Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151 static int call_netdevice_notifiers_info(unsigned long val,
152 struct net_device *dev,
153 struct netdev_notifier_info *info);
154
155 /*
156 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
157 * semaphore.
158 *
159 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
160 *
161 * Writers must hold the rtnl semaphore while they loop through the
162 * dev_base_head list, and hold dev_base_lock for writing when they do the
163 * actual updates. This allows pure readers to access the list even
164 * while a writer is preparing to update it.
165 *
166 * To put it another way, dev_base_lock is held for writing only to
167 * protect against pure readers; the rtnl semaphore provides the
168 * protection against other writers.
169 *
170 * See, for example usages, register_netdevice() and
171 * unregister_netdevice(), which must be called with the rtnl
172 * semaphore held.
173 */
174 DEFINE_RWLOCK(dev_base_lock);
175 EXPORT_SYMBOL(dev_base_lock);
176
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179
180 static unsigned int napi_gen_id;
181 static DEFINE_HASHTABLE(napi_hash, 8);
182
183 static seqcount_t devnet_rename_seq;
184
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 while (++net->dev_base_seq == 0);
188 }
189
190 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
191 {
192 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
193
194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
195 }
196
197 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
198 {
199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
200 }
201
202 static inline void rps_lock(struct softnet_data *sd)
203 {
204 #ifdef CONFIG_RPS
205 spin_lock(&sd->input_pkt_queue.lock);
206 #endif
207 }
208
209 static inline void rps_unlock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_unlock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 /* Device list insertion */
217 static void list_netdevice(struct net_device *dev)
218 {
219 struct net *net = dev_net(dev);
220
221 ASSERT_RTNL();
222
223 write_lock_bh(&dev_base_lock);
224 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
225 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
226 hlist_add_head_rcu(&dev->index_hlist,
227 dev_index_hash(net, dev->ifindex));
228 write_unlock_bh(&dev_base_lock);
229
230 dev_base_seq_inc(net);
231 }
232
233 /* Device list removal
234 * caller must respect a RCU grace period before freeing/reusing dev
235 */
236 static void unlist_netdevice(struct net_device *dev)
237 {
238 ASSERT_RTNL();
239
240 /* Unlink dev from the device chain */
241 write_lock_bh(&dev_base_lock);
242 list_del_rcu(&dev->dev_list);
243 hlist_del_rcu(&dev->name_hlist);
244 hlist_del_rcu(&dev->index_hlist);
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(dev_net(dev));
248 }
249
250 /*
251 * Our notifier list
252 */
253
254 static RAW_NOTIFIER_HEAD(netdev_chain);
255
256 /*
257 * Device drivers call our routines to queue packets here. We empty the
258 * queue in the local softnet handler.
259 */
260
261 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
262 EXPORT_PER_CPU_SYMBOL(softnet_data);
263
264 #ifdef CONFIG_LOCKDEP
265 /*
266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267 * according to dev->type
268 */
269 static const unsigned short netdev_lock_type[] =
270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
283 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
284 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
285
286 static const char *const netdev_lock_name[] =
287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
300 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
301 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
302
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 int i;
309
310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 if (netdev_lock_type[i] == dev_type)
312 return i;
313 /* the last key is used by default */
314 return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 unsigned short dev_type)
319 {
320 int i;
321
322 i = netdev_lock_pos(dev_type);
323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 netdev_lock_name[i]);
325 }
326
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev->type);
332 lockdep_set_class_and_name(&dev->addr_list_lock,
333 &netdev_addr_lock_key[i],
334 netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345
346 /*******************************************************************************
347
348 Protocol management and registration routines
349
350 *******************************************************************************/
351
352 /*
353 * Add a protocol ID to the list. Now that the input handler is
354 * smarter we can dispense with all the messy stuff that used to be
355 * here.
356 *
357 * BEWARE!!! Protocol handlers, mangling input packets,
358 * MUST BE last in hash buckets and checking protocol handlers
359 * MUST start from promiscuous ptype_all chain in net_bh.
360 * It is true now, do not change it.
361 * Explanation follows: if protocol handler, mangling packet, will
362 * be the first on list, it is not able to sense, that packet
363 * is cloned and should be copied-on-write, so that it will
364 * change it and subsequent readers will get broken packet.
365 * --ANK (980803)
366 */
367
368 static inline struct list_head *ptype_head(const struct packet_type *pt)
369 {
370 if (pt->type == htons(ETH_P_ALL))
371 return &ptype_all;
372 else
373 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
374 }
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 struct list_head *head = ptype_head(pt);
392
393 spin_lock(&ptype_lock);
394 list_add_rcu(&pt->list, head);
395 spin_unlock(&ptype_lock);
396 }
397 EXPORT_SYMBOL(dev_add_pack);
398
399 /**
400 * __dev_remove_pack - remove packet handler
401 * @pt: packet type declaration
402 *
403 * Remove a protocol handler that was previously added to the kernel
404 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
405 * from the kernel lists and can be freed or reused once this function
406 * returns.
407 *
408 * The packet type might still be in use by receivers
409 * and must not be freed until after all the CPU's have gone
410 * through a quiescent state.
411 */
412 void __dev_remove_pack(struct packet_type *pt)
413 {
414 struct list_head *head = ptype_head(pt);
415 struct packet_type *pt1;
416
417 spin_lock(&ptype_lock);
418
419 list_for_each_entry(pt1, head, list) {
420 if (pt == pt1) {
421 list_del_rcu(&pt->list);
422 goto out;
423 }
424 }
425
426 pr_warn("dev_remove_pack: %p not found\n", pt);
427 out:
428 spin_unlock(&ptype_lock);
429 }
430 EXPORT_SYMBOL(__dev_remove_pack);
431
432 /**
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
435 *
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
440 *
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
443 */
444 void dev_remove_pack(struct packet_type *pt)
445 {
446 __dev_remove_pack(pt);
447
448 synchronize_net();
449 }
450 EXPORT_SYMBOL(dev_remove_pack);
451
452
453 /**
454 * dev_add_offload - register offload handlers
455 * @po: protocol offload declaration
456 *
457 * Add protocol offload handlers to the networking stack. The passed
458 * &proto_offload is linked into kernel lists and may not be freed until
459 * it has been removed from the kernel lists.
460 *
461 * This call does not sleep therefore it can not
462 * guarantee all CPU's that are in middle of receiving packets
463 * will see the new offload handlers (until the next received packet).
464 */
465 void dev_add_offload(struct packet_offload *po)
466 {
467 struct list_head *head = &offload_base;
468
469 spin_lock(&offload_lock);
470 list_add_rcu(&po->list, head);
471 spin_unlock(&offload_lock);
472 }
473 EXPORT_SYMBOL(dev_add_offload);
474
475 /**
476 * __dev_remove_offload - remove offload handler
477 * @po: packet offload declaration
478 *
479 * Remove a protocol offload handler that was previously added to the
480 * kernel offload handlers by dev_add_offload(). The passed &offload_type
481 * is removed from the kernel lists and can be freed or reused once this
482 * function returns.
483 *
484 * The packet type might still be in use by receivers
485 * and must not be freed until after all the CPU's have gone
486 * through a quiescent state.
487 */
488 static void __dev_remove_offload(struct packet_offload *po)
489 {
490 struct list_head *head = &offload_base;
491 struct packet_offload *po1;
492
493 spin_lock(&offload_lock);
494
495 list_for_each_entry(po1, head, list) {
496 if (po == po1) {
497 list_del_rcu(&po->list);
498 goto out;
499 }
500 }
501
502 pr_warn("dev_remove_offload: %p not found\n", po);
503 out:
504 spin_unlock(&offload_lock);
505 }
506
507 /**
508 * dev_remove_offload - remove packet offload handler
509 * @po: packet offload declaration
510 *
511 * Remove a packet offload handler that was previously added to the kernel
512 * offload handlers by dev_add_offload(). The passed &offload_type is
513 * removed from the kernel lists and can be freed or reused once this
514 * function returns.
515 *
516 * This call sleeps to guarantee that no CPU is looking at the packet
517 * type after return.
518 */
519 void dev_remove_offload(struct packet_offload *po)
520 {
521 __dev_remove_offload(po);
522
523 synchronize_net();
524 }
525 EXPORT_SYMBOL(dev_remove_offload);
526
527 /******************************************************************************
528
529 Device Boot-time Settings Routines
530
531 *******************************************************************************/
532
533 /* Boot time configuration table */
534 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
535
536 /**
537 * netdev_boot_setup_add - add new setup entry
538 * @name: name of the device
539 * @map: configured settings for the device
540 *
541 * Adds new setup entry to the dev_boot_setup list. The function
542 * returns 0 on error and 1 on success. This is a generic routine to
543 * all netdevices.
544 */
545 static int netdev_boot_setup_add(char *name, struct ifmap *map)
546 {
547 struct netdev_boot_setup *s;
548 int i;
549
550 s = dev_boot_setup;
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
552 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
553 memset(s[i].name, 0, sizeof(s[i].name));
554 strlcpy(s[i].name, name, IFNAMSIZ);
555 memcpy(&s[i].map, map, sizeof(s[i].map));
556 break;
557 }
558 }
559
560 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
561 }
562
563 /**
564 * netdev_boot_setup_check - check boot time settings
565 * @dev: the netdevice
566 *
567 * Check boot time settings for the device.
568 * The found settings are set for the device to be used
569 * later in the device probing.
570 * Returns 0 if no settings found, 1 if they are.
571 */
572 int netdev_boot_setup_check(struct net_device *dev)
573 {
574 struct netdev_boot_setup *s = dev_boot_setup;
575 int i;
576
577 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
578 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
579 !strcmp(dev->name, s[i].name)) {
580 dev->irq = s[i].map.irq;
581 dev->base_addr = s[i].map.base_addr;
582 dev->mem_start = s[i].map.mem_start;
583 dev->mem_end = s[i].map.mem_end;
584 return 1;
585 }
586 }
587 return 0;
588 }
589 EXPORT_SYMBOL(netdev_boot_setup_check);
590
591
592 /**
593 * netdev_boot_base - get address from boot time settings
594 * @prefix: prefix for network device
595 * @unit: id for network device
596 *
597 * Check boot time settings for the base address of device.
598 * The found settings are set for the device to be used
599 * later in the device probing.
600 * Returns 0 if no settings found.
601 */
602 unsigned long netdev_boot_base(const char *prefix, int unit)
603 {
604 const struct netdev_boot_setup *s = dev_boot_setup;
605 char name[IFNAMSIZ];
606 int i;
607
608 sprintf(name, "%s%d", prefix, unit);
609
610 /*
611 * If device already registered then return base of 1
612 * to indicate not to probe for this interface
613 */
614 if (__dev_get_by_name(&init_net, name))
615 return 1;
616
617 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
618 if (!strcmp(name, s[i].name))
619 return s[i].map.base_addr;
620 return 0;
621 }
622
623 /*
624 * Saves at boot time configured settings for any netdevice.
625 */
626 int __init netdev_boot_setup(char *str)
627 {
628 int ints[5];
629 struct ifmap map;
630
631 str = get_options(str, ARRAY_SIZE(ints), ints);
632 if (!str || !*str)
633 return 0;
634
635 /* Save settings */
636 memset(&map, 0, sizeof(map));
637 if (ints[0] > 0)
638 map.irq = ints[1];
639 if (ints[0] > 1)
640 map.base_addr = ints[2];
641 if (ints[0] > 2)
642 map.mem_start = ints[3];
643 if (ints[0] > 3)
644 map.mem_end = ints[4];
645
646 /* Add new entry to the list */
647 return netdev_boot_setup_add(str, &map);
648 }
649
650 __setup("netdev=", netdev_boot_setup);
651
652 /*******************************************************************************
653
654 Device Interface Subroutines
655
656 *******************************************************************************/
657
658 /**
659 * __dev_get_by_name - find a device by its name
660 * @net: the applicable net namespace
661 * @name: name to find
662 *
663 * Find an interface by name. Must be called under RTNL semaphore
664 * or @dev_base_lock. If the name is found a pointer to the device
665 * is returned. If the name is not found then %NULL is returned. The
666 * reference counters are not incremented so the caller must be
667 * careful with locks.
668 */
669
670 struct net_device *__dev_get_by_name(struct net *net, const char *name)
671 {
672 struct net_device *dev;
673 struct hlist_head *head = dev_name_hash(net, name);
674
675 hlist_for_each_entry(dev, head, name_hlist)
676 if (!strncmp(dev->name, name, IFNAMSIZ))
677 return dev;
678
679 return NULL;
680 }
681 EXPORT_SYMBOL(__dev_get_by_name);
682
683 /**
684 * dev_get_by_name_rcu - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
687 *
688 * Find an interface by name.
689 * If the name is found a pointer to the device is returned.
690 * If the name is not found then %NULL is returned.
691 * The reference counters are not incremented so the caller must be
692 * careful with locks. The caller must hold RCU lock.
693 */
694
695 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
696 {
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
699
700 hlist_for_each_entry_rcu(dev, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(dev_get_by_name_rcu);
707
708 /**
709 * dev_get_by_name - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
712 *
713 * Find an interface by name. This can be called from any
714 * context and does its own locking. The returned handle has
715 * the usage count incremented and the caller must use dev_put() to
716 * release it when it is no longer needed. %NULL is returned if no
717 * matching device is found.
718 */
719
720 struct net_device *dev_get_by_name(struct net *net, const char *name)
721 {
722 struct net_device *dev;
723
724 rcu_read_lock();
725 dev = dev_get_by_name_rcu(net, name);
726 if (dev)
727 dev_hold(dev);
728 rcu_read_unlock();
729 return dev;
730 }
731 EXPORT_SYMBOL(dev_get_by_name);
732
733 /**
734 * __dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns %NULL if the device
739 * is not found or a pointer to the device. The device has not
740 * had its reference counter increased so the caller must be careful
741 * about locking. The caller must hold either the RTNL semaphore
742 * or @dev_base_lock.
743 */
744
745 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
746 {
747 struct net_device *dev;
748 struct hlist_head *head = dev_index_hash(net, ifindex);
749
750 hlist_for_each_entry(dev, head, index_hlist)
751 if (dev->ifindex == ifindex)
752 return dev;
753
754 return NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_index);
757
758 /**
759 * dev_get_by_index_rcu - find a device by its ifindex
760 * @net: the applicable net namespace
761 * @ifindex: index of device
762 *
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold RCU lock.
767 */
768
769 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
770 {
771 struct net_device *dev;
772 struct hlist_head *head = dev_index_hash(net, ifindex);
773
774 hlist_for_each_entry_rcu(dev, head, index_hlist)
775 if (dev->ifindex == ifindex)
776 return dev;
777
778 return NULL;
779 }
780 EXPORT_SYMBOL(dev_get_by_index_rcu);
781
782
783 /**
784 * dev_get_by_index - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
787 *
788 * Search for an interface by index. Returns NULL if the device
789 * is not found or a pointer to the device. The device returned has
790 * had a reference added and the pointer is safe until the user calls
791 * dev_put to indicate they have finished with it.
792 */
793
794 struct net_device *dev_get_by_index(struct net *net, int ifindex)
795 {
796 struct net_device *dev;
797
798 rcu_read_lock();
799 dev = dev_get_by_index_rcu(net, ifindex);
800 if (dev)
801 dev_hold(dev);
802 rcu_read_unlock();
803 return dev;
804 }
805 EXPORT_SYMBOL(dev_get_by_index);
806
807 /**
808 * netdev_get_name - get a netdevice name, knowing its ifindex.
809 * @net: network namespace
810 * @name: a pointer to the buffer where the name will be stored.
811 * @ifindex: the ifindex of the interface to get the name from.
812 *
813 * The use of raw_seqcount_begin() and cond_resched() before
814 * retrying is required as we want to give the writers a chance
815 * to complete when CONFIG_PREEMPT is not set.
816 */
817 int netdev_get_name(struct net *net, char *name, int ifindex)
818 {
819 struct net_device *dev;
820 unsigned int seq;
821
822 retry:
823 seq = raw_seqcount_begin(&devnet_rename_seq);
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (!dev) {
827 rcu_read_unlock();
828 return -ENODEV;
829 }
830
831 strcpy(name, dev->name);
832 rcu_read_unlock();
833 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
834 cond_resched();
835 goto retry;
836 }
837
838 return 0;
839 }
840
841 /**
842 * dev_getbyhwaddr_rcu - find a device by its hardware address
843 * @net: the applicable net namespace
844 * @type: media type of device
845 * @ha: hardware address
846 *
847 * Search for an interface by MAC address. Returns NULL if the device
848 * is not found or a pointer to the device.
849 * The caller must hold RCU or RTNL.
850 * The returned device has not had its ref count increased
851 * and the caller must therefore be careful about locking
852 *
853 */
854
855 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
856 const char *ha)
857 {
858 struct net_device *dev;
859
860 for_each_netdev_rcu(net, dev)
861 if (dev->type == type &&
862 !memcmp(dev->dev_addr, ha, dev->addr_len))
863 return dev;
864
865 return NULL;
866 }
867 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
868
869 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
870 {
871 struct net_device *dev;
872
873 ASSERT_RTNL();
874 for_each_netdev(net, dev)
875 if (dev->type == type)
876 return dev;
877
878 return NULL;
879 }
880 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
881
882 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
883 {
884 struct net_device *dev, *ret = NULL;
885
886 rcu_read_lock();
887 for_each_netdev_rcu(net, dev)
888 if (dev->type == type) {
889 dev_hold(dev);
890 ret = dev;
891 break;
892 }
893 rcu_read_unlock();
894 return ret;
895 }
896 EXPORT_SYMBOL(dev_getfirstbyhwtype);
897
898 /**
899 * dev_get_by_flags_rcu - find any device with given flags
900 * @net: the applicable net namespace
901 * @if_flags: IFF_* values
902 * @mask: bitmask of bits in if_flags to check
903 *
904 * Search for any interface with the given flags. Returns NULL if a device
905 * is not found or a pointer to the device. Must be called inside
906 * rcu_read_lock(), and result refcount is unchanged.
907 */
908
909 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
910 unsigned short mask)
911 {
912 struct net_device *dev, *ret;
913
914 ret = NULL;
915 for_each_netdev_rcu(net, dev) {
916 if (((dev->flags ^ if_flags) & mask) == 0) {
917 ret = dev;
918 break;
919 }
920 }
921 return ret;
922 }
923 EXPORT_SYMBOL(dev_get_by_flags_rcu);
924
925 /**
926 * dev_valid_name - check if name is okay for network device
927 * @name: name string
928 *
929 * Network device names need to be valid file names to
930 * to allow sysfs to work. We also disallow any kind of
931 * whitespace.
932 */
933 bool dev_valid_name(const char *name)
934 {
935 if (*name == '\0')
936 return false;
937 if (strlen(name) >= IFNAMSIZ)
938 return false;
939 if (!strcmp(name, ".") || !strcmp(name, ".."))
940 return false;
941
942 while (*name) {
943 if (*name == '/' || isspace(*name))
944 return false;
945 name++;
946 }
947 return true;
948 }
949 EXPORT_SYMBOL(dev_valid_name);
950
951 /**
952 * __dev_alloc_name - allocate a name for a device
953 * @net: network namespace to allocate the device name in
954 * @name: name format string
955 * @buf: scratch buffer and result name string
956 *
957 * Passed a format string - eg "lt%d" it will try and find a suitable
958 * id. It scans list of devices to build up a free map, then chooses
959 * the first empty slot. The caller must hold the dev_base or rtnl lock
960 * while allocating the name and adding the device in order to avoid
961 * duplicates.
962 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
963 * Returns the number of the unit assigned or a negative errno code.
964 */
965
966 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
967 {
968 int i = 0;
969 const char *p;
970 const int max_netdevices = 8*PAGE_SIZE;
971 unsigned long *inuse;
972 struct net_device *d;
973
974 p = strnchr(name, IFNAMSIZ-1, '%');
975 if (p) {
976 /*
977 * Verify the string as this thing may have come from
978 * the user. There must be either one "%d" and no other "%"
979 * characters.
980 */
981 if (p[1] != 'd' || strchr(p + 2, '%'))
982 return -EINVAL;
983
984 /* Use one page as a bit array of possible slots */
985 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
986 if (!inuse)
987 return -ENOMEM;
988
989 for_each_netdev(net, d) {
990 if (!sscanf(d->name, name, &i))
991 continue;
992 if (i < 0 || i >= max_netdevices)
993 continue;
994
995 /* avoid cases where sscanf is not exact inverse of printf */
996 snprintf(buf, IFNAMSIZ, name, i);
997 if (!strncmp(buf, d->name, IFNAMSIZ))
998 set_bit(i, inuse);
999 }
1000
1001 i = find_first_zero_bit(inuse, max_netdevices);
1002 free_page((unsigned long) inuse);
1003 }
1004
1005 if (buf != name)
1006 snprintf(buf, IFNAMSIZ, name, i);
1007 if (!__dev_get_by_name(net, buf))
1008 return i;
1009
1010 /* It is possible to run out of possible slots
1011 * when the name is long and there isn't enough space left
1012 * for the digits, or if all bits are used.
1013 */
1014 return -ENFILE;
1015 }
1016
1017 /**
1018 * dev_alloc_name - allocate a name for a device
1019 * @dev: device
1020 * @name: name format string
1021 *
1022 * Passed a format string - eg "lt%d" it will try and find a suitable
1023 * id. It scans list of devices to build up a free map, then chooses
1024 * the first empty slot. The caller must hold the dev_base or rtnl lock
1025 * while allocating the name and adding the device in order to avoid
1026 * duplicates.
1027 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1028 * Returns the number of the unit assigned or a negative errno code.
1029 */
1030
1031 int dev_alloc_name(struct net_device *dev, const char *name)
1032 {
1033 char buf[IFNAMSIZ];
1034 struct net *net;
1035 int ret;
1036
1037 BUG_ON(!dev_net(dev));
1038 net = dev_net(dev);
1039 ret = __dev_alloc_name(net, name, buf);
1040 if (ret >= 0)
1041 strlcpy(dev->name, buf, IFNAMSIZ);
1042 return ret;
1043 }
1044 EXPORT_SYMBOL(dev_alloc_name);
1045
1046 static int dev_alloc_name_ns(struct net *net,
1047 struct net_device *dev,
1048 const char *name)
1049 {
1050 char buf[IFNAMSIZ];
1051 int ret;
1052
1053 ret = __dev_alloc_name(net, name, buf);
1054 if (ret >= 0)
1055 strlcpy(dev->name, buf, IFNAMSIZ);
1056 return ret;
1057 }
1058
1059 static int dev_get_valid_name(struct net *net,
1060 struct net_device *dev,
1061 const char *name)
1062 {
1063 BUG_ON(!net);
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 if (strchr(name, '%'))
1069 return dev_alloc_name_ns(net, dev, name);
1070 else if (__dev_get_by_name(net, name))
1071 return -EEXIST;
1072 else if (dev->name != name)
1073 strlcpy(dev->name, name, IFNAMSIZ);
1074
1075 return 0;
1076 }
1077
1078 /**
1079 * dev_change_name - change name of a device
1080 * @dev: device
1081 * @newname: name (or format string) must be at least IFNAMSIZ
1082 *
1083 * Change name of a device, can pass format strings "eth%d".
1084 * for wildcarding.
1085 */
1086 int dev_change_name(struct net_device *dev, const char *newname)
1087 {
1088 char oldname[IFNAMSIZ];
1089 int err = 0;
1090 int ret;
1091 struct net *net;
1092
1093 ASSERT_RTNL();
1094 BUG_ON(!dev_net(dev));
1095
1096 net = dev_net(dev);
1097 if (dev->flags & IFF_UP)
1098 return -EBUSY;
1099
1100 write_seqcount_begin(&devnet_rename_seq);
1101
1102 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1103 write_seqcount_end(&devnet_rename_seq);
1104 return 0;
1105 }
1106
1107 memcpy(oldname, dev->name, IFNAMSIZ);
1108
1109 err = dev_get_valid_name(net, dev, newname);
1110 if (err < 0) {
1111 write_seqcount_end(&devnet_rename_seq);
1112 return err;
1113 }
1114
1115 rollback:
1116 ret = device_rename(&dev->dev, dev->name);
1117 if (ret) {
1118 memcpy(dev->name, oldname, IFNAMSIZ);
1119 write_seqcount_end(&devnet_rename_seq);
1120 return ret;
1121 }
1122
1123 write_seqcount_end(&devnet_rename_seq);
1124
1125 netdev_adjacent_rename_links(dev, oldname);
1126
1127 write_lock_bh(&dev_base_lock);
1128 hlist_del_rcu(&dev->name_hlist);
1129 write_unlock_bh(&dev_base_lock);
1130
1131 synchronize_rcu();
1132
1133 write_lock_bh(&dev_base_lock);
1134 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1135 write_unlock_bh(&dev_base_lock);
1136
1137 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1138 ret = notifier_to_errno(ret);
1139
1140 if (ret) {
1141 /* err >= 0 after dev_alloc_name() or stores the first errno */
1142 if (err >= 0) {
1143 err = ret;
1144 write_seqcount_begin(&devnet_rename_seq);
1145 memcpy(dev->name, oldname, IFNAMSIZ);
1146 memcpy(oldname, newname, IFNAMSIZ);
1147 goto rollback;
1148 } else {
1149 pr_err("%s: name change rollback failed: %d\n",
1150 dev->name, ret);
1151 }
1152 }
1153
1154 return err;
1155 }
1156
1157 /**
1158 * dev_set_alias - change ifalias of a device
1159 * @dev: device
1160 * @alias: name up to IFALIASZ
1161 * @len: limit of bytes to copy from info
1162 *
1163 * Set ifalias for a device,
1164 */
1165 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1166 {
1167 char *new_ifalias;
1168
1169 ASSERT_RTNL();
1170
1171 if (len >= IFALIASZ)
1172 return -EINVAL;
1173
1174 if (!len) {
1175 kfree(dev->ifalias);
1176 dev->ifalias = NULL;
1177 return 0;
1178 }
1179
1180 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1181 if (!new_ifalias)
1182 return -ENOMEM;
1183 dev->ifalias = new_ifalias;
1184
1185 strlcpy(dev->ifalias, alias, len+1);
1186 return len;
1187 }
1188
1189
1190 /**
1191 * netdev_features_change - device changes features
1192 * @dev: device to cause notification
1193 *
1194 * Called to indicate a device has changed features.
1195 */
1196 void netdev_features_change(struct net_device *dev)
1197 {
1198 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1199 }
1200 EXPORT_SYMBOL(netdev_features_change);
1201
1202 /**
1203 * netdev_state_change - device changes state
1204 * @dev: device to cause notification
1205 *
1206 * Called to indicate a device has changed state. This function calls
1207 * the notifier chains for netdev_chain and sends a NEWLINK message
1208 * to the routing socket.
1209 */
1210 void netdev_state_change(struct net_device *dev)
1211 {
1212 if (dev->flags & IFF_UP) {
1213 struct netdev_notifier_change_info change_info;
1214
1215 change_info.flags_changed = 0;
1216 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1217 &change_info.info);
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1219 }
1220 }
1221 EXPORT_SYMBOL(netdev_state_change);
1222
1223 /**
1224 * netdev_notify_peers - notify network peers about existence of @dev
1225 * @dev: network device
1226 *
1227 * Generate traffic such that interested network peers are aware of
1228 * @dev, such as by generating a gratuitous ARP. This may be used when
1229 * a device wants to inform the rest of the network about some sort of
1230 * reconfiguration such as a failover event or virtual machine
1231 * migration.
1232 */
1233 void netdev_notify_peers(struct net_device *dev)
1234 {
1235 rtnl_lock();
1236 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1237 rtnl_unlock();
1238 }
1239 EXPORT_SYMBOL(netdev_notify_peers);
1240
1241 static int __dev_open(struct net_device *dev)
1242 {
1243 const struct net_device_ops *ops = dev->netdev_ops;
1244 int ret;
1245
1246 ASSERT_RTNL();
1247
1248 if (!netif_device_present(dev))
1249 return -ENODEV;
1250
1251 /* Block netpoll from trying to do any rx path servicing.
1252 * If we don't do this there is a chance ndo_poll_controller
1253 * or ndo_poll may be running while we open the device
1254 */
1255 netpoll_poll_disable(dev);
1256
1257 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1258 ret = notifier_to_errno(ret);
1259 if (ret)
1260 return ret;
1261
1262 set_bit(__LINK_STATE_START, &dev->state);
1263
1264 if (ops->ndo_validate_addr)
1265 ret = ops->ndo_validate_addr(dev);
1266
1267 if (!ret && ops->ndo_open)
1268 ret = ops->ndo_open(dev);
1269
1270 netpoll_poll_enable(dev);
1271
1272 if (ret)
1273 clear_bit(__LINK_STATE_START, &dev->state);
1274 else {
1275 dev->flags |= IFF_UP;
1276 net_dmaengine_get();
1277 dev_set_rx_mode(dev);
1278 dev_activate(dev);
1279 add_device_randomness(dev->dev_addr, dev->addr_len);
1280 }
1281
1282 return ret;
1283 }
1284
1285 /**
1286 * dev_open - prepare an interface for use.
1287 * @dev: device to open
1288 *
1289 * Takes a device from down to up state. The device's private open
1290 * function is invoked and then the multicast lists are loaded. Finally
1291 * the device is moved into the up state and a %NETDEV_UP message is
1292 * sent to the netdev notifier chain.
1293 *
1294 * Calling this function on an active interface is a nop. On a failure
1295 * a negative errno code is returned.
1296 */
1297 int dev_open(struct net_device *dev)
1298 {
1299 int ret;
1300
1301 if (dev->flags & IFF_UP)
1302 return 0;
1303
1304 ret = __dev_open(dev);
1305 if (ret < 0)
1306 return ret;
1307
1308 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1309 call_netdevice_notifiers(NETDEV_UP, dev);
1310
1311 return ret;
1312 }
1313 EXPORT_SYMBOL(dev_open);
1314
1315 static int __dev_close_many(struct list_head *head)
1316 {
1317 struct net_device *dev;
1318
1319 ASSERT_RTNL();
1320 might_sleep();
1321
1322 list_for_each_entry(dev, head, close_list) {
1323 /* Temporarily disable netpoll until the interface is down */
1324 netpoll_poll_disable(dev);
1325
1326 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1327
1328 clear_bit(__LINK_STATE_START, &dev->state);
1329
1330 /* Synchronize to scheduled poll. We cannot touch poll list, it
1331 * can be even on different cpu. So just clear netif_running().
1332 *
1333 * dev->stop() will invoke napi_disable() on all of it's
1334 * napi_struct instances on this device.
1335 */
1336 smp_mb__after_atomic(); /* Commit netif_running(). */
1337 }
1338
1339 dev_deactivate_many(head);
1340
1341 list_for_each_entry(dev, head, close_list) {
1342 const struct net_device_ops *ops = dev->netdev_ops;
1343
1344 /*
1345 * Call the device specific close. This cannot fail.
1346 * Only if device is UP
1347 *
1348 * We allow it to be called even after a DETACH hot-plug
1349 * event.
1350 */
1351 if (ops->ndo_stop)
1352 ops->ndo_stop(dev);
1353
1354 dev->flags &= ~IFF_UP;
1355 net_dmaengine_put();
1356 netpoll_poll_enable(dev);
1357 }
1358
1359 return 0;
1360 }
1361
1362 static int __dev_close(struct net_device *dev)
1363 {
1364 int retval;
1365 LIST_HEAD(single);
1366
1367 list_add(&dev->close_list, &single);
1368 retval = __dev_close_many(&single);
1369 list_del(&single);
1370
1371 return retval;
1372 }
1373
1374 static int dev_close_many(struct list_head *head)
1375 {
1376 struct net_device *dev, *tmp;
1377
1378 /* Remove the devices that don't need to be closed */
1379 list_for_each_entry_safe(dev, tmp, head, close_list)
1380 if (!(dev->flags & IFF_UP))
1381 list_del_init(&dev->close_list);
1382
1383 __dev_close_many(head);
1384
1385 list_for_each_entry_safe(dev, tmp, head, close_list) {
1386 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1387 call_netdevice_notifiers(NETDEV_DOWN, dev);
1388 list_del_init(&dev->close_list);
1389 }
1390
1391 return 0;
1392 }
1393
1394 /**
1395 * dev_close - shutdown an interface.
1396 * @dev: device to shutdown
1397 *
1398 * This function moves an active device into down state. A
1399 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1400 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1401 * chain.
1402 */
1403 int dev_close(struct net_device *dev)
1404 {
1405 if (dev->flags & IFF_UP) {
1406 LIST_HEAD(single);
1407
1408 list_add(&dev->close_list, &single);
1409 dev_close_many(&single);
1410 list_del(&single);
1411 }
1412 return 0;
1413 }
1414 EXPORT_SYMBOL(dev_close);
1415
1416
1417 /**
1418 * dev_disable_lro - disable Large Receive Offload on a device
1419 * @dev: device
1420 *
1421 * Disable Large Receive Offload (LRO) on a net device. Must be
1422 * called under RTNL. This is needed if received packets may be
1423 * forwarded to another interface.
1424 */
1425 void dev_disable_lro(struct net_device *dev)
1426 {
1427 /*
1428 * If we're trying to disable lro on a vlan device
1429 * use the underlying physical device instead
1430 */
1431 if (is_vlan_dev(dev))
1432 dev = vlan_dev_real_dev(dev);
1433
1434 /* the same for macvlan devices */
1435 if (netif_is_macvlan(dev))
1436 dev = macvlan_dev_real_dev(dev);
1437
1438 dev->wanted_features &= ~NETIF_F_LRO;
1439 netdev_update_features(dev);
1440
1441 if (unlikely(dev->features & NETIF_F_LRO))
1442 netdev_WARN(dev, "failed to disable LRO!\n");
1443 }
1444 EXPORT_SYMBOL(dev_disable_lro);
1445
1446 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1447 struct net_device *dev)
1448 {
1449 struct netdev_notifier_info info;
1450
1451 netdev_notifier_info_init(&info, dev);
1452 return nb->notifier_call(nb, val, &info);
1453 }
1454
1455 static int dev_boot_phase = 1;
1456
1457 /**
1458 * register_netdevice_notifier - register a network notifier block
1459 * @nb: notifier
1460 *
1461 * Register a notifier to be called when network device events occur.
1462 * The notifier passed is linked into the kernel structures and must
1463 * not be reused until it has been unregistered. A negative errno code
1464 * is returned on a failure.
1465 *
1466 * When registered all registration and up events are replayed
1467 * to the new notifier to allow device to have a race free
1468 * view of the network device list.
1469 */
1470
1471 int register_netdevice_notifier(struct notifier_block *nb)
1472 {
1473 struct net_device *dev;
1474 struct net_device *last;
1475 struct net *net;
1476 int err;
1477
1478 rtnl_lock();
1479 err = raw_notifier_chain_register(&netdev_chain, nb);
1480 if (err)
1481 goto unlock;
1482 if (dev_boot_phase)
1483 goto unlock;
1484 for_each_net(net) {
1485 for_each_netdev(net, dev) {
1486 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1487 err = notifier_to_errno(err);
1488 if (err)
1489 goto rollback;
1490
1491 if (!(dev->flags & IFF_UP))
1492 continue;
1493
1494 call_netdevice_notifier(nb, NETDEV_UP, dev);
1495 }
1496 }
1497
1498 unlock:
1499 rtnl_unlock();
1500 return err;
1501
1502 rollback:
1503 last = dev;
1504 for_each_net(net) {
1505 for_each_netdev(net, dev) {
1506 if (dev == last)
1507 goto outroll;
1508
1509 if (dev->flags & IFF_UP) {
1510 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1511 dev);
1512 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1513 }
1514 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1515 }
1516 }
1517
1518 outroll:
1519 raw_notifier_chain_unregister(&netdev_chain, nb);
1520 goto unlock;
1521 }
1522 EXPORT_SYMBOL(register_netdevice_notifier);
1523
1524 /**
1525 * unregister_netdevice_notifier - unregister a network notifier block
1526 * @nb: notifier
1527 *
1528 * Unregister a notifier previously registered by
1529 * register_netdevice_notifier(). The notifier is unlinked into the
1530 * kernel structures and may then be reused. A negative errno code
1531 * is returned on a failure.
1532 *
1533 * After unregistering unregister and down device events are synthesized
1534 * for all devices on the device list to the removed notifier to remove
1535 * the need for special case cleanup code.
1536 */
1537
1538 int unregister_netdevice_notifier(struct notifier_block *nb)
1539 {
1540 struct net_device *dev;
1541 struct net *net;
1542 int err;
1543
1544 rtnl_lock();
1545 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1546 if (err)
1547 goto unlock;
1548
1549 for_each_net(net) {
1550 for_each_netdev(net, dev) {
1551 if (dev->flags & IFF_UP) {
1552 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1553 dev);
1554 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1555 }
1556 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1557 }
1558 }
1559 unlock:
1560 rtnl_unlock();
1561 return err;
1562 }
1563 EXPORT_SYMBOL(unregister_netdevice_notifier);
1564
1565 /**
1566 * call_netdevice_notifiers_info - call all network notifier blocks
1567 * @val: value passed unmodified to notifier function
1568 * @dev: net_device pointer passed unmodified to notifier function
1569 * @info: notifier information data
1570 *
1571 * Call all network notifier blocks. Parameters and return value
1572 * are as for raw_notifier_call_chain().
1573 */
1574
1575 static int call_netdevice_notifiers_info(unsigned long val,
1576 struct net_device *dev,
1577 struct netdev_notifier_info *info)
1578 {
1579 ASSERT_RTNL();
1580 netdev_notifier_info_init(info, dev);
1581 return raw_notifier_call_chain(&netdev_chain, val, info);
1582 }
1583
1584 /**
1585 * call_netdevice_notifiers - call all network notifier blocks
1586 * @val: value passed unmodified to notifier function
1587 * @dev: net_device pointer passed unmodified to notifier function
1588 *
1589 * Call all network notifier blocks. Parameters and return value
1590 * are as for raw_notifier_call_chain().
1591 */
1592
1593 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1594 {
1595 struct netdev_notifier_info info;
1596
1597 return call_netdevice_notifiers_info(val, dev, &info);
1598 }
1599 EXPORT_SYMBOL(call_netdevice_notifiers);
1600
1601 static struct static_key netstamp_needed __read_mostly;
1602 #ifdef HAVE_JUMP_LABEL
1603 /* We are not allowed to call static_key_slow_dec() from irq context
1604 * If net_disable_timestamp() is called from irq context, defer the
1605 * static_key_slow_dec() calls.
1606 */
1607 static atomic_t netstamp_needed_deferred;
1608 #endif
1609
1610 void net_enable_timestamp(void)
1611 {
1612 #ifdef HAVE_JUMP_LABEL
1613 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1614
1615 if (deferred) {
1616 while (--deferred)
1617 static_key_slow_dec(&netstamp_needed);
1618 return;
1619 }
1620 #endif
1621 static_key_slow_inc(&netstamp_needed);
1622 }
1623 EXPORT_SYMBOL(net_enable_timestamp);
1624
1625 void net_disable_timestamp(void)
1626 {
1627 #ifdef HAVE_JUMP_LABEL
1628 if (in_interrupt()) {
1629 atomic_inc(&netstamp_needed_deferred);
1630 return;
1631 }
1632 #endif
1633 static_key_slow_dec(&netstamp_needed);
1634 }
1635 EXPORT_SYMBOL(net_disable_timestamp);
1636
1637 static inline void net_timestamp_set(struct sk_buff *skb)
1638 {
1639 skb->tstamp.tv64 = 0;
1640 if (static_key_false(&netstamp_needed))
1641 __net_timestamp(skb);
1642 }
1643
1644 #define net_timestamp_check(COND, SKB) \
1645 if (static_key_false(&netstamp_needed)) { \
1646 if ((COND) && !(SKB)->tstamp.tv64) \
1647 __net_timestamp(SKB); \
1648 } \
1649
1650 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1651 {
1652 unsigned int len;
1653
1654 if (!(dev->flags & IFF_UP))
1655 return false;
1656
1657 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1658 if (skb->len <= len)
1659 return true;
1660
1661 /* if TSO is enabled, we don't care about the length as the packet
1662 * could be forwarded without being segmented before
1663 */
1664 if (skb_is_gso(skb))
1665 return true;
1666
1667 return false;
1668 }
1669 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1670
1671 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1672 {
1673 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1674 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1675 atomic_long_inc(&dev->rx_dropped);
1676 kfree_skb(skb);
1677 return NET_RX_DROP;
1678 }
1679 }
1680
1681 if (unlikely(!is_skb_forwardable(dev, skb))) {
1682 atomic_long_inc(&dev->rx_dropped);
1683 kfree_skb(skb);
1684 return NET_RX_DROP;
1685 }
1686
1687 skb_scrub_packet(skb, true);
1688 skb->protocol = eth_type_trans(skb, dev);
1689
1690 return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1693
1694 /**
1695 * dev_forward_skb - loopback an skb to another netif
1696 *
1697 * @dev: destination network device
1698 * @skb: buffer to forward
1699 *
1700 * return values:
1701 * NET_RX_SUCCESS (no congestion)
1702 * NET_RX_DROP (packet was dropped, but freed)
1703 *
1704 * dev_forward_skb can be used for injecting an skb from the
1705 * start_xmit function of one device into the receive queue
1706 * of another device.
1707 *
1708 * The receiving device may be in another namespace, so
1709 * we have to clear all information in the skb that could
1710 * impact namespace isolation.
1711 */
1712 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1713 {
1714 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1715 }
1716 EXPORT_SYMBOL_GPL(dev_forward_skb);
1717
1718 static inline int deliver_skb(struct sk_buff *skb,
1719 struct packet_type *pt_prev,
1720 struct net_device *orig_dev)
1721 {
1722 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1723 return -ENOMEM;
1724 atomic_inc(&skb->users);
1725 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1726 }
1727
1728 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1729 {
1730 if (!ptype->af_packet_priv || !skb->sk)
1731 return false;
1732
1733 if (ptype->id_match)
1734 return ptype->id_match(ptype, skb->sk);
1735 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1736 return true;
1737
1738 return false;
1739 }
1740
1741 /*
1742 * Support routine. Sends outgoing frames to any network
1743 * taps currently in use.
1744 */
1745
1746 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 struct packet_type *ptype;
1749 struct sk_buff *skb2 = NULL;
1750 struct packet_type *pt_prev = NULL;
1751
1752 rcu_read_lock();
1753 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1754 /* Never send packets back to the socket
1755 * they originated from - MvS (miquels@drinkel.ow.org)
1756 */
1757 if ((ptype->dev == dev || !ptype->dev) &&
1758 (!skb_loop_sk(ptype, skb))) {
1759 if (pt_prev) {
1760 deliver_skb(skb2, pt_prev, skb->dev);
1761 pt_prev = ptype;
1762 continue;
1763 }
1764
1765 skb2 = skb_clone(skb, GFP_ATOMIC);
1766 if (!skb2)
1767 break;
1768
1769 net_timestamp_set(skb2);
1770
1771 /* skb->nh should be correctly
1772 set by sender, so that the second statement is
1773 just protection against buggy protocols.
1774 */
1775 skb_reset_mac_header(skb2);
1776
1777 if (skb_network_header(skb2) < skb2->data ||
1778 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1779 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1780 ntohs(skb2->protocol),
1781 dev->name);
1782 skb_reset_network_header(skb2);
1783 }
1784
1785 skb2->transport_header = skb2->network_header;
1786 skb2->pkt_type = PACKET_OUTGOING;
1787 pt_prev = ptype;
1788 }
1789 }
1790 if (pt_prev)
1791 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1792 rcu_read_unlock();
1793 }
1794
1795 /**
1796 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1797 * @dev: Network device
1798 * @txq: number of queues available
1799 *
1800 * If real_num_tx_queues is changed the tc mappings may no longer be
1801 * valid. To resolve this verify the tc mapping remains valid and if
1802 * not NULL the mapping. With no priorities mapping to this
1803 * offset/count pair it will no longer be used. In the worst case TC0
1804 * is invalid nothing can be done so disable priority mappings. If is
1805 * expected that drivers will fix this mapping if they can before
1806 * calling netif_set_real_num_tx_queues.
1807 */
1808 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1809 {
1810 int i;
1811 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1812
1813 /* If TC0 is invalidated disable TC mapping */
1814 if (tc->offset + tc->count > txq) {
1815 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1816 dev->num_tc = 0;
1817 return;
1818 }
1819
1820 /* Invalidated prio to tc mappings set to TC0 */
1821 for (i = 1; i < TC_BITMASK + 1; i++) {
1822 int q = netdev_get_prio_tc_map(dev, i);
1823
1824 tc = &dev->tc_to_txq[q];
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1827 i, q);
1828 netdev_set_prio_tc_map(dev, i, 0);
1829 }
1830 }
1831 }
1832
1833 #ifdef CONFIG_XPS
1834 static DEFINE_MUTEX(xps_map_mutex);
1835 #define xmap_dereference(P) \
1836 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1837
1838 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1839 int cpu, u16 index)
1840 {
1841 struct xps_map *map = NULL;
1842 int pos;
1843
1844 if (dev_maps)
1845 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1846
1847 for (pos = 0; map && pos < map->len; pos++) {
1848 if (map->queues[pos] == index) {
1849 if (map->len > 1) {
1850 map->queues[pos] = map->queues[--map->len];
1851 } else {
1852 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1853 kfree_rcu(map, rcu);
1854 map = NULL;
1855 }
1856 break;
1857 }
1858 }
1859
1860 return map;
1861 }
1862
1863 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1864 {
1865 struct xps_dev_maps *dev_maps;
1866 int cpu, i;
1867 bool active = false;
1868
1869 mutex_lock(&xps_map_mutex);
1870 dev_maps = xmap_dereference(dev->xps_maps);
1871
1872 if (!dev_maps)
1873 goto out_no_maps;
1874
1875 for_each_possible_cpu(cpu) {
1876 for (i = index; i < dev->num_tx_queues; i++) {
1877 if (!remove_xps_queue(dev_maps, cpu, i))
1878 break;
1879 }
1880 if (i == dev->num_tx_queues)
1881 active = true;
1882 }
1883
1884 if (!active) {
1885 RCU_INIT_POINTER(dev->xps_maps, NULL);
1886 kfree_rcu(dev_maps, rcu);
1887 }
1888
1889 for (i = index; i < dev->num_tx_queues; i++)
1890 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1891 NUMA_NO_NODE);
1892
1893 out_no_maps:
1894 mutex_unlock(&xps_map_mutex);
1895 }
1896
1897 static struct xps_map *expand_xps_map(struct xps_map *map,
1898 int cpu, u16 index)
1899 {
1900 struct xps_map *new_map;
1901 int alloc_len = XPS_MIN_MAP_ALLOC;
1902 int i, pos;
1903
1904 for (pos = 0; map && pos < map->len; pos++) {
1905 if (map->queues[pos] != index)
1906 continue;
1907 return map;
1908 }
1909
1910 /* Need to add queue to this CPU's existing map */
1911 if (map) {
1912 if (pos < map->alloc_len)
1913 return map;
1914
1915 alloc_len = map->alloc_len * 2;
1916 }
1917
1918 /* Need to allocate new map to store queue on this CPU's map */
1919 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1920 cpu_to_node(cpu));
1921 if (!new_map)
1922 return NULL;
1923
1924 for (i = 0; i < pos; i++)
1925 new_map->queues[i] = map->queues[i];
1926 new_map->alloc_len = alloc_len;
1927 new_map->len = pos;
1928
1929 return new_map;
1930 }
1931
1932 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1933 u16 index)
1934 {
1935 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1936 struct xps_map *map, *new_map;
1937 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1938 int cpu, numa_node_id = -2;
1939 bool active = false;
1940
1941 mutex_lock(&xps_map_mutex);
1942
1943 dev_maps = xmap_dereference(dev->xps_maps);
1944
1945 /* allocate memory for queue storage */
1946 for_each_online_cpu(cpu) {
1947 if (!cpumask_test_cpu(cpu, mask))
1948 continue;
1949
1950 if (!new_dev_maps)
1951 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1952 if (!new_dev_maps) {
1953 mutex_unlock(&xps_map_mutex);
1954 return -ENOMEM;
1955 }
1956
1957 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1958 NULL;
1959
1960 map = expand_xps_map(map, cpu, index);
1961 if (!map)
1962 goto error;
1963
1964 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1965 }
1966
1967 if (!new_dev_maps)
1968 goto out_no_new_maps;
1969
1970 for_each_possible_cpu(cpu) {
1971 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1972 /* add queue to CPU maps */
1973 int pos = 0;
1974
1975 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1976 while ((pos < map->len) && (map->queues[pos] != index))
1977 pos++;
1978
1979 if (pos == map->len)
1980 map->queues[map->len++] = index;
1981 #ifdef CONFIG_NUMA
1982 if (numa_node_id == -2)
1983 numa_node_id = cpu_to_node(cpu);
1984 else if (numa_node_id != cpu_to_node(cpu))
1985 numa_node_id = -1;
1986 #endif
1987 } else if (dev_maps) {
1988 /* fill in the new device map from the old device map */
1989 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1990 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1991 }
1992
1993 }
1994
1995 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1996
1997 /* Cleanup old maps */
1998 if (dev_maps) {
1999 for_each_possible_cpu(cpu) {
2000 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2001 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2002 if (map && map != new_map)
2003 kfree_rcu(map, rcu);
2004 }
2005
2006 kfree_rcu(dev_maps, rcu);
2007 }
2008
2009 dev_maps = new_dev_maps;
2010 active = true;
2011
2012 out_no_new_maps:
2013 /* update Tx queue numa node */
2014 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2015 (numa_node_id >= 0) ? numa_node_id :
2016 NUMA_NO_NODE);
2017
2018 if (!dev_maps)
2019 goto out_no_maps;
2020
2021 /* removes queue from unused CPUs */
2022 for_each_possible_cpu(cpu) {
2023 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2024 continue;
2025
2026 if (remove_xps_queue(dev_maps, cpu, index))
2027 active = true;
2028 }
2029
2030 /* free map if not active */
2031 if (!active) {
2032 RCU_INIT_POINTER(dev->xps_maps, NULL);
2033 kfree_rcu(dev_maps, rcu);
2034 }
2035
2036 out_no_maps:
2037 mutex_unlock(&xps_map_mutex);
2038
2039 return 0;
2040 error:
2041 /* remove any maps that we added */
2042 for_each_possible_cpu(cpu) {
2043 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2044 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2045 NULL;
2046 if (new_map && new_map != map)
2047 kfree(new_map);
2048 }
2049
2050 mutex_unlock(&xps_map_mutex);
2051
2052 kfree(new_dev_maps);
2053 return -ENOMEM;
2054 }
2055 EXPORT_SYMBOL(netif_set_xps_queue);
2056
2057 #endif
2058 /*
2059 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2060 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2061 */
2062 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2063 {
2064 int rc;
2065
2066 if (txq < 1 || txq > dev->num_tx_queues)
2067 return -EINVAL;
2068
2069 if (dev->reg_state == NETREG_REGISTERED ||
2070 dev->reg_state == NETREG_UNREGISTERING) {
2071 ASSERT_RTNL();
2072
2073 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2074 txq);
2075 if (rc)
2076 return rc;
2077
2078 if (dev->num_tc)
2079 netif_setup_tc(dev, txq);
2080
2081 if (txq < dev->real_num_tx_queues) {
2082 qdisc_reset_all_tx_gt(dev, txq);
2083 #ifdef CONFIG_XPS
2084 netif_reset_xps_queues_gt(dev, txq);
2085 #endif
2086 }
2087 }
2088
2089 dev->real_num_tx_queues = txq;
2090 return 0;
2091 }
2092 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2093
2094 #ifdef CONFIG_SYSFS
2095 /**
2096 * netif_set_real_num_rx_queues - set actual number of RX queues used
2097 * @dev: Network device
2098 * @rxq: Actual number of RX queues
2099 *
2100 * This must be called either with the rtnl_lock held or before
2101 * registration of the net device. Returns 0 on success, or a
2102 * negative error code. If called before registration, it always
2103 * succeeds.
2104 */
2105 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2106 {
2107 int rc;
2108
2109 if (rxq < 1 || rxq > dev->num_rx_queues)
2110 return -EINVAL;
2111
2112 if (dev->reg_state == NETREG_REGISTERED) {
2113 ASSERT_RTNL();
2114
2115 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2116 rxq);
2117 if (rc)
2118 return rc;
2119 }
2120
2121 dev->real_num_rx_queues = rxq;
2122 return 0;
2123 }
2124 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2125 #endif
2126
2127 /**
2128 * netif_get_num_default_rss_queues - default number of RSS queues
2129 *
2130 * This routine should set an upper limit on the number of RSS queues
2131 * used by default by multiqueue devices.
2132 */
2133 int netif_get_num_default_rss_queues(void)
2134 {
2135 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2136 }
2137 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2138
2139 static inline void __netif_reschedule(struct Qdisc *q)
2140 {
2141 struct softnet_data *sd;
2142 unsigned long flags;
2143
2144 local_irq_save(flags);
2145 sd = &__get_cpu_var(softnet_data);
2146 q->next_sched = NULL;
2147 *sd->output_queue_tailp = q;
2148 sd->output_queue_tailp = &q->next_sched;
2149 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2150 local_irq_restore(flags);
2151 }
2152
2153 void __netif_schedule(struct Qdisc *q)
2154 {
2155 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2156 __netif_reschedule(q);
2157 }
2158 EXPORT_SYMBOL(__netif_schedule);
2159
2160 struct dev_kfree_skb_cb {
2161 enum skb_free_reason reason;
2162 };
2163
2164 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2165 {
2166 return (struct dev_kfree_skb_cb *)skb->cb;
2167 }
2168
2169 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2170 {
2171 unsigned long flags;
2172
2173 if (likely(atomic_read(&skb->users) == 1)) {
2174 smp_rmb();
2175 atomic_set(&skb->users, 0);
2176 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2177 return;
2178 }
2179 get_kfree_skb_cb(skb)->reason = reason;
2180 local_irq_save(flags);
2181 skb->next = __this_cpu_read(softnet_data.completion_queue);
2182 __this_cpu_write(softnet_data.completion_queue, skb);
2183 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2184 local_irq_restore(flags);
2185 }
2186 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2187
2188 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2189 {
2190 if (in_irq() || irqs_disabled())
2191 __dev_kfree_skb_irq(skb, reason);
2192 else
2193 dev_kfree_skb(skb);
2194 }
2195 EXPORT_SYMBOL(__dev_kfree_skb_any);
2196
2197
2198 /**
2199 * netif_device_detach - mark device as removed
2200 * @dev: network device
2201 *
2202 * Mark device as removed from system and therefore no longer available.
2203 */
2204 void netif_device_detach(struct net_device *dev)
2205 {
2206 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2207 netif_running(dev)) {
2208 netif_tx_stop_all_queues(dev);
2209 }
2210 }
2211 EXPORT_SYMBOL(netif_device_detach);
2212
2213 /**
2214 * netif_device_attach - mark device as attached
2215 * @dev: network device
2216 *
2217 * Mark device as attached from system and restart if needed.
2218 */
2219 void netif_device_attach(struct net_device *dev)
2220 {
2221 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2222 netif_running(dev)) {
2223 netif_tx_wake_all_queues(dev);
2224 __netdev_watchdog_up(dev);
2225 }
2226 }
2227 EXPORT_SYMBOL(netif_device_attach);
2228
2229 static void skb_warn_bad_offload(const struct sk_buff *skb)
2230 {
2231 static const netdev_features_t null_features = 0;
2232 struct net_device *dev = skb->dev;
2233 const char *driver = "";
2234
2235 if (!net_ratelimit())
2236 return;
2237
2238 if (dev && dev->dev.parent)
2239 driver = dev_driver_string(dev->dev.parent);
2240
2241 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2242 "gso_type=%d ip_summed=%d\n",
2243 driver, dev ? &dev->features : &null_features,
2244 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2245 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2246 skb_shinfo(skb)->gso_type, skb->ip_summed);
2247 }
2248
2249 /*
2250 * Invalidate hardware checksum when packet is to be mangled, and
2251 * complete checksum manually on outgoing path.
2252 */
2253 int skb_checksum_help(struct sk_buff *skb)
2254 {
2255 __wsum csum;
2256 int ret = 0, offset;
2257
2258 if (skb->ip_summed == CHECKSUM_COMPLETE)
2259 goto out_set_summed;
2260
2261 if (unlikely(skb_shinfo(skb)->gso_size)) {
2262 skb_warn_bad_offload(skb);
2263 return -EINVAL;
2264 }
2265
2266 /* Before computing a checksum, we should make sure no frag could
2267 * be modified by an external entity : checksum could be wrong.
2268 */
2269 if (skb_has_shared_frag(skb)) {
2270 ret = __skb_linearize(skb);
2271 if (ret)
2272 goto out;
2273 }
2274
2275 offset = skb_checksum_start_offset(skb);
2276 BUG_ON(offset >= skb_headlen(skb));
2277 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2278
2279 offset += skb->csum_offset;
2280 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2281
2282 if (skb_cloned(skb) &&
2283 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2284 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2285 if (ret)
2286 goto out;
2287 }
2288
2289 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2290 out_set_summed:
2291 skb->ip_summed = CHECKSUM_NONE;
2292 out:
2293 return ret;
2294 }
2295 EXPORT_SYMBOL(skb_checksum_help);
2296
2297 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2298 {
2299 unsigned int vlan_depth = skb->mac_len;
2300 __be16 type = skb->protocol;
2301
2302 /* Tunnel gso handlers can set protocol to ethernet. */
2303 if (type == htons(ETH_P_TEB)) {
2304 struct ethhdr *eth;
2305
2306 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2307 return 0;
2308
2309 eth = (struct ethhdr *)skb_mac_header(skb);
2310 type = eth->h_proto;
2311 }
2312
2313 /* if skb->protocol is 802.1Q/AD then the header should already be
2314 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2315 * ETH_HLEN otherwise
2316 */
2317 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2318 if (vlan_depth) {
2319 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2320 return 0;
2321 vlan_depth -= VLAN_HLEN;
2322 } else {
2323 vlan_depth = ETH_HLEN;
2324 }
2325 do {
2326 struct vlan_hdr *vh;
2327
2328 if (unlikely(!pskb_may_pull(skb,
2329 vlan_depth + VLAN_HLEN)))
2330 return 0;
2331
2332 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2333 type = vh->h_vlan_encapsulated_proto;
2334 vlan_depth += VLAN_HLEN;
2335 } while (type == htons(ETH_P_8021Q) ||
2336 type == htons(ETH_P_8021AD));
2337 }
2338
2339 *depth = vlan_depth;
2340
2341 return type;
2342 }
2343
2344 /**
2345 * skb_mac_gso_segment - mac layer segmentation handler.
2346 * @skb: buffer to segment
2347 * @features: features for the output path (see dev->features)
2348 */
2349 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2350 netdev_features_t features)
2351 {
2352 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2353 struct packet_offload *ptype;
2354 int vlan_depth = skb->mac_len;
2355 __be16 type = skb_network_protocol(skb, &vlan_depth);
2356
2357 if (unlikely(!type))
2358 return ERR_PTR(-EINVAL);
2359
2360 __skb_pull(skb, vlan_depth);
2361
2362 rcu_read_lock();
2363 list_for_each_entry_rcu(ptype, &offload_base, list) {
2364 if (ptype->type == type && ptype->callbacks.gso_segment) {
2365 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2366 int err;
2367
2368 err = ptype->callbacks.gso_send_check(skb);
2369 segs = ERR_PTR(err);
2370 if (err || skb_gso_ok(skb, features))
2371 break;
2372 __skb_push(skb, (skb->data -
2373 skb_network_header(skb)));
2374 }
2375 segs = ptype->callbacks.gso_segment(skb, features);
2376 break;
2377 }
2378 }
2379 rcu_read_unlock();
2380
2381 __skb_push(skb, skb->data - skb_mac_header(skb));
2382
2383 return segs;
2384 }
2385 EXPORT_SYMBOL(skb_mac_gso_segment);
2386
2387
2388 /* openvswitch calls this on rx path, so we need a different check.
2389 */
2390 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2391 {
2392 if (tx_path)
2393 return skb->ip_summed != CHECKSUM_PARTIAL;
2394 else
2395 return skb->ip_summed == CHECKSUM_NONE;
2396 }
2397
2398 /**
2399 * __skb_gso_segment - Perform segmentation on skb.
2400 * @skb: buffer to segment
2401 * @features: features for the output path (see dev->features)
2402 * @tx_path: whether it is called in TX path
2403 *
2404 * This function segments the given skb and returns a list of segments.
2405 *
2406 * It may return NULL if the skb requires no segmentation. This is
2407 * only possible when GSO is used for verifying header integrity.
2408 */
2409 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2410 netdev_features_t features, bool tx_path)
2411 {
2412 if (unlikely(skb_needs_check(skb, tx_path))) {
2413 int err;
2414
2415 skb_warn_bad_offload(skb);
2416
2417 if (skb_header_cloned(skb) &&
2418 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2419 return ERR_PTR(err);
2420 }
2421
2422 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2423 SKB_GSO_CB(skb)->encap_level = 0;
2424
2425 skb_reset_mac_header(skb);
2426 skb_reset_mac_len(skb);
2427
2428 return skb_mac_gso_segment(skb, features);
2429 }
2430 EXPORT_SYMBOL(__skb_gso_segment);
2431
2432 /* Take action when hardware reception checksum errors are detected. */
2433 #ifdef CONFIG_BUG
2434 void netdev_rx_csum_fault(struct net_device *dev)
2435 {
2436 if (net_ratelimit()) {
2437 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2438 dump_stack();
2439 }
2440 }
2441 EXPORT_SYMBOL(netdev_rx_csum_fault);
2442 #endif
2443
2444 /* Actually, we should eliminate this check as soon as we know, that:
2445 * 1. IOMMU is present and allows to map all the memory.
2446 * 2. No high memory really exists on this machine.
2447 */
2448
2449 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2450 {
2451 #ifdef CONFIG_HIGHMEM
2452 int i;
2453 if (!(dev->features & NETIF_F_HIGHDMA)) {
2454 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2456 if (PageHighMem(skb_frag_page(frag)))
2457 return 1;
2458 }
2459 }
2460
2461 if (PCI_DMA_BUS_IS_PHYS) {
2462 struct device *pdev = dev->dev.parent;
2463
2464 if (!pdev)
2465 return 0;
2466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2467 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2468 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2469 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2470 return 1;
2471 }
2472 }
2473 #endif
2474 return 0;
2475 }
2476
2477 struct dev_gso_cb {
2478 void (*destructor)(struct sk_buff *skb);
2479 };
2480
2481 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2482
2483 static void dev_gso_skb_destructor(struct sk_buff *skb)
2484 {
2485 struct dev_gso_cb *cb;
2486
2487 kfree_skb_list(skb->next);
2488 skb->next = NULL;
2489
2490 cb = DEV_GSO_CB(skb);
2491 if (cb->destructor)
2492 cb->destructor(skb);
2493 }
2494
2495 /**
2496 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2497 * @skb: buffer to segment
2498 * @features: device features as applicable to this skb
2499 *
2500 * This function segments the given skb and stores the list of segments
2501 * in skb->next.
2502 */
2503 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2504 {
2505 struct sk_buff *segs;
2506
2507 segs = skb_gso_segment(skb, features);
2508
2509 /* Verifying header integrity only. */
2510 if (!segs)
2511 return 0;
2512
2513 if (IS_ERR(segs))
2514 return PTR_ERR(segs);
2515
2516 skb->next = segs;
2517 DEV_GSO_CB(skb)->destructor = skb->destructor;
2518 skb->destructor = dev_gso_skb_destructor;
2519
2520 return 0;
2521 }
2522
2523 /* If MPLS offload request, verify we are testing hardware MPLS features
2524 * instead of standard features for the netdev.
2525 */
2526 #ifdef CONFIG_NET_MPLS_GSO
2527 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2528 netdev_features_t features,
2529 __be16 type)
2530 {
2531 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2532 features &= skb->dev->mpls_features;
2533
2534 return features;
2535 }
2536 #else
2537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2538 netdev_features_t features,
2539 __be16 type)
2540 {
2541 return features;
2542 }
2543 #endif
2544
2545 static netdev_features_t harmonize_features(struct sk_buff *skb,
2546 netdev_features_t features)
2547 {
2548 int tmp;
2549 __be16 type;
2550
2551 type = skb_network_protocol(skb, &tmp);
2552 features = net_mpls_features(skb, features, type);
2553
2554 if (skb->ip_summed != CHECKSUM_NONE &&
2555 !can_checksum_protocol(features, type)) {
2556 features &= ~NETIF_F_ALL_CSUM;
2557 } else if (illegal_highdma(skb->dev, skb)) {
2558 features &= ~NETIF_F_SG;
2559 }
2560
2561 return features;
2562 }
2563
2564 netdev_features_t netif_skb_features(struct sk_buff *skb)
2565 {
2566 __be16 protocol = skb->protocol;
2567 netdev_features_t features = skb->dev->features;
2568
2569 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2570 features &= ~NETIF_F_GSO_MASK;
2571
2572 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2573 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2574 protocol = veh->h_vlan_encapsulated_proto;
2575 } else if (!vlan_tx_tag_present(skb)) {
2576 return harmonize_features(skb, features);
2577 }
2578
2579 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2580 NETIF_F_HW_VLAN_STAG_TX);
2581
2582 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2583 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2584 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2585 NETIF_F_HW_VLAN_STAG_TX;
2586
2587 return harmonize_features(skb, features);
2588 }
2589 EXPORT_SYMBOL(netif_skb_features);
2590
2591 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2592 struct netdev_queue *txq)
2593 {
2594 const struct net_device_ops *ops = dev->netdev_ops;
2595 int rc = NETDEV_TX_OK;
2596 unsigned int skb_len;
2597
2598 if (likely(!skb->next)) {
2599 netdev_features_t features;
2600
2601 /*
2602 * If device doesn't need skb->dst, release it right now while
2603 * its hot in this cpu cache
2604 */
2605 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2606 skb_dst_drop(skb);
2607
2608 features = netif_skb_features(skb);
2609
2610 if (vlan_tx_tag_present(skb) &&
2611 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2612 skb = __vlan_put_tag(skb, skb->vlan_proto,
2613 vlan_tx_tag_get(skb));
2614 if (unlikely(!skb))
2615 goto out;
2616
2617 skb->vlan_tci = 0;
2618 }
2619
2620 /* If encapsulation offload request, verify we are testing
2621 * hardware encapsulation features instead of standard
2622 * features for the netdev
2623 */
2624 if (skb->encapsulation)
2625 features &= dev->hw_enc_features;
2626
2627 if (netif_needs_gso(skb, features)) {
2628 if (unlikely(dev_gso_segment(skb, features)))
2629 goto out_kfree_skb;
2630 if (skb->next)
2631 goto gso;
2632 } else {
2633 if (skb_needs_linearize(skb, features) &&
2634 __skb_linearize(skb))
2635 goto out_kfree_skb;
2636
2637 /* If packet is not checksummed and device does not
2638 * support checksumming for this protocol, complete
2639 * checksumming here.
2640 */
2641 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2642 if (skb->encapsulation)
2643 skb_set_inner_transport_header(skb,
2644 skb_checksum_start_offset(skb));
2645 else
2646 skb_set_transport_header(skb,
2647 skb_checksum_start_offset(skb));
2648 if (!(features & NETIF_F_ALL_CSUM) &&
2649 skb_checksum_help(skb))
2650 goto out_kfree_skb;
2651 }
2652 }
2653
2654 if (!list_empty(&ptype_all))
2655 dev_queue_xmit_nit(skb, dev);
2656
2657 skb_len = skb->len;
2658 trace_net_dev_start_xmit(skb, dev);
2659 rc = ops->ndo_start_xmit(skb, dev);
2660 trace_net_dev_xmit(skb, rc, dev, skb_len);
2661 if (rc == NETDEV_TX_OK)
2662 txq_trans_update(txq);
2663 return rc;
2664 }
2665
2666 gso:
2667 do {
2668 struct sk_buff *nskb = skb->next;
2669
2670 skb->next = nskb->next;
2671 nskb->next = NULL;
2672
2673 if (!list_empty(&ptype_all))
2674 dev_queue_xmit_nit(nskb, dev);
2675
2676 skb_len = nskb->len;
2677 trace_net_dev_start_xmit(nskb, dev);
2678 rc = ops->ndo_start_xmit(nskb, dev);
2679 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2680 if (unlikely(rc != NETDEV_TX_OK)) {
2681 if (rc & ~NETDEV_TX_MASK)
2682 goto out_kfree_gso_skb;
2683 nskb->next = skb->next;
2684 skb->next = nskb;
2685 return rc;
2686 }
2687 txq_trans_update(txq);
2688 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2689 return NETDEV_TX_BUSY;
2690 } while (skb->next);
2691
2692 out_kfree_gso_skb:
2693 if (likely(skb->next == NULL)) {
2694 skb->destructor = DEV_GSO_CB(skb)->destructor;
2695 consume_skb(skb);
2696 return rc;
2697 }
2698 out_kfree_skb:
2699 kfree_skb(skb);
2700 out:
2701 return rc;
2702 }
2703 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2704
2705 static void qdisc_pkt_len_init(struct sk_buff *skb)
2706 {
2707 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2708
2709 qdisc_skb_cb(skb)->pkt_len = skb->len;
2710
2711 /* To get more precise estimation of bytes sent on wire,
2712 * we add to pkt_len the headers size of all segments
2713 */
2714 if (shinfo->gso_size) {
2715 unsigned int hdr_len;
2716 u16 gso_segs = shinfo->gso_segs;
2717
2718 /* mac layer + network layer */
2719 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2720
2721 /* + transport layer */
2722 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2723 hdr_len += tcp_hdrlen(skb);
2724 else
2725 hdr_len += sizeof(struct udphdr);
2726
2727 if (shinfo->gso_type & SKB_GSO_DODGY)
2728 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2729 shinfo->gso_size);
2730
2731 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2732 }
2733 }
2734
2735 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2736 struct net_device *dev,
2737 struct netdev_queue *txq)
2738 {
2739 spinlock_t *root_lock = qdisc_lock(q);
2740 bool contended;
2741 int rc;
2742
2743 qdisc_pkt_len_init(skb);
2744 qdisc_calculate_pkt_len(skb, q);
2745 /*
2746 * Heuristic to force contended enqueues to serialize on a
2747 * separate lock before trying to get qdisc main lock.
2748 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2749 * and dequeue packets faster.
2750 */
2751 contended = qdisc_is_running(q);
2752 if (unlikely(contended))
2753 spin_lock(&q->busylock);
2754
2755 spin_lock(root_lock);
2756 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2757 kfree_skb(skb);
2758 rc = NET_XMIT_DROP;
2759 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2760 qdisc_run_begin(q)) {
2761 /*
2762 * This is a work-conserving queue; there are no old skbs
2763 * waiting to be sent out; and the qdisc is not running -
2764 * xmit the skb directly.
2765 */
2766 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2767 skb_dst_force(skb);
2768
2769 qdisc_bstats_update(q, skb);
2770
2771 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2772 if (unlikely(contended)) {
2773 spin_unlock(&q->busylock);
2774 contended = false;
2775 }
2776 __qdisc_run(q);
2777 } else
2778 qdisc_run_end(q);
2779
2780 rc = NET_XMIT_SUCCESS;
2781 } else {
2782 skb_dst_force(skb);
2783 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2784 if (qdisc_run_begin(q)) {
2785 if (unlikely(contended)) {
2786 spin_unlock(&q->busylock);
2787 contended = false;
2788 }
2789 __qdisc_run(q);
2790 }
2791 }
2792 spin_unlock(root_lock);
2793 if (unlikely(contended))
2794 spin_unlock(&q->busylock);
2795 return rc;
2796 }
2797
2798 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2799 static void skb_update_prio(struct sk_buff *skb)
2800 {
2801 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2802
2803 if (!skb->priority && skb->sk && map) {
2804 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2805
2806 if (prioidx < map->priomap_len)
2807 skb->priority = map->priomap[prioidx];
2808 }
2809 }
2810 #else
2811 #define skb_update_prio(skb)
2812 #endif
2813
2814 static DEFINE_PER_CPU(int, xmit_recursion);
2815 #define RECURSION_LIMIT 10
2816
2817 /**
2818 * dev_loopback_xmit - loop back @skb
2819 * @skb: buffer to transmit
2820 */
2821 int dev_loopback_xmit(struct sk_buff *skb)
2822 {
2823 skb_reset_mac_header(skb);
2824 __skb_pull(skb, skb_network_offset(skb));
2825 skb->pkt_type = PACKET_LOOPBACK;
2826 skb->ip_summed = CHECKSUM_UNNECESSARY;
2827 WARN_ON(!skb_dst(skb));
2828 skb_dst_force(skb);
2829 netif_rx_ni(skb);
2830 return 0;
2831 }
2832 EXPORT_SYMBOL(dev_loopback_xmit);
2833
2834 /**
2835 * __dev_queue_xmit - transmit a buffer
2836 * @skb: buffer to transmit
2837 * @accel_priv: private data used for L2 forwarding offload
2838 *
2839 * Queue a buffer for transmission to a network device. The caller must
2840 * have set the device and priority and built the buffer before calling
2841 * this function. The function can be called from an interrupt.
2842 *
2843 * A negative errno code is returned on a failure. A success does not
2844 * guarantee the frame will be transmitted as it may be dropped due
2845 * to congestion or traffic shaping.
2846 *
2847 * -----------------------------------------------------------------------------------
2848 * I notice this method can also return errors from the queue disciplines,
2849 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2850 * be positive.
2851 *
2852 * Regardless of the return value, the skb is consumed, so it is currently
2853 * difficult to retry a send to this method. (You can bump the ref count
2854 * before sending to hold a reference for retry if you are careful.)
2855 *
2856 * When calling this method, interrupts MUST be enabled. This is because
2857 * the BH enable code must have IRQs enabled so that it will not deadlock.
2858 * --BLG
2859 */
2860 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2861 {
2862 struct net_device *dev = skb->dev;
2863 struct netdev_queue *txq;
2864 struct Qdisc *q;
2865 int rc = -ENOMEM;
2866
2867 skb_reset_mac_header(skb);
2868
2869 /* Disable soft irqs for various locks below. Also
2870 * stops preemption for RCU.
2871 */
2872 rcu_read_lock_bh();
2873
2874 skb_update_prio(skb);
2875
2876 txq = netdev_pick_tx(dev, skb, accel_priv);
2877 q = rcu_dereference_bh(txq->qdisc);
2878
2879 #ifdef CONFIG_NET_CLS_ACT
2880 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2881 #endif
2882 trace_net_dev_queue(skb);
2883 if (q->enqueue) {
2884 rc = __dev_xmit_skb(skb, q, dev, txq);
2885 goto out;
2886 }
2887
2888 /* The device has no queue. Common case for software devices:
2889 loopback, all the sorts of tunnels...
2890
2891 Really, it is unlikely that netif_tx_lock protection is necessary
2892 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2893 counters.)
2894 However, it is possible, that they rely on protection
2895 made by us here.
2896
2897 Check this and shot the lock. It is not prone from deadlocks.
2898 Either shot noqueue qdisc, it is even simpler 8)
2899 */
2900 if (dev->flags & IFF_UP) {
2901 int cpu = smp_processor_id(); /* ok because BHs are off */
2902
2903 if (txq->xmit_lock_owner != cpu) {
2904
2905 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2906 goto recursion_alert;
2907
2908 HARD_TX_LOCK(dev, txq, cpu);
2909
2910 if (!netif_xmit_stopped(txq)) {
2911 __this_cpu_inc(xmit_recursion);
2912 rc = dev_hard_start_xmit(skb, dev, txq);
2913 __this_cpu_dec(xmit_recursion);
2914 if (dev_xmit_complete(rc)) {
2915 HARD_TX_UNLOCK(dev, txq);
2916 goto out;
2917 }
2918 }
2919 HARD_TX_UNLOCK(dev, txq);
2920 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2921 dev->name);
2922 } else {
2923 /* Recursion is detected! It is possible,
2924 * unfortunately
2925 */
2926 recursion_alert:
2927 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2928 dev->name);
2929 }
2930 }
2931
2932 rc = -ENETDOWN;
2933 rcu_read_unlock_bh();
2934
2935 atomic_long_inc(&dev->tx_dropped);
2936 kfree_skb(skb);
2937 return rc;
2938 out:
2939 rcu_read_unlock_bh();
2940 return rc;
2941 }
2942
2943 int dev_queue_xmit(struct sk_buff *skb)
2944 {
2945 return __dev_queue_xmit(skb, NULL);
2946 }
2947 EXPORT_SYMBOL(dev_queue_xmit);
2948
2949 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2950 {
2951 return __dev_queue_xmit(skb, accel_priv);
2952 }
2953 EXPORT_SYMBOL(dev_queue_xmit_accel);
2954
2955
2956 /*=======================================================================
2957 Receiver routines
2958 =======================================================================*/
2959
2960 int netdev_max_backlog __read_mostly = 1000;
2961 EXPORT_SYMBOL(netdev_max_backlog);
2962
2963 int netdev_tstamp_prequeue __read_mostly = 1;
2964 int netdev_budget __read_mostly = 300;
2965 int weight_p __read_mostly = 64; /* old backlog weight */
2966
2967 /* Called with irq disabled */
2968 static inline void ____napi_schedule(struct softnet_data *sd,
2969 struct napi_struct *napi)
2970 {
2971 list_add_tail(&napi->poll_list, &sd->poll_list);
2972 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2973 }
2974
2975 #ifdef CONFIG_RPS
2976
2977 /* One global table that all flow-based protocols share. */
2978 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2979 EXPORT_SYMBOL(rps_sock_flow_table);
2980
2981 struct static_key rps_needed __read_mostly;
2982
2983 static struct rps_dev_flow *
2984 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2985 struct rps_dev_flow *rflow, u16 next_cpu)
2986 {
2987 if (next_cpu != RPS_NO_CPU) {
2988 #ifdef CONFIG_RFS_ACCEL
2989 struct netdev_rx_queue *rxqueue;
2990 struct rps_dev_flow_table *flow_table;
2991 struct rps_dev_flow *old_rflow;
2992 u32 flow_id;
2993 u16 rxq_index;
2994 int rc;
2995
2996 /* Should we steer this flow to a different hardware queue? */
2997 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2998 !(dev->features & NETIF_F_NTUPLE))
2999 goto out;
3000 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3001 if (rxq_index == skb_get_rx_queue(skb))
3002 goto out;
3003
3004 rxqueue = dev->_rx + rxq_index;
3005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 if (!flow_table)
3007 goto out;
3008 flow_id = skb_get_hash(skb) & flow_table->mask;
3009 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3010 rxq_index, flow_id);
3011 if (rc < 0)
3012 goto out;
3013 old_rflow = rflow;
3014 rflow = &flow_table->flows[flow_id];
3015 rflow->filter = rc;
3016 if (old_rflow->filter == rflow->filter)
3017 old_rflow->filter = RPS_NO_FILTER;
3018 out:
3019 #endif
3020 rflow->last_qtail =
3021 per_cpu(softnet_data, next_cpu).input_queue_head;
3022 }
3023
3024 rflow->cpu = next_cpu;
3025 return rflow;
3026 }
3027
3028 /*
3029 * get_rps_cpu is called from netif_receive_skb and returns the target
3030 * CPU from the RPS map of the receiving queue for a given skb.
3031 * rcu_read_lock must be held on entry.
3032 */
3033 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3034 struct rps_dev_flow **rflowp)
3035 {
3036 struct netdev_rx_queue *rxqueue;
3037 struct rps_map *map;
3038 struct rps_dev_flow_table *flow_table;
3039 struct rps_sock_flow_table *sock_flow_table;
3040 int cpu = -1;
3041 u16 tcpu;
3042 u32 hash;
3043
3044 if (skb_rx_queue_recorded(skb)) {
3045 u16 index = skb_get_rx_queue(skb);
3046 if (unlikely(index >= dev->real_num_rx_queues)) {
3047 WARN_ONCE(dev->real_num_rx_queues > 1,
3048 "%s received packet on queue %u, but number "
3049 "of RX queues is %u\n",
3050 dev->name, index, dev->real_num_rx_queues);
3051 goto done;
3052 }
3053 rxqueue = dev->_rx + index;
3054 } else
3055 rxqueue = dev->_rx;
3056
3057 map = rcu_dereference(rxqueue->rps_map);
3058 if (map) {
3059 if (map->len == 1 &&
3060 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3061 tcpu = map->cpus[0];
3062 if (cpu_online(tcpu))
3063 cpu = tcpu;
3064 goto done;
3065 }
3066 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3067 goto done;
3068 }
3069
3070 skb_reset_network_header(skb);
3071 hash = skb_get_hash(skb);
3072 if (!hash)
3073 goto done;
3074
3075 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3076 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3077 if (flow_table && sock_flow_table) {
3078 u16 next_cpu;
3079 struct rps_dev_flow *rflow;
3080
3081 rflow = &flow_table->flows[hash & flow_table->mask];
3082 tcpu = rflow->cpu;
3083
3084 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3085
3086 /*
3087 * If the desired CPU (where last recvmsg was done) is
3088 * different from current CPU (one in the rx-queue flow
3089 * table entry), switch if one of the following holds:
3090 * - Current CPU is unset (equal to RPS_NO_CPU).
3091 * - Current CPU is offline.
3092 * - The current CPU's queue tail has advanced beyond the
3093 * last packet that was enqueued using this table entry.
3094 * This guarantees that all previous packets for the flow
3095 * have been dequeued, thus preserving in order delivery.
3096 */
3097 if (unlikely(tcpu != next_cpu) &&
3098 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3099 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3100 rflow->last_qtail)) >= 0)) {
3101 tcpu = next_cpu;
3102 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3103 }
3104
3105 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3106 *rflowp = rflow;
3107 cpu = tcpu;
3108 goto done;
3109 }
3110 }
3111
3112 if (map) {
3113 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3114
3115 if (cpu_online(tcpu)) {
3116 cpu = tcpu;
3117 goto done;
3118 }
3119 }
3120
3121 done:
3122 return cpu;
3123 }
3124
3125 #ifdef CONFIG_RFS_ACCEL
3126
3127 /**
3128 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3129 * @dev: Device on which the filter was set
3130 * @rxq_index: RX queue index
3131 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3132 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3133 *
3134 * Drivers that implement ndo_rx_flow_steer() should periodically call
3135 * this function for each installed filter and remove the filters for
3136 * which it returns %true.
3137 */
3138 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3139 u32 flow_id, u16 filter_id)
3140 {
3141 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3142 struct rps_dev_flow_table *flow_table;
3143 struct rps_dev_flow *rflow;
3144 bool expire = true;
3145 int cpu;
3146
3147 rcu_read_lock();
3148 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3149 if (flow_table && flow_id <= flow_table->mask) {
3150 rflow = &flow_table->flows[flow_id];
3151 cpu = ACCESS_ONCE(rflow->cpu);
3152 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3153 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3154 rflow->last_qtail) <
3155 (int)(10 * flow_table->mask)))
3156 expire = false;
3157 }
3158 rcu_read_unlock();
3159 return expire;
3160 }
3161 EXPORT_SYMBOL(rps_may_expire_flow);
3162
3163 #endif /* CONFIG_RFS_ACCEL */
3164
3165 /* Called from hardirq (IPI) context */
3166 static void rps_trigger_softirq(void *data)
3167 {
3168 struct softnet_data *sd = data;
3169
3170 ____napi_schedule(sd, &sd->backlog);
3171 sd->received_rps++;
3172 }
3173
3174 #endif /* CONFIG_RPS */
3175
3176 /*
3177 * Check if this softnet_data structure is another cpu one
3178 * If yes, queue it to our IPI list and return 1
3179 * If no, return 0
3180 */
3181 static int rps_ipi_queued(struct softnet_data *sd)
3182 {
3183 #ifdef CONFIG_RPS
3184 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3185
3186 if (sd != mysd) {
3187 sd->rps_ipi_next = mysd->rps_ipi_list;
3188 mysd->rps_ipi_list = sd;
3189
3190 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3191 return 1;
3192 }
3193 #endif /* CONFIG_RPS */
3194 return 0;
3195 }
3196
3197 #ifdef CONFIG_NET_FLOW_LIMIT
3198 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3199 #endif
3200
3201 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3202 {
3203 #ifdef CONFIG_NET_FLOW_LIMIT
3204 struct sd_flow_limit *fl;
3205 struct softnet_data *sd;
3206 unsigned int old_flow, new_flow;
3207
3208 if (qlen < (netdev_max_backlog >> 1))
3209 return false;
3210
3211 sd = &__get_cpu_var(softnet_data);
3212
3213 rcu_read_lock();
3214 fl = rcu_dereference(sd->flow_limit);
3215 if (fl) {
3216 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3217 old_flow = fl->history[fl->history_head];
3218 fl->history[fl->history_head] = new_flow;
3219
3220 fl->history_head++;
3221 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3222
3223 if (likely(fl->buckets[old_flow]))
3224 fl->buckets[old_flow]--;
3225
3226 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3227 fl->count++;
3228 rcu_read_unlock();
3229 return true;
3230 }
3231 }
3232 rcu_read_unlock();
3233 #endif
3234 return false;
3235 }
3236
3237 /*
3238 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3239 * queue (may be a remote CPU queue).
3240 */
3241 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3242 unsigned int *qtail)
3243 {
3244 struct softnet_data *sd;
3245 unsigned long flags;
3246 unsigned int qlen;
3247
3248 sd = &per_cpu(softnet_data, cpu);
3249
3250 local_irq_save(flags);
3251
3252 rps_lock(sd);
3253 qlen = skb_queue_len(&sd->input_pkt_queue);
3254 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3255 if (skb_queue_len(&sd->input_pkt_queue)) {
3256 enqueue:
3257 __skb_queue_tail(&sd->input_pkt_queue, skb);
3258 input_queue_tail_incr_save(sd, qtail);
3259 rps_unlock(sd);
3260 local_irq_restore(flags);
3261 return NET_RX_SUCCESS;
3262 }
3263
3264 /* Schedule NAPI for backlog device
3265 * We can use non atomic operation since we own the queue lock
3266 */
3267 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3268 if (!rps_ipi_queued(sd))
3269 ____napi_schedule(sd, &sd->backlog);
3270 }
3271 goto enqueue;
3272 }
3273
3274 sd->dropped++;
3275 rps_unlock(sd);
3276
3277 local_irq_restore(flags);
3278
3279 atomic_long_inc(&skb->dev->rx_dropped);
3280 kfree_skb(skb);
3281 return NET_RX_DROP;
3282 }
3283
3284 static int netif_rx_internal(struct sk_buff *skb)
3285 {
3286 int ret;
3287
3288 net_timestamp_check(netdev_tstamp_prequeue, skb);
3289
3290 trace_netif_rx(skb);
3291 #ifdef CONFIG_RPS
3292 if (static_key_false(&rps_needed)) {
3293 struct rps_dev_flow voidflow, *rflow = &voidflow;
3294 int cpu;
3295
3296 preempt_disable();
3297 rcu_read_lock();
3298
3299 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3300 if (cpu < 0)
3301 cpu = smp_processor_id();
3302
3303 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3304
3305 rcu_read_unlock();
3306 preempt_enable();
3307 } else
3308 #endif
3309 {
3310 unsigned int qtail;
3311 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3312 put_cpu();
3313 }
3314 return ret;
3315 }
3316
3317 /**
3318 * netif_rx - post buffer to the network code
3319 * @skb: buffer to post
3320 *
3321 * This function receives a packet from a device driver and queues it for
3322 * the upper (protocol) levels to process. It always succeeds. The buffer
3323 * may be dropped during processing for congestion control or by the
3324 * protocol layers.
3325 *
3326 * return values:
3327 * NET_RX_SUCCESS (no congestion)
3328 * NET_RX_DROP (packet was dropped)
3329 *
3330 */
3331
3332 int netif_rx(struct sk_buff *skb)
3333 {
3334 trace_netif_rx_entry(skb);
3335
3336 return netif_rx_internal(skb);
3337 }
3338 EXPORT_SYMBOL(netif_rx);
3339
3340 int netif_rx_ni(struct sk_buff *skb)
3341 {
3342 int err;
3343
3344 trace_netif_rx_ni_entry(skb);
3345
3346 preempt_disable();
3347 err = netif_rx_internal(skb);
3348 if (local_softirq_pending())
3349 do_softirq();
3350 preempt_enable();
3351
3352 return err;
3353 }
3354 EXPORT_SYMBOL(netif_rx_ni);
3355
3356 static void net_tx_action(struct softirq_action *h)
3357 {
3358 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3359
3360 if (sd->completion_queue) {
3361 struct sk_buff *clist;
3362
3363 local_irq_disable();
3364 clist = sd->completion_queue;
3365 sd->completion_queue = NULL;
3366 local_irq_enable();
3367
3368 while (clist) {
3369 struct sk_buff *skb = clist;
3370 clist = clist->next;
3371
3372 WARN_ON(atomic_read(&skb->users));
3373 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3374 trace_consume_skb(skb);
3375 else
3376 trace_kfree_skb(skb, net_tx_action);
3377 __kfree_skb(skb);
3378 }
3379 }
3380
3381 if (sd->output_queue) {
3382 struct Qdisc *head;
3383
3384 local_irq_disable();
3385 head = sd->output_queue;
3386 sd->output_queue = NULL;
3387 sd->output_queue_tailp = &sd->output_queue;
3388 local_irq_enable();
3389
3390 while (head) {
3391 struct Qdisc *q = head;
3392 spinlock_t *root_lock;
3393
3394 head = head->next_sched;
3395
3396 root_lock = qdisc_lock(q);
3397 if (spin_trylock(root_lock)) {
3398 smp_mb__before_atomic();
3399 clear_bit(__QDISC_STATE_SCHED,
3400 &q->state);
3401 qdisc_run(q);
3402 spin_unlock(root_lock);
3403 } else {
3404 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3405 &q->state)) {
3406 __netif_reschedule(q);
3407 } else {
3408 smp_mb__before_atomic();
3409 clear_bit(__QDISC_STATE_SCHED,
3410 &q->state);
3411 }
3412 }
3413 }
3414 }
3415 }
3416
3417 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3418 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3419 /* This hook is defined here for ATM LANE */
3420 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3421 unsigned char *addr) __read_mostly;
3422 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3423 #endif
3424
3425 #ifdef CONFIG_NET_CLS_ACT
3426 /* TODO: Maybe we should just force sch_ingress to be compiled in
3427 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3428 * a compare and 2 stores extra right now if we dont have it on
3429 * but have CONFIG_NET_CLS_ACT
3430 * NOTE: This doesn't stop any functionality; if you dont have
3431 * the ingress scheduler, you just can't add policies on ingress.
3432 *
3433 */
3434 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3435 {
3436 struct net_device *dev = skb->dev;
3437 u32 ttl = G_TC_RTTL(skb->tc_verd);
3438 int result = TC_ACT_OK;
3439 struct Qdisc *q;
3440
3441 if (unlikely(MAX_RED_LOOP < ttl++)) {
3442 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3443 skb->skb_iif, dev->ifindex);
3444 return TC_ACT_SHOT;
3445 }
3446
3447 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3448 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3449
3450 q = rxq->qdisc;
3451 if (q != &noop_qdisc) {
3452 spin_lock(qdisc_lock(q));
3453 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3454 result = qdisc_enqueue_root(skb, q);
3455 spin_unlock(qdisc_lock(q));
3456 }
3457
3458 return result;
3459 }
3460
3461 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3462 struct packet_type **pt_prev,
3463 int *ret, struct net_device *orig_dev)
3464 {
3465 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3466
3467 if (!rxq || rxq->qdisc == &noop_qdisc)
3468 goto out;
3469
3470 if (*pt_prev) {
3471 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3472 *pt_prev = NULL;
3473 }
3474
3475 switch (ing_filter(skb, rxq)) {
3476 case TC_ACT_SHOT:
3477 case TC_ACT_STOLEN:
3478 kfree_skb(skb);
3479 return NULL;
3480 }
3481
3482 out:
3483 skb->tc_verd = 0;
3484 return skb;
3485 }
3486 #endif
3487
3488 /**
3489 * netdev_rx_handler_register - register receive handler
3490 * @dev: device to register a handler for
3491 * @rx_handler: receive handler to register
3492 * @rx_handler_data: data pointer that is used by rx handler
3493 *
3494 * Register a receive handler for a device. This handler will then be
3495 * called from __netif_receive_skb. A negative errno code is returned
3496 * on a failure.
3497 *
3498 * The caller must hold the rtnl_mutex.
3499 *
3500 * For a general description of rx_handler, see enum rx_handler_result.
3501 */
3502 int netdev_rx_handler_register(struct net_device *dev,
3503 rx_handler_func_t *rx_handler,
3504 void *rx_handler_data)
3505 {
3506 ASSERT_RTNL();
3507
3508 if (dev->rx_handler)
3509 return -EBUSY;
3510
3511 /* Note: rx_handler_data must be set before rx_handler */
3512 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3513 rcu_assign_pointer(dev->rx_handler, rx_handler);
3514
3515 return 0;
3516 }
3517 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3518
3519 /**
3520 * netdev_rx_handler_unregister - unregister receive handler
3521 * @dev: device to unregister a handler from
3522 *
3523 * Unregister a receive handler from a device.
3524 *
3525 * The caller must hold the rtnl_mutex.
3526 */
3527 void netdev_rx_handler_unregister(struct net_device *dev)
3528 {
3529
3530 ASSERT_RTNL();
3531 RCU_INIT_POINTER(dev->rx_handler, NULL);
3532 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3533 * section has a guarantee to see a non NULL rx_handler_data
3534 * as well.
3535 */
3536 synchronize_net();
3537 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3538 }
3539 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3540
3541 /*
3542 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3543 * the special handling of PFMEMALLOC skbs.
3544 */
3545 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3546 {
3547 switch (skb->protocol) {
3548 case htons(ETH_P_ARP):
3549 case htons(ETH_P_IP):
3550 case htons(ETH_P_IPV6):
3551 case htons(ETH_P_8021Q):
3552 case htons(ETH_P_8021AD):
3553 return true;
3554 default:
3555 return false;
3556 }
3557 }
3558
3559 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3560 {
3561 struct packet_type *ptype, *pt_prev;
3562 rx_handler_func_t *rx_handler;
3563 struct net_device *orig_dev;
3564 struct net_device *null_or_dev;
3565 bool deliver_exact = false;
3566 int ret = NET_RX_DROP;
3567 __be16 type;
3568
3569 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3570
3571 trace_netif_receive_skb(skb);
3572
3573 orig_dev = skb->dev;
3574
3575 skb_reset_network_header(skb);
3576 if (!skb_transport_header_was_set(skb))
3577 skb_reset_transport_header(skb);
3578 skb_reset_mac_len(skb);
3579
3580 pt_prev = NULL;
3581
3582 rcu_read_lock();
3583
3584 another_round:
3585 skb->skb_iif = skb->dev->ifindex;
3586
3587 __this_cpu_inc(softnet_data.processed);
3588
3589 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3590 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3591 skb = vlan_untag(skb);
3592 if (unlikely(!skb))
3593 goto unlock;
3594 }
3595
3596 #ifdef CONFIG_NET_CLS_ACT
3597 if (skb->tc_verd & TC_NCLS) {
3598 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3599 goto ncls;
3600 }
3601 #endif
3602
3603 if (pfmemalloc)
3604 goto skip_taps;
3605
3606 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3607 if (!ptype->dev || ptype->dev == skb->dev) {
3608 if (pt_prev)
3609 ret = deliver_skb(skb, pt_prev, orig_dev);
3610 pt_prev = ptype;
3611 }
3612 }
3613
3614 skip_taps:
3615 #ifdef CONFIG_NET_CLS_ACT
3616 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3617 if (!skb)
3618 goto unlock;
3619 ncls:
3620 #endif
3621
3622 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3623 goto drop;
3624
3625 if (vlan_tx_tag_present(skb)) {
3626 if (pt_prev) {
3627 ret = deliver_skb(skb, pt_prev, orig_dev);
3628 pt_prev = NULL;
3629 }
3630 if (vlan_do_receive(&skb))
3631 goto another_round;
3632 else if (unlikely(!skb))
3633 goto unlock;
3634 }
3635
3636 rx_handler = rcu_dereference(skb->dev->rx_handler);
3637 if (rx_handler) {
3638 if (pt_prev) {
3639 ret = deliver_skb(skb, pt_prev, orig_dev);
3640 pt_prev = NULL;
3641 }
3642 switch (rx_handler(&skb)) {
3643 case RX_HANDLER_CONSUMED:
3644 ret = NET_RX_SUCCESS;
3645 goto unlock;
3646 case RX_HANDLER_ANOTHER:
3647 goto another_round;
3648 case RX_HANDLER_EXACT:
3649 deliver_exact = true;
3650 case RX_HANDLER_PASS:
3651 break;
3652 default:
3653 BUG();
3654 }
3655 }
3656
3657 if (unlikely(vlan_tx_tag_present(skb))) {
3658 if (vlan_tx_tag_get_id(skb))
3659 skb->pkt_type = PACKET_OTHERHOST;
3660 /* Note: we might in the future use prio bits
3661 * and set skb->priority like in vlan_do_receive()
3662 * For the time being, just ignore Priority Code Point
3663 */
3664 skb->vlan_tci = 0;
3665 }
3666
3667 /* deliver only exact match when indicated */
3668 null_or_dev = deliver_exact ? skb->dev : NULL;
3669
3670 type = skb->protocol;
3671 list_for_each_entry_rcu(ptype,
3672 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3673 if (ptype->type == type &&
3674 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3675 ptype->dev == orig_dev)) {
3676 if (pt_prev)
3677 ret = deliver_skb(skb, pt_prev, orig_dev);
3678 pt_prev = ptype;
3679 }
3680 }
3681
3682 if (pt_prev) {
3683 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3684 goto drop;
3685 else
3686 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3687 } else {
3688 drop:
3689 atomic_long_inc(&skb->dev->rx_dropped);
3690 kfree_skb(skb);
3691 /* Jamal, now you will not able to escape explaining
3692 * me how you were going to use this. :-)
3693 */
3694 ret = NET_RX_DROP;
3695 }
3696
3697 unlock:
3698 rcu_read_unlock();
3699 return ret;
3700 }
3701
3702 static int __netif_receive_skb(struct sk_buff *skb)
3703 {
3704 int ret;
3705
3706 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3707 unsigned long pflags = current->flags;
3708
3709 /*
3710 * PFMEMALLOC skbs are special, they should
3711 * - be delivered to SOCK_MEMALLOC sockets only
3712 * - stay away from userspace
3713 * - have bounded memory usage
3714 *
3715 * Use PF_MEMALLOC as this saves us from propagating the allocation
3716 * context down to all allocation sites.
3717 */
3718 current->flags |= PF_MEMALLOC;
3719 ret = __netif_receive_skb_core(skb, true);
3720 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3721 } else
3722 ret = __netif_receive_skb_core(skb, false);
3723
3724 return ret;
3725 }
3726
3727 static int netif_receive_skb_internal(struct sk_buff *skb)
3728 {
3729 net_timestamp_check(netdev_tstamp_prequeue, skb);
3730
3731 if (skb_defer_rx_timestamp(skb))
3732 return NET_RX_SUCCESS;
3733
3734 #ifdef CONFIG_RPS
3735 if (static_key_false(&rps_needed)) {
3736 struct rps_dev_flow voidflow, *rflow = &voidflow;
3737 int cpu, ret;
3738
3739 rcu_read_lock();
3740
3741 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3742
3743 if (cpu >= 0) {
3744 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3745 rcu_read_unlock();
3746 return ret;
3747 }
3748 rcu_read_unlock();
3749 }
3750 #endif
3751 return __netif_receive_skb(skb);
3752 }
3753
3754 /**
3755 * netif_receive_skb - process receive buffer from network
3756 * @skb: buffer to process
3757 *
3758 * netif_receive_skb() is the main receive data processing function.
3759 * It always succeeds. The buffer may be dropped during processing
3760 * for congestion control or by the protocol layers.
3761 *
3762 * This function may only be called from softirq context and interrupts
3763 * should be enabled.
3764 *
3765 * Return values (usually ignored):
3766 * NET_RX_SUCCESS: no congestion
3767 * NET_RX_DROP: packet was dropped
3768 */
3769 int netif_receive_skb(struct sk_buff *skb)
3770 {
3771 trace_netif_receive_skb_entry(skb);
3772
3773 return netif_receive_skb_internal(skb);
3774 }
3775 EXPORT_SYMBOL(netif_receive_skb);
3776
3777 /* Network device is going away, flush any packets still pending
3778 * Called with irqs disabled.
3779 */
3780 static void flush_backlog(void *arg)
3781 {
3782 struct net_device *dev = arg;
3783 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3784 struct sk_buff *skb, *tmp;
3785
3786 rps_lock(sd);
3787 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3788 if (skb->dev == dev) {
3789 __skb_unlink(skb, &sd->input_pkt_queue);
3790 kfree_skb(skb);
3791 input_queue_head_incr(sd);
3792 }
3793 }
3794 rps_unlock(sd);
3795
3796 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3797 if (skb->dev == dev) {
3798 __skb_unlink(skb, &sd->process_queue);
3799 kfree_skb(skb);
3800 input_queue_head_incr(sd);
3801 }
3802 }
3803 }
3804
3805 static int napi_gro_complete(struct sk_buff *skb)
3806 {
3807 struct packet_offload *ptype;
3808 __be16 type = skb->protocol;
3809 struct list_head *head = &offload_base;
3810 int err = -ENOENT;
3811
3812 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3813
3814 if (NAPI_GRO_CB(skb)->count == 1) {
3815 skb_shinfo(skb)->gso_size = 0;
3816 goto out;
3817 }
3818
3819 rcu_read_lock();
3820 list_for_each_entry_rcu(ptype, head, list) {
3821 if (ptype->type != type || !ptype->callbacks.gro_complete)
3822 continue;
3823
3824 err = ptype->callbacks.gro_complete(skb, 0);
3825 break;
3826 }
3827 rcu_read_unlock();
3828
3829 if (err) {
3830 WARN_ON(&ptype->list == head);
3831 kfree_skb(skb);
3832 return NET_RX_SUCCESS;
3833 }
3834
3835 out:
3836 return netif_receive_skb_internal(skb);
3837 }
3838
3839 /* napi->gro_list contains packets ordered by age.
3840 * youngest packets at the head of it.
3841 * Complete skbs in reverse order to reduce latencies.
3842 */
3843 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3844 {
3845 struct sk_buff *skb, *prev = NULL;
3846
3847 /* scan list and build reverse chain */
3848 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3849 skb->prev = prev;
3850 prev = skb;
3851 }
3852
3853 for (skb = prev; skb; skb = prev) {
3854 skb->next = NULL;
3855
3856 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3857 return;
3858
3859 prev = skb->prev;
3860 napi_gro_complete(skb);
3861 napi->gro_count--;
3862 }
3863
3864 napi->gro_list = NULL;
3865 }
3866 EXPORT_SYMBOL(napi_gro_flush);
3867
3868 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3869 {
3870 struct sk_buff *p;
3871 unsigned int maclen = skb->dev->hard_header_len;
3872 u32 hash = skb_get_hash_raw(skb);
3873
3874 for (p = napi->gro_list; p; p = p->next) {
3875 unsigned long diffs;
3876
3877 NAPI_GRO_CB(p)->flush = 0;
3878
3879 if (hash != skb_get_hash_raw(p)) {
3880 NAPI_GRO_CB(p)->same_flow = 0;
3881 continue;
3882 }
3883
3884 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3885 diffs |= p->vlan_tci ^ skb->vlan_tci;
3886 if (maclen == ETH_HLEN)
3887 diffs |= compare_ether_header(skb_mac_header(p),
3888 skb_mac_header(skb));
3889 else if (!diffs)
3890 diffs = memcmp(skb_mac_header(p),
3891 skb_mac_header(skb),
3892 maclen);
3893 NAPI_GRO_CB(p)->same_flow = !diffs;
3894 }
3895 }
3896
3897 static void skb_gro_reset_offset(struct sk_buff *skb)
3898 {
3899 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3900 const skb_frag_t *frag0 = &pinfo->frags[0];
3901
3902 NAPI_GRO_CB(skb)->data_offset = 0;
3903 NAPI_GRO_CB(skb)->frag0 = NULL;
3904 NAPI_GRO_CB(skb)->frag0_len = 0;
3905
3906 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3907 pinfo->nr_frags &&
3908 !PageHighMem(skb_frag_page(frag0))) {
3909 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3910 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3911 }
3912 }
3913
3914 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3915 {
3916 struct skb_shared_info *pinfo = skb_shinfo(skb);
3917
3918 BUG_ON(skb->end - skb->tail < grow);
3919
3920 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3921
3922 skb->data_len -= grow;
3923 skb->tail += grow;
3924
3925 pinfo->frags[0].page_offset += grow;
3926 skb_frag_size_sub(&pinfo->frags[0], grow);
3927
3928 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3929 skb_frag_unref(skb, 0);
3930 memmove(pinfo->frags, pinfo->frags + 1,
3931 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3932 }
3933 }
3934
3935 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3936 {
3937 struct sk_buff **pp = NULL;
3938 struct packet_offload *ptype;
3939 __be16 type = skb->protocol;
3940 struct list_head *head = &offload_base;
3941 int same_flow;
3942 enum gro_result ret;
3943 int grow;
3944
3945 if (!(skb->dev->features & NETIF_F_GRO))
3946 goto normal;
3947
3948 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3949 goto normal;
3950
3951 gro_list_prepare(napi, skb);
3952 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3953
3954 rcu_read_lock();
3955 list_for_each_entry_rcu(ptype, head, list) {
3956 if (ptype->type != type || !ptype->callbacks.gro_receive)
3957 continue;
3958
3959 skb_set_network_header(skb, skb_gro_offset(skb));
3960 skb_reset_mac_len(skb);
3961 NAPI_GRO_CB(skb)->same_flow = 0;
3962 NAPI_GRO_CB(skb)->flush = 0;
3963 NAPI_GRO_CB(skb)->free = 0;
3964 NAPI_GRO_CB(skb)->udp_mark = 0;
3965
3966 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3967 break;
3968 }
3969 rcu_read_unlock();
3970
3971 if (&ptype->list == head)
3972 goto normal;
3973
3974 same_flow = NAPI_GRO_CB(skb)->same_flow;
3975 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3976
3977 if (pp) {
3978 struct sk_buff *nskb = *pp;
3979
3980 *pp = nskb->next;
3981 nskb->next = NULL;
3982 napi_gro_complete(nskb);
3983 napi->gro_count--;
3984 }
3985
3986 if (same_flow)
3987 goto ok;
3988
3989 if (NAPI_GRO_CB(skb)->flush)
3990 goto normal;
3991
3992 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3993 struct sk_buff *nskb = napi->gro_list;
3994
3995 /* locate the end of the list to select the 'oldest' flow */
3996 while (nskb->next) {
3997 pp = &nskb->next;
3998 nskb = *pp;
3999 }
4000 *pp = NULL;
4001 nskb->next = NULL;
4002 napi_gro_complete(nskb);
4003 } else {
4004 napi->gro_count++;
4005 }
4006 NAPI_GRO_CB(skb)->count = 1;
4007 NAPI_GRO_CB(skb)->age = jiffies;
4008 NAPI_GRO_CB(skb)->last = skb;
4009 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4010 skb->next = napi->gro_list;
4011 napi->gro_list = skb;
4012 ret = GRO_HELD;
4013
4014 pull:
4015 grow = skb_gro_offset(skb) - skb_headlen(skb);
4016 if (grow > 0)
4017 gro_pull_from_frag0(skb, grow);
4018 ok:
4019 return ret;
4020
4021 normal:
4022 ret = GRO_NORMAL;
4023 goto pull;
4024 }
4025
4026 struct packet_offload *gro_find_receive_by_type(__be16 type)
4027 {
4028 struct list_head *offload_head = &offload_base;
4029 struct packet_offload *ptype;
4030
4031 list_for_each_entry_rcu(ptype, offload_head, list) {
4032 if (ptype->type != type || !ptype->callbacks.gro_receive)
4033 continue;
4034 return ptype;
4035 }
4036 return NULL;
4037 }
4038 EXPORT_SYMBOL(gro_find_receive_by_type);
4039
4040 struct packet_offload *gro_find_complete_by_type(__be16 type)
4041 {
4042 struct list_head *offload_head = &offload_base;
4043 struct packet_offload *ptype;
4044
4045 list_for_each_entry_rcu(ptype, offload_head, list) {
4046 if (ptype->type != type || !ptype->callbacks.gro_complete)
4047 continue;
4048 return ptype;
4049 }
4050 return NULL;
4051 }
4052 EXPORT_SYMBOL(gro_find_complete_by_type);
4053
4054 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4055 {
4056 switch (ret) {
4057 case GRO_NORMAL:
4058 if (netif_receive_skb_internal(skb))
4059 ret = GRO_DROP;
4060 break;
4061
4062 case GRO_DROP:
4063 kfree_skb(skb);
4064 break;
4065
4066 case GRO_MERGED_FREE:
4067 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4068 kmem_cache_free(skbuff_head_cache, skb);
4069 else
4070 __kfree_skb(skb);
4071 break;
4072
4073 case GRO_HELD:
4074 case GRO_MERGED:
4075 break;
4076 }
4077
4078 return ret;
4079 }
4080
4081 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4082 {
4083 trace_napi_gro_receive_entry(skb);
4084
4085 skb_gro_reset_offset(skb);
4086
4087 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4088 }
4089 EXPORT_SYMBOL(napi_gro_receive);
4090
4091 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4092 {
4093 __skb_pull(skb, skb_headlen(skb));
4094 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4095 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4096 skb->vlan_tci = 0;
4097 skb->dev = napi->dev;
4098 skb->skb_iif = 0;
4099 skb->encapsulation = 0;
4100 skb_shinfo(skb)->gso_type = 0;
4101 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4102
4103 napi->skb = skb;
4104 }
4105
4106 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4107 {
4108 struct sk_buff *skb = napi->skb;
4109
4110 if (!skb) {
4111 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4112 napi->skb = skb;
4113 }
4114 return skb;
4115 }
4116 EXPORT_SYMBOL(napi_get_frags);
4117
4118 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4119 struct sk_buff *skb,
4120 gro_result_t ret)
4121 {
4122 switch (ret) {
4123 case GRO_NORMAL:
4124 case GRO_HELD:
4125 __skb_push(skb, ETH_HLEN);
4126 skb->protocol = eth_type_trans(skb, skb->dev);
4127 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4128 ret = GRO_DROP;
4129 break;
4130
4131 case GRO_DROP:
4132 case GRO_MERGED_FREE:
4133 napi_reuse_skb(napi, skb);
4134 break;
4135
4136 case GRO_MERGED:
4137 break;
4138 }
4139
4140 return ret;
4141 }
4142
4143 /* Upper GRO stack assumes network header starts at gro_offset=0
4144 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4145 * We copy ethernet header into skb->data to have a common layout.
4146 */
4147 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4148 {
4149 struct sk_buff *skb = napi->skb;
4150 const struct ethhdr *eth;
4151 unsigned int hlen = sizeof(*eth);
4152
4153 napi->skb = NULL;
4154
4155 skb_reset_mac_header(skb);
4156 skb_gro_reset_offset(skb);
4157
4158 eth = skb_gro_header_fast(skb, 0);
4159 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4160 eth = skb_gro_header_slow(skb, hlen, 0);
4161 if (unlikely(!eth)) {
4162 napi_reuse_skb(napi, skb);
4163 return NULL;
4164 }
4165 } else {
4166 gro_pull_from_frag0(skb, hlen);
4167 NAPI_GRO_CB(skb)->frag0 += hlen;
4168 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4169 }
4170 __skb_pull(skb, hlen);
4171
4172 /*
4173 * This works because the only protocols we care about don't require
4174 * special handling.
4175 * We'll fix it up properly in napi_frags_finish()
4176 */
4177 skb->protocol = eth->h_proto;
4178
4179 return skb;
4180 }
4181
4182 gro_result_t napi_gro_frags(struct napi_struct *napi)
4183 {
4184 struct sk_buff *skb = napi_frags_skb(napi);
4185
4186 if (!skb)
4187 return GRO_DROP;
4188
4189 trace_napi_gro_frags_entry(skb);
4190
4191 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4192 }
4193 EXPORT_SYMBOL(napi_gro_frags);
4194
4195 /*
4196 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4197 * Note: called with local irq disabled, but exits with local irq enabled.
4198 */
4199 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4200 {
4201 #ifdef CONFIG_RPS
4202 struct softnet_data *remsd = sd->rps_ipi_list;
4203
4204 if (remsd) {
4205 sd->rps_ipi_list = NULL;
4206
4207 local_irq_enable();
4208
4209 /* Send pending IPI's to kick RPS processing on remote cpus. */
4210 while (remsd) {
4211 struct softnet_data *next = remsd->rps_ipi_next;
4212
4213 if (cpu_online(remsd->cpu))
4214 smp_call_function_single_async(remsd->cpu,
4215 &remsd->csd);
4216 remsd = next;
4217 }
4218 } else
4219 #endif
4220 local_irq_enable();
4221 }
4222
4223 static int process_backlog(struct napi_struct *napi, int quota)
4224 {
4225 int work = 0;
4226 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4227
4228 #ifdef CONFIG_RPS
4229 /* Check if we have pending ipi, its better to send them now,
4230 * not waiting net_rx_action() end.
4231 */
4232 if (sd->rps_ipi_list) {
4233 local_irq_disable();
4234 net_rps_action_and_irq_enable(sd);
4235 }
4236 #endif
4237 napi->weight = weight_p;
4238 local_irq_disable();
4239 while (1) {
4240 struct sk_buff *skb;
4241
4242 while ((skb = __skb_dequeue(&sd->process_queue))) {
4243 local_irq_enable();
4244 __netif_receive_skb(skb);
4245 local_irq_disable();
4246 input_queue_head_incr(sd);
4247 if (++work >= quota) {
4248 local_irq_enable();
4249 return work;
4250 }
4251 }
4252
4253 rps_lock(sd);
4254 if (skb_queue_empty(&sd->input_pkt_queue)) {
4255 /*
4256 * Inline a custom version of __napi_complete().
4257 * only current cpu owns and manipulates this napi,
4258 * and NAPI_STATE_SCHED is the only possible flag set
4259 * on backlog.
4260 * We can use a plain write instead of clear_bit(),
4261 * and we dont need an smp_mb() memory barrier.
4262 */
4263 list_del(&napi->poll_list);
4264 napi->state = 0;
4265 rps_unlock(sd);
4266
4267 break;
4268 }
4269
4270 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4271 &sd->process_queue);
4272 rps_unlock(sd);
4273 }
4274 local_irq_enable();
4275
4276 return work;
4277 }
4278
4279 /**
4280 * __napi_schedule - schedule for receive
4281 * @n: entry to schedule
4282 *
4283 * The entry's receive function will be scheduled to run
4284 */
4285 void __napi_schedule(struct napi_struct *n)
4286 {
4287 unsigned long flags;
4288
4289 local_irq_save(flags);
4290 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4291 local_irq_restore(flags);
4292 }
4293 EXPORT_SYMBOL(__napi_schedule);
4294
4295 void __napi_complete(struct napi_struct *n)
4296 {
4297 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4298 BUG_ON(n->gro_list);
4299
4300 list_del(&n->poll_list);
4301 smp_mb__before_atomic();
4302 clear_bit(NAPI_STATE_SCHED, &n->state);
4303 }
4304 EXPORT_SYMBOL(__napi_complete);
4305
4306 void napi_complete(struct napi_struct *n)
4307 {
4308 unsigned long flags;
4309
4310 /*
4311 * don't let napi dequeue from the cpu poll list
4312 * just in case its running on a different cpu
4313 */
4314 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4315 return;
4316
4317 napi_gro_flush(n, false);
4318 local_irq_save(flags);
4319 __napi_complete(n);
4320 local_irq_restore(flags);
4321 }
4322 EXPORT_SYMBOL(napi_complete);
4323
4324 /* must be called under rcu_read_lock(), as we dont take a reference */
4325 struct napi_struct *napi_by_id(unsigned int napi_id)
4326 {
4327 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4328 struct napi_struct *napi;
4329
4330 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4331 if (napi->napi_id == napi_id)
4332 return napi;
4333
4334 return NULL;
4335 }
4336 EXPORT_SYMBOL_GPL(napi_by_id);
4337
4338 void napi_hash_add(struct napi_struct *napi)
4339 {
4340 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4341
4342 spin_lock(&napi_hash_lock);
4343
4344 /* 0 is not a valid id, we also skip an id that is taken
4345 * we expect both events to be extremely rare
4346 */
4347 napi->napi_id = 0;
4348 while (!napi->napi_id) {
4349 napi->napi_id = ++napi_gen_id;
4350 if (napi_by_id(napi->napi_id))
4351 napi->napi_id = 0;
4352 }
4353
4354 hlist_add_head_rcu(&napi->napi_hash_node,
4355 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4356
4357 spin_unlock(&napi_hash_lock);
4358 }
4359 }
4360 EXPORT_SYMBOL_GPL(napi_hash_add);
4361
4362 /* Warning : caller is responsible to make sure rcu grace period
4363 * is respected before freeing memory containing @napi
4364 */
4365 void napi_hash_del(struct napi_struct *napi)
4366 {
4367 spin_lock(&napi_hash_lock);
4368
4369 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4370 hlist_del_rcu(&napi->napi_hash_node);
4371
4372 spin_unlock(&napi_hash_lock);
4373 }
4374 EXPORT_SYMBOL_GPL(napi_hash_del);
4375
4376 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4377 int (*poll)(struct napi_struct *, int), int weight)
4378 {
4379 INIT_LIST_HEAD(&napi->poll_list);
4380 napi->gro_count = 0;
4381 napi->gro_list = NULL;
4382 napi->skb = NULL;
4383 napi->poll = poll;
4384 if (weight > NAPI_POLL_WEIGHT)
4385 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4386 weight, dev->name);
4387 napi->weight = weight;
4388 list_add(&napi->dev_list, &dev->napi_list);
4389 napi->dev = dev;
4390 #ifdef CONFIG_NETPOLL
4391 spin_lock_init(&napi->poll_lock);
4392 napi->poll_owner = -1;
4393 #endif
4394 set_bit(NAPI_STATE_SCHED, &napi->state);
4395 }
4396 EXPORT_SYMBOL(netif_napi_add);
4397
4398 void netif_napi_del(struct napi_struct *napi)
4399 {
4400 list_del_init(&napi->dev_list);
4401 napi_free_frags(napi);
4402
4403 kfree_skb_list(napi->gro_list);
4404 napi->gro_list = NULL;
4405 napi->gro_count = 0;
4406 }
4407 EXPORT_SYMBOL(netif_napi_del);
4408
4409 static void net_rx_action(struct softirq_action *h)
4410 {
4411 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4412 unsigned long time_limit = jiffies + 2;
4413 int budget = netdev_budget;
4414 void *have;
4415
4416 local_irq_disable();
4417
4418 while (!list_empty(&sd->poll_list)) {
4419 struct napi_struct *n;
4420 int work, weight;
4421
4422 /* If softirq window is exhuasted then punt.
4423 * Allow this to run for 2 jiffies since which will allow
4424 * an average latency of 1.5/HZ.
4425 */
4426 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4427 goto softnet_break;
4428
4429 local_irq_enable();
4430
4431 /* Even though interrupts have been re-enabled, this
4432 * access is safe because interrupts can only add new
4433 * entries to the tail of this list, and only ->poll()
4434 * calls can remove this head entry from the list.
4435 */
4436 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4437
4438 have = netpoll_poll_lock(n);
4439
4440 weight = n->weight;
4441
4442 /* This NAPI_STATE_SCHED test is for avoiding a race
4443 * with netpoll's poll_napi(). Only the entity which
4444 * obtains the lock and sees NAPI_STATE_SCHED set will
4445 * actually make the ->poll() call. Therefore we avoid
4446 * accidentally calling ->poll() when NAPI is not scheduled.
4447 */
4448 work = 0;
4449 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4450 work = n->poll(n, weight);
4451 trace_napi_poll(n);
4452 }
4453
4454 WARN_ON_ONCE(work > weight);
4455
4456 budget -= work;
4457
4458 local_irq_disable();
4459
4460 /* Drivers must not modify the NAPI state if they
4461 * consume the entire weight. In such cases this code
4462 * still "owns" the NAPI instance and therefore can
4463 * move the instance around on the list at-will.
4464 */
4465 if (unlikely(work == weight)) {
4466 if (unlikely(napi_disable_pending(n))) {
4467 local_irq_enable();
4468 napi_complete(n);
4469 local_irq_disable();
4470 } else {
4471 if (n->gro_list) {
4472 /* flush too old packets
4473 * If HZ < 1000, flush all packets.
4474 */
4475 local_irq_enable();
4476 napi_gro_flush(n, HZ >= 1000);
4477 local_irq_disable();
4478 }
4479 list_move_tail(&n->poll_list, &sd->poll_list);
4480 }
4481 }
4482
4483 netpoll_poll_unlock(have);
4484 }
4485 out:
4486 net_rps_action_and_irq_enable(sd);
4487
4488 #ifdef CONFIG_NET_DMA
4489 /*
4490 * There may not be any more sk_buffs coming right now, so push
4491 * any pending DMA copies to hardware
4492 */
4493 dma_issue_pending_all();
4494 #endif
4495
4496 return;
4497
4498 softnet_break:
4499 sd->time_squeeze++;
4500 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4501 goto out;
4502 }
4503
4504 struct netdev_adjacent {
4505 struct net_device *dev;
4506
4507 /* upper master flag, there can only be one master device per list */
4508 bool master;
4509
4510 /* counter for the number of times this device was added to us */
4511 u16 ref_nr;
4512
4513 /* private field for the users */
4514 void *private;
4515
4516 struct list_head list;
4517 struct rcu_head rcu;
4518 };
4519
4520 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4521 struct net_device *adj_dev,
4522 struct list_head *adj_list)
4523 {
4524 struct netdev_adjacent *adj;
4525
4526 list_for_each_entry(adj, adj_list, list) {
4527 if (adj->dev == adj_dev)
4528 return adj;
4529 }
4530 return NULL;
4531 }
4532
4533 /**
4534 * netdev_has_upper_dev - Check if device is linked to an upper device
4535 * @dev: device
4536 * @upper_dev: upper device to check
4537 *
4538 * Find out if a device is linked to specified upper device and return true
4539 * in case it is. Note that this checks only immediate upper device,
4540 * not through a complete stack of devices. The caller must hold the RTNL lock.
4541 */
4542 bool netdev_has_upper_dev(struct net_device *dev,
4543 struct net_device *upper_dev)
4544 {
4545 ASSERT_RTNL();
4546
4547 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4548 }
4549 EXPORT_SYMBOL(netdev_has_upper_dev);
4550
4551 /**
4552 * netdev_has_any_upper_dev - Check if device is linked to some device
4553 * @dev: device
4554 *
4555 * Find out if a device is linked to an upper device and return true in case
4556 * it is. The caller must hold the RTNL lock.
4557 */
4558 static bool netdev_has_any_upper_dev(struct net_device *dev)
4559 {
4560 ASSERT_RTNL();
4561
4562 return !list_empty(&dev->all_adj_list.upper);
4563 }
4564
4565 /**
4566 * netdev_master_upper_dev_get - Get master upper device
4567 * @dev: device
4568 *
4569 * Find a master upper device and return pointer to it or NULL in case
4570 * it's not there. The caller must hold the RTNL lock.
4571 */
4572 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4573 {
4574 struct netdev_adjacent *upper;
4575
4576 ASSERT_RTNL();
4577
4578 if (list_empty(&dev->adj_list.upper))
4579 return NULL;
4580
4581 upper = list_first_entry(&dev->adj_list.upper,
4582 struct netdev_adjacent, list);
4583 if (likely(upper->master))
4584 return upper->dev;
4585 return NULL;
4586 }
4587 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4588
4589 void *netdev_adjacent_get_private(struct list_head *adj_list)
4590 {
4591 struct netdev_adjacent *adj;
4592
4593 adj = list_entry(adj_list, struct netdev_adjacent, list);
4594
4595 return adj->private;
4596 }
4597 EXPORT_SYMBOL(netdev_adjacent_get_private);
4598
4599 /**
4600 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4601 * @dev: device
4602 * @iter: list_head ** of the current position
4603 *
4604 * Gets the next device from the dev's upper list, starting from iter
4605 * position. The caller must hold RCU read lock.
4606 */
4607 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4608 struct list_head **iter)
4609 {
4610 struct netdev_adjacent *upper;
4611
4612 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4613
4614 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4615
4616 if (&upper->list == &dev->adj_list.upper)
4617 return NULL;
4618
4619 *iter = &upper->list;
4620
4621 return upper->dev;
4622 }
4623 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4624
4625 /**
4626 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4627 * @dev: device
4628 * @iter: list_head ** of the current position
4629 *
4630 * Gets the next device from the dev's upper list, starting from iter
4631 * position. The caller must hold RCU read lock.
4632 */
4633 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4634 struct list_head **iter)
4635 {
4636 struct netdev_adjacent *upper;
4637
4638 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4639
4640 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4641
4642 if (&upper->list == &dev->all_adj_list.upper)
4643 return NULL;
4644
4645 *iter = &upper->list;
4646
4647 return upper->dev;
4648 }
4649 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4650
4651 /**
4652 * netdev_lower_get_next_private - Get the next ->private from the
4653 * lower neighbour list
4654 * @dev: device
4655 * @iter: list_head ** of the current position
4656 *
4657 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4658 * list, starting from iter position. The caller must hold either hold the
4659 * RTNL lock or its own locking that guarantees that the neighbour lower
4660 * list will remain unchainged.
4661 */
4662 void *netdev_lower_get_next_private(struct net_device *dev,
4663 struct list_head **iter)
4664 {
4665 struct netdev_adjacent *lower;
4666
4667 lower = list_entry(*iter, struct netdev_adjacent, list);
4668
4669 if (&lower->list == &dev->adj_list.lower)
4670 return NULL;
4671
4672 *iter = lower->list.next;
4673
4674 return lower->private;
4675 }
4676 EXPORT_SYMBOL(netdev_lower_get_next_private);
4677
4678 /**
4679 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4680 * lower neighbour list, RCU
4681 * variant
4682 * @dev: device
4683 * @iter: list_head ** of the current position
4684 *
4685 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4686 * list, starting from iter position. The caller must hold RCU read lock.
4687 */
4688 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4689 struct list_head **iter)
4690 {
4691 struct netdev_adjacent *lower;
4692
4693 WARN_ON_ONCE(!rcu_read_lock_held());
4694
4695 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4696
4697 if (&lower->list == &dev->adj_list.lower)
4698 return NULL;
4699
4700 *iter = &lower->list;
4701
4702 return lower->private;
4703 }
4704 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4705
4706 /**
4707 * netdev_lower_get_next - Get the next device from the lower neighbour
4708 * list
4709 * @dev: device
4710 * @iter: list_head ** of the current position
4711 *
4712 * Gets the next netdev_adjacent from the dev's lower neighbour
4713 * list, starting from iter position. The caller must hold RTNL lock or
4714 * its own locking that guarantees that the neighbour lower
4715 * list will remain unchainged.
4716 */
4717 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4718 {
4719 struct netdev_adjacent *lower;
4720
4721 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4722
4723 if (&lower->list == &dev->adj_list.lower)
4724 return NULL;
4725
4726 *iter = &lower->list;
4727
4728 return lower->dev;
4729 }
4730 EXPORT_SYMBOL(netdev_lower_get_next);
4731
4732 /**
4733 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4734 * lower neighbour list, RCU
4735 * variant
4736 * @dev: device
4737 *
4738 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4739 * list. The caller must hold RCU read lock.
4740 */
4741 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4742 {
4743 struct netdev_adjacent *lower;
4744
4745 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4746 struct netdev_adjacent, list);
4747 if (lower)
4748 return lower->private;
4749 return NULL;
4750 }
4751 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4752
4753 /**
4754 * netdev_master_upper_dev_get_rcu - Get master upper device
4755 * @dev: device
4756 *
4757 * Find a master upper device and return pointer to it or NULL in case
4758 * it's not there. The caller must hold the RCU read lock.
4759 */
4760 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4761 {
4762 struct netdev_adjacent *upper;
4763
4764 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4765 struct netdev_adjacent, list);
4766 if (upper && likely(upper->master))
4767 return upper->dev;
4768 return NULL;
4769 }
4770 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4771
4772 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4773 struct net_device *adj_dev,
4774 struct list_head *dev_list)
4775 {
4776 char linkname[IFNAMSIZ+7];
4777 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4778 "upper_%s" : "lower_%s", adj_dev->name);
4779 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4780 linkname);
4781 }
4782 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4783 char *name,
4784 struct list_head *dev_list)
4785 {
4786 char linkname[IFNAMSIZ+7];
4787 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4788 "upper_%s" : "lower_%s", name);
4789 sysfs_remove_link(&(dev->dev.kobj), linkname);
4790 }
4791
4792 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4793 (dev_list == &dev->adj_list.upper || \
4794 dev_list == &dev->adj_list.lower)
4795
4796 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4797 struct net_device *adj_dev,
4798 struct list_head *dev_list,
4799 void *private, bool master)
4800 {
4801 struct netdev_adjacent *adj;
4802 int ret;
4803
4804 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4805
4806 if (adj) {
4807 adj->ref_nr++;
4808 return 0;
4809 }
4810
4811 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4812 if (!adj)
4813 return -ENOMEM;
4814
4815 adj->dev = adj_dev;
4816 adj->master = master;
4817 adj->ref_nr = 1;
4818 adj->private = private;
4819 dev_hold(adj_dev);
4820
4821 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4822 adj_dev->name, dev->name, adj_dev->name);
4823
4824 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4825 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4826 if (ret)
4827 goto free_adj;
4828 }
4829
4830 /* Ensure that master link is always the first item in list. */
4831 if (master) {
4832 ret = sysfs_create_link(&(dev->dev.kobj),
4833 &(adj_dev->dev.kobj), "master");
4834 if (ret)
4835 goto remove_symlinks;
4836
4837 list_add_rcu(&adj->list, dev_list);
4838 } else {
4839 list_add_tail_rcu(&adj->list, dev_list);
4840 }
4841
4842 return 0;
4843
4844 remove_symlinks:
4845 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4846 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4847 free_adj:
4848 kfree(adj);
4849 dev_put(adj_dev);
4850
4851 return ret;
4852 }
4853
4854 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4855 struct net_device *adj_dev,
4856 struct list_head *dev_list)
4857 {
4858 struct netdev_adjacent *adj;
4859
4860 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4861
4862 if (!adj) {
4863 pr_err("tried to remove device %s from %s\n",
4864 dev->name, adj_dev->name);
4865 BUG();
4866 }
4867
4868 if (adj->ref_nr > 1) {
4869 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4870 adj->ref_nr-1);
4871 adj->ref_nr--;
4872 return;
4873 }
4874
4875 if (adj->master)
4876 sysfs_remove_link(&(dev->dev.kobj), "master");
4877
4878 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4879 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4880
4881 list_del_rcu(&adj->list);
4882 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4883 adj_dev->name, dev->name, adj_dev->name);
4884 dev_put(adj_dev);
4885 kfree_rcu(adj, rcu);
4886 }
4887
4888 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4889 struct net_device *upper_dev,
4890 struct list_head *up_list,
4891 struct list_head *down_list,
4892 void *private, bool master)
4893 {
4894 int ret;
4895
4896 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4897 master);
4898 if (ret)
4899 return ret;
4900
4901 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4902 false);
4903 if (ret) {
4904 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4905 return ret;
4906 }
4907
4908 return 0;
4909 }
4910
4911 static int __netdev_adjacent_dev_link(struct net_device *dev,
4912 struct net_device *upper_dev)
4913 {
4914 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4915 &dev->all_adj_list.upper,
4916 &upper_dev->all_adj_list.lower,
4917 NULL, false);
4918 }
4919
4920 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4921 struct net_device *upper_dev,
4922 struct list_head *up_list,
4923 struct list_head *down_list)
4924 {
4925 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4926 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4927 }
4928
4929 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4930 struct net_device *upper_dev)
4931 {
4932 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4933 &dev->all_adj_list.upper,
4934 &upper_dev->all_adj_list.lower);
4935 }
4936
4937 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4938 struct net_device *upper_dev,
4939 void *private, bool master)
4940 {
4941 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4942
4943 if (ret)
4944 return ret;
4945
4946 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4947 &dev->adj_list.upper,
4948 &upper_dev->adj_list.lower,
4949 private, master);
4950 if (ret) {
4951 __netdev_adjacent_dev_unlink(dev, upper_dev);
4952 return ret;
4953 }
4954
4955 return 0;
4956 }
4957
4958 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4959 struct net_device *upper_dev)
4960 {
4961 __netdev_adjacent_dev_unlink(dev, upper_dev);
4962 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4963 &dev->adj_list.upper,
4964 &upper_dev->adj_list.lower);
4965 }
4966
4967 static int __netdev_upper_dev_link(struct net_device *dev,
4968 struct net_device *upper_dev, bool master,
4969 void *private)
4970 {
4971 struct netdev_adjacent *i, *j, *to_i, *to_j;
4972 int ret = 0;
4973
4974 ASSERT_RTNL();
4975
4976 if (dev == upper_dev)
4977 return -EBUSY;
4978
4979 /* To prevent loops, check if dev is not upper device to upper_dev. */
4980 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4981 return -EBUSY;
4982
4983 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4984 return -EEXIST;
4985
4986 if (master && netdev_master_upper_dev_get(dev))
4987 return -EBUSY;
4988
4989 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4990 master);
4991 if (ret)
4992 return ret;
4993
4994 /* Now that we linked these devs, make all the upper_dev's
4995 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4996 * versa, and don't forget the devices itself. All of these
4997 * links are non-neighbours.
4998 */
4999 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5000 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5001 pr_debug("Interlinking %s with %s, non-neighbour\n",
5002 i->dev->name, j->dev->name);
5003 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5004 if (ret)
5005 goto rollback_mesh;
5006 }
5007 }
5008
5009 /* add dev to every upper_dev's upper device */
5010 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5011 pr_debug("linking %s's upper device %s with %s\n",
5012 upper_dev->name, i->dev->name, dev->name);
5013 ret = __netdev_adjacent_dev_link(dev, i->dev);
5014 if (ret)
5015 goto rollback_upper_mesh;
5016 }
5017
5018 /* add upper_dev to every dev's lower device */
5019 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5020 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5021 i->dev->name, upper_dev->name);
5022 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5023 if (ret)
5024 goto rollback_lower_mesh;
5025 }
5026
5027 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5028 return 0;
5029
5030 rollback_lower_mesh:
5031 to_i = i;
5032 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5033 if (i == to_i)
5034 break;
5035 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5036 }
5037
5038 i = NULL;
5039
5040 rollback_upper_mesh:
5041 to_i = i;
5042 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5043 if (i == to_i)
5044 break;
5045 __netdev_adjacent_dev_unlink(dev, i->dev);
5046 }
5047
5048 i = j = NULL;
5049
5050 rollback_mesh:
5051 to_i = i;
5052 to_j = j;
5053 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5054 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5055 if (i == to_i && j == to_j)
5056 break;
5057 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5058 }
5059 if (i == to_i)
5060 break;
5061 }
5062
5063 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5064
5065 return ret;
5066 }
5067
5068 /**
5069 * netdev_upper_dev_link - Add a link to the upper device
5070 * @dev: device
5071 * @upper_dev: new upper device
5072 *
5073 * Adds a link to device which is upper to this one. The caller must hold
5074 * the RTNL lock. On a failure a negative errno code is returned.
5075 * On success the reference counts are adjusted and the function
5076 * returns zero.
5077 */
5078 int netdev_upper_dev_link(struct net_device *dev,
5079 struct net_device *upper_dev)
5080 {
5081 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5082 }
5083 EXPORT_SYMBOL(netdev_upper_dev_link);
5084
5085 /**
5086 * netdev_master_upper_dev_link - Add a master link to the upper device
5087 * @dev: device
5088 * @upper_dev: new upper device
5089 *
5090 * Adds a link to device which is upper to this one. In this case, only
5091 * one master upper device can be linked, although other non-master devices
5092 * might be linked as well. The caller must hold the RTNL lock.
5093 * On a failure a negative errno code is returned. On success the reference
5094 * counts are adjusted and the function returns zero.
5095 */
5096 int netdev_master_upper_dev_link(struct net_device *dev,
5097 struct net_device *upper_dev)
5098 {
5099 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5100 }
5101 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5102
5103 int netdev_master_upper_dev_link_private(struct net_device *dev,
5104 struct net_device *upper_dev,
5105 void *private)
5106 {
5107 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5108 }
5109 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5110
5111 /**
5112 * netdev_upper_dev_unlink - Removes a link to upper device
5113 * @dev: device
5114 * @upper_dev: new upper device
5115 *
5116 * Removes a link to device which is upper to this one. The caller must hold
5117 * the RTNL lock.
5118 */
5119 void netdev_upper_dev_unlink(struct net_device *dev,
5120 struct net_device *upper_dev)
5121 {
5122 struct netdev_adjacent *i, *j;
5123 ASSERT_RTNL();
5124
5125 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5126
5127 /* Here is the tricky part. We must remove all dev's lower
5128 * devices from all upper_dev's upper devices and vice
5129 * versa, to maintain the graph relationship.
5130 */
5131 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5132 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5133 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5134
5135 /* remove also the devices itself from lower/upper device
5136 * list
5137 */
5138 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5139 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5140
5141 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5142 __netdev_adjacent_dev_unlink(dev, i->dev);
5143
5144 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5145 }
5146 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5147
5148 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5149 {
5150 struct netdev_adjacent *iter;
5151
5152 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5153 netdev_adjacent_sysfs_del(iter->dev, oldname,
5154 &iter->dev->adj_list.lower);
5155 netdev_adjacent_sysfs_add(iter->dev, dev,
5156 &iter->dev->adj_list.lower);
5157 }
5158
5159 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5160 netdev_adjacent_sysfs_del(iter->dev, oldname,
5161 &iter->dev->adj_list.upper);
5162 netdev_adjacent_sysfs_add(iter->dev, dev,
5163 &iter->dev->adj_list.upper);
5164 }
5165 }
5166
5167 void *netdev_lower_dev_get_private(struct net_device *dev,
5168 struct net_device *lower_dev)
5169 {
5170 struct netdev_adjacent *lower;
5171
5172 if (!lower_dev)
5173 return NULL;
5174 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5175 if (!lower)
5176 return NULL;
5177
5178 return lower->private;
5179 }
5180 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5181
5182
5183 int dev_get_nest_level(struct net_device *dev,
5184 bool (*type_check)(struct net_device *dev))
5185 {
5186 struct net_device *lower = NULL;
5187 struct list_head *iter;
5188 int max_nest = -1;
5189 int nest;
5190
5191 ASSERT_RTNL();
5192
5193 netdev_for_each_lower_dev(dev, lower, iter) {
5194 nest = dev_get_nest_level(lower, type_check);
5195 if (max_nest < nest)
5196 max_nest = nest;
5197 }
5198
5199 if (type_check(dev))
5200 max_nest++;
5201
5202 return max_nest;
5203 }
5204 EXPORT_SYMBOL(dev_get_nest_level);
5205
5206 static void dev_change_rx_flags(struct net_device *dev, int flags)
5207 {
5208 const struct net_device_ops *ops = dev->netdev_ops;
5209
5210 if (ops->ndo_change_rx_flags)
5211 ops->ndo_change_rx_flags(dev, flags);
5212 }
5213
5214 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5215 {
5216 unsigned int old_flags = dev->flags;
5217 kuid_t uid;
5218 kgid_t gid;
5219
5220 ASSERT_RTNL();
5221
5222 dev->flags |= IFF_PROMISC;
5223 dev->promiscuity += inc;
5224 if (dev->promiscuity == 0) {
5225 /*
5226 * Avoid overflow.
5227 * If inc causes overflow, untouch promisc and return error.
5228 */
5229 if (inc < 0)
5230 dev->flags &= ~IFF_PROMISC;
5231 else {
5232 dev->promiscuity -= inc;
5233 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5234 dev->name);
5235 return -EOVERFLOW;
5236 }
5237 }
5238 if (dev->flags != old_flags) {
5239 pr_info("device %s %s promiscuous mode\n",
5240 dev->name,
5241 dev->flags & IFF_PROMISC ? "entered" : "left");
5242 if (audit_enabled) {
5243 current_uid_gid(&uid, &gid);
5244 audit_log(current->audit_context, GFP_ATOMIC,
5245 AUDIT_ANOM_PROMISCUOUS,
5246 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5247 dev->name, (dev->flags & IFF_PROMISC),
5248 (old_flags & IFF_PROMISC),
5249 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5250 from_kuid(&init_user_ns, uid),
5251 from_kgid(&init_user_ns, gid),
5252 audit_get_sessionid(current));
5253 }
5254
5255 dev_change_rx_flags(dev, IFF_PROMISC);
5256 }
5257 if (notify)
5258 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5259 return 0;
5260 }
5261
5262 /**
5263 * dev_set_promiscuity - update promiscuity count on a device
5264 * @dev: device
5265 * @inc: modifier
5266 *
5267 * Add or remove promiscuity from a device. While the count in the device
5268 * remains above zero the interface remains promiscuous. Once it hits zero
5269 * the device reverts back to normal filtering operation. A negative inc
5270 * value is used to drop promiscuity on the device.
5271 * Return 0 if successful or a negative errno code on error.
5272 */
5273 int dev_set_promiscuity(struct net_device *dev, int inc)
5274 {
5275 unsigned int old_flags = dev->flags;
5276 int err;
5277
5278 err = __dev_set_promiscuity(dev, inc, true);
5279 if (err < 0)
5280 return err;
5281 if (dev->flags != old_flags)
5282 dev_set_rx_mode(dev);
5283 return err;
5284 }
5285 EXPORT_SYMBOL(dev_set_promiscuity);
5286
5287 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5288 {
5289 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5290
5291 ASSERT_RTNL();
5292
5293 dev->flags |= IFF_ALLMULTI;
5294 dev->allmulti += inc;
5295 if (dev->allmulti == 0) {
5296 /*
5297 * Avoid overflow.
5298 * If inc causes overflow, untouch allmulti and return error.
5299 */
5300 if (inc < 0)
5301 dev->flags &= ~IFF_ALLMULTI;
5302 else {
5303 dev->allmulti -= inc;
5304 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5305 dev->name);
5306 return -EOVERFLOW;
5307 }
5308 }
5309 if (dev->flags ^ old_flags) {
5310 dev_change_rx_flags(dev, IFF_ALLMULTI);
5311 dev_set_rx_mode(dev);
5312 if (notify)
5313 __dev_notify_flags(dev, old_flags,
5314 dev->gflags ^ old_gflags);
5315 }
5316 return 0;
5317 }
5318
5319 /**
5320 * dev_set_allmulti - update allmulti count on a device
5321 * @dev: device
5322 * @inc: modifier
5323 *
5324 * Add or remove reception of all multicast frames to a device. While the
5325 * count in the device remains above zero the interface remains listening
5326 * to all interfaces. Once it hits zero the device reverts back to normal
5327 * filtering operation. A negative @inc value is used to drop the counter
5328 * when releasing a resource needing all multicasts.
5329 * Return 0 if successful or a negative errno code on error.
5330 */
5331
5332 int dev_set_allmulti(struct net_device *dev, int inc)
5333 {
5334 return __dev_set_allmulti(dev, inc, true);
5335 }
5336 EXPORT_SYMBOL(dev_set_allmulti);
5337
5338 /*
5339 * Upload unicast and multicast address lists to device and
5340 * configure RX filtering. When the device doesn't support unicast
5341 * filtering it is put in promiscuous mode while unicast addresses
5342 * are present.
5343 */
5344 void __dev_set_rx_mode(struct net_device *dev)
5345 {
5346 const struct net_device_ops *ops = dev->netdev_ops;
5347
5348 /* dev_open will call this function so the list will stay sane. */
5349 if (!(dev->flags&IFF_UP))
5350 return;
5351
5352 if (!netif_device_present(dev))
5353 return;
5354
5355 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5356 /* Unicast addresses changes may only happen under the rtnl,
5357 * therefore calling __dev_set_promiscuity here is safe.
5358 */
5359 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5360 __dev_set_promiscuity(dev, 1, false);
5361 dev->uc_promisc = true;
5362 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5363 __dev_set_promiscuity(dev, -1, false);
5364 dev->uc_promisc = false;
5365 }
5366 }
5367
5368 if (ops->ndo_set_rx_mode)
5369 ops->ndo_set_rx_mode(dev);
5370 }
5371
5372 void dev_set_rx_mode(struct net_device *dev)
5373 {
5374 netif_addr_lock_bh(dev);
5375 __dev_set_rx_mode(dev);
5376 netif_addr_unlock_bh(dev);
5377 }
5378
5379 /**
5380 * dev_get_flags - get flags reported to userspace
5381 * @dev: device
5382 *
5383 * Get the combination of flag bits exported through APIs to userspace.
5384 */
5385 unsigned int dev_get_flags(const struct net_device *dev)
5386 {
5387 unsigned int flags;
5388
5389 flags = (dev->flags & ~(IFF_PROMISC |
5390 IFF_ALLMULTI |
5391 IFF_RUNNING |
5392 IFF_LOWER_UP |
5393 IFF_DORMANT)) |
5394 (dev->gflags & (IFF_PROMISC |
5395 IFF_ALLMULTI));
5396
5397 if (netif_running(dev)) {
5398 if (netif_oper_up(dev))
5399 flags |= IFF_RUNNING;
5400 if (netif_carrier_ok(dev))
5401 flags |= IFF_LOWER_UP;
5402 if (netif_dormant(dev))
5403 flags |= IFF_DORMANT;
5404 }
5405
5406 return flags;
5407 }
5408 EXPORT_SYMBOL(dev_get_flags);
5409
5410 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5411 {
5412 unsigned int old_flags = dev->flags;
5413 int ret;
5414
5415 ASSERT_RTNL();
5416
5417 /*
5418 * Set the flags on our device.
5419 */
5420
5421 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5422 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5423 IFF_AUTOMEDIA)) |
5424 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5425 IFF_ALLMULTI));
5426
5427 /*
5428 * Load in the correct multicast list now the flags have changed.
5429 */
5430
5431 if ((old_flags ^ flags) & IFF_MULTICAST)
5432 dev_change_rx_flags(dev, IFF_MULTICAST);
5433
5434 dev_set_rx_mode(dev);
5435
5436 /*
5437 * Have we downed the interface. We handle IFF_UP ourselves
5438 * according to user attempts to set it, rather than blindly
5439 * setting it.
5440 */
5441
5442 ret = 0;
5443 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5444 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5445
5446 if (!ret)
5447 dev_set_rx_mode(dev);
5448 }
5449
5450 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5451 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5452 unsigned int old_flags = dev->flags;
5453
5454 dev->gflags ^= IFF_PROMISC;
5455
5456 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5457 if (dev->flags != old_flags)
5458 dev_set_rx_mode(dev);
5459 }
5460
5461 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5462 is important. Some (broken) drivers set IFF_PROMISC, when
5463 IFF_ALLMULTI is requested not asking us and not reporting.
5464 */
5465 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5466 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5467
5468 dev->gflags ^= IFF_ALLMULTI;
5469 __dev_set_allmulti(dev, inc, false);
5470 }
5471
5472 return ret;
5473 }
5474
5475 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5476 unsigned int gchanges)
5477 {
5478 unsigned int changes = dev->flags ^ old_flags;
5479
5480 if (gchanges)
5481 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5482
5483 if (changes & IFF_UP) {
5484 if (dev->flags & IFF_UP)
5485 call_netdevice_notifiers(NETDEV_UP, dev);
5486 else
5487 call_netdevice_notifiers(NETDEV_DOWN, dev);
5488 }
5489
5490 if (dev->flags & IFF_UP &&
5491 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5492 struct netdev_notifier_change_info change_info;
5493
5494 change_info.flags_changed = changes;
5495 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5496 &change_info.info);
5497 }
5498 }
5499
5500 /**
5501 * dev_change_flags - change device settings
5502 * @dev: device
5503 * @flags: device state flags
5504 *
5505 * Change settings on device based state flags. The flags are
5506 * in the userspace exported format.
5507 */
5508 int dev_change_flags(struct net_device *dev, unsigned int flags)
5509 {
5510 int ret;
5511 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5512
5513 ret = __dev_change_flags(dev, flags);
5514 if (ret < 0)
5515 return ret;
5516
5517 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5518 __dev_notify_flags(dev, old_flags, changes);
5519 return ret;
5520 }
5521 EXPORT_SYMBOL(dev_change_flags);
5522
5523 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5524 {
5525 const struct net_device_ops *ops = dev->netdev_ops;
5526
5527 if (ops->ndo_change_mtu)
5528 return ops->ndo_change_mtu(dev, new_mtu);
5529
5530 dev->mtu = new_mtu;
5531 return 0;
5532 }
5533
5534 /**
5535 * dev_set_mtu - Change maximum transfer unit
5536 * @dev: device
5537 * @new_mtu: new transfer unit
5538 *
5539 * Change the maximum transfer size of the network device.
5540 */
5541 int dev_set_mtu(struct net_device *dev, int new_mtu)
5542 {
5543 int err, orig_mtu;
5544
5545 if (new_mtu == dev->mtu)
5546 return 0;
5547
5548 /* MTU must be positive. */
5549 if (new_mtu < 0)
5550 return -EINVAL;
5551
5552 if (!netif_device_present(dev))
5553 return -ENODEV;
5554
5555 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5556 err = notifier_to_errno(err);
5557 if (err)
5558 return err;
5559
5560 orig_mtu = dev->mtu;
5561 err = __dev_set_mtu(dev, new_mtu);
5562
5563 if (!err) {
5564 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5565 err = notifier_to_errno(err);
5566 if (err) {
5567 /* setting mtu back and notifying everyone again,
5568 * so that they have a chance to revert changes.
5569 */
5570 __dev_set_mtu(dev, orig_mtu);
5571 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5572 }
5573 }
5574 return err;
5575 }
5576 EXPORT_SYMBOL(dev_set_mtu);
5577
5578 /**
5579 * dev_set_group - Change group this device belongs to
5580 * @dev: device
5581 * @new_group: group this device should belong to
5582 */
5583 void dev_set_group(struct net_device *dev, int new_group)
5584 {
5585 dev->group = new_group;
5586 }
5587 EXPORT_SYMBOL(dev_set_group);
5588
5589 /**
5590 * dev_set_mac_address - Change Media Access Control Address
5591 * @dev: device
5592 * @sa: new address
5593 *
5594 * Change the hardware (MAC) address of the device
5595 */
5596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5597 {
5598 const struct net_device_ops *ops = dev->netdev_ops;
5599 int err;
5600
5601 if (!ops->ndo_set_mac_address)
5602 return -EOPNOTSUPP;
5603 if (sa->sa_family != dev->type)
5604 return -EINVAL;
5605 if (!netif_device_present(dev))
5606 return -ENODEV;
5607 err = ops->ndo_set_mac_address(dev, sa);
5608 if (err)
5609 return err;
5610 dev->addr_assign_type = NET_ADDR_SET;
5611 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5612 add_device_randomness(dev->dev_addr, dev->addr_len);
5613 return 0;
5614 }
5615 EXPORT_SYMBOL(dev_set_mac_address);
5616
5617 /**
5618 * dev_change_carrier - Change device carrier
5619 * @dev: device
5620 * @new_carrier: new value
5621 *
5622 * Change device carrier
5623 */
5624 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5625 {
5626 const struct net_device_ops *ops = dev->netdev_ops;
5627
5628 if (!ops->ndo_change_carrier)
5629 return -EOPNOTSUPP;
5630 if (!netif_device_present(dev))
5631 return -ENODEV;
5632 return ops->ndo_change_carrier(dev, new_carrier);
5633 }
5634 EXPORT_SYMBOL(dev_change_carrier);
5635
5636 /**
5637 * dev_get_phys_port_id - Get device physical port ID
5638 * @dev: device
5639 * @ppid: port ID
5640 *
5641 * Get device physical port ID
5642 */
5643 int dev_get_phys_port_id(struct net_device *dev,
5644 struct netdev_phys_port_id *ppid)
5645 {
5646 const struct net_device_ops *ops = dev->netdev_ops;
5647
5648 if (!ops->ndo_get_phys_port_id)
5649 return -EOPNOTSUPP;
5650 return ops->ndo_get_phys_port_id(dev, ppid);
5651 }
5652 EXPORT_SYMBOL(dev_get_phys_port_id);
5653
5654 /**
5655 * dev_new_index - allocate an ifindex
5656 * @net: the applicable net namespace
5657 *
5658 * Returns a suitable unique value for a new device interface
5659 * number. The caller must hold the rtnl semaphore or the
5660 * dev_base_lock to be sure it remains unique.
5661 */
5662 static int dev_new_index(struct net *net)
5663 {
5664 int ifindex = net->ifindex;
5665 for (;;) {
5666 if (++ifindex <= 0)
5667 ifindex = 1;
5668 if (!__dev_get_by_index(net, ifindex))
5669 return net->ifindex = ifindex;
5670 }
5671 }
5672
5673 /* Delayed registration/unregisteration */
5674 static LIST_HEAD(net_todo_list);
5675 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5676
5677 static void net_set_todo(struct net_device *dev)
5678 {
5679 list_add_tail(&dev->todo_list, &net_todo_list);
5680 dev_net(dev)->dev_unreg_count++;
5681 }
5682
5683 static void rollback_registered_many(struct list_head *head)
5684 {
5685 struct net_device *dev, *tmp;
5686 LIST_HEAD(close_head);
5687
5688 BUG_ON(dev_boot_phase);
5689 ASSERT_RTNL();
5690
5691 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5692 /* Some devices call without registering
5693 * for initialization unwind. Remove those
5694 * devices and proceed with the remaining.
5695 */
5696 if (dev->reg_state == NETREG_UNINITIALIZED) {
5697 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5698 dev->name, dev);
5699
5700 WARN_ON(1);
5701 list_del(&dev->unreg_list);
5702 continue;
5703 }
5704 dev->dismantle = true;
5705 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5706 }
5707
5708 /* If device is running, close it first. */
5709 list_for_each_entry(dev, head, unreg_list)
5710 list_add_tail(&dev->close_list, &close_head);
5711 dev_close_many(&close_head);
5712
5713 list_for_each_entry(dev, head, unreg_list) {
5714 /* And unlink it from device chain. */
5715 unlist_netdevice(dev);
5716
5717 dev->reg_state = NETREG_UNREGISTERING;
5718 }
5719
5720 synchronize_net();
5721
5722 list_for_each_entry(dev, head, unreg_list) {
5723 /* Shutdown queueing discipline. */
5724 dev_shutdown(dev);
5725
5726
5727 /* Notify protocols, that we are about to destroy
5728 this device. They should clean all the things.
5729 */
5730 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5731
5732 /*
5733 * Flush the unicast and multicast chains
5734 */
5735 dev_uc_flush(dev);
5736 dev_mc_flush(dev);
5737
5738 if (dev->netdev_ops->ndo_uninit)
5739 dev->netdev_ops->ndo_uninit(dev);
5740
5741 if (!dev->rtnl_link_ops ||
5742 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5743 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5744
5745 /* Notifier chain MUST detach us all upper devices. */
5746 WARN_ON(netdev_has_any_upper_dev(dev));
5747
5748 /* Remove entries from kobject tree */
5749 netdev_unregister_kobject(dev);
5750 #ifdef CONFIG_XPS
5751 /* Remove XPS queueing entries */
5752 netif_reset_xps_queues_gt(dev, 0);
5753 #endif
5754 }
5755
5756 synchronize_net();
5757
5758 list_for_each_entry(dev, head, unreg_list)
5759 dev_put(dev);
5760 }
5761
5762 static void rollback_registered(struct net_device *dev)
5763 {
5764 LIST_HEAD(single);
5765
5766 list_add(&dev->unreg_list, &single);
5767 rollback_registered_many(&single);
5768 list_del(&single);
5769 }
5770
5771 static netdev_features_t netdev_fix_features(struct net_device *dev,
5772 netdev_features_t features)
5773 {
5774 /* Fix illegal checksum combinations */
5775 if ((features & NETIF_F_HW_CSUM) &&
5776 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5777 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5778 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5779 }
5780
5781 /* TSO requires that SG is present as well. */
5782 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5783 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5784 features &= ~NETIF_F_ALL_TSO;
5785 }
5786
5787 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5788 !(features & NETIF_F_IP_CSUM)) {
5789 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5790 features &= ~NETIF_F_TSO;
5791 features &= ~NETIF_F_TSO_ECN;
5792 }
5793
5794 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5795 !(features & NETIF_F_IPV6_CSUM)) {
5796 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5797 features &= ~NETIF_F_TSO6;
5798 }
5799
5800 /* TSO ECN requires that TSO is present as well. */
5801 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5802 features &= ~NETIF_F_TSO_ECN;
5803
5804 /* Software GSO depends on SG. */
5805 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5806 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5807 features &= ~NETIF_F_GSO;
5808 }
5809
5810 /* UFO needs SG and checksumming */
5811 if (features & NETIF_F_UFO) {
5812 /* maybe split UFO into V4 and V6? */
5813 if (!((features & NETIF_F_GEN_CSUM) ||
5814 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5815 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5816 netdev_dbg(dev,
5817 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5818 features &= ~NETIF_F_UFO;
5819 }
5820
5821 if (!(features & NETIF_F_SG)) {
5822 netdev_dbg(dev,
5823 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5824 features &= ~NETIF_F_UFO;
5825 }
5826 }
5827
5828 #ifdef CONFIG_NET_RX_BUSY_POLL
5829 if (dev->netdev_ops->ndo_busy_poll)
5830 features |= NETIF_F_BUSY_POLL;
5831 else
5832 #endif
5833 features &= ~NETIF_F_BUSY_POLL;
5834
5835 return features;
5836 }
5837
5838 int __netdev_update_features(struct net_device *dev)
5839 {
5840 netdev_features_t features;
5841 int err = 0;
5842
5843 ASSERT_RTNL();
5844
5845 features = netdev_get_wanted_features(dev);
5846
5847 if (dev->netdev_ops->ndo_fix_features)
5848 features = dev->netdev_ops->ndo_fix_features(dev, features);
5849
5850 /* driver might be less strict about feature dependencies */
5851 features = netdev_fix_features(dev, features);
5852
5853 if (dev->features == features)
5854 return 0;
5855
5856 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5857 &dev->features, &features);
5858
5859 if (dev->netdev_ops->ndo_set_features)
5860 err = dev->netdev_ops->ndo_set_features(dev, features);
5861
5862 if (unlikely(err < 0)) {
5863 netdev_err(dev,
5864 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5865 err, &features, &dev->features);
5866 return -1;
5867 }
5868
5869 if (!err)
5870 dev->features = features;
5871
5872 return 1;
5873 }
5874
5875 /**
5876 * netdev_update_features - recalculate device features
5877 * @dev: the device to check
5878 *
5879 * Recalculate dev->features set and send notifications if it
5880 * has changed. Should be called after driver or hardware dependent
5881 * conditions might have changed that influence the features.
5882 */
5883 void netdev_update_features(struct net_device *dev)
5884 {
5885 if (__netdev_update_features(dev))
5886 netdev_features_change(dev);
5887 }
5888 EXPORT_SYMBOL(netdev_update_features);
5889
5890 /**
5891 * netdev_change_features - recalculate device features
5892 * @dev: the device to check
5893 *
5894 * Recalculate dev->features set and send notifications even
5895 * if they have not changed. Should be called instead of
5896 * netdev_update_features() if also dev->vlan_features might
5897 * have changed to allow the changes to be propagated to stacked
5898 * VLAN devices.
5899 */
5900 void netdev_change_features(struct net_device *dev)
5901 {
5902 __netdev_update_features(dev);
5903 netdev_features_change(dev);
5904 }
5905 EXPORT_SYMBOL(netdev_change_features);
5906
5907 /**
5908 * netif_stacked_transfer_operstate - transfer operstate
5909 * @rootdev: the root or lower level device to transfer state from
5910 * @dev: the device to transfer operstate to
5911 *
5912 * Transfer operational state from root to device. This is normally
5913 * called when a stacking relationship exists between the root
5914 * device and the device(a leaf device).
5915 */
5916 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5917 struct net_device *dev)
5918 {
5919 if (rootdev->operstate == IF_OPER_DORMANT)
5920 netif_dormant_on(dev);
5921 else
5922 netif_dormant_off(dev);
5923
5924 if (netif_carrier_ok(rootdev)) {
5925 if (!netif_carrier_ok(dev))
5926 netif_carrier_on(dev);
5927 } else {
5928 if (netif_carrier_ok(dev))
5929 netif_carrier_off(dev);
5930 }
5931 }
5932 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5933
5934 #ifdef CONFIG_SYSFS
5935 static int netif_alloc_rx_queues(struct net_device *dev)
5936 {
5937 unsigned int i, count = dev->num_rx_queues;
5938 struct netdev_rx_queue *rx;
5939
5940 BUG_ON(count < 1);
5941
5942 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5943 if (!rx)
5944 return -ENOMEM;
5945
5946 dev->_rx = rx;
5947
5948 for (i = 0; i < count; i++)
5949 rx[i].dev = dev;
5950 return 0;
5951 }
5952 #endif
5953
5954 static void netdev_init_one_queue(struct net_device *dev,
5955 struct netdev_queue *queue, void *_unused)
5956 {
5957 /* Initialize queue lock */
5958 spin_lock_init(&queue->_xmit_lock);
5959 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5960 queue->xmit_lock_owner = -1;
5961 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5962 queue->dev = dev;
5963 #ifdef CONFIG_BQL
5964 dql_init(&queue->dql, HZ);
5965 #endif
5966 }
5967
5968 static void netif_free_tx_queues(struct net_device *dev)
5969 {
5970 kvfree(dev->_tx);
5971 }
5972
5973 static int netif_alloc_netdev_queues(struct net_device *dev)
5974 {
5975 unsigned int count = dev->num_tx_queues;
5976 struct netdev_queue *tx;
5977 size_t sz = count * sizeof(*tx);
5978
5979 BUG_ON(count < 1 || count > 0xffff);
5980
5981 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5982 if (!tx) {
5983 tx = vzalloc(sz);
5984 if (!tx)
5985 return -ENOMEM;
5986 }
5987 dev->_tx = tx;
5988
5989 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5990 spin_lock_init(&dev->tx_global_lock);
5991
5992 return 0;
5993 }
5994
5995 /**
5996 * register_netdevice - register a network device
5997 * @dev: device to register
5998 *
5999 * Take a completed network device structure and add it to the kernel
6000 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6001 * chain. 0 is returned on success. A negative errno code is returned
6002 * on a failure to set up the device, or if the name is a duplicate.
6003 *
6004 * Callers must hold the rtnl semaphore. You may want
6005 * register_netdev() instead of this.
6006 *
6007 * BUGS:
6008 * The locking appears insufficient to guarantee two parallel registers
6009 * will not get the same name.
6010 */
6011
6012 int register_netdevice(struct net_device *dev)
6013 {
6014 int ret;
6015 struct net *net = dev_net(dev);
6016
6017 BUG_ON(dev_boot_phase);
6018 ASSERT_RTNL();
6019
6020 might_sleep();
6021
6022 /* When net_device's are persistent, this will be fatal. */
6023 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6024 BUG_ON(!net);
6025
6026 spin_lock_init(&dev->addr_list_lock);
6027 netdev_set_addr_lockdep_class(dev);
6028
6029 dev->iflink = -1;
6030
6031 ret = dev_get_valid_name(net, dev, dev->name);
6032 if (ret < 0)
6033 goto out;
6034
6035 /* Init, if this function is available */
6036 if (dev->netdev_ops->ndo_init) {
6037 ret = dev->netdev_ops->ndo_init(dev);
6038 if (ret) {
6039 if (ret > 0)
6040 ret = -EIO;
6041 goto out;
6042 }
6043 }
6044
6045 if (((dev->hw_features | dev->features) &
6046 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6047 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6048 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6049 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6050 ret = -EINVAL;
6051 goto err_uninit;
6052 }
6053
6054 ret = -EBUSY;
6055 if (!dev->ifindex)
6056 dev->ifindex = dev_new_index(net);
6057 else if (__dev_get_by_index(net, dev->ifindex))
6058 goto err_uninit;
6059
6060 if (dev->iflink == -1)
6061 dev->iflink = dev->ifindex;
6062
6063 /* Transfer changeable features to wanted_features and enable
6064 * software offloads (GSO and GRO).
6065 */
6066 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6067 dev->features |= NETIF_F_SOFT_FEATURES;
6068 dev->wanted_features = dev->features & dev->hw_features;
6069
6070 if (!(dev->flags & IFF_LOOPBACK)) {
6071 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6072 }
6073
6074 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6075 */
6076 dev->vlan_features |= NETIF_F_HIGHDMA;
6077
6078 /* Make NETIF_F_SG inheritable to tunnel devices.
6079 */
6080 dev->hw_enc_features |= NETIF_F_SG;
6081
6082 /* Make NETIF_F_SG inheritable to MPLS.
6083 */
6084 dev->mpls_features |= NETIF_F_SG;
6085
6086 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6087 ret = notifier_to_errno(ret);
6088 if (ret)
6089 goto err_uninit;
6090
6091 ret = netdev_register_kobject(dev);
6092 if (ret)
6093 goto err_uninit;
6094 dev->reg_state = NETREG_REGISTERED;
6095
6096 __netdev_update_features(dev);
6097
6098 /*
6099 * Default initial state at registry is that the
6100 * device is present.
6101 */
6102
6103 set_bit(__LINK_STATE_PRESENT, &dev->state);
6104
6105 linkwatch_init_dev(dev);
6106
6107 dev_init_scheduler(dev);
6108 dev_hold(dev);
6109 list_netdevice(dev);
6110 add_device_randomness(dev->dev_addr, dev->addr_len);
6111
6112 /* If the device has permanent device address, driver should
6113 * set dev_addr and also addr_assign_type should be set to
6114 * NET_ADDR_PERM (default value).
6115 */
6116 if (dev->addr_assign_type == NET_ADDR_PERM)
6117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6118
6119 /* Notify protocols, that a new device appeared. */
6120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6121 ret = notifier_to_errno(ret);
6122 if (ret) {
6123 rollback_registered(dev);
6124 dev->reg_state = NETREG_UNREGISTERED;
6125 }
6126 /*
6127 * Prevent userspace races by waiting until the network
6128 * device is fully setup before sending notifications.
6129 */
6130 if (!dev->rtnl_link_ops ||
6131 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6132 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6133
6134 out:
6135 return ret;
6136
6137 err_uninit:
6138 if (dev->netdev_ops->ndo_uninit)
6139 dev->netdev_ops->ndo_uninit(dev);
6140 goto out;
6141 }
6142 EXPORT_SYMBOL(register_netdevice);
6143
6144 /**
6145 * init_dummy_netdev - init a dummy network device for NAPI
6146 * @dev: device to init
6147 *
6148 * This takes a network device structure and initialize the minimum
6149 * amount of fields so it can be used to schedule NAPI polls without
6150 * registering a full blown interface. This is to be used by drivers
6151 * that need to tie several hardware interfaces to a single NAPI
6152 * poll scheduler due to HW limitations.
6153 */
6154 int init_dummy_netdev(struct net_device *dev)
6155 {
6156 /* Clear everything. Note we don't initialize spinlocks
6157 * are they aren't supposed to be taken by any of the
6158 * NAPI code and this dummy netdev is supposed to be
6159 * only ever used for NAPI polls
6160 */
6161 memset(dev, 0, sizeof(struct net_device));
6162
6163 /* make sure we BUG if trying to hit standard
6164 * register/unregister code path
6165 */
6166 dev->reg_state = NETREG_DUMMY;
6167
6168 /* NAPI wants this */
6169 INIT_LIST_HEAD(&dev->napi_list);
6170
6171 /* a dummy interface is started by default */
6172 set_bit(__LINK_STATE_PRESENT, &dev->state);
6173 set_bit(__LINK_STATE_START, &dev->state);
6174
6175 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6176 * because users of this 'device' dont need to change
6177 * its refcount.
6178 */
6179
6180 return 0;
6181 }
6182 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6183
6184
6185 /**
6186 * register_netdev - register a network device
6187 * @dev: device to register
6188 *
6189 * Take a completed network device structure and add it to the kernel
6190 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6191 * chain. 0 is returned on success. A negative errno code is returned
6192 * on a failure to set up the device, or if the name is a duplicate.
6193 *
6194 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6195 * and expands the device name if you passed a format string to
6196 * alloc_netdev.
6197 */
6198 int register_netdev(struct net_device *dev)
6199 {
6200 int err;
6201
6202 rtnl_lock();
6203 err = register_netdevice(dev);
6204 rtnl_unlock();
6205 return err;
6206 }
6207 EXPORT_SYMBOL(register_netdev);
6208
6209 int netdev_refcnt_read(const struct net_device *dev)
6210 {
6211 int i, refcnt = 0;
6212
6213 for_each_possible_cpu(i)
6214 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6215 return refcnt;
6216 }
6217 EXPORT_SYMBOL(netdev_refcnt_read);
6218
6219 /**
6220 * netdev_wait_allrefs - wait until all references are gone.
6221 * @dev: target net_device
6222 *
6223 * This is called when unregistering network devices.
6224 *
6225 * Any protocol or device that holds a reference should register
6226 * for netdevice notification, and cleanup and put back the
6227 * reference if they receive an UNREGISTER event.
6228 * We can get stuck here if buggy protocols don't correctly
6229 * call dev_put.
6230 */
6231 static void netdev_wait_allrefs(struct net_device *dev)
6232 {
6233 unsigned long rebroadcast_time, warning_time;
6234 int refcnt;
6235
6236 linkwatch_forget_dev(dev);
6237
6238 rebroadcast_time = warning_time = jiffies;
6239 refcnt = netdev_refcnt_read(dev);
6240
6241 while (refcnt != 0) {
6242 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6243 rtnl_lock();
6244
6245 /* Rebroadcast unregister notification */
6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6247
6248 __rtnl_unlock();
6249 rcu_barrier();
6250 rtnl_lock();
6251
6252 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6253 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6254 &dev->state)) {
6255 /* We must not have linkwatch events
6256 * pending on unregister. If this
6257 * happens, we simply run the queue
6258 * unscheduled, resulting in a noop
6259 * for this device.
6260 */
6261 linkwatch_run_queue();
6262 }
6263
6264 __rtnl_unlock();
6265
6266 rebroadcast_time = jiffies;
6267 }
6268
6269 msleep(250);
6270
6271 refcnt = netdev_refcnt_read(dev);
6272
6273 if (time_after(jiffies, warning_time + 10 * HZ)) {
6274 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6275 dev->name, refcnt);
6276 warning_time = jiffies;
6277 }
6278 }
6279 }
6280
6281 /* The sequence is:
6282 *
6283 * rtnl_lock();
6284 * ...
6285 * register_netdevice(x1);
6286 * register_netdevice(x2);
6287 * ...
6288 * unregister_netdevice(y1);
6289 * unregister_netdevice(y2);
6290 * ...
6291 * rtnl_unlock();
6292 * free_netdev(y1);
6293 * free_netdev(y2);
6294 *
6295 * We are invoked by rtnl_unlock().
6296 * This allows us to deal with problems:
6297 * 1) We can delete sysfs objects which invoke hotplug
6298 * without deadlocking with linkwatch via keventd.
6299 * 2) Since we run with the RTNL semaphore not held, we can sleep
6300 * safely in order to wait for the netdev refcnt to drop to zero.
6301 *
6302 * We must not return until all unregister events added during
6303 * the interval the lock was held have been completed.
6304 */
6305 void netdev_run_todo(void)
6306 {
6307 struct list_head list;
6308
6309 /* Snapshot list, allow later requests */
6310 list_replace_init(&net_todo_list, &list);
6311
6312 __rtnl_unlock();
6313
6314
6315 /* Wait for rcu callbacks to finish before next phase */
6316 if (!list_empty(&list))
6317 rcu_barrier();
6318
6319 while (!list_empty(&list)) {
6320 struct net_device *dev
6321 = list_first_entry(&list, struct net_device, todo_list);
6322 list_del(&dev->todo_list);
6323
6324 rtnl_lock();
6325 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6326 __rtnl_unlock();
6327
6328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6329 pr_err("network todo '%s' but state %d\n",
6330 dev->name, dev->reg_state);
6331 dump_stack();
6332 continue;
6333 }
6334
6335 dev->reg_state = NETREG_UNREGISTERED;
6336
6337 on_each_cpu(flush_backlog, dev, 1);
6338
6339 netdev_wait_allrefs(dev);
6340
6341 /* paranoia */
6342 BUG_ON(netdev_refcnt_read(dev));
6343 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6344 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6345 WARN_ON(dev->dn_ptr);
6346
6347 if (dev->destructor)
6348 dev->destructor(dev);
6349
6350 /* Report a network device has been unregistered */
6351 rtnl_lock();
6352 dev_net(dev)->dev_unreg_count--;
6353 __rtnl_unlock();
6354 wake_up(&netdev_unregistering_wq);
6355
6356 /* Free network device */
6357 kobject_put(&dev->dev.kobj);
6358 }
6359 }
6360
6361 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6362 * fields in the same order, with only the type differing.
6363 */
6364 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6365 const struct net_device_stats *netdev_stats)
6366 {
6367 #if BITS_PER_LONG == 64
6368 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6369 memcpy(stats64, netdev_stats, sizeof(*stats64));
6370 #else
6371 size_t i, n = sizeof(*stats64) / sizeof(u64);
6372 const unsigned long *src = (const unsigned long *)netdev_stats;
6373 u64 *dst = (u64 *)stats64;
6374
6375 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6376 sizeof(*stats64) / sizeof(u64));
6377 for (i = 0; i < n; i++)
6378 dst[i] = src[i];
6379 #endif
6380 }
6381 EXPORT_SYMBOL(netdev_stats_to_stats64);
6382
6383 /**
6384 * dev_get_stats - get network device statistics
6385 * @dev: device to get statistics from
6386 * @storage: place to store stats
6387 *
6388 * Get network statistics from device. Return @storage.
6389 * The device driver may provide its own method by setting
6390 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6391 * otherwise the internal statistics structure is used.
6392 */
6393 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6394 struct rtnl_link_stats64 *storage)
6395 {
6396 const struct net_device_ops *ops = dev->netdev_ops;
6397
6398 if (ops->ndo_get_stats64) {
6399 memset(storage, 0, sizeof(*storage));
6400 ops->ndo_get_stats64(dev, storage);
6401 } else if (ops->ndo_get_stats) {
6402 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6403 } else {
6404 netdev_stats_to_stats64(storage, &dev->stats);
6405 }
6406 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6407 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6408 return storage;
6409 }
6410 EXPORT_SYMBOL(dev_get_stats);
6411
6412 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6413 {
6414 struct netdev_queue *queue = dev_ingress_queue(dev);
6415
6416 #ifdef CONFIG_NET_CLS_ACT
6417 if (queue)
6418 return queue;
6419 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6420 if (!queue)
6421 return NULL;
6422 netdev_init_one_queue(dev, queue, NULL);
6423 queue->qdisc = &noop_qdisc;
6424 queue->qdisc_sleeping = &noop_qdisc;
6425 rcu_assign_pointer(dev->ingress_queue, queue);
6426 #endif
6427 return queue;
6428 }
6429
6430 static const struct ethtool_ops default_ethtool_ops;
6431
6432 void netdev_set_default_ethtool_ops(struct net_device *dev,
6433 const struct ethtool_ops *ops)
6434 {
6435 if (dev->ethtool_ops == &default_ethtool_ops)
6436 dev->ethtool_ops = ops;
6437 }
6438 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6439
6440 void netdev_freemem(struct net_device *dev)
6441 {
6442 char *addr = (char *)dev - dev->padded;
6443
6444 kvfree(addr);
6445 }
6446
6447 /**
6448 * alloc_netdev_mqs - allocate network device
6449 * @sizeof_priv: size of private data to allocate space for
6450 * @name: device name format string
6451 * @setup: callback to initialize device
6452 * @txqs: the number of TX subqueues to allocate
6453 * @rxqs: the number of RX subqueues to allocate
6454 *
6455 * Allocates a struct net_device with private data area for driver use
6456 * and performs basic initialization. Also allocates subqueue structs
6457 * for each queue on the device.
6458 */
6459 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6460 void (*setup)(struct net_device *),
6461 unsigned int txqs, unsigned int rxqs)
6462 {
6463 struct net_device *dev;
6464 size_t alloc_size;
6465 struct net_device *p;
6466
6467 BUG_ON(strlen(name) >= sizeof(dev->name));
6468
6469 if (txqs < 1) {
6470 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6471 return NULL;
6472 }
6473
6474 #ifdef CONFIG_SYSFS
6475 if (rxqs < 1) {
6476 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6477 return NULL;
6478 }
6479 #endif
6480
6481 alloc_size = sizeof(struct net_device);
6482 if (sizeof_priv) {
6483 /* ensure 32-byte alignment of private area */
6484 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6485 alloc_size += sizeof_priv;
6486 }
6487 /* ensure 32-byte alignment of whole construct */
6488 alloc_size += NETDEV_ALIGN - 1;
6489
6490 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6491 if (!p)
6492 p = vzalloc(alloc_size);
6493 if (!p)
6494 return NULL;
6495
6496 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6497 dev->padded = (char *)dev - (char *)p;
6498
6499 dev->pcpu_refcnt = alloc_percpu(int);
6500 if (!dev->pcpu_refcnt)
6501 goto free_dev;
6502
6503 if (dev_addr_init(dev))
6504 goto free_pcpu;
6505
6506 dev_mc_init(dev);
6507 dev_uc_init(dev);
6508
6509 dev_net_set(dev, &init_net);
6510
6511 dev->gso_max_size = GSO_MAX_SIZE;
6512 dev->gso_max_segs = GSO_MAX_SEGS;
6513
6514 INIT_LIST_HEAD(&dev->napi_list);
6515 INIT_LIST_HEAD(&dev->unreg_list);
6516 INIT_LIST_HEAD(&dev->close_list);
6517 INIT_LIST_HEAD(&dev->link_watch_list);
6518 INIT_LIST_HEAD(&dev->adj_list.upper);
6519 INIT_LIST_HEAD(&dev->adj_list.lower);
6520 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6521 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6522 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6523 setup(dev);
6524
6525 dev->num_tx_queues = txqs;
6526 dev->real_num_tx_queues = txqs;
6527 if (netif_alloc_netdev_queues(dev))
6528 goto free_all;
6529
6530 #ifdef CONFIG_SYSFS
6531 dev->num_rx_queues = rxqs;
6532 dev->real_num_rx_queues = rxqs;
6533 if (netif_alloc_rx_queues(dev))
6534 goto free_all;
6535 #endif
6536
6537 strcpy(dev->name, name);
6538 dev->group = INIT_NETDEV_GROUP;
6539 if (!dev->ethtool_ops)
6540 dev->ethtool_ops = &default_ethtool_ops;
6541 return dev;
6542
6543 free_all:
6544 free_netdev(dev);
6545 return NULL;
6546
6547 free_pcpu:
6548 free_percpu(dev->pcpu_refcnt);
6549 free_dev:
6550 netdev_freemem(dev);
6551 return NULL;
6552 }
6553 EXPORT_SYMBOL(alloc_netdev_mqs);
6554
6555 /**
6556 * free_netdev - free network device
6557 * @dev: device
6558 *
6559 * This function does the last stage of destroying an allocated device
6560 * interface. The reference to the device object is released.
6561 * If this is the last reference then it will be freed.
6562 */
6563 void free_netdev(struct net_device *dev)
6564 {
6565 struct napi_struct *p, *n;
6566
6567 release_net(dev_net(dev));
6568
6569 netif_free_tx_queues(dev);
6570 #ifdef CONFIG_SYSFS
6571 kfree(dev->_rx);
6572 #endif
6573
6574 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6575
6576 /* Flush device addresses */
6577 dev_addr_flush(dev);
6578
6579 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6580 netif_napi_del(p);
6581
6582 free_percpu(dev->pcpu_refcnt);
6583 dev->pcpu_refcnt = NULL;
6584
6585 /* Compatibility with error handling in drivers */
6586 if (dev->reg_state == NETREG_UNINITIALIZED) {
6587 netdev_freemem(dev);
6588 return;
6589 }
6590
6591 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6592 dev->reg_state = NETREG_RELEASED;
6593
6594 /* will free via device release */
6595 put_device(&dev->dev);
6596 }
6597 EXPORT_SYMBOL(free_netdev);
6598
6599 /**
6600 * synchronize_net - Synchronize with packet receive processing
6601 *
6602 * Wait for packets currently being received to be done.
6603 * Does not block later packets from starting.
6604 */
6605 void synchronize_net(void)
6606 {
6607 might_sleep();
6608 if (rtnl_is_locked())
6609 synchronize_rcu_expedited();
6610 else
6611 synchronize_rcu();
6612 }
6613 EXPORT_SYMBOL(synchronize_net);
6614
6615 /**
6616 * unregister_netdevice_queue - remove device from the kernel
6617 * @dev: device
6618 * @head: list
6619 *
6620 * This function shuts down a device interface and removes it
6621 * from the kernel tables.
6622 * If head not NULL, device is queued to be unregistered later.
6623 *
6624 * Callers must hold the rtnl semaphore. You may want
6625 * unregister_netdev() instead of this.
6626 */
6627
6628 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6629 {
6630 ASSERT_RTNL();
6631
6632 if (head) {
6633 list_move_tail(&dev->unreg_list, head);
6634 } else {
6635 rollback_registered(dev);
6636 /* Finish processing unregister after unlock */
6637 net_set_todo(dev);
6638 }
6639 }
6640 EXPORT_SYMBOL(unregister_netdevice_queue);
6641
6642 /**
6643 * unregister_netdevice_many - unregister many devices
6644 * @head: list of devices
6645 *
6646 * Note: As most callers use a stack allocated list_head,
6647 * we force a list_del() to make sure stack wont be corrupted later.
6648 */
6649 void unregister_netdevice_many(struct list_head *head)
6650 {
6651 struct net_device *dev;
6652
6653 if (!list_empty(head)) {
6654 rollback_registered_many(head);
6655 list_for_each_entry(dev, head, unreg_list)
6656 net_set_todo(dev);
6657 list_del(head);
6658 }
6659 }
6660 EXPORT_SYMBOL(unregister_netdevice_many);
6661
6662 /**
6663 * unregister_netdev - remove device from the kernel
6664 * @dev: device
6665 *
6666 * This function shuts down a device interface and removes it
6667 * from the kernel tables.
6668 *
6669 * This is just a wrapper for unregister_netdevice that takes
6670 * the rtnl semaphore. In general you want to use this and not
6671 * unregister_netdevice.
6672 */
6673 void unregister_netdev(struct net_device *dev)
6674 {
6675 rtnl_lock();
6676 unregister_netdevice(dev);
6677 rtnl_unlock();
6678 }
6679 EXPORT_SYMBOL(unregister_netdev);
6680
6681 /**
6682 * dev_change_net_namespace - move device to different nethost namespace
6683 * @dev: device
6684 * @net: network namespace
6685 * @pat: If not NULL name pattern to try if the current device name
6686 * is already taken in the destination network namespace.
6687 *
6688 * This function shuts down a device interface and moves it
6689 * to a new network namespace. On success 0 is returned, on
6690 * a failure a netagive errno code is returned.
6691 *
6692 * Callers must hold the rtnl semaphore.
6693 */
6694
6695 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6696 {
6697 int err;
6698
6699 ASSERT_RTNL();
6700
6701 /* Don't allow namespace local devices to be moved. */
6702 err = -EINVAL;
6703 if (dev->features & NETIF_F_NETNS_LOCAL)
6704 goto out;
6705
6706 /* Ensure the device has been registrered */
6707 if (dev->reg_state != NETREG_REGISTERED)
6708 goto out;
6709
6710 /* Get out if there is nothing todo */
6711 err = 0;
6712 if (net_eq(dev_net(dev), net))
6713 goto out;
6714
6715 /* Pick the destination device name, and ensure
6716 * we can use it in the destination network namespace.
6717 */
6718 err = -EEXIST;
6719 if (__dev_get_by_name(net, dev->name)) {
6720 /* We get here if we can't use the current device name */
6721 if (!pat)
6722 goto out;
6723 if (dev_get_valid_name(net, dev, pat) < 0)
6724 goto out;
6725 }
6726
6727 /*
6728 * And now a mini version of register_netdevice unregister_netdevice.
6729 */
6730
6731 /* If device is running close it first. */
6732 dev_close(dev);
6733
6734 /* And unlink it from device chain */
6735 err = -ENODEV;
6736 unlist_netdevice(dev);
6737
6738 synchronize_net();
6739
6740 /* Shutdown queueing discipline. */
6741 dev_shutdown(dev);
6742
6743 /* Notify protocols, that we are about to destroy
6744 this device. They should clean all the things.
6745
6746 Note that dev->reg_state stays at NETREG_REGISTERED.
6747 This is wanted because this way 8021q and macvlan know
6748 the device is just moving and can keep their slaves up.
6749 */
6750 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6751 rcu_barrier();
6752 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6753 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6754
6755 /*
6756 * Flush the unicast and multicast chains
6757 */
6758 dev_uc_flush(dev);
6759 dev_mc_flush(dev);
6760
6761 /* Send a netdev-removed uevent to the old namespace */
6762 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6763
6764 /* Actually switch the network namespace */
6765 dev_net_set(dev, net);
6766
6767 /* If there is an ifindex conflict assign a new one */
6768 if (__dev_get_by_index(net, dev->ifindex)) {
6769 int iflink = (dev->iflink == dev->ifindex);
6770 dev->ifindex = dev_new_index(net);
6771 if (iflink)
6772 dev->iflink = dev->ifindex;
6773 }
6774
6775 /* Send a netdev-add uevent to the new namespace */
6776 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6777
6778 /* Fixup kobjects */
6779 err = device_rename(&dev->dev, dev->name);
6780 WARN_ON(err);
6781
6782 /* Add the device back in the hashes */
6783 list_netdevice(dev);
6784
6785 /* Notify protocols, that a new device appeared. */
6786 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6787
6788 /*
6789 * Prevent userspace races by waiting until the network
6790 * device is fully setup before sending notifications.
6791 */
6792 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6793
6794 synchronize_net();
6795 err = 0;
6796 out:
6797 return err;
6798 }
6799 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6800
6801 static int dev_cpu_callback(struct notifier_block *nfb,
6802 unsigned long action,
6803 void *ocpu)
6804 {
6805 struct sk_buff **list_skb;
6806 struct sk_buff *skb;
6807 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6808 struct softnet_data *sd, *oldsd;
6809
6810 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6811 return NOTIFY_OK;
6812
6813 local_irq_disable();
6814 cpu = smp_processor_id();
6815 sd = &per_cpu(softnet_data, cpu);
6816 oldsd = &per_cpu(softnet_data, oldcpu);
6817
6818 /* Find end of our completion_queue. */
6819 list_skb = &sd->completion_queue;
6820 while (*list_skb)
6821 list_skb = &(*list_skb)->next;
6822 /* Append completion queue from offline CPU. */
6823 *list_skb = oldsd->completion_queue;
6824 oldsd->completion_queue = NULL;
6825
6826 /* Append output queue from offline CPU. */
6827 if (oldsd->output_queue) {
6828 *sd->output_queue_tailp = oldsd->output_queue;
6829 sd->output_queue_tailp = oldsd->output_queue_tailp;
6830 oldsd->output_queue = NULL;
6831 oldsd->output_queue_tailp = &oldsd->output_queue;
6832 }
6833 /* Append NAPI poll list from offline CPU. */
6834 if (!list_empty(&oldsd->poll_list)) {
6835 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6836 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6837 }
6838
6839 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6840 local_irq_enable();
6841
6842 /* Process offline CPU's input_pkt_queue */
6843 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6844 netif_rx_internal(skb);
6845 input_queue_head_incr(oldsd);
6846 }
6847 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6848 netif_rx_internal(skb);
6849 input_queue_head_incr(oldsd);
6850 }
6851
6852 return NOTIFY_OK;
6853 }
6854
6855
6856 /**
6857 * netdev_increment_features - increment feature set by one
6858 * @all: current feature set
6859 * @one: new feature set
6860 * @mask: mask feature set
6861 *
6862 * Computes a new feature set after adding a device with feature set
6863 * @one to the master device with current feature set @all. Will not
6864 * enable anything that is off in @mask. Returns the new feature set.
6865 */
6866 netdev_features_t netdev_increment_features(netdev_features_t all,
6867 netdev_features_t one, netdev_features_t mask)
6868 {
6869 if (mask & NETIF_F_GEN_CSUM)
6870 mask |= NETIF_F_ALL_CSUM;
6871 mask |= NETIF_F_VLAN_CHALLENGED;
6872
6873 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6874 all &= one | ~NETIF_F_ALL_FOR_ALL;
6875
6876 /* If one device supports hw checksumming, set for all. */
6877 if (all & NETIF_F_GEN_CSUM)
6878 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6879
6880 return all;
6881 }
6882 EXPORT_SYMBOL(netdev_increment_features);
6883
6884 static struct hlist_head * __net_init netdev_create_hash(void)
6885 {
6886 int i;
6887 struct hlist_head *hash;
6888
6889 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6890 if (hash != NULL)
6891 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6892 INIT_HLIST_HEAD(&hash[i]);
6893
6894 return hash;
6895 }
6896
6897 /* Initialize per network namespace state */
6898 static int __net_init netdev_init(struct net *net)
6899 {
6900 if (net != &init_net)
6901 INIT_LIST_HEAD(&net->dev_base_head);
6902
6903 net->dev_name_head = netdev_create_hash();
6904 if (net->dev_name_head == NULL)
6905 goto err_name;
6906
6907 net->dev_index_head = netdev_create_hash();
6908 if (net->dev_index_head == NULL)
6909 goto err_idx;
6910
6911 return 0;
6912
6913 err_idx:
6914 kfree(net->dev_name_head);
6915 err_name:
6916 return -ENOMEM;
6917 }
6918
6919 /**
6920 * netdev_drivername - network driver for the device
6921 * @dev: network device
6922 *
6923 * Determine network driver for device.
6924 */
6925 const char *netdev_drivername(const struct net_device *dev)
6926 {
6927 const struct device_driver *driver;
6928 const struct device *parent;
6929 const char *empty = "";
6930
6931 parent = dev->dev.parent;
6932 if (!parent)
6933 return empty;
6934
6935 driver = parent->driver;
6936 if (driver && driver->name)
6937 return driver->name;
6938 return empty;
6939 }
6940
6941 static int __netdev_printk(const char *level, const struct net_device *dev,
6942 struct va_format *vaf)
6943 {
6944 int r;
6945
6946 if (dev && dev->dev.parent) {
6947 r = dev_printk_emit(level[1] - '0',
6948 dev->dev.parent,
6949 "%s %s %s: %pV",
6950 dev_driver_string(dev->dev.parent),
6951 dev_name(dev->dev.parent),
6952 netdev_name(dev), vaf);
6953 } else if (dev) {
6954 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6955 } else {
6956 r = printk("%s(NULL net_device): %pV", level, vaf);
6957 }
6958
6959 return r;
6960 }
6961
6962 int netdev_printk(const char *level, const struct net_device *dev,
6963 const char *format, ...)
6964 {
6965 struct va_format vaf;
6966 va_list args;
6967 int r;
6968
6969 va_start(args, format);
6970
6971 vaf.fmt = format;
6972 vaf.va = &args;
6973
6974 r = __netdev_printk(level, dev, &vaf);
6975
6976 va_end(args);
6977
6978 return r;
6979 }
6980 EXPORT_SYMBOL(netdev_printk);
6981
6982 #define define_netdev_printk_level(func, level) \
6983 int func(const struct net_device *dev, const char *fmt, ...) \
6984 { \
6985 int r; \
6986 struct va_format vaf; \
6987 va_list args; \
6988 \
6989 va_start(args, fmt); \
6990 \
6991 vaf.fmt = fmt; \
6992 vaf.va = &args; \
6993 \
6994 r = __netdev_printk(level, dev, &vaf); \
6995 \
6996 va_end(args); \
6997 \
6998 return r; \
6999 } \
7000 EXPORT_SYMBOL(func);
7001
7002 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7003 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7004 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7005 define_netdev_printk_level(netdev_err, KERN_ERR);
7006 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7007 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7008 define_netdev_printk_level(netdev_info, KERN_INFO);
7009
7010 static void __net_exit netdev_exit(struct net *net)
7011 {
7012 kfree(net->dev_name_head);
7013 kfree(net->dev_index_head);
7014 }
7015
7016 static struct pernet_operations __net_initdata netdev_net_ops = {
7017 .init = netdev_init,
7018 .exit = netdev_exit,
7019 };
7020
7021 static void __net_exit default_device_exit(struct net *net)
7022 {
7023 struct net_device *dev, *aux;
7024 /*
7025 * Push all migratable network devices back to the
7026 * initial network namespace
7027 */
7028 rtnl_lock();
7029 for_each_netdev_safe(net, dev, aux) {
7030 int err;
7031 char fb_name[IFNAMSIZ];
7032
7033 /* Ignore unmoveable devices (i.e. loopback) */
7034 if (dev->features & NETIF_F_NETNS_LOCAL)
7035 continue;
7036
7037 /* Leave virtual devices for the generic cleanup */
7038 if (dev->rtnl_link_ops)
7039 continue;
7040
7041 /* Push remaining network devices to init_net */
7042 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7043 err = dev_change_net_namespace(dev, &init_net, fb_name);
7044 if (err) {
7045 pr_emerg("%s: failed to move %s to init_net: %d\n",
7046 __func__, dev->name, err);
7047 BUG();
7048 }
7049 }
7050 rtnl_unlock();
7051 }
7052
7053 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7054 {
7055 /* Return with the rtnl_lock held when there are no network
7056 * devices unregistering in any network namespace in net_list.
7057 */
7058 struct net *net;
7059 bool unregistering;
7060 DEFINE_WAIT(wait);
7061
7062 for (;;) {
7063 prepare_to_wait(&netdev_unregistering_wq, &wait,
7064 TASK_UNINTERRUPTIBLE);
7065 unregistering = false;
7066 rtnl_lock();
7067 list_for_each_entry(net, net_list, exit_list) {
7068 if (net->dev_unreg_count > 0) {
7069 unregistering = true;
7070 break;
7071 }
7072 }
7073 if (!unregistering)
7074 break;
7075 __rtnl_unlock();
7076 schedule();
7077 }
7078 finish_wait(&netdev_unregistering_wq, &wait);
7079 }
7080
7081 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7082 {
7083 /* At exit all network devices most be removed from a network
7084 * namespace. Do this in the reverse order of registration.
7085 * Do this across as many network namespaces as possible to
7086 * improve batching efficiency.
7087 */
7088 struct net_device *dev;
7089 struct net *net;
7090 LIST_HEAD(dev_kill_list);
7091
7092 /* To prevent network device cleanup code from dereferencing
7093 * loopback devices or network devices that have been freed
7094 * wait here for all pending unregistrations to complete,
7095 * before unregistring the loopback device and allowing the
7096 * network namespace be freed.
7097 *
7098 * The netdev todo list containing all network devices
7099 * unregistrations that happen in default_device_exit_batch
7100 * will run in the rtnl_unlock() at the end of
7101 * default_device_exit_batch.
7102 */
7103 rtnl_lock_unregistering(net_list);
7104 list_for_each_entry(net, net_list, exit_list) {
7105 for_each_netdev_reverse(net, dev) {
7106 if (dev->rtnl_link_ops)
7107 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7108 else
7109 unregister_netdevice_queue(dev, &dev_kill_list);
7110 }
7111 }
7112 unregister_netdevice_many(&dev_kill_list);
7113 rtnl_unlock();
7114 }
7115
7116 static struct pernet_operations __net_initdata default_device_ops = {
7117 .exit = default_device_exit,
7118 .exit_batch = default_device_exit_batch,
7119 };
7120
7121 /*
7122 * Initialize the DEV module. At boot time this walks the device list and
7123 * unhooks any devices that fail to initialise (normally hardware not
7124 * present) and leaves us with a valid list of present and active devices.
7125 *
7126 */
7127
7128 /*
7129 * This is called single threaded during boot, so no need
7130 * to take the rtnl semaphore.
7131 */
7132 static int __init net_dev_init(void)
7133 {
7134 int i, rc = -ENOMEM;
7135
7136 BUG_ON(!dev_boot_phase);
7137
7138 if (dev_proc_init())
7139 goto out;
7140
7141 if (netdev_kobject_init())
7142 goto out;
7143
7144 INIT_LIST_HEAD(&ptype_all);
7145 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7146 INIT_LIST_HEAD(&ptype_base[i]);
7147
7148 INIT_LIST_HEAD(&offload_base);
7149
7150 if (register_pernet_subsys(&netdev_net_ops))
7151 goto out;
7152
7153 /*
7154 * Initialise the packet receive queues.
7155 */
7156
7157 for_each_possible_cpu(i) {
7158 struct softnet_data *sd = &per_cpu(softnet_data, i);
7159
7160 skb_queue_head_init(&sd->input_pkt_queue);
7161 skb_queue_head_init(&sd->process_queue);
7162 INIT_LIST_HEAD(&sd->poll_list);
7163 sd->output_queue_tailp = &sd->output_queue;
7164 #ifdef CONFIG_RPS
7165 sd->csd.func = rps_trigger_softirq;
7166 sd->csd.info = sd;
7167 sd->cpu = i;
7168 #endif
7169
7170 sd->backlog.poll = process_backlog;
7171 sd->backlog.weight = weight_p;
7172 }
7173
7174 dev_boot_phase = 0;
7175
7176 /* The loopback device is special if any other network devices
7177 * is present in a network namespace the loopback device must
7178 * be present. Since we now dynamically allocate and free the
7179 * loopback device ensure this invariant is maintained by
7180 * keeping the loopback device as the first device on the
7181 * list of network devices. Ensuring the loopback devices
7182 * is the first device that appears and the last network device
7183 * that disappears.
7184 */
7185 if (register_pernet_device(&loopback_net_ops))
7186 goto out;
7187
7188 if (register_pernet_device(&default_device_ops))
7189 goto out;
7190
7191 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7192 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7193
7194 hotcpu_notifier(dev_cpu_callback, 0);
7195 dst_init();
7196 rc = 0;
7197 out:
7198 return rc;
7199 }
7200
7201 subsys_initcall(net_dev_init);
This page took 0.164077 seconds and 6 git commands to generate.