netdev: Move next_sched into struct netdev_queue.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124
125 #include "net-sysfs.h"
126
127 /*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155 #define PTYPE_HASH_SIZE (16)
156 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 static struct list_head ptype_all __read_mostly; /* Taps */
161
162 #ifdef CONFIG_NET_DMA
163 struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168 };
169
170 static enum dma_state_client
171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174 static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178 };
179 #endif
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201
202 EXPORT_SYMBOL(dev_base_lock);
203
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
220 {
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231 }
232
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
235 {
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244 }
245
246 /*
247 * Our notifier list
248 */
249
250 static RAW_NOTIFIER_HEAD(netdev_chain);
251
252 /*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259 #ifdef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320 #else
321 static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 }
325 #endif
326
327 /*******************************************************************************
328
329 Protocol management and registration routines
330
331 *******************************************************************************/
332
333 /*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349 /**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362 void dev_add_pack(struct packet_type *pt)
363 {
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374 }
375
376 /**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389 void __dev_remove_pack(struct packet_type *pt)
390 {
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409 out:
410 spin_unlock_bh(&ptype_lock);
411 }
412 /**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424 void dev_remove_pack(struct packet_type *pt)
425 {
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429 }
430
431 /******************************************************************************
432
433 Device Boot-time Settings Routines
434
435 *******************************************************************************/
436
437 /* Boot time configuration table */
438 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440 /**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449 static int netdev_boot_setup_add(char *name, struct ifmap *map)
450 {
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strlcpy(s[i].name, name, IFNAMSIZ);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 }
466
467 /**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476 int netdev_boot_setup_check(struct net_device *dev)
477 {
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strcmp(dev->name, s[i].name)) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492 }
493
494
495 /**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505 unsigned long netdev_boot_base(const char *prefix, int unit)
506 {
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524 }
525
526 /*
527 * Saves at boot time configured settings for any netdevice.
528 */
529 int __init netdev_boot_setup(char *str)
530 {
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551 }
552
553 __setup("netdev=", netdev_boot_setup);
554
555 /*******************************************************************************
556
557 Device Interface Subroutines
558
559 *******************************************************************************/
560
561 /**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573 struct net_device *__dev_get_by_name(struct net *net, const char *name)
574 {
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584 }
585
586 /**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598 struct net_device *dev_get_by_name(struct net *net, const char *name)
599 {
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608 }
609
610 /**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657 }
658
659 /**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675 {
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(dev_getbyhwaddr);
689
690 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691 {
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700 }
701
702 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705 {
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714 }
715
716 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718 /**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731 {
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745 }
746
747 /**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755 int dev_valid_name(const char *name)
756 {
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770 }
771
772 /**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 {
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835 }
836
837 /**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851 int dev_alloc_name(struct net_device *dev, const char *name)
852 {
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863 }
864
865
866 /**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874 int dev_change_name(struct net_device *dev, char *newname)
875 {
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907 rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935 }
936
937 /**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943 void netdev_features_change(struct net_device *dev)
944 {
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946 }
947 EXPORT_SYMBOL(netdev_features_change);
948
949 /**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957 void netdev_state_change(struct net_device *dev)
958 {
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963 }
964
965 void netdev_bonding_change(struct net_device *dev)
966 {
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968 }
969 EXPORT_SYMBOL(netdev_bonding_change);
970
971 /**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981 void dev_load(struct net *net, const char *name)
982 {
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991 }
992
993 /**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005 int dev_open(struct net_device *dev)
1006 {
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075 int dev_close(struct net_device *dev)
1076 {
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124 }
1125
1126
1127 /**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135 void dev_disable_lro(struct net_device *dev)
1136 {
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146 }
1147 EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150 static int dev_boot_phase = 1;
1151
1152 /*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157 /**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171 int register_netdevice_notifier(struct notifier_block *nb)
1172 {
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198 unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202 rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219 }
1220
1221 /**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231 int unregister_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239 }
1240
1241 /**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251 {
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253 }
1254
1255 /* When > 0 there are consumers of rx skb time stamps */
1256 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258 void net_enable_timestamp(void)
1259 {
1260 atomic_inc(&netstamp_needed);
1261 }
1262
1263 void net_disable_timestamp(void)
1264 {
1265 atomic_dec(&netstamp_needed);
1266 }
1267
1268 static inline void net_timestamp(struct sk_buff *skb)
1269 {
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274 }
1275
1276 /*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320 }
1321
1322
1323 void __netif_schedule(struct net_device *dev)
1324 {
1325 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1326 struct netdev_queue *txq = &dev->tx_queue;
1327 unsigned long flags;
1328 struct softnet_data *sd;
1329
1330 local_irq_save(flags);
1331 sd = &__get_cpu_var(softnet_data);
1332 txq->next_sched = sd->output_queue;
1333 sd->output_queue = txq;
1334 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1335 local_irq_restore(flags);
1336 }
1337 }
1338 EXPORT_SYMBOL(__netif_schedule);
1339
1340 void dev_kfree_skb_irq(struct sk_buff *skb)
1341 {
1342 if (atomic_dec_and_test(&skb->users)) {
1343 struct softnet_data *sd;
1344 unsigned long flags;
1345
1346 local_irq_save(flags);
1347 sd = &__get_cpu_var(softnet_data);
1348 skb->next = sd->completion_queue;
1349 sd->completion_queue = skb;
1350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1351 local_irq_restore(flags);
1352 }
1353 }
1354 EXPORT_SYMBOL(dev_kfree_skb_irq);
1355
1356 void dev_kfree_skb_any(struct sk_buff *skb)
1357 {
1358 if (in_irq() || irqs_disabled())
1359 dev_kfree_skb_irq(skb);
1360 else
1361 dev_kfree_skb(skb);
1362 }
1363 EXPORT_SYMBOL(dev_kfree_skb_any);
1364
1365
1366 /**
1367 * netif_device_detach - mark device as removed
1368 * @dev: network device
1369 *
1370 * Mark device as removed from system and therefore no longer available.
1371 */
1372 void netif_device_detach(struct net_device *dev)
1373 {
1374 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1375 netif_running(dev)) {
1376 netif_stop_queue(dev);
1377 }
1378 }
1379 EXPORT_SYMBOL(netif_device_detach);
1380
1381 /**
1382 * netif_device_attach - mark device as attached
1383 * @dev: network device
1384 *
1385 * Mark device as attached from system and restart if needed.
1386 */
1387 void netif_device_attach(struct net_device *dev)
1388 {
1389 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1390 netif_running(dev)) {
1391 netif_wake_queue(dev);
1392 __netdev_watchdog_up(dev);
1393 }
1394 }
1395 EXPORT_SYMBOL(netif_device_attach);
1396
1397 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1398 {
1399 return ((features & NETIF_F_GEN_CSUM) ||
1400 ((features & NETIF_F_IP_CSUM) &&
1401 protocol == htons(ETH_P_IP)) ||
1402 ((features & NETIF_F_IPV6_CSUM) &&
1403 protocol == htons(ETH_P_IPV6)));
1404 }
1405
1406 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1407 {
1408 if (can_checksum_protocol(dev->features, skb->protocol))
1409 return true;
1410
1411 if (skb->protocol == htons(ETH_P_8021Q)) {
1412 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1413 if (can_checksum_protocol(dev->features & dev->vlan_features,
1414 veh->h_vlan_encapsulated_proto))
1415 return true;
1416 }
1417
1418 return false;
1419 }
1420
1421 /*
1422 * Invalidate hardware checksum when packet is to be mangled, and
1423 * complete checksum manually on outgoing path.
1424 */
1425 int skb_checksum_help(struct sk_buff *skb)
1426 {
1427 __wsum csum;
1428 int ret = 0, offset;
1429
1430 if (skb->ip_summed == CHECKSUM_COMPLETE)
1431 goto out_set_summed;
1432
1433 if (unlikely(skb_shinfo(skb)->gso_size)) {
1434 /* Let GSO fix up the checksum. */
1435 goto out_set_summed;
1436 }
1437
1438 offset = skb->csum_start - skb_headroom(skb);
1439 BUG_ON(offset >= skb_headlen(skb));
1440 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1441
1442 offset += skb->csum_offset;
1443 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1444
1445 if (skb_cloned(skb) &&
1446 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1447 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1448 if (ret)
1449 goto out;
1450 }
1451
1452 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1453 out_set_summed:
1454 skb->ip_summed = CHECKSUM_NONE;
1455 out:
1456 return ret;
1457 }
1458
1459 /**
1460 * skb_gso_segment - Perform segmentation on skb.
1461 * @skb: buffer to segment
1462 * @features: features for the output path (see dev->features)
1463 *
1464 * This function segments the given skb and returns a list of segments.
1465 *
1466 * It may return NULL if the skb requires no segmentation. This is
1467 * only possible when GSO is used for verifying header integrity.
1468 */
1469 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1470 {
1471 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1472 struct packet_type *ptype;
1473 __be16 type = skb->protocol;
1474 int err;
1475
1476 BUG_ON(skb_shinfo(skb)->frag_list);
1477
1478 skb_reset_mac_header(skb);
1479 skb->mac_len = skb->network_header - skb->mac_header;
1480 __skb_pull(skb, skb->mac_len);
1481
1482 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1483 if (skb_header_cloned(skb) &&
1484 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1485 return ERR_PTR(err);
1486 }
1487
1488 rcu_read_lock();
1489 list_for_each_entry_rcu(ptype,
1490 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1491 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1492 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1493 err = ptype->gso_send_check(skb);
1494 segs = ERR_PTR(err);
1495 if (err || skb_gso_ok(skb, features))
1496 break;
1497 __skb_push(skb, (skb->data -
1498 skb_network_header(skb)));
1499 }
1500 segs = ptype->gso_segment(skb, features);
1501 break;
1502 }
1503 }
1504 rcu_read_unlock();
1505
1506 __skb_push(skb, skb->data - skb_mac_header(skb));
1507
1508 return segs;
1509 }
1510
1511 EXPORT_SYMBOL(skb_gso_segment);
1512
1513 /* Take action when hardware reception checksum errors are detected. */
1514 #ifdef CONFIG_BUG
1515 void netdev_rx_csum_fault(struct net_device *dev)
1516 {
1517 if (net_ratelimit()) {
1518 printk(KERN_ERR "%s: hw csum failure.\n",
1519 dev ? dev->name : "<unknown>");
1520 dump_stack();
1521 }
1522 }
1523 EXPORT_SYMBOL(netdev_rx_csum_fault);
1524 #endif
1525
1526 /* Actually, we should eliminate this check as soon as we know, that:
1527 * 1. IOMMU is present and allows to map all the memory.
1528 * 2. No high memory really exists on this machine.
1529 */
1530
1531 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1532 {
1533 #ifdef CONFIG_HIGHMEM
1534 int i;
1535
1536 if (dev->features & NETIF_F_HIGHDMA)
1537 return 0;
1538
1539 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1540 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1541 return 1;
1542
1543 #endif
1544 return 0;
1545 }
1546
1547 struct dev_gso_cb {
1548 void (*destructor)(struct sk_buff *skb);
1549 };
1550
1551 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1552
1553 static void dev_gso_skb_destructor(struct sk_buff *skb)
1554 {
1555 struct dev_gso_cb *cb;
1556
1557 do {
1558 struct sk_buff *nskb = skb->next;
1559
1560 skb->next = nskb->next;
1561 nskb->next = NULL;
1562 kfree_skb(nskb);
1563 } while (skb->next);
1564
1565 cb = DEV_GSO_CB(skb);
1566 if (cb->destructor)
1567 cb->destructor(skb);
1568 }
1569
1570 /**
1571 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1572 * @skb: buffer to segment
1573 *
1574 * This function segments the given skb and stores the list of segments
1575 * in skb->next.
1576 */
1577 static int dev_gso_segment(struct sk_buff *skb)
1578 {
1579 struct net_device *dev = skb->dev;
1580 struct sk_buff *segs;
1581 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1582 NETIF_F_SG : 0);
1583
1584 segs = skb_gso_segment(skb, features);
1585
1586 /* Verifying header integrity only. */
1587 if (!segs)
1588 return 0;
1589
1590 if (IS_ERR(segs))
1591 return PTR_ERR(segs);
1592
1593 skb->next = segs;
1594 DEV_GSO_CB(skb)->destructor = skb->destructor;
1595 skb->destructor = dev_gso_skb_destructor;
1596
1597 return 0;
1598 }
1599
1600 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1601 {
1602 if (likely(!skb->next)) {
1603 if (!list_empty(&ptype_all))
1604 dev_queue_xmit_nit(skb, dev);
1605
1606 if (netif_needs_gso(dev, skb)) {
1607 if (unlikely(dev_gso_segment(skb)))
1608 goto out_kfree_skb;
1609 if (skb->next)
1610 goto gso;
1611 }
1612
1613 return dev->hard_start_xmit(skb, dev);
1614 }
1615
1616 gso:
1617 do {
1618 struct sk_buff *nskb = skb->next;
1619 int rc;
1620
1621 skb->next = nskb->next;
1622 nskb->next = NULL;
1623 rc = dev->hard_start_xmit(nskb, dev);
1624 if (unlikely(rc)) {
1625 nskb->next = skb->next;
1626 skb->next = nskb;
1627 return rc;
1628 }
1629 if (unlikely((netif_queue_stopped(dev) ||
1630 netif_subqueue_stopped(dev, skb)) &&
1631 skb->next))
1632 return NETDEV_TX_BUSY;
1633 } while (skb->next);
1634
1635 skb->destructor = DEV_GSO_CB(skb)->destructor;
1636
1637 out_kfree_skb:
1638 kfree_skb(skb);
1639 return 0;
1640 }
1641
1642 /**
1643 * dev_queue_xmit - transmit a buffer
1644 * @skb: buffer to transmit
1645 *
1646 * Queue a buffer for transmission to a network device. The caller must
1647 * have set the device and priority and built the buffer before calling
1648 * this function. The function can be called from an interrupt.
1649 *
1650 * A negative errno code is returned on a failure. A success does not
1651 * guarantee the frame will be transmitted as it may be dropped due
1652 * to congestion or traffic shaping.
1653 *
1654 * -----------------------------------------------------------------------------------
1655 * I notice this method can also return errors from the queue disciplines,
1656 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1657 * be positive.
1658 *
1659 * Regardless of the return value, the skb is consumed, so it is currently
1660 * difficult to retry a send to this method. (You can bump the ref count
1661 * before sending to hold a reference for retry if you are careful.)
1662 *
1663 * When calling this method, interrupts MUST be enabled. This is because
1664 * the BH enable code must have IRQs enabled so that it will not deadlock.
1665 * --BLG
1666 */
1667
1668 int dev_queue_xmit(struct sk_buff *skb)
1669 {
1670 struct net_device *dev = skb->dev;
1671 struct netdev_queue *txq;
1672 struct Qdisc *q;
1673 int rc = -ENOMEM;
1674
1675 /* GSO will handle the following emulations directly. */
1676 if (netif_needs_gso(dev, skb))
1677 goto gso;
1678
1679 if (skb_shinfo(skb)->frag_list &&
1680 !(dev->features & NETIF_F_FRAGLIST) &&
1681 __skb_linearize(skb))
1682 goto out_kfree_skb;
1683
1684 /* Fragmented skb is linearized if device does not support SG,
1685 * or if at least one of fragments is in highmem and device
1686 * does not support DMA from it.
1687 */
1688 if (skb_shinfo(skb)->nr_frags &&
1689 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1690 __skb_linearize(skb))
1691 goto out_kfree_skb;
1692
1693 /* If packet is not checksummed and device does not support
1694 * checksumming for this protocol, complete checksumming here.
1695 */
1696 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1697 skb_set_transport_header(skb, skb->csum_start -
1698 skb_headroom(skb));
1699 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1700 goto out_kfree_skb;
1701 }
1702
1703 gso:
1704 txq = &dev->tx_queue;
1705 spin_lock_prefetch(&txq->lock);
1706
1707 /* Disable soft irqs for various locks below. Also
1708 * stops preemption for RCU.
1709 */
1710 rcu_read_lock_bh();
1711
1712 /* Updates of qdisc are serialized by queue->lock.
1713 * The struct Qdisc which is pointed to by qdisc is now a
1714 * rcu structure - it may be accessed without acquiring
1715 * a lock (but the structure may be stale.) The freeing of the
1716 * qdisc will be deferred until it's known that there are no
1717 * more references to it.
1718 *
1719 * If the qdisc has an enqueue function, we still need to
1720 * hold the queue->lock before calling it, since queue->lock
1721 * also serializes access to the device queue.
1722 */
1723
1724 q = rcu_dereference(txq->qdisc);
1725 #ifdef CONFIG_NET_CLS_ACT
1726 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1727 #endif
1728 if (q->enqueue) {
1729 /* Grab device queue */
1730 spin_lock(&txq->lock);
1731 q = txq->qdisc;
1732 if (q->enqueue) {
1733 /* reset queue_mapping to zero */
1734 skb_set_queue_mapping(skb, 0);
1735 rc = q->enqueue(skb, q);
1736 qdisc_run(dev);
1737 spin_unlock(&txq->lock);
1738
1739 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1740 goto out;
1741 }
1742 spin_unlock(&txq->lock);
1743 }
1744
1745 /* The device has no queue. Common case for software devices:
1746 loopback, all the sorts of tunnels...
1747
1748 Really, it is unlikely that netif_tx_lock protection is necessary
1749 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1750 counters.)
1751 However, it is possible, that they rely on protection
1752 made by us here.
1753
1754 Check this and shot the lock. It is not prone from deadlocks.
1755 Either shot noqueue qdisc, it is even simpler 8)
1756 */
1757 if (dev->flags & IFF_UP) {
1758 int cpu = smp_processor_id(); /* ok because BHs are off */
1759
1760 if (dev->xmit_lock_owner != cpu) {
1761
1762 HARD_TX_LOCK(dev, cpu);
1763
1764 if (!netif_queue_stopped(dev) &&
1765 !netif_subqueue_stopped(dev, skb)) {
1766 rc = 0;
1767 if (!dev_hard_start_xmit(skb, dev)) {
1768 HARD_TX_UNLOCK(dev);
1769 goto out;
1770 }
1771 }
1772 HARD_TX_UNLOCK(dev);
1773 if (net_ratelimit())
1774 printk(KERN_CRIT "Virtual device %s asks to "
1775 "queue packet!\n", dev->name);
1776 } else {
1777 /* Recursion is detected! It is possible,
1778 * unfortunately */
1779 if (net_ratelimit())
1780 printk(KERN_CRIT "Dead loop on virtual device "
1781 "%s, fix it urgently!\n", dev->name);
1782 }
1783 }
1784
1785 rc = -ENETDOWN;
1786 rcu_read_unlock_bh();
1787
1788 out_kfree_skb:
1789 kfree_skb(skb);
1790 return rc;
1791 out:
1792 rcu_read_unlock_bh();
1793 return rc;
1794 }
1795
1796
1797 /*=======================================================================
1798 Receiver routines
1799 =======================================================================*/
1800
1801 int netdev_max_backlog __read_mostly = 1000;
1802 int netdev_budget __read_mostly = 300;
1803 int weight_p __read_mostly = 64; /* old backlog weight */
1804
1805 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1806
1807
1808 /**
1809 * netif_rx - post buffer to the network code
1810 * @skb: buffer to post
1811 *
1812 * This function receives a packet from a device driver and queues it for
1813 * the upper (protocol) levels to process. It always succeeds. The buffer
1814 * may be dropped during processing for congestion control or by the
1815 * protocol layers.
1816 *
1817 * return values:
1818 * NET_RX_SUCCESS (no congestion)
1819 * NET_RX_DROP (packet was dropped)
1820 *
1821 */
1822
1823 int netif_rx(struct sk_buff *skb)
1824 {
1825 struct softnet_data *queue;
1826 unsigned long flags;
1827
1828 /* if netpoll wants it, pretend we never saw it */
1829 if (netpoll_rx(skb))
1830 return NET_RX_DROP;
1831
1832 if (!skb->tstamp.tv64)
1833 net_timestamp(skb);
1834
1835 /*
1836 * The code is rearranged so that the path is the most
1837 * short when CPU is congested, but is still operating.
1838 */
1839 local_irq_save(flags);
1840 queue = &__get_cpu_var(softnet_data);
1841
1842 __get_cpu_var(netdev_rx_stat).total++;
1843 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1844 if (queue->input_pkt_queue.qlen) {
1845 enqueue:
1846 dev_hold(skb->dev);
1847 __skb_queue_tail(&queue->input_pkt_queue, skb);
1848 local_irq_restore(flags);
1849 return NET_RX_SUCCESS;
1850 }
1851
1852 napi_schedule(&queue->backlog);
1853 goto enqueue;
1854 }
1855
1856 __get_cpu_var(netdev_rx_stat).dropped++;
1857 local_irq_restore(flags);
1858
1859 kfree_skb(skb);
1860 return NET_RX_DROP;
1861 }
1862
1863 int netif_rx_ni(struct sk_buff *skb)
1864 {
1865 int err;
1866
1867 preempt_disable();
1868 err = netif_rx(skb);
1869 if (local_softirq_pending())
1870 do_softirq();
1871 preempt_enable();
1872
1873 return err;
1874 }
1875
1876 EXPORT_SYMBOL(netif_rx_ni);
1877
1878 static inline struct net_device *skb_bond(struct sk_buff *skb)
1879 {
1880 struct net_device *dev = skb->dev;
1881
1882 if (dev->master) {
1883 if (skb_bond_should_drop(skb)) {
1884 kfree_skb(skb);
1885 return NULL;
1886 }
1887 skb->dev = dev->master;
1888 }
1889
1890 return dev;
1891 }
1892
1893
1894 static void net_tx_action(struct softirq_action *h)
1895 {
1896 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1897
1898 if (sd->completion_queue) {
1899 struct sk_buff *clist;
1900
1901 local_irq_disable();
1902 clist = sd->completion_queue;
1903 sd->completion_queue = NULL;
1904 local_irq_enable();
1905
1906 while (clist) {
1907 struct sk_buff *skb = clist;
1908 clist = clist->next;
1909
1910 BUG_TRAP(!atomic_read(&skb->users));
1911 __kfree_skb(skb);
1912 }
1913 }
1914
1915 if (sd->output_queue) {
1916 struct netdev_queue *head;
1917
1918 local_irq_disable();
1919 head = sd->output_queue;
1920 sd->output_queue = NULL;
1921 local_irq_enable();
1922
1923 while (head) {
1924 struct netdev_queue *txq = head;
1925 struct net_device *dev = txq->dev;
1926 head = head->next_sched;
1927
1928 smp_mb__before_clear_bit();
1929 clear_bit(__LINK_STATE_SCHED, &dev->state);
1930
1931 if (spin_trylock(&txq->lock)) {
1932 qdisc_run(dev);
1933 spin_unlock(&txq->lock);
1934 } else {
1935 netif_schedule(dev);
1936 }
1937 }
1938 }
1939 }
1940
1941 static inline int deliver_skb(struct sk_buff *skb,
1942 struct packet_type *pt_prev,
1943 struct net_device *orig_dev)
1944 {
1945 atomic_inc(&skb->users);
1946 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1947 }
1948
1949 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1950 /* These hooks defined here for ATM */
1951 struct net_bridge;
1952 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1953 unsigned char *addr);
1954 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1955
1956 /*
1957 * If bridge module is loaded call bridging hook.
1958 * returns NULL if packet was consumed.
1959 */
1960 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1961 struct sk_buff *skb) __read_mostly;
1962 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1963 struct packet_type **pt_prev, int *ret,
1964 struct net_device *orig_dev)
1965 {
1966 struct net_bridge_port *port;
1967
1968 if (skb->pkt_type == PACKET_LOOPBACK ||
1969 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1970 return skb;
1971
1972 if (*pt_prev) {
1973 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1974 *pt_prev = NULL;
1975 }
1976
1977 return br_handle_frame_hook(port, skb);
1978 }
1979 #else
1980 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1981 #endif
1982
1983 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1984 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1985 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1986
1987 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1988 struct packet_type **pt_prev,
1989 int *ret,
1990 struct net_device *orig_dev)
1991 {
1992 if (skb->dev->macvlan_port == NULL)
1993 return skb;
1994
1995 if (*pt_prev) {
1996 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1997 *pt_prev = NULL;
1998 }
1999 return macvlan_handle_frame_hook(skb);
2000 }
2001 #else
2002 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2003 #endif
2004
2005 #ifdef CONFIG_NET_CLS_ACT
2006 /* TODO: Maybe we should just force sch_ingress to be compiled in
2007 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2008 * a compare and 2 stores extra right now if we dont have it on
2009 * but have CONFIG_NET_CLS_ACT
2010 * NOTE: This doesnt stop any functionality; if you dont have
2011 * the ingress scheduler, you just cant add policies on ingress.
2012 *
2013 */
2014 static int ing_filter(struct sk_buff *skb)
2015 {
2016 struct net_device *dev = skb->dev;
2017 u32 ttl = G_TC_RTTL(skb->tc_verd);
2018 struct netdev_queue *rxq;
2019 int result = TC_ACT_OK;
2020 struct Qdisc *q;
2021
2022 if (MAX_RED_LOOP < ttl++) {
2023 printk(KERN_WARNING
2024 "Redir loop detected Dropping packet (%d->%d)\n",
2025 skb->iif, dev->ifindex);
2026 return TC_ACT_SHOT;
2027 }
2028
2029 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2030 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2031
2032 rxq = &dev->rx_queue;
2033
2034 spin_lock(&rxq->lock);
2035 if ((q = rxq->qdisc) != NULL)
2036 result = q->enqueue(skb, q);
2037 spin_unlock(&rxq->lock);
2038
2039 return result;
2040 }
2041
2042 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2043 struct packet_type **pt_prev,
2044 int *ret, struct net_device *orig_dev)
2045 {
2046 if (!skb->dev->rx_queue.qdisc)
2047 goto out;
2048
2049 if (*pt_prev) {
2050 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2051 *pt_prev = NULL;
2052 } else {
2053 /* Huh? Why does turning on AF_PACKET affect this? */
2054 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2055 }
2056
2057 switch (ing_filter(skb)) {
2058 case TC_ACT_SHOT:
2059 case TC_ACT_STOLEN:
2060 kfree_skb(skb);
2061 return NULL;
2062 }
2063
2064 out:
2065 skb->tc_verd = 0;
2066 return skb;
2067 }
2068 #endif
2069
2070 /**
2071 * netif_receive_skb - process receive buffer from network
2072 * @skb: buffer to process
2073 *
2074 * netif_receive_skb() is the main receive data processing function.
2075 * It always succeeds. The buffer may be dropped during processing
2076 * for congestion control or by the protocol layers.
2077 *
2078 * This function may only be called from softirq context and interrupts
2079 * should be enabled.
2080 *
2081 * Return values (usually ignored):
2082 * NET_RX_SUCCESS: no congestion
2083 * NET_RX_DROP: packet was dropped
2084 */
2085 int netif_receive_skb(struct sk_buff *skb)
2086 {
2087 struct packet_type *ptype, *pt_prev;
2088 struct net_device *orig_dev;
2089 int ret = NET_RX_DROP;
2090 __be16 type;
2091
2092 /* if we've gotten here through NAPI, check netpoll */
2093 if (netpoll_receive_skb(skb))
2094 return NET_RX_DROP;
2095
2096 if (!skb->tstamp.tv64)
2097 net_timestamp(skb);
2098
2099 if (!skb->iif)
2100 skb->iif = skb->dev->ifindex;
2101
2102 orig_dev = skb_bond(skb);
2103
2104 if (!orig_dev)
2105 return NET_RX_DROP;
2106
2107 __get_cpu_var(netdev_rx_stat).total++;
2108
2109 skb_reset_network_header(skb);
2110 skb_reset_transport_header(skb);
2111 skb->mac_len = skb->network_header - skb->mac_header;
2112
2113 pt_prev = NULL;
2114
2115 rcu_read_lock();
2116
2117 /* Don't receive packets in an exiting network namespace */
2118 if (!net_alive(dev_net(skb->dev)))
2119 goto out;
2120
2121 #ifdef CONFIG_NET_CLS_ACT
2122 if (skb->tc_verd & TC_NCLS) {
2123 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2124 goto ncls;
2125 }
2126 #endif
2127
2128 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2129 if (!ptype->dev || ptype->dev == skb->dev) {
2130 if (pt_prev)
2131 ret = deliver_skb(skb, pt_prev, orig_dev);
2132 pt_prev = ptype;
2133 }
2134 }
2135
2136 #ifdef CONFIG_NET_CLS_ACT
2137 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2138 if (!skb)
2139 goto out;
2140 ncls:
2141 #endif
2142
2143 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2144 if (!skb)
2145 goto out;
2146 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2147 if (!skb)
2148 goto out;
2149
2150 type = skb->protocol;
2151 list_for_each_entry_rcu(ptype,
2152 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2153 if (ptype->type == type &&
2154 (!ptype->dev || ptype->dev == skb->dev)) {
2155 if (pt_prev)
2156 ret = deliver_skb(skb, pt_prev, orig_dev);
2157 pt_prev = ptype;
2158 }
2159 }
2160
2161 if (pt_prev) {
2162 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2163 } else {
2164 kfree_skb(skb);
2165 /* Jamal, now you will not able to escape explaining
2166 * me how you were going to use this. :-)
2167 */
2168 ret = NET_RX_DROP;
2169 }
2170
2171 out:
2172 rcu_read_unlock();
2173 return ret;
2174 }
2175
2176 static int process_backlog(struct napi_struct *napi, int quota)
2177 {
2178 int work = 0;
2179 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2180 unsigned long start_time = jiffies;
2181
2182 napi->weight = weight_p;
2183 do {
2184 struct sk_buff *skb;
2185 struct net_device *dev;
2186
2187 local_irq_disable();
2188 skb = __skb_dequeue(&queue->input_pkt_queue);
2189 if (!skb) {
2190 __napi_complete(napi);
2191 local_irq_enable();
2192 break;
2193 }
2194
2195 local_irq_enable();
2196
2197 dev = skb->dev;
2198
2199 netif_receive_skb(skb);
2200
2201 dev_put(dev);
2202 } while (++work < quota && jiffies == start_time);
2203
2204 return work;
2205 }
2206
2207 /**
2208 * __napi_schedule - schedule for receive
2209 * @n: entry to schedule
2210 *
2211 * The entry's receive function will be scheduled to run
2212 */
2213 void __napi_schedule(struct napi_struct *n)
2214 {
2215 unsigned long flags;
2216
2217 local_irq_save(flags);
2218 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2219 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2220 local_irq_restore(flags);
2221 }
2222 EXPORT_SYMBOL(__napi_schedule);
2223
2224
2225 static void net_rx_action(struct softirq_action *h)
2226 {
2227 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2228 unsigned long start_time = jiffies;
2229 int budget = netdev_budget;
2230 void *have;
2231
2232 local_irq_disable();
2233
2234 while (!list_empty(list)) {
2235 struct napi_struct *n;
2236 int work, weight;
2237
2238 /* If softirq window is exhuasted then punt.
2239 *
2240 * Note that this is a slight policy change from the
2241 * previous NAPI code, which would allow up to 2
2242 * jiffies to pass before breaking out. The test
2243 * used to be "jiffies - start_time > 1".
2244 */
2245 if (unlikely(budget <= 0 || jiffies != start_time))
2246 goto softnet_break;
2247
2248 local_irq_enable();
2249
2250 /* Even though interrupts have been re-enabled, this
2251 * access is safe because interrupts can only add new
2252 * entries to the tail of this list, and only ->poll()
2253 * calls can remove this head entry from the list.
2254 */
2255 n = list_entry(list->next, struct napi_struct, poll_list);
2256
2257 have = netpoll_poll_lock(n);
2258
2259 weight = n->weight;
2260
2261 /* This NAPI_STATE_SCHED test is for avoiding a race
2262 * with netpoll's poll_napi(). Only the entity which
2263 * obtains the lock and sees NAPI_STATE_SCHED set will
2264 * actually make the ->poll() call. Therefore we avoid
2265 * accidently calling ->poll() when NAPI is not scheduled.
2266 */
2267 work = 0;
2268 if (test_bit(NAPI_STATE_SCHED, &n->state))
2269 work = n->poll(n, weight);
2270
2271 WARN_ON_ONCE(work > weight);
2272
2273 budget -= work;
2274
2275 local_irq_disable();
2276
2277 /* Drivers must not modify the NAPI state if they
2278 * consume the entire weight. In such cases this code
2279 * still "owns" the NAPI instance and therefore can
2280 * move the instance around on the list at-will.
2281 */
2282 if (unlikely(work == weight)) {
2283 if (unlikely(napi_disable_pending(n)))
2284 __napi_complete(n);
2285 else
2286 list_move_tail(&n->poll_list, list);
2287 }
2288
2289 netpoll_poll_unlock(have);
2290 }
2291 out:
2292 local_irq_enable();
2293
2294 #ifdef CONFIG_NET_DMA
2295 /*
2296 * There may not be any more sk_buffs coming right now, so push
2297 * any pending DMA copies to hardware
2298 */
2299 if (!cpus_empty(net_dma.channel_mask)) {
2300 int chan_idx;
2301 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2302 struct dma_chan *chan = net_dma.channels[chan_idx];
2303 if (chan)
2304 dma_async_memcpy_issue_pending(chan);
2305 }
2306 }
2307 #endif
2308
2309 return;
2310
2311 softnet_break:
2312 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2313 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2314 goto out;
2315 }
2316
2317 static gifconf_func_t * gifconf_list [NPROTO];
2318
2319 /**
2320 * register_gifconf - register a SIOCGIF handler
2321 * @family: Address family
2322 * @gifconf: Function handler
2323 *
2324 * Register protocol dependent address dumping routines. The handler
2325 * that is passed must not be freed or reused until it has been replaced
2326 * by another handler.
2327 */
2328 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2329 {
2330 if (family >= NPROTO)
2331 return -EINVAL;
2332 gifconf_list[family] = gifconf;
2333 return 0;
2334 }
2335
2336
2337 /*
2338 * Map an interface index to its name (SIOCGIFNAME)
2339 */
2340
2341 /*
2342 * We need this ioctl for efficient implementation of the
2343 * if_indextoname() function required by the IPv6 API. Without
2344 * it, we would have to search all the interfaces to find a
2345 * match. --pb
2346 */
2347
2348 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2349 {
2350 struct net_device *dev;
2351 struct ifreq ifr;
2352
2353 /*
2354 * Fetch the caller's info block.
2355 */
2356
2357 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2358 return -EFAULT;
2359
2360 read_lock(&dev_base_lock);
2361 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2362 if (!dev) {
2363 read_unlock(&dev_base_lock);
2364 return -ENODEV;
2365 }
2366
2367 strcpy(ifr.ifr_name, dev->name);
2368 read_unlock(&dev_base_lock);
2369
2370 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2371 return -EFAULT;
2372 return 0;
2373 }
2374
2375 /*
2376 * Perform a SIOCGIFCONF call. This structure will change
2377 * size eventually, and there is nothing I can do about it.
2378 * Thus we will need a 'compatibility mode'.
2379 */
2380
2381 static int dev_ifconf(struct net *net, char __user *arg)
2382 {
2383 struct ifconf ifc;
2384 struct net_device *dev;
2385 char __user *pos;
2386 int len;
2387 int total;
2388 int i;
2389
2390 /*
2391 * Fetch the caller's info block.
2392 */
2393
2394 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2395 return -EFAULT;
2396
2397 pos = ifc.ifc_buf;
2398 len = ifc.ifc_len;
2399
2400 /*
2401 * Loop over the interfaces, and write an info block for each.
2402 */
2403
2404 total = 0;
2405 for_each_netdev(net, dev) {
2406 for (i = 0; i < NPROTO; i++) {
2407 if (gifconf_list[i]) {
2408 int done;
2409 if (!pos)
2410 done = gifconf_list[i](dev, NULL, 0);
2411 else
2412 done = gifconf_list[i](dev, pos + total,
2413 len - total);
2414 if (done < 0)
2415 return -EFAULT;
2416 total += done;
2417 }
2418 }
2419 }
2420
2421 /*
2422 * All done. Write the updated control block back to the caller.
2423 */
2424 ifc.ifc_len = total;
2425
2426 /*
2427 * Both BSD and Solaris return 0 here, so we do too.
2428 */
2429 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2430 }
2431
2432 #ifdef CONFIG_PROC_FS
2433 /*
2434 * This is invoked by the /proc filesystem handler to display a device
2435 * in detail.
2436 */
2437 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2438 __acquires(dev_base_lock)
2439 {
2440 struct net *net = seq_file_net(seq);
2441 loff_t off;
2442 struct net_device *dev;
2443
2444 read_lock(&dev_base_lock);
2445 if (!*pos)
2446 return SEQ_START_TOKEN;
2447
2448 off = 1;
2449 for_each_netdev(net, dev)
2450 if (off++ == *pos)
2451 return dev;
2452
2453 return NULL;
2454 }
2455
2456 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2457 {
2458 struct net *net = seq_file_net(seq);
2459 ++*pos;
2460 return v == SEQ_START_TOKEN ?
2461 first_net_device(net) : next_net_device((struct net_device *)v);
2462 }
2463
2464 void dev_seq_stop(struct seq_file *seq, void *v)
2465 __releases(dev_base_lock)
2466 {
2467 read_unlock(&dev_base_lock);
2468 }
2469
2470 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2471 {
2472 struct net_device_stats *stats = dev->get_stats(dev);
2473
2474 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2475 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2476 dev->name, stats->rx_bytes, stats->rx_packets,
2477 stats->rx_errors,
2478 stats->rx_dropped + stats->rx_missed_errors,
2479 stats->rx_fifo_errors,
2480 stats->rx_length_errors + stats->rx_over_errors +
2481 stats->rx_crc_errors + stats->rx_frame_errors,
2482 stats->rx_compressed, stats->multicast,
2483 stats->tx_bytes, stats->tx_packets,
2484 stats->tx_errors, stats->tx_dropped,
2485 stats->tx_fifo_errors, stats->collisions,
2486 stats->tx_carrier_errors +
2487 stats->tx_aborted_errors +
2488 stats->tx_window_errors +
2489 stats->tx_heartbeat_errors,
2490 stats->tx_compressed);
2491 }
2492
2493 /*
2494 * Called from the PROCfs module. This now uses the new arbitrary sized
2495 * /proc/net interface to create /proc/net/dev
2496 */
2497 static int dev_seq_show(struct seq_file *seq, void *v)
2498 {
2499 if (v == SEQ_START_TOKEN)
2500 seq_puts(seq, "Inter-| Receive "
2501 " | Transmit\n"
2502 " face |bytes packets errs drop fifo frame "
2503 "compressed multicast|bytes packets errs "
2504 "drop fifo colls carrier compressed\n");
2505 else
2506 dev_seq_printf_stats(seq, v);
2507 return 0;
2508 }
2509
2510 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2511 {
2512 struct netif_rx_stats *rc = NULL;
2513
2514 while (*pos < nr_cpu_ids)
2515 if (cpu_online(*pos)) {
2516 rc = &per_cpu(netdev_rx_stat, *pos);
2517 break;
2518 } else
2519 ++*pos;
2520 return rc;
2521 }
2522
2523 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2524 {
2525 return softnet_get_online(pos);
2526 }
2527
2528 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2529 {
2530 ++*pos;
2531 return softnet_get_online(pos);
2532 }
2533
2534 static void softnet_seq_stop(struct seq_file *seq, void *v)
2535 {
2536 }
2537
2538 static int softnet_seq_show(struct seq_file *seq, void *v)
2539 {
2540 struct netif_rx_stats *s = v;
2541
2542 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2543 s->total, s->dropped, s->time_squeeze, 0,
2544 0, 0, 0, 0, /* was fastroute */
2545 s->cpu_collision );
2546 return 0;
2547 }
2548
2549 static const struct seq_operations dev_seq_ops = {
2550 .start = dev_seq_start,
2551 .next = dev_seq_next,
2552 .stop = dev_seq_stop,
2553 .show = dev_seq_show,
2554 };
2555
2556 static int dev_seq_open(struct inode *inode, struct file *file)
2557 {
2558 return seq_open_net(inode, file, &dev_seq_ops,
2559 sizeof(struct seq_net_private));
2560 }
2561
2562 static const struct file_operations dev_seq_fops = {
2563 .owner = THIS_MODULE,
2564 .open = dev_seq_open,
2565 .read = seq_read,
2566 .llseek = seq_lseek,
2567 .release = seq_release_net,
2568 };
2569
2570 static const struct seq_operations softnet_seq_ops = {
2571 .start = softnet_seq_start,
2572 .next = softnet_seq_next,
2573 .stop = softnet_seq_stop,
2574 .show = softnet_seq_show,
2575 };
2576
2577 static int softnet_seq_open(struct inode *inode, struct file *file)
2578 {
2579 return seq_open(file, &softnet_seq_ops);
2580 }
2581
2582 static const struct file_operations softnet_seq_fops = {
2583 .owner = THIS_MODULE,
2584 .open = softnet_seq_open,
2585 .read = seq_read,
2586 .llseek = seq_lseek,
2587 .release = seq_release,
2588 };
2589
2590 static void *ptype_get_idx(loff_t pos)
2591 {
2592 struct packet_type *pt = NULL;
2593 loff_t i = 0;
2594 int t;
2595
2596 list_for_each_entry_rcu(pt, &ptype_all, list) {
2597 if (i == pos)
2598 return pt;
2599 ++i;
2600 }
2601
2602 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2603 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2604 if (i == pos)
2605 return pt;
2606 ++i;
2607 }
2608 }
2609 return NULL;
2610 }
2611
2612 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2613 __acquires(RCU)
2614 {
2615 rcu_read_lock();
2616 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2617 }
2618
2619 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2620 {
2621 struct packet_type *pt;
2622 struct list_head *nxt;
2623 int hash;
2624
2625 ++*pos;
2626 if (v == SEQ_START_TOKEN)
2627 return ptype_get_idx(0);
2628
2629 pt = v;
2630 nxt = pt->list.next;
2631 if (pt->type == htons(ETH_P_ALL)) {
2632 if (nxt != &ptype_all)
2633 goto found;
2634 hash = 0;
2635 nxt = ptype_base[0].next;
2636 } else
2637 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2638
2639 while (nxt == &ptype_base[hash]) {
2640 if (++hash >= PTYPE_HASH_SIZE)
2641 return NULL;
2642 nxt = ptype_base[hash].next;
2643 }
2644 found:
2645 return list_entry(nxt, struct packet_type, list);
2646 }
2647
2648 static void ptype_seq_stop(struct seq_file *seq, void *v)
2649 __releases(RCU)
2650 {
2651 rcu_read_unlock();
2652 }
2653
2654 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2655 {
2656 #ifdef CONFIG_KALLSYMS
2657 unsigned long offset = 0, symsize;
2658 const char *symname;
2659 char *modname;
2660 char namebuf[128];
2661
2662 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2663 &modname, namebuf);
2664
2665 if (symname) {
2666 char *delim = ":";
2667
2668 if (!modname)
2669 modname = delim = "";
2670 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2671 symname, offset);
2672 return;
2673 }
2674 #endif
2675
2676 seq_printf(seq, "[%p]", sym);
2677 }
2678
2679 static int ptype_seq_show(struct seq_file *seq, void *v)
2680 {
2681 struct packet_type *pt = v;
2682
2683 if (v == SEQ_START_TOKEN)
2684 seq_puts(seq, "Type Device Function\n");
2685 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2686 if (pt->type == htons(ETH_P_ALL))
2687 seq_puts(seq, "ALL ");
2688 else
2689 seq_printf(seq, "%04x", ntohs(pt->type));
2690
2691 seq_printf(seq, " %-8s ",
2692 pt->dev ? pt->dev->name : "");
2693 ptype_seq_decode(seq, pt->func);
2694 seq_putc(seq, '\n');
2695 }
2696
2697 return 0;
2698 }
2699
2700 static const struct seq_operations ptype_seq_ops = {
2701 .start = ptype_seq_start,
2702 .next = ptype_seq_next,
2703 .stop = ptype_seq_stop,
2704 .show = ptype_seq_show,
2705 };
2706
2707 static int ptype_seq_open(struct inode *inode, struct file *file)
2708 {
2709 return seq_open_net(inode, file, &ptype_seq_ops,
2710 sizeof(struct seq_net_private));
2711 }
2712
2713 static const struct file_operations ptype_seq_fops = {
2714 .owner = THIS_MODULE,
2715 .open = ptype_seq_open,
2716 .read = seq_read,
2717 .llseek = seq_lseek,
2718 .release = seq_release_net,
2719 };
2720
2721
2722 static int __net_init dev_proc_net_init(struct net *net)
2723 {
2724 int rc = -ENOMEM;
2725
2726 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2727 goto out;
2728 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2729 goto out_dev;
2730 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2731 goto out_softnet;
2732
2733 if (wext_proc_init(net))
2734 goto out_ptype;
2735 rc = 0;
2736 out:
2737 return rc;
2738 out_ptype:
2739 proc_net_remove(net, "ptype");
2740 out_softnet:
2741 proc_net_remove(net, "softnet_stat");
2742 out_dev:
2743 proc_net_remove(net, "dev");
2744 goto out;
2745 }
2746
2747 static void __net_exit dev_proc_net_exit(struct net *net)
2748 {
2749 wext_proc_exit(net);
2750
2751 proc_net_remove(net, "ptype");
2752 proc_net_remove(net, "softnet_stat");
2753 proc_net_remove(net, "dev");
2754 }
2755
2756 static struct pernet_operations __net_initdata dev_proc_ops = {
2757 .init = dev_proc_net_init,
2758 .exit = dev_proc_net_exit,
2759 };
2760
2761 static int __init dev_proc_init(void)
2762 {
2763 return register_pernet_subsys(&dev_proc_ops);
2764 }
2765 #else
2766 #define dev_proc_init() 0
2767 #endif /* CONFIG_PROC_FS */
2768
2769
2770 /**
2771 * netdev_set_master - set up master/slave pair
2772 * @slave: slave device
2773 * @master: new master device
2774 *
2775 * Changes the master device of the slave. Pass %NULL to break the
2776 * bonding. The caller must hold the RTNL semaphore. On a failure
2777 * a negative errno code is returned. On success the reference counts
2778 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2779 * function returns zero.
2780 */
2781 int netdev_set_master(struct net_device *slave, struct net_device *master)
2782 {
2783 struct net_device *old = slave->master;
2784
2785 ASSERT_RTNL();
2786
2787 if (master) {
2788 if (old)
2789 return -EBUSY;
2790 dev_hold(master);
2791 }
2792
2793 slave->master = master;
2794
2795 synchronize_net();
2796
2797 if (old)
2798 dev_put(old);
2799
2800 if (master)
2801 slave->flags |= IFF_SLAVE;
2802 else
2803 slave->flags &= ~IFF_SLAVE;
2804
2805 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2806 return 0;
2807 }
2808
2809 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2810 {
2811 unsigned short old_flags = dev->flags;
2812
2813 ASSERT_RTNL();
2814
2815 dev->flags |= IFF_PROMISC;
2816 dev->promiscuity += inc;
2817 if (dev->promiscuity == 0) {
2818 /*
2819 * Avoid overflow.
2820 * If inc causes overflow, untouch promisc and return error.
2821 */
2822 if (inc < 0)
2823 dev->flags &= ~IFF_PROMISC;
2824 else {
2825 dev->promiscuity -= inc;
2826 printk(KERN_WARNING "%s: promiscuity touches roof, "
2827 "set promiscuity failed, promiscuity feature "
2828 "of device might be broken.\n", dev->name);
2829 return -EOVERFLOW;
2830 }
2831 }
2832 if (dev->flags != old_flags) {
2833 printk(KERN_INFO "device %s %s promiscuous mode\n",
2834 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2835 "left");
2836 if (audit_enabled)
2837 audit_log(current->audit_context, GFP_ATOMIC,
2838 AUDIT_ANOM_PROMISCUOUS,
2839 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2840 dev->name, (dev->flags & IFF_PROMISC),
2841 (old_flags & IFF_PROMISC),
2842 audit_get_loginuid(current),
2843 current->uid, current->gid,
2844 audit_get_sessionid(current));
2845
2846 if (dev->change_rx_flags)
2847 dev->change_rx_flags(dev, IFF_PROMISC);
2848 }
2849 return 0;
2850 }
2851
2852 /**
2853 * dev_set_promiscuity - update promiscuity count on a device
2854 * @dev: device
2855 * @inc: modifier
2856 *
2857 * Add or remove promiscuity from a device. While the count in the device
2858 * remains above zero the interface remains promiscuous. Once it hits zero
2859 * the device reverts back to normal filtering operation. A negative inc
2860 * value is used to drop promiscuity on the device.
2861 * Return 0 if successful or a negative errno code on error.
2862 */
2863 int dev_set_promiscuity(struct net_device *dev, int inc)
2864 {
2865 unsigned short old_flags = dev->flags;
2866 int err;
2867
2868 err = __dev_set_promiscuity(dev, inc);
2869 if (err < 0)
2870 return err;
2871 if (dev->flags != old_flags)
2872 dev_set_rx_mode(dev);
2873 return err;
2874 }
2875
2876 /**
2877 * dev_set_allmulti - update allmulti count on a device
2878 * @dev: device
2879 * @inc: modifier
2880 *
2881 * Add or remove reception of all multicast frames to a device. While the
2882 * count in the device remains above zero the interface remains listening
2883 * to all interfaces. Once it hits zero the device reverts back to normal
2884 * filtering operation. A negative @inc value is used to drop the counter
2885 * when releasing a resource needing all multicasts.
2886 * Return 0 if successful or a negative errno code on error.
2887 */
2888
2889 int dev_set_allmulti(struct net_device *dev, int inc)
2890 {
2891 unsigned short old_flags = dev->flags;
2892
2893 ASSERT_RTNL();
2894
2895 dev->flags |= IFF_ALLMULTI;
2896 dev->allmulti += inc;
2897 if (dev->allmulti == 0) {
2898 /*
2899 * Avoid overflow.
2900 * If inc causes overflow, untouch allmulti and return error.
2901 */
2902 if (inc < 0)
2903 dev->flags &= ~IFF_ALLMULTI;
2904 else {
2905 dev->allmulti -= inc;
2906 printk(KERN_WARNING "%s: allmulti touches roof, "
2907 "set allmulti failed, allmulti feature of "
2908 "device might be broken.\n", dev->name);
2909 return -EOVERFLOW;
2910 }
2911 }
2912 if (dev->flags ^ old_flags) {
2913 if (dev->change_rx_flags)
2914 dev->change_rx_flags(dev, IFF_ALLMULTI);
2915 dev_set_rx_mode(dev);
2916 }
2917 return 0;
2918 }
2919
2920 /*
2921 * Upload unicast and multicast address lists to device and
2922 * configure RX filtering. When the device doesn't support unicast
2923 * filtering it is put in promiscuous mode while unicast addresses
2924 * are present.
2925 */
2926 void __dev_set_rx_mode(struct net_device *dev)
2927 {
2928 /* dev_open will call this function so the list will stay sane. */
2929 if (!(dev->flags&IFF_UP))
2930 return;
2931
2932 if (!netif_device_present(dev))
2933 return;
2934
2935 if (dev->set_rx_mode)
2936 dev->set_rx_mode(dev);
2937 else {
2938 /* Unicast addresses changes may only happen under the rtnl,
2939 * therefore calling __dev_set_promiscuity here is safe.
2940 */
2941 if (dev->uc_count > 0 && !dev->uc_promisc) {
2942 __dev_set_promiscuity(dev, 1);
2943 dev->uc_promisc = 1;
2944 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2945 __dev_set_promiscuity(dev, -1);
2946 dev->uc_promisc = 0;
2947 }
2948
2949 if (dev->set_multicast_list)
2950 dev->set_multicast_list(dev);
2951 }
2952 }
2953
2954 void dev_set_rx_mode(struct net_device *dev)
2955 {
2956 netif_tx_lock_bh(dev);
2957 __dev_set_rx_mode(dev);
2958 netif_tx_unlock_bh(dev);
2959 }
2960
2961 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2962 void *addr, int alen, int glbl)
2963 {
2964 struct dev_addr_list *da;
2965
2966 for (; (da = *list) != NULL; list = &da->next) {
2967 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2968 alen == da->da_addrlen) {
2969 if (glbl) {
2970 int old_glbl = da->da_gusers;
2971 da->da_gusers = 0;
2972 if (old_glbl == 0)
2973 break;
2974 }
2975 if (--da->da_users)
2976 return 0;
2977
2978 *list = da->next;
2979 kfree(da);
2980 (*count)--;
2981 return 0;
2982 }
2983 }
2984 return -ENOENT;
2985 }
2986
2987 int __dev_addr_add(struct dev_addr_list **list, int *count,
2988 void *addr, int alen, int glbl)
2989 {
2990 struct dev_addr_list *da;
2991
2992 for (da = *list; da != NULL; da = da->next) {
2993 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2994 da->da_addrlen == alen) {
2995 if (glbl) {
2996 int old_glbl = da->da_gusers;
2997 da->da_gusers = 1;
2998 if (old_glbl)
2999 return 0;
3000 }
3001 da->da_users++;
3002 return 0;
3003 }
3004 }
3005
3006 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3007 if (da == NULL)
3008 return -ENOMEM;
3009 memcpy(da->da_addr, addr, alen);
3010 da->da_addrlen = alen;
3011 da->da_users = 1;
3012 da->da_gusers = glbl ? 1 : 0;
3013 da->next = *list;
3014 *list = da;
3015 (*count)++;
3016 return 0;
3017 }
3018
3019 /**
3020 * dev_unicast_delete - Release secondary unicast address.
3021 * @dev: device
3022 * @addr: address to delete
3023 * @alen: length of @addr
3024 *
3025 * Release reference to a secondary unicast address and remove it
3026 * from the device if the reference count drops to zero.
3027 *
3028 * The caller must hold the rtnl_mutex.
3029 */
3030 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3031 {
3032 int err;
3033
3034 ASSERT_RTNL();
3035
3036 netif_tx_lock_bh(dev);
3037 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3038 if (!err)
3039 __dev_set_rx_mode(dev);
3040 netif_tx_unlock_bh(dev);
3041 return err;
3042 }
3043 EXPORT_SYMBOL(dev_unicast_delete);
3044
3045 /**
3046 * dev_unicast_add - add a secondary unicast address
3047 * @dev: device
3048 * @addr: address to add
3049 * @alen: length of @addr
3050 *
3051 * Add a secondary unicast address to the device or increase
3052 * the reference count if it already exists.
3053 *
3054 * The caller must hold the rtnl_mutex.
3055 */
3056 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3057 {
3058 int err;
3059
3060 ASSERT_RTNL();
3061
3062 netif_tx_lock_bh(dev);
3063 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3064 if (!err)
3065 __dev_set_rx_mode(dev);
3066 netif_tx_unlock_bh(dev);
3067 return err;
3068 }
3069 EXPORT_SYMBOL(dev_unicast_add);
3070
3071 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3072 struct dev_addr_list **from, int *from_count)
3073 {
3074 struct dev_addr_list *da, *next;
3075 int err = 0;
3076
3077 da = *from;
3078 while (da != NULL) {
3079 next = da->next;
3080 if (!da->da_synced) {
3081 err = __dev_addr_add(to, to_count,
3082 da->da_addr, da->da_addrlen, 0);
3083 if (err < 0)
3084 break;
3085 da->da_synced = 1;
3086 da->da_users++;
3087 } else if (da->da_users == 1) {
3088 __dev_addr_delete(to, to_count,
3089 da->da_addr, da->da_addrlen, 0);
3090 __dev_addr_delete(from, from_count,
3091 da->da_addr, da->da_addrlen, 0);
3092 }
3093 da = next;
3094 }
3095 return err;
3096 }
3097
3098 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3099 struct dev_addr_list **from, int *from_count)
3100 {
3101 struct dev_addr_list *da, *next;
3102
3103 da = *from;
3104 while (da != NULL) {
3105 next = da->next;
3106 if (da->da_synced) {
3107 __dev_addr_delete(to, to_count,
3108 da->da_addr, da->da_addrlen, 0);
3109 da->da_synced = 0;
3110 __dev_addr_delete(from, from_count,
3111 da->da_addr, da->da_addrlen, 0);
3112 }
3113 da = next;
3114 }
3115 }
3116
3117 /**
3118 * dev_unicast_sync - Synchronize device's unicast list to another device
3119 * @to: destination device
3120 * @from: source device
3121 *
3122 * Add newly added addresses to the destination device and release
3123 * addresses that have no users left. The source device must be
3124 * locked by netif_tx_lock_bh.
3125 *
3126 * This function is intended to be called from the dev->set_rx_mode
3127 * function of layered software devices.
3128 */
3129 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3130 {
3131 int err = 0;
3132
3133 netif_tx_lock_bh(to);
3134 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3135 &from->uc_list, &from->uc_count);
3136 if (!err)
3137 __dev_set_rx_mode(to);
3138 netif_tx_unlock_bh(to);
3139 return err;
3140 }
3141 EXPORT_SYMBOL(dev_unicast_sync);
3142
3143 /**
3144 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3145 * @to: destination device
3146 * @from: source device
3147 *
3148 * Remove all addresses that were added to the destination device by
3149 * dev_unicast_sync(). This function is intended to be called from the
3150 * dev->stop function of layered software devices.
3151 */
3152 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3153 {
3154 netif_tx_lock_bh(from);
3155 netif_tx_lock_bh(to);
3156
3157 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3158 &from->uc_list, &from->uc_count);
3159 __dev_set_rx_mode(to);
3160
3161 netif_tx_unlock_bh(to);
3162 netif_tx_unlock_bh(from);
3163 }
3164 EXPORT_SYMBOL(dev_unicast_unsync);
3165
3166 static void __dev_addr_discard(struct dev_addr_list **list)
3167 {
3168 struct dev_addr_list *tmp;
3169
3170 while (*list != NULL) {
3171 tmp = *list;
3172 *list = tmp->next;
3173 if (tmp->da_users > tmp->da_gusers)
3174 printk("__dev_addr_discard: address leakage! "
3175 "da_users=%d\n", tmp->da_users);
3176 kfree(tmp);
3177 }
3178 }
3179
3180 static void dev_addr_discard(struct net_device *dev)
3181 {
3182 netif_tx_lock_bh(dev);
3183
3184 __dev_addr_discard(&dev->uc_list);
3185 dev->uc_count = 0;
3186
3187 __dev_addr_discard(&dev->mc_list);
3188 dev->mc_count = 0;
3189
3190 netif_tx_unlock_bh(dev);
3191 }
3192
3193 unsigned dev_get_flags(const struct net_device *dev)
3194 {
3195 unsigned flags;
3196
3197 flags = (dev->flags & ~(IFF_PROMISC |
3198 IFF_ALLMULTI |
3199 IFF_RUNNING |
3200 IFF_LOWER_UP |
3201 IFF_DORMANT)) |
3202 (dev->gflags & (IFF_PROMISC |
3203 IFF_ALLMULTI));
3204
3205 if (netif_running(dev)) {
3206 if (netif_oper_up(dev))
3207 flags |= IFF_RUNNING;
3208 if (netif_carrier_ok(dev))
3209 flags |= IFF_LOWER_UP;
3210 if (netif_dormant(dev))
3211 flags |= IFF_DORMANT;
3212 }
3213
3214 return flags;
3215 }
3216
3217 int dev_change_flags(struct net_device *dev, unsigned flags)
3218 {
3219 int ret, changes;
3220 int old_flags = dev->flags;
3221
3222 ASSERT_RTNL();
3223
3224 /*
3225 * Set the flags on our device.
3226 */
3227
3228 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3229 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3230 IFF_AUTOMEDIA)) |
3231 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3232 IFF_ALLMULTI));
3233
3234 /*
3235 * Load in the correct multicast list now the flags have changed.
3236 */
3237
3238 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3239 dev->change_rx_flags(dev, IFF_MULTICAST);
3240
3241 dev_set_rx_mode(dev);
3242
3243 /*
3244 * Have we downed the interface. We handle IFF_UP ourselves
3245 * according to user attempts to set it, rather than blindly
3246 * setting it.
3247 */
3248
3249 ret = 0;
3250 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3251 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3252
3253 if (!ret)
3254 dev_set_rx_mode(dev);
3255 }
3256
3257 if (dev->flags & IFF_UP &&
3258 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3259 IFF_VOLATILE)))
3260 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3261
3262 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3263 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3264 dev->gflags ^= IFF_PROMISC;
3265 dev_set_promiscuity(dev, inc);
3266 }
3267
3268 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3269 is important. Some (broken) drivers set IFF_PROMISC, when
3270 IFF_ALLMULTI is requested not asking us and not reporting.
3271 */
3272 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3273 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3274 dev->gflags ^= IFF_ALLMULTI;
3275 dev_set_allmulti(dev, inc);
3276 }
3277
3278 /* Exclude state transition flags, already notified */
3279 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3280 if (changes)
3281 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3282
3283 return ret;
3284 }
3285
3286 int dev_set_mtu(struct net_device *dev, int new_mtu)
3287 {
3288 int err;
3289
3290 if (new_mtu == dev->mtu)
3291 return 0;
3292
3293 /* MTU must be positive. */
3294 if (new_mtu < 0)
3295 return -EINVAL;
3296
3297 if (!netif_device_present(dev))
3298 return -ENODEV;
3299
3300 err = 0;
3301 if (dev->change_mtu)
3302 err = dev->change_mtu(dev, new_mtu);
3303 else
3304 dev->mtu = new_mtu;
3305 if (!err && dev->flags & IFF_UP)
3306 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3307 return err;
3308 }
3309
3310 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3311 {
3312 int err;
3313
3314 if (!dev->set_mac_address)
3315 return -EOPNOTSUPP;
3316 if (sa->sa_family != dev->type)
3317 return -EINVAL;
3318 if (!netif_device_present(dev))
3319 return -ENODEV;
3320 err = dev->set_mac_address(dev, sa);
3321 if (!err)
3322 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3323 return err;
3324 }
3325
3326 /*
3327 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3328 */
3329 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3330 {
3331 int err;
3332 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3333
3334 if (!dev)
3335 return -ENODEV;
3336
3337 switch (cmd) {
3338 case SIOCGIFFLAGS: /* Get interface flags */
3339 ifr->ifr_flags = dev_get_flags(dev);
3340 return 0;
3341
3342 case SIOCGIFMETRIC: /* Get the metric on the interface
3343 (currently unused) */
3344 ifr->ifr_metric = 0;
3345 return 0;
3346
3347 case SIOCGIFMTU: /* Get the MTU of a device */
3348 ifr->ifr_mtu = dev->mtu;
3349 return 0;
3350
3351 case SIOCGIFHWADDR:
3352 if (!dev->addr_len)
3353 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3354 else
3355 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3356 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3357 ifr->ifr_hwaddr.sa_family = dev->type;
3358 return 0;
3359
3360 case SIOCGIFSLAVE:
3361 err = -EINVAL;
3362 break;
3363
3364 case SIOCGIFMAP:
3365 ifr->ifr_map.mem_start = dev->mem_start;
3366 ifr->ifr_map.mem_end = dev->mem_end;
3367 ifr->ifr_map.base_addr = dev->base_addr;
3368 ifr->ifr_map.irq = dev->irq;
3369 ifr->ifr_map.dma = dev->dma;
3370 ifr->ifr_map.port = dev->if_port;
3371 return 0;
3372
3373 case SIOCGIFINDEX:
3374 ifr->ifr_ifindex = dev->ifindex;
3375 return 0;
3376
3377 case SIOCGIFTXQLEN:
3378 ifr->ifr_qlen = dev->tx_queue_len;
3379 return 0;
3380
3381 default:
3382 /* dev_ioctl() should ensure this case
3383 * is never reached
3384 */
3385 WARN_ON(1);
3386 err = -EINVAL;
3387 break;
3388
3389 }
3390 return err;
3391 }
3392
3393 /*
3394 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3395 */
3396 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3397 {
3398 int err;
3399 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3400
3401 if (!dev)
3402 return -ENODEV;
3403
3404 switch (cmd) {
3405 case SIOCSIFFLAGS: /* Set interface flags */
3406 return dev_change_flags(dev, ifr->ifr_flags);
3407
3408 case SIOCSIFMETRIC: /* Set the metric on the interface
3409 (currently unused) */
3410 return -EOPNOTSUPP;
3411
3412 case SIOCSIFMTU: /* Set the MTU of a device */
3413 return dev_set_mtu(dev, ifr->ifr_mtu);
3414
3415 case SIOCSIFHWADDR:
3416 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3417
3418 case SIOCSIFHWBROADCAST:
3419 if (ifr->ifr_hwaddr.sa_family != dev->type)
3420 return -EINVAL;
3421 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3422 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3423 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3424 return 0;
3425
3426 case SIOCSIFMAP:
3427 if (dev->set_config) {
3428 if (!netif_device_present(dev))
3429 return -ENODEV;
3430 return dev->set_config(dev, &ifr->ifr_map);
3431 }
3432 return -EOPNOTSUPP;
3433
3434 case SIOCADDMULTI:
3435 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3436 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3437 return -EINVAL;
3438 if (!netif_device_present(dev))
3439 return -ENODEV;
3440 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3441 dev->addr_len, 1);
3442
3443 case SIOCDELMULTI:
3444 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3445 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3446 return -EINVAL;
3447 if (!netif_device_present(dev))
3448 return -ENODEV;
3449 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3450 dev->addr_len, 1);
3451
3452 case SIOCSIFTXQLEN:
3453 if (ifr->ifr_qlen < 0)
3454 return -EINVAL;
3455 dev->tx_queue_len = ifr->ifr_qlen;
3456 return 0;
3457
3458 case SIOCSIFNAME:
3459 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3460 return dev_change_name(dev, ifr->ifr_newname);
3461
3462 /*
3463 * Unknown or private ioctl
3464 */
3465
3466 default:
3467 if ((cmd >= SIOCDEVPRIVATE &&
3468 cmd <= SIOCDEVPRIVATE + 15) ||
3469 cmd == SIOCBONDENSLAVE ||
3470 cmd == SIOCBONDRELEASE ||
3471 cmd == SIOCBONDSETHWADDR ||
3472 cmd == SIOCBONDSLAVEINFOQUERY ||
3473 cmd == SIOCBONDINFOQUERY ||
3474 cmd == SIOCBONDCHANGEACTIVE ||
3475 cmd == SIOCGMIIPHY ||
3476 cmd == SIOCGMIIREG ||
3477 cmd == SIOCSMIIREG ||
3478 cmd == SIOCBRADDIF ||
3479 cmd == SIOCBRDELIF ||
3480 cmd == SIOCWANDEV) {
3481 err = -EOPNOTSUPP;
3482 if (dev->do_ioctl) {
3483 if (netif_device_present(dev))
3484 err = dev->do_ioctl(dev, ifr,
3485 cmd);
3486 else
3487 err = -ENODEV;
3488 }
3489 } else
3490 err = -EINVAL;
3491
3492 }
3493 return err;
3494 }
3495
3496 /*
3497 * This function handles all "interface"-type I/O control requests. The actual
3498 * 'doing' part of this is dev_ifsioc above.
3499 */
3500
3501 /**
3502 * dev_ioctl - network device ioctl
3503 * @net: the applicable net namespace
3504 * @cmd: command to issue
3505 * @arg: pointer to a struct ifreq in user space
3506 *
3507 * Issue ioctl functions to devices. This is normally called by the
3508 * user space syscall interfaces but can sometimes be useful for
3509 * other purposes. The return value is the return from the syscall if
3510 * positive or a negative errno code on error.
3511 */
3512
3513 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3514 {
3515 struct ifreq ifr;
3516 int ret;
3517 char *colon;
3518
3519 /* One special case: SIOCGIFCONF takes ifconf argument
3520 and requires shared lock, because it sleeps writing
3521 to user space.
3522 */
3523
3524 if (cmd == SIOCGIFCONF) {
3525 rtnl_lock();
3526 ret = dev_ifconf(net, (char __user *) arg);
3527 rtnl_unlock();
3528 return ret;
3529 }
3530 if (cmd == SIOCGIFNAME)
3531 return dev_ifname(net, (struct ifreq __user *)arg);
3532
3533 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3534 return -EFAULT;
3535
3536 ifr.ifr_name[IFNAMSIZ-1] = 0;
3537
3538 colon = strchr(ifr.ifr_name, ':');
3539 if (colon)
3540 *colon = 0;
3541
3542 /*
3543 * See which interface the caller is talking about.
3544 */
3545
3546 switch (cmd) {
3547 /*
3548 * These ioctl calls:
3549 * - can be done by all.
3550 * - atomic and do not require locking.
3551 * - return a value
3552 */
3553 case SIOCGIFFLAGS:
3554 case SIOCGIFMETRIC:
3555 case SIOCGIFMTU:
3556 case SIOCGIFHWADDR:
3557 case SIOCGIFSLAVE:
3558 case SIOCGIFMAP:
3559 case SIOCGIFINDEX:
3560 case SIOCGIFTXQLEN:
3561 dev_load(net, ifr.ifr_name);
3562 read_lock(&dev_base_lock);
3563 ret = dev_ifsioc_locked(net, &ifr, cmd);
3564 read_unlock(&dev_base_lock);
3565 if (!ret) {
3566 if (colon)
3567 *colon = ':';
3568 if (copy_to_user(arg, &ifr,
3569 sizeof(struct ifreq)))
3570 ret = -EFAULT;
3571 }
3572 return ret;
3573
3574 case SIOCETHTOOL:
3575 dev_load(net, ifr.ifr_name);
3576 rtnl_lock();
3577 ret = dev_ethtool(net, &ifr);
3578 rtnl_unlock();
3579 if (!ret) {
3580 if (colon)
3581 *colon = ':';
3582 if (copy_to_user(arg, &ifr,
3583 sizeof(struct ifreq)))
3584 ret = -EFAULT;
3585 }
3586 return ret;
3587
3588 /*
3589 * These ioctl calls:
3590 * - require superuser power.
3591 * - require strict serialization.
3592 * - return a value
3593 */
3594 case SIOCGMIIPHY:
3595 case SIOCGMIIREG:
3596 case SIOCSIFNAME:
3597 if (!capable(CAP_NET_ADMIN))
3598 return -EPERM;
3599 dev_load(net, ifr.ifr_name);
3600 rtnl_lock();
3601 ret = dev_ifsioc(net, &ifr, cmd);
3602 rtnl_unlock();
3603 if (!ret) {
3604 if (colon)
3605 *colon = ':';
3606 if (copy_to_user(arg, &ifr,
3607 sizeof(struct ifreq)))
3608 ret = -EFAULT;
3609 }
3610 return ret;
3611
3612 /*
3613 * These ioctl calls:
3614 * - require superuser power.
3615 * - require strict serialization.
3616 * - do not return a value
3617 */
3618 case SIOCSIFFLAGS:
3619 case SIOCSIFMETRIC:
3620 case SIOCSIFMTU:
3621 case SIOCSIFMAP:
3622 case SIOCSIFHWADDR:
3623 case SIOCSIFSLAVE:
3624 case SIOCADDMULTI:
3625 case SIOCDELMULTI:
3626 case SIOCSIFHWBROADCAST:
3627 case SIOCSIFTXQLEN:
3628 case SIOCSMIIREG:
3629 case SIOCBONDENSLAVE:
3630 case SIOCBONDRELEASE:
3631 case SIOCBONDSETHWADDR:
3632 case SIOCBONDCHANGEACTIVE:
3633 case SIOCBRADDIF:
3634 case SIOCBRDELIF:
3635 if (!capable(CAP_NET_ADMIN))
3636 return -EPERM;
3637 /* fall through */
3638 case SIOCBONDSLAVEINFOQUERY:
3639 case SIOCBONDINFOQUERY:
3640 dev_load(net, ifr.ifr_name);
3641 rtnl_lock();
3642 ret = dev_ifsioc(net, &ifr, cmd);
3643 rtnl_unlock();
3644 return ret;
3645
3646 case SIOCGIFMEM:
3647 /* Get the per device memory space. We can add this but
3648 * currently do not support it */
3649 case SIOCSIFMEM:
3650 /* Set the per device memory buffer space.
3651 * Not applicable in our case */
3652 case SIOCSIFLINK:
3653 return -EINVAL;
3654
3655 /*
3656 * Unknown or private ioctl.
3657 */
3658 default:
3659 if (cmd == SIOCWANDEV ||
3660 (cmd >= SIOCDEVPRIVATE &&
3661 cmd <= SIOCDEVPRIVATE + 15)) {
3662 dev_load(net, ifr.ifr_name);
3663 rtnl_lock();
3664 ret = dev_ifsioc(net, &ifr, cmd);
3665 rtnl_unlock();
3666 if (!ret && copy_to_user(arg, &ifr,
3667 sizeof(struct ifreq)))
3668 ret = -EFAULT;
3669 return ret;
3670 }
3671 /* Take care of Wireless Extensions */
3672 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3673 return wext_handle_ioctl(net, &ifr, cmd, arg);
3674 return -EINVAL;
3675 }
3676 }
3677
3678
3679 /**
3680 * dev_new_index - allocate an ifindex
3681 * @net: the applicable net namespace
3682 *
3683 * Returns a suitable unique value for a new device interface
3684 * number. The caller must hold the rtnl semaphore or the
3685 * dev_base_lock to be sure it remains unique.
3686 */
3687 static int dev_new_index(struct net *net)
3688 {
3689 static int ifindex;
3690 for (;;) {
3691 if (++ifindex <= 0)
3692 ifindex = 1;
3693 if (!__dev_get_by_index(net, ifindex))
3694 return ifindex;
3695 }
3696 }
3697
3698 /* Delayed registration/unregisteration */
3699 static DEFINE_SPINLOCK(net_todo_list_lock);
3700 static LIST_HEAD(net_todo_list);
3701
3702 static void net_set_todo(struct net_device *dev)
3703 {
3704 spin_lock(&net_todo_list_lock);
3705 list_add_tail(&dev->todo_list, &net_todo_list);
3706 spin_unlock(&net_todo_list_lock);
3707 }
3708
3709 static void rollback_registered(struct net_device *dev)
3710 {
3711 BUG_ON(dev_boot_phase);
3712 ASSERT_RTNL();
3713
3714 /* Some devices call without registering for initialization unwind. */
3715 if (dev->reg_state == NETREG_UNINITIALIZED) {
3716 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3717 "was registered\n", dev->name, dev);
3718
3719 WARN_ON(1);
3720 return;
3721 }
3722
3723 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3724
3725 /* If device is running, close it first. */
3726 dev_close(dev);
3727
3728 /* And unlink it from device chain. */
3729 unlist_netdevice(dev);
3730
3731 dev->reg_state = NETREG_UNREGISTERING;
3732
3733 synchronize_net();
3734
3735 /* Shutdown queueing discipline. */
3736 dev_shutdown(dev);
3737
3738
3739 /* Notify protocols, that we are about to destroy
3740 this device. They should clean all the things.
3741 */
3742 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3743
3744 /*
3745 * Flush the unicast and multicast chains
3746 */
3747 dev_addr_discard(dev);
3748
3749 if (dev->uninit)
3750 dev->uninit(dev);
3751
3752 /* Notifier chain MUST detach us from master device. */
3753 BUG_TRAP(!dev->master);
3754
3755 /* Remove entries from kobject tree */
3756 netdev_unregister_kobject(dev);
3757
3758 synchronize_net();
3759
3760 dev_put(dev);
3761 }
3762
3763 /**
3764 * register_netdevice - register a network device
3765 * @dev: device to register
3766 *
3767 * Take a completed network device structure and add it to the kernel
3768 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3769 * chain. 0 is returned on success. A negative errno code is returned
3770 * on a failure to set up the device, or if the name is a duplicate.
3771 *
3772 * Callers must hold the rtnl semaphore. You may want
3773 * register_netdev() instead of this.
3774 *
3775 * BUGS:
3776 * The locking appears insufficient to guarantee two parallel registers
3777 * will not get the same name.
3778 */
3779
3780 int register_netdevice(struct net_device *dev)
3781 {
3782 struct hlist_head *head;
3783 struct hlist_node *p;
3784 int ret;
3785 struct net *net;
3786
3787 BUG_ON(dev_boot_phase);
3788 ASSERT_RTNL();
3789
3790 might_sleep();
3791
3792 /* When net_device's are persistent, this will be fatal. */
3793 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3794 BUG_ON(!dev_net(dev));
3795 net = dev_net(dev);
3796
3797 spin_lock_init(&dev->_xmit_lock);
3798 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3799 dev->xmit_lock_owner = -1;
3800
3801 dev->iflink = -1;
3802
3803 /* Init, if this function is available */
3804 if (dev->init) {
3805 ret = dev->init(dev);
3806 if (ret) {
3807 if (ret > 0)
3808 ret = -EIO;
3809 goto out;
3810 }
3811 }
3812
3813 if (!dev_valid_name(dev->name)) {
3814 ret = -EINVAL;
3815 goto err_uninit;
3816 }
3817
3818 dev->ifindex = dev_new_index(net);
3819 if (dev->iflink == -1)
3820 dev->iflink = dev->ifindex;
3821
3822 /* Check for existence of name */
3823 head = dev_name_hash(net, dev->name);
3824 hlist_for_each(p, head) {
3825 struct net_device *d
3826 = hlist_entry(p, struct net_device, name_hlist);
3827 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3828 ret = -EEXIST;
3829 goto err_uninit;
3830 }
3831 }
3832
3833 /* Fix illegal checksum combinations */
3834 if ((dev->features & NETIF_F_HW_CSUM) &&
3835 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3836 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3837 dev->name);
3838 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3839 }
3840
3841 if ((dev->features & NETIF_F_NO_CSUM) &&
3842 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3843 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3844 dev->name);
3845 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3846 }
3847
3848
3849 /* Fix illegal SG+CSUM combinations. */
3850 if ((dev->features & NETIF_F_SG) &&
3851 !(dev->features & NETIF_F_ALL_CSUM)) {
3852 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3853 dev->name);
3854 dev->features &= ~NETIF_F_SG;
3855 }
3856
3857 /* TSO requires that SG is present as well. */
3858 if ((dev->features & NETIF_F_TSO) &&
3859 !(dev->features & NETIF_F_SG)) {
3860 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3861 dev->name);
3862 dev->features &= ~NETIF_F_TSO;
3863 }
3864 if (dev->features & NETIF_F_UFO) {
3865 if (!(dev->features & NETIF_F_HW_CSUM)) {
3866 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3867 "NETIF_F_HW_CSUM feature.\n",
3868 dev->name);
3869 dev->features &= ~NETIF_F_UFO;
3870 }
3871 if (!(dev->features & NETIF_F_SG)) {
3872 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3873 "NETIF_F_SG feature.\n",
3874 dev->name);
3875 dev->features &= ~NETIF_F_UFO;
3876 }
3877 }
3878
3879 netdev_initialize_kobject(dev);
3880 ret = netdev_register_kobject(dev);
3881 if (ret)
3882 goto err_uninit;
3883 dev->reg_state = NETREG_REGISTERED;
3884
3885 /*
3886 * Default initial state at registry is that the
3887 * device is present.
3888 */
3889
3890 set_bit(__LINK_STATE_PRESENT, &dev->state);
3891
3892 dev_init_scheduler(dev);
3893 dev_hold(dev);
3894 list_netdevice(dev);
3895
3896 /* Notify protocols, that a new device appeared. */
3897 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3898 ret = notifier_to_errno(ret);
3899 if (ret) {
3900 rollback_registered(dev);
3901 dev->reg_state = NETREG_UNREGISTERED;
3902 }
3903
3904 out:
3905 return ret;
3906
3907 err_uninit:
3908 if (dev->uninit)
3909 dev->uninit(dev);
3910 goto out;
3911 }
3912
3913 /**
3914 * register_netdev - register a network device
3915 * @dev: device to register
3916 *
3917 * Take a completed network device structure and add it to the kernel
3918 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3919 * chain. 0 is returned on success. A negative errno code is returned
3920 * on a failure to set up the device, or if the name is a duplicate.
3921 *
3922 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3923 * and expands the device name if you passed a format string to
3924 * alloc_netdev.
3925 */
3926 int register_netdev(struct net_device *dev)
3927 {
3928 int err;
3929
3930 rtnl_lock();
3931
3932 /*
3933 * If the name is a format string the caller wants us to do a
3934 * name allocation.
3935 */
3936 if (strchr(dev->name, '%')) {
3937 err = dev_alloc_name(dev, dev->name);
3938 if (err < 0)
3939 goto out;
3940 }
3941
3942 err = register_netdevice(dev);
3943 out:
3944 rtnl_unlock();
3945 return err;
3946 }
3947 EXPORT_SYMBOL(register_netdev);
3948
3949 /*
3950 * netdev_wait_allrefs - wait until all references are gone.
3951 *
3952 * This is called when unregistering network devices.
3953 *
3954 * Any protocol or device that holds a reference should register
3955 * for netdevice notification, and cleanup and put back the
3956 * reference if they receive an UNREGISTER event.
3957 * We can get stuck here if buggy protocols don't correctly
3958 * call dev_put.
3959 */
3960 static void netdev_wait_allrefs(struct net_device *dev)
3961 {
3962 unsigned long rebroadcast_time, warning_time;
3963
3964 rebroadcast_time = warning_time = jiffies;
3965 while (atomic_read(&dev->refcnt) != 0) {
3966 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3967 rtnl_lock();
3968
3969 /* Rebroadcast unregister notification */
3970 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3971
3972 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3973 &dev->state)) {
3974 /* We must not have linkwatch events
3975 * pending on unregister. If this
3976 * happens, we simply run the queue
3977 * unscheduled, resulting in a noop
3978 * for this device.
3979 */
3980 linkwatch_run_queue();
3981 }
3982
3983 __rtnl_unlock();
3984
3985 rebroadcast_time = jiffies;
3986 }
3987
3988 msleep(250);
3989
3990 if (time_after(jiffies, warning_time + 10 * HZ)) {
3991 printk(KERN_EMERG "unregister_netdevice: "
3992 "waiting for %s to become free. Usage "
3993 "count = %d\n",
3994 dev->name, atomic_read(&dev->refcnt));
3995 warning_time = jiffies;
3996 }
3997 }
3998 }
3999
4000 /* The sequence is:
4001 *
4002 * rtnl_lock();
4003 * ...
4004 * register_netdevice(x1);
4005 * register_netdevice(x2);
4006 * ...
4007 * unregister_netdevice(y1);
4008 * unregister_netdevice(y2);
4009 * ...
4010 * rtnl_unlock();
4011 * free_netdev(y1);
4012 * free_netdev(y2);
4013 *
4014 * We are invoked by rtnl_unlock() after it drops the semaphore.
4015 * This allows us to deal with problems:
4016 * 1) We can delete sysfs objects which invoke hotplug
4017 * without deadlocking with linkwatch via keventd.
4018 * 2) Since we run with the RTNL semaphore not held, we can sleep
4019 * safely in order to wait for the netdev refcnt to drop to zero.
4020 */
4021 static DEFINE_MUTEX(net_todo_run_mutex);
4022 void netdev_run_todo(void)
4023 {
4024 struct list_head list;
4025
4026 /* Need to guard against multiple cpu's getting out of order. */
4027 mutex_lock(&net_todo_run_mutex);
4028
4029 /* Not safe to do outside the semaphore. We must not return
4030 * until all unregister events invoked by the local processor
4031 * have been completed (either by this todo run, or one on
4032 * another cpu).
4033 */
4034 if (list_empty(&net_todo_list))
4035 goto out;
4036
4037 /* Snapshot list, allow later requests */
4038 spin_lock(&net_todo_list_lock);
4039 list_replace_init(&net_todo_list, &list);
4040 spin_unlock(&net_todo_list_lock);
4041
4042 while (!list_empty(&list)) {
4043 struct net_device *dev
4044 = list_entry(list.next, struct net_device, todo_list);
4045 list_del(&dev->todo_list);
4046
4047 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4048 printk(KERN_ERR "network todo '%s' but state %d\n",
4049 dev->name, dev->reg_state);
4050 dump_stack();
4051 continue;
4052 }
4053
4054 dev->reg_state = NETREG_UNREGISTERED;
4055
4056 netdev_wait_allrefs(dev);
4057
4058 /* paranoia */
4059 BUG_ON(atomic_read(&dev->refcnt));
4060 BUG_TRAP(!dev->ip_ptr);
4061 BUG_TRAP(!dev->ip6_ptr);
4062 BUG_TRAP(!dev->dn_ptr);
4063
4064 if (dev->destructor)
4065 dev->destructor(dev);
4066
4067 /* Free network device */
4068 kobject_put(&dev->dev.kobj);
4069 }
4070
4071 out:
4072 mutex_unlock(&net_todo_run_mutex);
4073 }
4074
4075 static struct net_device_stats *internal_stats(struct net_device *dev)
4076 {
4077 return &dev->stats;
4078 }
4079
4080 static void netdev_init_one_queue(struct net_device *dev,
4081 struct netdev_queue *queue)
4082 {
4083 spin_lock_init(&queue->lock);
4084 queue->dev = dev;
4085 }
4086
4087 static void netdev_init_queues(struct net_device *dev)
4088 {
4089 netdev_init_one_queue(dev, &dev->rx_queue);
4090 netdev_init_one_queue(dev, &dev->tx_queue);
4091 }
4092
4093 /**
4094 * alloc_netdev_mq - allocate network device
4095 * @sizeof_priv: size of private data to allocate space for
4096 * @name: device name format string
4097 * @setup: callback to initialize device
4098 * @queue_count: the number of subqueues to allocate
4099 *
4100 * Allocates a struct net_device with private data area for driver use
4101 * and performs basic initialization. Also allocates subquue structs
4102 * for each queue on the device at the end of the netdevice.
4103 */
4104 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4105 void (*setup)(struct net_device *), unsigned int queue_count)
4106 {
4107 void *p;
4108 struct net_device *dev;
4109 int alloc_size;
4110
4111 BUG_ON(strlen(name) >= sizeof(dev->name));
4112
4113 alloc_size = sizeof(struct net_device) +
4114 sizeof(struct net_device_subqueue) * (queue_count - 1);
4115 if (sizeof_priv) {
4116 /* ensure 32-byte alignment of private area */
4117 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4118 alloc_size += sizeof_priv;
4119 }
4120 /* ensure 32-byte alignment of whole construct */
4121 alloc_size += NETDEV_ALIGN_CONST;
4122
4123 p = kzalloc(alloc_size, GFP_KERNEL);
4124 if (!p) {
4125 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4126 return NULL;
4127 }
4128
4129 dev = (struct net_device *)
4130 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4131 dev->padded = (char *)dev - (char *)p;
4132 dev_net_set(dev, &init_net);
4133
4134 if (sizeof_priv) {
4135 dev->priv = ((char *)dev +
4136 ((sizeof(struct net_device) +
4137 (sizeof(struct net_device_subqueue) *
4138 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4139 & ~NETDEV_ALIGN_CONST));
4140 }
4141
4142 dev->egress_subqueue_count = queue_count;
4143 dev->gso_max_size = GSO_MAX_SIZE;
4144
4145 netdev_init_queues(dev);
4146
4147 dev->get_stats = internal_stats;
4148 netpoll_netdev_init(dev);
4149 setup(dev);
4150 strcpy(dev->name, name);
4151 return dev;
4152 }
4153 EXPORT_SYMBOL(alloc_netdev_mq);
4154
4155 /**
4156 * free_netdev - free network device
4157 * @dev: device
4158 *
4159 * This function does the last stage of destroying an allocated device
4160 * interface. The reference to the device object is released.
4161 * If this is the last reference then it will be freed.
4162 */
4163 void free_netdev(struct net_device *dev)
4164 {
4165 release_net(dev_net(dev));
4166
4167 /* Compatibility with error handling in drivers */
4168 if (dev->reg_state == NETREG_UNINITIALIZED) {
4169 kfree((char *)dev - dev->padded);
4170 return;
4171 }
4172
4173 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4174 dev->reg_state = NETREG_RELEASED;
4175
4176 /* will free via device release */
4177 put_device(&dev->dev);
4178 }
4179
4180 /* Synchronize with packet receive processing. */
4181 void synchronize_net(void)
4182 {
4183 might_sleep();
4184 synchronize_rcu();
4185 }
4186
4187 /**
4188 * unregister_netdevice - remove device from the kernel
4189 * @dev: device
4190 *
4191 * This function shuts down a device interface and removes it
4192 * from the kernel tables.
4193 *
4194 * Callers must hold the rtnl semaphore. You may want
4195 * unregister_netdev() instead of this.
4196 */
4197
4198 void unregister_netdevice(struct net_device *dev)
4199 {
4200 ASSERT_RTNL();
4201
4202 rollback_registered(dev);
4203 /* Finish processing unregister after unlock */
4204 net_set_todo(dev);
4205 }
4206
4207 /**
4208 * unregister_netdev - remove device from the kernel
4209 * @dev: device
4210 *
4211 * This function shuts down a device interface and removes it
4212 * from the kernel tables.
4213 *
4214 * This is just a wrapper for unregister_netdevice that takes
4215 * the rtnl semaphore. In general you want to use this and not
4216 * unregister_netdevice.
4217 */
4218 void unregister_netdev(struct net_device *dev)
4219 {
4220 rtnl_lock();
4221 unregister_netdevice(dev);
4222 rtnl_unlock();
4223 }
4224
4225 EXPORT_SYMBOL(unregister_netdev);
4226
4227 /**
4228 * dev_change_net_namespace - move device to different nethost namespace
4229 * @dev: device
4230 * @net: network namespace
4231 * @pat: If not NULL name pattern to try if the current device name
4232 * is already taken in the destination network namespace.
4233 *
4234 * This function shuts down a device interface and moves it
4235 * to a new network namespace. On success 0 is returned, on
4236 * a failure a netagive errno code is returned.
4237 *
4238 * Callers must hold the rtnl semaphore.
4239 */
4240
4241 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4242 {
4243 char buf[IFNAMSIZ];
4244 const char *destname;
4245 int err;
4246
4247 ASSERT_RTNL();
4248
4249 /* Don't allow namespace local devices to be moved. */
4250 err = -EINVAL;
4251 if (dev->features & NETIF_F_NETNS_LOCAL)
4252 goto out;
4253
4254 /* Ensure the device has been registrered */
4255 err = -EINVAL;
4256 if (dev->reg_state != NETREG_REGISTERED)
4257 goto out;
4258
4259 /* Get out if there is nothing todo */
4260 err = 0;
4261 if (net_eq(dev_net(dev), net))
4262 goto out;
4263
4264 /* Pick the destination device name, and ensure
4265 * we can use it in the destination network namespace.
4266 */
4267 err = -EEXIST;
4268 destname = dev->name;
4269 if (__dev_get_by_name(net, destname)) {
4270 /* We get here if we can't use the current device name */
4271 if (!pat)
4272 goto out;
4273 if (!dev_valid_name(pat))
4274 goto out;
4275 if (strchr(pat, '%')) {
4276 if (__dev_alloc_name(net, pat, buf) < 0)
4277 goto out;
4278 destname = buf;
4279 } else
4280 destname = pat;
4281 if (__dev_get_by_name(net, destname))
4282 goto out;
4283 }
4284
4285 /*
4286 * And now a mini version of register_netdevice unregister_netdevice.
4287 */
4288
4289 /* If device is running close it first. */
4290 dev_close(dev);
4291
4292 /* And unlink it from device chain */
4293 err = -ENODEV;
4294 unlist_netdevice(dev);
4295
4296 synchronize_net();
4297
4298 /* Shutdown queueing discipline. */
4299 dev_shutdown(dev);
4300
4301 /* Notify protocols, that we are about to destroy
4302 this device. They should clean all the things.
4303 */
4304 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4305
4306 /*
4307 * Flush the unicast and multicast chains
4308 */
4309 dev_addr_discard(dev);
4310
4311 /* Actually switch the network namespace */
4312 dev_net_set(dev, net);
4313
4314 /* Assign the new device name */
4315 if (destname != dev->name)
4316 strcpy(dev->name, destname);
4317
4318 /* If there is an ifindex conflict assign a new one */
4319 if (__dev_get_by_index(net, dev->ifindex)) {
4320 int iflink = (dev->iflink == dev->ifindex);
4321 dev->ifindex = dev_new_index(net);
4322 if (iflink)
4323 dev->iflink = dev->ifindex;
4324 }
4325
4326 /* Fixup kobjects */
4327 netdev_unregister_kobject(dev);
4328 err = netdev_register_kobject(dev);
4329 WARN_ON(err);
4330
4331 /* Add the device back in the hashes */
4332 list_netdevice(dev);
4333
4334 /* Notify protocols, that a new device appeared. */
4335 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4336
4337 synchronize_net();
4338 err = 0;
4339 out:
4340 return err;
4341 }
4342
4343 static int dev_cpu_callback(struct notifier_block *nfb,
4344 unsigned long action,
4345 void *ocpu)
4346 {
4347 struct sk_buff **list_skb;
4348 struct netdev_queue **list_net;
4349 struct sk_buff *skb;
4350 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4351 struct softnet_data *sd, *oldsd;
4352
4353 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4354 return NOTIFY_OK;
4355
4356 local_irq_disable();
4357 cpu = smp_processor_id();
4358 sd = &per_cpu(softnet_data, cpu);
4359 oldsd = &per_cpu(softnet_data, oldcpu);
4360
4361 /* Find end of our completion_queue. */
4362 list_skb = &sd->completion_queue;
4363 while (*list_skb)
4364 list_skb = &(*list_skb)->next;
4365 /* Append completion queue from offline CPU. */
4366 *list_skb = oldsd->completion_queue;
4367 oldsd->completion_queue = NULL;
4368
4369 /* Find end of our output_queue. */
4370 list_net = &sd->output_queue;
4371 while (*list_net)
4372 list_net = &(*list_net)->next_sched;
4373 /* Append output queue from offline CPU. */
4374 *list_net = oldsd->output_queue;
4375 oldsd->output_queue = NULL;
4376
4377 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4378 local_irq_enable();
4379
4380 /* Process offline CPU's input_pkt_queue */
4381 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4382 netif_rx(skb);
4383
4384 return NOTIFY_OK;
4385 }
4386
4387 #ifdef CONFIG_NET_DMA
4388 /**
4389 * net_dma_rebalance - try to maintain one DMA channel per CPU
4390 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4391 *
4392 * This is called when the number of channels allocated to the net_dma client
4393 * changes. The net_dma client tries to have one DMA channel per CPU.
4394 */
4395
4396 static void net_dma_rebalance(struct net_dma *net_dma)
4397 {
4398 unsigned int cpu, i, n, chan_idx;
4399 struct dma_chan *chan;
4400
4401 if (cpus_empty(net_dma->channel_mask)) {
4402 for_each_online_cpu(cpu)
4403 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4404 return;
4405 }
4406
4407 i = 0;
4408 cpu = first_cpu(cpu_online_map);
4409
4410 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4411 chan = net_dma->channels[chan_idx];
4412
4413 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4414 + (i < (num_online_cpus() %
4415 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4416
4417 while(n) {
4418 per_cpu(softnet_data, cpu).net_dma = chan;
4419 cpu = next_cpu(cpu, cpu_online_map);
4420 n--;
4421 }
4422 i++;
4423 }
4424 }
4425
4426 /**
4427 * netdev_dma_event - event callback for the net_dma_client
4428 * @client: should always be net_dma_client
4429 * @chan: DMA channel for the event
4430 * @state: DMA state to be handled
4431 */
4432 static enum dma_state_client
4433 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4434 enum dma_state state)
4435 {
4436 int i, found = 0, pos = -1;
4437 struct net_dma *net_dma =
4438 container_of(client, struct net_dma, client);
4439 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4440
4441 spin_lock(&net_dma->lock);
4442 switch (state) {
4443 case DMA_RESOURCE_AVAILABLE:
4444 for (i = 0; i < nr_cpu_ids; i++)
4445 if (net_dma->channels[i] == chan) {
4446 found = 1;
4447 break;
4448 } else if (net_dma->channels[i] == NULL && pos < 0)
4449 pos = i;
4450
4451 if (!found && pos >= 0) {
4452 ack = DMA_ACK;
4453 net_dma->channels[pos] = chan;
4454 cpu_set(pos, net_dma->channel_mask);
4455 net_dma_rebalance(net_dma);
4456 }
4457 break;
4458 case DMA_RESOURCE_REMOVED:
4459 for (i = 0; i < nr_cpu_ids; i++)
4460 if (net_dma->channels[i] == chan) {
4461 found = 1;
4462 pos = i;
4463 break;
4464 }
4465
4466 if (found) {
4467 ack = DMA_ACK;
4468 cpu_clear(pos, net_dma->channel_mask);
4469 net_dma->channels[i] = NULL;
4470 net_dma_rebalance(net_dma);
4471 }
4472 break;
4473 default:
4474 break;
4475 }
4476 spin_unlock(&net_dma->lock);
4477
4478 return ack;
4479 }
4480
4481 /**
4482 * netdev_dma_regiser - register the networking subsystem as a DMA client
4483 */
4484 static int __init netdev_dma_register(void)
4485 {
4486 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4487 GFP_KERNEL);
4488 if (unlikely(!net_dma.channels)) {
4489 printk(KERN_NOTICE
4490 "netdev_dma: no memory for net_dma.channels\n");
4491 return -ENOMEM;
4492 }
4493 spin_lock_init(&net_dma.lock);
4494 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4495 dma_async_client_register(&net_dma.client);
4496 dma_async_client_chan_request(&net_dma.client);
4497 return 0;
4498 }
4499
4500 #else
4501 static int __init netdev_dma_register(void) { return -ENODEV; }
4502 #endif /* CONFIG_NET_DMA */
4503
4504 /**
4505 * netdev_compute_feature - compute conjunction of two feature sets
4506 * @all: first feature set
4507 * @one: second feature set
4508 *
4509 * Computes a new feature set after adding a device with feature set
4510 * @one to the master device with current feature set @all. Returns
4511 * the new feature set.
4512 */
4513 int netdev_compute_features(unsigned long all, unsigned long one)
4514 {
4515 /* if device needs checksumming, downgrade to hw checksumming */
4516 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4517 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4518
4519 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4520 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4521 all ^= NETIF_F_HW_CSUM
4522 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4523
4524 if (one & NETIF_F_GSO)
4525 one |= NETIF_F_GSO_SOFTWARE;
4526 one |= NETIF_F_GSO;
4527
4528 /* If even one device supports robust GSO, enable it for all. */
4529 if (one & NETIF_F_GSO_ROBUST)
4530 all |= NETIF_F_GSO_ROBUST;
4531
4532 all &= one | NETIF_F_LLTX;
4533
4534 if (!(all & NETIF_F_ALL_CSUM))
4535 all &= ~NETIF_F_SG;
4536 if (!(all & NETIF_F_SG))
4537 all &= ~NETIF_F_GSO_MASK;
4538
4539 return all;
4540 }
4541 EXPORT_SYMBOL(netdev_compute_features);
4542
4543 static struct hlist_head *netdev_create_hash(void)
4544 {
4545 int i;
4546 struct hlist_head *hash;
4547
4548 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4549 if (hash != NULL)
4550 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4551 INIT_HLIST_HEAD(&hash[i]);
4552
4553 return hash;
4554 }
4555
4556 /* Initialize per network namespace state */
4557 static int __net_init netdev_init(struct net *net)
4558 {
4559 INIT_LIST_HEAD(&net->dev_base_head);
4560
4561 net->dev_name_head = netdev_create_hash();
4562 if (net->dev_name_head == NULL)
4563 goto err_name;
4564
4565 net->dev_index_head = netdev_create_hash();
4566 if (net->dev_index_head == NULL)
4567 goto err_idx;
4568
4569 return 0;
4570
4571 err_idx:
4572 kfree(net->dev_name_head);
4573 err_name:
4574 return -ENOMEM;
4575 }
4576
4577 static void __net_exit netdev_exit(struct net *net)
4578 {
4579 kfree(net->dev_name_head);
4580 kfree(net->dev_index_head);
4581 }
4582
4583 static struct pernet_operations __net_initdata netdev_net_ops = {
4584 .init = netdev_init,
4585 .exit = netdev_exit,
4586 };
4587
4588 static void __net_exit default_device_exit(struct net *net)
4589 {
4590 struct net_device *dev, *next;
4591 /*
4592 * Push all migratable of the network devices back to the
4593 * initial network namespace
4594 */
4595 rtnl_lock();
4596 for_each_netdev_safe(net, dev, next) {
4597 int err;
4598 char fb_name[IFNAMSIZ];
4599
4600 /* Ignore unmoveable devices (i.e. loopback) */
4601 if (dev->features & NETIF_F_NETNS_LOCAL)
4602 continue;
4603
4604 /* Push remaing network devices to init_net */
4605 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4606 err = dev_change_net_namespace(dev, &init_net, fb_name);
4607 if (err) {
4608 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4609 __func__, dev->name, err);
4610 BUG();
4611 }
4612 }
4613 rtnl_unlock();
4614 }
4615
4616 static struct pernet_operations __net_initdata default_device_ops = {
4617 .exit = default_device_exit,
4618 };
4619
4620 /*
4621 * Initialize the DEV module. At boot time this walks the device list and
4622 * unhooks any devices that fail to initialise (normally hardware not
4623 * present) and leaves us with a valid list of present and active devices.
4624 *
4625 */
4626
4627 /*
4628 * This is called single threaded during boot, so no need
4629 * to take the rtnl semaphore.
4630 */
4631 static int __init net_dev_init(void)
4632 {
4633 int i, rc = -ENOMEM;
4634
4635 BUG_ON(!dev_boot_phase);
4636
4637 if (dev_proc_init())
4638 goto out;
4639
4640 if (netdev_kobject_init())
4641 goto out;
4642
4643 INIT_LIST_HEAD(&ptype_all);
4644 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4645 INIT_LIST_HEAD(&ptype_base[i]);
4646
4647 if (register_pernet_subsys(&netdev_net_ops))
4648 goto out;
4649
4650 if (register_pernet_device(&default_device_ops))
4651 goto out;
4652
4653 /*
4654 * Initialise the packet receive queues.
4655 */
4656
4657 for_each_possible_cpu(i) {
4658 struct softnet_data *queue;
4659
4660 queue = &per_cpu(softnet_data, i);
4661 skb_queue_head_init(&queue->input_pkt_queue);
4662 queue->completion_queue = NULL;
4663 INIT_LIST_HEAD(&queue->poll_list);
4664
4665 queue->backlog.poll = process_backlog;
4666 queue->backlog.weight = weight_p;
4667 }
4668
4669 netdev_dma_register();
4670
4671 dev_boot_phase = 0;
4672
4673 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4674 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4675
4676 hotcpu_notifier(dev_cpu_callback, 0);
4677 dst_init();
4678 dev_mcast_init();
4679 rc = 0;
4680 out:
4681 return rc;
4682 }
4683
4684 subsys_initcall(net_dev_init);
4685
4686 EXPORT_SYMBOL(__dev_get_by_index);
4687 EXPORT_SYMBOL(__dev_get_by_name);
4688 EXPORT_SYMBOL(__dev_remove_pack);
4689 EXPORT_SYMBOL(dev_valid_name);
4690 EXPORT_SYMBOL(dev_add_pack);
4691 EXPORT_SYMBOL(dev_alloc_name);
4692 EXPORT_SYMBOL(dev_close);
4693 EXPORT_SYMBOL(dev_get_by_flags);
4694 EXPORT_SYMBOL(dev_get_by_index);
4695 EXPORT_SYMBOL(dev_get_by_name);
4696 EXPORT_SYMBOL(dev_open);
4697 EXPORT_SYMBOL(dev_queue_xmit);
4698 EXPORT_SYMBOL(dev_remove_pack);
4699 EXPORT_SYMBOL(dev_set_allmulti);
4700 EXPORT_SYMBOL(dev_set_promiscuity);
4701 EXPORT_SYMBOL(dev_change_flags);
4702 EXPORT_SYMBOL(dev_set_mtu);
4703 EXPORT_SYMBOL(dev_set_mac_address);
4704 EXPORT_SYMBOL(free_netdev);
4705 EXPORT_SYMBOL(netdev_boot_setup_check);
4706 EXPORT_SYMBOL(netdev_set_master);
4707 EXPORT_SYMBOL(netdev_state_change);
4708 EXPORT_SYMBOL(netif_receive_skb);
4709 EXPORT_SYMBOL(netif_rx);
4710 EXPORT_SYMBOL(register_gifconf);
4711 EXPORT_SYMBOL(register_netdevice);
4712 EXPORT_SYMBOL(register_netdevice_notifier);
4713 EXPORT_SYMBOL(skb_checksum_help);
4714 EXPORT_SYMBOL(synchronize_net);
4715 EXPORT_SYMBOL(unregister_netdevice);
4716 EXPORT_SYMBOL(unregister_netdevice_notifier);
4717 EXPORT_SYMBOL(net_enable_timestamp);
4718 EXPORT_SYMBOL(net_disable_timestamp);
4719 EXPORT_SYMBOL(dev_get_flags);
4720
4721 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4722 EXPORT_SYMBOL(br_handle_frame_hook);
4723 EXPORT_SYMBOL(br_fdb_get_hook);
4724 EXPORT_SYMBOL(br_fdb_put_hook);
4725 #endif
4726
4727 #ifdef CONFIG_KMOD
4728 EXPORT_SYMBOL(dev_load);
4729 #endif
4730
4731 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.127706 seconds and 6 git commands to generate.