Merge branch 'uprobes/core' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_alloc_name_ns(struct net *net,
963 struct net_device *dev,
964 const char *name)
965 {
966 char buf[IFNAMSIZ];
967 int ret;
968
969 ret = __dev_alloc_name(net, name, buf);
970 if (ret >= 0)
971 strlcpy(dev->name, buf, IFNAMSIZ);
972 return ret;
973 }
974
975 static int dev_get_valid_name(struct net *net,
976 struct net_device *dev,
977 const char *name)
978 {
979 BUG_ON(!net);
980
981 if (!dev_valid_name(name))
982 return -EINVAL;
983
984 if (strchr(name, '%'))
985 return dev_alloc_name_ns(net, dev, name);
986 else if (__dev_get_by_name(net, name))
987 return -EEXIST;
988 else if (dev->name != name)
989 strlcpy(dev->name, name, IFNAMSIZ);
990
991 return 0;
992 }
993
994 /**
995 * dev_change_name - change name of a device
996 * @dev: device
997 * @newname: name (or format string) must be at least IFNAMSIZ
998 *
999 * Change name of a device, can pass format strings "eth%d".
1000 * for wildcarding.
1001 */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 char oldname[IFNAMSIZ];
1005 int err = 0;
1006 int ret;
1007 struct net *net;
1008
1009 ASSERT_RTNL();
1010 BUG_ON(!dev_net(dev));
1011
1012 net = dev_net(dev);
1013 if (dev->flags & IFF_UP)
1014 return -EBUSY;
1015
1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 return 0;
1018
1019 memcpy(oldname, dev->name, IFNAMSIZ);
1020
1021 err = dev_get_valid_name(net, dev, newname);
1022 if (err < 0)
1023 return err;
1024
1025 rollback:
1026 ret = device_rename(&dev->dev, dev->name);
1027 if (ret) {
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 return ret;
1030 }
1031
1032 write_lock_bh(&dev_base_lock);
1033 hlist_del_rcu(&dev->name_hlist);
1034 write_unlock_bh(&dev_base_lock);
1035
1036 synchronize_rcu();
1037
1038 write_lock_bh(&dev_base_lock);
1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 write_unlock_bh(&dev_base_lock);
1041
1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 ret = notifier_to_errno(ret);
1044
1045 if (ret) {
1046 /* err >= 0 after dev_alloc_name() or stores the first errno */
1047 if (err >= 0) {
1048 err = ret;
1049 memcpy(dev->name, oldname, IFNAMSIZ);
1050 goto rollback;
1051 } else {
1052 pr_err("%s: name change rollback failed: %d\n",
1053 dev->name, ret);
1054 }
1055 }
1056
1057 return err;
1058 }
1059
1060 /**
1061 * dev_set_alias - change ifalias of a device
1062 * @dev: device
1063 * @alias: name up to IFALIASZ
1064 * @len: limit of bytes to copy from info
1065 *
1066 * Set ifalias for a device,
1067 */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 char *new_ifalias;
1071
1072 ASSERT_RTNL();
1073
1074 if (len >= IFALIASZ)
1075 return -EINVAL;
1076
1077 if (!len) {
1078 if (dev->ifalias) {
1079 kfree(dev->ifalias);
1080 dev->ifalias = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 if (!new_ifalias)
1087 return -ENOMEM;
1088 dev->ifalias = new_ifalias;
1089
1090 strlcpy(dev->ifalias, alias, len+1);
1091 return len;
1092 }
1093
1094
1095 /**
1096 * netdev_features_change - device changes features
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed features.
1100 */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106
1107 /**
1108 * netdev_state_change - device changes state
1109 * @dev: device to cause notification
1110 *
1111 * Called to indicate a device has changed state. This function calls
1112 * the notifier chains for netdev_chain and sends a NEWLINK message
1113 * to the routing socket.
1114 */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 if (dev->flags & IFF_UP) {
1118 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 }
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123
1124 /**
1125 * netdev_notify_peers - notify network peers about existence of @dev
1126 * @dev: network device
1127 *
1128 * Generate traffic such that interested network peers are aware of
1129 * @dev, such as by generating a gratuitous ARP. This may be used when
1130 * a device wants to inform the rest of the network about some sort of
1131 * reconfiguration such as a failover event or virtual machine
1132 * migration.
1133 */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 rtnl_lock();
1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141
1142 /**
1143 * dev_load - load a network module
1144 * @net: the applicable net namespace
1145 * @name: name of interface
1146 *
1147 * If a network interface is not present and the process has suitable
1148 * privileges this function loads the module. If module loading is not
1149 * available in this kernel then it becomes a nop.
1150 */
1151
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 struct net_device *dev;
1155 int no_module;
1156
1157 rcu_read_lock();
1158 dev = dev_get_by_name_rcu(net, name);
1159 rcu_read_unlock();
1160
1161 no_module = !dev;
1162 if (no_module && capable(CAP_NET_ADMIN))
1163 no_module = request_module("netdev-%s", name);
1164 if (no_module && capable(CAP_SYS_MODULE)) {
1165 if (!request_module("%s", name))
1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 name);
1168 }
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 const struct net_device_ops *ops = dev->netdev_ops;
1175 int ret;
1176
1177 ASSERT_RTNL();
1178
1179 if (!netif_device_present(dev))
1180 return -ENODEV;
1181
1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 ret = notifier_to_errno(ret);
1184 if (ret)
1185 return ret;
1186
1187 set_bit(__LINK_STATE_START, &dev->state);
1188
1189 if (ops->ndo_validate_addr)
1190 ret = ops->ndo_validate_addr(dev);
1191
1192 if (!ret && ops->ndo_open)
1193 ret = ops->ndo_open(dev);
1194
1195 if (ret)
1196 clear_bit(__LINK_STATE_START, &dev->state);
1197 else {
1198 dev->flags |= IFF_UP;
1199 net_dmaengine_get();
1200 dev_set_rx_mode(dev);
1201 dev_activate(dev);
1202 add_device_randomness(dev->dev_addr, dev->addr_len);
1203 }
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * dev_open - prepare an interface for use.
1210 * @dev: device to open
1211 *
1212 * Takes a device from down to up state. The device's private open
1213 * function is invoked and then the multicast lists are loaded. Finally
1214 * the device is moved into the up state and a %NETDEV_UP message is
1215 * sent to the netdev notifier chain.
1216 *
1217 * Calling this function on an active interface is a nop. On a failure
1218 * a negative errno code is returned.
1219 */
1220 int dev_open(struct net_device *dev)
1221 {
1222 int ret;
1223
1224 if (dev->flags & IFF_UP)
1225 return 0;
1226
1227 ret = __dev_open(dev);
1228 if (ret < 0)
1229 return ret;
1230
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 call_netdevice_notifiers(NETDEV_UP, dev);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 struct net_device *dev;
1241
1242 ASSERT_RTNL();
1243 might_sleep();
1244
1245 list_for_each_entry(dev, head, unreg_list) {
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 dev->flags &= ~IFF_UP;
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 if (dev->flags & IFF_UP) {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329 list_del(&single);
1330 }
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334
1335
1336 /**
1337 * dev_disable_lro - disable Large Receive Offload on a device
1338 * @dev: device
1339 *
1340 * Disable Large Receive Offload (LRO) on a net device. Must be
1341 * called under RTNL. This is needed if received packets may be
1342 * forwarded to another interface.
1343 */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 /*
1347 * If we're trying to disable lro on a vlan device
1348 * use the underlying physical device instead
1349 */
1350 if (is_vlan_dev(dev))
1351 dev = vlan_dev_real_dev(dev);
1352
1353 dev->wanted_features &= ~NETIF_F_LRO;
1354 netdev_update_features(dev);
1355
1356 if (unlikely(dev->features & NETIF_F_LRO))
1357 netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360
1361
1362 static int dev_boot_phase = 1;
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 goto outroll;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 }
1422 }
1423
1424 outroll:
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 *
1439 * After unregistering unregister and down device events are synthesized
1440 * for all devices on the device list to the removed notifier to remove
1441 * the need for special case cleanup code.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 struct net_device *dev;
1447 struct net *net;
1448 int err;
1449
1450 rtnl_lock();
1451 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 if (err)
1453 goto unlock;
1454
1455 for_each_net(net) {
1456 for_each_netdev(net, dev) {
1457 if (dev->flags & IFF_UP) {
1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 }
1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 }
1463 }
1464 unlock:
1465 rtnl_unlock();
1466 return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469
1470 /**
1471 * call_netdevice_notifiers - call all network notifier blocks
1472 * @val: value passed unmodified to notifier function
1473 * @dev: net_device pointer passed unmodified to notifier function
1474 *
1475 * Call all network notifier blocks. Parameters and return value
1476 * are as for raw_notifier_call_chain().
1477 */
1478
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 ASSERT_RTNL();
1482 return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489 * If net_disable_timestamp() is called from irq context, defer the
1490 * static_key_slow_dec() calls.
1491 */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499
1500 if (deferred) {
1501 while (--deferred)
1502 static_key_slow_dec(&netstamp_needed);
1503 return;
1504 }
1505 #endif
1506 WARN_ON(in_interrupt());
1507 static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 if (in_interrupt()) {
1515 atomic_inc(&netstamp_needed_deferred);
1516 return;
1517 }
1518 #endif
1519 static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 skb->tstamp.tv64 = 0;
1526 if (static_key_false(&netstamp_needed))
1527 __net_timestamp(skb);
1528 }
1529
1530 #define net_timestamp_check(COND, SKB) \
1531 if (static_key_false(&netstamp_needed)) { \
1532 if ((COND) && !(SKB)->tstamp.tv64) \
1533 __net_timestamp(SKB); \
1534 } \
1535
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 struct hwtstamp_config cfg;
1539 enum hwtstamp_tx_types tx_type;
1540 enum hwtstamp_rx_filters rx_filter;
1541 int tx_type_valid = 0;
1542 int rx_filter_valid = 0;
1543
1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 return -EFAULT;
1546
1547 if (cfg.flags) /* reserved for future extensions */
1548 return -EINVAL;
1549
1550 tx_type = cfg.tx_type;
1551 rx_filter = cfg.rx_filter;
1552
1553 switch (tx_type) {
1554 case HWTSTAMP_TX_OFF:
1555 case HWTSTAMP_TX_ON:
1556 case HWTSTAMP_TX_ONESTEP_SYNC:
1557 tx_type_valid = 1;
1558 break;
1559 }
1560
1561 switch (rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 case HWTSTAMP_FILTER_ALL:
1564 case HWTSTAMP_FILTER_SOME:
1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 rx_filter_valid = 1;
1578 break;
1579 }
1580
1581 if (!tx_type_valid || !rx_filter_valid)
1582 return -ERANGE;
1583
1584 return 0;
1585 }
1586
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 struct sk_buff *skb)
1589 {
1590 unsigned int len;
1591
1592 if (!(dev->flags & IFF_UP))
1593 return false;
1594
1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 if (skb->len <= len)
1597 return true;
1598
1599 /* if TSO is enabled, we don't care about the length as the packet
1600 * could be forwarded without being segmented before
1601 */
1602 if (skb_is_gso(skb))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /**
1609 * dev_forward_skb - loopback an skb to another netif
1610 *
1611 * @dev: destination network device
1612 * @skb: buffer to forward
1613 *
1614 * return values:
1615 * NET_RX_SUCCESS (no congestion)
1616 * NET_RX_DROP (packet was dropped, but freed)
1617 *
1618 * dev_forward_skb can be used for injecting an skb from the
1619 * start_xmit function of one device into the receive queue
1620 * of another device.
1621 *
1622 * The receiving device may be in another namespace, so
1623 * we have to clear all information in the skb that could
1624 * impact namespace isolation.
1625 */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 }
1635
1636 skb_orphan(skb);
1637 nf_reset(skb);
1638
1639 if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 atomic_long_inc(&dev->rx_dropped);
1641 kfree_skb(skb);
1642 return NET_RX_DROP;
1643 }
1644 skb->skb_iif = 0;
1645 skb->dev = dev;
1646 skb_dst_drop(skb);
1647 skb->tstamp.tv64 = 0;
1648 skb->pkt_type = PACKET_HOST;
1649 skb->protocol = eth_type_trans(skb, dev);
1650 skb->mark = 0;
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 struct packet_type *pt_prev,
1659 struct net_device *orig_dev)
1660 {
1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 return -ENOMEM;
1663 atomic_inc(&skb->users);
1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 if (ptype->af_packet_priv == NULL)
1670 return false;
1671
1672 if (ptype->id_match)
1673 return ptype->id_match(ptype, skb->sk);
1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /*
1681 * Support routine. Sends outgoing frames to any network
1682 * taps currently in use.
1683 */
1684
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 struct packet_type *ptype;
1688 struct sk_buff *skb2 = NULL;
1689 struct packet_type *pt_prev = NULL;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 /* Never send packets back to the socket
1694 * they originated from - MvS (miquels@drinkel.ow.org)
1695 */
1696 if ((ptype->dev == dev || !ptype->dev) &&
1697 (!skb_loop_sk(ptype, skb))) {
1698 if (pt_prev) {
1699 deliver_skb(skb2, pt_prev, skb->dev);
1700 pt_prev = ptype;
1701 continue;
1702 }
1703
1704 skb2 = skb_clone(skb, GFP_ATOMIC);
1705 if (!skb2)
1706 break;
1707
1708 net_timestamp_set(skb2);
1709
1710 /* skb->nh should be correctly
1711 set by sender, so that the second statement is
1712 just protection against buggy protocols.
1713 */
1714 skb_reset_mac_header(skb2);
1715
1716 if (skb_network_header(skb2) < skb2->data ||
1717 skb2->network_header > skb2->tail) {
1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 ntohs(skb2->protocol),
1720 dev->name);
1721 skb_reset_network_header(skb2);
1722 }
1723
1724 skb2->transport_header = skb2->network_header;
1725 skb2->pkt_type = PACKET_OUTGOING;
1726 pt_prev = ptype;
1727 }
1728 }
1729 if (pt_prev)
1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 rcu_read_unlock();
1732 }
1733
1734 /**
1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736 * @dev: Network device
1737 * @txq: number of queues available
1738 *
1739 * If real_num_tx_queues is changed the tc mappings may no longer be
1740 * valid. To resolve this verify the tc mapping remains valid and if
1741 * not NULL the mapping. With no priorities mapping to this
1742 * offset/count pair it will no longer be used. In the worst case TC0
1743 * is invalid nothing can be done so disable priority mappings. If is
1744 * expected that drivers will fix this mapping if they can before
1745 * calling netif_set_real_num_tx_queues.
1746 */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 int i;
1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751
1752 /* If TC0 is invalidated disable TC mapping */
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 dev->num_tc = 0;
1756 return;
1757 }
1758
1759 /* Invalidated prio to tc mappings set to TC0 */
1760 for (i = 1; i < TC_BITMASK + 1; i++) {
1761 int q = netdev_get_prio_tc_map(dev, i);
1762
1763 tc = &dev->tc_to_txq[q];
1764 if (tc->offset + tc->count > txq) {
1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 i, q);
1767 netdev_set_prio_tc_map(dev, i, 0);
1768 }
1769 }
1770 }
1771
1772 /*
1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775 */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 int rc;
1779
1780 if (txq < 1 || txq > dev->num_tx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED ||
1784 dev->reg_state == NETREG_UNREGISTERING) {
1785 ASSERT_RTNL();
1786
1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 txq);
1789 if (rc)
1790 return rc;
1791
1792 if (dev->num_tc)
1793 netif_setup_tc(dev, txq);
1794
1795 if (txq < dev->real_num_tx_queues)
1796 qdisc_reset_all_tx_gt(dev, txq);
1797 }
1798
1799 dev->real_num_tx_queues = txq;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803
1804 #ifdef CONFIG_RPS
1805 /**
1806 * netif_set_real_num_rx_queues - set actual number of RX queues used
1807 * @dev: Network device
1808 * @rxq: Actual number of RX queues
1809 *
1810 * This must be called either with the rtnl_lock held or before
1811 * registration of the net device. Returns 0 on success, or a
1812 * negative error code. If called before registration, it always
1813 * succeeds.
1814 */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 int rc;
1818
1819 if (rxq < 1 || rxq > dev->num_rx_queues)
1820 return -EINVAL;
1821
1822 if (dev->reg_state == NETREG_REGISTERED) {
1823 ASSERT_RTNL();
1824
1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 rxq);
1827 if (rc)
1828 return rc;
1829 }
1830
1831 dev->real_num_rx_queues = rxq;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836
1837 /**
1838 * netif_get_num_default_rss_queues - default number of RSS queues
1839 *
1840 * This routine should set an upper limit on the number of RSS queues
1841 * used by default by multiqueue devices.
1842 */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 q->next_sched = NULL;
1857 *sd->output_queue_tailp = q;
1858 sd->output_queue_tailp = &q->next_sched;
1859 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 local_irq_restore(flags);
1861 }
1862
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 __netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 if (atomic_dec_and_test(&skb->users)) {
1873 struct softnet_data *sd;
1874 unsigned long flags;
1875
1876 local_irq_save(flags);
1877 sd = &__get_cpu_var(softnet_data);
1878 skb->next = sd->completion_queue;
1879 sd->completion_queue = skb;
1880 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 local_irq_restore(flags);
1882 }
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 if (in_irq() || irqs_disabled())
1889 dev_kfree_skb_irq(skb);
1890 else
1891 dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894
1895
1896 /**
1897 * netif_device_detach - mark device as removed
1898 * @dev: network device
1899 *
1900 * Mark device as removed from system and therefore no longer available.
1901 */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 netif_running(dev)) {
1906 netif_tx_stop_all_queues(dev);
1907 }
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910
1911 /**
1912 * netif_device_attach - mark device as attached
1913 * @dev: network device
1914 *
1915 * Mark device as attached from system and restart if needed.
1916 */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 netif_running(dev)) {
1921 netif_tx_wake_all_queues(dev);
1922 __netdev_watchdog_up(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 static const netdev_features_t null_features = 0;
1930 struct net_device *dev = skb->dev;
1931 const char *driver = "";
1932
1933 if (dev && dev->dev.parent)
1934 driver = dev_driver_string(dev->dev.parent);
1935
1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 "gso_type=%d ip_summed=%d\n",
1938 driver, dev ? &dev->features : &null_features,
1939 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943
1944 /*
1945 * Invalidate hardware checksum when packet is to be mangled, and
1946 * complete checksum manually on outgoing path.
1947 */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 __wsum csum;
1951 int ret = 0, offset;
1952
1953 if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 goto out_set_summed;
1955
1956 if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 skb_warn_bad_offload(skb);
1958 return -EINVAL;
1959 }
1960
1961 offset = skb_checksum_start_offset(skb);
1962 BUG_ON(offset >= skb_headlen(skb));
1963 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964
1965 offset += skb->csum_offset;
1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967
1968 if (skb_cloned(skb) &&
1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 if (ret)
1972 goto out;
1973 }
1974
1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982
1983 /**
1984 * skb_gso_segment - Perform segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: features for the output path (see dev->features)
1987 *
1988 * This function segments the given skb and returns a list of segments.
1989 *
1990 * It may return NULL if the skb requires no segmentation. This is
1991 * only possible when GSO is used for verifying header integrity.
1992 */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 netdev_features_t features)
1995 {
1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 struct packet_type *ptype;
1998 __be16 type = skb->protocol;
1999 int vlan_depth = ETH_HLEN;
2000 int err;
2001
2002 while (type == htons(ETH_P_8021Q)) {
2003 struct vlan_hdr *vh;
2004
2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 return ERR_PTR(-EINVAL);
2007
2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 type = vh->h_vlan_encapsulated_proto;
2010 vlan_depth += VLAN_HLEN;
2011 }
2012
2013 skb_reset_mac_header(skb);
2014 skb->mac_len = skb->network_header - skb->mac_header;
2015 __skb_pull(skb, skb->mac_len);
2016
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 skb_warn_bad_offload(skb);
2019
2020 if (skb_header_cloned(skb) &&
2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 return ERR_PTR(err);
2023 }
2024
2025 rcu_read_lock();
2026 list_for_each_entry_rcu(ptype,
2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 err = ptype->gso_send_check(skb);
2031 segs = ERR_PTR(err);
2032 if (err || skb_gso_ok(skb, features))
2033 break;
2034 __skb_push(skb, (skb->data -
2035 skb_network_header(skb)));
2036 }
2037 segs = ptype->gso_segment(skb, features);
2038 break;
2039 }
2040 }
2041 rcu_read_unlock();
2042
2043 __skb_push(skb, skb->data - skb_mac_header(skb));
2044
2045 return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 if (net_ratelimit()) {
2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 dump_stack();
2056 }
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062 * 1. IOMMU is present and allows to map all the memory.
2063 * 2. No high memory really exists on this machine.
2064 */
2065
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 int i;
2070 if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 if (PageHighMem(skb_frag_page(frag)))
2074 return 1;
2075 }
2076 }
2077
2078 if (PCI_DMA_BUS_IS_PHYS) {
2079 struct device *pdev = dev->dev.parent;
2080
2081 if (!pdev)
2082 return 0;
2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 return 1;
2088 }
2089 }
2090 #endif
2091 return 0;
2092 }
2093
2094 struct dev_gso_cb {
2095 void (*destructor)(struct sk_buff *skb);
2096 };
2097
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 struct dev_gso_cb *cb;
2103
2104 do {
2105 struct sk_buff *nskb = skb->next;
2106
2107 skb->next = nskb->next;
2108 nskb->next = NULL;
2109 kfree_skb(nskb);
2110 } while (skb->next);
2111
2112 cb = DEV_GSO_CB(skb);
2113 if (cb->destructor)
2114 cb->destructor(skb);
2115 }
2116
2117 /**
2118 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2119 * @skb: buffer to segment
2120 * @features: device features as applicable to this skb
2121 *
2122 * This function segments the given skb and stores the list of segments
2123 * in skb->next.
2124 */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 struct sk_buff *segs;
2128
2129 segs = skb_gso_segment(skb, features);
2130
2131 /* Verifying header integrity only. */
2132 if (!segs)
2133 return 0;
2134
2135 if (IS_ERR(segs))
2136 return PTR_ERR(segs);
2137
2138 skb->next = segs;
2139 DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 skb->destructor = dev_gso_skb_destructor;
2141
2142 return 0;
2143 }
2144
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 return ((features & NETIF_F_GEN_CSUM) ||
2148 ((features & NETIF_F_V4_CSUM) &&
2149 protocol == htons(ETH_P_IP)) ||
2150 ((features & NETIF_F_V6_CSUM) &&
2151 protocol == htons(ETH_P_IPV6)) ||
2152 ((features & NETIF_F_FCOE_CRC) &&
2153 protocol == htons(ETH_P_FCOE)));
2154 }
2155
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 __be16 protocol, netdev_features_t features)
2158 {
2159 if (skb->ip_summed != CHECKSUM_NONE &&
2160 !can_checksum_protocol(features, protocol)) {
2161 features &= ~NETIF_F_ALL_CSUM;
2162 features &= ~NETIF_F_SG;
2163 } else if (illegal_highdma(skb->dev, skb)) {
2164 features &= ~NETIF_F_SG;
2165 }
2166
2167 return features;
2168 }
2169
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 __be16 protocol = skb->protocol;
2173 netdev_features_t features = skb->dev->features;
2174
2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 features &= ~NETIF_F_GSO_MASK;
2177
2178 if (protocol == htons(ETH_P_8021Q)) {
2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 protocol = veh->h_vlan_encapsulated_proto;
2181 } else if (!vlan_tx_tag_present(skb)) {
2182 return harmonize_features(skb, protocol, features);
2183 }
2184
2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186
2187 if (protocol != htons(ETH_P_8021Q)) {
2188 return harmonize_features(skb, protocol, features);
2189 } else {
2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 return harmonize_features(skb, protocol, features);
2193 }
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196
2197 /*
2198 * Returns true if either:
2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2200 * 2. skb is fragmented and the device does not support SG.
2201 */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 int features)
2204 {
2205 return skb_is_nonlinear(skb) &&
2206 ((skb_has_frag_list(skb) &&
2207 !(features & NETIF_F_FRAGLIST)) ||
2208 (skb_shinfo(skb)->nr_frags &&
2209 !(features & NETIF_F_SG)));
2210 }
2211
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 struct netdev_queue *txq)
2214 {
2215 const struct net_device_ops *ops = dev->netdev_ops;
2216 int rc = NETDEV_TX_OK;
2217 unsigned int skb_len;
2218
2219 if (likely(!skb->next)) {
2220 netdev_features_t features;
2221
2222 /*
2223 * If device doesn't need skb->dst, release it right now while
2224 * its hot in this cpu cache
2225 */
2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 skb_dst_drop(skb);
2228
2229 features = netif_skb_features(skb);
2230
2231 if (vlan_tx_tag_present(skb) &&
2232 !(features & NETIF_F_HW_VLAN_TX)) {
2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 if (unlikely(!skb))
2235 goto out;
2236
2237 skb->vlan_tci = 0;
2238 }
2239
2240 if (netif_needs_gso(skb, features)) {
2241 if (unlikely(dev_gso_segment(skb, features)))
2242 goto out_kfree_skb;
2243 if (skb->next)
2244 goto gso;
2245 } else {
2246 if (skb_needs_linearize(skb, features) &&
2247 __skb_linearize(skb))
2248 goto out_kfree_skb;
2249
2250 /* If packet is not checksummed and device does not
2251 * support checksumming for this protocol, complete
2252 * checksumming here.
2253 */
2254 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 skb_set_transport_header(skb,
2256 skb_checksum_start_offset(skb));
2257 if (!(features & NETIF_F_ALL_CSUM) &&
2258 skb_checksum_help(skb))
2259 goto out_kfree_skb;
2260 }
2261 }
2262
2263 if (!list_empty(&ptype_all))
2264 dev_queue_xmit_nit(skb, dev);
2265
2266 skb_len = skb->len;
2267 rc = ops->ndo_start_xmit(skb, dev);
2268 trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 if (rc == NETDEV_TX_OK)
2270 txq_trans_update(txq);
2271 return rc;
2272 }
2273
2274 gso:
2275 do {
2276 struct sk_buff *nskb = skb->next;
2277
2278 skb->next = nskb->next;
2279 nskb->next = NULL;
2280
2281 /*
2282 * If device doesn't need nskb->dst, release it right now while
2283 * its hot in this cpu cache
2284 */
2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 skb_dst_drop(nskb);
2287
2288 if (!list_empty(&ptype_all))
2289 dev_queue_xmit_nit(nskb, dev);
2290
2291 skb_len = nskb->len;
2292 rc = ops->ndo_start_xmit(nskb, dev);
2293 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 if (unlikely(rc != NETDEV_TX_OK)) {
2295 if (rc & ~NETDEV_TX_MASK)
2296 goto out_kfree_gso_skb;
2297 nskb->next = skb->next;
2298 skb->next = nskb;
2299 return rc;
2300 }
2301 txq_trans_update(txq);
2302 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 return NETDEV_TX_BUSY;
2304 } while (skb->next);
2305
2306 out_kfree_gso_skb:
2307 if (likely(skb->next == NULL))
2308 skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 kfree_skb(skb);
2311 out:
2312 return rc;
2313 }
2314
2315 static u32 hashrnd __read_mostly;
2316
2317 /*
2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319 * to be used as a distribution range.
2320 */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 unsigned int num_tx_queues)
2323 {
2324 u32 hash;
2325 u16 qoffset = 0;
2326 u16 qcount = num_tx_queues;
2327
2328 if (skb_rx_queue_recorded(skb)) {
2329 hash = skb_get_rx_queue(skb);
2330 while (unlikely(hash >= num_tx_queues))
2331 hash -= num_tx_queues;
2332 return hash;
2333 }
2334
2335 if (dev->num_tc) {
2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 qoffset = dev->tc_to_txq[tc].offset;
2338 qcount = dev->tc_to_txq[tc].count;
2339 }
2340
2341 if (skb->sk && skb->sk->sk_hash)
2342 hash = skb->sk->sk_hash;
2343 else
2344 hash = (__force u16) skb->protocol;
2345 hash = jhash_1word(hash, hashrnd);
2346
2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 dev->name, queue_index,
2356 dev->real_num_tx_queues);
2357 return 0;
2358 }
2359 return queue_index;
2360 }
2361
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 struct xps_dev_maps *dev_maps;
2366 struct xps_map *map;
2367 int queue_index = -1;
2368
2369 rcu_read_lock();
2370 dev_maps = rcu_dereference(dev->xps_maps);
2371 if (dev_maps) {
2372 map = rcu_dereference(
2373 dev_maps->cpu_map[raw_smp_processor_id()]);
2374 if (map) {
2375 if (map->len == 1)
2376 queue_index = map->queues[0];
2377 else {
2378 u32 hash;
2379 if (skb->sk && skb->sk->sk_hash)
2380 hash = skb->sk->sk_hash;
2381 else
2382 hash = (__force u16) skb->protocol ^
2383 skb->rxhash;
2384 hash = jhash_1word(hash, hashrnd);
2385 queue_index = map->queues[
2386 ((u64)hash * map->len) >> 32];
2387 }
2388 if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 queue_index = -1;
2390 }
2391 }
2392 rcu_read_unlock();
2393
2394 return queue_index;
2395 #else
2396 return -1;
2397 #endif
2398 }
2399
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 struct sk_buff *skb)
2402 {
2403 int queue_index;
2404 const struct net_device_ops *ops = dev->netdev_ops;
2405
2406 if (dev->real_num_tx_queues == 1)
2407 queue_index = 0;
2408 else if (ops->ndo_select_queue) {
2409 queue_index = ops->ndo_select_queue(dev, skb);
2410 queue_index = dev_cap_txqueue(dev, queue_index);
2411 } else {
2412 struct sock *sk = skb->sk;
2413 queue_index = sk_tx_queue_get(sk);
2414
2415 if (queue_index < 0 || skb->ooo_okay ||
2416 queue_index >= dev->real_num_tx_queues) {
2417 int old_index = queue_index;
2418
2419 queue_index = get_xps_queue(dev, skb);
2420 if (queue_index < 0)
2421 queue_index = skb_tx_hash(dev, skb);
2422
2423 if (queue_index != old_index && sk) {
2424 struct dst_entry *dst =
2425 rcu_dereference_check(sk->sk_dst_cache, 1);
2426
2427 if (dst && skb_dst(skb) == dst)
2428 sk_tx_queue_set(sk, queue_index);
2429 }
2430 }
2431 }
2432
2433 skb_set_queue_mapping(skb, queue_index);
2434 return netdev_get_tx_queue(dev, queue_index);
2435 }
2436
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 struct net_device *dev,
2439 struct netdev_queue *txq)
2440 {
2441 spinlock_t *root_lock = qdisc_lock(q);
2442 bool contended;
2443 int rc;
2444
2445 qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 qdisc_calculate_pkt_len(skb, q);
2447 /*
2448 * Heuristic to force contended enqueues to serialize on a
2449 * separate lock before trying to get qdisc main lock.
2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 * and dequeue packets faster.
2452 */
2453 contended = qdisc_is_running(q);
2454 if (unlikely(contended))
2455 spin_lock(&q->busylock);
2456
2457 spin_lock(root_lock);
2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 kfree_skb(skb);
2460 rc = NET_XMIT_DROP;
2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 qdisc_run_begin(q)) {
2463 /*
2464 * This is a work-conserving queue; there are no old skbs
2465 * waiting to be sent out; and the qdisc is not running -
2466 * xmit the skb directly.
2467 */
2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 skb_dst_force(skb);
2470
2471 qdisc_bstats_update(q, skb);
2472
2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 if (unlikely(contended)) {
2475 spin_unlock(&q->busylock);
2476 contended = false;
2477 }
2478 __qdisc_run(q);
2479 } else
2480 qdisc_run_end(q);
2481
2482 rc = NET_XMIT_SUCCESS;
2483 } else {
2484 skb_dst_force(skb);
2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 if (qdisc_run_begin(q)) {
2487 if (unlikely(contended)) {
2488 spin_unlock(&q->busylock);
2489 contended = false;
2490 }
2491 __qdisc_run(q);
2492 }
2493 }
2494 spin_unlock(root_lock);
2495 if (unlikely(contended))
2496 spin_unlock(&q->busylock);
2497 return rc;
2498 }
2499
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504
2505 if (!skb->priority && skb->sk && map) {
2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507
2508 if (prioidx < map->priomap_len)
2509 skb->priority = map->priomap[prioidx];
2510 }
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518
2519 /**
2520 * dev_loopback_xmit - loop back @skb
2521 * @skb: buffer to transmit
2522 */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 skb_reset_mac_header(skb);
2526 __skb_pull(skb, skb_network_offset(skb));
2527 skb->pkt_type = PACKET_LOOPBACK;
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 WARN_ON(!skb_dst(skb));
2530 skb_dst_force(skb);
2531 netif_rx_ni(skb);
2532 return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535
2536 /**
2537 * dev_queue_xmit - transmit a buffer
2538 * @skb: buffer to transmit
2539 *
2540 * Queue a buffer for transmission to a network device. The caller must
2541 * have set the device and priority and built the buffer before calling
2542 * this function. The function can be called from an interrupt.
2543 *
2544 * A negative errno code is returned on a failure. A success does not
2545 * guarantee the frame will be transmitted as it may be dropped due
2546 * to congestion or traffic shaping.
2547 *
2548 * -----------------------------------------------------------------------------------
2549 * I notice this method can also return errors from the queue disciplines,
2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2551 * be positive.
2552 *
2553 * Regardless of the return value, the skb is consumed, so it is currently
2554 * difficult to retry a send to this method. (You can bump the ref count
2555 * before sending to hold a reference for retry if you are careful.)
2556 *
2557 * When calling this method, interrupts MUST be enabled. This is because
2558 * the BH enable code must have IRQs enabled so that it will not deadlock.
2559 * --BLG
2560 */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 struct net_device *dev = skb->dev;
2564 struct netdev_queue *txq;
2565 struct Qdisc *q;
2566 int rc = -ENOMEM;
2567
2568 /* Disable soft irqs for various locks below. Also
2569 * stops preemption for RCU.
2570 */
2571 rcu_read_lock_bh();
2572
2573 skb_update_prio(skb);
2574
2575 txq = netdev_pick_tx(dev, skb);
2576 q = rcu_dereference_bh(txq->qdisc);
2577
2578 #ifdef CONFIG_NET_CLS_ACT
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 trace_net_dev_queue(skb);
2582 if (q->enqueue) {
2583 rc = __dev_xmit_skb(skb, q, dev, txq);
2584 goto out;
2585 }
2586
2587 /* The device has no queue. Common case for software devices:
2588 loopback, all the sorts of tunnels...
2589
2590 Really, it is unlikely that netif_tx_lock protection is necessary
2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2592 counters.)
2593 However, it is possible, that they rely on protection
2594 made by us here.
2595
2596 Check this and shot the lock. It is not prone from deadlocks.
2597 Either shot noqueue qdisc, it is even simpler 8)
2598 */
2599 if (dev->flags & IFF_UP) {
2600 int cpu = smp_processor_id(); /* ok because BHs are off */
2601
2602 if (txq->xmit_lock_owner != cpu) {
2603
2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 goto recursion_alert;
2606
2607 HARD_TX_LOCK(dev, txq, cpu);
2608
2609 if (!netif_xmit_stopped(txq)) {
2610 __this_cpu_inc(xmit_recursion);
2611 rc = dev_hard_start_xmit(skb, dev, txq);
2612 __this_cpu_dec(xmit_recursion);
2613 if (dev_xmit_complete(rc)) {
2614 HARD_TX_UNLOCK(dev, txq);
2615 goto out;
2616 }
2617 }
2618 HARD_TX_UNLOCK(dev, txq);
2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 dev->name);
2621 } else {
2622 /* Recursion is detected! It is possible,
2623 * unfortunately
2624 */
2625 recursion_alert:
2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 dev->name);
2628 }
2629 }
2630
2631 rc = -ENETDOWN;
2632 rcu_read_unlock_bh();
2633
2634 kfree_skb(skb);
2635 return rc;
2636 out:
2637 rcu_read_unlock_bh();
2638 return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641
2642
2643 /*=======================================================================
2644 Receiver routines
2645 =======================================================================*/
2646
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64; /* old backlog weight */
2653
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 struct napi_struct *napi)
2657 {
2658 list_add_tail(&napi->poll_list, &sd->poll_list);
2659 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661
2662 /*
2663 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2665 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2666 * if hash is a canonical 4-tuple hash over transport ports.
2667 */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 struct flow_keys keys;
2671 u32 hash;
2672
2673 if (!skb_flow_dissect(skb, &keys))
2674 return;
2675
2676 if (keys.ports)
2677 skb->l4_rxhash = 1;
2678
2679 /* get a consistent hash (same value on both flow directions) */
2680 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 swap(keys.dst, keys.src);
2684 swap(keys.port16[0], keys.port16[1]);
2685 }
2686
2687 hash = jhash_3words((__force u32)keys.dst,
2688 (__force u32)keys.src,
2689 (__force u32)keys.ports, hashrnd);
2690 if (!hash)
2691 hash = 1;
2692
2693 skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696
2697 #ifdef CONFIG_RPS
2698
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702
2703 struct static_key rps_needed __read_mostly;
2704
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 struct netdev_rx_queue *rxqueue;
2712 struct rps_dev_flow_table *flow_table;
2713 struct rps_dev_flow *old_rflow;
2714 u32 flow_id;
2715 u16 rxq_index;
2716 int rc;
2717
2718 /* Should we steer this flow to a different hardware queue? */
2719 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 !(dev->features & NETIF_F_NTUPLE))
2721 goto out;
2722 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 if (rxq_index == skb_get_rx_queue(skb))
2724 goto out;
2725
2726 rxqueue = dev->_rx + rxq_index;
2727 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 if (!flow_table)
2729 goto out;
2730 flow_id = skb->rxhash & flow_table->mask;
2731 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 rxq_index, flow_id);
2733 if (rc < 0)
2734 goto out;
2735 old_rflow = rflow;
2736 rflow = &flow_table->flows[flow_id];
2737 rflow->filter = rc;
2738 if (old_rflow->filter == rflow->filter)
2739 old_rflow->filter = RPS_NO_FILTER;
2740 out:
2741 #endif
2742 rflow->last_qtail =
2743 per_cpu(softnet_data, next_cpu).input_queue_head;
2744 }
2745
2746 rflow->cpu = next_cpu;
2747 return rflow;
2748 }
2749
2750 /*
2751 * get_rps_cpu is called from netif_receive_skb and returns the target
2752 * CPU from the RPS map of the receiving queue for a given skb.
2753 * rcu_read_lock must be held on entry.
2754 */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 struct rps_dev_flow **rflowp)
2757 {
2758 struct netdev_rx_queue *rxqueue;
2759 struct rps_map *map;
2760 struct rps_dev_flow_table *flow_table;
2761 struct rps_sock_flow_table *sock_flow_table;
2762 int cpu = -1;
2763 u16 tcpu;
2764
2765 if (skb_rx_queue_recorded(skb)) {
2766 u16 index = skb_get_rx_queue(skb);
2767 if (unlikely(index >= dev->real_num_rx_queues)) {
2768 WARN_ONCE(dev->real_num_rx_queues > 1,
2769 "%s received packet on queue %u, but number "
2770 "of RX queues is %u\n",
2771 dev->name, index, dev->real_num_rx_queues);
2772 goto done;
2773 }
2774 rxqueue = dev->_rx + index;
2775 } else
2776 rxqueue = dev->_rx;
2777
2778 map = rcu_dereference(rxqueue->rps_map);
2779 if (map) {
2780 if (map->len == 1 &&
2781 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 tcpu = map->cpus[0];
2783 if (cpu_online(tcpu))
2784 cpu = tcpu;
2785 goto done;
2786 }
2787 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 goto done;
2789 }
2790
2791 skb_reset_network_header(skb);
2792 if (!skb_get_rxhash(skb))
2793 goto done;
2794
2795 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 if (flow_table && sock_flow_table) {
2798 u16 next_cpu;
2799 struct rps_dev_flow *rflow;
2800
2801 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 tcpu = rflow->cpu;
2803
2804 next_cpu = sock_flow_table->ents[skb->rxhash &
2805 sock_flow_table->mask];
2806
2807 /*
2808 * If the desired CPU (where last recvmsg was done) is
2809 * different from current CPU (one in the rx-queue flow
2810 * table entry), switch if one of the following holds:
2811 * - Current CPU is unset (equal to RPS_NO_CPU).
2812 * - Current CPU is offline.
2813 * - The current CPU's queue tail has advanced beyond the
2814 * last packet that was enqueued using this table entry.
2815 * This guarantees that all previous packets for the flow
2816 * have been dequeued, thus preserving in order delivery.
2817 */
2818 if (unlikely(tcpu != next_cpu) &&
2819 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 rflow->last_qtail)) >= 0))
2822 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2823
2824 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2825 *rflowp = rflow;
2826 cpu = tcpu;
2827 goto done;
2828 }
2829 }
2830
2831 if (map) {
2832 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2833
2834 if (cpu_online(tcpu)) {
2835 cpu = tcpu;
2836 goto done;
2837 }
2838 }
2839
2840 done:
2841 return cpu;
2842 }
2843
2844 #ifdef CONFIG_RFS_ACCEL
2845
2846 /**
2847 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2848 * @dev: Device on which the filter was set
2849 * @rxq_index: RX queue index
2850 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2851 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2852 *
2853 * Drivers that implement ndo_rx_flow_steer() should periodically call
2854 * this function for each installed filter and remove the filters for
2855 * which it returns %true.
2856 */
2857 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2858 u32 flow_id, u16 filter_id)
2859 {
2860 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2861 struct rps_dev_flow_table *flow_table;
2862 struct rps_dev_flow *rflow;
2863 bool expire = true;
2864 int cpu;
2865
2866 rcu_read_lock();
2867 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2868 if (flow_table && flow_id <= flow_table->mask) {
2869 rflow = &flow_table->flows[flow_id];
2870 cpu = ACCESS_ONCE(rflow->cpu);
2871 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2872 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2873 rflow->last_qtail) <
2874 (int)(10 * flow_table->mask)))
2875 expire = false;
2876 }
2877 rcu_read_unlock();
2878 return expire;
2879 }
2880 EXPORT_SYMBOL(rps_may_expire_flow);
2881
2882 #endif /* CONFIG_RFS_ACCEL */
2883
2884 /* Called from hardirq (IPI) context */
2885 static void rps_trigger_softirq(void *data)
2886 {
2887 struct softnet_data *sd = data;
2888
2889 ____napi_schedule(sd, &sd->backlog);
2890 sd->received_rps++;
2891 }
2892
2893 #endif /* CONFIG_RPS */
2894
2895 /*
2896 * Check if this softnet_data structure is another cpu one
2897 * If yes, queue it to our IPI list and return 1
2898 * If no, return 0
2899 */
2900 static int rps_ipi_queued(struct softnet_data *sd)
2901 {
2902 #ifdef CONFIG_RPS
2903 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2904
2905 if (sd != mysd) {
2906 sd->rps_ipi_next = mysd->rps_ipi_list;
2907 mysd->rps_ipi_list = sd;
2908
2909 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2910 return 1;
2911 }
2912 #endif /* CONFIG_RPS */
2913 return 0;
2914 }
2915
2916 /*
2917 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2918 * queue (may be a remote CPU queue).
2919 */
2920 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2921 unsigned int *qtail)
2922 {
2923 struct softnet_data *sd;
2924 unsigned long flags;
2925
2926 sd = &per_cpu(softnet_data, cpu);
2927
2928 local_irq_save(flags);
2929
2930 rps_lock(sd);
2931 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2932 if (skb_queue_len(&sd->input_pkt_queue)) {
2933 enqueue:
2934 __skb_queue_tail(&sd->input_pkt_queue, skb);
2935 input_queue_tail_incr_save(sd, qtail);
2936 rps_unlock(sd);
2937 local_irq_restore(flags);
2938 return NET_RX_SUCCESS;
2939 }
2940
2941 /* Schedule NAPI for backlog device
2942 * We can use non atomic operation since we own the queue lock
2943 */
2944 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2945 if (!rps_ipi_queued(sd))
2946 ____napi_schedule(sd, &sd->backlog);
2947 }
2948 goto enqueue;
2949 }
2950
2951 sd->dropped++;
2952 rps_unlock(sd);
2953
2954 local_irq_restore(flags);
2955
2956 atomic_long_inc(&skb->dev->rx_dropped);
2957 kfree_skb(skb);
2958 return NET_RX_DROP;
2959 }
2960
2961 /**
2962 * netif_rx - post buffer to the network code
2963 * @skb: buffer to post
2964 *
2965 * This function receives a packet from a device driver and queues it for
2966 * the upper (protocol) levels to process. It always succeeds. The buffer
2967 * may be dropped during processing for congestion control or by the
2968 * protocol layers.
2969 *
2970 * return values:
2971 * NET_RX_SUCCESS (no congestion)
2972 * NET_RX_DROP (packet was dropped)
2973 *
2974 */
2975
2976 int netif_rx(struct sk_buff *skb)
2977 {
2978 int ret;
2979
2980 /* if netpoll wants it, pretend we never saw it */
2981 if (netpoll_rx(skb))
2982 return NET_RX_DROP;
2983
2984 net_timestamp_check(netdev_tstamp_prequeue, skb);
2985
2986 trace_netif_rx(skb);
2987 #ifdef CONFIG_RPS
2988 if (static_key_false(&rps_needed)) {
2989 struct rps_dev_flow voidflow, *rflow = &voidflow;
2990 int cpu;
2991
2992 preempt_disable();
2993 rcu_read_lock();
2994
2995 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2996 if (cpu < 0)
2997 cpu = smp_processor_id();
2998
2999 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3000
3001 rcu_read_unlock();
3002 preempt_enable();
3003 } else
3004 #endif
3005 {
3006 unsigned int qtail;
3007 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3008 put_cpu();
3009 }
3010 return ret;
3011 }
3012 EXPORT_SYMBOL(netif_rx);
3013
3014 int netif_rx_ni(struct sk_buff *skb)
3015 {
3016 int err;
3017
3018 preempt_disable();
3019 err = netif_rx(skb);
3020 if (local_softirq_pending())
3021 do_softirq();
3022 preempt_enable();
3023
3024 return err;
3025 }
3026 EXPORT_SYMBOL(netif_rx_ni);
3027
3028 static void net_tx_action(struct softirq_action *h)
3029 {
3030 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3031
3032 if (sd->completion_queue) {
3033 struct sk_buff *clist;
3034
3035 local_irq_disable();
3036 clist = sd->completion_queue;
3037 sd->completion_queue = NULL;
3038 local_irq_enable();
3039
3040 while (clist) {
3041 struct sk_buff *skb = clist;
3042 clist = clist->next;
3043
3044 WARN_ON(atomic_read(&skb->users));
3045 trace_kfree_skb(skb, net_tx_action);
3046 __kfree_skb(skb);
3047 }
3048 }
3049
3050 if (sd->output_queue) {
3051 struct Qdisc *head;
3052
3053 local_irq_disable();
3054 head = sd->output_queue;
3055 sd->output_queue = NULL;
3056 sd->output_queue_tailp = &sd->output_queue;
3057 local_irq_enable();
3058
3059 while (head) {
3060 struct Qdisc *q = head;
3061 spinlock_t *root_lock;
3062
3063 head = head->next_sched;
3064
3065 root_lock = qdisc_lock(q);
3066 if (spin_trylock(root_lock)) {
3067 smp_mb__before_clear_bit();
3068 clear_bit(__QDISC_STATE_SCHED,
3069 &q->state);
3070 qdisc_run(q);
3071 spin_unlock(root_lock);
3072 } else {
3073 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3074 &q->state)) {
3075 __netif_reschedule(q);
3076 } else {
3077 smp_mb__before_clear_bit();
3078 clear_bit(__QDISC_STATE_SCHED,
3079 &q->state);
3080 }
3081 }
3082 }
3083 }
3084 }
3085
3086 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3087 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3088 /* This hook is defined here for ATM LANE */
3089 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3090 unsigned char *addr) __read_mostly;
3091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3092 #endif
3093
3094 #ifdef CONFIG_NET_CLS_ACT
3095 /* TODO: Maybe we should just force sch_ingress to be compiled in
3096 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3097 * a compare and 2 stores extra right now if we dont have it on
3098 * but have CONFIG_NET_CLS_ACT
3099 * NOTE: This doesn't stop any functionality; if you dont have
3100 * the ingress scheduler, you just can't add policies on ingress.
3101 *
3102 */
3103 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3104 {
3105 struct net_device *dev = skb->dev;
3106 u32 ttl = G_TC_RTTL(skb->tc_verd);
3107 int result = TC_ACT_OK;
3108 struct Qdisc *q;
3109
3110 if (unlikely(MAX_RED_LOOP < ttl++)) {
3111 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3112 skb->skb_iif, dev->ifindex);
3113 return TC_ACT_SHOT;
3114 }
3115
3116 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3117 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3118
3119 q = rxq->qdisc;
3120 if (q != &noop_qdisc) {
3121 spin_lock(qdisc_lock(q));
3122 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3123 result = qdisc_enqueue_root(skb, q);
3124 spin_unlock(qdisc_lock(q));
3125 }
3126
3127 return result;
3128 }
3129
3130 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3131 struct packet_type **pt_prev,
3132 int *ret, struct net_device *orig_dev)
3133 {
3134 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3135
3136 if (!rxq || rxq->qdisc == &noop_qdisc)
3137 goto out;
3138
3139 if (*pt_prev) {
3140 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3141 *pt_prev = NULL;
3142 }
3143
3144 switch (ing_filter(skb, rxq)) {
3145 case TC_ACT_SHOT:
3146 case TC_ACT_STOLEN:
3147 kfree_skb(skb);
3148 return NULL;
3149 }
3150
3151 out:
3152 skb->tc_verd = 0;
3153 return skb;
3154 }
3155 #endif
3156
3157 /**
3158 * netdev_rx_handler_register - register receive handler
3159 * @dev: device to register a handler for
3160 * @rx_handler: receive handler to register
3161 * @rx_handler_data: data pointer that is used by rx handler
3162 *
3163 * Register a receive hander for a device. This handler will then be
3164 * called from __netif_receive_skb. A negative errno code is returned
3165 * on a failure.
3166 *
3167 * The caller must hold the rtnl_mutex.
3168 *
3169 * For a general description of rx_handler, see enum rx_handler_result.
3170 */
3171 int netdev_rx_handler_register(struct net_device *dev,
3172 rx_handler_func_t *rx_handler,
3173 void *rx_handler_data)
3174 {
3175 ASSERT_RTNL();
3176
3177 if (dev->rx_handler)
3178 return -EBUSY;
3179
3180 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3181 rcu_assign_pointer(dev->rx_handler, rx_handler);
3182
3183 return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3186
3187 /**
3188 * netdev_rx_handler_unregister - unregister receive handler
3189 * @dev: device to unregister a handler from
3190 *
3191 * Unregister a receive hander from a device.
3192 *
3193 * The caller must hold the rtnl_mutex.
3194 */
3195 void netdev_rx_handler_unregister(struct net_device *dev)
3196 {
3197
3198 ASSERT_RTNL();
3199 RCU_INIT_POINTER(dev->rx_handler, NULL);
3200 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3201 }
3202 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3203
3204 /*
3205 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3206 * the special handling of PFMEMALLOC skbs.
3207 */
3208 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3209 {
3210 switch (skb->protocol) {
3211 case __constant_htons(ETH_P_ARP):
3212 case __constant_htons(ETH_P_IP):
3213 case __constant_htons(ETH_P_IPV6):
3214 case __constant_htons(ETH_P_8021Q):
3215 return true;
3216 default:
3217 return false;
3218 }
3219 }
3220
3221 static int __netif_receive_skb(struct sk_buff *skb)
3222 {
3223 struct packet_type *ptype, *pt_prev;
3224 rx_handler_func_t *rx_handler;
3225 struct net_device *orig_dev;
3226 struct net_device *null_or_dev;
3227 bool deliver_exact = false;
3228 int ret = NET_RX_DROP;
3229 __be16 type;
3230 unsigned long pflags = current->flags;
3231
3232 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3233
3234 trace_netif_receive_skb(skb);
3235
3236 /*
3237 * PFMEMALLOC skbs are special, they should
3238 * - be delivered to SOCK_MEMALLOC sockets only
3239 * - stay away from userspace
3240 * - have bounded memory usage
3241 *
3242 * Use PF_MEMALLOC as this saves us from propagating the allocation
3243 * context down to all allocation sites.
3244 */
3245 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3246 current->flags |= PF_MEMALLOC;
3247
3248 /* if we've gotten here through NAPI, check netpoll */
3249 if (netpoll_receive_skb(skb))
3250 goto out;
3251
3252 orig_dev = skb->dev;
3253
3254 skb_reset_network_header(skb);
3255 skb_reset_transport_header(skb);
3256 skb_reset_mac_len(skb);
3257
3258 pt_prev = NULL;
3259
3260 rcu_read_lock();
3261
3262 another_round:
3263 skb->skb_iif = skb->dev->ifindex;
3264
3265 __this_cpu_inc(softnet_data.processed);
3266
3267 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3268 skb = vlan_untag(skb);
3269 if (unlikely(!skb))
3270 goto unlock;
3271 }
3272
3273 #ifdef CONFIG_NET_CLS_ACT
3274 if (skb->tc_verd & TC_NCLS) {
3275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3276 goto ncls;
3277 }
3278 #endif
3279
3280 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3281 goto skip_taps;
3282
3283 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3284 if (!ptype->dev || ptype->dev == skb->dev) {
3285 if (pt_prev)
3286 ret = deliver_skb(skb, pt_prev, orig_dev);
3287 pt_prev = ptype;
3288 }
3289 }
3290
3291 skip_taps:
3292 #ifdef CONFIG_NET_CLS_ACT
3293 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3294 if (!skb)
3295 goto unlock;
3296 ncls:
3297 #endif
3298
3299 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3300 && !skb_pfmemalloc_protocol(skb))
3301 goto drop;
3302
3303 if (vlan_tx_tag_present(skb)) {
3304 if (pt_prev) {
3305 ret = deliver_skb(skb, pt_prev, orig_dev);
3306 pt_prev = NULL;
3307 }
3308 if (vlan_do_receive(&skb))
3309 goto another_round;
3310 else if (unlikely(!skb))
3311 goto unlock;
3312 }
3313
3314 rx_handler = rcu_dereference(skb->dev->rx_handler);
3315 if (rx_handler) {
3316 if (pt_prev) {
3317 ret = deliver_skb(skb, pt_prev, orig_dev);
3318 pt_prev = NULL;
3319 }
3320 switch (rx_handler(&skb)) {
3321 case RX_HANDLER_CONSUMED:
3322 goto unlock;
3323 case RX_HANDLER_ANOTHER:
3324 goto another_round;
3325 case RX_HANDLER_EXACT:
3326 deliver_exact = true;
3327 case RX_HANDLER_PASS:
3328 break;
3329 default:
3330 BUG();
3331 }
3332 }
3333
3334 if (vlan_tx_nonzero_tag_present(skb))
3335 skb->pkt_type = PACKET_OTHERHOST;
3336
3337 /* deliver only exact match when indicated */
3338 null_or_dev = deliver_exact ? skb->dev : NULL;
3339
3340 type = skb->protocol;
3341 list_for_each_entry_rcu(ptype,
3342 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3343 if (ptype->type == type &&
3344 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3345 ptype->dev == orig_dev)) {
3346 if (pt_prev)
3347 ret = deliver_skb(skb, pt_prev, orig_dev);
3348 pt_prev = ptype;
3349 }
3350 }
3351
3352 if (pt_prev) {
3353 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3354 goto drop;
3355 else
3356 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3357 } else {
3358 drop:
3359 atomic_long_inc(&skb->dev->rx_dropped);
3360 kfree_skb(skb);
3361 /* Jamal, now you will not able to escape explaining
3362 * me how you were going to use this. :-)
3363 */
3364 ret = NET_RX_DROP;
3365 }
3366
3367 unlock:
3368 rcu_read_unlock();
3369 out:
3370 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3371 return ret;
3372 }
3373
3374 /**
3375 * netif_receive_skb - process receive buffer from network
3376 * @skb: buffer to process
3377 *
3378 * netif_receive_skb() is the main receive data processing function.
3379 * It always succeeds. The buffer may be dropped during processing
3380 * for congestion control or by the protocol layers.
3381 *
3382 * This function may only be called from softirq context and interrupts
3383 * should be enabled.
3384 *
3385 * Return values (usually ignored):
3386 * NET_RX_SUCCESS: no congestion
3387 * NET_RX_DROP: packet was dropped
3388 */
3389 int netif_receive_skb(struct sk_buff *skb)
3390 {
3391 net_timestamp_check(netdev_tstamp_prequeue, skb);
3392
3393 if (skb_defer_rx_timestamp(skb))
3394 return NET_RX_SUCCESS;
3395
3396 #ifdef CONFIG_RPS
3397 if (static_key_false(&rps_needed)) {
3398 struct rps_dev_flow voidflow, *rflow = &voidflow;
3399 int cpu, ret;
3400
3401 rcu_read_lock();
3402
3403 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3404
3405 if (cpu >= 0) {
3406 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3407 rcu_read_unlock();
3408 return ret;
3409 }
3410 rcu_read_unlock();
3411 }
3412 #endif
3413 return __netif_receive_skb(skb);
3414 }
3415 EXPORT_SYMBOL(netif_receive_skb);
3416
3417 /* Network device is going away, flush any packets still pending
3418 * Called with irqs disabled.
3419 */
3420 static void flush_backlog(void *arg)
3421 {
3422 struct net_device *dev = arg;
3423 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3424 struct sk_buff *skb, *tmp;
3425
3426 rps_lock(sd);
3427 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3428 if (skb->dev == dev) {
3429 __skb_unlink(skb, &sd->input_pkt_queue);
3430 kfree_skb(skb);
3431 input_queue_head_incr(sd);
3432 }
3433 }
3434 rps_unlock(sd);
3435
3436 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3437 if (skb->dev == dev) {
3438 __skb_unlink(skb, &sd->process_queue);
3439 kfree_skb(skb);
3440 input_queue_head_incr(sd);
3441 }
3442 }
3443 }
3444
3445 static int napi_gro_complete(struct sk_buff *skb)
3446 {
3447 struct packet_type *ptype;
3448 __be16 type = skb->protocol;
3449 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3450 int err = -ENOENT;
3451
3452 if (NAPI_GRO_CB(skb)->count == 1) {
3453 skb_shinfo(skb)->gso_size = 0;
3454 goto out;
3455 }
3456
3457 rcu_read_lock();
3458 list_for_each_entry_rcu(ptype, head, list) {
3459 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3460 continue;
3461
3462 err = ptype->gro_complete(skb);
3463 break;
3464 }
3465 rcu_read_unlock();
3466
3467 if (err) {
3468 WARN_ON(&ptype->list == head);
3469 kfree_skb(skb);
3470 return NET_RX_SUCCESS;
3471 }
3472
3473 out:
3474 return netif_receive_skb(skb);
3475 }
3476
3477 /* napi->gro_list contains packets ordered by age.
3478 * youngest packets at the head of it.
3479 * Complete skbs in reverse order to reduce latencies.
3480 */
3481 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3482 {
3483 struct sk_buff *skb, *prev = NULL;
3484
3485 /* scan list and build reverse chain */
3486 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3487 skb->prev = prev;
3488 prev = skb;
3489 }
3490
3491 for (skb = prev; skb; skb = prev) {
3492 skb->next = NULL;
3493
3494 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3495 return;
3496
3497 prev = skb->prev;
3498 napi_gro_complete(skb);
3499 napi->gro_count--;
3500 }
3501
3502 napi->gro_list = NULL;
3503 }
3504 EXPORT_SYMBOL(napi_gro_flush);
3505
3506 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3507 {
3508 struct sk_buff **pp = NULL;
3509 struct packet_type *ptype;
3510 __be16 type = skb->protocol;
3511 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3512 int same_flow;
3513 int mac_len;
3514 enum gro_result ret;
3515
3516 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3517 goto normal;
3518
3519 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3520 goto normal;
3521
3522 rcu_read_lock();
3523 list_for_each_entry_rcu(ptype, head, list) {
3524 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3525 continue;
3526
3527 skb_set_network_header(skb, skb_gro_offset(skb));
3528 mac_len = skb->network_header - skb->mac_header;
3529 skb->mac_len = mac_len;
3530 NAPI_GRO_CB(skb)->same_flow = 0;
3531 NAPI_GRO_CB(skb)->flush = 0;
3532 NAPI_GRO_CB(skb)->free = 0;
3533
3534 pp = ptype->gro_receive(&napi->gro_list, skb);
3535 break;
3536 }
3537 rcu_read_unlock();
3538
3539 if (&ptype->list == head)
3540 goto normal;
3541
3542 same_flow = NAPI_GRO_CB(skb)->same_flow;
3543 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3544
3545 if (pp) {
3546 struct sk_buff *nskb = *pp;
3547
3548 *pp = nskb->next;
3549 nskb->next = NULL;
3550 napi_gro_complete(nskb);
3551 napi->gro_count--;
3552 }
3553
3554 if (same_flow)
3555 goto ok;
3556
3557 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3558 goto normal;
3559
3560 napi->gro_count++;
3561 NAPI_GRO_CB(skb)->count = 1;
3562 NAPI_GRO_CB(skb)->age = jiffies;
3563 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3564 skb->next = napi->gro_list;
3565 napi->gro_list = skb;
3566 ret = GRO_HELD;
3567
3568 pull:
3569 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3570 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3571
3572 BUG_ON(skb->end - skb->tail < grow);
3573
3574 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3575
3576 skb->tail += grow;
3577 skb->data_len -= grow;
3578
3579 skb_shinfo(skb)->frags[0].page_offset += grow;
3580 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3581
3582 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3583 skb_frag_unref(skb, 0);
3584 memmove(skb_shinfo(skb)->frags,
3585 skb_shinfo(skb)->frags + 1,
3586 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3587 }
3588 }
3589
3590 ok:
3591 return ret;
3592
3593 normal:
3594 ret = GRO_NORMAL;
3595 goto pull;
3596 }
3597 EXPORT_SYMBOL(dev_gro_receive);
3598
3599 static inline gro_result_t
3600 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3601 {
3602 struct sk_buff *p;
3603 unsigned int maclen = skb->dev->hard_header_len;
3604
3605 for (p = napi->gro_list; p; p = p->next) {
3606 unsigned long diffs;
3607
3608 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3609 diffs |= p->vlan_tci ^ skb->vlan_tci;
3610 if (maclen == ETH_HLEN)
3611 diffs |= compare_ether_header(skb_mac_header(p),
3612 skb_gro_mac_header(skb));
3613 else if (!diffs)
3614 diffs = memcmp(skb_mac_header(p),
3615 skb_gro_mac_header(skb),
3616 maclen);
3617 NAPI_GRO_CB(p)->same_flow = !diffs;
3618 NAPI_GRO_CB(p)->flush = 0;
3619 }
3620
3621 return dev_gro_receive(napi, skb);
3622 }
3623
3624 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3625 {
3626 switch (ret) {
3627 case GRO_NORMAL:
3628 if (netif_receive_skb(skb))
3629 ret = GRO_DROP;
3630 break;
3631
3632 case GRO_DROP:
3633 kfree_skb(skb);
3634 break;
3635
3636 case GRO_MERGED_FREE:
3637 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3638 kmem_cache_free(skbuff_head_cache, skb);
3639 else
3640 __kfree_skb(skb);
3641 break;
3642
3643 case GRO_HELD:
3644 case GRO_MERGED:
3645 break;
3646 }
3647
3648 return ret;
3649 }
3650 EXPORT_SYMBOL(napi_skb_finish);
3651
3652 static void skb_gro_reset_offset(struct sk_buff *skb)
3653 {
3654 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3655 const skb_frag_t *frag0 = &pinfo->frags[0];
3656
3657 NAPI_GRO_CB(skb)->data_offset = 0;
3658 NAPI_GRO_CB(skb)->frag0 = NULL;
3659 NAPI_GRO_CB(skb)->frag0_len = 0;
3660
3661 if (skb->mac_header == skb->tail &&
3662 pinfo->nr_frags &&
3663 !PageHighMem(skb_frag_page(frag0))) {
3664 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3665 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3666 }
3667 }
3668
3669 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3670 {
3671 skb_gro_reset_offset(skb);
3672
3673 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3674 }
3675 EXPORT_SYMBOL(napi_gro_receive);
3676
3677 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3678 {
3679 __skb_pull(skb, skb_headlen(skb));
3680 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3681 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3682 skb->vlan_tci = 0;
3683 skb->dev = napi->dev;
3684 skb->skb_iif = 0;
3685
3686 napi->skb = skb;
3687 }
3688
3689 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3690 {
3691 struct sk_buff *skb = napi->skb;
3692
3693 if (!skb) {
3694 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3695 if (skb)
3696 napi->skb = skb;
3697 }
3698 return skb;
3699 }
3700 EXPORT_SYMBOL(napi_get_frags);
3701
3702 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3703 gro_result_t ret)
3704 {
3705 switch (ret) {
3706 case GRO_NORMAL:
3707 case GRO_HELD:
3708 skb->protocol = eth_type_trans(skb, skb->dev);
3709
3710 if (ret == GRO_HELD)
3711 skb_gro_pull(skb, -ETH_HLEN);
3712 else if (netif_receive_skb(skb))
3713 ret = GRO_DROP;
3714 break;
3715
3716 case GRO_DROP:
3717 case GRO_MERGED_FREE:
3718 napi_reuse_skb(napi, skb);
3719 break;
3720
3721 case GRO_MERGED:
3722 break;
3723 }
3724
3725 return ret;
3726 }
3727 EXPORT_SYMBOL(napi_frags_finish);
3728
3729 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3730 {
3731 struct sk_buff *skb = napi->skb;
3732 struct ethhdr *eth;
3733 unsigned int hlen;
3734 unsigned int off;
3735
3736 napi->skb = NULL;
3737
3738 skb_reset_mac_header(skb);
3739 skb_gro_reset_offset(skb);
3740
3741 off = skb_gro_offset(skb);
3742 hlen = off + sizeof(*eth);
3743 eth = skb_gro_header_fast(skb, off);
3744 if (skb_gro_header_hard(skb, hlen)) {
3745 eth = skb_gro_header_slow(skb, hlen, off);
3746 if (unlikely(!eth)) {
3747 napi_reuse_skb(napi, skb);
3748 skb = NULL;
3749 goto out;
3750 }
3751 }
3752
3753 skb_gro_pull(skb, sizeof(*eth));
3754
3755 /*
3756 * This works because the only protocols we care about don't require
3757 * special handling. We'll fix it up properly at the end.
3758 */
3759 skb->protocol = eth->h_proto;
3760
3761 out:
3762 return skb;
3763 }
3764
3765 gro_result_t napi_gro_frags(struct napi_struct *napi)
3766 {
3767 struct sk_buff *skb = napi_frags_skb(napi);
3768
3769 if (!skb)
3770 return GRO_DROP;
3771
3772 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3773 }
3774 EXPORT_SYMBOL(napi_gro_frags);
3775
3776 /*
3777 * net_rps_action sends any pending IPI's for rps.
3778 * Note: called with local irq disabled, but exits with local irq enabled.
3779 */
3780 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3781 {
3782 #ifdef CONFIG_RPS
3783 struct softnet_data *remsd = sd->rps_ipi_list;
3784
3785 if (remsd) {
3786 sd->rps_ipi_list = NULL;
3787
3788 local_irq_enable();
3789
3790 /* Send pending IPI's to kick RPS processing on remote cpus. */
3791 while (remsd) {
3792 struct softnet_data *next = remsd->rps_ipi_next;
3793
3794 if (cpu_online(remsd->cpu))
3795 __smp_call_function_single(remsd->cpu,
3796 &remsd->csd, 0);
3797 remsd = next;
3798 }
3799 } else
3800 #endif
3801 local_irq_enable();
3802 }
3803
3804 static int process_backlog(struct napi_struct *napi, int quota)
3805 {
3806 int work = 0;
3807 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3808
3809 #ifdef CONFIG_RPS
3810 /* Check if we have pending ipi, its better to send them now,
3811 * not waiting net_rx_action() end.
3812 */
3813 if (sd->rps_ipi_list) {
3814 local_irq_disable();
3815 net_rps_action_and_irq_enable(sd);
3816 }
3817 #endif
3818 napi->weight = weight_p;
3819 local_irq_disable();
3820 while (work < quota) {
3821 struct sk_buff *skb;
3822 unsigned int qlen;
3823
3824 while ((skb = __skb_dequeue(&sd->process_queue))) {
3825 local_irq_enable();
3826 __netif_receive_skb(skb);
3827 local_irq_disable();
3828 input_queue_head_incr(sd);
3829 if (++work >= quota) {
3830 local_irq_enable();
3831 return work;
3832 }
3833 }
3834
3835 rps_lock(sd);
3836 qlen = skb_queue_len(&sd->input_pkt_queue);
3837 if (qlen)
3838 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3839 &sd->process_queue);
3840
3841 if (qlen < quota - work) {
3842 /*
3843 * Inline a custom version of __napi_complete().
3844 * only current cpu owns and manipulates this napi,
3845 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3846 * we can use a plain write instead of clear_bit(),
3847 * and we dont need an smp_mb() memory barrier.
3848 */
3849 list_del(&napi->poll_list);
3850 napi->state = 0;
3851
3852 quota = work + qlen;
3853 }
3854 rps_unlock(sd);
3855 }
3856 local_irq_enable();
3857
3858 return work;
3859 }
3860
3861 /**
3862 * __napi_schedule - schedule for receive
3863 * @n: entry to schedule
3864 *
3865 * The entry's receive function will be scheduled to run
3866 */
3867 void __napi_schedule(struct napi_struct *n)
3868 {
3869 unsigned long flags;
3870
3871 local_irq_save(flags);
3872 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3873 local_irq_restore(flags);
3874 }
3875 EXPORT_SYMBOL(__napi_schedule);
3876
3877 void __napi_complete(struct napi_struct *n)
3878 {
3879 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3880 BUG_ON(n->gro_list);
3881
3882 list_del(&n->poll_list);
3883 smp_mb__before_clear_bit();
3884 clear_bit(NAPI_STATE_SCHED, &n->state);
3885 }
3886 EXPORT_SYMBOL(__napi_complete);
3887
3888 void napi_complete(struct napi_struct *n)
3889 {
3890 unsigned long flags;
3891
3892 /*
3893 * don't let napi dequeue from the cpu poll list
3894 * just in case its running on a different cpu
3895 */
3896 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3897 return;
3898
3899 napi_gro_flush(n, false);
3900 local_irq_save(flags);
3901 __napi_complete(n);
3902 local_irq_restore(flags);
3903 }
3904 EXPORT_SYMBOL(napi_complete);
3905
3906 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3907 int (*poll)(struct napi_struct *, int), int weight)
3908 {
3909 INIT_LIST_HEAD(&napi->poll_list);
3910 napi->gro_count = 0;
3911 napi->gro_list = NULL;
3912 napi->skb = NULL;
3913 napi->poll = poll;
3914 napi->weight = weight;
3915 list_add(&napi->dev_list, &dev->napi_list);
3916 napi->dev = dev;
3917 #ifdef CONFIG_NETPOLL
3918 spin_lock_init(&napi->poll_lock);
3919 napi->poll_owner = -1;
3920 #endif
3921 set_bit(NAPI_STATE_SCHED, &napi->state);
3922 }
3923 EXPORT_SYMBOL(netif_napi_add);
3924
3925 void netif_napi_del(struct napi_struct *napi)
3926 {
3927 struct sk_buff *skb, *next;
3928
3929 list_del_init(&napi->dev_list);
3930 napi_free_frags(napi);
3931
3932 for (skb = napi->gro_list; skb; skb = next) {
3933 next = skb->next;
3934 skb->next = NULL;
3935 kfree_skb(skb);
3936 }
3937
3938 napi->gro_list = NULL;
3939 napi->gro_count = 0;
3940 }
3941 EXPORT_SYMBOL(netif_napi_del);
3942
3943 static void net_rx_action(struct softirq_action *h)
3944 {
3945 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3946 unsigned long time_limit = jiffies + 2;
3947 int budget = netdev_budget;
3948 void *have;
3949
3950 local_irq_disable();
3951
3952 while (!list_empty(&sd->poll_list)) {
3953 struct napi_struct *n;
3954 int work, weight;
3955
3956 /* If softirq window is exhuasted then punt.
3957 * Allow this to run for 2 jiffies since which will allow
3958 * an average latency of 1.5/HZ.
3959 */
3960 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3961 goto softnet_break;
3962
3963 local_irq_enable();
3964
3965 /* Even though interrupts have been re-enabled, this
3966 * access is safe because interrupts can only add new
3967 * entries to the tail of this list, and only ->poll()
3968 * calls can remove this head entry from the list.
3969 */
3970 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3971
3972 have = netpoll_poll_lock(n);
3973
3974 weight = n->weight;
3975
3976 /* This NAPI_STATE_SCHED test is for avoiding a race
3977 * with netpoll's poll_napi(). Only the entity which
3978 * obtains the lock and sees NAPI_STATE_SCHED set will
3979 * actually make the ->poll() call. Therefore we avoid
3980 * accidentally calling ->poll() when NAPI is not scheduled.
3981 */
3982 work = 0;
3983 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3984 work = n->poll(n, weight);
3985 trace_napi_poll(n);
3986 }
3987
3988 WARN_ON_ONCE(work > weight);
3989
3990 budget -= work;
3991
3992 local_irq_disable();
3993
3994 /* Drivers must not modify the NAPI state if they
3995 * consume the entire weight. In such cases this code
3996 * still "owns" the NAPI instance and therefore can
3997 * move the instance around on the list at-will.
3998 */
3999 if (unlikely(work == weight)) {
4000 if (unlikely(napi_disable_pending(n))) {
4001 local_irq_enable();
4002 napi_complete(n);
4003 local_irq_disable();
4004 } else {
4005 if (n->gro_list) {
4006 /* flush too old packets
4007 * If HZ < 1000, flush all packets.
4008 */
4009 local_irq_enable();
4010 napi_gro_flush(n, HZ >= 1000);
4011 local_irq_disable();
4012 }
4013 list_move_tail(&n->poll_list, &sd->poll_list);
4014 }
4015 }
4016
4017 netpoll_poll_unlock(have);
4018 }
4019 out:
4020 net_rps_action_and_irq_enable(sd);
4021
4022 #ifdef CONFIG_NET_DMA
4023 /*
4024 * There may not be any more sk_buffs coming right now, so push
4025 * any pending DMA copies to hardware
4026 */
4027 dma_issue_pending_all();
4028 #endif
4029
4030 return;
4031
4032 softnet_break:
4033 sd->time_squeeze++;
4034 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4035 goto out;
4036 }
4037
4038 static gifconf_func_t *gifconf_list[NPROTO];
4039
4040 /**
4041 * register_gifconf - register a SIOCGIF handler
4042 * @family: Address family
4043 * @gifconf: Function handler
4044 *
4045 * Register protocol dependent address dumping routines. The handler
4046 * that is passed must not be freed or reused until it has been replaced
4047 * by another handler.
4048 */
4049 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4050 {
4051 if (family >= NPROTO)
4052 return -EINVAL;
4053 gifconf_list[family] = gifconf;
4054 return 0;
4055 }
4056 EXPORT_SYMBOL(register_gifconf);
4057
4058
4059 /*
4060 * Map an interface index to its name (SIOCGIFNAME)
4061 */
4062
4063 /*
4064 * We need this ioctl for efficient implementation of the
4065 * if_indextoname() function required by the IPv6 API. Without
4066 * it, we would have to search all the interfaces to find a
4067 * match. --pb
4068 */
4069
4070 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4071 {
4072 struct net_device *dev;
4073 struct ifreq ifr;
4074
4075 /*
4076 * Fetch the caller's info block.
4077 */
4078
4079 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4080 return -EFAULT;
4081
4082 rcu_read_lock();
4083 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4084 if (!dev) {
4085 rcu_read_unlock();
4086 return -ENODEV;
4087 }
4088
4089 strcpy(ifr.ifr_name, dev->name);
4090 rcu_read_unlock();
4091
4092 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4093 return -EFAULT;
4094 return 0;
4095 }
4096
4097 /*
4098 * Perform a SIOCGIFCONF call. This structure will change
4099 * size eventually, and there is nothing I can do about it.
4100 * Thus we will need a 'compatibility mode'.
4101 */
4102
4103 static int dev_ifconf(struct net *net, char __user *arg)
4104 {
4105 struct ifconf ifc;
4106 struct net_device *dev;
4107 char __user *pos;
4108 int len;
4109 int total;
4110 int i;
4111
4112 /*
4113 * Fetch the caller's info block.
4114 */
4115
4116 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4117 return -EFAULT;
4118
4119 pos = ifc.ifc_buf;
4120 len = ifc.ifc_len;
4121
4122 /*
4123 * Loop over the interfaces, and write an info block for each.
4124 */
4125
4126 total = 0;
4127 for_each_netdev(net, dev) {
4128 for (i = 0; i < NPROTO; i++) {
4129 if (gifconf_list[i]) {
4130 int done;
4131 if (!pos)
4132 done = gifconf_list[i](dev, NULL, 0);
4133 else
4134 done = gifconf_list[i](dev, pos + total,
4135 len - total);
4136 if (done < 0)
4137 return -EFAULT;
4138 total += done;
4139 }
4140 }
4141 }
4142
4143 /*
4144 * All done. Write the updated control block back to the caller.
4145 */
4146 ifc.ifc_len = total;
4147
4148 /*
4149 * Both BSD and Solaris return 0 here, so we do too.
4150 */
4151 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4152 }
4153
4154 #ifdef CONFIG_PROC_FS
4155
4156 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4157
4158 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4159 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4160 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4161
4162 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4163 {
4164 struct net *net = seq_file_net(seq);
4165 struct net_device *dev;
4166 struct hlist_node *p;
4167 struct hlist_head *h;
4168 unsigned int count = 0, offset = get_offset(*pos);
4169
4170 h = &net->dev_name_head[get_bucket(*pos)];
4171 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4172 if (++count == offset)
4173 return dev;
4174 }
4175
4176 return NULL;
4177 }
4178
4179 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4180 {
4181 struct net_device *dev;
4182 unsigned int bucket;
4183
4184 do {
4185 dev = dev_from_same_bucket(seq, pos);
4186 if (dev)
4187 return dev;
4188
4189 bucket = get_bucket(*pos) + 1;
4190 *pos = set_bucket_offset(bucket, 1);
4191 } while (bucket < NETDEV_HASHENTRIES);
4192
4193 return NULL;
4194 }
4195
4196 /*
4197 * This is invoked by the /proc filesystem handler to display a device
4198 * in detail.
4199 */
4200 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4201 __acquires(RCU)
4202 {
4203 rcu_read_lock();
4204 if (!*pos)
4205 return SEQ_START_TOKEN;
4206
4207 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4208 return NULL;
4209
4210 return dev_from_bucket(seq, pos);
4211 }
4212
4213 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4214 {
4215 ++*pos;
4216 return dev_from_bucket(seq, pos);
4217 }
4218
4219 void dev_seq_stop(struct seq_file *seq, void *v)
4220 __releases(RCU)
4221 {
4222 rcu_read_unlock();
4223 }
4224
4225 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4226 {
4227 struct rtnl_link_stats64 temp;
4228 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4229
4230 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4231 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4232 dev->name, stats->rx_bytes, stats->rx_packets,
4233 stats->rx_errors,
4234 stats->rx_dropped + stats->rx_missed_errors,
4235 stats->rx_fifo_errors,
4236 stats->rx_length_errors + stats->rx_over_errors +
4237 stats->rx_crc_errors + stats->rx_frame_errors,
4238 stats->rx_compressed, stats->multicast,
4239 stats->tx_bytes, stats->tx_packets,
4240 stats->tx_errors, stats->tx_dropped,
4241 stats->tx_fifo_errors, stats->collisions,
4242 stats->tx_carrier_errors +
4243 stats->tx_aborted_errors +
4244 stats->tx_window_errors +
4245 stats->tx_heartbeat_errors,
4246 stats->tx_compressed);
4247 }
4248
4249 /*
4250 * Called from the PROCfs module. This now uses the new arbitrary sized
4251 * /proc/net interface to create /proc/net/dev
4252 */
4253 static int dev_seq_show(struct seq_file *seq, void *v)
4254 {
4255 if (v == SEQ_START_TOKEN)
4256 seq_puts(seq, "Inter-| Receive "
4257 " | Transmit\n"
4258 " face |bytes packets errs drop fifo frame "
4259 "compressed multicast|bytes packets errs "
4260 "drop fifo colls carrier compressed\n");
4261 else
4262 dev_seq_printf_stats(seq, v);
4263 return 0;
4264 }
4265
4266 static struct softnet_data *softnet_get_online(loff_t *pos)
4267 {
4268 struct softnet_data *sd = NULL;
4269
4270 while (*pos < nr_cpu_ids)
4271 if (cpu_online(*pos)) {
4272 sd = &per_cpu(softnet_data, *pos);
4273 break;
4274 } else
4275 ++*pos;
4276 return sd;
4277 }
4278
4279 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4280 {
4281 return softnet_get_online(pos);
4282 }
4283
4284 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4285 {
4286 ++*pos;
4287 return softnet_get_online(pos);
4288 }
4289
4290 static void softnet_seq_stop(struct seq_file *seq, void *v)
4291 {
4292 }
4293
4294 static int softnet_seq_show(struct seq_file *seq, void *v)
4295 {
4296 struct softnet_data *sd = v;
4297
4298 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4299 sd->processed, sd->dropped, sd->time_squeeze, 0,
4300 0, 0, 0, 0, /* was fastroute */
4301 sd->cpu_collision, sd->received_rps);
4302 return 0;
4303 }
4304
4305 static const struct seq_operations dev_seq_ops = {
4306 .start = dev_seq_start,
4307 .next = dev_seq_next,
4308 .stop = dev_seq_stop,
4309 .show = dev_seq_show,
4310 };
4311
4312 static int dev_seq_open(struct inode *inode, struct file *file)
4313 {
4314 return seq_open_net(inode, file, &dev_seq_ops,
4315 sizeof(struct seq_net_private));
4316 }
4317
4318 static const struct file_operations dev_seq_fops = {
4319 .owner = THIS_MODULE,
4320 .open = dev_seq_open,
4321 .read = seq_read,
4322 .llseek = seq_lseek,
4323 .release = seq_release_net,
4324 };
4325
4326 static const struct seq_operations softnet_seq_ops = {
4327 .start = softnet_seq_start,
4328 .next = softnet_seq_next,
4329 .stop = softnet_seq_stop,
4330 .show = softnet_seq_show,
4331 };
4332
4333 static int softnet_seq_open(struct inode *inode, struct file *file)
4334 {
4335 return seq_open(file, &softnet_seq_ops);
4336 }
4337
4338 static const struct file_operations softnet_seq_fops = {
4339 .owner = THIS_MODULE,
4340 .open = softnet_seq_open,
4341 .read = seq_read,
4342 .llseek = seq_lseek,
4343 .release = seq_release,
4344 };
4345
4346 static void *ptype_get_idx(loff_t pos)
4347 {
4348 struct packet_type *pt = NULL;
4349 loff_t i = 0;
4350 int t;
4351
4352 list_for_each_entry_rcu(pt, &ptype_all, list) {
4353 if (i == pos)
4354 return pt;
4355 ++i;
4356 }
4357
4358 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4359 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4360 if (i == pos)
4361 return pt;
4362 ++i;
4363 }
4364 }
4365 return NULL;
4366 }
4367
4368 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4369 __acquires(RCU)
4370 {
4371 rcu_read_lock();
4372 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4373 }
4374
4375 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4376 {
4377 struct packet_type *pt;
4378 struct list_head *nxt;
4379 int hash;
4380
4381 ++*pos;
4382 if (v == SEQ_START_TOKEN)
4383 return ptype_get_idx(0);
4384
4385 pt = v;
4386 nxt = pt->list.next;
4387 if (pt->type == htons(ETH_P_ALL)) {
4388 if (nxt != &ptype_all)
4389 goto found;
4390 hash = 0;
4391 nxt = ptype_base[0].next;
4392 } else
4393 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4394
4395 while (nxt == &ptype_base[hash]) {
4396 if (++hash >= PTYPE_HASH_SIZE)
4397 return NULL;
4398 nxt = ptype_base[hash].next;
4399 }
4400 found:
4401 return list_entry(nxt, struct packet_type, list);
4402 }
4403
4404 static void ptype_seq_stop(struct seq_file *seq, void *v)
4405 __releases(RCU)
4406 {
4407 rcu_read_unlock();
4408 }
4409
4410 static int ptype_seq_show(struct seq_file *seq, void *v)
4411 {
4412 struct packet_type *pt = v;
4413
4414 if (v == SEQ_START_TOKEN)
4415 seq_puts(seq, "Type Device Function\n");
4416 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4417 if (pt->type == htons(ETH_P_ALL))
4418 seq_puts(seq, "ALL ");
4419 else
4420 seq_printf(seq, "%04x", ntohs(pt->type));
4421
4422 seq_printf(seq, " %-8s %pF\n",
4423 pt->dev ? pt->dev->name : "", pt->func);
4424 }
4425
4426 return 0;
4427 }
4428
4429 static const struct seq_operations ptype_seq_ops = {
4430 .start = ptype_seq_start,
4431 .next = ptype_seq_next,
4432 .stop = ptype_seq_stop,
4433 .show = ptype_seq_show,
4434 };
4435
4436 static int ptype_seq_open(struct inode *inode, struct file *file)
4437 {
4438 return seq_open_net(inode, file, &ptype_seq_ops,
4439 sizeof(struct seq_net_private));
4440 }
4441
4442 static const struct file_operations ptype_seq_fops = {
4443 .owner = THIS_MODULE,
4444 .open = ptype_seq_open,
4445 .read = seq_read,
4446 .llseek = seq_lseek,
4447 .release = seq_release_net,
4448 };
4449
4450
4451 static int __net_init dev_proc_net_init(struct net *net)
4452 {
4453 int rc = -ENOMEM;
4454
4455 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4456 goto out;
4457 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4458 goto out_dev;
4459 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4460 goto out_softnet;
4461
4462 if (wext_proc_init(net))
4463 goto out_ptype;
4464 rc = 0;
4465 out:
4466 return rc;
4467 out_ptype:
4468 proc_net_remove(net, "ptype");
4469 out_softnet:
4470 proc_net_remove(net, "softnet_stat");
4471 out_dev:
4472 proc_net_remove(net, "dev");
4473 goto out;
4474 }
4475
4476 static void __net_exit dev_proc_net_exit(struct net *net)
4477 {
4478 wext_proc_exit(net);
4479
4480 proc_net_remove(net, "ptype");
4481 proc_net_remove(net, "softnet_stat");
4482 proc_net_remove(net, "dev");
4483 }
4484
4485 static struct pernet_operations __net_initdata dev_proc_ops = {
4486 .init = dev_proc_net_init,
4487 .exit = dev_proc_net_exit,
4488 };
4489
4490 static int __init dev_proc_init(void)
4491 {
4492 return register_pernet_subsys(&dev_proc_ops);
4493 }
4494 #else
4495 #define dev_proc_init() 0
4496 #endif /* CONFIG_PROC_FS */
4497
4498
4499 /**
4500 * netdev_set_master - set up master pointer
4501 * @slave: slave device
4502 * @master: new master device
4503 *
4504 * Changes the master device of the slave. Pass %NULL to break the
4505 * bonding. The caller must hold the RTNL semaphore. On a failure
4506 * a negative errno code is returned. On success the reference counts
4507 * are adjusted and the function returns zero.
4508 */
4509 int netdev_set_master(struct net_device *slave, struct net_device *master)
4510 {
4511 struct net_device *old = slave->master;
4512
4513 ASSERT_RTNL();
4514
4515 if (master) {
4516 if (old)
4517 return -EBUSY;
4518 dev_hold(master);
4519 }
4520
4521 slave->master = master;
4522
4523 if (old)
4524 dev_put(old);
4525 return 0;
4526 }
4527 EXPORT_SYMBOL(netdev_set_master);
4528
4529 /**
4530 * netdev_set_bond_master - set up bonding master/slave pair
4531 * @slave: slave device
4532 * @master: new master device
4533 *
4534 * Changes the master device of the slave. Pass %NULL to break the
4535 * bonding. The caller must hold the RTNL semaphore. On a failure
4536 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4537 * to the routing socket and the function returns zero.
4538 */
4539 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4540 {
4541 int err;
4542
4543 ASSERT_RTNL();
4544
4545 err = netdev_set_master(slave, master);
4546 if (err)
4547 return err;
4548 if (master)
4549 slave->flags |= IFF_SLAVE;
4550 else
4551 slave->flags &= ~IFF_SLAVE;
4552
4553 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4554 return 0;
4555 }
4556 EXPORT_SYMBOL(netdev_set_bond_master);
4557
4558 static void dev_change_rx_flags(struct net_device *dev, int flags)
4559 {
4560 const struct net_device_ops *ops = dev->netdev_ops;
4561
4562 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4563 ops->ndo_change_rx_flags(dev, flags);
4564 }
4565
4566 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4567 {
4568 unsigned int old_flags = dev->flags;
4569 kuid_t uid;
4570 kgid_t gid;
4571
4572 ASSERT_RTNL();
4573
4574 dev->flags |= IFF_PROMISC;
4575 dev->promiscuity += inc;
4576 if (dev->promiscuity == 0) {
4577 /*
4578 * Avoid overflow.
4579 * If inc causes overflow, untouch promisc and return error.
4580 */
4581 if (inc < 0)
4582 dev->flags &= ~IFF_PROMISC;
4583 else {
4584 dev->promiscuity -= inc;
4585 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4586 dev->name);
4587 return -EOVERFLOW;
4588 }
4589 }
4590 if (dev->flags != old_flags) {
4591 pr_info("device %s %s promiscuous mode\n",
4592 dev->name,
4593 dev->flags & IFF_PROMISC ? "entered" : "left");
4594 if (audit_enabled) {
4595 current_uid_gid(&uid, &gid);
4596 audit_log(current->audit_context, GFP_ATOMIC,
4597 AUDIT_ANOM_PROMISCUOUS,
4598 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4599 dev->name, (dev->flags & IFF_PROMISC),
4600 (old_flags & IFF_PROMISC),
4601 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4602 from_kuid(&init_user_ns, uid),
4603 from_kgid(&init_user_ns, gid),
4604 audit_get_sessionid(current));
4605 }
4606
4607 dev_change_rx_flags(dev, IFF_PROMISC);
4608 }
4609 return 0;
4610 }
4611
4612 /**
4613 * dev_set_promiscuity - update promiscuity count on a device
4614 * @dev: device
4615 * @inc: modifier
4616 *
4617 * Add or remove promiscuity from a device. While the count in the device
4618 * remains above zero the interface remains promiscuous. Once it hits zero
4619 * the device reverts back to normal filtering operation. A negative inc
4620 * value is used to drop promiscuity on the device.
4621 * Return 0 if successful or a negative errno code on error.
4622 */
4623 int dev_set_promiscuity(struct net_device *dev, int inc)
4624 {
4625 unsigned int old_flags = dev->flags;
4626 int err;
4627
4628 err = __dev_set_promiscuity(dev, inc);
4629 if (err < 0)
4630 return err;
4631 if (dev->flags != old_flags)
4632 dev_set_rx_mode(dev);
4633 return err;
4634 }
4635 EXPORT_SYMBOL(dev_set_promiscuity);
4636
4637 /**
4638 * dev_set_allmulti - update allmulti count on a device
4639 * @dev: device
4640 * @inc: modifier
4641 *
4642 * Add or remove reception of all multicast frames to a device. While the
4643 * count in the device remains above zero the interface remains listening
4644 * to all interfaces. Once it hits zero the device reverts back to normal
4645 * filtering operation. A negative @inc value is used to drop the counter
4646 * when releasing a resource needing all multicasts.
4647 * Return 0 if successful or a negative errno code on error.
4648 */
4649
4650 int dev_set_allmulti(struct net_device *dev, int inc)
4651 {
4652 unsigned int old_flags = dev->flags;
4653
4654 ASSERT_RTNL();
4655
4656 dev->flags |= IFF_ALLMULTI;
4657 dev->allmulti += inc;
4658 if (dev->allmulti == 0) {
4659 /*
4660 * Avoid overflow.
4661 * If inc causes overflow, untouch allmulti and return error.
4662 */
4663 if (inc < 0)
4664 dev->flags &= ~IFF_ALLMULTI;
4665 else {
4666 dev->allmulti -= inc;
4667 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4668 dev->name);
4669 return -EOVERFLOW;
4670 }
4671 }
4672 if (dev->flags ^ old_flags) {
4673 dev_change_rx_flags(dev, IFF_ALLMULTI);
4674 dev_set_rx_mode(dev);
4675 }
4676 return 0;
4677 }
4678 EXPORT_SYMBOL(dev_set_allmulti);
4679
4680 /*
4681 * Upload unicast and multicast address lists to device and
4682 * configure RX filtering. When the device doesn't support unicast
4683 * filtering it is put in promiscuous mode while unicast addresses
4684 * are present.
4685 */
4686 void __dev_set_rx_mode(struct net_device *dev)
4687 {
4688 const struct net_device_ops *ops = dev->netdev_ops;
4689
4690 /* dev_open will call this function so the list will stay sane. */
4691 if (!(dev->flags&IFF_UP))
4692 return;
4693
4694 if (!netif_device_present(dev))
4695 return;
4696
4697 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4698 /* Unicast addresses changes may only happen under the rtnl,
4699 * therefore calling __dev_set_promiscuity here is safe.
4700 */
4701 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4702 __dev_set_promiscuity(dev, 1);
4703 dev->uc_promisc = true;
4704 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4705 __dev_set_promiscuity(dev, -1);
4706 dev->uc_promisc = false;
4707 }
4708 }
4709
4710 if (ops->ndo_set_rx_mode)
4711 ops->ndo_set_rx_mode(dev);
4712 }
4713
4714 void dev_set_rx_mode(struct net_device *dev)
4715 {
4716 netif_addr_lock_bh(dev);
4717 __dev_set_rx_mode(dev);
4718 netif_addr_unlock_bh(dev);
4719 }
4720
4721 /**
4722 * dev_get_flags - get flags reported to userspace
4723 * @dev: device
4724 *
4725 * Get the combination of flag bits exported through APIs to userspace.
4726 */
4727 unsigned int dev_get_flags(const struct net_device *dev)
4728 {
4729 unsigned int flags;
4730
4731 flags = (dev->flags & ~(IFF_PROMISC |
4732 IFF_ALLMULTI |
4733 IFF_RUNNING |
4734 IFF_LOWER_UP |
4735 IFF_DORMANT)) |
4736 (dev->gflags & (IFF_PROMISC |
4737 IFF_ALLMULTI));
4738
4739 if (netif_running(dev)) {
4740 if (netif_oper_up(dev))
4741 flags |= IFF_RUNNING;
4742 if (netif_carrier_ok(dev))
4743 flags |= IFF_LOWER_UP;
4744 if (netif_dormant(dev))
4745 flags |= IFF_DORMANT;
4746 }
4747
4748 return flags;
4749 }
4750 EXPORT_SYMBOL(dev_get_flags);
4751
4752 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4753 {
4754 unsigned int old_flags = dev->flags;
4755 int ret;
4756
4757 ASSERT_RTNL();
4758
4759 /*
4760 * Set the flags on our device.
4761 */
4762
4763 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4764 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4765 IFF_AUTOMEDIA)) |
4766 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4767 IFF_ALLMULTI));
4768
4769 /*
4770 * Load in the correct multicast list now the flags have changed.
4771 */
4772
4773 if ((old_flags ^ flags) & IFF_MULTICAST)
4774 dev_change_rx_flags(dev, IFF_MULTICAST);
4775
4776 dev_set_rx_mode(dev);
4777
4778 /*
4779 * Have we downed the interface. We handle IFF_UP ourselves
4780 * according to user attempts to set it, rather than blindly
4781 * setting it.
4782 */
4783
4784 ret = 0;
4785 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4786 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4787
4788 if (!ret)
4789 dev_set_rx_mode(dev);
4790 }
4791
4792 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4793 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4794
4795 dev->gflags ^= IFF_PROMISC;
4796 dev_set_promiscuity(dev, inc);
4797 }
4798
4799 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4800 is important. Some (broken) drivers set IFF_PROMISC, when
4801 IFF_ALLMULTI is requested not asking us and not reporting.
4802 */
4803 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4804 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4805
4806 dev->gflags ^= IFF_ALLMULTI;
4807 dev_set_allmulti(dev, inc);
4808 }
4809
4810 return ret;
4811 }
4812
4813 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4814 {
4815 unsigned int changes = dev->flags ^ old_flags;
4816
4817 if (changes & IFF_UP) {
4818 if (dev->flags & IFF_UP)
4819 call_netdevice_notifiers(NETDEV_UP, dev);
4820 else
4821 call_netdevice_notifiers(NETDEV_DOWN, dev);
4822 }
4823
4824 if (dev->flags & IFF_UP &&
4825 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4826 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4827 }
4828
4829 /**
4830 * dev_change_flags - change device settings
4831 * @dev: device
4832 * @flags: device state flags
4833 *
4834 * Change settings on device based state flags. The flags are
4835 * in the userspace exported format.
4836 */
4837 int dev_change_flags(struct net_device *dev, unsigned int flags)
4838 {
4839 int ret;
4840 unsigned int changes, old_flags = dev->flags;
4841
4842 ret = __dev_change_flags(dev, flags);
4843 if (ret < 0)
4844 return ret;
4845
4846 changes = old_flags ^ dev->flags;
4847 if (changes)
4848 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4849
4850 __dev_notify_flags(dev, old_flags);
4851 return ret;
4852 }
4853 EXPORT_SYMBOL(dev_change_flags);
4854
4855 /**
4856 * dev_set_mtu - Change maximum transfer unit
4857 * @dev: device
4858 * @new_mtu: new transfer unit
4859 *
4860 * Change the maximum transfer size of the network device.
4861 */
4862 int dev_set_mtu(struct net_device *dev, int new_mtu)
4863 {
4864 const struct net_device_ops *ops = dev->netdev_ops;
4865 int err;
4866
4867 if (new_mtu == dev->mtu)
4868 return 0;
4869
4870 /* MTU must be positive. */
4871 if (new_mtu < 0)
4872 return -EINVAL;
4873
4874 if (!netif_device_present(dev))
4875 return -ENODEV;
4876
4877 err = 0;
4878 if (ops->ndo_change_mtu)
4879 err = ops->ndo_change_mtu(dev, new_mtu);
4880 else
4881 dev->mtu = new_mtu;
4882
4883 if (!err && dev->flags & IFF_UP)
4884 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4885 return err;
4886 }
4887 EXPORT_SYMBOL(dev_set_mtu);
4888
4889 /**
4890 * dev_set_group - Change group this device belongs to
4891 * @dev: device
4892 * @new_group: group this device should belong to
4893 */
4894 void dev_set_group(struct net_device *dev, int new_group)
4895 {
4896 dev->group = new_group;
4897 }
4898 EXPORT_SYMBOL(dev_set_group);
4899
4900 /**
4901 * dev_set_mac_address - Change Media Access Control Address
4902 * @dev: device
4903 * @sa: new address
4904 *
4905 * Change the hardware (MAC) address of the device
4906 */
4907 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4908 {
4909 const struct net_device_ops *ops = dev->netdev_ops;
4910 int err;
4911
4912 if (!ops->ndo_set_mac_address)
4913 return -EOPNOTSUPP;
4914 if (sa->sa_family != dev->type)
4915 return -EINVAL;
4916 if (!netif_device_present(dev))
4917 return -ENODEV;
4918 err = ops->ndo_set_mac_address(dev, sa);
4919 if (!err)
4920 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4921 add_device_randomness(dev->dev_addr, dev->addr_len);
4922 return err;
4923 }
4924 EXPORT_SYMBOL(dev_set_mac_address);
4925
4926 /*
4927 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4928 */
4929 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4930 {
4931 int err;
4932 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4933
4934 if (!dev)
4935 return -ENODEV;
4936
4937 switch (cmd) {
4938 case SIOCGIFFLAGS: /* Get interface flags */
4939 ifr->ifr_flags = (short) dev_get_flags(dev);
4940 return 0;
4941
4942 case SIOCGIFMETRIC: /* Get the metric on the interface
4943 (currently unused) */
4944 ifr->ifr_metric = 0;
4945 return 0;
4946
4947 case SIOCGIFMTU: /* Get the MTU of a device */
4948 ifr->ifr_mtu = dev->mtu;
4949 return 0;
4950
4951 case SIOCGIFHWADDR:
4952 if (!dev->addr_len)
4953 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4954 else
4955 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4956 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4957 ifr->ifr_hwaddr.sa_family = dev->type;
4958 return 0;
4959
4960 case SIOCGIFSLAVE:
4961 err = -EINVAL;
4962 break;
4963
4964 case SIOCGIFMAP:
4965 ifr->ifr_map.mem_start = dev->mem_start;
4966 ifr->ifr_map.mem_end = dev->mem_end;
4967 ifr->ifr_map.base_addr = dev->base_addr;
4968 ifr->ifr_map.irq = dev->irq;
4969 ifr->ifr_map.dma = dev->dma;
4970 ifr->ifr_map.port = dev->if_port;
4971 return 0;
4972
4973 case SIOCGIFINDEX:
4974 ifr->ifr_ifindex = dev->ifindex;
4975 return 0;
4976
4977 case SIOCGIFTXQLEN:
4978 ifr->ifr_qlen = dev->tx_queue_len;
4979 return 0;
4980
4981 default:
4982 /* dev_ioctl() should ensure this case
4983 * is never reached
4984 */
4985 WARN_ON(1);
4986 err = -ENOTTY;
4987 break;
4988
4989 }
4990 return err;
4991 }
4992
4993 /*
4994 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4995 */
4996 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4997 {
4998 int err;
4999 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5000 const struct net_device_ops *ops;
5001
5002 if (!dev)
5003 return -ENODEV;
5004
5005 ops = dev->netdev_ops;
5006
5007 switch (cmd) {
5008 case SIOCSIFFLAGS: /* Set interface flags */
5009 return dev_change_flags(dev, ifr->ifr_flags);
5010
5011 case SIOCSIFMETRIC: /* Set the metric on the interface
5012 (currently unused) */
5013 return -EOPNOTSUPP;
5014
5015 case SIOCSIFMTU: /* Set the MTU of a device */
5016 return dev_set_mtu(dev, ifr->ifr_mtu);
5017
5018 case SIOCSIFHWADDR:
5019 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5020
5021 case SIOCSIFHWBROADCAST:
5022 if (ifr->ifr_hwaddr.sa_family != dev->type)
5023 return -EINVAL;
5024 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5025 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5026 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5027 return 0;
5028
5029 case SIOCSIFMAP:
5030 if (ops->ndo_set_config) {
5031 if (!netif_device_present(dev))
5032 return -ENODEV;
5033 return ops->ndo_set_config(dev, &ifr->ifr_map);
5034 }
5035 return -EOPNOTSUPP;
5036
5037 case SIOCADDMULTI:
5038 if (!ops->ndo_set_rx_mode ||
5039 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5040 return -EINVAL;
5041 if (!netif_device_present(dev))
5042 return -ENODEV;
5043 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5044
5045 case SIOCDELMULTI:
5046 if (!ops->ndo_set_rx_mode ||
5047 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5048 return -EINVAL;
5049 if (!netif_device_present(dev))
5050 return -ENODEV;
5051 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5052
5053 case SIOCSIFTXQLEN:
5054 if (ifr->ifr_qlen < 0)
5055 return -EINVAL;
5056 dev->tx_queue_len = ifr->ifr_qlen;
5057 return 0;
5058
5059 case SIOCSIFNAME:
5060 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5061 return dev_change_name(dev, ifr->ifr_newname);
5062
5063 case SIOCSHWTSTAMP:
5064 err = net_hwtstamp_validate(ifr);
5065 if (err)
5066 return err;
5067 /* fall through */
5068
5069 /*
5070 * Unknown or private ioctl
5071 */
5072 default:
5073 if ((cmd >= SIOCDEVPRIVATE &&
5074 cmd <= SIOCDEVPRIVATE + 15) ||
5075 cmd == SIOCBONDENSLAVE ||
5076 cmd == SIOCBONDRELEASE ||
5077 cmd == SIOCBONDSETHWADDR ||
5078 cmd == SIOCBONDSLAVEINFOQUERY ||
5079 cmd == SIOCBONDINFOQUERY ||
5080 cmd == SIOCBONDCHANGEACTIVE ||
5081 cmd == SIOCGMIIPHY ||
5082 cmd == SIOCGMIIREG ||
5083 cmd == SIOCSMIIREG ||
5084 cmd == SIOCBRADDIF ||
5085 cmd == SIOCBRDELIF ||
5086 cmd == SIOCSHWTSTAMP ||
5087 cmd == SIOCWANDEV) {
5088 err = -EOPNOTSUPP;
5089 if (ops->ndo_do_ioctl) {
5090 if (netif_device_present(dev))
5091 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5092 else
5093 err = -ENODEV;
5094 }
5095 } else
5096 err = -EINVAL;
5097
5098 }
5099 return err;
5100 }
5101
5102 /*
5103 * This function handles all "interface"-type I/O control requests. The actual
5104 * 'doing' part of this is dev_ifsioc above.
5105 */
5106
5107 /**
5108 * dev_ioctl - network device ioctl
5109 * @net: the applicable net namespace
5110 * @cmd: command to issue
5111 * @arg: pointer to a struct ifreq in user space
5112 *
5113 * Issue ioctl functions to devices. This is normally called by the
5114 * user space syscall interfaces but can sometimes be useful for
5115 * other purposes. The return value is the return from the syscall if
5116 * positive or a negative errno code on error.
5117 */
5118
5119 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5120 {
5121 struct ifreq ifr;
5122 int ret;
5123 char *colon;
5124
5125 /* One special case: SIOCGIFCONF takes ifconf argument
5126 and requires shared lock, because it sleeps writing
5127 to user space.
5128 */
5129
5130 if (cmd == SIOCGIFCONF) {
5131 rtnl_lock();
5132 ret = dev_ifconf(net, (char __user *) arg);
5133 rtnl_unlock();
5134 return ret;
5135 }
5136 if (cmd == SIOCGIFNAME)
5137 return dev_ifname(net, (struct ifreq __user *)arg);
5138
5139 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5140 return -EFAULT;
5141
5142 ifr.ifr_name[IFNAMSIZ-1] = 0;
5143
5144 colon = strchr(ifr.ifr_name, ':');
5145 if (colon)
5146 *colon = 0;
5147
5148 /*
5149 * See which interface the caller is talking about.
5150 */
5151
5152 switch (cmd) {
5153 /*
5154 * These ioctl calls:
5155 * - can be done by all.
5156 * - atomic and do not require locking.
5157 * - return a value
5158 */
5159 case SIOCGIFFLAGS:
5160 case SIOCGIFMETRIC:
5161 case SIOCGIFMTU:
5162 case SIOCGIFHWADDR:
5163 case SIOCGIFSLAVE:
5164 case SIOCGIFMAP:
5165 case SIOCGIFINDEX:
5166 case SIOCGIFTXQLEN:
5167 dev_load(net, ifr.ifr_name);
5168 rcu_read_lock();
5169 ret = dev_ifsioc_locked(net, &ifr, cmd);
5170 rcu_read_unlock();
5171 if (!ret) {
5172 if (colon)
5173 *colon = ':';
5174 if (copy_to_user(arg, &ifr,
5175 sizeof(struct ifreq)))
5176 ret = -EFAULT;
5177 }
5178 return ret;
5179
5180 case SIOCETHTOOL:
5181 dev_load(net, ifr.ifr_name);
5182 rtnl_lock();
5183 ret = dev_ethtool(net, &ifr);
5184 rtnl_unlock();
5185 if (!ret) {
5186 if (colon)
5187 *colon = ':';
5188 if (copy_to_user(arg, &ifr,
5189 sizeof(struct ifreq)))
5190 ret = -EFAULT;
5191 }
5192 return ret;
5193
5194 /*
5195 * These ioctl calls:
5196 * - require superuser power.
5197 * - require strict serialization.
5198 * - return a value
5199 */
5200 case SIOCGMIIPHY:
5201 case SIOCGMIIREG:
5202 case SIOCSIFNAME:
5203 if (!capable(CAP_NET_ADMIN))
5204 return -EPERM;
5205 dev_load(net, ifr.ifr_name);
5206 rtnl_lock();
5207 ret = dev_ifsioc(net, &ifr, cmd);
5208 rtnl_unlock();
5209 if (!ret) {
5210 if (colon)
5211 *colon = ':';
5212 if (copy_to_user(arg, &ifr,
5213 sizeof(struct ifreq)))
5214 ret = -EFAULT;
5215 }
5216 return ret;
5217
5218 /*
5219 * These ioctl calls:
5220 * - require superuser power.
5221 * - require strict serialization.
5222 * - do not return a value
5223 */
5224 case SIOCSIFFLAGS:
5225 case SIOCSIFMETRIC:
5226 case SIOCSIFMTU:
5227 case SIOCSIFMAP:
5228 case SIOCSIFHWADDR:
5229 case SIOCSIFSLAVE:
5230 case SIOCADDMULTI:
5231 case SIOCDELMULTI:
5232 case SIOCSIFHWBROADCAST:
5233 case SIOCSIFTXQLEN:
5234 case SIOCSMIIREG:
5235 case SIOCBONDENSLAVE:
5236 case SIOCBONDRELEASE:
5237 case SIOCBONDSETHWADDR:
5238 case SIOCBONDCHANGEACTIVE:
5239 case SIOCBRADDIF:
5240 case SIOCBRDELIF:
5241 case SIOCSHWTSTAMP:
5242 if (!capable(CAP_NET_ADMIN))
5243 return -EPERM;
5244 /* fall through */
5245 case SIOCBONDSLAVEINFOQUERY:
5246 case SIOCBONDINFOQUERY:
5247 dev_load(net, ifr.ifr_name);
5248 rtnl_lock();
5249 ret = dev_ifsioc(net, &ifr, cmd);
5250 rtnl_unlock();
5251 return ret;
5252
5253 case SIOCGIFMEM:
5254 /* Get the per device memory space. We can add this but
5255 * currently do not support it */
5256 case SIOCSIFMEM:
5257 /* Set the per device memory buffer space.
5258 * Not applicable in our case */
5259 case SIOCSIFLINK:
5260 return -ENOTTY;
5261
5262 /*
5263 * Unknown or private ioctl.
5264 */
5265 default:
5266 if (cmd == SIOCWANDEV ||
5267 (cmd >= SIOCDEVPRIVATE &&
5268 cmd <= SIOCDEVPRIVATE + 15)) {
5269 dev_load(net, ifr.ifr_name);
5270 rtnl_lock();
5271 ret = dev_ifsioc(net, &ifr, cmd);
5272 rtnl_unlock();
5273 if (!ret && copy_to_user(arg, &ifr,
5274 sizeof(struct ifreq)))
5275 ret = -EFAULT;
5276 return ret;
5277 }
5278 /* Take care of Wireless Extensions */
5279 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5280 return wext_handle_ioctl(net, &ifr, cmd, arg);
5281 return -ENOTTY;
5282 }
5283 }
5284
5285
5286 /**
5287 * dev_new_index - allocate an ifindex
5288 * @net: the applicable net namespace
5289 *
5290 * Returns a suitable unique value for a new device interface
5291 * number. The caller must hold the rtnl semaphore or the
5292 * dev_base_lock to be sure it remains unique.
5293 */
5294 static int dev_new_index(struct net *net)
5295 {
5296 int ifindex = net->ifindex;
5297 for (;;) {
5298 if (++ifindex <= 0)
5299 ifindex = 1;
5300 if (!__dev_get_by_index(net, ifindex))
5301 return net->ifindex = ifindex;
5302 }
5303 }
5304
5305 /* Delayed registration/unregisteration */
5306 static LIST_HEAD(net_todo_list);
5307
5308 static void net_set_todo(struct net_device *dev)
5309 {
5310 list_add_tail(&dev->todo_list, &net_todo_list);
5311 }
5312
5313 static void rollback_registered_many(struct list_head *head)
5314 {
5315 struct net_device *dev, *tmp;
5316
5317 BUG_ON(dev_boot_phase);
5318 ASSERT_RTNL();
5319
5320 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5321 /* Some devices call without registering
5322 * for initialization unwind. Remove those
5323 * devices and proceed with the remaining.
5324 */
5325 if (dev->reg_state == NETREG_UNINITIALIZED) {
5326 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5327 dev->name, dev);
5328
5329 WARN_ON(1);
5330 list_del(&dev->unreg_list);
5331 continue;
5332 }
5333 dev->dismantle = true;
5334 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5335 }
5336
5337 /* If device is running, close it first. */
5338 dev_close_many(head);
5339
5340 list_for_each_entry(dev, head, unreg_list) {
5341 /* And unlink it from device chain. */
5342 unlist_netdevice(dev);
5343
5344 dev->reg_state = NETREG_UNREGISTERING;
5345 }
5346
5347 synchronize_net();
5348
5349 list_for_each_entry(dev, head, unreg_list) {
5350 /* Shutdown queueing discipline. */
5351 dev_shutdown(dev);
5352
5353
5354 /* Notify protocols, that we are about to destroy
5355 this device. They should clean all the things.
5356 */
5357 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5358
5359 if (!dev->rtnl_link_ops ||
5360 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5361 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5362
5363 /*
5364 * Flush the unicast and multicast chains
5365 */
5366 dev_uc_flush(dev);
5367 dev_mc_flush(dev);
5368
5369 if (dev->netdev_ops->ndo_uninit)
5370 dev->netdev_ops->ndo_uninit(dev);
5371
5372 /* Notifier chain MUST detach us from master device. */
5373 WARN_ON(dev->master);
5374
5375 /* Remove entries from kobject tree */
5376 netdev_unregister_kobject(dev);
5377 }
5378
5379 synchronize_net();
5380
5381 list_for_each_entry(dev, head, unreg_list)
5382 dev_put(dev);
5383 }
5384
5385 static void rollback_registered(struct net_device *dev)
5386 {
5387 LIST_HEAD(single);
5388
5389 list_add(&dev->unreg_list, &single);
5390 rollback_registered_many(&single);
5391 list_del(&single);
5392 }
5393
5394 static netdev_features_t netdev_fix_features(struct net_device *dev,
5395 netdev_features_t features)
5396 {
5397 /* Fix illegal checksum combinations */
5398 if ((features & NETIF_F_HW_CSUM) &&
5399 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5400 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5401 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5402 }
5403
5404 /* Fix illegal SG+CSUM combinations. */
5405 if ((features & NETIF_F_SG) &&
5406 !(features & NETIF_F_ALL_CSUM)) {
5407 netdev_dbg(dev,
5408 "Dropping NETIF_F_SG since no checksum feature.\n");
5409 features &= ~NETIF_F_SG;
5410 }
5411
5412 /* TSO requires that SG is present as well. */
5413 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5414 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5415 features &= ~NETIF_F_ALL_TSO;
5416 }
5417
5418 /* TSO ECN requires that TSO is present as well. */
5419 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5420 features &= ~NETIF_F_TSO_ECN;
5421
5422 /* Software GSO depends on SG. */
5423 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5424 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5425 features &= ~NETIF_F_GSO;
5426 }
5427
5428 /* UFO needs SG and checksumming */
5429 if (features & NETIF_F_UFO) {
5430 /* maybe split UFO into V4 and V6? */
5431 if (!((features & NETIF_F_GEN_CSUM) ||
5432 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5433 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5434 netdev_dbg(dev,
5435 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5436 features &= ~NETIF_F_UFO;
5437 }
5438
5439 if (!(features & NETIF_F_SG)) {
5440 netdev_dbg(dev,
5441 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5442 features &= ~NETIF_F_UFO;
5443 }
5444 }
5445
5446 return features;
5447 }
5448
5449 int __netdev_update_features(struct net_device *dev)
5450 {
5451 netdev_features_t features;
5452 int err = 0;
5453
5454 ASSERT_RTNL();
5455
5456 features = netdev_get_wanted_features(dev);
5457
5458 if (dev->netdev_ops->ndo_fix_features)
5459 features = dev->netdev_ops->ndo_fix_features(dev, features);
5460
5461 /* driver might be less strict about feature dependencies */
5462 features = netdev_fix_features(dev, features);
5463
5464 if (dev->features == features)
5465 return 0;
5466
5467 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5468 &dev->features, &features);
5469
5470 if (dev->netdev_ops->ndo_set_features)
5471 err = dev->netdev_ops->ndo_set_features(dev, features);
5472
5473 if (unlikely(err < 0)) {
5474 netdev_err(dev,
5475 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5476 err, &features, &dev->features);
5477 return -1;
5478 }
5479
5480 if (!err)
5481 dev->features = features;
5482
5483 return 1;
5484 }
5485
5486 /**
5487 * netdev_update_features - recalculate device features
5488 * @dev: the device to check
5489 *
5490 * Recalculate dev->features set and send notifications if it
5491 * has changed. Should be called after driver or hardware dependent
5492 * conditions might have changed that influence the features.
5493 */
5494 void netdev_update_features(struct net_device *dev)
5495 {
5496 if (__netdev_update_features(dev))
5497 netdev_features_change(dev);
5498 }
5499 EXPORT_SYMBOL(netdev_update_features);
5500
5501 /**
5502 * netdev_change_features - recalculate device features
5503 * @dev: the device to check
5504 *
5505 * Recalculate dev->features set and send notifications even
5506 * if they have not changed. Should be called instead of
5507 * netdev_update_features() if also dev->vlan_features might
5508 * have changed to allow the changes to be propagated to stacked
5509 * VLAN devices.
5510 */
5511 void netdev_change_features(struct net_device *dev)
5512 {
5513 __netdev_update_features(dev);
5514 netdev_features_change(dev);
5515 }
5516 EXPORT_SYMBOL(netdev_change_features);
5517
5518 /**
5519 * netif_stacked_transfer_operstate - transfer operstate
5520 * @rootdev: the root or lower level device to transfer state from
5521 * @dev: the device to transfer operstate to
5522 *
5523 * Transfer operational state from root to device. This is normally
5524 * called when a stacking relationship exists between the root
5525 * device and the device(a leaf device).
5526 */
5527 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5528 struct net_device *dev)
5529 {
5530 if (rootdev->operstate == IF_OPER_DORMANT)
5531 netif_dormant_on(dev);
5532 else
5533 netif_dormant_off(dev);
5534
5535 if (netif_carrier_ok(rootdev)) {
5536 if (!netif_carrier_ok(dev))
5537 netif_carrier_on(dev);
5538 } else {
5539 if (netif_carrier_ok(dev))
5540 netif_carrier_off(dev);
5541 }
5542 }
5543 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5544
5545 #ifdef CONFIG_RPS
5546 static int netif_alloc_rx_queues(struct net_device *dev)
5547 {
5548 unsigned int i, count = dev->num_rx_queues;
5549 struct netdev_rx_queue *rx;
5550
5551 BUG_ON(count < 1);
5552
5553 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5554 if (!rx) {
5555 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5556 return -ENOMEM;
5557 }
5558 dev->_rx = rx;
5559
5560 for (i = 0; i < count; i++)
5561 rx[i].dev = dev;
5562 return 0;
5563 }
5564 #endif
5565
5566 static void netdev_init_one_queue(struct net_device *dev,
5567 struct netdev_queue *queue, void *_unused)
5568 {
5569 /* Initialize queue lock */
5570 spin_lock_init(&queue->_xmit_lock);
5571 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5572 queue->xmit_lock_owner = -1;
5573 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5574 queue->dev = dev;
5575 #ifdef CONFIG_BQL
5576 dql_init(&queue->dql, HZ);
5577 #endif
5578 }
5579
5580 static int netif_alloc_netdev_queues(struct net_device *dev)
5581 {
5582 unsigned int count = dev->num_tx_queues;
5583 struct netdev_queue *tx;
5584
5585 BUG_ON(count < 1);
5586
5587 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5588 if (!tx) {
5589 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5590 return -ENOMEM;
5591 }
5592 dev->_tx = tx;
5593
5594 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5595 spin_lock_init(&dev->tx_global_lock);
5596
5597 return 0;
5598 }
5599
5600 /**
5601 * register_netdevice - register a network device
5602 * @dev: device to register
5603 *
5604 * Take a completed network device structure and add it to the kernel
5605 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5606 * chain. 0 is returned on success. A negative errno code is returned
5607 * on a failure to set up the device, or if the name is a duplicate.
5608 *
5609 * Callers must hold the rtnl semaphore. You may want
5610 * register_netdev() instead of this.
5611 *
5612 * BUGS:
5613 * The locking appears insufficient to guarantee two parallel registers
5614 * will not get the same name.
5615 */
5616
5617 int register_netdevice(struct net_device *dev)
5618 {
5619 int ret;
5620 struct net *net = dev_net(dev);
5621
5622 BUG_ON(dev_boot_phase);
5623 ASSERT_RTNL();
5624
5625 might_sleep();
5626
5627 /* When net_device's are persistent, this will be fatal. */
5628 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5629 BUG_ON(!net);
5630
5631 spin_lock_init(&dev->addr_list_lock);
5632 netdev_set_addr_lockdep_class(dev);
5633
5634 dev->iflink = -1;
5635
5636 ret = dev_get_valid_name(net, dev, dev->name);
5637 if (ret < 0)
5638 goto out;
5639
5640 /* Init, if this function is available */
5641 if (dev->netdev_ops->ndo_init) {
5642 ret = dev->netdev_ops->ndo_init(dev);
5643 if (ret) {
5644 if (ret > 0)
5645 ret = -EIO;
5646 goto out;
5647 }
5648 }
5649
5650 ret = -EBUSY;
5651 if (!dev->ifindex)
5652 dev->ifindex = dev_new_index(net);
5653 else if (__dev_get_by_index(net, dev->ifindex))
5654 goto err_uninit;
5655
5656 if (dev->iflink == -1)
5657 dev->iflink = dev->ifindex;
5658
5659 /* Transfer changeable features to wanted_features and enable
5660 * software offloads (GSO and GRO).
5661 */
5662 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5663 dev->features |= NETIF_F_SOFT_FEATURES;
5664 dev->wanted_features = dev->features & dev->hw_features;
5665
5666 /* Turn on no cache copy if HW is doing checksum */
5667 if (!(dev->flags & IFF_LOOPBACK)) {
5668 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5669 if (dev->features & NETIF_F_ALL_CSUM) {
5670 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5671 dev->features |= NETIF_F_NOCACHE_COPY;
5672 }
5673 }
5674
5675 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5676 */
5677 dev->vlan_features |= NETIF_F_HIGHDMA;
5678
5679 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5680 ret = notifier_to_errno(ret);
5681 if (ret)
5682 goto err_uninit;
5683
5684 ret = netdev_register_kobject(dev);
5685 if (ret)
5686 goto err_uninit;
5687 dev->reg_state = NETREG_REGISTERED;
5688
5689 __netdev_update_features(dev);
5690
5691 /*
5692 * Default initial state at registry is that the
5693 * device is present.
5694 */
5695
5696 set_bit(__LINK_STATE_PRESENT, &dev->state);
5697
5698 linkwatch_init_dev(dev);
5699
5700 dev_init_scheduler(dev);
5701 dev_hold(dev);
5702 list_netdevice(dev);
5703 add_device_randomness(dev->dev_addr, dev->addr_len);
5704
5705 /* Notify protocols, that a new device appeared. */
5706 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5707 ret = notifier_to_errno(ret);
5708 if (ret) {
5709 rollback_registered(dev);
5710 dev->reg_state = NETREG_UNREGISTERED;
5711 }
5712 /*
5713 * Prevent userspace races by waiting until the network
5714 * device is fully setup before sending notifications.
5715 */
5716 if (!dev->rtnl_link_ops ||
5717 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5718 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5719
5720 out:
5721 return ret;
5722
5723 err_uninit:
5724 if (dev->netdev_ops->ndo_uninit)
5725 dev->netdev_ops->ndo_uninit(dev);
5726 goto out;
5727 }
5728 EXPORT_SYMBOL(register_netdevice);
5729
5730 /**
5731 * init_dummy_netdev - init a dummy network device for NAPI
5732 * @dev: device to init
5733 *
5734 * This takes a network device structure and initialize the minimum
5735 * amount of fields so it can be used to schedule NAPI polls without
5736 * registering a full blown interface. This is to be used by drivers
5737 * that need to tie several hardware interfaces to a single NAPI
5738 * poll scheduler due to HW limitations.
5739 */
5740 int init_dummy_netdev(struct net_device *dev)
5741 {
5742 /* Clear everything. Note we don't initialize spinlocks
5743 * are they aren't supposed to be taken by any of the
5744 * NAPI code and this dummy netdev is supposed to be
5745 * only ever used for NAPI polls
5746 */
5747 memset(dev, 0, sizeof(struct net_device));
5748
5749 /* make sure we BUG if trying to hit standard
5750 * register/unregister code path
5751 */
5752 dev->reg_state = NETREG_DUMMY;
5753
5754 /* NAPI wants this */
5755 INIT_LIST_HEAD(&dev->napi_list);
5756
5757 /* a dummy interface is started by default */
5758 set_bit(__LINK_STATE_PRESENT, &dev->state);
5759 set_bit(__LINK_STATE_START, &dev->state);
5760
5761 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5762 * because users of this 'device' dont need to change
5763 * its refcount.
5764 */
5765
5766 return 0;
5767 }
5768 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5769
5770
5771 /**
5772 * register_netdev - register a network device
5773 * @dev: device to register
5774 *
5775 * Take a completed network device structure and add it to the kernel
5776 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5777 * chain. 0 is returned on success. A negative errno code is returned
5778 * on a failure to set up the device, or if the name is a duplicate.
5779 *
5780 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5781 * and expands the device name if you passed a format string to
5782 * alloc_netdev.
5783 */
5784 int register_netdev(struct net_device *dev)
5785 {
5786 int err;
5787
5788 rtnl_lock();
5789 err = register_netdevice(dev);
5790 rtnl_unlock();
5791 return err;
5792 }
5793 EXPORT_SYMBOL(register_netdev);
5794
5795 int netdev_refcnt_read(const struct net_device *dev)
5796 {
5797 int i, refcnt = 0;
5798
5799 for_each_possible_cpu(i)
5800 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5801 return refcnt;
5802 }
5803 EXPORT_SYMBOL(netdev_refcnt_read);
5804
5805 /**
5806 * netdev_wait_allrefs - wait until all references are gone.
5807 * @dev: target net_device
5808 *
5809 * This is called when unregistering network devices.
5810 *
5811 * Any protocol or device that holds a reference should register
5812 * for netdevice notification, and cleanup and put back the
5813 * reference if they receive an UNREGISTER event.
5814 * We can get stuck here if buggy protocols don't correctly
5815 * call dev_put.
5816 */
5817 static void netdev_wait_allrefs(struct net_device *dev)
5818 {
5819 unsigned long rebroadcast_time, warning_time;
5820 int refcnt;
5821
5822 linkwatch_forget_dev(dev);
5823
5824 rebroadcast_time = warning_time = jiffies;
5825 refcnt = netdev_refcnt_read(dev);
5826
5827 while (refcnt != 0) {
5828 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5829 rtnl_lock();
5830
5831 /* Rebroadcast unregister notification */
5832 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5833
5834 __rtnl_unlock();
5835 rcu_barrier();
5836 rtnl_lock();
5837
5838 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5839 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5840 &dev->state)) {
5841 /* We must not have linkwatch events
5842 * pending on unregister. If this
5843 * happens, we simply run the queue
5844 * unscheduled, resulting in a noop
5845 * for this device.
5846 */
5847 linkwatch_run_queue();
5848 }
5849
5850 __rtnl_unlock();
5851
5852 rebroadcast_time = jiffies;
5853 }
5854
5855 msleep(250);
5856
5857 refcnt = netdev_refcnt_read(dev);
5858
5859 if (time_after(jiffies, warning_time + 10 * HZ)) {
5860 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5861 dev->name, refcnt);
5862 warning_time = jiffies;
5863 }
5864 }
5865 }
5866
5867 /* The sequence is:
5868 *
5869 * rtnl_lock();
5870 * ...
5871 * register_netdevice(x1);
5872 * register_netdevice(x2);
5873 * ...
5874 * unregister_netdevice(y1);
5875 * unregister_netdevice(y2);
5876 * ...
5877 * rtnl_unlock();
5878 * free_netdev(y1);
5879 * free_netdev(y2);
5880 *
5881 * We are invoked by rtnl_unlock().
5882 * This allows us to deal with problems:
5883 * 1) We can delete sysfs objects which invoke hotplug
5884 * without deadlocking with linkwatch via keventd.
5885 * 2) Since we run with the RTNL semaphore not held, we can sleep
5886 * safely in order to wait for the netdev refcnt to drop to zero.
5887 *
5888 * We must not return until all unregister events added during
5889 * the interval the lock was held have been completed.
5890 */
5891 void netdev_run_todo(void)
5892 {
5893 struct list_head list;
5894
5895 /* Snapshot list, allow later requests */
5896 list_replace_init(&net_todo_list, &list);
5897
5898 __rtnl_unlock();
5899
5900
5901 /* Wait for rcu callbacks to finish before next phase */
5902 if (!list_empty(&list))
5903 rcu_barrier();
5904
5905 while (!list_empty(&list)) {
5906 struct net_device *dev
5907 = list_first_entry(&list, struct net_device, todo_list);
5908 list_del(&dev->todo_list);
5909
5910 rtnl_lock();
5911 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5912 __rtnl_unlock();
5913
5914 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5915 pr_err("network todo '%s' but state %d\n",
5916 dev->name, dev->reg_state);
5917 dump_stack();
5918 continue;
5919 }
5920
5921 dev->reg_state = NETREG_UNREGISTERED;
5922
5923 on_each_cpu(flush_backlog, dev, 1);
5924
5925 netdev_wait_allrefs(dev);
5926
5927 /* paranoia */
5928 BUG_ON(netdev_refcnt_read(dev));
5929 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5930 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5931 WARN_ON(dev->dn_ptr);
5932
5933 if (dev->destructor)
5934 dev->destructor(dev);
5935
5936 /* Free network device */
5937 kobject_put(&dev->dev.kobj);
5938 }
5939 }
5940
5941 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5942 * fields in the same order, with only the type differing.
5943 */
5944 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5945 const struct net_device_stats *netdev_stats)
5946 {
5947 #if BITS_PER_LONG == 64
5948 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5949 memcpy(stats64, netdev_stats, sizeof(*stats64));
5950 #else
5951 size_t i, n = sizeof(*stats64) / sizeof(u64);
5952 const unsigned long *src = (const unsigned long *)netdev_stats;
5953 u64 *dst = (u64 *)stats64;
5954
5955 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5956 sizeof(*stats64) / sizeof(u64));
5957 for (i = 0; i < n; i++)
5958 dst[i] = src[i];
5959 #endif
5960 }
5961 EXPORT_SYMBOL(netdev_stats_to_stats64);
5962
5963 /**
5964 * dev_get_stats - get network device statistics
5965 * @dev: device to get statistics from
5966 * @storage: place to store stats
5967 *
5968 * Get network statistics from device. Return @storage.
5969 * The device driver may provide its own method by setting
5970 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5971 * otherwise the internal statistics structure is used.
5972 */
5973 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5974 struct rtnl_link_stats64 *storage)
5975 {
5976 const struct net_device_ops *ops = dev->netdev_ops;
5977
5978 if (ops->ndo_get_stats64) {
5979 memset(storage, 0, sizeof(*storage));
5980 ops->ndo_get_stats64(dev, storage);
5981 } else if (ops->ndo_get_stats) {
5982 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5983 } else {
5984 netdev_stats_to_stats64(storage, &dev->stats);
5985 }
5986 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5987 return storage;
5988 }
5989 EXPORT_SYMBOL(dev_get_stats);
5990
5991 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5992 {
5993 struct netdev_queue *queue = dev_ingress_queue(dev);
5994
5995 #ifdef CONFIG_NET_CLS_ACT
5996 if (queue)
5997 return queue;
5998 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5999 if (!queue)
6000 return NULL;
6001 netdev_init_one_queue(dev, queue, NULL);
6002 queue->qdisc = &noop_qdisc;
6003 queue->qdisc_sleeping = &noop_qdisc;
6004 rcu_assign_pointer(dev->ingress_queue, queue);
6005 #endif
6006 return queue;
6007 }
6008
6009 static const struct ethtool_ops default_ethtool_ops;
6010
6011 /**
6012 * alloc_netdev_mqs - allocate network device
6013 * @sizeof_priv: size of private data to allocate space for
6014 * @name: device name format string
6015 * @setup: callback to initialize device
6016 * @txqs: the number of TX subqueues to allocate
6017 * @rxqs: the number of RX subqueues to allocate
6018 *
6019 * Allocates a struct net_device with private data area for driver use
6020 * and performs basic initialization. Also allocates subquue structs
6021 * for each queue on the device.
6022 */
6023 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6024 void (*setup)(struct net_device *),
6025 unsigned int txqs, unsigned int rxqs)
6026 {
6027 struct net_device *dev;
6028 size_t alloc_size;
6029 struct net_device *p;
6030
6031 BUG_ON(strlen(name) >= sizeof(dev->name));
6032
6033 if (txqs < 1) {
6034 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6035 return NULL;
6036 }
6037
6038 #ifdef CONFIG_RPS
6039 if (rxqs < 1) {
6040 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6041 return NULL;
6042 }
6043 #endif
6044
6045 alloc_size = sizeof(struct net_device);
6046 if (sizeof_priv) {
6047 /* ensure 32-byte alignment of private area */
6048 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6049 alloc_size += sizeof_priv;
6050 }
6051 /* ensure 32-byte alignment of whole construct */
6052 alloc_size += NETDEV_ALIGN - 1;
6053
6054 p = kzalloc(alloc_size, GFP_KERNEL);
6055 if (!p) {
6056 pr_err("alloc_netdev: Unable to allocate device\n");
6057 return NULL;
6058 }
6059
6060 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6061 dev->padded = (char *)dev - (char *)p;
6062
6063 dev->pcpu_refcnt = alloc_percpu(int);
6064 if (!dev->pcpu_refcnt)
6065 goto free_p;
6066
6067 if (dev_addr_init(dev))
6068 goto free_pcpu;
6069
6070 dev_mc_init(dev);
6071 dev_uc_init(dev);
6072
6073 dev_net_set(dev, &init_net);
6074
6075 dev->gso_max_size = GSO_MAX_SIZE;
6076 dev->gso_max_segs = GSO_MAX_SEGS;
6077
6078 INIT_LIST_HEAD(&dev->napi_list);
6079 INIT_LIST_HEAD(&dev->unreg_list);
6080 INIT_LIST_HEAD(&dev->link_watch_list);
6081 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6082 setup(dev);
6083
6084 dev->num_tx_queues = txqs;
6085 dev->real_num_tx_queues = txqs;
6086 if (netif_alloc_netdev_queues(dev))
6087 goto free_all;
6088
6089 #ifdef CONFIG_RPS
6090 dev->num_rx_queues = rxqs;
6091 dev->real_num_rx_queues = rxqs;
6092 if (netif_alloc_rx_queues(dev))
6093 goto free_all;
6094 #endif
6095
6096 strcpy(dev->name, name);
6097 dev->group = INIT_NETDEV_GROUP;
6098 if (!dev->ethtool_ops)
6099 dev->ethtool_ops = &default_ethtool_ops;
6100 return dev;
6101
6102 free_all:
6103 free_netdev(dev);
6104 return NULL;
6105
6106 free_pcpu:
6107 free_percpu(dev->pcpu_refcnt);
6108 kfree(dev->_tx);
6109 #ifdef CONFIG_RPS
6110 kfree(dev->_rx);
6111 #endif
6112
6113 free_p:
6114 kfree(p);
6115 return NULL;
6116 }
6117 EXPORT_SYMBOL(alloc_netdev_mqs);
6118
6119 /**
6120 * free_netdev - free network device
6121 * @dev: device
6122 *
6123 * This function does the last stage of destroying an allocated device
6124 * interface. The reference to the device object is released.
6125 * If this is the last reference then it will be freed.
6126 */
6127 void free_netdev(struct net_device *dev)
6128 {
6129 struct napi_struct *p, *n;
6130
6131 release_net(dev_net(dev));
6132
6133 kfree(dev->_tx);
6134 #ifdef CONFIG_RPS
6135 kfree(dev->_rx);
6136 #endif
6137
6138 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6139
6140 /* Flush device addresses */
6141 dev_addr_flush(dev);
6142
6143 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6144 netif_napi_del(p);
6145
6146 free_percpu(dev->pcpu_refcnt);
6147 dev->pcpu_refcnt = NULL;
6148
6149 /* Compatibility with error handling in drivers */
6150 if (dev->reg_state == NETREG_UNINITIALIZED) {
6151 kfree((char *)dev - dev->padded);
6152 return;
6153 }
6154
6155 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6156 dev->reg_state = NETREG_RELEASED;
6157
6158 /* will free via device release */
6159 put_device(&dev->dev);
6160 }
6161 EXPORT_SYMBOL(free_netdev);
6162
6163 /**
6164 * synchronize_net - Synchronize with packet receive processing
6165 *
6166 * Wait for packets currently being received to be done.
6167 * Does not block later packets from starting.
6168 */
6169 void synchronize_net(void)
6170 {
6171 might_sleep();
6172 if (rtnl_is_locked())
6173 synchronize_rcu_expedited();
6174 else
6175 synchronize_rcu();
6176 }
6177 EXPORT_SYMBOL(synchronize_net);
6178
6179 /**
6180 * unregister_netdevice_queue - remove device from the kernel
6181 * @dev: device
6182 * @head: list
6183 *
6184 * This function shuts down a device interface and removes it
6185 * from the kernel tables.
6186 * If head not NULL, device is queued to be unregistered later.
6187 *
6188 * Callers must hold the rtnl semaphore. You may want
6189 * unregister_netdev() instead of this.
6190 */
6191
6192 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6193 {
6194 ASSERT_RTNL();
6195
6196 if (head) {
6197 list_move_tail(&dev->unreg_list, head);
6198 } else {
6199 rollback_registered(dev);
6200 /* Finish processing unregister after unlock */
6201 net_set_todo(dev);
6202 }
6203 }
6204 EXPORT_SYMBOL(unregister_netdevice_queue);
6205
6206 /**
6207 * unregister_netdevice_many - unregister many devices
6208 * @head: list of devices
6209 */
6210 void unregister_netdevice_many(struct list_head *head)
6211 {
6212 struct net_device *dev;
6213
6214 if (!list_empty(head)) {
6215 rollback_registered_many(head);
6216 list_for_each_entry(dev, head, unreg_list)
6217 net_set_todo(dev);
6218 }
6219 }
6220 EXPORT_SYMBOL(unregister_netdevice_many);
6221
6222 /**
6223 * unregister_netdev - remove device from the kernel
6224 * @dev: device
6225 *
6226 * This function shuts down a device interface and removes it
6227 * from the kernel tables.
6228 *
6229 * This is just a wrapper for unregister_netdevice that takes
6230 * the rtnl semaphore. In general you want to use this and not
6231 * unregister_netdevice.
6232 */
6233 void unregister_netdev(struct net_device *dev)
6234 {
6235 rtnl_lock();
6236 unregister_netdevice(dev);
6237 rtnl_unlock();
6238 }
6239 EXPORT_SYMBOL(unregister_netdev);
6240
6241 /**
6242 * dev_change_net_namespace - move device to different nethost namespace
6243 * @dev: device
6244 * @net: network namespace
6245 * @pat: If not NULL name pattern to try if the current device name
6246 * is already taken in the destination network namespace.
6247 *
6248 * This function shuts down a device interface and moves it
6249 * to a new network namespace. On success 0 is returned, on
6250 * a failure a netagive errno code is returned.
6251 *
6252 * Callers must hold the rtnl semaphore.
6253 */
6254
6255 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6256 {
6257 int err;
6258
6259 ASSERT_RTNL();
6260
6261 /* Don't allow namespace local devices to be moved. */
6262 err = -EINVAL;
6263 if (dev->features & NETIF_F_NETNS_LOCAL)
6264 goto out;
6265
6266 /* Ensure the device has been registrered */
6267 err = -EINVAL;
6268 if (dev->reg_state != NETREG_REGISTERED)
6269 goto out;
6270
6271 /* Get out if there is nothing todo */
6272 err = 0;
6273 if (net_eq(dev_net(dev), net))
6274 goto out;
6275
6276 /* Pick the destination device name, and ensure
6277 * we can use it in the destination network namespace.
6278 */
6279 err = -EEXIST;
6280 if (__dev_get_by_name(net, dev->name)) {
6281 /* We get here if we can't use the current device name */
6282 if (!pat)
6283 goto out;
6284 if (dev_get_valid_name(net, dev, pat) < 0)
6285 goto out;
6286 }
6287
6288 /*
6289 * And now a mini version of register_netdevice unregister_netdevice.
6290 */
6291
6292 /* If device is running close it first. */
6293 dev_close(dev);
6294
6295 /* And unlink it from device chain */
6296 err = -ENODEV;
6297 unlist_netdevice(dev);
6298
6299 synchronize_net();
6300
6301 /* Shutdown queueing discipline. */
6302 dev_shutdown(dev);
6303
6304 /* Notify protocols, that we are about to destroy
6305 this device. They should clean all the things.
6306
6307 Note that dev->reg_state stays at NETREG_REGISTERED.
6308 This is wanted because this way 8021q and macvlan know
6309 the device is just moving and can keep their slaves up.
6310 */
6311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6312 rcu_barrier();
6313 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6314 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6315
6316 /*
6317 * Flush the unicast and multicast chains
6318 */
6319 dev_uc_flush(dev);
6320 dev_mc_flush(dev);
6321
6322 /* Actually switch the network namespace */
6323 dev_net_set(dev, net);
6324
6325 /* If there is an ifindex conflict assign a new one */
6326 if (__dev_get_by_index(net, dev->ifindex)) {
6327 int iflink = (dev->iflink == dev->ifindex);
6328 dev->ifindex = dev_new_index(net);
6329 if (iflink)
6330 dev->iflink = dev->ifindex;
6331 }
6332
6333 /* Fixup kobjects */
6334 err = device_rename(&dev->dev, dev->name);
6335 WARN_ON(err);
6336
6337 /* Add the device back in the hashes */
6338 list_netdevice(dev);
6339
6340 /* Notify protocols, that a new device appeared. */
6341 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6342
6343 /*
6344 * Prevent userspace races by waiting until the network
6345 * device is fully setup before sending notifications.
6346 */
6347 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6348
6349 synchronize_net();
6350 err = 0;
6351 out:
6352 return err;
6353 }
6354 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6355
6356 static int dev_cpu_callback(struct notifier_block *nfb,
6357 unsigned long action,
6358 void *ocpu)
6359 {
6360 struct sk_buff **list_skb;
6361 struct sk_buff *skb;
6362 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6363 struct softnet_data *sd, *oldsd;
6364
6365 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6366 return NOTIFY_OK;
6367
6368 local_irq_disable();
6369 cpu = smp_processor_id();
6370 sd = &per_cpu(softnet_data, cpu);
6371 oldsd = &per_cpu(softnet_data, oldcpu);
6372
6373 /* Find end of our completion_queue. */
6374 list_skb = &sd->completion_queue;
6375 while (*list_skb)
6376 list_skb = &(*list_skb)->next;
6377 /* Append completion queue from offline CPU. */
6378 *list_skb = oldsd->completion_queue;
6379 oldsd->completion_queue = NULL;
6380
6381 /* Append output queue from offline CPU. */
6382 if (oldsd->output_queue) {
6383 *sd->output_queue_tailp = oldsd->output_queue;
6384 sd->output_queue_tailp = oldsd->output_queue_tailp;
6385 oldsd->output_queue = NULL;
6386 oldsd->output_queue_tailp = &oldsd->output_queue;
6387 }
6388 /* Append NAPI poll list from offline CPU. */
6389 if (!list_empty(&oldsd->poll_list)) {
6390 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6391 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6392 }
6393
6394 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6395 local_irq_enable();
6396
6397 /* Process offline CPU's input_pkt_queue */
6398 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6399 netif_rx(skb);
6400 input_queue_head_incr(oldsd);
6401 }
6402 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6403 netif_rx(skb);
6404 input_queue_head_incr(oldsd);
6405 }
6406
6407 return NOTIFY_OK;
6408 }
6409
6410
6411 /**
6412 * netdev_increment_features - increment feature set by one
6413 * @all: current feature set
6414 * @one: new feature set
6415 * @mask: mask feature set
6416 *
6417 * Computes a new feature set after adding a device with feature set
6418 * @one to the master device with current feature set @all. Will not
6419 * enable anything that is off in @mask. Returns the new feature set.
6420 */
6421 netdev_features_t netdev_increment_features(netdev_features_t all,
6422 netdev_features_t one, netdev_features_t mask)
6423 {
6424 if (mask & NETIF_F_GEN_CSUM)
6425 mask |= NETIF_F_ALL_CSUM;
6426 mask |= NETIF_F_VLAN_CHALLENGED;
6427
6428 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6429 all &= one | ~NETIF_F_ALL_FOR_ALL;
6430
6431 /* If one device supports hw checksumming, set for all. */
6432 if (all & NETIF_F_GEN_CSUM)
6433 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6434
6435 return all;
6436 }
6437 EXPORT_SYMBOL(netdev_increment_features);
6438
6439 static struct hlist_head *netdev_create_hash(void)
6440 {
6441 int i;
6442 struct hlist_head *hash;
6443
6444 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6445 if (hash != NULL)
6446 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6447 INIT_HLIST_HEAD(&hash[i]);
6448
6449 return hash;
6450 }
6451
6452 /* Initialize per network namespace state */
6453 static int __net_init netdev_init(struct net *net)
6454 {
6455 if (net != &init_net)
6456 INIT_LIST_HEAD(&net->dev_base_head);
6457
6458 net->dev_name_head = netdev_create_hash();
6459 if (net->dev_name_head == NULL)
6460 goto err_name;
6461
6462 net->dev_index_head = netdev_create_hash();
6463 if (net->dev_index_head == NULL)
6464 goto err_idx;
6465
6466 return 0;
6467
6468 err_idx:
6469 kfree(net->dev_name_head);
6470 err_name:
6471 return -ENOMEM;
6472 }
6473
6474 /**
6475 * netdev_drivername - network driver for the device
6476 * @dev: network device
6477 *
6478 * Determine network driver for device.
6479 */
6480 const char *netdev_drivername(const struct net_device *dev)
6481 {
6482 const struct device_driver *driver;
6483 const struct device *parent;
6484 const char *empty = "";
6485
6486 parent = dev->dev.parent;
6487 if (!parent)
6488 return empty;
6489
6490 driver = parent->driver;
6491 if (driver && driver->name)
6492 return driver->name;
6493 return empty;
6494 }
6495
6496 static int __netdev_printk(const char *level, const struct net_device *dev,
6497 struct va_format *vaf)
6498 {
6499 int r;
6500
6501 if (dev && dev->dev.parent) {
6502 r = dev_printk_emit(level[1] - '0',
6503 dev->dev.parent,
6504 "%s %s %s: %pV",
6505 dev_driver_string(dev->dev.parent),
6506 dev_name(dev->dev.parent),
6507 netdev_name(dev), vaf);
6508 } else if (dev) {
6509 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6510 } else {
6511 r = printk("%s(NULL net_device): %pV", level, vaf);
6512 }
6513
6514 return r;
6515 }
6516
6517 int netdev_printk(const char *level, const struct net_device *dev,
6518 const char *format, ...)
6519 {
6520 struct va_format vaf;
6521 va_list args;
6522 int r;
6523
6524 va_start(args, format);
6525
6526 vaf.fmt = format;
6527 vaf.va = &args;
6528
6529 r = __netdev_printk(level, dev, &vaf);
6530
6531 va_end(args);
6532
6533 return r;
6534 }
6535 EXPORT_SYMBOL(netdev_printk);
6536
6537 #define define_netdev_printk_level(func, level) \
6538 int func(const struct net_device *dev, const char *fmt, ...) \
6539 { \
6540 int r; \
6541 struct va_format vaf; \
6542 va_list args; \
6543 \
6544 va_start(args, fmt); \
6545 \
6546 vaf.fmt = fmt; \
6547 vaf.va = &args; \
6548 \
6549 r = __netdev_printk(level, dev, &vaf); \
6550 \
6551 va_end(args); \
6552 \
6553 return r; \
6554 } \
6555 EXPORT_SYMBOL(func);
6556
6557 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6558 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6559 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6560 define_netdev_printk_level(netdev_err, KERN_ERR);
6561 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6562 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6563 define_netdev_printk_level(netdev_info, KERN_INFO);
6564
6565 static void __net_exit netdev_exit(struct net *net)
6566 {
6567 kfree(net->dev_name_head);
6568 kfree(net->dev_index_head);
6569 }
6570
6571 static struct pernet_operations __net_initdata netdev_net_ops = {
6572 .init = netdev_init,
6573 .exit = netdev_exit,
6574 };
6575
6576 static void __net_exit default_device_exit(struct net *net)
6577 {
6578 struct net_device *dev, *aux;
6579 /*
6580 * Push all migratable network devices back to the
6581 * initial network namespace
6582 */
6583 rtnl_lock();
6584 for_each_netdev_safe(net, dev, aux) {
6585 int err;
6586 char fb_name[IFNAMSIZ];
6587
6588 /* Ignore unmoveable devices (i.e. loopback) */
6589 if (dev->features & NETIF_F_NETNS_LOCAL)
6590 continue;
6591
6592 /* Leave virtual devices for the generic cleanup */
6593 if (dev->rtnl_link_ops)
6594 continue;
6595
6596 /* Push remaining network devices to init_net */
6597 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6598 err = dev_change_net_namespace(dev, &init_net, fb_name);
6599 if (err) {
6600 pr_emerg("%s: failed to move %s to init_net: %d\n",
6601 __func__, dev->name, err);
6602 BUG();
6603 }
6604 }
6605 rtnl_unlock();
6606 }
6607
6608 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6609 {
6610 /* At exit all network devices most be removed from a network
6611 * namespace. Do this in the reverse order of registration.
6612 * Do this across as many network namespaces as possible to
6613 * improve batching efficiency.
6614 */
6615 struct net_device *dev;
6616 struct net *net;
6617 LIST_HEAD(dev_kill_list);
6618
6619 rtnl_lock();
6620 list_for_each_entry(net, net_list, exit_list) {
6621 for_each_netdev_reverse(net, dev) {
6622 if (dev->rtnl_link_ops)
6623 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6624 else
6625 unregister_netdevice_queue(dev, &dev_kill_list);
6626 }
6627 }
6628 unregister_netdevice_many(&dev_kill_list);
6629 list_del(&dev_kill_list);
6630 rtnl_unlock();
6631 }
6632
6633 static struct pernet_operations __net_initdata default_device_ops = {
6634 .exit = default_device_exit,
6635 .exit_batch = default_device_exit_batch,
6636 };
6637
6638 /*
6639 * Initialize the DEV module. At boot time this walks the device list and
6640 * unhooks any devices that fail to initialise (normally hardware not
6641 * present) and leaves us with a valid list of present and active devices.
6642 *
6643 */
6644
6645 /*
6646 * This is called single threaded during boot, so no need
6647 * to take the rtnl semaphore.
6648 */
6649 static int __init net_dev_init(void)
6650 {
6651 int i, rc = -ENOMEM;
6652
6653 BUG_ON(!dev_boot_phase);
6654
6655 if (dev_proc_init())
6656 goto out;
6657
6658 if (netdev_kobject_init())
6659 goto out;
6660
6661 INIT_LIST_HEAD(&ptype_all);
6662 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6663 INIT_LIST_HEAD(&ptype_base[i]);
6664
6665 if (register_pernet_subsys(&netdev_net_ops))
6666 goto out;
6667
6668 /*
6669 * Initialise the packet receive queues.
6670 */
6671
6672 for_each_possible_cpu(i) {
6673 struct softnet_data *sd = &per_cpu(softnet_data, i);
6674
6675 memset(sd, 0, sizeof(*sd));
6676 skb_queue_head_init(&sd->input_pkt_queue);
6677 skb_queue_head_init(&sd->process_queue);
6678 sd->completion_queue = NULL;
6679 INIT_LIST_HEAD(&sd->poll_list);
6680 sd->output_queue = NULL;
6681 sd->output_queue_tailp = &sd->output_queue;
6682 #ifdef CONFIG_RPS
6683 sd->csd.func = rps_trigger_softirq;
6684 sd->csd.info = sd;
6685 sd->csd.flags = 0;
6686 sd->cpu = i;
6687 #endif
6688
6689 sd->backlog.poll = process_backlog;
6690 sd->backlog.weight = weight_p;
6691 sd->backlog.gro_list = NULL;
6692 sd->backlog.gro_count = 0;
6693 }
6694
6695 dev_boot_phase = 0;
6696
6697 /* The loopback device is special if any other network devices
6698 * is present in a network namespace the loopback device must
6699 * be present. Since we now dynamically allocate and free the
6700 * loopback device ensure this invariant is maintained by
6701 * keeping the loopback device as the first device on the
6702 * list of network devices. Ensuring the loopback devices
6703 * is the first device that appears and the last network device
6704 * that disappears.
6705 */
6706 if (register_pernet_device(&loopback_net_ops))
6707 goto out;
6708
6709 if (register_pernet_device(&default_device_ops))
6710 goto out;
6711
6712 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6713 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6714
6715 hotcpu_notifier(dev_cpu_callback, 0);
6716 dst_init();
6717 dev_mcast_init();
6718 rc = 0;
6719 out:
6720 return rc;
6721 }
6722
6723 subsys_initcall(net_dev_init);
6724
6725 static int __init initialize_hashrnd(void)
6726 {
6727 get_random_bytes(&hashrnd, sizeof(hashrnd));
6728 return 0;
6729 }
6730
6731 late_initcall_sync(initialize_hashrnd);
6732
This page took 0.157037 seconds and 6 git commands to generate.