tunnel: Inherit NETIF_F_SG for hw_enc_features.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 WARN_ON(in_interrupt());
1549 static_key_slow_inc(&netstamp_needed);
1550 }
1551 EXPORT_SYMBOL(net_enable_timestamp);
1552
1553 void net_disable_timestamp(void)
1554 {
1555 #ifdef HAVE_JUMP_LABEL
1556 if (in_interrupt()) {
1557 atomic_inc(&netstamp_needed_deferred);
1558 return;
1559 }
1560 #endif
1561 static_key_slow_dec(&netstamp_needed);
1562 }
1563 EXPORT_SYMBOL(net_disable_timestamp);
1564
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1566 {
1567 skb->tstamp.tv64 = 0;
1568 if (static_key_false(&netstamp_needed))
1569 __net_timestamp(skb);
1570 }
1571
1572 #define net_timestamp_check(COND, SKB) \
1573 if (static_key_false(&netstamp_needed)) { \
1574 if ((COND) && !(SKB)->tstamp.tv64) \
1575 __net_timestamp(SKB); \
1576 } \
1577
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 struct sk_buff *skb)
1580 {
1581 unsigned int len;
1582
1583 if (!(dev->flags & IFF_UP))
1584 return false;
1585
1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 if (skb->len <= len)
1588 return true;
1589
1590 /* if TSO is enabled, we don't care about the length as the packet
1591 * could be forwarded without being segmented before
1592 */
1593 if (skb_is_gso(skb))
1594 return true;
1595
1596 return false;
1597 }
1598
1599 /**
1600 * dev_forward_skb - loopback an skb to another netif
1601 *
1602 * @dev: destination network device
1603 * @skb: buffer to forward
1604 *
1605 * return values:
1606 * NET_RX_SUCCESS (no congestion)
1607 * NET_RX_DROP (packet was dropped, but freed)
1608 *
1609 * dev_forward_skb can be used for injecting an skb from the
1610 * start_xmit function of one device into the receive queue
1611 * of another device.
1612 *
1613 * The receiving device may be in another namespace, so
1614 * we have to clear all information in the skb that could
1615 * impact namespace isolation.
1616 */
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 {
1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 atomic_long_inc(&dev->rx_dropped);
1622 kfree_skb(skb);
1623 return NET_RX_DROP;
1624 }
1625 }
1626
1627 skb_orphan(skb);
1628 nf_reset(skb);
1629
1630 if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 atomic_long_inc(&dev->rx_dropped);
1632 kfree_skb(skb);
1633 return NET_RX_DROP;
1634 }
1635 skb->skb_iif = 0;
1636 skb->dev = dev;
1637 skb_dst_drop(skb);
1638 skb->tstamp.tv64 = 0;
1639 skb->pkt_type = PACKET_HOST;
1640 skb->protocol = eth_type_trans(skb, dev);
1641 skb->mark = 0;
1642 secpath_reset(skb);
1643 nf_reset(skb);
1644 return netif_rx(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 struct packet_type *pt_prev,
1650 struct net_device *orig_dev)
1651 {
1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 return -ENOMEM;
1654 atomic_inc(&skb->users);
1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 }
1657
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 {
1660 if (!ptype->af_packet_priv || !skb->sk)
1661 return false;
1662
1663 if (ptype->id_match)
1664 return ptype->id_match(ptype, skb->sk);
1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1666 return true;
1667
1668 return false;
1669 }
1670
1671 /*
1672 * Support routine. Sends outgoing frames to any network
1673 * taps currently in use.
1674 */
1675
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 {
1678 struct packet_type *ptype;
1679 struct sk_buff *skb2 = NULL;
1680 struct packet_type *pt_prev = NULL;
1681
1682 rcu_read_lock();
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 /* Never send packets back to the socket
1685 * they originated from - MvS (miquels@drinkel.ow.org)
1686 */
1687 if ((ptype->dev == dev || !ptype->dev) &&
1688 (!skb_loop_sk(ptype, skb))) {
1689 if (pt_prev) {
1690 deliver_skb(skb2, pt_prev, skb->dev);
1691 pt_prev = ptype;
1692 continue;
1693 }
1694
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1696 if (!skb2)
1697 break;
1698
1699 net_timestamp_set(skb2);
1700
1701 /* skb->nh should be correctly
1702 set by sender, so that the second statement is
1703 just protection against buggy protocols.
1704 */
1705 skb_reset_mac_header(skb2);
1706
1707 if (skb_network_header(skb2) < skb2->data ||
1708 skb2->network_header > skb2->tail) {
1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 ntohs(skb2->protocol),
1711 dev->name);
1712 skb_reset_network_header(skb2);
1713 }
1714
1715 skb2->transport_header = skb2->network_header;
1716 skb2->pkt_type = PACKET_OUTGOING;
1717 pt_prev = ptype;
1718 }
1719 }
1720 if (pt_prev)
1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1722 rcu_read_unlock();
1723 }
1724
1725 /**
1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727 * @dev: Network device
1728 * @txq: number of queues available
1729 *
1730 * If real_num_tx_queues is changed the tc mappings may no longer be
1731 * valid. To resolve this verify the tc mapping remains valid and if
1732 * not NULL the mapping. With no priorities mapping to this
1733 * offset/count pair it will no longer be used. In the worst case TC0
1734 * is invalid nothing can be done so disable priority mappings. If is
1735 * expected that drivers will fix this mapping if they can before
1736 * calling netif_set_real_num_tx_queues.
1737 */
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1739 {
1740 int i;
1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742
1743 /* If TC0 is invalidated disable TC mapping */
1744 if (tc->offset + tc->count > txq) {
1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1746 dev->num_tc = 0;
1747 return;
1748 }
1749
1750 /* Invalidated prio to tc mappings set to TC0 */
1751 for (i = 1; i < TC_BITMASK + 1; i++) {
1752 int q = netdev_get_prio_tc_map(dev, i);
1753
1754 tc = &dev->tc_to_txq[q];
1755 if (tc->offset + tc->count > txq) {
1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 i, q);
1758 netdev_set_prio_tc_map(dev, i, 0);
1759 }
1760 }
1761 }
1762
1763 #ifdef CONFIG_XPS
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P) \
1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1769 int cpu, u16 index)
1770 {
1771 struct xps_map *map = NULL;
1772 int pos;
1773
1774 if (dev_maps)
1775 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776
1777 for (pos = 0; map && pos < map->len; pos++) {
1778 if (map->queues[pos] == index) {
1779 if (map->len > 1) {
1780 map->queues[pos] = map->queues[--map->len];
1781 } else {
1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 kfree_rcu(map, rcu);
1784 map = NULL;
1785 }
1786 break;
1787 }
1788 }
1789
1790 return map;
1791 }
1792
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 {
1795 struct xps_dev_maps *dev_maps;
1796 int cpu, i;
1797 bool active = false;
1798
1799 mutex_lock(&xps_map_mutex);
1800 dev_maps = xmap_dereference(dev->xps_maps);
1801
1802 if (!dev_maps)
1803 goto out_no_maps;
1804
1805 for_each_possible_cpu(cpu) {
1806 for (i = index; i < dev->num_tx_queues; i++) {
1807 if (!remove_xps_queue(dev_maps, cpu, i))
1808 break;
1809 }
1810 if (i == dev->num_tx_queues)
1811 active = true;
1812 }
1813
1814 if (!active) {
1815 RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 kfree_rcu(dev_maps, rcu);
1817 }
1818
1819 for (i = index; i < dev->num_tx_queues; i++)
1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1821 NUMA_NO_NODE);
1822
1823 out_no_maps:
1824 mutex_unlock(&xps_map_mutex);
1825 }
1826
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1828 int cpu, u16 index)
1829 {
1830 struct xps_map *new_map;
1831 int alloc_len = XPS_MIN_MAP_ALLOC;
1832 int i, pos;
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] != index)
1836 continue;
1837 return map;
1838 }
1839
1840 /* Need to add queue to this CPU's existing map */
1841 if (map) {
1842 if (pos < map->alloc_len)
1843 return map;
1844
1845 alloc_len = map->alloc_len * 2;
1846 }
1847
1848 /* Need to allocate new map to store queue on this CPU's map */
1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1850 cpu_to_node(cpu));
1851 if (!new_map)
1852 return NULL;
1853
1854 for (i = 0; i < pos; i++)
1855 new_map->queues[i] = map->queues[i];
1856 new_map->alloc_len = alloc_len;
1857 new_map->len = pos;
1858
1859 return new_map;
1860 }
1861
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 {
1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 struct xps_map *map, *new_map;
1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 int cpu, numa_node_id = -2;
1868 bool active = false;
1869
1870 mutex_lock(&xps_map_mutex);
1871
1872 dev_maps = xmap_dereference(dev->xps_maps);
1873
1874 /* allocate memory for queue storage */
1875 for_each_online_cpu(cpu) {
1876 if (!cpumask_test_cpu(cpu, mask))
1877 continue;
1878
1879 if (!new_dev_maps)
1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 if (!new_dev_maps) {
1882 mutex_unlock(&xps_map_mutex);
1883 return -ENOMEM;
1884 }
1885
1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1887 NULL;
1888
1889 map = expand_xps_map(map, cpu, index);
1890 if (!map)
1891 goto error;
1892
1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 }
1895
1896 if (!new_dev_maps)
1897 goto out_no_new_maps;
1898
1899 for_each_possible_cpu(cpu) {
1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 /* add queue to CPU maps */
1902 int pos = 0;
1903
1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 while ((pos < map->len) && (map->queues[pos] != index))
1906 pos++;
1907
1908 if (pos == map->len)
1909 map->queues[map->len++] = index;
1910 #ifdef CONFIG_NUMA
1911 if (numa_node_id == -2)
1912 numa_node_id = cpu_to_node(cpu);
1913 else if (numa_node_id != cpu_to_node(cpu))
1914 numa_node_id = -1;
1915 #endif
1916 } else if (dev_maps) {
1917 /* fill in the new device map from the old device map */
1918 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1920 }
1921
1922 }
1923
1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925
1926 /* Cleanup old maps */
1927 if (dev_maps) {
1928 for_each_possible_cpu(cpu) {
1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 if (map && map != new_map)
1932 kfree_rcu(map, rcu);
1933 }
1934
1935 kfree_rcu(dev_maps, rcu);
1936 }
1937
1938 dev_maps = new_dev_maps;
1939 active = true;
1940
1941 out_no_new_maps:
1942 /* update Tx queue numa node */
1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 (numa_node_id >= 0) ? numa_node_id :
1945 NUMA_NO_NODE);
1946
1947 if (!dev_maps)
1948 goto out_no_maps;
1949
1950 /* removes queue from unused CPUs */
1951 for_each_possible_cpu(cpu) {
1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1953 continue;
1954
1955 if (remove_xps_queue(dev_maps, cpu, index))
1956 active = true;
1957 }
1958
1959 /* free map if not active */
1960 if (!active) {
1961 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 kfree_rcu(dev_maps, rcu);
1963 }
1964
1965 out_no_maps:
1966 mutex_unlock(&xps_map_mutex);
1967
1968 return 0;
1969 error:
1970 /* remove any maps that we added */
1971 for_each_possible_cpu(cpu) {
1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 NULL;
1975 if (new_map && new_map != map)
1976 kfree(new_map);
1977 }
1978
1979 mutex_unlock(&xps_map_mutex);
1980
1981 kfree(new_dev_maps);
1982 return -ENOMEM;
1983 }
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1985
1986 #endif
1987 /*
1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990 */
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1992 {
1993 int rc;
1994
1995 if (txq < 1 || txq > dev->num_tx_queues)
1996 return -EINVAL;
1997
1998 if (dev->reg_state == NETREG_REGISTERED ||
1999 dev->reg_state == NETREG_UNREGISTERING) {
2000 ASSERT_RTNL();
2001
2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2003 txq);
2004 if (rc)
2005 return rc;
2006
2007 if (dev->num_tc)
2008 netif_setup_tc(dev, txq);
2009
2010 if (txq < dev->real_num_tx_queues) {
2011 qdisc_reset_all_tx_gt(dev, txq);
2012 #ifdef CONFIG_XPS
2013 netif_reset_xps_queues_gt(dev, txq);
2014 #endif
2015 }
2016 }
2017
2018 dev->real_num_tx_queues = txq;
2019 return 0;
2020 }
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2022
2023 #ifdef CONFIG_RPS
2024 /**
2025 * netif_set_real_num_rx_queues - set actual number of RX queues used
2026 * @dev: Network device
2027 * @rxq: Actual number of RX queues
2028 *
2029 * This must be called either with the rtnl_lock held or before
2030 * registration of the net device. Returns 0 on success, or a
2031 * negative error code. If called before registration, it always
2032 * succeeds.
2033 */
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2035 {
2036 int rc;
2037
2038 if (rxq < 1 || rxq > dev->num_rx_queues)
2039 return -EINVAL;
2040
2041 if (dev->reg_state == NETREG_REGISTERED) {
2042 ASSERT_RTNL();
2043
2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2045 rxq);
2046 if (rc)
2047 return rc;
2048 }
2049
2050 dev->real_num_rx_queues = rxq;
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2054 #endif
2055
2056 /**
2057 * netif_get_num_default_rss_queues - default number of RSS queues
2058 *
2059 * This routine should set an upper limit on the number of RSS queues
2060 * used by default by multiqueue devices.
2061 */
2062 int netif_get_num_default_rss_queues(void)
2063 {
2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 }
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067
2068 static inline void __netif_reschedule(struct Qdisc *q)
2069 {
2070 struct softnet_data *sd;
2071 unsigned long flags;
2072
2073 local_irq_save(flags);
2074 sd = &__get_cpu_var(softnet_data);
2075 q->next_sched = NULL;
2076 *sd->output_queue_tailp = q;
2077 sd->output_queue_tailp = &q->next_sched;
2078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 local_irq_restore(flags);
2080 }
2081
2082 void __netif_schedule(struct Qdisc *q)
2083 {
2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 __netif_reschedule(q);
2086 }
2087 EXPORT_SYMBOL(__netif_schedule);
2088
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 {
2091 if (atomic_dec_and_test(&skb->users)) {
2092 struct softnet_data *sd;
2093 unsigned long flags;
2094
2095 local_irq_save(flags);
2096 sd = &__get_cpu_var(softnet_data);
2097 skb->next = sd->completion_queue;
2098 sd->completion_queue = skb;
2099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 local_irq_restore(flags);
2101 }
2102 }
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2106 {
2107 if (in_irq() || irqs_disabled())
2108 dev_kfree_skb_irq(skb);
2109 else
2110 dev_kfree_skb(skb);
2111 }
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2113
2114
2115 /**
2116 * netif_device_detach - mark device as removed
2117 * @dev: network device
2118 *
2119 * Mark device as removed from system and therefore no longer available.
2120 */
2121 void netif_device_detach(struct net_device *dev)
2122 {
2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 netif_running(dev)) {
2125 netif_tx_stop_all_queues(dev);
2126 }
2127 }
2128 EXPORT_SYMBOL(netif_device_detach);
2129
2130 /**
2131 * netif_device_attach - mark device as attached
2132 * @dev: network device
2133 *
2134 * Mark device as attached from system and restart if needed.
2135 */
2136 void netif_device_attach(struct net_device *dev)
2137 {
2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 netif_running(dev)) {
2140 netif_tx_wake_all_queues(dev);
2141 __netdev_watchdog_up(dev);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_device_attach);
2145
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 {
2148 static const netdev_features_t null_features = 0;
2149 struct net_device *dev = skb->dev;
2150 const char *driver = "";
2151
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2154
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162
2163 /*
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2166 */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 __wsum csum;
2170 int ret = 0, offset;
2171
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2174
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2177 return -EINVAL;
2178 }
2179
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2182 */
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2185 if (ret)
2186 goto out;
2187 }
2188
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 if (ret)
2200 goto out;
2201 }
2202
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210
2211 __be16 skb_network_protocol(struct sk_buff *skb)
2212 {
2213 __be16 type = skb->protocol;
2214
2215 while (type == htons(ETH_P_8021Q)) {
2216 int vlan_depth = ETH_HLEN;
2217 struct vlan_hdr *vh;
2218
2219 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2220 return 0;
2221
2222 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2223 type = vh->h_vlan_encapsulated_proto;
2224 vlan_depth += VLAN_HLEN;
2225 }
2226
2227 return type;
2228 }
2229
2230 /**
2231 * skb_mac_gso_segment - mac layer segmentation handler.
2232 * @skb: buffer to segment
2233 * @features: features for the output path (see dev->features)
2234 */
2235 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2236 netdev_features_t features)
2237 {
2238 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2239 struct packet_offload *ptype;
2240 __be16 type = skb_network_protocol(skb);
2241
2242 if (unlikely(!type))
2243 return ERR_PTR(-EINVAL);
2244
2245 __skb_pull(skb, skb->mac_len);
2246
2247 rcu_read_lock();
2248 list_for_each_entry_rcu(ptype, &offload_base, list) {
2249 if (ptype->type == type && ptype->callbacks.gso_segment) {
2250 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2251 int err;
2252
2253 err = ptype->callbacks.gso_send_check(skb);
2254 segs = ERR_PTR(err);
2255 if (err || skb_gso_ok(skb, features))
2256 break;
2257 __skb_push(skb, (skb->data -
2258 skb_network_header(skb)));
2259 }
2260 segs = ptype->callbacks.gso_segment(skb, features);
2261 break;
2262 }
2263 }
2264 rcu_read_unlock();
2265
2266 __skb_push(skb, skb->data - skb_mac_header(skb));
2267
2268 return segs;
2269 }
2270 EXPORT_SYMBOL(skb_mac_gso_segment);
2271
2272
2273 /* openvswitch calls this on rx path, so we need a different check.
2274 */
2275 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2276 {
2277 if (tx_path)
2278 return skb->ip_summed != CHECKSUM_PARTIAL;
2279 else
2280 return skb->ip_summed == CHECKSUM_NONE;
2281 }
2282
2283 /**
2284 * __skb_gso_segment - Perform segmentation on skb.
2285 * @skb: buffer to segment
2286 * @features: features for the output path (see dev->features)
2287 * @tx_path: whether it is called in TX path
2288 *
2289 * This function segments the given skb and returns a list of segments.
2290 *
2291 * It may return NULL if the skb requires no segmentation. This is
2292 * only possible when GSO is used for verifying header integrity.
2293 */
2294 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2295 netdev_features_t features, bool tx_path)
2296 {
2297 if (unlikely(skb_needs_check(skb, tx_path))) {
2298 int err;
2299
2300 skb_warn_bad_offload(skb);
2301
2302 if (skb_header_cloned(skb) &&
2303 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2304 return ERR_PTR(err);
2305 }
2306
2307 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2308 skb_reset_mac_header(skb);
2309 skb_reset_mac_len(skb);
2310
2311 return skb_mac_gso_segment(skb, features);
2312 }
2313 EXPORT_SYMBOL(__skb_gso_segment);
2314
2315 /* Take action when hardware reception checksum errors are detected. */
2316 #ifdef CONFIG_BUG
2317 void netdev_rx_csum_fault(struct net_device *dev)
2318 {
2319 if (net_ratelimit()) {
2320 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2321 dump_stack();
2322 }
2323 }
2324 EXPORT_SYMBOL(netdev_rx_csum_fault);
2325 #endif
2326
2327 /* Actually, we should eliminate this check as soon as we know, that:
2328 * 1. IOMMU is present and allows to map all the memory.
2329 * 2. No high memory really exists on this machine.
2330 */
2331
2332 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2333 {
2334 #ifdef CONFIG_HIGHMEM
2335 int i;
2336 if (!(dev->features & NETIF_F_HIGHDMA)) {
2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2338 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2339 if (PageHighMem(skb_frag_page(frag)))
2340 return 1;
2341 }
2342 }
2343
2344 if (PCI_DMA_BUS_IS_PHYS) {
2345 struct device *pdev = dev->dev.parent;
2346
2347 if (!pdev)
2348 return 0;
2349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2350 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2351 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2352 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2353 return 1;
2354 }
2355 }
2356 #endif
2357 return 0;
2358 }
2359
2360 struct dev_gso_cb {
2361 void (*destructor)(struct sk_buff *skb);
2362 };
2363
2364 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2365
2366 static void dev_gso_skb_destructor(struct sk_buff *skb)
2367 {
2368 struct dev_gso_cb *cb;
2369
2370 do {
2371 struct sk_buff *nskb = skb->next;
2372
2373 skb->next = nskb->next;
2374 nskb->next = NULL;
2375 kfree_skb(nskb);
2376 } while (skb->next);
2377
2378 cb = DEV_GSO_CB(skb);
2379 if (cb->destructor)
2380 cb->destructor(skb);
2381 }
2382
2383 /**
2384 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2385 * @skb: buffer to segment
2386 * @features: device features as applicable to this skb
2387 *
2388 * This function segments the given skb and stores the list of segments
2389 * in skb->next.
2390 */
2391 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2392 {
2393 struct sk_buff *segs;
2394
2395 segs = skb_gso_segment(skb, features);
2396
2397 /* Verifying header integrity only. */
2398 if (!segs)
2399 return 0;
2400
2401 if (IS_ERR(segs))
2402 return PTR_ERR(segs);
2403
2404 skb->next = segs;
2405 DEV_GSO_CB(skb)->destructor = skb->destructor;
2406 skb->destructor = dev_gso_skb_destructor;
2407
2408 return 0;
2409 }
2410
2411 static netdev_features_t harmonize_features(struct sk_buff *skb,
2412 __be16 protocol, netdev_features_t features)
2413 {
2414 if (skb->ip_summed != CHECKSUM_NONE &&
2415 !can_checksum_protocol(features, protocol)) {
2416 features &= ~NETIF_F_ALL_CSUM;
2417 } else if (illegal_highdma(skb->dev, skb)) {
2418 features &= ~NETIF_F_SG;
2419 }
2420
2421 return features;
2422 }
2423
2424 netdev_features_t netif_skb_features(struct sk_buff *skb)
2425 {
2426 __be16 protocol = skb->protocol;
2427 netdev_features_t features = skb->dev->features;
2428
2429 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2430 features &= ~NETIF_F_GSO_MASK;
2431
2432 if (protocol == htons(ETH_P_8021Q)) {
2433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2434 protocol = veh->h_vlan_encapsulated_proto;
2435 } else if (!vlan_tx_tag_present(skb)) {
2436 return harmonize_features(skb, protocol, features);
2437 }
2438
2439 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2440
2441 if (protocol != htons(ETH_P_8021Q)) {
2442 return harmonize_features(skb, protocol, features);
2443 } else {
2444 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2445 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2446 return harmonize_features(skb, protocol, features);
2447 }
2448 }
2449 EXPORT_SYMBOL(netif_skb_features);
2450
2451 /*
2452 * Returns true if either:
2453 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2454 * 2. skb is fragmented and the device does not support SG.
2455 */
2456 static inline int skb_needs_linearize(struct sk_buff *skb,
2457 int features)
2458 {
2459 return skb_is_nonlinear(skb) &&
2460 ((skb_has_frag_list(skb) &&
2461 !(features & NETIF_F_FRAGLIST)) ||
2462 (skb_shinfo(skb)->nr_frags &&
2463 !(features & NETIF_F_SG)));
2464 }
2465
2466 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2467 struct netdev_queue *txq)
2468 {
2469 const struct net_device_ops *ops = dev->netdev_ops;
2470 int rc = NETDEV_TX_OK;
2471 unsigned int skb_len;
2472
2473 if (likely(!skb->next)) {
2474 netdev_features_t features;
2475
2476 /*
2477 * If device doesn't need skb->dst, release it right now while
2478 * its hot in this cpu cache
2479 */
2480 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2481 skb_dst_drop(skb);
2482
2483 features = netif_skb_features(skb);
2484
2485 if (vlan_tx_tag_present(skb) &&
2486 !(features & NETIF_F_HW_VLAN_TX)) {
2487 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2488 if (unlikely(!skb))
2489 goto out;
2490
2491 skb->vlan_tci = 0;
2492 }
2493
2494 /* If encapsulation offload request, verify we are testing
2495 * hardware encapsulation features instead of standard
2496 * features for the netdev
2497 */
2498 if (skb->encapsulation)
2499 features &= dev->hw_enc_features;
2500
2501 if (netif_needs_gso(skb, features)) {
2502 if (unlikely(dev_gso_segment(skb, features)))
2503 goto out_kfree_skb;
2504 if (skb->next)
2505 goto gso;
2506 } else {
2507 if (skb_needs_linearize(skb, features) &&
2508 __skb_linearize(skb))
2509 goto out_kfree_skb;
2510
2511 /* If packet is not checksummed and device does not
2512 * support checksumming for this protocol, complete
2513 * checksumming here.
2514 */
2515 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2516 if (skb->encapsulation)
2517 skb_set_inner_transport_header(skb,
2518 skb_checksum_start_offset(skb));
2519 else
2520 skb_set_transport_header(skb,
2521 skb_checksum_start_offset(skb));
2522 if (!(features & NETIF_F_ALL_CSUM) &&
2523 skb_checksum_help(skb))
2524 goto out_kfree_skb;
2525 }
2526 }
2527
2528 if (!list_empty(&ptype_all))
2529 dev_queue_xmit_nit(skb, dev);
2530
2531 skb_len = skb->len;
2532 rc = ops->ndo_start_xmit(skb, dev);
2533 trace_net_dev_xmit(skb, rc, dev, skb_len);
2534 if (rc == NETDEV_TX_OK)
2535 txq_trans_update(txq);
2536 return rc;
2537 }
2538
2539 gso:
2540 do {
2541 struct sk_buff *nskb = skb->next;
2542
2543 skb->next = nskb->next;
2544 nskb->next = NULL;
2545
2546 /*
2547 * If device doesn't need nskb->dst, release it right now while
2548 * its hot in this cpu cache
2549 */
2550 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2551 skb_dst_drop(nskb);
2552
2553 if (!list_empty(&ptype_all))
2554 dev_queue_xmit_nit(nskb, dev);
2555
2556 skb_len = nskb->len;
2557 rc = ops->ndo_start_xmit(nskb, dev);
2558 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2559 if (unlikely(rc != NETDEV_TX_OK)) {
2560 if (rc & ~NETDEV_TX_MASK)
2561 goto out_kfree_gso_skb;
2562 nskb->next = skb->next;
2563 skb->next = nskb;
2564 return rc;
2565 }
2566 txq_trans_update(txq);
2567 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2568 return NETDEV_TX_BUSY;
2569 } while (skb->next);
2570
2571 out_kfree_gso_skb:
2572 if (likely(skb->next == NULL))
2573 skb->destructor = DEV_GSO_CB(skb)->destructor;
2574 out_kfree_skb:
2575 kfree_skb(skb);
2576 out:
2577 return rc;
2578 }
2579
2580 static void qdisc_pkt_len_init(struct sk_buff *skb)
2581 {
2582 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2583
2584 qdisc_skb_cb(skb)->pkt_len = skb->len;
2585
2586 /* To get more precise estimation of bytes sent on wire,
2587 * we add to pkt_len the headers size of all segments
2588 */
2589 if (shinfo->gso_size) {
2590 unsigned int hdr_len;
2591
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2594
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2598 else
2599 hdr_len += sizeof(struct udphdr);
2600 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2601 }
2602 }
2603
2604 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2605 struct net_device *dev,
2606 struct netdev_queue *txq)
2607 {
2608 spinlock_t *root_lock = qdisc_lock(q);
2609 bool contended;
2610 int rc;
2611
2612 qdisc_pkt_len_init(skb);
2613 qdisc_calculate_pkt_len(skb, q);
2614 /*
2615 * Heuristic to force contended enqueues to serialize on a
2616 * separate lock before trying to get qdisc main lock.
2617 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2618 * and dequeue packets faster.
2619 */
2620 contended = qdisc_is_running(q);
2621 if (unlikely(contended))
2622 spin_lock(&q->busylock);
2623
2624 spin_lock(root_lock);
2625 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2626 kfree_skb(skb);
2627 rc = NET_XMIT_DROP;
2628 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2629 qdisc_run_begin(q)) {
2630 /*
2631 * This is a work-conserving queue; there are no old skbs
2632 * waiting to be sent out; and the qdisc is not running -
2633 * xmit the skb directly.
2634 */
2635 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2636 skb_dst_force(skb);
2637
2638 qdisc_bstats_update(q, skb);
2639
2640 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2641 if (unlikely(contended)) {
2642 spin_unlock(&q->busylock);
2643 contended = false;
2644 }
2645 __qdisc_run(q);
2646 } else
2647 qdisc_run_end(q);
2648
2649 rc = NET_XMIT_SUCCESS;
2650 } else {
2651 skb_dst_force(skb);
2652 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2653 if (qdisc_run_begin(q)) {
2654 if (unlikely(contended)) {
2655 spin_unlock(&q->busylock);
2656 contended = false;
2657 }
2658 __qdisc_run(q);
2659 }
2660 }
2661 spin_unlock(root_lock);
2662 if (unlikely(contended))
2663 spin_unlock(&q->busylock);
2664 return rc;
2665 }
2666
2667 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2668 static void skb_update_prio(struct sk_buff *skb)
2669 {
2670 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2671
2672 if (!skb->priority && skb->sk && map) {
2673 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2674
2675 if (prioidx < map->priomap_len)
2676 skb->priority = map->priomap[prioidx];
2677 }
2678 }
2679 #else
2680 #define skb_update_prio(skb)
2681 #endif
2682
2683 static DEFINE_PER_CPU(int, xmit_recursion);
2684 #define RECURSION_LIMIT 10
2685
2686 /**
2687 * dev_loopback_xmit - loop back @skb
2688 * @skb: buffer to transmit
2689 */
2690 int dev_loopback_xmit(struct sk_buff *skb)
2691 {
2692 skb_reset_mac_header(skb);
2693 __skb_pull(skb, skb_network_offset(skb));
2694 skb->pkt_type = PACKET_LOOPBACK;
2695 skb->ip_summed = CHECKSUM_UNNECESSARY;
2696 WARN_ON(!skb_dst(skb));
2697 skb_dst_force(skb);
2698 netif_rx_ni(skb);
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(dev_loopback_xmit);
2702
2703 /**
2704 * dev_queue_xmit - transmit a buffer
2705 * @skb: buffer to transmit
2706 *
2707 * Queue a buffer for transmission to a network device. The caller must
2708 * have set the device and priority and built the buffer before calling
2709 * this function. The function can be called from an interrupt.
2710 *
2711 * A negative errno code is returned on a failure. A success does not
2712 * guarantee the frame will be transmitted as it may be dropped due
2713 * to congestion or traffic shaping.
2714 *
2715 * -----------------------------------------------------------------------------------
2716 * I notice this method can also return errors from the queue disciplines,
2717 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2718 * be positive.
2719 *
2720 * Regardless of the return value, the skb is consumed, so it is currently
2721 * difficult to retry a send to this method. (You can bump the ref count
2722 * before sending to hold a reference for retry if you are careful.)
2723 *
2724 * When calling this method, interrupts MUST be enabled. This is because
2725 * the BH enable code must have IRQs enabled so that it will not deadlock.
2726 * --BLG
2727 */
2728 int dev_queue_xmit(struct sk_buff *skb)
2729 {
2730 struct net_device *dev = skb->dev;
2731 struct netdev_queue *txq;
2732 struct Qdisc *q;
2733 int rc = -ENOMEM;
2734
2735 skb_reset_mac_header(skb);
2736
2737 /* Disable soft irqs for various locks below. Also
2738 * stops preemption for RCU.
2739 */
2740 rcu_read_lock_bh();
2741
2742 skb_update_prio(skb);
2743
2744 txq = netdev_pick_tx(dev, skb);
2745 q = rcu_dereference_bh(txq->qdisc);
2746
2747 #ifdef CONFIG_NET_CLS_ACT
2748 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2749 #endif
2750 trace_net_dev_queue(skb);
2751 if (q->enqueue) {
2752 rc = __dev_xmit_skb(skb, q, dev, txq);
2753 goto out;
2754 }
2755
2756 /* The device has no queue. Common case for software devices:
2757 loopback, all the sorts of tunnels...
2758
2759 Really, it is unlikely that netif_tx_lock protection is necessary
2760 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2761 counters.)
2762 However, it is possible, that they rely on protection
2763 made by us here.
2764
2765 Check this and shot the lock. It is not prone from deadlocks.
2766 Either shot noqueue qdisc, it is even simpler 8)
2767 */
2768 if (dev->flags & IFF_UP) {
2769 int cpu = smp_processor_id(); /* ok because BHs are off */
2770
2771 if (txq->xmit_lock_owner != cpu) {
2772
2773 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2774 goto recursion_alert;
2775
2776 HARD_TX_LOCK(dev, txq, cpu);
2777
2778 if (!netif_xmit_stopped(txq)) {
2779 __this_cpu_inc(xmit_recursion);
2780 rc = dev_hard_start_xmit(skb, dev, txq);
2781 __this_cpu_dec(xmit_recursion);
2782 if (dev_xmit_complete(rc)) {
2783 HARD_TX_UNLOCK(dev, txq);
2784 goto out;
2785 }
2786 }
2787 HARD_TX_UNLOCK(dev, txq);
2788 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2789 dev->name);
2790 } else {
2791 /* Recursion is detected! It is possible,
2792 * unfortunately
2793 */
2794 recursion_alert:
2795 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2796 dev->name);
2797 }
2798 }
2799
2800 rc = -ENETDOWN;
2801 rcu_read_unlock_bh();
2802
2803 kfree_skb(skb);
2804 return rc;
2805 out:
2806 rcu_read_unlock_bh();
2807 return rc;
2808 }
2809 EXPORT_SYMBOL(dev_queue_xmit);
2810
2811
2812 /*=======================================================================
2813 Receiver routines
2814 =======================================================================*/
2815
2816 int netdev_max_backlog __read_mostly = 1000;
2817 EXPORT_SYMBOL(netdev_max_backlog);
2818
2819 int netdev_tstamp_prequeue __read_mostly = 1;
2820 int netdev_budget __read_mostly = 300;
2821 int weight_p __read_mostly = 64; /* old backlog weight */
2822
2823 /* Called with irq disabled */
2824 static inline void ____napi_schedule(struct softnet_data *sd,
2825 struct napi_struct *napi)
2826 {
2827 list_add_tail(&napi->poll_list, &sd->poll_list);
2828 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2829 }
2830
2831 #ifdef CONFIG_RPS
2832
2833 /* One global table that all flow-based protocols share. */
2834 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2835 EXPORT_SYMBOL(rps_sock_flow_table);
2836
2837 struct static_key rps_needed __read_mostly;
2838
2839 static struct rps_dev_flow *
2840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2841 struct rps_dev_flow *rflow, u16 next_cpu)
2842 {
2843 if (next_cpu != RPS_NO_CPU) {
2844 #ifdef CONFIG_RFS_ACCEL
2845 struct netdev_rx_queue *rxqueue;
2846 struct rps_dev_flow_table *flow_table;
2847 struct rps_dev_flow *old_rflow;
2848 u32 flow_id;
2849 u16 rxq_index;
2850 int rc;
2851
2852 /* Should we steer this flow to a different hardware queue? */
2853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2854 !(dev->features & NETIF_F_NTUPLE))
2855 goto out;
2856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2857 if (rxq_index == skb_get_rx_queue(skb))
2858 goto out;
2859
2860 rxqueue = dev->_rx + rxq_index;
2861 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2862 if (!flow_table)
2863 goto out;
2864 flow_id = skb->rxhash & flow_table->mask;
2865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2866 rxq_index, flow_id);
2867 if (rc < 0)
2868 goto out;
2869 old_rflow = rflow;
2870 rflow = &flow_table->flows[flow_id];
2871 rflow->filter = rc;
2872 if (old_rflow->filter == rflow->filter)
2873 old_rflow->filter = RPS_NO_FILTER;
2874 out:
2875 #endif
2876 rflow->last_qtail =
2877 per_cpu(softnet_data, next_cpu).input_queue_head;
2878 }
2879
2880 rflow->cpu = next_cpu;
2881 return rflow;
2882 }
2883
2884 /*
2885 * get_rps_cpu is called from netif_receive_skb and returns the target
2886 * CPU from the RPS map of the receiving queue for a given skb.
2887 * rcu_read_lock must be held on entry.
2888 */
2889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2890 struct rps_dev_flow **rflowp)
2891 {
2892 struct netdev_rx_queue *rxqueue;
2893 struct rps_map *map;
2894 struct rps_dev_flow_table *flow_table;
2895 struct rps_sock_flow_table *sock_flow_table;
2896 int cpu = -1;
2897 u16 tcpu;
2898
2899 if (skb_rx_queue_recorded(skb)) {
2900 u16 index = skb_get_rx_queue(skb);
2901 if (unlikely(index >= dev->real_num_rx_queues)) {
2902 WARN_ONCE(dev->real_num_rx_queues > 1,
2903 "%s received packet on queue %u, but number "
2904 "of RX queues is %u\n",
2905 dev->name, index, dev->real_num_rx_queues);
2906 goto done;
2907 }
2908 rxqueue = dev->_rx + index;
2909 } else
2910 rxqueue = dev->_rx;
2911
2912 map = rcu_dereference(rxqueue->rps_map);
2913 if (map) {
2914 if (map->len == 1 &&
2915 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2916 tcpu = map->cpus[0];
2917 if (cpu_online(tcpu))
2918 cpu = tcpu;
2919 goto done;
2920 }
2921 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2922 goto done;
2923 }
2924
2925 skb_reset_network_header(skb);
2926 if (!skb_get_rxhash(skb))
2927 goto done;
2928
2929 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2930 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2931 if (flow_table && sock_flow_table) {
2932 u16 next_cpu;
2933 struct rps_dev_flow *rflow;
2934
2935 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2936 tcpu = rflow->cpu;
2937
2938 next_cpu = sock_flow_table->ents[skb->rxhash &
2939 sock_flow_table->mask];
2940
2941 /*
2942 * If the desired CPU (where last recvmsg was done) is
2943 * different from current CPU (one in the rx-queue flow
2944 * table entry), switch if one of the following holds:
2945 * - Current CPU is unset (equal to RPS_NO_CPU).
2946 * - Current CPU is offline.
2947 * - The current CPU's queue tail has advanced beyond the
2948 * last packet that was enqueued using this table entry.
2949 * This guarantees that all previous packets for the flow
2950 * have been dequeued, thus preserving in order delivery.
2951 */
2952 if (unlikely(tcpu != next_cpu) &&
2953 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2954 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2955 rflow->last_qtail)) >= 0)) {
2956 tcpu = next_cpu;
2957 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2958 }
2959
2960 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2961 *rflowp = rflow;
2962 cpu = tcpu;
2963 goto done;
2964 }
2965 }
2966
2967 if (map) {
2968 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2969
2970 if (cpu_online(tcpu)) {
2971 cpu = tcpu;
2972 goto done;
2973 }
2974 }
2975
2976 done:
2977 return cpu;
2978 }
2979
2980 #ifdef CONFIG_RFS_ACCEL
2981
2982 /**
2983 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2984 * @dev: Device on which the filter was set
2985 * @rxq_index: RX queue index
2986 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2987 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2988 *
2989 * Drivers that implement ndo_rx_flow_steer() should periodically call
2990 * this function for each installed filter and remove the filters for
2991 * which it returns %true.
2992 */
2993 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2994 u32 flow_id, u16 filter_id)
2995 {
2996 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2997 struct rps_dev_flow_table *flow_table;
2998 struct rps_dev_flow *rflow;
2999 bool expire = true;
3000 int cpu;
3001
3002 rcu_read_lock();
3003 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3004 if (flow_table && flow_id <= flow_table->mask) {
3005 rflow = &flow_table->flows[flow_id];
3006 cpu = ACCESS_ONCE(rflow->cpu);
3007 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3008 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3009 rflow->last_qtail) <
3010 (int)(10 * flow_table->mask)))
3011 expire = false;
3012 }
3013 rcu_read_unlock();
3014 return expire;
3015 }
3016 EXPORT_SYMBOL(rps_may_expire_flow);
3017
3018 #endif /* CONFIG_RFS_ACCEL */
3019
3020 /* Called from hardirq (IPI) context */
3021 static void rps_trigger_softirq(void *data)
3022 {
3023 struct softnet_data *sd = data;
3024
3025 ____napi_schedule(sd, &sd->backlog);
3026 sd->received_rps++;
3027 }
3028
3029 #endif /* CONFIG_RPS */
3030
3031 /*
3032 * Check if this softnet_data structure is another cpu one
3033 * If yes, queue it to our IPI list and return 1
3034 * If no, return 0
3035 */
3036 static int rps_ipi_queued(struct softnet_data *sd)
3037 {
3038 #ifdef CONFIG_RPS
3039 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3040
3041 if (sd != mysd) {
3042 sd->rps_ipi_next = mysd->rps_ipi_list;
3043 mysd->rps_ipi_list = sd;
3044
3045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3046 return 1;
3047 }
3048 #endif /* CONFIG_RPS */
3049 return 0;
3050 }
3051
3052 /*
3053 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3054 * queue (may be a remote CPU queue).
3055 */
3056 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3057 unsigned int *qtail)
3058 {
3059 struct softnet_data *sd;
3060 unsigned long flags;
3061
3062 sd = &per_cpu(softnet_data, cpu);
3063
3064 local_irq_save(flags);
3065
3066 rps_lock(sd);
3067 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3068 if (skb_queue_len(&sd->input_pkt_queue)) {
3069 enqueue:
3070 __skb_queue_tail(&sd->input_pkt_queue, skb);
3071 input_queue_tail_incr_save(sd, qtail);
3072 rps_unlock(sd);
3073 local_irq_restore(flags);
3074 return NET_RX_SUCCESS;
3075 }
3076
3077 /* Schedule NAPI for backlog device
3078 * We can use non atomic operation since we own the queue lock
3079 */
3080 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3081 if (!rps_ipi_queued(sd))
3082 ____napi_schedule(sd, &sd->backlog);
3083 }
3084 goto enqueue;
3085 }
3086
3087 sd->dropped++;
3088 rps_unlock(sd);
3089
3090 local_irq_restore(flags);
3091
3092 atomic_long_inc(&skb->dev->rx_dropped);
3093 kfree_skb(skb);
3094 return NET_RX_DROP;
3095 }
3096
3097 /**
3098 * netif_rx - post buffer to the network code
3099 * @skb: buffer to post
3100 *
3101 * This function receives a packet from a device driver and queues it for
3102 * the upper (protocol) levels to process. It always succeeds. The buffer
3103 * may be dropped during processing for congestion control or by the
3104 * protocol layers.
3105 *
3106 * return values:
3107 * NET_RX_SUCCESS (no congestion)
3108 * NET_RX_DROP (packet was dropped)
3109 *
3110 */
3111
3112 int netif_rx(struct sk_buff *skb)
3113 {
3114 int ret;
3115
3116 /* if netpoll wants it, pretend we never saw it */
3117 if (netpoll_rx(skb))
3118 return NET_RX_DROP;
3119
3120 net_timestamp_check(netdev_tstamp_prequeue, skb);
3121
3122 trace_netif_rx(skb);
3123 #ifdef CONFIG_RPS
3124 if (static_key_false(&rps_needed)) {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3126 int cpu;
3127
3128 preempt_disable();
3129 rcu_read_lock();
3130
3131 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3132 if (cpu < 0)
3133 cpu = smp_processor_id();
3134
3135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3136
3137 rcu_read_unlock();
3138 preempt_enable();
3139 } else
3140 #endif
3141 {
3142 unsigned int qtail;
3143 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3144 put_cpu();
3145 }
3146 return ret;
3147 }
3148 EXPORT_SYMBOL(netif_rx);
3149
3150 int netif_rx_ni(struct sk_buff *skb)
3151 {
3152 int err;
3153
3154 preempt_disable();
3155 err = netif_rx(skb);
3156 if (local_softirq_pending())
3157 do_softirq();
3158 preempt_enable();
3159
3160 return err;
3161 }
3162 EXPORT_SYMBOL(netif_rx_ni);
3163
3164 static void net_tx_action(struct softirq_action *h)
3165 {
3166 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3167
3168 if (sd->completion_queue) {
3169 struct sk_buff *clist;
3170
3171 local_irq_disable();
3172 clist = sd->completion_queue;
3173 sd->completion_queue = NULL;
3174 local_irq_enable();
3175
3176 while (clist) {
3177 struct sk_buff *skb = clist;
3178 clist = clist->next;
3179
3180 WARN_ON(atomic_read(&skb->users));
3181 trace_kfree_skb(skb, net_tx_action);
3182 __kfree_skb(skb);
3183 }
3184 }
3185
3186 if (sd->output_queue) {
3187 struct Qdisc *head;
3188
3189 local_irq_disable();
3190 head = sd->output_queue;
3191 sd->output_queue = NULL;
3192 sd->output_queue_tailp = &sd->output_queue;
3193 local_irq_enable();
3194
3195 while (head) {
3196 struct Qdisc *q = head;
3197 spinlock_t *root_lock;
3198
3199 head = head->next_sched;
3200
3201 root_lock = qdisc_lock(q);
3202 if (spin_trylock(root_lock)) {
3203 smp_mb__before_clear_bit();
3204 clear_bit(__QDISC_STATE_SCHED,
3205 &q->state);
3206 qdisc_run(q);
3207 spin_unlock(root_lock);
3208 } else {
3209 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3210 &q->state)) {
3211 __netif_reschedule(q);
3212 } else {
3213 smp_mb__before_clear_bit();
3214 clear_bit(__QDISC_STATE_SCHED,
3215 &q->state);
3216 }
3217 }
3218 }
3219 }
3220 }
3221
3222 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3223 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3224 /* This hook is defined here for ATM LANE */
3225 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3226 unsigned char *addr) __read_mostly;
3227 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3228 #endif
3229
3230 #ifdef CONFIG_NET_CLS_ACT
3231 /* TODO: Maybe we should just force sch_ingress to be compiled in
3232 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3233 * a compare and 2 stores extra right now if we dont have it on
3234 * but have CONFIG_NET_CLS_ACT
3235 * NOTE: This doesn't stop any functionality; if you dont have
3236 * the ingress scheduler, you just can't add policies on ingress.
3237 *
3238 */
3239 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3240 {
3241 struct net_device *dev = skb->dev;
3242 u32 ttl = G_TC_RTTL(skb->tc_verd);
3243 int result = TC_ACT_OK;
3244 struct Qdisc *q;
3245
3246 if (unlikely(MAX_RED_LOOP < ttl++)) {
3247 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3248 skb->skb_iif, dev->ifindex);
3249 return TC_ACT_SHOT;
3250 }
3251
3252 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3253 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3254
3255 q = rxq->qdisc;
3256 if (q != &noop_qdisc) {
3257 spin_lock(qdisc_lock(q));
3258 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3259 result = qdisc_enqueue_root(skb, q);
3260 spin_unlock(qdisc_lock(q));
3261 }
3262
3263 return result;
3264 }
3265
3266 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3267 struct packet_type **pt_prev,
3268 int *ret, struct net_device *orig_dev)
3269 {
3270 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3271
3272 if (!rxq || rxq->qdisc == &noop_qdisc)
3273 goto out;
3274
3275 if (*pt_prev) {
3276 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3277 *pt_prev = NULL;
3278 }
3279
3280 switch (ing_filter(skb, rxq)) {
3281 case TC_ACT_SHOT:
3282 case TC_ACT_STOLEN:
3283 kfree_skb(skb);
3284 return NULL;
3285 }
3286
3287 out:
3288 skb->tc_verd = 0;
3289 return skb;
3290 }
3291 #endif
3292
3293 /**
3294 * netdev_rx_handler_register - register receive handler
3295 * @dev: device to register a handler for
3296 * @rx_handler: receive handler to register
3297 * @rx_handler_data: data pointer that is used by rx handler
3298 *
3299 * Register a receive hander for a device. This handler will then be
3300 * called from __netif_receive_skb. A negative errno code is returned
3301 * on a failure.
3302 *
3303 * The caller must hold the rtnl_mutex.
3304 *
3305 * For a general description of rx_handler, see enum rx_handler_result.
3306 */
3307 int netdev_rx_handler_register(struct net_device *dev,
3308 rx_handler_func_t *rx_handler,
3309 void *rx_handler_data)
3310 {
3311 ASSERT_RTNL();
3312
3313 if (dev->rx_handler)
3314 return -EBUSY;
3315
3316 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3317 rcu_assign_pointer(dev->rx_handler, rx_handler);
3318
3319 return 0;
3320 }
3321 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3322
3323 /**
3324 * netdev_rx_handler_unregister - unregister receive handler
3325 * @dev: device to unregister a handler from
3326 *
3327 * Unregister a receive hander from a device.
3328 *
3329 * The caller must hold the rtnl_mutex.
3330 */
3331 void netdev_rx_handler_unregister(struct net_device *dev)
3332 {
3333
3334 ASSERT_RTNL();
3335 RCU_INIT_POINTER(dev->rx_handler, NULL);
3336 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3337 }
3338 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3339
3340 /*
3341 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3342 * the special handling of PFMEMALLOC skbs.
3343 */
3344 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3345 {
3346 switch (skb->protocol) {
3347 case __constant_htons(ETH_P_ARP):
3348 case __constant_htons(ETH_P_IP):
3349 case __constant_htons(ETH_P_IPV6):
3350 case __constant_htons(ETH_P_8021Q):
3351 return true;
3352 default:
3353 return false;
3354 }
3355 }
3356
3357 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3358 {
3359 struct packet_type *ptype, *pt_prev;
3360 rx_handler_func_t *rx_handler;
3361 struct net_device *orig_dev;
3362 struct net_device *null_or_dev;
3363 bool deliver_exact = false;
3364 int ret = NET_RX_DROP;
3365 __be16 type;
3366
3367 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3368
3369 trace_netif_receive_skb(skb);
3370
3371 /* if we've gotten here through NAPI, check netpoll */
3372 if (netpoll_receive_skb(skb))
3373 goto out;
3374
3375 orig_dev = skb->dev;
3376
3377 skb_reset_network_header(skb);
3378 if (!skb_transport_header_was_set(skb))
3379 skb_reset_transport_header(skb);
3380 skb_reset_mac_len(skb);
3381
3382 pt_prev = NULL;
3383
3384 rcu_read_lock();
3385
3386 another_round:
3387 skb->skb_iif = skb->dev->ifindex;
3388
3389 __this_cpu_inc(softnet_data.processed);
3390
3391 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3392 skb = vlan_untag(skb);
3393 if (unlikely(!skb))
3394 goto unlock;
3395 }
3396
3397 #ifdef CONFIG_NET_CLS_ACT
3398 if (skb->tc_verd & TC_NCLS) {
3399 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3400 goto ncls;
3401 }
3402 #endif
3403
3404 if (pfmemalloc)
3405 goto skip_taps;
3406
3407 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3408 if (!ptype->dev || ptype->dev == skb->dev) {
3409 if (pt_prev)
3410 ret = deliver_skb(skb, pt_prev, orig_dev);
3411 pt_prev = ptype;
3412 }
3413 }
3414
3415 skip_taps:
3416 #ifdef CONFIG_NET_CLS_ACT
3417 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3418 if (!skb)
3419 goto unlock;
3420 ncls:
3421 #endif
3422
3423 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3424 goto drop;
3425
3426 if (vlan_tx_tag_present(skb)) {
3427 if (pt_prev) {
3428 ret = deliver_skb(skb, pt_prev, orig_dev);
3429 pt_prev = NULL;
3430 }
3431 if (vlan_do_receive(&skb))
3432 goto another_round;
3433 else if (unlikely(!skb))
3434 goto unlock;
3435 }
3436
3437 rx_handler = rcu_dereference(skb->dev->rx_handler);
3438 if (rx_handler) {
3439 if (pt_prev) {
3440 ret = deliver_skb(skb, pt_prev, orig_dev);
3441 pt_prev = NULL;
3442 }
3443 switch (rx_handler(&skb)) {
3444 case RX_HANDLER_CONSUMED:
3445 goto unlock;
3446 case RX_HANDLER_ANOTHER:
3447 goto another_round;
3448 case RX_HANDLER_EXACT:
3449 deliver_exact = true;
3450 case RX_HANDLER_PASS:
3451 break;
3452 default:
3453 BUG();
3454 }
3455 }
3456
3457 if (vlan_tx_nonzero_tag_present(skb))
3458 skb->pkt_type = PACKET_OTHERHOST;
3459
3460 /* deliver only exact match when indicated */
3461 null_or_dev = deliver_exact ? skb->dev : NULL;
3462
3463 type = skb->protocol;
3464 list_for_each_entry_rcu(ptype,
3465 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3466 if (ptype->type == type &&
3467 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3468 ptype->dev == orig_dev)) {
3469 if (pt_prev)
3470 ret = deliver_skb(skb, pt_prev, orig_dev);
3471 pt_prev = ptype;
3472 }
3473 }
3474
3475 if (pt_prev) {
3476 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3477 goto drop;
3478 else
3479 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3480 } else {
3481 drop:
3482 atomic_long_inc(&skb->dev->rx_dropped);
3483 kfree_skb(skb);
3484 /* Jamal, now you will not able to escape explaining
3485 * me how you were going to use this. :-)
3486 */
3487 ret = NET_RX_DROP;
3488 }
3489
3490 unlock:
3491 rcu_read_unlock();
3492 out:
3493 return ret;
3494 }
3495
3496 static int __netif_receive_skb(struct sk_buff *skb)
3497 {
3498 int ret;
3499
3500 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3501 unsigned long pflags = current->flags;
3502
3503 /*
3504 * PFMEMALLOC skbs are special, they should
3505 * - be delivered to SOCK_MEMALLOC sockets only
3506 * - stay away from userspace
3507 * - have bounded memory usage
3508 *
3509 * Use PF_MEMALLOC as this saves us from propagating the allocation
3510 * context down to all allocation sites.
3511 */
3512 current->flags |= PF_MEMALLOC;
3513 ret = __netif_receive_skb_core(skb, true);
3514 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3515 } else
3516 ret = __netif_receive_skb_core(skb, false);
3517
3518 return ret;
3519 }
3520
3521 /**
3522 * netif_receive_skb - process receive buffer from network
3523 * @skb: buffer to process
3524 *
3525 * netif_receive_skb() is the main receive data processing function.
3526 * It always succeeds. The buffer may be dropped during processing
3527 * for congestion control or by the protocol layers.
3528 *
3529 * This function may only be called from softirq context and interrupts
3530 * should be enabled.
3531 *
3532 * Return values (usually ignored):
3533 * NET_RX_SUCCESS: no congestion
3534 * NET_RX_DROP: packet was dropped
3535 */
3536 int netif_receive_skb(struct sk_buff *skb)
3537 {
3538 net_timestamp_check(netdev_tstamp_prequeue, skb);
3539
3540 if (skb_defer_rx_timestamp(skb))
3541 return NET_RX_SUCCESS;
3542
3543 #ifdef CONFIG_RPS
3544 if (static_key_false(&rps_needed)) {
3545 struct rps_dev_flow voidflow, *rflow = &voidflow;
3546 int cpu, ret;
3547
3548 rcu_read_lock();
3549
3550 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3551
3552 if (cpu >= 0) {
3553 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3554 rcu_read_unlock();
3555 return ret;
3556 }
3557 rcu_read_unlock();
3558 }
3559 #endif
3560 return __netif_receive_skb(skb);
3561 }
3562 EXPORT_SYMBOL(netif_receive_skb);
3563
3564 /* Network device is going away, flush any packets still pending
3565 * Called with irqs disabled.
3566 */
3567 static void flush_backlog(void *arg)
3568 {
3569 struct net_device *dev = arg;
3570 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3571 struct sk_buff *skb, *tmp;
3572
3573 rps_lock(sd);
3574 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3575 if (skb->dev == dev) {
3576 __skb_unlink(skb, &sd->input_pkt_queue);
3577 kfree_skb(skb);
3578 input_queue_head_incr(sd);
3579 }
3580 }
3581 rps_unlock(sd);
3582
3583 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3584 if (skb->dev == dev) {
3585 __skb_unlink(skb, &sd->process_queue);
3586 kfree_skb(skb);
3587 input_queue_head_incr(sd);
3588 }
3589 }
3590 }
3591
3592 static int napi_gro_complete(struct sk_buff *skb)
3593 {
3594 struct packet_offload *ptype;
3595 __be16 type = skb->protocol;
3596 struct list_head *head = &offload_base;
3597 int err = -ENOENT;
3598
3599 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3600
3601 if (NAPI_GRO_CB(skb)->count == 1) {
3602 skb_shinfo(skb)->gso_size = 0;
3603 goto out;
3604 }
3605
3606 rcu_read_lock();
3607 list_for_each_entry_rcu(ptype, head, list) {
3608 if (ptype->type != type || !ptype->callbacks.gro_complete)
3609 continue;
3610
3611 err = ptype->callbacks.gro_complete(skb);
3612 break;
3613 }
3614 rcu_read_unlock();
3615
3616 if (err) {
3617 WARN_ON(&ptype->list == head);
3618 kfree_skb(skb);
3619 return NET_RX_SUCCESS;
3620 }
3621
3622 out:
3623 return netif_receive_skb(skb);
3624 }
3625
3626 /* napi->gro_list contains packets ordered by age.
3627 * youngest packets at the head of it.
3628 * Complete skbs in reverse order to reduce latencies.
3629 */
3630 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3631 {
3632 struct sk_buff *skb, *prev = NULL;
3633
3634 /* scan list and build reverse chain */
3635 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3636 skb->prev = prev;
3637 prev = skb;
3638 }
3639
3640 for (skb = prev; skb; skb = prev) {
3641 skb->next = NULL;
3642
3643 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3644 return;
3645
3646 prev = skb->prev;
3647 napi_gro_complete(skb);
3648 napi->gro_count--;
3649 }
3650
3651 napi->gro_list = NULL;
3652 }
3653 EXPORT_SYMBOL(napi_gro_flush);
3654
3655 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3656 {
3657 struct sk_buff *p;
3658 unsigned int maclen = skb->dev->hard_header_len;
3659
3660 for (p = napi->gro_list; p; p = p->next) {
3661 unsigned long diffs;
3662
3663 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3664 diffs |= p->vlan_tci ^ skb->vlan_tci;
3665 if (maclen == ETH_HLEN)
3666 diffs |= compare_ether_header(skb_mac_header(p),
3667 skb_gro_mac_header(skb));
3668 else if (!diffs)
3669 diffs = memcmp(skb_mac_header(p),
3670 skb_gro_mac_header(skb),
3671 maclen);
3672 NAPI_GRO_CB(p)->same_flow = !diffs;
3673 NAPI_GRO_CB(p)->flush = 0;
3674 }
3675 }
3676
3677 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3678 {
3679 struct sk_buff **pp = NULL;
3680 struct packet_offload *ptype;
3681 __be16 type = skb->protocol;
3682 struct list_head *head = &offload_base;
3683 int same_flow;
3684 enum gro_result ret;
3685
3686 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3687 goto normal;
3688
3689 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3690 goto normal;
3691
3692 gro_list_prepare(napi, skb);
3693
3694 rcu_read_lock();
3695 list_for_each_entry_rcu(ptype, head, list) {
3696 if (ptype->type != type || !ptype->callbacks.gro_receive)
3697 continue;
3698
3699 skb_set_network_header(skb, skb_gro_offset(skb));
3700 skb_reset_mac_len(skb);
3701 NAPI_GRO_CB(skb)->same_flow = 0;
3702 NAPI_GRO_CB(skb)->flush = 0;
3703 NAPI_GRO_CB(skb)->free = 0;
3704
3705 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3706 break;
3707 }
3708 rcu_read_unlock();
3709
3710 if (&ptype->list == head)
3711 goto normal;
3712
3713 same_flow = NAPI_GRO_CB(skb)->same_flow;
3714 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3715
3716 if (pp) {
3717 struct sk_buff *nskb = *pp;
3718
3719 *pp = nskb->next;
3720 nskb->next = NULL;
3721 napi_gro_complete(nskb);
3722 napi->gro_count--;
3723 }
3724
3725 if (same_flow)
3726 goto ok;
3727
3728 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3729 goto normal;
3730
3731 napi->gro_count++;
3732 NAPI_GRO_CB(skb)->count = 1;
3733 NAPI_GRO_CB(skb)->age = jiffies;
3734 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3735 skb->next = napi->gro_list;
3736 napi->gro_list = skb;
3737 ret = GRO_HELD;
3738
3739 pull:
3740 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3741 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3742
3743 BUG_ON(skb->end - skb->tail < grow);
3744
3745 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3746
3747 skb->tail += grow;
3748 skb->data_len -= grow;
3749
3750 skb_shinfo(skb)->frags[0].page_offset += grow;
3751 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3752
3753 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3754 skb_frag_unref(skb, 0);
3755 memmove(skb_shinfo(skb)->frags,
3756 skb_shinfo(skb)->frags + 1,
3757 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3758 }
3759 }
3760
3761 ok:
3762 return ret;
3763
3764 normal:
3765 ret = GRO_NORMAL;
3766 goto pull;
3767 }
3768
3769
3770 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3771 {
3772 switch (ret) {
3773 case GRO_NORMAL:
3774 if (netif_receive_skb(skb))
3775 ret = GRO_DROP;
3776 break;
3777
3778 case GRO_DROP:
3779 kfree_skb(skb);
3780 break;
3781
3782 case GRO_MERGED_FREE:
3783 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3784 kmem_cache_free(skbuff_head_cache, skb);
3785 else
3786 __kfree_skb(skb);
3787 break;
3788
3789 case GRO_HELD:
3790 case GRO_MERGED:
3791 break;
3792 }
3793
3794 return ret;
3795 }
3796
3797 static void skb_gro_reset_offset(struct sk_buff *skb)
3798 {
3799 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3800 const skb_frag_t *frag0 = &pinfo->frags[0];
3801
3802 NAPI_GRO_CB(skb)->data_offset = 0;
3803 NAPI_GRO_CB(skb)->frag0 = NULL;
3804 NAPI_GRO_CB(skb)->frag0_len = 0;
3805
3806 if (skb->mac_header == skb->tail &&
3807 pinfo->nr_frags &&
3808 !PageHighMem(skb_frag_page(frag0))) {
3809 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3810 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3811 }
3812 }
3813
3814 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3815 {
3816 skb_gro_reset_offset(skb);
3817
3818 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3819 }
3820 EXPORT_SYMBOL(napi_gro_receive);
3821
3822 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3823 {
3824 __skb_pull(skb, skb_headlen(skb));
3825 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3826 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3827 skb->vlan_tci = 0;
3828 skb->dev = napi->dev;
3829 skb->skb_iif = 0;
3830
3831 napi->skb = skb;
3832 }
3833
3834 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3835 {
3836 struct sk_buff *skb = napi->skb;
3837
3838 if (!skb) {
3839 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3840 if (skb)
3841 napi->skb = skb;
3842 }
3843 return skb;
3844 }
3845 EXPORT_SYMBOL(napi_get_frags);
3846
3847 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3848 gro_result_t ret)
3849 {
3850 switch (ret) {
3851 case GRO_NORMAL:
3852 case GRO_HELD:
3853 skb->protocol = eth_type_trans(skb, skb->dev);
3854
3855 if (ret == GRO_HELD)
3856 skb_gro_pull(skb, -ETH_HLEN);
3857 else if (netif_receive_skb(skb))
3858 ret = GRO_DROP;
3859 break;
3860
3861 case GRO_DROP:
3862 case GRO_MERGED_FREE:
3863 napi_reuse_skb(napi, skb);
3864 break;
3865
3866 case GRO_MERGED:
3867 break;
3868 }
3869
3870 return ret;
3871 }
3872
3873 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3874 {
3875 struct sk_buff *skb = napi->skb;
3876 struct ethhdr *eth;
3877 unsigned int hlen;
3878 unsigned int off;
3879
3880 napi->skb = NULL;
3881
3882 skb_reset_mac_header(skb);
3883 skb_gro_reset_offset(skb);
3884
3885 off = skb_gro_offset(skb);
3886 hlen = off + sizeof(*eth);
3887 eth = skb_gro_header_fast(skb, off);
3888 if (skb_gro_header_hard(skb, hlen)) {
3889 eth = skb_gro_header_slow(skb, hlen, off);
3890 if (unlikely(!eth)) {
3891 napi_reuse_skb(napi, skb);
3892 skb = NULL;
3893 goto out;
3894 }
3895 }
3896
3897 skb_gro_pull(skb, sizeof(*eth));
3898
3899 /*
3900 * This works because the only protocols we care about don't require
3901 * special handling. We'll fix it up properly at the end.
3902 */
3903 skb->protocol = eth->h_proto;
3904
3905 out:
3906 return skb;
3907 }
3908
3909 gro_result_t napi_gro_frags(struct napi_struct *napi)
3910 {
3911 struct sk_buff *skb = napi_frags_skb(napi);
3912
3913 if (!skb)
3914 return GRO_DROP;
3915
3916 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3917 }
3918 EXPORT_SYMBOL(napi_gro_frags);
3919
3920 /*
3921 * net_rps_action sends any pending IPI's for rps.
3922 * Note: called with local irq disabled, but exits with local irq enabled.
3923 */
3924 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3925 {
3926 #ifdef CONFIG_RPS
3927 struct softnet_data *remsd = sd->rps_ipi_list;
3928
3929 if (remsd) {
3930 sd->rps_ipi_list = NULL;
3931
3932 local_irq_enable();
3933
3934 /* Send pending IPI's to kick RPS processing on remote cpus. */
3935 while (remsd) {
3936 struct softnet_data *next = remsd->rps_ipi_next;
3937
3938 if (cpu_online(remsd->cpu))
3939 __smp_call_function_single(remsd->cpu,
3940 &remsd->csd, 0);
3941 remsd = next;
3942 }
3943 } else
3944 #endif
3945 local_irq_enable();
3946 }
3947
3948 static int process_backlog(struct napi_struct *napi, int quota)
3949 {
3950 int work = 0;
3951 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3952
3953 #ifdef CONFIG_RPS
3954 /* Check if we have pending ipi, its better to send them now,
3955 * not waiting net_rx_action() end.
3956 */
3957 if (sd->rps_ipi_list) {
3958 local_irq_disable();
3959 net_rps_action_and_irq_enable(sd);
3960 }
3961 #endif
3962 napi->weight = weight_p;
3963 local_irq_disable();
3964 while (work < quota) {
3965 struct sk_buff *skb;
3966 unsigned int qlen;
3967
3968 while ((skb = __skb_dequeue(&sd->process_queue))) {
3969 local_irq_enable();
3970 __netif_receive_skb(skb);
3971 local_irq_disable();
3972 input_queue_head_incr(sd);
3973 if (++work >= quota) {
3974 local_irq_enable();
3975 return work;
3976 }
3977 }
3978
3979 rps_lock(sd);
3980 qlen = skb_queue_len(&sd->input_pkt_queue);
3981 if (qlen)
3982 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3983 &sd->process_queue);
3984
3985 if (qlen < quota - work) {
3986 /*
3987 * Inline a custom version of __napi_complete().
3988 * only current cpu owns and manipulates this napi,
3989 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3990 * we can use a plain write instead of clear_bit(),
3991 * and we dont need an smp_mb() memory barrier.
3992 */
3993 list_del(&napi->poll_list);
3994 napi->state = 0;
3995
3996 quota = work + qlen;
3997 }
3998 rps_unlock(sd);
3999 }
4000 local_irq_enable();
4001
4002 return work;
4003 }
4004
4005 /**
4006 * __napi_schedule - schedule for receive
4007 * @n: entry to schedule
4008 *
4009 * The entry's receive function will be scheduled to run
4010 */
4011 void __napi_schedule(struct napi_struct *n)
4012 {
4013 unsigned long flags;
4014
4015 local_irq_save(flags);
4016 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4017 local_irq_restore(flags);
4018 }
4019 EXPORT_SYMBOL(__napi_schedule);
4020
4021 void __napi_complete(struct napi_struct *n)
4022 {
4023 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4024 BUG_ON(n->gro_list);
4025
4026 list_del(&n->poll_list);
4027 smp_mb__before_clear_bit();
4028 clear_bit(NAPI_STATE_SCHED, &n->state);
4029 }
4030 EXPORT_SYMBOL(__napi_complete);
4031
4032 void napi_complete(struct napi_struct *n)
4033 {
4034 unsigned long flags;
4035
4036 /*
4037 * don't let napi dequeue from the cpu poll list
4038 * just in case its running on a different cpu
4039 */
4040 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4041 return;
4042
4043 napi_gro_flush(n, false);
4044 local_irq_save(flags);
4045 __napi_complete(n);
4046 local_irq_restore(flags);
4047 }
4048 EXPORT_SYMBOL(napi_complete);
4049
4050 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4051 int (*poll)(struct napi_struct *, int), int weight)
4052 {
4053 INIT_LIST_HEAD(&napi->poll_list);
4054 napi->gro_count = 0;
4055 napi->gro_list = NULL;
4056 napi->skb = NULL;
4057 napi->poll = poll;
4058 if (weight > NAPI_POLL_WEIGHT)
4059 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4060 weight, dev->name);
4061 napi->weight = weight;
4062 list_add(&napi->dev_list, &dev->napi_list);
4063 napi->dev = dev;
4064 #ifdef CONFIG_NETPOLL
4065 spin_lock_init(&napi->poll_lock);
4066 napi->poll_owner = -1;
4067 #endif
4068 set_bit(NAPI_STATE_SCHED, &napi->state);
4069 }
4070 EXPORT_SYMBOL(netif_napi_add);
4071
4072 void netif_napi_del(struct napi_struct *napi)
4073 {
4074 struct sk_buff *skb, *next;
4075
4076 list_del_init(&napi->dev_list);
4077 napi_free_frags(napi);
4078
4079 for (skb = napi->gro_list; skb; skb = next) {
4080 next = skb->next;
4081 skb->next = NULL;
4082 kfree_skb(skb);
4083 }
4084
4085 napi->gro_list = NULL;
4086 napi->gro_count = 0;
4087 }
4088 EXPORT_SYMBOL(netif_napi_del);
4089
4090 static void net_rx_action(struct softirq_action *h)
4091 {
4092 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4093 unsigned long time_limit = jiffies + 2;
4094 int budget = netdev_budget;
4095 void *have;
4096
4097 local_irq_disable();
4098
4099 while (!list_empty(&sd->poll_list)) {
4100 struct napi_struct *n;
4101 int work, weight;
4102
4103 /* If softirq window is exhuasted then punt.
4104 * Allow this to run for 2 jiffies since which will allow
4105 * an average latency of 1.5/HZ.
4106 */
4107 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4108 goto softnet_break;
4109
4110 local_irq_enable();
4111
4112 /* Even though interrupts have been re-enabled, this
4113 * access is safe because interrupts can only add new
4114 * entries to the tail of this list, and only ->poll()
4115 * calls can remove this head entry from the list.
4116 */
4117 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4118
4119 have = netpoll_poll_lock(n);
4120
4121 weight = n->weight;
4122
4123 /* This NAPI_STATE_SCHED test is for avoiding a race
4124 * with netpoll's poll_napi(). Only the entity which
4125 * obtains the lock and sees NAPI_STATE_SCHED set will
4126 * actually make the ->poll() call. Therefore we avoid
4127 * accidentally calling ->poll() when NAPI is not scheduled.
4128 */
4129 work = 0;
4130 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4131 work = n->poll(n, weight);
4132 trace_napi_poll(n);
4133 }
4134
4135 WARN_ON_ONCE(work > weight);
4136
4137 budget -= work;
4138
4139 local_irq_disable();
4140
4141 /* Drivers must not modify the NAPI state if they
4142 * consume the entire weight. In such cases this code
4143 * still "owns" the NAPI instance and therefore can
4144 * move the instance around on the list at-will.
4145 */
4146 if (unlikely(work == weight)) {
4147 if (unlikely(napi_disable_pending(n))) {
4148 local_irq_enable();
4149 napi_complete(n);
4150 local_irq_disable();
4151 } else {
4152 if (n->gro_list) {
4153 /* flush too old packets
4154 * If HZ < 1000, flush all packets.
4155 */
4156 local_irq_enable();
4157 napi_gro_flush(n, HZ >= 1000);
4158 local_irq_disable();
4159 }
4160 list_move_tail(&n->poll_list, &sd->poll_list);
4161 }
4162 }
4163
4164 netpoll_poll_unlock(have);
4165 }
4166 out:
4167 net_rps_action_and_irq_enable(sd);
4168
4169 #ifdef CONFIG_NET_DMA
4170 /*
4171 * There may not be any more sk_buffs coming right now, so push
4172 * any pending DMA copies to hardware
4173 */
4174 dma_issue_pending_all();
4175 #endif
4176
4177 return;
4178
4179 softnet_break:
4180 sd->time_squeeze++;
4181 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4182 goto out;
4183 }
4184
4185 struct netdev_upper {
4186 struct net_device *dev;
4187 bool master;
4188 struct list_head list;
4189 struct rcu_head rcu;
4190 struct list_head search_list;
4191 };
4192
4193 static void __append_search_uppers(struct list_head *search_list,
4194 struct net_device *dev)
4195 {
4196 struct netdev_upper *upper;
4197
4198 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4199 /* check if this upper is not already in search list */
4200 if (list_empty(&upper->search_list))
4201 list_add_tail(&upper->search_list, search_list);
4202 }
4203 }
4204
4205 static bool __netdev_search_upper_dev(struct net_device *dev,
4206 struct net_device *upper_dev)
4207 {
4208 LIST_HEAD(search_list);
4209 struct netdev_upper *upper;
4210 struct netdev_upper *tmp;
4211 bool ret = false;
4212
4213 __append_search_uppers(&search_list, dev);
4214 list_for_each_entry(upper, &search_list, search_list) {
4215 if (upper->dev == upper_dev) {
4216 ret = true;
4217 break;
4218 }
4219 __append_search_uppers(&search_list, upper->dev);
4220 }
4221 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4222 INIT_LIST_HEAD(&upper->search_list);
4223 return ret;
4224 }
4225
4226 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4227 struct net_device *upper_dev)
4228 {
4229 struct netdev_upper *upper;
4230
4231 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4232 if (upper->dev == upper_dev)
4233 return upper;
4234 }
4235 return NULL;
4236 }
4237
4238 /**
4239 * netdev_has_upper_dev - Check if device is linked to an upper device
4240 * @dev: device
4241 * @upper_dev: upper device to check
4242 *
4243 * Find out if a device is linked to specified upper device and return true
4244 * in case it is. Note that this checks only immediate upper device,
4245 * not through a complete stack of devices. The caller must hold the RTNL lock.
4246 */
4247 bool netdev_has_upper_dev(struct net_device *dev,
4248 struct net_device *upper_dev)
4249 {
4250 ASSERT_RTNL();
4251
4252 return __netdev_find_upper(dev, upper_dev);
4253 }
4254 EXPORT_SYMBOL(netdev_has_upper_dev);
4255
4256 /**
4257 * netdev_has_any_upper_dev - Check if device is linked to some device
4258 * @dev: device
4259 *
4260 * Find out if a device is linked to an upper device and return true in case
4261 * it is. The caller must hold the RTNL lock.
4262 */
4263 bool netdev_has_any_upper_dev(struct net_device *dev)
4264 {
4265 ASSERT_RTNL();
4266
4267 return !list_empty(&dev->upper_dev_list);
4268 }
4269 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4270
4271 /**
4272 * netdev_master_upper_dev_get - Get master upper device
4273 * @dev: device
4274 *
4275 * Find a master upper device and return pointer to it or NULL in case
4276 * it's not there. The caller must hold the RTNL lock.
4277 */
4278 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4279 {
4280 struct netdev_upper *upper;
4281
4282 ASSERT_RTNL();
4283
4284 if (list_empty(&dev->upper_dev_list))
4285 return NULL;
4286
4287 upper = list_first_entry(&dev->upper_dev_list,
4288 struct netdev_upper, list);
4289 if (likely(upper->master))
4290 return upper->dev;
4291 return NULL;
4292 }
4293 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4294
4295 /**
4296 * netdev_master_upper_dev_get_rcu - Get master upper device
4297 * @dev: device
4298 *
4299 * Find a master upper device and return pointer to it or NULL in case
4300 * it's not there. The caller must hold the RCU read lock.
4301 */
4302 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4303 {
4304 struct netdev_upper *upper;
4305
4306 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4307 struct netdev_upper, list);
4308 if (upper && likely(upper->master))
4309 return upper->dev;
4310 return NULL;
4311 }
4312 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4313
4314 static int __netdev_upper_dev_link(struct net_device *dev,
4315 struct net_device *upper_dev, bool master)
4316 {
4317 struct netdev_upper *upper;
4318
4319 ASSERT_RTNL();
4320
4321 if (dev == upper_dev)
4322 return -EBUSY;
4323
4324 /* To prevent loops, check if dev is not upper device to upper_dev. */
4325 if (__netdev_search_upper_dev(upper_dev, dev))
4326 return -EBUSY;
4327
4328 if (__netdev_find_upper(dev, upper_dev))
4329 return -EEXIST;
4330
4331 if (master && netdev_master_upper_dev_get(dev))
4332 return -EBUSY;
4333
4334 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4335 if (!upper)
4336 return -ENOMEM;
4337
4338 upper->dev = upper_dev;
4339 upper->master = master;
4340 INIT_LIST_HEAD(&upper->search_list);
4341
4342 /* Ensure that master upper link is always the first item in list. */
4343 if (master)
4344 list_add_rcu(&upper->list, &dev->upper_dev_list);
4345 else
4346 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4347 dev_hold(upper_dev);
4348
4349 return 0;
4350 }
4351
4352 /**
4353 * netdev_upper_dev_link - Add a link to the upper device
4354 * @dev: device
4355 * @upper_dev: new upper device
4356 *
4357 * Adds a link to device which is upper to this one. The caller must hold
4358 * the RTNL lock. On a failure a negative errno code is returned.
4359 * On success the reference counts are adjusted and the function
4360 * returns zero.
4361 */
4362 int netdev_upper_dev_link(struct net_device *dev,
4363 struct net_device *upper_dev)
4364 {
4365 return __netdev_upper_dev_link(dev, upper_dev, false);
4366 }
4367 EXPORT_SYMBOL(netdev_upper_dev_link);
4368
4369 /**
4370 * netdev_master_upper_dev_link - Add a master link to the upper device
4371 * @dev: device
4372 * @upper_dev: new upper device
4373 *
4374 * Adds a link to device which is upper to this one. In this case, only
4375 * one master upper device can be linked, although other non-master devices
4376 * might be linked as well. The caller must hold the RTNL lock.
4377 * On a failure a negative errno code is returned. On success the reference
4378 * counts are adjusted and the function returns zero.
4379 */
4380 int netdev_master_upper_dev_link(struct net_device *dev,
4381 struct net_device *upper_dev)
4382 {
4383 return __netdev_upper_dev_link(dev, upper_dev, true);
4384 }
4385 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4386
4387 /**
4388 * netdev_upper_dev_unlink - Removes a link to upper device
4389 * @dev: device
4390 * @upper_dev: new upper device
4391 *
4392 * Removes a link to device which is upper to this one. The caller must hold
4393 * the RTNL lock.
4394 */
4395 void netdev_upper_dev_unlink(struct net_device *dev,
4396 struct net_device *upper_dev)
4397 {
4398 struct netdev_upper *upper;
4399
4400 ASSERT_RTNL();
4401
4402 upper = __netdev_find_upper(dev, upper_dev);
4403 if (!upper)
4404 return;
4405 list_del_rcu(&upper->list);
4406 dev_put(upper_dev);
4407 kfree_rcu(upper, rcu);
4408 }
4409 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4410
4411 static void dev_change_rx_flags(struct net_device *dev, int flags)
4412 {
4413 const struct net_device_ops *ops = dev->netdev_ops;
4414
4415 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4416 ops->ndo_change_rx_flags(dev, flags);
4417 }
4418
4419 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4420 {
4421 unsigned int old_flags = dev->flags;
4422 kuid_t uid;
4423 kgid_t gid;
4424
4425 ASSERT_RTNL();
4426
4427 dev->flags |= IFF_PROMISC;
4428 dev->promiscuity += inc;
4429 if (dev->promiscuity == 0) {
4430 /*
4431 * Avoid overflow.
4432 * If inc causes overflow, untouch promisc and return error.
4433 */
4434 if (inc < 0)
4435 dev->flags &= ~IFF_PROMISC;
4436 else {
4437 dev->promiscuity -= inc;
4438 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4439 dev->name);
4440 return -EOVERFLOW;
4441 }
4442 }
4443 if (dev->flags != old_flags) {
4444 pr_info("device %s %s promiscuous mode\n",
4445 dev->name,
4446 dev->flags & IFF_PROMISC ? "entered" : "left");
4447 if (audit_enabled) {
4448 current_uid_gid(&uid, &gid);
4449 audit_log(current->audit_context, GFP_ATOMIC,
4450 AUDIT_ANOM_PROMISCUOUS,
4451 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4452 dev->name, (dev->flags & IFF_PROMISC),
4453 (old_flags & IFF_PROMISC),
4454 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4455 from_kuid(&init_user_ns, uid),
4456 from_kgid(&init_user_ns, gid),
4457 audit_get_sessionid(current));
4458 }
4459
4460 dev_change_rx_flags(dev, IFF_PROMISC);
4461 }
4462 return 0;
4463 }
4464
4465 /**
4466 * dev_set_promiscuity - update promiscuity count on a device
4467 * @dev: device
4468 * @inc: modifier
4469 *
4470 * Add or remove promiscuity from a device. While the count in the device
4471 * remains above zero the interface remains promiscuous. Once it hits zero
4472 * the device reverts back to normal filtering operation. A negative inc
4473 * value is used to drop promiscuity on the device.
4474 * Return 0 if successful or a negative errno code on error.
4475 */
4476 int dev_set_promiscuity(struct net_device *dev, int inc)
4477 {
4478 unsigned int old_flags = dev->flags;
4479 int err;
4480
4481 err = __dev_set_promiscuity(dev, inc);
4482 if (err < 0)
4483 return err;
4484 if (dev->flags != old_flags)
4485 dev_set_rx_mode(dev);
4486 return err;
4487 }
4488 EXPORT_SYMBOL(dev_set_promiscuity);
4489
4490 /**
4491 * dev_set_allmulti - update allmulti count on a device
4492 * @dev: device
4493 * @inc: modifier
4494 *
4495 * Add or remove reception of all multicast frames to a device. While the
4496 * count in the device remains above zero the interface remains listening
4497 * to all interfaces. Once it hits zero the device reverts back to normal
4498 * filtering operation. A negative @inc value is used to drop the counter
4499 * when releasing a resource needing all multicasts.
4500 * Return 0 if successful or a negative errno code on error.
4501 */
4502
4503 int dev_set_allmulti(struct net_device *dev, int inc)
4504 {
4505 unsigned int old_flags = dev->flags;
4506
4507 ASSERT_RTNL();
4508
4509 dev->flags |= IFF_ALLMULTI;
4510 dev->allmulti += inc;
4511 if (dev->allmulti == 0) {
4512 /*
4513 * Avoid overflow.
4514 * If inc causes overflow, untouch allmulti and return error.
4515 */
4516 if (inc < 0)
4517 dev->flags &= ~IFF_ALLMULTI;
4518 else {
4519 dev->allmulti -= inc;
4520 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4521 dev->name);
4522 return -EOVERFLOW;
4523 }
4524 }
4525 if (dev->flags ^ old_flags) {
4526 dev_change_rx_flags(dev, IFF_ALLMULTI);
4527 dev_set_rx_mode(dev);
4528 }
4529 return 0;
4530 }
4531 EXPORT_SYMBOL(dev_set_allmulti);
4532
4533 /*
4534 * Upload unicast and multicast address lists to device and
4535 * configure RX filtering. When the device doesn't support unicast
4536 * filtering it is put in promiscuous mode while unicast addresses
4537 * are present.
4538 */
4539 void __dev_set_rx_mode(struct net_device *dev)
4540 {
4541 const struct net_device_ops *ops = dev->netdev_ops;
4542
4543 /* dev_open will call this function so the list will stay sane. */
4544 if (!(dev->flags&IFF_UP))
4545 return;
4546
4547 if (!netif_device_present(dev))
4548 return;
4549
4550 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4551 /* Unicast addresses changes may only happen under the rtnl,
4552 * therefore calling __dev_set_promiscuity here is safe.
4553 */
4554 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4555 __dev_set_promiscuity(dev, 1);
4556 dev->uc_promisc = true;
4557 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4558 __dev_set_promiscuity(dev, -1);
4559 dev->uc_promisc = false;
4560 }
4561 }
4562
4563 if (ops->ndo_set_rx_mode)
4564 ops->ndo_set_rx_mode(dev);
4565 }
4566
4567 void dev_set_rx_mode(struct net_device *dev)
4568 {
4569 netif_addr_lock_bh(dev);
4570 __dev_set_rx_mode(dev);
4571 netif_addr_unlock_bh(dev);
4572 }
4573
4574 /**
4575 * dev_get_flags - get flags reported to userspace
4576 * @dev: device
4577 *
4578 * Get the combination of flag bits exported through APIs to userspace.
4579 */
4580 unsigned int dev_get_flags(const struct net_device *dev)
4581 {
4582 unsigned int flags;
4583
4584 flags = (dev->flags & ~(IFF_PROMISC |
4585 IFF_ALLMULTI |
4586 IFF_RUNNING |
4587 IFF_LOWER_UP |
4588 IFF_DORMANT)) |
4589 (dev->gflags & (IFF_PROMISC |
4590 IFF_ALLMULTI));
4591
4592 if (netif_running(dev)) {
4593 if (netif_oper_up(dev))
4594 flags |= IFF_RUNNING;
4595 if (netif_carrier_ok(dev))
4596 flags |= IFF_LOWER_UP;
4597 if (netif_dormant(dev))
4598 flags |= IFF_DORMANT;
4599 }
4600
4601 return flags;
4602 }
4603 EXPORT_SYMBOL(dev_get_flags);
4604
4605 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4606 {
4607 unsigned int old_flags = dev->flags;
4608 int ret;
4609
4610 ASSERT_RTNL();
4611
4612 /*
4613 * Set the flags on our device.
4614 */
4615
4616 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4617 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4618 IFF_AUTOMEDIA)) |
4619 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4620 IFF_ALLMULTI));
4621
4622 /*
4623 * Load in the correct multicast list now the flags have changed.
4624 */
4625
4626 if ((old_flags ^ flags) & IFF_MULTICAST)
4627 dev_change_rx_flags(dev, IFF_MULTICAST);
4628
4629 dev_set_rx_mode(dev);
4630
4631 /*
4632 * Have we downed the interface. We handle IFF_UP ourselves
4633 * according to user attempts to set it, rather than blindly
4634 * setting it.
4635 */
4636
4637 ret = 0;
4638 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4639 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4640
4641 if (!ret)
4642 dev_set_rx_mode(dev);
4643 }
4644
4645 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4646 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4647
4648 dev->gflags ^= IFF_PROMISC;
4649 dev_set_promiscuity(dev, inc);
4650 }
4651
4652 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4653 is important. Some (broken) drivers set IFF_PROMISC, when
4654 IFF_ALLMULTI is requested not asking us and not reporting.
4655 */
4656 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4657 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4658
4659 dev->gflags ^= IFF_ALLMULTI;
4660 dev_set_allmulti(dev, inc);
4661 }
4662
4663 return ret;
4664 }
4665
4666 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4667 {
4668 unsigned int changes = dev->flags ^ old_flags;
4669
4670 if (changes & IFF_UP) {
4671 if (dev->flags & IFF_UP)
4672 call_netdevice_notifiers(NETDEV_UP, dev);
4673 else
4674 call_netdevice_notifiers(NETDEV_DOWN, dev);
4675 }
4676
4677 if (dev->flags & IFF_UP &&
4678 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4679 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4680 }
4681
4682 /**
4683 * dev_change_flags - change device settings
4684 * @dev: device
4685 * @flags: device state flags
4686 *
4687 * Change settings on device based state flags. The flags are
4688 * in the userspace exported format.
4689 */
4690 int dev_change_flags(struct net_device *dev, unsigned int flags)
4691 {
4692 int ret;
4693 unsigned int changes, old_flags = dev->flags;
4694
4695 ret = __dev_change_flags(dev, flags);
4696 if (ret < 0)
4697 return ret;
4698
4699 changes = old_flags ^ dev->flags;
4700 if (changes)
4701 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4702
4703 __dev_notify_flags(dev, old_flags);
4704 return ret;
4705 }
4706 EXPORT_SYMBOL(dev_change_flags);
4707
4708 /**
4709 * dev_set_mtu - Change maximum transfer unit
4710 * @dev: device
4711 * @new_mtu: new transfer unit
4712 *
4713 * Change the maximum transfer size of the network device.
4714 */
4715 int dev_set_mtu(struct net_device *dev, int new_mtu)
4716 {
4717 const struct net_device_ops *ops = dev->netdev_ops;
4718 int err;
4719
4720 if (new_mtu == dev->mtu)
4721 return 0;
4722
4723 /* MTU must be positive. */
4724 if (new_mtu < 0)
4725 return -EINVAL;
4726
4727 if (!netif_device_present(dev))
4728 return -ENODEV;
4729
4730 err = 0;
4731 if (ops->ndo_change_mtu)
4732 err = ops->ndo_change_mtu(dev, new_mtu);
4733 else
4734 dev->mtu = new_mtu;
4735
4736 if (!err)
4737 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4738 return err;
4739 }
4740 EXPORT_SYMBOL(dev_set_mtu);
4741
4742 /**
4743 * dev_set_group - Change group this device belongs to
4744 * @dev: device
4745 * @new_group: group this device should belong to
4746 */
4747 void dev_set_group(struct net_device *dev, int new_group)
4748 {
4749 dev->group = new_group;
4750 }
4751 EXPORT_SYMBOL(dev_set_group);
4752
4753 /**
4754 * dev_set_mac_address - Change Media Access Control Address
4755 * @dev: device
4756 * @sa: new address
4757 *
4758 * Change the hardware (MAC) address of the device
4759 */
4760 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4761 {
4762 const struct net_device_ops *ops = dev->netdev_ops;
4763 int err;
4764
4765 if (!ops->ndo_set_mac_address)
4766 return -EOPNOTSUPP;
4767 if (sa->sa_family != dev->type)
4768 return -EINVAL;
4769 if (!netif_device_present(dev))
4770 return -ENODEV;
4771 err = ops->ndo_set_mac_address(dev, sa);
4772 if (err)
4773 return err;
4774 dev->addr_assign_type = NET_ADDR_SET;
4775 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4776 add_device_randomness(dev->dev_addr, dev->addr_len);
4777 return 0;
4778 }
4779 EXPORT_SYMBOL(dev_set_mac_address);
4780
4781 /**
4782 * dev_change_carrier - Change device carrier
4783 * @dev: device
4784 * @new_carries: new value
4785 *
4786 * Change device carrier
4787 */
4788 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4789 {
4790 const struct net_device_ops *ops = dev->netdev_ops;
4791
4792 if (!ops->ndo_change_carrier)
4793 return -EOPNOTSUPP;
4794 if (!netif_device_present(dev))
4795 return -ENODEV;
4796 return ops->ndo_change_carrier(dev, new_carrier);
4797 }
4798 EXPORT_SYMBOL(dev_change_carrier);
4799
4800 /**
4801 * dev_new_index - allocate an ifindex
4802 * @net: the applicable net namespace
4803 *
4804 * Returns a suitable unique value for a new device interface
4805 * number. The caller must hold the rtnl semaphore or the
4806 * dev_base_lock to be sure it remains unique.
4807 */
4808 static int dev_new_index(struct net *net)
4809 {
4810 int ifindex = net->ifindex;
4811 for (;;) {
4812 if (++ifindex <= 0)
4813 ifindex = 1;
4814 if (!__dev_get_by_index(net, ifindex))
4815 return net->ifindex = ifindex;
4816 }
4817 }
4818
4819 /* Delayed registration/unregisteration */
4820 static LIST_HEAD(net_todo_list);
4821
4822 static void net_set_todo(struct net_device *dev)
4823 {
4824 list_add_tail(&dev->todo_list, &net_todo_list);
4825 }
4826
4827 static void rollback_registered_many(struct list_head *head)
4828 {
4829 struct net_device *dev, *tmp;
4830
4831 BUG_ON(dev_boot_phase);
4832 ASSERT_RTNL();
4833
4834 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4835 /* Some devices call without registering
4836 * for initialization unwind. Remove those
4837 * devices and proceed with the remaining.
4838 */
4839 if (dev->reg_state == NETREG_UNINITIALIZED) {
4840 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4841 dev->name, dev);
4842
4843 WARN_ON(1);
4844 list_del(&dev->unreg_list);
4845 continue;
4846 }
4847 dev->dismantle = true;
4848 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4849 }
4850
4851 /* If device is running, close it first. */
4852 dev_close_many(head);
4853
4854 list_for_each_entry(dev, head, unreg_list) {
4855 /* And unlink it from device chain. */
4856 unlist_netdevice(dev);
4857
4858 dev->reg_state = NETREG_UNREGISTERING;
4859 }
4860
4861 synchronize_net();
4862
4863 list_for_each_entry(dev, head, unreg_list) {
4864 /* Shutdown queueing discipline. */
4865 dev_shutdown(dev);
4866
4867
4868 /* Notify protocols, that we are about to destroy
4869 this device. They should clean all the things.
4870 */
4871 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4872
4873 if (!dev->rtnl_link_ops ||
4874 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4875 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4876
4877 /*
4878 * Flush the unicast and multicast chains
4879 */
4880 dev_uc_flush(dev);
4881 dev_mc_flush(dev);
4882
4883 if (dev->netdev_ops->ndo_uninit)
4884 dev->netdev_ops->ndo_uninit(dev);
4885
4886 /* Notifier chain MUST detach us all upper devices. */
4887 WARN_ON(netdev_has_any_upper_dev(dev));
4888
4889 /* Remove entries from kobject tree */
4890 netdev_unregister_kobject(dev);
4891 #ifdef CONFIG_XPS
4892 /* Remove XPS queueing entries */
4893 netif_reset_xps_queues_gt(dev, 0);
4894 #endif
4895 }
4896
4897 synchronize_net();
4898
4899 list_for_each_entry(dev, head, unreg_list)
4900 dev_put(dev);
4901 }
4902
4903 static void rollback_registered(struct net_device *dev)
4904 {
4905 LIST_HEAD(single);
4906
4907 list_add(&dev->unreg_list, &single);
4908 rollback_registered_many(&single);
4909 list_del(&single);
4910 }
4911
4912 static netdev_features_t netdev_fix_features(struct net_device *dev,
4913 netdev_features_t features)
4914 {
4915 /* Fix illegal checksum combinations */
4916 if ((features & NETIF_F_HW_CSUM) &&
4917 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4918 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4919 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4920 }
4921
4922 /* TSO requires that SG is present as well. */
4923 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4924 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4925 features &= ~NETIF_F_ALL_TSO;
4926 }
4927
4928 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
4929 !(features & NETIF_F_IP_CSUM)) {
4930 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
4931 features &= ~NETIF_F_TSO;
4932 features &= ~NETIF_F_TSO_ECN;
4933 }
4934
4935 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
4936 !(features & NETIF_F_IPV6_CSUM)) {
4937 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
4938 features &= ~NETIF_F_TSO6;
4939 }
4940
4941 /* TSO ECN requires that TSO is present as well. */
4942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4943 features &= ~NETIF_F_TSO_ECN;
4944
4945 /* Software GSO depends on SG. */
4946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4948 features &= ~NETIF_F_GSO;
4949 }
4950
4951 /* UFO needs SG and checksumming */
4952 if (features & NETIF_F_UFO) {
4953 /* maybe split UFO into V4 and V6? */
4954 if (!((features & NETIF_F_GEN_CSUM) ||
4955 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4956 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4957 netdev_dbg(dev,
4958 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4959 features &= ~NETIF_F_UFO;
4960 }
4961
4962 if (!(features & NETIF_F_SG)) {
4963 netdev_dbg(dev,
4964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4965 features &= ~NETIF_F_UFO;
4966 }
4967 }
4968
4969 return features;
4970 }
4971
4972 int __netdev_update_features(struct net_device *dev)
4973 {
4974 netdev_features_t features;
4975 int err = 0;
4976
4977 ASSERT_RTNL();
4978
4979 features = netdev_get_wanted_features(dev);
4980
4981 if (dev->netdev_ops->ndo_fix_features)
4982 features = dev->netdev_ops->ndo_fix_features(dev, features);
4983
4984 /* driver might be less strict about feature dependencies */
4985 features = netdev_fix_features(dev, features);
4986
4987 if (dev->features == features)
4988 return 0;
4989
4990 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4991 &dev->features, &features);
4992
4993 if (dev->netdev_ops->ndo_set_features)
4994 err = dev->netdev_ops->ndo_set_features(dev, features);
4995
4996 if (unlikely(err < 0)) {
4997 netdev_err(dev,
4998 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4999 err, &features, &dev->features);
5000 return -1;
5001 }
5002
5003 if (!err)
5004 dev->features = features;
5005
5006 return 1;
5007 }
5008
5009 /**
5010 * netdev_update_features - recalculate device features
5011 * @dev: the device to check
5012 *
5013 * Recalculate dev->features set and send notifications if it
5014 * has changed. Should be called after driver or hardware dependent
5015 * conditions might have changed that influence the features.
5016 */
5017 void netdev_update_features(struct net_device *dev)
5018 {
5019 if (__netdev_update_features(dev))
5020 netdev_features_change(dev);
5021 }
5022 EXPORT_SYMBOL(netdev_update_features);
5023
5024 /**
5025 * netdev_change_features - recalculate device features
5026 * @dev: the device to check
5027 *
5028 * Recalculate dev->features set and send notifications even
5029 * if they have not changed. Should be called instead of
5030 * netdev_update_features() if also dev->vlan_features might
5031 * have changed to allow the changes to be propagated to stacked
5032 * VLAN devices.
5033 */
5034 void netdev_change_features(struct net_device *dev)
5035 {
5036 __netdev_update_features(dev);
5037 netdev_features_change(dev);
5038 }
5039 EXPORT_SYMBOL(netdev_change_features);
5040
5041 /**
5042 * netif_stacked_transfer_operstate - transfer operstate
5043 * @rootdev: the root or lower level device to transfer state from
5044 * @dev: the device to transfer operstate to
5045 *
5046 * Transfer operational state from root to device. This is normally
5047 * called when a stacking relationship exists between the root
5048 * device and the device(a leaf device).
5049 */
5050 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5051 struct net_device *dev)
5052 {
5053 if (rootdev->operstate == IF_OPER_DORMANT)
5054 netif_dormant_on(dev);
5055 else
5056 netif_dormant_off(dev);
5057
5058 if (netif_carrier_ok(rootdev)) {
5059 if (!netif_carrier_ok(dev))
5060 netif_carrier_on(dev);
5061 } else {
5062 if (netif_carrier_ok(dev))
5063 netif_carrier_off(dev);
5064 }
5065 }
5066 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5067
5068 #ifdef CONFIG_RPS
5069 static int netif_alloc_rx_queues(struct net_device *dev)
5070 {
5071 unsigned int i, count = dev->num_rx_queues;
5072 struct netdev_rx_queue *rx;
5073
5074 BUG_ON(count < 1);
5075
5076 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5077 if (!rx)
5078 return -ENOMEM;
5079
5080 dev->_rx = rx;
5081
5082 for (i = 0; i < count; i++)
5083 rx[i].dev = dev;
5084 return 0;
5085 }
5086 #endif
5087
5088 static void netdev_init_one_queue(struct net_device *dev,
5089 struct netdev_queue *queue, void *_unused)
5090 {
5091 /* Initialize queue lock */
5092 spin_lock_init(&queue->_xmit_lock);
5093 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5094 queue->xmit_lock_owner = -1;
5095 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5096 queue->dev = dev;
5097 #ifdef CONFIG_BQL
5098 dql_init(&queue->dql, HZ);
5099 #endif
5100 }
5101
5102 static int netif_alloc_netdev_queues(struct net_device *dev)
5103 {
5104 unsigned int count = dev->num_tx_queues;
5105 struct netdev_queue *tx;
5106
5107 BUG_ON(count < 1);
5108
5109 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5110 if (!tx)
5111 return -ENOMEM;
5112
5113 dev->_tx = tx;
5114
5115 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5116 spin_lock_init(&dev->tx_global_lock);
5117
5118 return 0;
5119 }
5120
5121 /**
5122 * register_netdevice - register a network device
5123 * @dev: device to register
5124 *
5125 * Take a completed network device structure and add it to the kernel
5126 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5127 * chain. 0 is returned on success. A negative errno code is returned
5128 * on a failure to set up the device, or if the name is a duplicate.
5129 *
5130 * Callers must hold the rtnl semaphore. You may want
5131 * register_netdev() instead of this.
5132 *
5133 * BUGS:
5134 * The locking appears insufficient to guarantee two parallel registers
5135 * will not get the same name.
5136 */
5137
5138 int register_netdevice(struct net_device *dev)
5139 {
5140 int ret;
5141 struct net *net = dev_net(dev);
5142
5143 BUG_ON(dev_boot_phase);
5144 ASSERT_RTNL();
5145
5146 might_sleep();
5147
5148 /* When net_device's are persistent, this will be fatal. */
5149 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5150 BUG_ON(!net);
5151
5152 spin_lock_init(&dev->addr_list_lock);
5153 netdev_set_addr_lockdep_class(dev);
5154
5155 dev->iflink = -1;
5156
5157 ret = dev_get_valid_name(net, dev, dev->name);
5158 if (ret < 0)
5159 goto out;
5160
5161 /* Init, if this function is available */
5162 if (dev->netdev_ops->ndo_init) {
5163 ret = dev->netdev_ops->ndo_init(dev);
5164 if (ret) {
5165 if (ret > 0)
5166 ret = -EIO;
5167 goto out;
5168 }
5169 }
5170
5171 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5172 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5173 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5174 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5175 ret = -EINVAL;
5176 goto err_uninit;
5177 }
5178
5179 ret = -EBUSY;
5180 if (!dev->ifindex)
5181 dev->ifindex = dev_new_index(net);
5182 else if (__dev_get_by_index(net, dev->ifindex))
5183 goto err_uninit;
5184
5185 if (dev->iflink == -1)
5186 dev->iflink = dev->ifindex;
5187
5188 /* Transfer changeable features to wanted_features and enable
5189 * software offloads (GSO and GRO).
5190 */
5191 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5192 dev->features |= NETIF_F_SOFT_FEATURES;
5193 dev->wanted_features = dev->features & dev->hw_features;
5194
5195 /* Turn on no cache copy if HW is doing checksum */
5196 if (!(dev->flags & IFF_LOOPBACK)) {
5197 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5198 if (dev->features & NETIF_F_ALL_CSUM) {
5199 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5200 dev->features |= NETIF_F_NOCACHE_COPY;
5201 }
5202 }
5203
5204 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5205 */
5206 dev->vlan_features |= NETIF_F_HIGHDMA;
5207
5208 /* Make NETIF_F_SG inheritable to tunnel devices.
5209 */
5210 dev->hw_enc_features |= NETIF_F_SG;
5211
5212 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5213 ret = notifier_to_errno(ret);
5214 if (ret)
5215 goto err_uninit;
5216
5217 ret = netdev_register_kobject(dev);
5218 if (ret)
5219 goto err_uninit;
5220 dev->reg_state = NETREG_REGISTERED;
5221
5222 __netdev_update_features(dev);
5223
5224 /*
5225 * Default initial state at registry is that the
5226 * device is present.
5227 */
5228
5229 set_bit(__LINK_STATE_PRESENT, &dev->state);
5230
5231 linkwatch_init_dev(dev);
5232
5233 dev_init_scheduler(dev);
5234 dev_hold(dev);
5235 list_netdevice(dev);
5236 add_device_randomness(dev->dev_addr, dev->addr_len);
5237
5238 /* If the device has permanent device address, driver should
5239 * set dev_addr and also addr_assign_type should be set to
5240 * NET_ADDR_PERM (default value).
5241 */
5242 if (dev->addr_assign_type == NET_ADDR_PERM)
5243 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5244
5245 /* Notify protocols, that a new device appeared. */
5246 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5247 ret = notifier_to_errno(ret);
5248 if (ret) {
5249 rollback_registered(dev);
5250 dev->reg_state = NETREG_UNREGISTERED;
5251 }
5252 /*
5253 * Prevent userspace races by waiting until the network
5254 * device is fully setup before sending notifications.
5255 */
5256 if (!dev->rtnl_link_ops ||
5257 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5258 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5259
5260 out:
5261 return ret;
5262
5263 err_uninit:
5264 if (dev->netdev_ops->ndo_uninit)
5265 dev->netdev_ops->ndo_uninit(dev);
5266 goto out;
5267 }
5268 EXPORT_SYMBOL(register_netdevice);
5269
5270 /**
5271 * init_dummy_netdev - init a dummy network device for NAPI
5272 * @dev: device to init
5273 *
5274 * This takes a network device structure and initialize the minimum
5275 * amount of fields so it can be used to schedule NAPI polls without
5276 * registering a full blown interface. This is to be used by drivers
5277 * that need to tie several hardware interfaces to a single NAPI
5278 * poll scheduler due to HW limitations.
5279 */
5280 int init_dummy_netdev(struct net_device *dev)
5281 {
5282 /* Clear everything. Note we don't initialize spinlocks
5283 * are they aren't supposed to be taken by any of the
5284 * NAPI code and this dummy netdev is supposed to be
5285 * only ever used for NAPI polls
5286 */
5287 memset(dev, 0, sizeof(struct net_device));
5288
5289 /* make sure we BUG if trying to hit standard
5290 * register/unregister code path
5291 */
5292 dev->reg_state = NETREG_DUMMY;
5293
5294 /* NAPI wants this */
5295 INIT_LIST_HEAD(&dev->napi_list);
5296
5297 /* a dummy interface is started by default */
5298 set_bit(__LINK_STATE_PRESENT, &dev->state);
5299 set_bit(__LINK_STATE_START, &dev->state);
5300
5301 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5302 * because users of this 'device' dont need to change
5303 * its refcount.
5304 */
5305
5306 return 0;
5307 }
5308 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5309
5310
5311 /**
5312 * register_netdev - register a network device
5313 * @dev: device to register
5314 *
5315 * Take a completed network device structure and add it to the kernel
5316 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5317 * chain. 0 is returned on success. A negative errno code is returned
5318 * on a failure to set up the device, or if the name is a duplicate.
5319 *
5320 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5321 * and expands the device name if you passed a format string to
5322 * alloc_netdev.
5323 */
5324 int register_netdev(struct net_device *dev)
5325 {
5326 int err;
5327
5328 rtnl_lock();
5329 err = register_netdevice(dev);
5330 rtnl_unlock();
5331 return err;
5332 }
5333 EXPORT_SYMBOL(register_netdev);
5334
5335 int netdev_refcnt_read(const struct net_device *dev)
5336 {
5337 int i, refcnt = 0;
5338
5339 for_each_possible_cpu(i)
5340 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5341 return refcnt;
5342 }
5343 EXPORT_SYMBOL(netdev_refcnt_read);
5344
5345 /**
5346 * netdev_wait_allrefs - wait until all references are gone.
5347 * @dev: target net_device
5348 *
5349 * This is called when unregistering network devices.
5350 *
5351 * Any protocol or device that holds a reference should register
5352 * for netdevice notification, and cleanup and put back the
5353 * reference if they receive an UNREGISTER event.
5354 * We can get stuck here if buggy protocols don't correctly
5355 * call dev_put.
5356 */
5357 static void netdev_wait_allrefs(struct net_device *dev)
5358 {
5359 unsigned long rebroadcast_time, warning_time;
5360 int refcnt;
5361
5362 linkwatch_forget_dev(dev);
5363
5364 rebroadcast_time = warning_time = jiffies;
5365 refcnt = netdev_refcnt_read(dev);
5366
5367 while (refcnt != 0) {
5368 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5369 rtnl_lock();
5370
5371 /* Rebroadcast unregister notification */
5372 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5373
5374 __rtnl_unlock();
5375 rcu_barrier();
5376 rtnl_lock();
5377
5378 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5379 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5380 &dev->state)) {
5381 /* We must not have linkwatch events
5382 * pending on unregister. If this
5383 * happens, we simply run the queue
5384 * unscheduled, resulting in a noop
5385 * for this device.
5386 */
5387 linkwatch_run_queue();
5388 }
5389
5390 __rtnl_unlock();
5391
5392 rebroadcast_time = jiffies;
5393 }
5394
5395 msleep(250);
5396
5397 refcnt = netdev_refcnt_read(dev);
5398
5399 if (time_after(jiffies, warning_time + 10 * HZ)) {
5400 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5401 dev->name, refcnt);
5402 warning_time = jiffies;
5403 }
5404 }
5405 }
5406
5407 /* The sequence is:
5408 *
5409 * rtnl_lock();
5410 * ...
5411 * register_netdevice(x1);
5412 * register_netdevice(x2);
5413 * ...
5414 * unregister_netdevice(y1);
5415 * unregister_netdevice(y2);
5416 * ...
5417 * rtnl_unlock();
5418 * free_netdev(y1);
5419 * free_netdev(y2);
5420 *
5421 * We are invoked by rtnl_unlock().
5422 * This allows us to deal with problems:
5423 * 1) We can delete sysfs objects which invoke hotplug
5424 * without deadlocking with linkwatch via keventd.
5425 * 2) Since we run with the RTNL semaphore not held, we can sleep
5426 * safely in order to wait for the netdev refcnt to drop to zero.
5427 *
5428 * We must not return until all unregister events added during
5429 * the interval the lock was held have been completed.
5430 */
5431 void netdev_run_todo(void)
5432 {
5433 struct list_head list;
5434
5435 /* Snapshot list, allow later requests */
5436 list_replace_init(&net_todo_list, &list);
5437
5438 __rtnl_unlock();
5439
5440
5441 /* Wait for rcu callbacks to finish before next phase */
5442 if (!list_empty(&list))
5443 rcu_barrier();
5444
5445 while (!list_empty(&list)) {
5446 struct net_device *dev
5447 = list_first_entry(&list, struct net_device, todo_list);
5448 list_del(&dev->todo_list);
5449
5450 rtnl_lock();
5451 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5452 __rtnl_unlock();
5453
5454 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5455 pr_err("network todo '%s' but state %d\n",
5456 dev->name, dev->reg_state);
5457 dump_stack();
5458 continue;
5459 }
5460
5461 dev->reg_state = NETREG_UNREGISTERED;
5462
5463 on_each_cpu(flush_backlog, dev, 1);
5464
5465 netdev_wait_allrefs(dev);
5466
5467 /* paranoia */
5468 BUG_ON(netdev_refcnt_read(dev));
5469 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5470 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5471 WARN_ON(dev->dn_ptr);
5472
5473 if (dev->destructor)
5474 dev->destructor(dev);
5475
5476 /* Free network device */
5477 kobject_put(&dev->dev.kobj);
5478 }
5479 }
5480
5481 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5482 * fields in the same order, with only the type differing.
5483 */
5484 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5485 const struct net_device_stats *netdev_stats)
5486 {
5487 #if BITS_PER_LONG == 64
5488 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5489 memcpy(stats64, netdev_stats, sizeof(*stats64));
5490 #else
5491 size_t i, n = sizeof(*stats64) / sizeof(u64);
5492 const unsigned long *src = (const unsigned long *)netdev_stats;
5493 u64 *dst = (u64 *)stats64;
5494
5495 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5496 sizeof(*stats64) / sizeof(u64));
5497 for (i = 0; i < n; i++)
5498 dst[i] = src[i];
5499 #endif
5500 }
5501 EXPORT_SYMBOL(netdev_stats_to_stats64);
5502
5503 /**
5504 * dev_get_stats - get network device statistics
5505 * @dev: device to get statistics from
5506 * @storage: place to store stats
5507 *
5508 * Get network statistics from device. Return @storage.
5509 * The device driver may provide its own method by setting
5510 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5511 * otherwise the internal statistics structure is used.
5512 */
5513 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5514 struct rtnl_link_stats64 *storage)
5515 {
5516 const struct net_device_ops *ops = dev->netdev_ops;
5517
5518 if (ops->ndo_get_stats64) {
5519 memset(storage, 0, sizeof(*storage));
5520 ops->ndo_get_stats64(dev, storage);
5521 } else if (ops->ndo_get_stats) {
5522 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5523 } else {
5524 netdev_stats_to_stats64(storage, &dev->stats);
5525 }
5526 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5527 return storage;
5528 }
5529 EXPORT_SYMBOL(dev_get_stats);
5530
5531 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5532 {
5533 struct netdev_queue *queue = dev_ingress_queue(dev);
5534
5535 #ifdef CONFIG_NET_CLS_ACT
5536 if (queue)
5537 return queue;
5538 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5539 if (!queue)
5540 return NULL;
5541 netdev_init_one_queue(dev, queue, NULL);
5542 queue->qdisc = &noop_qdisc;
5543 queue->qdisc_sleeping = &noop_qdisc;
5544 rcu_assign_pointer(dev->ingress_queue, queue);
5545 #endif
5546 return queue;
5547 }
5548
5549 static const struct ethtool_ops default_ethtool_ops;
5550
5551 void netdev_set_default_ethtool_ops(struct net_device *dev,
5552 const struct ethtool_ops *ops)
5553 {
5554 if (dev->ethtool_ops == &default_ethtool_ops)
5555 dev->ethtool_ops = ops;
5556 }
5557 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5558
5559 /**
5560 * alloc_netdev_mqs - allocate network device
5561 * @sizeof_priv: size of private data to allocate space for
5562 * @name: device name format string
5563 * @setup: callback to initialize device
5564 * @txqs: the number of TX subqueues to allocate
5565 * @rxqs: the number of RX subqueues to allocate
5566 *
5567 * Allocates a struct net_device with private data area for driver use
5568 * and performs basic initialization. Also allocates subquue structs
5569 * for each queue on the device.
5570 */
5571 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5572 void (*setup)(struct net_device *),
5573 unsigned int txqs, unsigned int rxqs)
5574 {
5575 struct net_device *dev;
5576 size_t alloc_size;
5577 struct net_device *p;
5578
5579 BUG_ON(strlen(name) >= sizeof(dev->name));
5580
5581 if (txqs < 1) {
5582 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5583 return NULL;
5584 }
5585
5586 #ifdef CONFIG_RPS
5587 if (rxqs < 1) {
5588 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5589 return NULL;
5590 }
5591 #endif
5592
5593 alloc_size = sizeof(struct net_device);
5594 if (sizeof_priv) {
5595 /* ensure 32-byte alignment of private area */
5596 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5597 alloc_size += sizeof_priv;
5598 }
5599 /* ensure 32-byte alignment of whole construct */
5600 alloc_size += NETDEV_ALIGN - 1;
5601
5602 p = kzalloc(alloc_size, GFP_KERNEL);
5603 if (!p)
5604 return NULL;
5605
5606 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5607 dev->padded = (char *)dev - (char *)p;
5608
5609 dev->pcpu_refcnt = alloc_percpu(int);
5610 if (!dev->pcpu_refcnt)
5611 goto free_p;
5612
5613 if (dev_addr_init(dev))
5614 goto free_pcpu;
5615
5616 dev_mc_init(dev);
5617 dev_uc_init(dev);
5618
5619 dev_net_set(dev, &init_net);
5620
5621 dev->gso_max_size = GSO_MAX_SIZE;
5622 dev->gso_max_segs = GSO_MAX_SEGS;
5623
5624 INIT_LIST_HEAD(&dev->napi_list);
5625 INIT_LIST_HEAD(&dev->unreg_list);
5626 INIT_LIST_HEAD(&dev->link_watch_list);
5627 INIT_LIST_HEAD(&dev->upper_dev_list);
5628 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5629 setup(dev);
5630
5631 dev->num_tx_queues = txqs;
5632 dev->real_num_tx_queues = txqs;
5633 if (netif_alloc_netdev_queues(dev))
5634 goto free_all;
5635
5636 #ifdef CONFIG_RPS
5637 dev->num_rx_queues = rxqs;
5638 dev->real_num_rx_queues = rxqs;
5639 if (netif_alloc_rx_queues(dev))
5640 goto free_all;
5641 #endif
5642
5643 strcpy(dev->name, name);
5644 dev->group = INIT_NETDEV_GROUP;
5645 if (!dev->ethtool_ops)
5646 dev->ethtool_ops = &default_ethtool_ops;
5647 return dev;
5648
5649 free_all:
5650 free_netdev(dev);
5651 return NULL;
5652
5653 free_pcpu:
5654 free_percpu(dev->pcpu_refcnt);
5655 kfree(dev->_tx);
5656 #ifdef CONFIG_RPS
5657 kfree(dev->_rx);
5658 #endif
5659
5660 free_p:
5661 kfree(p);
5662 return NULL;
5663 }
5664 EXPORT_SYMBOL(alloc_netdev_mqs);
5665
5666 /**
5667 * free_netdev - free network device
5668 * @dev: device
5669 *
5670 * This function does the last stage of destroying an allocated device
5671 * interface. The reference to the device object is released.
5672 * If this is the last reference then it will be freed.
5673 */
5674 void free_netdev(struct net_device *dev)
5675 {
5676 struct napi_struct *p, *n;
5677
5678 release_net(dev_net(dev));
5679
5680 kfree(dev->_tx);
5681 #ifdef CONFIG_RPS
5682 kfree(dev->_rx);
5683 #endif
5684
5685 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5686
5687 /* Flush device addresses */
5688 dev_addr_flush(dev);
5689
5690 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5691 netif_napi_del(p);
5692
5693 free_percpu(dev->pcpu_refcnt);
5694 dev->pcpu_refcnt = NULL;
5695
5696 /* Compatibility with error handling in drivers */
5697 if (dev->reg_state == NETREG_UNINITIALIZED) {
5698 kfree((char *)dev - dev->padded);
5699 return;
5700 }
5701
5702 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5703 dev->reg_state = NETREG_RELEASED;
5704
5705 /* will free via device release */
5706 put_device(&dev->dev);
5707 }
5708 EXPORT_SYMBOL(free_netdev);
5709
5710 /**
5711 * synchronize_net - Synchronize with packet receive processing
5712 *
5713 * Wait for packets currently being received to be done.
5714 * Does not block later packets from starting.
5715 */
5716 void synchronize_net(void)
5717 {
5718 might_sleep();
5719 if (rtnl_is_locked())
5720 synchronize_rcu_expedited();
5721 else
5722 synchronize_rcu();
5723 }
5724 EXPORT_SYMBOL(synchronize_net);
5725
5726 /**
5727 * unregister_netdevice_queue - remove device from the kernel
5728 * @dev: device
5729 * @head: list
5730 *
5731 * This function shuts down a device interface and removes it
5732 * from the kernel tables.
5733 * If head not NULL, device is queued to be unregistered later.
5734 *
5735 * Callers must hold the rtnl semaphore. You may want
5736 * unregister_netdev() instead of this.
5737 */
5738
5739 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5740 {
5741 ASSERT_RTNL();
5742
5743 if (head) {
5744 list_move_tail(&dev->unreg_list, head);
5745 } else {
5746 rollback_registered(dev);
5747 /* Finish processing unregister after unlock */
5748 net_set_todo(dev);
5749 }
5750 }
5751 EXPORT_SYMBOL(unregister_netdevice_queue);
5752
5753 /**
5754 * unregister_netdevice_many - unregister many devices
5755 * @head: list of devices
5756 */
5757 void unregister_netdevice_many(struct list_head *head)
5758 {
5759 struct net_device *dev;
5760
5761 if (!list_empty(head)) {
5762 rollback_registered_many(head);
5763 list_for_each_entry(dev, head, unreg_list)
5764 net_set_todo(dev);
5765 }
5766 }
5767 EXPORT_SYMBOL(unregister_netdevice_many);
5768
5769 /**
5770 * unregister_netdev - remove device from the kernel
5771 * @dev: device
5772 *
5773 * This function shuts down a device interface and removes it
5774 * from the kernel tables.
5775 *
5776 * This is just a wrapper for unregister_netdevice that takes
5777 * the rtnl semaphore. In general you want to use this and not
5778 * unregister_netdevice.
5779 */
5780 void unregister_netdev(struct net_device *dev)
5781 {
5782 rtnl_lock();
5783 unregister_netdevice(dev);
5784 rtnl_unlock();
5785 }
5786 EXPORT_SYMBOL(unregister_netdev);
5787
5788 /**
5789 * dev_change_net_namespace - move device to different nethost namespace
5790 * @dev: device
5791 * @net: network namespace
5792 * @pat: If not NULL name pattern to try if the current device name
5793 * is already taken in the destination network namespace.
5794 *
5795 * This function shuts down a device interface and moves it
5796 * to a new network namespace. On success 0 is returned, on
5797 * a failure a netagive errno code is returned.
5798 *
5799 * Callers must hold the rtnl semaphore.
5800 */
5801
5802 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5803 {
5804 int err;
5805
5806 ASSERT_RTNL();
5807
5808 /* Don't allow namespace local devices to be moved. */
5809 err = -EINVAL;
5810 if (dev->features & NETIF_F_NETNS_LOCAL)
5811 goto out;
5812
5813 /* Ensure the device has been registrered */
5814 if (dev->reg_state != NETREG_REGISTERED)
5815 goto out;
5816
5817 /* Get out if there is nothing todo */
5818 err = 0;
5819 if (net_eq(dev_net(dev), net))
5820 goto out;
5821
5822 /* Pick the destination device name, and ensure
5823 * we can use it in the destination network namespace.
5824 */
5825 err = -EEXIST;
5826 if (__dev_get_by_name(net, dev->name)) {
5827 /* We get here if we can't use the current device name */
5828 if (!pat)
5829 goto out;
5830 if (dev_get_valid_name(net, dev, pat) < 0)
5831 goto out;
5832 }
5833
5834 /*
5835 * And now a mini version of register_netdevice unregister_netdevice.
5836 */
5837
5838 /* If device is running close it first. */
5839 dev_close(dev);
5840
5841 /* And unlink it from device chain */
5842 err = -ENODEV;
5843 unlist_netdevice(dev);
5844
5845 synchronize_net();
5846
5847 /* Shutdown queueing discipline. */
5848 dev_shutdown(dev);
5849
5850 /* Notify protocols, that we are about to destroy
5851 this device. They should clean all the things.
5852
5853 Note that dev->reg_state stays at NETREG_REGISTERED.
5854 This is wanted because this way 8021q and macvlan know
5855 the device is just moving and can keep their slaves up.
5856 */
5857 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5858 rcu_barrier();
5859 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5860 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5861
5862 /*
5863 * Flush the unicast and multicast chains
5864 */
5865 dev_uc_flush(dev);
5866 dev_mc_flush(dev);
5867
5868 /* Send a netdev-removed uevent to the old namespace */
5869 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5870
5871 /* Actually switch the network namespace */
5872 dev_net_set(dev, net);
5873
5874 /* If there is an ifindex conflict assign a new one */
5875 if (__dev_get_by_index(net, dev->ifindex)) {
5876 int iflink = (dev->iflink == dev->ifindex);
5877 dev->ifindex = dev_new_index(net);
5878 if (iflink)
5879 dev->iflink = dev->ifindex;
5880 }
5881
5882 /* Send a netdev-add uevent to the new namespace */
5883 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5884
5885 /* Fixup kobjects */
5886 err = device_rename(&dev->dev, dev->name);
5887 WARN_ON(err);
5888
5889 /* Add the device back in the hashes */
5890 list_netdevice(dev);
5891
5892 /* Notify protocols, that a new device appeared. */
5893 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5894
5895 /*
5896 * Prevent userspace races by waiting until the network
5897 * device is fully setup before sending notifications.
5898 */
5899 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5900
5901 synchronize_net();
5902 err = 0;
5903 out:
5904 return err;
5905 }
5906 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5907
5908 static int dev_cpu_callback(struct notifier_block *nfb,
5909 unsigned long action,
5910 void *ocpu)
5911 {
5912 struct sk_buff **list_skb;
5913 struct sk_buff *skb;
5914 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5915 struct softnet_data *sd, *oldsd;
5916
5917 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5918 return NOTIFY_OK;
5919
5920 local_irq_disable();
5921 cpu = smp_processor_id();
5922 sd = &per_cpu(softnet_data, cpu);
5923 oldsd = &per_cpu(softnet_data, oldcpu);
5924
5925 /* Find end of our completion_queue. */
5926 list_skb = &sd->completion_queue;
5927 while (*list_skb)
5928 list_skb = &(*list_skb)->next;
5929 /* Append completion queue from offline CPU. */
5930 *list_skb = oldsd->completion_queue;
5931 oldsd->completion_queue = NULL;
5932
5933 /* Append output queue from offline CPU. */
5934 if (oldsd->output_queue) {
5935 *sd->output_queue_tailp = oldsd->output_queue;
5936 sd->output_queue_tailp = oldsd->output_queue_tailp;
5937 oldsd->output_queue = NULL;
5938 oldsd->output_queue_tailp = &oldsd->output_queue;
5939 }
5940 /* Append NAPI poll list from offline CPU. */
5941 if (!list_empty(&oldsd->poll_list)) {
5942 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5943 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5944 }
5945
5946 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5947 local_irq_enable();
5948
5949 /* Process offline CPU's input_pkt_queue */
5950 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5951 netif_rx(skb);
5952 input_queue_head_incr(oldsd);
5953 }
5954 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5955 netif_rx(skb);
5956 input_queue_head_incr(oldsd);
5957 }
5958
5959 return NOTIFY_OK;
5960 }
5961
5962
5963 /**
5964 * netdev_increment_features - increment feature set by one
5965 * @all: current feature set
5966 * @one: new feature set
5967 * @mask: mask feature set
5968 *
5969 * Computes a new feature set after adding a device with feature set
5970 * @one to the master device with current feature set @all. Will not
5971 * enable anything that is off in @mask. Returns the new feature set.
5972 */
5973 netdev_features_t netdev_increment_features(netdev_features_t all,
5974 netdev_features_t one, netdev_features_t mask)
5975 {
5976 if (mask & NETIF_F_GEN_CSUM)
5977 mask |= NETIF_F_ALL_CSUM;
5978 mask |= NETIF_F_VLAN_CHALLENGED;
5979
5980 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5981 all &= one | ~NETIF_F_ALL_FOR_ALL;
5982
5983 /* If one device supports hw checksumming, set for all. */
5984 if (all & NETIF_F_GEN_CSUM)
5985 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5986
5987 return all;
5988 }
5989 EXPORT_SYMBOL(netdev_increment_features);
5990
5991 static struct hlist_head *netdev_create_hash(void)
5992 {
5993 int i;
5994 struct hlist_head *hash;
5995
5996 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5997 if (hash != NULL)
5998 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5999 INIT_HLIST_HEAD(&hash[i]);
6000
6001 return hash;
6002 }
6003
6004 /* Initialize per network namespace state */
6005 static int __net_init netdev_init(struct net *net)
6006 {
6007 if (net != &init_net)
6008 INIT_LIST_HEAD(&net->dev_base_head);
6009
6010 net->dev_name_head = netdev_create_hash();
6011 if (net->dev_name_head == NULL)
6012 goto err_name;
6013
6014 net->dev_index_head = netdev_create_hash();
6015 if (net->dev_index_head == NULL)
6016 goto err_idx;
6017
6018 return 0;
6019
6020 err_idx:
6021 kfree(net->dev_name_head);
6022 err_name:
6023 return -ENOMEM;
6024 }
6025
6026 /**
6027 * netdev_drivername - network driver for the device
6028 * @dev: network device
6029 *
6030 * Determine network driver for device.
6031 */
6032 const char *netdev_drivername(const struct net_device *dev)
6033 {
6034 const struct device_driver *driver;
6035 const struct device *parent;
6036 const char *empty = "";
6037
6038 parent = dev->dev.parent;
6039 if (!parent)
6040 return empty;
6041
6042 driver = parent->driver;
6043 if (driver && driver->name)
6044 return driver->name;
6045 return empty;
6046 }
6047
6048 static int __netdev_printk(const char *level, const struct net_device *dev,
6049 struct va_format *vaf)
6050 {
6051 int r;
6052
6053 if (dev && dev->dev.parent) {
6054 r = dev_printk_emit(level[1] - '0',
6055 dev->dev.parent,
6056 "%s %s %s: %pV",
6057 dev_driver_string(dev->dev.parent),
6058 dev_name(dev->dev.parent),
6059 netdev_name(dev), vaf);
6060 } else if (dev) {
6061 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6062 } else {
6063 r = printk("%s(NULL net_device): %pV", level, vaf);
6064 }
6065
6066 return r;
6067 }
6068
6069 int netdev_printk(const char *level, const struct net_device *dev,
6070 const char *format, ...)
6071 {
6072 struct va_format vaf;
6073 va_list args;
6074 int r;
6075
6076 va_start(args, format);
6077
6078 vaf.fmt = format;
6079 vaf.va = &args;
6080
6081 r = __netdev_printk(level, dev, &vaf);
6082
6083 va_end(args);
6084
6085 return r;
6086 }
6087 EXPORT_SYMBOL(netdev_printk);
6088
6089 #define define_netdev_printk_level(func, level) \
6090 int func(const struct net_device *dev, const char *fmt, ...) \
6091 { \
6092 int r; \
6093 struct va_format vaf; \
6094 va_list args; \
6095 \
6096 va_start(args, fmt); \
6097 \
6098 vaf.fmt = fmt; \
6099 vaf.va = &args; \
6100 \
6101 r = __netdev_printk(level, dev, &vaf); \
6102 \
6103 va_end(args); \
6104 \
6105 return r; \
6106 } \
6107 EXPORT_SYMBOL(func);
6108
6109 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6110 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6111 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6112 define_netdev_printk_level(netdev_err, KERN_ERR);
6113 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6114 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6115 define_netdev_printk_level(netdev_info, KERN_INFO);
6116
6117 static void __net_exit netdev_exit(struct net *net)
6118 {
6119 kfree(net->dev_name_head);
6120 kfree(net->dev_index_head);
6121 }
6122
6123 static struct pernet_operations __net_initdata netdev_net_ops = {
6124 .init = netdev_init,
6125 .exit = netdev_exit,
6126 };
6127
6128 static void __net_exit default_device_exit(struct net *net)
6129 {
6130 struct net_device *dev, *aux;
6131 /*
6132 * Push all migratable network devices back to the
6133 * initial network namespace
6134 */
6135 rtnl_lock();
6136 for_each_netdev_safe(net, dev, aux) {
6137 int err;
6138 char fb_name[IFNAMSIZ];
6139
6140 /* Ignore unmoveable devices (i.e. loopback) */
6141 if (dev->features & NETIF_F_NETNS_LOCAL)
6142 continue;
6143
6144 /* Leave virtual devices for the generic cleanup */
6145 if (dev->rtnl_link_ops)
6146 continue;
6147
6148 /* Push remaining network devices to init_net */
6149 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6150 err = dev_change_net_namespace(dev, &init_net, fb_name);
6151 if (err) {
6152 pr_emerg("%s: failed to move %s to init_net: %d\n",
6153 __func__, dev->name, err);
6154 BUG();
6155 }
6156 }
6157 rtnl_unlock();
6158 }
6159
6160 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6161 {
6162 /* At exit all network devices most be removed from a network
6163 * namespace. Do this in the reverse order of registration.
6164 * Do this across as many network namespaces as possible to
6165 * improve batching efficiency.
6166 */
6167 struct net_device *dev;
6168 struct net *net;
6169 LIST_HEAD(dev_kill_list);
6170
6171 rtnl_lock();
6172 list_for_each_entry(net, net_list, exit_list) {
6173 for_each_netdev_reverse(net, dev) {
6174 if (dev->rtnl_link_ops)
6175 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6176 else
6177 unregister_netdevice_queue(dev, &dev_kill_list);
6178 }
6179 }
6180 unregister_netdevice_many(&dev_kill_list);
6181 list_del(&dev_kill_list);
6182 rtnl_unlock();
6183 }
6184
6185 static struct pernet_operations __net_initdata default_device_ops = {
6186 .exit = default_device_exit,
6187 .exit_batch = default_device_exit_batch,
6188 };
6189
6190 /*
6191 * Initialize the DEV module. At boot time this walks the device list and
6192 * unhooks any devices that fail to initialise (normally hardware not
6193 * present) and leaves us with a valid list of present and active devices.
6194 *
6195 */
6196
6197 /*
6198 * This is called single threaded during boot, so no need
6199 * to take the rtnl semaphore.
6200 */
6201 static int __init net_dev_init(void)
6202 {
6203 int i, rc = -ENOMEM;
6204
6205 BUG_ON(!dev_boot_phase);
6206
6207 if (dev_proc_init())
6208 goto out;
6209
6210 if (netdev_kobject_init())
6211 goto out;
6212
6213 INIT_LIST_HEAD(&ptype_all);
6214 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6215 INIT_LIST_HEAD(&ptype_base[i]);
6216
6217 INIT_LIST_HEAD(&offload_base);
6218
6219 if (register_pernet_subsys(&netdev_net_ops))
6220 goto out;
6221
6222 /*
6223 * Initialise the packet receive queues.
6224 */
6225
6226 for_each_possible_cpu(i) {
6227 struct softnet_data *sd = &per_cpu(softnet_data, i);
6228
6229 memset(sd, 0, sizeof(*sd));
6230 skb_queue_head_init(&sd->input_pkt_queue);
6231 skb_queue_head_init(&sd->process_queue);
6232 sd->completion_queue = NULL;
6233 INIT_LIST_HEAD(&sd->poll_list);
6234 sd->output_queue = NULL;
6235 sd->output_queue_tailp = &sd->output_queue;
6236 #ifdef CONFIG_RPS
6237 sd->csd.func = rps_trigger_softirq;
6238 sd->csd.info = sd;
6239 sd->csd.flags = 0;
6240 sd->cpu = i;
6241 #endif
6242
6243 sd->backlog.poll = process_backlog;
6244 sd->backlog.weight = weight_p;
6245 sd->backlog.gro_list = NULL;
6246 sd->backlog.gro_count = 0;
6247 }
6248
6249 dev_boot_phase = 0;
6250
6251 /* The loopback device is special if any other network devices
6252 * is present in a network namespace the loopback device must
6253 * be present. Since we now dynamically allocate and free the
6254 * loopback device ensure this invariant is maintained by
6255 * keeping the loopback device as the first device on the
6256 * list of network devices. Ensuring the loopback devices
6257 * is the first device that appears and the last network device
6258 * that disappears.
6259 */
6260 if (register_pernet_device(&loopback_net_ops))
6261 goto out;
6262
6263 if (register_pernet_device(&default_device_ops))
6264 goto out;
6265
6266 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6267 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6268
6269 hotcpu_notifier(dev_cpu_callback, 0);
6270 dst_init();
6271 rc = 0;
6272 out:
6273 return rc;
6274 }
6275
6276 subsys_initcall(net_dev_init);
This page took 0.148075 seconds and 6 git commands to generate.