this to run for 2 jiffies since which will allow
2736 * an average latency of 1.5/HZ.
2737 */
2738 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2739 goto softnet_break;
2740
2741 local_irq_enable();
2742
2743 /* Even though interrupts have been re-enabled, this
2744 * access is safe because interrupts can only add new
2745 * entries to the tail of this list, and only ->poll()
2746 * calls can remove this head entry from the list.
2747 */
2748 n = list_entry(list->next, struct napi_struct, poll_list);
2749
2750 have = netpoll_poll_lock(n);
2751
2752 weight = n->weight;
2753
2754 /* This NAPI_STATE_SCHED test is for avoiding a race
2755 * with netpoll's poll_napi(). Only the entity which
2756 * obtains the lock and sees NAPI_STATE_SCHED set will
2757 * actually make the ->poll() call. Therefore we avoid
2758 * accidently calling ->poll() when NAPI is not scheduled.
2759 */
2760 work = 0;
2761 if (test_bit(NAPI_STATE_SCHED, &n->state))
2762 work = n->poll(n, weight);
2763
2764 WARN_ON_ONCE(work > weight);
2765
2766 budget -= work;
2767
2768 local_irq_disable();
2769
2770 /* Drivers must not modify the NAPI state if they
2771 * consume the entire weight. In such cases this code
2772 * still "owns" the NAPI instance and therefore can
2773 * move the instance around on the list at-will.
2774 */
2775 if (unlikely(work == weight)) {
2776 if (unlikely(napi_disable_pending(n)))
2777 __napi_complete(n);
2778 else
2779 list_move_tail(&n->poll_list, list);
2780 }
2781
2782 netpoll_poll_unlock(have);
2783 }
2784 out:
2785 local_irq_enable();
2786
2787 #ifdef CONFIG_NET_DMA
2788 /*
2789 * There may not be any more sk_buffs coming right now, so push
2790 * any pending DMA copies to hardware
2791 */
2792 dma_issue_pending_all();
2793 #endif
2794
2795 return;
2796
2797 softnet_break:
2798 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2799 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2800 goto out;
2801 }
2802
2803 static gifconf_func_t * gifconf_list [NPROTO];
2804
2805 /**
2806 * register_gifconf - register a SIOCGIF handler
2807 * @family: Address family
2808 * @gifconf: Function handler
2809 *
2810 * Register protocol dependent address dumping routines. The handler
2811 * that is passed must not be freed or reused until it has been replaced
2812 * by another handler.
2813 */
2814 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2815 {
2816 if (family >= NPROTO)
2817 return -EINVAL;
2818 gifconf_list[family] = gifconf;
2819 return 0;
2820 }
2821
2822
2823 /*
2824 * Map an interface index to its name (SIOCGIFNAME)
2825 */
2826
2827 /*
2828 * We need this ioctl for efficient implementation of the
2829 * if_indextoname() function required by the IPv6 API. Without
2830 * it, we would have to search all the interfaces to find a
2831 * match. --pb
2832 */
2833
2834 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2835 {
2836 struct net_device *dev;
2837 struct ifreq ifr;
2838
2839 /*
2840 * Fetch the caller's info block.
2841 */
2842
2843 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2844 return -EFAULT;
2845
2846 read_lock(&dev_base_lock);
2847 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2848 if (!dev) {
2849 read_unlock(&dev_base_lock);
2850 return -ENODEV;
2851 }
2852
2853 strcpy(ifr.ifr_name, dev->name);
2854 read_unlock(&dev_base_lock);
2855
2856 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2857 return -EFAULT;
2858 return 0;
2859 }
2860
2861 /*
2862 * Perform a SIOCGIFCONF call. This structure will change
2863 * size eventually, and there is nothing I can do about it.
2864 * Thus we will need a 'compatibility mode'.
2865 */
2866
2867 static int dev_ifconf(struct net *net, char __user *arg)
2868 {
2869 struct ifconf ifc;
2870 struct net_device *dev;
2871 char __user *pos;
2872 int len;
2873 int total;
2874 int i;
2875
2876 /*
2877 * Fetch the caller's info block.
2878 */
2879
2880 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2881 return -EFAULT;
2882
2883 pos = ifc.ifc_buf;
2884 len = ifc.ifc_len;
2885
2886 /*
2887 * Loop over the interfaces, and write an info block for each.
2888 */
2889
2890 total = 0;
2891 for_each_netdev(net, dev) {
2892 for (i = 0; i < NPROTO; i++) {
2893 if (gifconf_list[i]) {
2894 int done;
2895 if (!pos)
2896 done = gifconf_list[i](dev, NULL, 0);
2897 else
2898 done = gifconf_list[i](dev, pos + total,
2899 len - total);
2900 if (done < 0)
2901 return -EFAULT;
2902 total += done;
2903 }
2904 }
2905 }
2906
2907 /*
2908 * All done. Write the updated control block back to the caller.
2909 */
2910 ifc.ifc_len = total;
2911
2912 /*
2913 * Both BSD and Solaris return 0 here, so we do too.
2914 */
2915 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2916 }
2917
2918 #ifdef CONFIG_PROC_FS
2919 /*
2920 * This is invoked by the /proc filesystem handler to display a device
2921 * in detail.
2922 */
2923 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2924 __acquires(dev_base_lock)
2925 {
2926 struct net *net = seq_file_net(seq);
2927 loff_t off;
2928 struct net_device *dev;
2929
2930 read_lock(&dev_base_lock);
2931 if (!*pos)
2932 return SEQ_START_TOKEN;
2933
2934 off = 1;
2935 for_each_netdev(net, dev)
2936 if (off++ == *pos)
2937 return dev;
2938
2939 return NULL;
2940 }
2941
2942 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2943 {
2944 struct net *net = seq_file_net(seq);
2945 ++*pos;
2946 return v == SEQ_START_TOKEN ?
2947 first_net_device(net) : next_net_device((struct net_device *)v);
2948 }
2949
2950 void dev_seq_stop(struct seq_file *seq, void *v)
2951 __releases(dev_base_lock)
2952 {
2953 read_unlock(&dev_base_lock);
2954 }
2955
2956 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2957 {
2958 const struct net_device_stats *stats = dev_get_stats(dev);
2959
2960 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2961 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2962 dev->name, stats->rx_bytes, stats->rx_packets,
2963 stats->rx_errors,
2964 stats->rx_dropped + stats->rx_missed_errors,
2965 stats->rx_fifo_errors,
2966 stats->rx_length_errors + stats->rx_over_errors +
2967 stats->rx_crc_errors + stats->rx_frame_errors,
2968 stats->rx_compressed, stats->multicast,
2969 stats->tx_bytes, stats->tx_packets,
2970 stats->tx_errors, stats->tx_dropped,
2971 stats->tx_fifo_errors, stats->collisions,
2972 stats->tx_carrier_errors +
2973 stats->tx_aborted_errors +
2974 stats->tx_window_errors +
2975 stats->tx_heartbeat_errors,
2976 stats->tx_compressed);
2977 }
2978
2979 /*
2980 * Called from the PROCfs module. This now uses the new arbitrary sized
2981 * /proc/net interface to create /proc/net/dev
2982 */
2983 static int dev_seq_show(struct seq_file *seq, void *v)
2984 {
2985 if (v == SEQ_START_TOKEN)
2986 seq_puts(seq, "Inter-| Receive "
2987 " | Transmit\n"
2988 " face |bytes packets errs drop fifo frame "
2989 "compressed multicast|bytes packets errs "
2990 "drop fifo colls carrier compressed\n");
2991 else
2992 dev_seq_printf_stats(seq, v);
2993 return 0;
2994 }
2995
2996 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2997 {
2998 struct netif_rx_stats *rc = NULL;
2999
3000 while (*pos < nr_cpu_ids)
3001 if (cpu_online(*pos)) {
3002 rc = &per_cpu(netdev_rx_stat, *pos);
3003 break;
3004 } else
3005 ++*pos;
3006 return rc;
3007 }
3008
3009 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3010 {
3011 return softnet_get_online(pos);
3012 }
3013
3014 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3015 {
3016 ++*pos;
3017 return softnet_get_online(pos);
3018 }
3019
3020 static void softnet_seq_stop(struct seq_file *seq, void *v)
3021 {
3022 }
3023
3024 static int softnet_seq_show(struct seq_file *seq, void *v)
3025 {
3026 struct netif_rx_stats *s = v;
3027
3028 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3029 s->total, s->dropped, s->time_squeeze, 0,
3030 0, 0, 0, 0, /* was fastroute */
3031 s->cpu_collision );
3032 return 0;
3033 }
3034
3035 static const struct seq_operations dev_seq_ops = {
3036 .start = dev_seq_start,
3037 .next = dev_seq_next,
3038 .stop = dev_seq_stop,
3039 .show = dev_seq_show,
3040 };
3041
3042 static int dev_seq_open(struct inode *inode, struct file *file)
3043 {
3044 return seq_open_net(inode, file, &dev_seq_ops,
3045 sizeof(struct seq_net_private));
3046 }
3047
3048 static const struct file_operations dev_seq_fops = {
3049 .owner = THIS_MODULE,
3050 .open = dev_seq_open,
3051 .read = seq_read,
3052 .llseek = seq_lseek,
3053 .release = seq_release_net,
3054 };
3055
3056 static const struct seq_operations softnet_seq_ops = {
3057 .start = softnet_seq_start,
3058 .next = softnet_seq_next,
3059 .stop = softnet_seq_stop,
3060 .show = softnet_seq_show,
3061 };
3062
3063 static int softnet_seq_open(struct inode *inode, struct file *file)
3064 {
3065 return seq_open(file, &softnet_seq_ops);
3066 }
3067
3068 static const struct file_operations softnet_seq_fops = {
3069 .owner = THIS_MODULE,
3070 .open = softnet_seq_open,
3071 .read = seq_read,
3072 .llseek = seq_lseek,
3073 .release = seq_release,
3074 };
3075
3076 static void *ptype_get_idx(loff_t pos)
3077 {
3078 struct packet_type *pt = NULL;
3079 loff_t i = 0;
3080 int t;
3081
3082 list_for_each_entry_rcu(pt, &ptype_all, list) {
3083 if (i == pos)
3084 return pt;
3085 ++i;
3086 }
3087
3088 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3089 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3090 if (i == pos)
3091 return pt;
3092 ++i;
3093 }
3094 }
3095 return NULL;
3096 }
3097
3098 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3099 __acquires(RCU)
3100 {
3101 rcu_read_lock();
3102 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3103 }
3104
3105 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3106 {
3107 struct packet_type *pt;
3108 struct list_head *nxt;
3109 int hash;
3110
3111 ++*pos;
3112 if (v == SEQ_START_TOKEN)
3113 return ptype_get_idx(0);
3114
3115 pt = v;
3116 nxt = pt->list.next;
3117 if (pt->type == htons(ETH_P_ALL)) {
3118 if (nxt != &ptype_all)
3119 goto found;
3120 hash = 0;
3121 nxt = ptype_base[0].next;
3122 } else
3123 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3124
3125 while (nxt == &ptype_base[hash]) {
3126 if (++hash >= PTYPE_HASH_SIZE)
3127 return NULL;
3128 nxt = ptype_base[hash].next;
3129 }
3130 found:
3131 return list_entry(nxt, struct packet_type, list);
3132 }
3133
3134 static void ptype_seq_stop(struct seq_file *seq, void *v)
3135 __releases(RCU)
3136 {
3137 rcu_read_unlock();
3138 }
3139
3140 static int ptype_seq_show(struct seq_file *seq, void *v)
3141 {
3142 struct packet_type *pt = v;
3143
3144 if (v == SEQ_START_TOKEN)
3145 seq_puts(seq, "Type Device Function\n");
3146 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3147 if (pt->type == htons(ETH_P_ALL))
3148 seq_puts(seq, "ALL ");
3149 else
3150 seq_printf(seq, "%04x", ntohs(pt->type));
3151
3152 seq_printf(seq, " %-8s %pF\n",
3153 pt->dev ? pt->dev->name : "", pt->func);
3154 }
3155
3156 return 0;
3157 }
3158
3159 static const struct seq_operations ptype_seq_ops = {
3160 .start = ptype_seq_start,
3161 .next = ptype_seq_next,
3162 .stop = ptype_seq_stop,
3163 .show = ptype_seq_show,
3164 };
3165
3166 static int ptype_seq_open(struct inode *inode, struct file *file)
3167 {
3168 return seq_open_net(inode, file, &ptype_seq_ops,
3169 sizeof(struct seq_net_private));
3170 }
3171
3172 static const struct file_operations ptype_seq_fops = {
3173 .owner = THIS_MODULE,
3174 .open = ptype_seq_open,
3175 .read = seq_read,
3176 .llseek = seq_lseek,
3177 .release = seq_release_net,
3178 };
3179
3180
3181 static int __net_init dev_proc_net_init(struct net *net)
3182 {
3183 int rc = -ENOMEM;
3184
3185 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3186 goto out;
3187 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3188 goto out_dev;
3189 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3190 goto out_softnet;
3191
3192 if (wext_proc_init(net))
3193 goto out_ptype;
3194 rc = 0;
3195 out:
3196 return rc;
3197 out_ptype:
3198 proc_net_remove(net, "ptype");
3199 out_softnet:
3200 proc_net_remove(net, "softnet_stat");
3201 out_dev:
3202 proc_net_remove(net, "dev");
3203 goto out;
3204 }
3205
3206 static void __net_exit dev_proc_net_exit(struct net *net)
3207 {
3208 wext_proc_exit(net);
3209
3210 proc_net_remove(net, "ptype");
3211 proc_net_remove(net, "softnet_stat");
3212 proc_net_remove(net, "dev");
3213 }
3214
3215 static struct pernet_operations __net_initdata dev_proc_ops = {
3216 .init = dev_proc_net_init,
3217 .exit = dev_proc_net_exit,
3218 };
3219
3220 static int __init dev_proc_init(void)
3221 {
3222 return register_pernet_subsys(&dev_proc_ops);
3223 }
3224 #else
3225 #define dev_proc_init() 0
3226 #endif /* CONFIG_PROC_FS */
3227
3228
3229 /**
3230 * netdev_set_master - set up master/slave pair
3231 * @slave: slave device
3232 * @master: new master device
3233 *
3234 * Changes the master device of the slave. Pass %NULL to break the
3235 * bonding. The caller must hold the RTNL semaphore. On a failure
3236 * a negative errno code is returned. On success the reference counts
3237 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3238 * function returns zero.
3239 */
3240 int netdev_set_master(struct net_device *slave, struct net_device *master)
3241 {
3242 struct net_device *old = slave->master;
3243
3244 ASSERT_RTNL();
3245
3246 if (master) {
3247 if (old)
3248 return -EBUSY;
3249 dev_hold(master);
3250 }
3251
3252 slave->master = master;
3253
3254 synchronize_net();
3255
3256 if (old)
3257 dev_put(old);
3258
3259 if (master)
3260 slave->flags |= IFF_SLAVE;
3261 else
3262 slave->flags &= ~IFF_SLAVE;
3263
3264 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3265 return 0;
3266 }
3267
3268 static void dev_change_rx_flags(struct net_device *dev, int flags)
3269 {
3270 const struct net_device_ops *ops = dev->netdev_ops;
3271
3272 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3273 ops->ndo_change_rx_flags(dev, flags);
3274 }
3275
3276 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3277 {
3278 unsigned short old_flags = dev->flags;
3279 uid_t uid;
3280 gid_t gid;
3281
3282 ASSERT_RTNL();
3283
3284 dev->flags |= IFF_PROMISC;
3285 dev->promiscuity += inc;
3286 if (dev->promiscuity == 0) {
3287 /*
3288 * Avoid overflow.
3289 * If inc causes overflow, untouch promisc and return error.
3290 */
3291 if (inc < 0)
3292 dev->flags &= ~IFF_PROMISC;
3293 else {
3294 dev->promiscuity -= inc;
3295 printk(KERN_WARNING "%s: promiscuity touches roof, "
3296 "set promiscuity failed, promiscuity feature "
3297 "of device might be broken.\n", dev->name);
3298 return -EOVERFLOW;
3299 }
3300 }
3301 if (dev->flags != old_flags) {
3302 printk(KERN_INFO "device %s %s promiscuous mode\n",
3303 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3304 "left");
3305 if (audit_enabled) {
3306 current_uid_gid(&uid, &gid);
3307 audit_log(current->audit_context, GFP_ATOMIC,
3308 AUDIT_ANOM_PROMISCUOUS,
3309 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3310 dev->name, (dev->flags & IFF_PROMISC),
3311 (old_flags & IFF_PROMISC),
3312 audit_get_loginuid(current),
3313 uid, gid,
3314 audit_get_sessionid(current));
3315 }
3316
3317 dev_change_rx_flags(dev, IFF_PROMISC);
3318 }
3319 return 0;
3320 }
3321
3322 /**
3323 * dev_set_promiscuity - update promiscuity count on a device
3324 * @dev: device
3325 * @inc: modifier
3326 *
3327 * Add or remove promiscuity from a device. While the count in the device
3328 * remains above zero the interface remains promiscuous. Once it hits zero
3329 * the device reverts back to normal filtering operation. A negative inc
3330 * value is used to drop promiscuity on the device.
3331 * Return 0 if successful or a negative errno code on error.
3332 */
3333 int dev_set_promiscuity(struct net_device *dev, int inc)
3334 {
3335 unsigned short old_flags = dev->flags;
3336 int err;
3337
3338 err = __dev_set_promiscuity(dev, inc);
3339 if (err < 0)
3340 return err;
3341 if (dev->flags != old_flags)
3342 dev_set_rx_mode(dev);
3343 return err;
3344 }
3345
3346 /**
3347 * dev_set_allmulti - update allmulti count on a device
3348 * @dev: device
3349 * @inc: modifier
3350 *
3351 * Add or remove reception of all multicast frames to a device. While the
3352 * count in the device remains above zero the interface remains listening
3353 * to all interfaces. Once it hits zero the device reverts back to normal
3354 * filtering operation. A negative @inc value is used to drop the counter
3355 * when releasing a resource needing all multicasts.
3356 * Return 0 if successful or a negative errno code on error.
3357 */
3358
3359 int dev_set_allmulti(struct net_device *dev, int inc)
3360 {
3361 unsigned short old_flags = dev->flags;
3362
3363 ASSERT_RTNL();
3364
3365 dev->flags |= IFF_ALLMULTI;
3366 dev->allmulti += inc;
3367 if (dev->allmulti == 0) {
3368 /*
3369 * Avoid overflow.
3370 * If inc causes overflow, untouch allmulti and return error.
3371 */
3372 if (inc < 0)
3373 dev->flags &= ~IFF_ALLMULTI;
3374 else {
3375 dev->allmulti -= inc;
3376 printk(KERN_WARNING "%s: allmulti touches roof, "
3377 "set allmulti failed, allmulti feature of "
3378 "device might be broken.\n", dev->name);
3379 return -EOVERFLOW;
3380 }
3381 }
3382 if (dev->flags ^ old_flags) {
3383 dev_change_rx_flags(dev, IFF_ALLMULTI);
3384 dev_set_rx_mode(dev);
3385 }
3386 return 0;
3387 }
3388
3389 /*
3390 * Upload unicast and multicast address lists to device and
3391 * configure RX filtering. When the device doesn't support unicast
3392 * filtering it is put in promiscuous mode while unicast addresses
3393 * are present.
3394 */
3395 void __dev_set_rx_mode(struct net_device *dev)
3396 {
3397 const struct net_device_ops *ops = dev->netdev_ops;
3398
3399 /* dev_open will call this function so the list will stay sane. */
3400 if (!(dev->flags&IFF_UP))
3401 return;
3402
3403 if (!netif_device_present(dev))
3404 return;
3405
3406 if (ops->ndo_set_rx_mode)
3407 ops->ndo_set_rx_mode(dev);
3408 else {
3409 /* Unicast addresses changes may only happen under the rtnl,
3410 * therefore calling __dev_set_promiscuity here is safe.
3411 */
3412 if (dev->uc_count > 0 && !dev->uc_promisc) {
3413 __dev_set_promiscuity(dev, 1);
3414 dev->uc_promisc = 1;
3415 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3416 __dev_set_promiscuity(dev, -1);
3417 dev->uc_promisc = 0;
3418 }
3419
3420 if (ops->ndo_set_multicast_list)
3421 ops->ndo_set_multicast_list(dev);
3422 }
3423 }
3424
3425 void dev_set_rx_mode(struct net_device *dev)
3426 {
3427 netif_addr_lock_bh(dev);
3428 __dev_set_rx_mode(dev);
3429 netif_addr_unlock_bh(dev);
3430 }
3431
3432 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3433 void *addr, int alen, int glbl)
3434 {
3435 struct dev_addr_list *da;
3436
3437 for (; (da = *list) != NULL; list = &da->next) {
3438 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3439 alen == da->da_addrlen) {
3440 if (glbl) {
3441 int old_glbl = da->da_gusers;
3442 da->da_gusers = 0;
3443 if (old_glbl == 0)
3444 break;
3445 }
3446 if (--da->da_users)
3447 return 0;
3448
3449 *list = da->next;
3450 kfree(da);
3451 (*count)--;
3452 return 0;
3453 }
3454 }
3455 return -ENOENT;
3456 }
3457
3458 int __dev_addr_add(struct dev_addr_list **list, int *count,
3459 void *addr, int alen, int glbl)
3460 {
3461 struct dev_addr_list *da;
3462
3463 for (da = *list; da != NULL; da = da->next) {
3464 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3465 da->da_addrlen == alen) {
3466 if (glbl) {
3467 int old_glbl = da->da_gusers;
3468 da->da_gusers = 1;
3469 if (old_glbl)
3470 return 0;
3471 }
3472 da->da_users++;
3473 return 0;
3474 }
3475 }
3476
3477 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3478 if (da == NULL)
3479 return -ENOMEM;
3480 memcpy(da->da_addr, addr, alen);
3481 da->da_addrlen = alen;
3482 da->da_users = 1;
3483 da->da_gusers = glbl ? 1 : 0;
3484 da->next = *list;
3485 *list = da;
3486 (*count)++;
3487 return 0;
3488 }
3489
3490 /**
3491 * dev_unicast_delete - Release secondary unicast address.
3492 * @dev: device
3493 * @addr: address to delete
3494 * @alen: length of @addr
3495 *
3496 * Release reference to a secondary unicast address and remove it
3497 * from the device if the reference count drops to zero.
3498 *
3499 * The caller must hold the rtnl_mutex.
3500 */
3501 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3502 {
3503 int err;
3504
3505 ASSERT_RTNL();
3506
3507 netif_addr_lock_bh(dev);
3508 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3509 if (!err)
3510 __dev_set_rx_mode(dev);
3511 netif_addr_unlock_bh(dev);
3512 return err;
3513 }
3514 EXPORT_SYMBOL(dev_unicast_delete);
3515
3516 /**
3517 * dev_unicast_add - add a secondary unicast address
3518 * @dev: device
3519 * @addr: address to add
3520 * @alen: length of @addr
3521 *
3522 * Add a secondary unicast address to the device or increase
3523 * the reference count if it already exists.
3524 *
3525 * The caller must hold the rtnl_mutex.
3526 */
3527 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3528 {
3529 int err;
3530
3531 ASSERT_RTNL();
3532
3533 netif_addr_lock_bh(dev);
3534 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3535 if (!err)
3536 __dev_set_rx_mode(dev);
3537 netif_addr_unlock_bh(dev);
3538 return err;
3539 }
3540 EXPORT_SYMBOL(dev_unicast_add);
3541
3542 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3543 struct dev_addr_list **from, int *from_count)
3544 {
3545 struct dev_addr_list *da, *next;
3546 int err = 0;
3547
3548 da = *from;
3549 while (da != NULL) {
3550 next = da->next;
3551 if (!da->da_synced) {
3552 err = __dev_addr_add(to, to_count,
3553 da->da_addr, da->da_addrlen, 0);
3554 if (err < 0)
3555 break;
3556 da->da_synced = 1;
3557 da->da_users++;
3558 } else if (da->da_users == 1) {
3559 __dev_addr_delete(to, to_count,
3560 da->da_addr, da->da_addrlen, 0);
3561 __dev_addr_delete(from, from_count,
3562 da->da_addr, da->da_addrlen, 0);
3563 }
3564 da = next;
3565 }
3566 return err;
3567 }
3568
3569 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3570 struct dev_addr_list **from, int *from_count)
3571 {
3572 struct dev_addr_list *da, *next;
3573
3574 da = *from;
3575 while (da != NULL) {
3576 next = da->next;
3577 if (da->da_synced) {
3578 __dev_addr_delete(to, to_count,
3579 da->da_addr, da->da_addrlen, 0);
3580 da->da_synced = 0;
3581 __dev_addr_delete(from, from_count,
3582 da->da_addr, da->da_addrlen, 0);
3583 }
3584 da = next;
3585 }
3586 }
3587
3588 /**
3589 * dev_unicast_sync - Synchronize device's unicast list to another device
3590 * @to: destination device
3591 * @from: source device
3592 *
3593 * Add newly added addresses to the destination device and release
3594 * addresses that have no users left. The source device must be
3595 * locked by netif_tx_lock_bh.
3596 *
3597 * This function is intended to be called from the dev->set_rx_mode
3598 * function of layered software devices.
3599 */
3600 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3601 {
3602 int err = 0;
3603
3604 netif_addr_lock_bh(to);
3605 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3606 &from->uc_list, &from->uc_count);
3607 if (!err)
3608 __dev_set_rx_mode(to);
3609 netif_addr_unlock_bh(to);
3610 return err;
3611 }
3612 EXPORT_SYMBOL(dev_unicast_sync);
3613
3614 /**
3615 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3616 * @to: destination device
3617 * @from: source device
3618 *
3619 * Remove all addresses that were added to the destination device by
3620 * dev_unicast_sync(). This function is intended to be called from the
3621 * dev->stop function of layered software devices.
3622 */
3623 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3624 {
3625 netif_addr_lock_bh(from);
3626 netif_addr_lock(to);
3627
3628 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3629 &from->uc_list, &from->uc_count);
3630 __dev_set_rx_mode(to);
3631
3632 netif_addr_unlock(to);
3633 netif_addr_unlock_bh(from);
3634 }
3635 EXPORT_SYMBOL(dev_unicast_unsync);
3636
3637 static void __dev_addr_discard(struct dev_addr_list **list)
3638 {
3639 struct dev_addr_list *tmp;
3640
3641 while (*list != NULL) {
3642 tmp = *list;
3643 *list = tmp->next;
3644 if (tmp->da_users > tmp->da_gusers)
3645 printk("__dev_addr_discard: address leakage! "
3646 "da_users=%d\n", tmp->da_users);
3647 kfree(tmp);
3648 }
3649 }
3650
3651 static void dev_addr_discard(struct net_device *dev)
3652 {
3653 netif_addr_lock_bh(dev);
3654
3655 __dev_addr_discard(&dev->uc_list);
3656 dev->uc_count = 0;
3657
3658 __dev_addr_discard(&dev->mc_list);
3659 dev->mc_count = 0;
3660
3661 netif_addr_unlock_bh(dev);
3662 }
3663
3664 /**
3665 * dev_get_flags - get flags reported to userspace
3666 * @dev: device
3667 *
3668 * Get the combination of flag bits exported through APIs to userspace.
3669 */
3670 unsigned dev_get_flags(const struct net_device *dev)
3671 {
3672 unsigned flags;
3673
3674 flags = (dev->flags & ~(IFF_PROMISC |
3675 IFF_ALLMULTI |
3676 IFF_RUNNING |
3677 IFF_LOWER_UP |
3678 IFF_DORMANT)) |
3679 (dev->gflags & (IFF_PROMISC |
3680 IFF_ALLMULTI));
3681
3682 if (netif_running(dev)) {
3683 if (netif_oper_up(dev))
3684 flags |= IFF_RUNNING;
3685 if (netif_carrier_ok(dev))
3686 flags |= IFF_LOWER_UP;
3687 if (netif_dormant(dev))
3688 flags |= IFF_DORMANT;
3689 }
3690
3691 return flags;
3692 }
3693
3694 /**
3695 * dev_change_flags - change device settings
3696 * @dev: device
3697 * @flags: device state flags
3698 *
3699 * Change settings on device based state flags. The flags are
3700 * in the userspace exported format.
3701 */
3702 int dev_change_flags(struct net_device *dev, unsigned flags)
3703 {
3704 int ret, changes;
3705 int old_flags = dev->flags;
3706
3707 ASSERT_RTNL();
3708
3709 /*
3710 * Set the flags on our device.
3711 */
3712
3713 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3714 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3715 IFF_AUTOMEDIA)) |
3716 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3717 IFF_ALLMULTI));
3718
3719 /*
3720 * Load in the correct multicast list now the flags have changed.
3721 */
3722
3723 if ((old_flags ^ flags) & IFF_MULTICAST)
3724 dev_change_rx_flags(dev, IFF_MULTICAST);
3725
3726 dev_set_rx_mode(dev);
3727
3728 /*
3729 * Have we downed the interface. We handle IFF_UP ourselves
3730 * according to user attempts to set it, rather than blindly
3731 * setting it.
3732 */
3733
3734 ret = 0;
3735 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3736 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3737
3738 if (!ret)
3739 dev_set_rx_mode(dev);
3740 }
3741
3742 if (dev->flags & IFF_UP &&
3743 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3744 IFF_VOLATILE)))
3745 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3746
3747 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3748 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3749 dev->gflags ^= IFF_PROMISC;
3750 dev_set_promiscuity(dev, inc);
3751 }
3752
3753 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3754 is important. Some (broken) drivers set IFF_PROMISC, when
3755 IFF_ALLMULTI is requested not asking us and not reporting.
3756 */
3757 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3758 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3759 dev->gflags ^= IFF_ALLMULTI;
3760 dev_set_allmulti(dev, inc);
3761 }
3762
3763 /* Exclude state transition flags, already notified */
3764 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3765 if (changes)
3766 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3767
3768 return ret;
3769 }
3770
3771 /**
3772 * dev_set_mtu - Change maximum transfer unit
3773 * @dev: device
3774 * @new_mtu: new transfer unit
3775 *
3776 * Change the maximum transfer size of the network device.
3777 */
3778 int dev_set_mtu(struct net_device *dev, int new_mtu)
3779 {
3780 const struct net_device_ops *ops = dev->netdev_ops;
3781 int err;
3782
3783 if (new_mtu == dev->mtu)
3784 return 0;
3785
3786 /* MTU must be positive. */
3787 if (new_mtu < 0)
3788 return -EINVAL;
3789
3790 if (!netif_device_present(dev))
3791 return -ENODEV;
3792
3793 err = 0;
3794 if (ops->ndo_change_mtu)
3795 err = ops->ndo_change_mtu(dev, new_mtu);
3796 else
3797 dev->mtu = new_mtu;
3798
3799 if (!err && dev->flags & IFF_UP)
3800 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3801 return err;
3802 }
3803
3804 /**
3805 * dev_set_mac_address - Change Media Access Control Address
3806 * @dev: device
3807 * @sa: new address
3808 *
3809 * Change the hardware (MAC) address of the device
3810 */
3811 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3812 {
3813 const struct net_device_ops *ops = dev->netdev_ops;
3814 int err;
3815
3816 if (!ops->ndo_set_mac_address)
3817 return -EOPNOTSUPP;
3818 if (sa->sa_family != dev->type)
3819 return -EINVAL;
3820 if (!netif_device_present(dev))
3821 return -ENODEV;
3822 err = ops->ndo_set_mac_address(dev, sa);
3823 if (!err)
3824 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3825 return err;
3826 }
3827
3828 /*
3829 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3830 */
3831 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3832 {
3833 int err;
3834 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3835
3836 if (!dev)
3837 return -ENODEV;
3838
3839 switch (cmd) {
3840 case SIOCGIFFLAGS: /* Get interface flags */
3841 ifr->ifr_flags = dev_get_flags(dev);
3842 return 0;
3843
3844 case SIOCGIFMETRIC: /* Get the metric on the interface
3845 (currently unused) */
3846 ifr->ifr_metric = 0;
3847 return 0;
3848
3849 case SIOCGIFMTU: /* Get the MTU of a device */
3850 ifr->ifr_mtu = dev->mtu;
3851 return 0;
3852
3853 case SIOCGIFHWADDR:
3854 if (!dev->addr_len)
3855 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3856 else
3857 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3858 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3859 ifr->ifr_hwaddr.sa_family = dev->type;
3860 return 0;
3861
3862 case SIOCGIFSLAVE:
3863 err = -EINVAL;
3864 break;
3865
3866 case SIOCGIFMAP:
3867 ifr->ifr_map.mem_start = dev->mem_start;
3868 ifr->ifr_map.mem_end = dev->mem_end;
3869 ifr->ifr_map.base_addr = dev->base_addr;
3870 ifr->ifr_map.irq = dev->irq;
3871 ifr->ifr_map.dma = dev->dma;
3872 ifr->ifr_map.port = dev->if_port;
3873 return 0;
3874
3875 case SIOCGIFINDEX:
3876 ifr->ifr_ifindex = dev->ifindex;
3877 return 0;
3878
3879 case SIOCGIFTXQLEN:
3880 ifr->ifr_qlen = dev->tx_queue_len;
3881 return 0;
3882
3883 default:
3884 /* dev_ioctl() should ensure this case
3885 * is never reached
3886 */
3887 WARN_ON(1);
3888 err = -EINVAL;
3889 break;
3890
3891 }
3892 return err;
3893 }
3894
3895 /*
3896 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3897 */
3898 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3899 {
3900 int err;
3901 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3902 const struct net_device_ops *ops;
3903
3904 if (!dev)
3905 return -ENODEV;
3906
3907 ops = dev->netdev_ops;
3908
3909 switch (cmd) {
3910 case SIOCSIFFLAGS: /* Set interface flags */
3911 return dev_change_flags(dev, ifr->ifr_flags);
3912
3913 case SIOCSIFMETRIC: /* Set the metric on the interface
3914 (currently unused) */
3915 return -EOPNOTSUPP;
3916
3917 case SIOCSIFMTU: /* Set the MTU of a device */
3918 return dev_set_mtu(dev, ifr->ifr_mtu);
3919
3920 case SIOCSIFHWADDR:
3921 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3922
3923 case SIOCSIFHWBROADCAST:
3924 if (ifr->ifr_hwaddr.sa_family != dev->type)
3925 return -EINVAL;
3926 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3927 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3928 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3929 return 0;
3930
3931 case SIOCSIFMAP:
3932 if (ops->ndo_set_config) {
3933 if (!netif_device_present(dev))
3934 return -ENODEV;
3935 return ops->ndo_set_config(dev, &ifr->ifr_map);
3936 }
3937 return -EOPNOTSUPP;
3938
3939 case SIOCADDMULTI:
3940 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3941 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3942 return -EINVAL;
3943 if (!netif_device_present(dev))
3944 return -ENODEV;
3945 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3946 dev->addr_len, 1);
3947
3948 case SIOCDELMULTI:
3949 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3950 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3951 return -EINVAL;
3952 if (!netif_device_present(dev))
3953 return -ENODEV;
3954 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3955 dev->addr_len, 1);
3956
3957 case SIOCSIFTXQLEN:
3958 if (ifr->ifr_qlen < 0)
3959 return -EINVAL;
3960 dev->tx_queue_len = ifr->ifr_qlen;
3961 return 0;
3962
3963 case SIOCSIFNAME:
3964 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3965 return dev_change_name(dev, ifr->ifr_newname);
3966
3967 /*
3968 * Unknown or private ioctl
3969 */
3970
3971 default:
3972 if ((cmd >= SIOCDEVPRIVATE &&
3973 cmd <= SIOCDEVPRIVATE + 15) ||
3974 cmd == SIOCBONDENSLAVE ||
3975 cmd == SIOCBONDRELEASE ||
3976 cmd == SIOCBONDSETHWADDR ||
3977 cmd == SIOCBONDSLAVEINFOQUERY ||
3978 cmd == SIOCBONDINFOQUERY ||
3979 cmd == SIOCBONDCHANGEACTIVE ||
3980 cmd == SIOCGMIIPHY ||
3981 cmd == SIOCGMIIREG ||
3982 cmd == SIOCSMIIREG ||
3983 cmd == SIOCBRADDIF ||
3984 cmd == SIOCBRDELIF ||
3985 cmd == SIOCSHWTSTAMP ||
3986 cmd == SIOCWANDEV) {
3987 err = -EOPNOTSUPP;
3988 if (ops->ndo_do_ioctl) {
3989 if (netif_device_present(dev))
3990 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3991 else
3992 err = -ENODEV;
3993 }
3994 } else
3995 err = -EINVAL;
3996
3997 }
3998 return err;
3999 }
4000
4001 /*
4002 * This function handles all "interface"-type I/O control requests. The actual
4003 * 'doing' part of this is dev_ifsioc above.
4004 */
4005
4006 /**
4007 * dev_ioctl - network device ioctl
4008 * @net: the applicable net namespace
4009 * @cmd: command to issue
4010 * @arg: pointer to a struct ifreq in user space
4011 *
4012 * Issue ioctl functions to devices. This is normally called by the
4013 * user space syscall interfaces but can sometimes be useful for
4014 * other purposes. The return value is the return from the syscall if
4015 * positive or a negative errno code on error.
4016 */
4017
4018 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4019 {
4020 struct ifreq ifr;
4021 int ret;
4022 char *colon;
4023
4024 /* One special case: SIOCGIFCONF takes ifconf argument
4025 and requires shared lock, because it sleeps writing
4026 to user space.
4027 */
4028
4029 if (cmd == SIOCGIFCONF) {
4030 rtnl_lock();
4031 ret = dev_ifconf(net, (char __user *) arg);
4032 rtnl_unlock();
4033 return ret;
4034 }
4035 if (cmd == SIOCGIFNAME)
4036 return dev_ifname(net, (struct ifreq __user *)arg);
4037
4038 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4039 return -EFAULT;
4040
4041 ifr.ifr_name[IFNAMSIZ-1] = 0;
4042
4043 colon = strchr(ifr.ifr_name, ':');
4044 if (colon)
4045 *colon = 0;
4046
4047 /*
4048 * See which interface the caller is talking about.
4049 */
4050
4051 switch (cmd) {
4052 /*
4053 * These ioctl calls:
4054 * - can be done by all.
4055 * - atomic and do not require locking.
4056 * - return a value
4057 */
4058 case SIOCGIFFLAGS:
4059 case SIOCGIFMETRIC:
4060 case SIOCGIFMTU:
4061 case SIOCGIFHWADDR:
4062 case SIOCGIFSLAVE:
4063 case SIOCGIFMAP:
4064 case SIOCGIFINDEX:
4065 case SIOCGIFTXQLEN:
4066 dev_load(net, ifr.ifr_name);
4067 read_lock(&dev_base_lock);
4068 ret = dev_ifsioc_locked(net, &ifr, cmd);
4069 read_unlock(&dev_base_lock);
4070 if (!ret) {
4071 if (colon)
4072 *colon = ':';
4073 if (copy_to_user(arg, &ifr,
4074 sizeof(struct ifreq)))
4075 ret = -EFAULT;
4076 }
4077 return ret;
4078
4079 case SIOCETHTOOL:
4080 dev_load(net, ifr.ifr_name);
4081 rtnl_lock();
4082 ret = dev_ethtool(net, &ifr);
4083 rtnl_unlock();
4084 if (!ret) {
4085 if (colon)
4086 *colon = ':';
4087 if (copy_to_user(arg, &ifr,
4088 sizeof(struct ifreq)))
4089 ret = -EFAULT;
4090 }
4091 return ret;
4092
4093 /*
4094 * These ioctl calls:
4095 * - require superuser power.
4096 * - require strict serialization.
4097 * - return a value
4098 */
4099 case SIOCGMIIPHY:
4100 case SIOCGMIIREG:
4101 case SIOCSIFNAME:
4102 if (!capable(CAP_NET_ADMIN))
4103 return -EPERM;
4104 dev_load(net, ifr.ifr_name);
4105 rtnl_lock();
4106 ret = dev_ifsioc(net, &ifr, cmd);
4107 rtnl_unlock();
4108 if (!ret) {
4109 if (colon)
4110 *colon = ':';
4111 if (copy_to_user(arg, &ifr,
4112 sizeof(struct ifreq)))
4113 ret = -EFAULT;
4114 }
4115 return ret;
4116
4117 /*
4118 * These ioctl calls:
4119 * - require superuser power.
4120 * - require strict serialization.
4121 * - do not return a value
4122 */
4123 case SIOCSIFFLAGS:
4124 case SIOCSIFMETRIC:
4125 case SIOCSIFMTU:
4126 case SIOCSIFMAP:
4127 case SIOCSIFHWADDR:
4128 case SIOCSIFSLAVE:
4129 case SIOCADDMULTI:
4130 case SIOCDELMULTI:
4131 case SIOCSIFHWBROADCAST:
4132 case SIOCSIFTXQLEN:
4133 case SIOCSMIIREG:
4134 case SIOCBONDENSLAVE:
4135 case SIOCBONDRELEASE:
4136 case SIOCBONDSETHWADDR:
4137 case SIOCBONDCHANGEACTIVE:
4138 case SIOCBRADDIF:
4139 case SIOCBRDELIF:
4140 case SIOCSHWTSTAMP:
4141 if (!capable(CAP_NET_ADMIN))
4142 return -EPERM;
4143 /* fall through */
4144 case SIOCBONDSLAVEINFOQUERY:
4145 case SIOCBONDINFOQUERY:
4146 dev_load(net, ifr.ifr_name);
4147 rtnl_lock();
4148 ret = dev_ifsioc(net, &ifr, cmd);
4149 rtnl_unlock();
4150 return ret;
4151
4152 case SIOCGIFMEM:
4153 /* Get the per device memory space. We can add this but
4154 * currently do not support it */
4155 case SIOCSIFMEM:
4156 /* Set the per device memory buffer space.
4157 * Not applicable in our case */
4158 case SIOCSIFLINK:
4159 return -EINVAL;
4160
4161 /*
4162 * Unknown or private ioctl.
4163 */
4164 default:
4165 if (cmd == SIOCWANDEV ||
4166 (cmd >= SIOCDEVPRIVATE &&
4167 cmd <= SIOCDEVPRIVATE + 15)) {
4168 dev_load(net, ifr.ifr_name);
4169 rtnl_lock();
4170 ret = dev_ifsioc(net, &ifr, cmd);
4171 rtnl_unlock();
4172 if (!ret && copy_to_user(arg, &ifr,
4173 sizeof(struct ifreq)))
4174 ret = -EFAULT;
4175 return ret;
4176 }
4177 /* Take care of Wireless Extensions */
4178 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4179 return wext_handle_ioctl(net, &ifr, cmd, arg);
4180 return -EINVAL;
4181 }
4182 }
4183
4184
4185 /**
4186 * dev_new_index - allocate an ifindex
4187 * @net: the applicable net namespace
4188 *
4189 * Returns a suitable unique value for a new device interface
4190 * number. The caller must hold the rtnl semaphore or the
4191 * dev_base_lock to be sure it remains unique.
4192 */
4193 static int dev_new_index(struct net *net)
4194 {
4195 static int ifindex;
4196 for (;;) {
4197 if (++ifindex <= 0)
4198 ifindex = 1;
4199 if (!__dev_get_by_index(net, ifindex))
4200 return ifindex;
4201 }
4202 }
4203
4204 /* Delayed registration/unregisteration */
4205 static LIST_HEAD(net_todo_list);
4206
4207 static void net_set_todo(struct net_device *dev)
4208 {
4209 list_add_tail(&dev->todo_list, &net_todo_list);
4210 }
4211
4212 static void rollback_registered(struct net_device *dev)
4213 {
4214 BUG_ON(dev_boot_phase);
4215 ASSERT_RTNL();
4216
4217 /* Some devices call without registering for initialization unwind. */
4218 if (dev->reg_state == NETREG_UNINITIALIZED) {
4219 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4220 "was registered\n", dev->name, dev);
4221
4222 WARN_ON(1);
4223 return;
4224 }
4225
4226 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4227
4228 /* If device is running, close it first. */
4229 dev_close(dev);
4230
4231 /* And unlink it from device chain. */
4232 unlist_netdevice(dev);
4233
4234 dev->reg_state = NETREG_UNREGISTERING;
4235
4236 synchronize_net();
4237
4238 /* Shutdown queueing discipline. */
4239 dev_shutdown(dev);
4240
4241
4242 /* Notify protocols, that we are about to destroy
4243 this device. They should clean all the things.
4244 */
4245 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4246
4247 /*
4248 * Flush the unicast and multicast chains
4249 */
4250 dev_addr_discard(dev);
4251
4252 if (dev->netdev_ops->ndo_uninit)
4253 dev->netdev_ops->ndo_uninit(dev);
4254
4255 /* Notifier chain MUST detach us from master device. */
4256 WARN_ON(dev->master);
4257
4258 /* Remove entries from kobject tree */
4259 netdev_unregister_kobject(dev);
4260
4261 synchronize_net();
4262
4263 dev_put(dev);
4264 }
4265
4266 static void __netdev_init_queue_locks_one(struct net_device *dev,
4267 struct netdev_queue *dev_queue,
4268 void *_unused)
4269 {
4270 spin_lock_init(&dev_queue->_xmit_lock);
4271 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4272 dev_queue->xmit_lock_owner = -1;
4273 }
4274
4275 static void netdev_init_queue_locks(struct net_device *dev)
4276 {
4277 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4278 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4279 }
4280
4281 unsigned long netdev_fix_features(unsigned long features, const char *name)
4282 {
4283 /* Fix illegal SG+CSUM combinations. */
4284 if ((features & NETIF_F_SG) &&
4285 !(features & NETIF_F_ALL_CSUM)) {
4286 if (name)
4287 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4288 "checksum feature.\n", name);
4289 features &= ~NETIF_F_SG;
4290 }
4291
4292 /* TSO requires that SG is present as well. */
4293 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4294 if (name)
4295 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4296 "SG feature.\n", name);
4297 features &= ~NETIF_F_TSO;
4298 }
4299
4300 if (features & NETIF_F_UFO) {
4301 if (!(features & NETIF_F_GEN_CSUM)) {
4302 if (name)
4303 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4304 "since no NETIF_F_HW_CSUM feature.\n",
4305 name);
4306 features &= ~NETIF_F_UFO;
4307 }
4308
4309 if (!(features & NETIF_F_SG)) {
4310 if (name)
4311 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4312 "since no NETIF_F_SG feature.\n", name);
4313 features &= ~NETIF_F_UFO;
4314 }
4315 }
4316
4317 return features;
4318 }
4319 EXPORT_SYMBOL(netdev_fix_features);
4320
4321 /* Some devices need to (re-)set their netdev_ops inside
4322 * ->init() or similar. If that happens, we have to setup
4323 * the compat pointers again.
4324 */
4325 void netdev_resync_ops(struct net_device *dev)
4326 {
4327 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4328 const struct net_device_ops *ops = dev->netdev_ops;
4329
4330 dev->init = ops->ndo_init;
4331 dev->uninit = ops->ndo_uninit;
4332 dev->open = ops->ndo_open;
4333 dev->change_rx_flags = ops->ndo_change_rx_flags;
4334 dev->set_rx_mode = ops->ndo_set_rx_mode;
4335 dev->set_multicast_list = ops->ndo_set_multicast_list;
4336 dev->set_mac_address = ops->ndo_set_mac_address;
4337 dev->validate_addr = ops->ndo_validate_addr;
4338 dev->do_ioctl = ops->ndo_do_ioctl;
4339 dev->set_config = ops->ndo_set_config;
4340 dev->change_mtu = ops->ndo_change_mtu;
4341 dev->neigh_setup = ops->ndo_neigh_setup;
4342 dev->tx_timeout = ops->ndo_tx_timeout;
4343 dev->get_stats = ops->ndo_get_stats;
4344 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4345 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4346 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4347 #ifdef CONFIG_NET_POLL_CONTROLLER
4348 dev->poll_controller = ops->ndo_poll_controller;
4349 #endif
4350 #endif
4351 }
4352 EXPORT_SYMBOL(netdev_resync_ops);
4353
4354 /**
4355 * register_netdevice - register a network device
4356 * @dev: device to register
4357 *
4358 * Take a completed network device structure and add it to the kernel
4359 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4360 * chain. 0 is returned on success. A negative errno code is returned
4361 * on a failure to set up the device, or if the name is a duplicate.
4362 *
4363 * Callers must hold the rtnl semaphore. You may want
4364 * register_netdev() instead of this.
4365 *
4366 * BUGS:
4367 * The locking appears insufficient to guarantee two parallel registers
4368 * will not get the same name.
4369 */
4370
4371 int register_netdevice(struct net_device *dev)
4372 {
4373 struct hlist_head *head;
4374 struct hlist_node *p;
4375 int ret;
4376 struct net *net = dev_net(dev);
4377
4378 BUG_ON(dev_boot_phase);
4379 ASSERT_RTNL();
4380
4381 might_sleep();
4382
4383 /* When net_device's are persistent, this will be fatal. */
4384 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4385 BUG_ON(!net);
4386
4387 spin_lock_init(&dev->addr_list_lock);
4388 netdev_set_addr_lockdep_class(dev);
4389 netdev_init_queue_locks(dev);
4390
4391 dev->iflink = -1;
4392
4393 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4394 /* Netdevice_ops API compatibility support.
4395 * This is temporary until all network devices are converted.
4396 */
4397 if (dev->netdev_ops) {
4398 netdev_resync_ops(dev);
4399 } else {
4400 char drivername[64];
4401 pr_info("%s (%s): not using net_device_ops yet\n",
4402 dev->name, netdev_drivername(dev, drivername, 64));
4403
4404 /* This works only because net_device_ops and the
4405 compatibility structure are the same. */
4406 dev->netdev_ops = (void *) &(dev->init);
4407 }
4408 #endif
4409
4410 /* Init, if this function is available */
4411 if (dev->netdev_ops->ndo_init) {
4412 ret = dev->netdev_ops->ndo_init(dev);
4413 if (ret) {
4414 if (ret > 0)
4415 ret = -EIO;
4416 goto out;
4417 }
4418 }
4419
4420 if (!dev_valid_name(dev->name)) {
4421 ret = -EINVAL;
4422 goto err_uninit;
4423 }
4424
4425 dev->ifindex = dev_new_index(net);
4426 if (dev->iflink == -1)
4427 dev->iflink = dev->ifindex;
4428
4429 /* Check for existence of name */
4430 head = dev_name_hash(net, dev->name);
4431 hlist_for_each(p, head) {
4432 struct net_device *d
4433 = hlist_entry(p, struct net_device, name_hlist);
4434 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4435 ret = -EEXIST;
4436 goto err_uninit;
4437 }
4438 }
4439
4440 /* Fix illegal checksum combinations */
4441 if ((dev->features & NETIF_F_HW_CSUM) &&
4442 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4443 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4444 dev->name);
4445 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4446 }
4447
4448 if ((dev->features & NETIF_F_NO_CSUM) &&
4449 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4450 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4451 dev->name);
4452 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4453 }
4454
4455 dev->features = netdev_fix_features(dev->features, dev->name);
4456
4457 /* Enable software GSO if SG is supported. */
4458 if (dev->features & NETIF_F_SG)
4459 dev->features |= NETIF_F_GSO;
4460
4461 netdev_initialize_kobject(dev);
4462 ret = netdev_register_kobject(dev);
4463 if (ret)
4464 goto err_uninit;
4465 dev->reg_state = NETREG_REGISTERED;
4466
4467 /*
4468 * Default initial state at registry is that the
4469 * device is present.
4470 */
4471
4472 set_bit(__LINK_STATE_PRESENT, &dev->state);
4473
4474 dev_init_scheduler(dev);
4475 dev_hold(dev);
4476 list_netdevice(dev);
4477
4478 /* Notify protocols, that a new device appeared. */
4479 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4480 ret = notifier_to_errno(ret);
4481 if (ret) {
4482 rollback_registered(dev);
4483 dev->reg_state = NETREG_UNREGISTERED;
4484 }
4485
4486 out:
4487 return ret;
4488
4489 err_uninit:
4490 if (dev->netdev_ops->ndo_uninit)
4491 dev->netdev_ops->ndo_uninit(dev);
4492 goto out;
4493 }
4494
4495 /**
4496 * init_dummy_netdev - init a dummy network device for NAPI
4497 * @dev: device to init
4498 *
4499 * This takes a network device structure and initialize the minimum
4500 * amount of fields so it can be used to schedule NAPI polls without
4501 * registering a full blown interface. This is to be used by drivers
4502 * that need to tie several hardware interfaces to a single NAPI
4503 * poll scheduler due to HW limitations.
4504 */
4505 int init_dummy_netdev(struct net_device *dev)
4506 {
4507 /* Clear everything. Note we don't initialize spinlocks
4508 * are they aren't supposed to be taken by any of the
4509 * NAPI code and this dummy netdev is supposed to be
4510 * only ever used for NAPI polls
4511 */
4512 memset(dev, 0, sizeof(struct net_device));
4513
4514 /* make sure we BUG if trying to hit standard
4515 * register/unregister code path
4516 */
4517 dev->reg_state = NETREG_DUMMY;
4518
4519 /* initialize the ref count */
4520 atomic_set(&dev->refcnt, 1);
4521
4522 /* NAPI wants this */
4523 INIT_LIST_HEAD(&dev->napi_list);
4524
4525 /* a dummy interface is started by default */
4526 set_bit(__LINK_STATE_PRESENT, &dev->state);
4527 set_bit(__LINK_STATE_START, &dev->state);
4528
4529 return 0;
4530 }
4531 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4532
4533
4534 /**
4535 * register_netdev - register a network device
4536 * @dev: device to register
4537 *
4538 * Take a completed network device structure and add it to the kernel
4539 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4540 * chain. 0 is returned on success. A negative errno code is returned
4541 * on a failure to set up the device, or if the name is a duplicate.
4542 *
4543 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4544 * and expands the device name if you passed a format string to
4545 * alloc_netdev.
4546 */
4547 int register_netdev(struct net_device *dev)
4548 {
4549 int err;
4550
4551 rtnl_lock();
4552
4553 /*
4554 * If the name is a format string the caller wants us to do a
4555 * name allocation.
4556 */
4557 if (strchr(dev->name, '%')) {
4558 err = dev_alloc_name(dev, dev->name);
4559 if (err < 0)
4560 goto out;
4561 }
4562
4563 err = register_netdevice(dev);
4564 out:
4565 rtnl_unlock();
4566 return err;
4567 }
4568 EXPORT_SYMBOL(register_netdev);
4569
4570 /*
4571 * netdev_wait_allrefs - wait until all references are gone.
4572 *
4573 * This is called when unregistering network devices.
4574 *
4575 * Any protocol or device that holds a reference should register
4576 * for netdevice notification, and cleanup and put back the
4577 * reference if they receive an UNREGISTER event.
4578 * We can get stuck here if buggy protocols don't correctly
4579 * call dev_put.
4580 */
4581 static void netdev_wait_allrefs(struct net_device *dev)
4582 {
4583 unsigned long rebroadcast_time, warning_time;
4584
4585 rebroadcast_time = warning_time = jiffies;
4586 while (atomic_read(&dev->refcnt) != 0) {
4587 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4588 rtnl_lock();
4589
4590 /* Rebroadcast unregister notification */
4591 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4592
4593 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4594 &dev->state)) {
4595 /* We must not have linkwatch events
4596 * pending on unregister. If this
4597 * happens, we simply run the queue
4598 * unscheduled, resulting in a noop
4599 * for this device.
4600 */
4601 linkwatch_run_queue();
4602 }
4603
4604 __rtnl_unlock();
4605
4606 rebroadcast_time = jiffies;
4607 }
4608
4609 msleep(250);
4610
4611 if (time_after(jiffies, warning_time + 10 * HZ)) {
4612 printk(KERN_EMERG "unregister_netdevice: "
4613 "waiting for %s to become free. Usage "
4614 "count = %d\n",
4615 dev->name, atomic_read(&dev->refcnt));
4616 warning_time = jiffies;
4617 }
4618 }
4619 }
4620
4621 /* The sequence is:
4622 *
4623 * rtnl_lock();
4624 * ...
4625 * register_netdevice(x1);
4626 * register_netdevice(x2);
4627 * ...
4628 * unregister_netdevice(y1);
4629 * unregister_netdevice(y2);
4630 * ...
4631 * rtnl_unlock();
4632 * free_netdev(y1);
4633 * free_netdev(y2);
4634 *
4635 * We are invoked by rtnl_unlock().
4636 * This allows us to deal with problems:
4637 * 1) We can delete sysfs objects which invoke hotplug
4638 * without deadlocking with linkwatch via keventd.
4639 * 2) Since we run with the RTNL semaphore not held, we can sleep
4640 * safely in order to wait for the netdev refcnt to drop to zero.
4641 *
4642 * We must not return until all unregister events added during
4643 * the interval the lock was held have been completed.
4644 */
4645 void netdev_run_todo(void)
4646 {
4647 struct list_head list;
4648
4649 /* Snapshot list, allow later requests */
4650 list_replace_init(&net_todo_list, &list);
4651
4652 __rtnl_unlock();
4653
4654 while (!list_empty(&list)) {
4655 struct net_device *dev
4656 = list_entry(list.next, struct net_device, todo_list);
4657 list_del(&dev->todo_list);
4658
4659 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4660 printk(KERN_ERR "network todo '%s' but state %d\n",
4661 dev->name, dev->reg_state);
4662 dump_stack();
4663 continue;
4664 }
4665
4666 dev->reg_state = NETREG_UNREGISTERED;
4667
4668 on_each_cpu(flush_backlog, dev, 1);
4669
4670 netdev_wait_allrefs(dev);
4671
4672 /* paranoia */
4673 BUG_ON(atomic_read(&dev->refcnt));
4674 WARN_ON(dev->ip_ptr);
4675 WARN_ON(dev->ip6_ptr);
4676 WARN_ON(dev->dn_ptr);
4677
4678 if (dev->destructor)
4679 dev->destructor(dev);
4680
4681 /* Free network device */
4682 kobject_put(&dev->dev.kobj);
4683 }
4684 }
4685
4686 /**
4687 * dev_get_stats - get network device statistics
4688 * @dev: device to get statistics from
4689 *
4690 * Get network statistics from device. The device driver may provide
4691 * its own method by setting dev->netdev_ops->get_stats; otherwise
4692 * the internal statistics structure is used.
4693 */
4694 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4695 {
4696 const struct net_device_ops *ops = dev->netdev_ops;
4697
4698 if (ops->ndo_get_stats)
4699 return ops->ndo_get_stats(dev);
4700 else
4701 return &dev->stats;
4702 }
4703 EXPORT_SYMBOL(dev_get_stats);
4704
4705 static void netdev_init_one_queue(struct net_device *dev,
4706 struct netdev_queue *queue,
4707 void *_unused)
4708 {
4709 queue->dev = dev;
4710 }
4711
4712 static void netdev_init_queues(struct net_device *dev)
4713 {
4714 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4715 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4716 spin_lock_init(&dev->tx_global_lock);
4717 }
4718
4719 /**
4720 * alloc_netdev_mq - allocate network device
4721 * @sizeof_priv: size of private data to allocate space for
4722 * @name: device name format string
4723 * @setup: callback to initialize device
4724 * @queue_count: the number of subqueues to allocate
4725 *
4726 * Allocates a struct net_device with private data area for driver use
4727 * and performs basic initialization. Also allocates subquue structs
4728 * for each queue on the device at the end of the netdevice.
4729 */
4730 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4731 void (*setup)(struct net_device *), unsigned int queue_count)
4732 {
4733 struct netdev_queue *tx;
4734 struct net_device *dev;
4735 size_t alloc_size;
4736 void *p;
4737
4738 BUG_ON(strlen(name) >= sizeof(dev->name));
4739
4740 alloc_size = sizeof(struct net_device);
4741 if (sizeof_priv) {
4742 /* ensure 32-byte alignment of private area */
4743 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4744 alloc_size += sizeof_priv;
4745 }
4746 /* ensure 32-byte alignment of whole construct */
4747 alloc_size += NETDEV_ALIGN_CONST;
4748
4749 p = kzalloc(alloc_size, GFP_KERNEL);
4750 if (!p) {
4751 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4752 return NULL;
4753 }
4754
4755 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4756 if (!tx) {
4757 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4758 "tx qdiscs.\n");
4759 kfree(p);
4760 return NULL;
4761 }
4762
4763 dev = (struct net_device *)
4764 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4765 dev->padded = (char *)dev - (char *)p;
4766 dev_net_set(dev, &init_net);
4767
4768 dev->_tx = tx;
4769 dev->num_tx_queues = queue_count;
4770 dev->real_num_tx_queues = queue_count;
4771
4772 dev->gso_max_size = GSO_MAX_SIZE;
4773
4774 netdev_init_queues(dev);
4775
4776 INIT_LIST_HEAD(&dev->napi_list);
4777 setup(dev);
4778 strcpy(dev->name, name);
4779 return dev;
4780 }
4781 EXPORT_SYMBOL(alloc_netdev_mq);
4782
4783 /**
4784 * free_netdev - free network device
4785 * @dev: device
4786 *
4787 * This function does the last stage of destroying an allocated device
4788 * interface. The reference to the device object is released.
4789 * If this is the last reference then it will be freed.
4790 */
4791 void free_netdev(struct net_device *dev)
4792 {
4793 struct napi_struct *p, *n;
4794
4795 release_net(dev_net(dev));
4796
4797 kfree(dev->_tx);
4798
4799 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4800 netif_napi_del(p);
4801
4802 /* Compatibility with error handling in drivers */
4803 if (dev->reg_state == NETREG_UNINITIALIZED) {
4804 kfree((char *)dev - dev->padded);
4805 return;
4806 }
4807
4808 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4809 dev->reg_state = NETREG_RELEASED;
4810
4811 /* will free via device release */
4812 put_device(&dev->dev);
4813 }
4814
4815 /**
4816 * synchronize_net - Synchronize with packet receive processing
4817 *
4818 * Wait for packets currently being received to be done.
4819 * Does not block later packets from starting.
4820 */
4821 void synchronize_net(void)
4822 {
4823 might_sleep();
4824 synchronize_rcu();
4825 }
4826
4827 /**
4828 * unregister_netdevice - remove device from the kernel
4829 * @dev: device
4830 *
4831 * This function shuts down a device interface and removes it
4832 * from the kernel tables.
4833 *
4834 * Callers must hold the rtnl semaphore. You may want
4835 * unregister_netdev() instead of this.
4836 */
4837
4838 void unregister_netdevice(struct net_device *dev)
4839 {
4840 ASSERT_RTNL();
4841
4842 rollback_registered(dev);
4843 /* Finish processing unregister after unlock */
4844 net_set_todo(dev);
4845 }
4846
4847 /**
4848 * unregister_netdev - remove device from the kernel
4849 * @dev: device
4850 *
4851 * This function shuts down a device interface and removes it
4852 * from the kernel tables.
4853 *
4854 * This is just a wrapper for unregister_netdevice that takes
4855 * the rtnl semaphore. In general you want to use this and not
4856 * unregister_netdevice.
4857 */
4858 void unregister_netdev(struct net_device *dev)
4859 {
4860 rtnl_lock();
4861 unregister_netdevice(dev);
4862 rtnl_unlock();
4863 }
4864
4865 EXPORT_SYMBOL(unregister_netdev);
4866
4867 /**
4868 * dev_change_net_namespace - move device to different nethost namespace
4869 * @dev: device
4870 * @net: network namespace
4871 * @pat: If not NULL name pattern to try if the current device name
4872 * is already taken in the destination network namespace.
4873 *
4874 * This function shuts down a device interface and moves it
4875 * to a new network namespace. On success 0 is returned, on
4876 * a failure a netagive errno code is returned.
4877 *
4878 * Callers must hold the rtnl semaphore.
4879 */
4880
4881 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4882 {
4883 char buf[IFNAMSIZ];
4884 const char *destname;
4885 int err;
4886
4887 ASSERT_RTNL();
4888
4889 /* Don't allow namespace local devices to be moved. */
4890 err = -EINVAL;
4891 if (dev->features & NETIF_F_NETNS_LOCAL)
4892 goto out;
4893
4894 #ifdef CONFIG_SYSFS
4895 /* Don't allow real devices to be moved when sysfs
4896 * is enabled.
4897 */
4898 err = -EINVAL;
4899 if (dev->dev.parent)
4900 goto out;
4901 #endif
4902
4903 /* Ensure the device has been registrered */
4904 err = -EINVAL;
4905 if (dev->reg_state != NETREG_REGISTERED)
4906 goto out;
4907
4908 /* Get out if there is nothing todo */
4909 err = 0;
4910 if (net_eq(dev_net(dev), net))
4911 goto out;
4912
4913 /* Pick the destination device name, and ensure
4914 * we can use it in the destination network namespace.
4915 */
4916 err = -EEXIST;
4917 destname = dev->name;
4918 if (__dev_get_by_name(net, destname)) {
4919 /* We get here if we can't use the current device name */
4920 if (!pat)
4921 goto out;
4922 if (!dev_valid_name(pat))
4923 goto out;
4924 if (strchr(pat, '%')) {
4925 if (__dev_alloc_name(net, pat, buf) < 0)
4926 goto out;
4927 destname = buf;
4928 } else
4929 destname = pat;
4930 if (__dev_get_by_name(net, destname))
4931 goto out;
4932 }
4933
4934 /*
4935 * And now a mini version of register_netdevice unregister_netdevice.
4936 */
4937
4938 /* If device is running close it first. */
4939 dev_close(dev);
4940
4941 /* And unlink it from device chain */
4942 err = -ENODEV;
4943 unlist_netdevice(dev);
4944
4945 synchronize_net();
4946
4947 /* Shutdown queueing discipline. */
4948 dev_shutdown(dev);
4949
4950 /* Notify protocols, that we are about to destroy
4951 this device. They should clean all the things.
4952 */
4953 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4954
4955 /*
4956 * Flush the unicast and multicast chains
4957 */
4958 dev_addr_discard(dev);
4959
4960 netdev_unregister_kobject(dev);
4961
4962 /* Actually switch the network namespace */
4963 dev_net_set(dev, net);
4964
4965 /* Assign the new device name */
4966 if (destname != dev->name)
4967 strcpy(dev->name, destname);
4968
4969 /* If there is an ifindex conflict assign a new one */
4970 if (__dev_get_by_index(net, dev->ifindex)) {
4971 int iflink = (dev->iflink == dev->ifindex);
4972 dev->ifindex = dev_new_index(net);
4973 if (iflink)
4974 dev->iflink = dev->ifindex;
4975 }
4976
4977 /* Fixup kobjects */
4978 err = netdev_register_kobject(dev);
4979 WARN_ON(err);
4980
4981 /* Add the device back in the hashes */
4982 list_netdevice(dev);
4983
4984 /* Notify protocols, that a new device appeared. */
4985 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4986
4987 synchronize_net();
4988 err = 0;
4989 out:
4990 return err;
4991 }
4992
4993 static int dev_cpu_callback(struct notifier_block *nfb,
4994 unsigned long action,
4995 void *ocpu)
4996 {
4997 struct sk_buff **list_skb;
4998 struct Qdisc **list_net;
4999 struct sk_buff *skb;
5000 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5001 struct softnet_data *sd, *oldsd;
5002
5003 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5004 return NOTIFY_OK;
5005
5006 local_irq_disable();
5007 cpu = smp_processor_id();
5008 sd = &per_cpu(softnet_data, cpu);
5009 oldsd = &per_cpu(softnet_data, oldcpu);
5010
5011 /* Find end of our completion_queue. */
5012 list_skb = &sd->completion_queue;
5013 while (*list_skb)
5014 list_skb = &(*list_skb)->next;
5015 /* Append completion queue from offline CPU. */
5016 *list_skb = oldsd->completion_queue;
5017 oldsd->completion_queue = NULL;
5018
5019 /* Find end of our output_queue. */
5020 list_net = &sd->output_queue;
5021 while (*list_net)
5022 list_net = &(*list_net)->next_sched;
5023 /* Append output queue from offline CPU. */
5024 *list_net = oldsd->output_queue;
5025 oldsd->output_queue = NULL;
5026
5027 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5028 local_irq_enable();
5029
5030 /* Process offline CPU's input_pkt_queue */
5031 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5032 netif_rx(skb);
5033
5034 return NOTIFY_OK;
5035 }
5036
5037
5038 /**
5039 * netdev_increment_features - increment feature set by one
5040 * @all: current feature set
5041 * @one: new feature set
5042 * @mask: mask feature set
5043 *
5044 * Computes a new feature set after adding a device with feature set
5045 * @one to the master device with current feature set @all. Will not
5046 * enable anything that is off in @mask. Returns the new feature set.
5047 */
5048 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5049 unsigned long mask)
5050 {
5051 /* If device needs checksumming, downgrade to it. */
5052 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5053 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5054 else if (mask & NETIF_F_ALL_CSUM) {
5055 /* If one device supports v4/v6 checksumming, set for all. */
5056 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5057 !(all & NETIF_F_GEN_CSUM)) {
5058 all &= ~NETIF_F_ALL_CSUM;
5059 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5060 }
5061
5062 /* If one device supports hw checksumming, set for all. */
5063 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5064 all &= ~NETIF_F_ALL_CSUM;
5065 all |= NETIF_F_HW_CSUM;
5066 }
5067 }
5068
5069 one |= NETIF_F_ALL_CSUM;
5070
5071 one |= all & NETIF_F_ONE_FOR_ALL;
5072 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5073 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5074
5075 return all;
5076 }
5077 EXPORT_SYMBOL(netdev_increment_features);
5078
5079 static struct hlist_head *netdev_create_hash(void)
5080 {
5081 int i;
5082 struct hlist_head *hash;
5083
5084 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5085 if (hash != NULL)
5086 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5087 INIT_HLIST_HEAD(&hash[i]);
5088
5089 return hash;
5090 }
5091
5092 /* Initialize per network namespace state */
5093 static int __net_init netdev_init(struct net *net)
5094 {
5095 INIT_LIST_HEAD(&net->dev_base_head);
5096
5097 net->dev_name_head = netdev_create_hash();
5098 if (net->dev_name_head == NULL)
5099 goto err_name;
5100
5101 net->dev_index_head = netdev_create_hash();
5102 if (net->dev_index_head == NULL)
5103 goto err_idx;
5104
5105 return 0;
5106
5107 err_idx:
5108 kfree(net->dev_name_head);
5109 err_name:
5110 return -ENOMEM;
5111 }
5112
5113 /**
5114 * netdev_drivername - network driver for the device
5115 * @dev: network device
5116 * @buffer: buffer for resulting name
5117 * @len: size of buffer
5118 *
5119 * Determine network driver for device.
5120 */
5121 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5122 {
5123 const struct device_driver *driver;
5124 const struct device *parent;
5125
5126 if (len <= 0 || !buffer)
5127 return buffer;
5128 buffer[0] = 0;
5129
5130 parent = dev->dev.parent;
5131
5132 if (!parent)
5133 return buffer;
5134
5135 driver = parent->driver;
5136 if (driver && driver->name)
5137 strlcpy(buffer, driver->name, len);
5138 return buffer;
5139 }
5140
5141 static void __net_exit netdev_exit(struct net *net)
5142 {
5143 kfree(net->dev_name_head);
5144 kfree(net->dev_index_head);
5145 }
5146
5147 static struct pernet_operations __net_initdata netdev_net_ops = {
5148 .init = netdev_init,
5149 .exit = netdev_exit,
5150 };
5151
5152 static void __net_exit default_device_exit(struct net *net)
5153 {
5154 struct net_device *dev;
5155 /*
5156 * Push all migratable of the network devices back to the
5157 * initial network namespace
5158 */
5159 rtnl_lock();
5160 restart:
5161 for_each_netdev(net, dev) {
5162 int err;
5163 char fb_name[IFNAMSIZ];
5164
5165 /* Ignore unmoveable devices (i.e. loopback) */
5166 if (dev->features & NETIF_F_NETNS_LOCAL)
5167 continue;
5168
5169 /* Delete virtual devices */
5170 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5171 dev->rtnl_link_ops->dellink(dev);
5172 goto restart;
5173 }
5174
5175 /* Push remaing network devices to init_net */
5176 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5177 err = dev_change_net_namespace(dev, &init_net, fb_name);
5178 if (err) {
5179 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5180 __func__, dev->name, err);
5181 BUG();
5182 }
5183 goto restart;
5184 }
5185 rtnl_unlock();
5186 }
5187
5188 static struct pernet_operations __net_initdata default_device_ops = {
5189 .exit = default_device_exit,
5190 };
5191
5192 /*
5193 * Initialize the DEV module. At boot time this walks the device list and
5194 * unhooks any devices that fail to initialise (normally hardware not
5195 * present) and leaves us with a valid list of present and active devices.
5196 *
5197 */
5198
5199 /*
5200 * This is called single threaded during boot, so no need
5201 * to take the rtnl semaphore.
5202 */
5203 static int __init net_dev_init(void)
5204 {
5205 int i, rc = -ENOMEM;
5206
5207 BUG_ON(!dev_boot_phase);
5208
5209 if (dev_proc_init())
5210 goto out;
5211
5212 if (netdev_kobject_init())
5213 goto out;
5214
5215 INIT_LIST_HEAD(&ptype_all);
5216 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5217 INIT_LIST_HEAD(&ptype_base[i]);
5218
5219 if (register_pernet_subsys(&netdev_net_ops))
5220 goto out;
5221
5222 /*
5223 * Initialise the packet receive queues.
5224 */
5225
5226 for_each_possible_cpu(i) {
5227 struct softnet_data *queue;
5228
5229 queue = &per_cpu(softnet_data, i);
5230 skb_queue_head_init(&queue->input_pkt_queue);
5231 queue->completion_queue = NULL;
5232 INIT_LIST_HEAD(&queue->poll_list);
5233
5234 queue->backlog.poll = process_backlog;
5235 queue->backlog.weight = weight_p;
5236 queue->backlog.gro_list = NULL;
5237 queue->backlog.gro_count = 0;
5238 }
5239
5240 dev_boot_phase = 0;
5241
5242 /* The loopback device is special if any other network devices
5243 * is present in a network namespace the loopback device must
5244 * be present. Since we now dynamically allocate and free the
5245 * loopback device ensure this invariant is maintained by
5246 * keeping the loopback device as the first device on the
5247 * list of network devices. Ensuring the loopback devices
5248 * is the first device that appears and the last network device
5249 * that disappears.
5250 */
5251 if (register_pernet_device(&loopback_net_ops))
5252 goto out;
5253
5254 if (register_pernet_device(&default_device_ops))
5255 goto out;
5256
5257 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5258 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5259
5260 hotcpu_notifier(dev_cpu_callback, 0);
5261 dst_init();
5262 dev_mcast_init();
5263 rc = 0;
5264 out:
5265 return rc;
5266 }
5267
5268 subsys_initcall(net_dev_init);
5269
5270 static int __init initialize_hashrnd(void)
5271 {
5272 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5273 return 0;
5274 }
5275
5276 late_initcall_sync(initialize_hashrnd);
5277
5278 EXPORT_SYMBOL(__dev_get_by_index);
5279 EXPORT_SYMBOL(__dev_get_by_name);
5280 EXPORT_SYMBOL(__dev_remove_pack);
5281 EXPORT_SYMBOL(dev_valid_name);
5282 EXPORT_SYMBOL(dev_add_pack);
5283 EXPORT_SYMBOL(dev_alloc_name);
5284 EXPORT_SYMBOL(dev_close);
5285 EXPORT_SYMBOL(dev_get_by_flags);
5286 EXPORT_SYMBOL(dev_get_by_index);
5287 EXPORT_SYMBOL(dev_get_by_name);
5288 EXPORT_SYMBOL(dev_open);
5289 EXPORT_SYMBOL(dev_queue_xmit);
5290 EXPORT_SYMBOL(dev_remove_pack);
5291 EXPORT_SYMBOL(dev_set_allmulti);
5292 EXPORT_SYMBOL(dev_set_promiscuity);
5293 EXPORT_SYMBOL(dev_change_flags);
5294 EXPORT_SYMBOL(dev_set_mtu);
5295 EXPORT_SYMBOL(dev_set_mac_address);
5296 EXPORT_SYMBOL(free_netdev);
5297 EXPORT_SYMBOL(netdev_boot_setup_check);
5298 EXPORT_SYMBOL(netdev_set_master);
5299 EXPORT_SYMBOL(netdev_state_change);
5300 EXPORT_SYMBOL(netif_receive_skb);
5301 EXPORT_SYMBOL(netif_rx);
5302 EXPORT_SYMBOL(register_gifconf);
5303 EXPORT_SYMBOL(register_netdevice);
5304 EXPORT_SYMBOL(register_netdevice_notifier);
5305 EXPORT_SYMBOL(skb_checksum_help);
5306 EXPORT_SYMBOL(synchronize_net);
5307 EXPORT_SYMBOL(unregister_netdevice);
5308 EXPORT_SYMBOL(unregister_netdevice_notifier);
5309 EXPORT_SYMBOL(net_enable_timestamp);
5310 EXPORT_SYMBOL(net_disable_timestamp);
5311 EXPORT_SYMBOL(dev_get_flags);
5312
5313 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5314 EXPORT_SYMBOL(br_handle_frame_hook);
5315 EXPORT_SYMBOL(br_fdb_get_hook);
5316 EXPORT_SYMBOL(br_fdb_put_hook);
5317 #endif
5318
5319 EXPORT_SYMBOL(dev_load);
5320
5321 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.161338 seconds and 6 git commands to generate.