net: dont leave active on stack LIST_HEAD
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device.
753 * The caller must hold RCU or RTNL.
754 * The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 */
758
759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
760 const char *ha)
761 {
762 struct net_device *dev;
763
764 for_each_netdev_rcu(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close_many(struct list_head *head)
1227 {
1228 struct net_device *dev;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list, it
1243 * can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249 }
1250
1251 dev_deactivate_many(head);
1252
1253 list_for_each_entry(dev, head, unreg_list) {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255
1256 /*
1257 * Call the device specific close. This cannot fail.
1258 * Only if device is UP
1259 *
1260 * We allow it to be called even after a DETACH hot-plug
1261 * event.
1262 */
1263 if (ops->ndo_stop)
1264 ops->ndo_stop(dev);
1265
1266 /*
1267 * Device is now down.
1268 */
1269
1270 dev->flags &= ~IFF_UP;
1271
1272 /*
1273 * Shutdown NET_DMA
1274 */
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 /*
1304 * Tell people we are down
1305 */
1306 list_for_each_entry(dev, head, unreg_list) {
1307 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1308 call_netdevice_notifiers(NETDEV_DOWN, dev);
1309 }
1310
1311 /* rollback_registered_many needs the complete original list */
1312 list_splice(&tmp_list, head);
1313 return 0;
1314 }
1315
1316 /**
1317 * dev_close - shutdown an interface.
1318 * @dev: device to shutdown
1319 *
1320 * This function moves an active device into down state. A
1321 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1322 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1323 * chain.
1324 */
1325 int dev_close(struct net_device *dev)
1326 {
1327 LIST_HEAD(single);
1328
1329 list_add(&dev->unreg_list, &single);
1330 dev_close_many(&single);
1331 list_del(&single);
1332 return 0;
1333 }
1334 EXPORT_SYMBOL(dev_close);
1335
1336
1337 /**
1338 * dev_disable_lro - disable Large Receive Offload on a device
1339 * @dev: device
1340 *
1341 * Disable Large Receive Offload (LRO) on a net device. Must be
1342 * called under RTNL. This is needed if received packets may be
1343 * forwarded to another interface.
1344 */
1345 void dev_disable_lro(struct net_device *dev)
1346 {
1347 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1348 dev->ethtool_ops->set_flags) {
1349 u32 flags = dev->ethtool_ops->get_flags(dev);
1350 if (flags & ETH_FLAG_LRO) {
1351 flags &= ~ETH_FLAG_LRO;
1352 dev->ethtool_ops->set_flags(dev, flags);
1353 }
1354 }
1355 WARN_ON(dev->features & NETIF_F_LRO);
1356 }
1357 EXPORT_SYMBOL(dev_disable_lro);
1358
1359
1360 static int dev_boot_phase = 1;
1361
1362 /*
1363 * Device change register/unregister. These are not inline or static
1364 * as we export them to the world.
1365 */
1366
1367 /**
1368 * register_netdevice_notifier - register a network notifier block
1369 * @nb: notifier
1370 *
1371 * Register a notifier to be called when network device events occur.
1372 * The notifier passed is linked into the kernel structures and must
1373 * not be reused until it has been unregistered. A negative errno code
1374 * is returned on a failure.
1375 *
1376 * When registered all registration and up events are replayed
1377 * to the new notifier to allow device to have a race free
1378 * view of the network device list.
1379 */
1380
1381 int register_netdevice_notifier(struct notifier_block *nb)
1382 {
1383 struct net_device *dev;
1384 struct net_device *last;
1385 struct net *net;
1386 int err;
1387
1388 rtnl_lock();
1389 err = raw_notifier_chain_register(&netdev_chain, nb);
1390 if (err)
1391 goto unlock;
1392 if (dev_boot_phase)
1393 goto unlock;
1394 for_each_net(net) {
1395 for_each_netdev(net, dev) {
1396 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1397 err = notifier_to_errno(err);
1398 if (err)
1399 goto rollback;
1400
1401 if (!(dev->flags & IFF_UP))
1402 continue;
1403
1404 nb->notifier_call(nb, NETDEV_UP, dev);
1405 }
1406 }
1407
1408 unlock:
1409 rtnl_unlock();
1410 return err;
1411
1412 rollback:
1413 last = dev;
1414 for_each_net(net) {
1415 for_each_netdev(net, dev) {
1416 if (dev == last)
1417 break;
1418
1419 if (dev->flags & IFF_UP) {
1420 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1421 nb->notifier_call(nb, NETDEV_DOWN, dev);
1422 }
1423 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1424 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1425 }
1426 }
1427
1428 raw_notifier_chain_unregister(&netdev_chain, nb);
1429 goto unlock;
1430 }
1431 EXPORT_SYMBOL(register_netdevice_notifier);
1432
1433 /**
1434 * unregister_netdevice_notifier - unregister a network notifier block
1435 * @nb: notifier
1436 *
1437 * Unregister a notifier previously registered by
1438 * register_netdevice_notifier(). The notifier is unlinked into the
1439 * kernel structures and may then be reused. A negative errno code
1440 * is returned on a failure.
1441 */
1442
1443 int unregister_netdevice_notifier(struct notifier_block *nb)
1444 {
1445 int err;
1446
1447 rtnl_lock();
1448 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1449 rtnl_unlock();
1450 return err;
1451 }
1452 EXPORT_SYMBOL(unregister_netdevice_notifier);
1453
1454 /**
1455 * call_netdevice_notifiers - call all network notifier blocks
1456 * @val: value passed unmodified to notifier function
1457 * @dev: net_device pointer passed unmodified to notifier function
1458 *
1459 * Call all network notifier blocks. Parameters and return value
1460 * are as for raw_notifier_call_chain().
1461 */
1462
1463 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1464 {
1465 ASSERT_RTNL();
1466 return raw_notifier_call_chain(&netdev_chain, val, dev);
1467 }
1468
1469 /* When > 0 there are consumers of rx skb time stamps */
1470 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1471
1472 void net_enable_timestamp(void)
1473 {
1474 atomic_inc(&netstamp_needed);
1475 }
1476 EXPORT_SYMBOL(net_enable_timestamp);
1477
1478 void net_disable_timestamp(void)
1479 {
1480 atomic_dec(&netstamp_needed);
1481 }
1482 EXPORT_SYMBOL(net_disable_timestamp);
1483
1484 static inline void net_timestamp_set(struct sk_buff *skb)
1485 {
1486 if (atomic_read(&netstamp_needed))
1487 __net_timestamp(skb);
1488 else
1489 skb->tstamp.tv64 = 0;
1490 }
1491
1492 static inline void net_timestamp_check(struct sk_buff *skb)
1493 {
1494 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1495 __net_timestamp(skb);
1496 }
1497
1498 /**
1499 * dev_forward_skb - loopback an skb to another netif
1500 *
1501 * @dev: destination network device
1502 * @skb: buffer to forward
1503 *
1504 * return values:
1505 * NET_RX_SUCCESS (no congestion)
1506 * NET_RX_DROP (packet was dropped, but freed)
1507 *
1508 * dev_forward_skb can be used for injecting an skb from the
1509 * start_xmit function of one device into the receive queue
1510 * of another device.
1511 *
1512 * The receiving device may be in another namespace, so
1513 * we have to clear all information in the skb that could
1514 * impact namespace isolation.
1515 */
1516 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1517 {
1518 skb_orphan(skb);
1519 nf_reset(skb);
1520
1521 if (unlikely(!(dev->flags & IFF_UP) ||
1522 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1523 atomic_long_inc(&dev->rx_dropped);
1524 kfree_skb(skb);
1525 return NET_RX_DROP;
1526 }
1527 skb_set_dev(skb, dev);
1528 skb->tstamp.tv64 = 0;
1529 skb->pkt_type = PACKET_HOST;
1530 skb->protocol = eth_type_trans(skb, dev);
1531 return netif_rx(skb);
1532 }
1533 EXPORT_SYMBOL_GPL(dev_forward_skb);
1534
1535 static inline int deliver_skb(struct sk_buff *skb,
1536 struct packet_type *pt_prev,
1537 struct net_device *orig_dev)
1538 {
1539 atomic_inc(&skb->users);
1540 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1541 }
1542
1543 /*
1544 * Support routine. Sends outgoing frames to any network
1545 * taps currently in use.
1546 */
1547
1548 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1549 {
1550 struct packet_type *ptype;
1551 struct sk_buff *skb2 = NULL;
1552 struct packet_type *pt_prev = NULL;
1553
1554 rcu_read_lock();
1555 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1556 /* Never send packets back to the socket
1557 * they originated from - MvS (miquels@drinkel.ow.org)
1558 */
1559 if ((ptype->dev == dev || !ptype->dev) &&
1560 (ptype->af_packet_priv == NULL ||
1561 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1562 if (pt_prev) {
1563 deliver_skb(skb2, pt_prev, skb->dev);
1564 pt_prev = ptype;
1565 continue;
1566 }
1567
1568 skb2 = skb_clone(skb, GFP_ATOMIC);
1569 if (!skb2)
1570 break;
1571
1572 net_timestamp_set(skb2);
1573
1574 /* skb->nh should be correctly
1575 set by sender, so that the second statement is
1576 just protection against buggy protocols.
1577 */
1578 skb_reset_mac_header(skb2);
1579
1580 if (skb_network_header(skb2) < skb2->data ||
1581 skb2->network_header > skb2->tail) {
1582 if (net_ratelimit())
1583 printk(KERN_CRIT "protocol %04x is "
1584 "buggy, dev %s\n",
1585 ntohs(skb2->protocol),
1586 dev->name);
1587 skb_reset_network_header(skb2);
1588 }
1589
1590 skb2->transport_header = skb2->network_header;
1591 skb2->pkt_type = PACKET_OUTGOING;
1592 pt_prev = ptype;
1593 }
1594 }
1595 if (pt_prev)
1596 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1597 rcu_read_unlock();
1598 }
1599
1600 /*
1601 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1602 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1603 */
1604 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1605 {
1606 int rc;
1607
1608 if (txq < 1 || txq > dev->num_tx_queues)
1609 return -EINVAL;
1610
1611 if (dev->reg_state == NETREG_REGISTERED) {
1612 ASSERT_RTNL();
1613
1614 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1615 txq);
1616 if (rc)
1617 return rc;
1618
1619 if (txq < dev->real_num_tx_queues)
1620 qdisc_reset_all_tx_gt(dev, txq);
1621 }
1622
1623 dev->real_num_tx_queues = txq;
1624 return 0;
1625 }
1626 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1627
1628 #ifdef CONFIG_RPS
1629 /**
1630 * netif_set_real_num_rx_queues - set actual number of RX queues used
1631 * @dev: Network device
1632 * @rxq: Actual number of RX queues
1633 *
1634 * This must be called either with the rtnl_lock held or before
1635 * registration of the net device. Returns 0 on success, or a
1636 * negative error code. If called before registration, it always
1637 * succeeds.
1638 */
1639 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1640 {
1641 int rc;
1642
1643 if (rxq < 1 || rxq > dev->num_rx_queues)
1644 return -EINVAL;
1645
1646 if (dev->reg_state == NETREG_REGISTERED) {
1647 ASSERT_RTNL();
1648
1649 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1650 rxq);
1651 if (rc)
1652 return rc;
1653 }
1654
1655 dev->real_num_rx_queues = rxq;
1656 return 0;
1657 }
1658 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1659 #endif
1660
1661 static inline void __netif_reschedule(struct Qdisc *q)
1662 {
1663 struct softnet_data *sd;
1664 unsigned long flags;
1665
1666 local_irq_save(flags);
1667 sd = &__get_cpu_var(softnet_data);
1668 q->next_sched = NULL;
1669 *sd->output_queue_tailp = q;
1670 sd->output_queue_tailp = &q->next_sched;
1671 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1672 local_irq_restore(flags);
1673 }
1674
1675 void __netif_schedule(struct Qdisc *q)
1676 {
1677 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1678 __netif_reschedule(q);
1679 }
1680 EXPORT_SYMBOL(__netif_schedule);
1681
1682 void dev_kfree_skb_irq(struct sk_buff *skb)
1683 {
1684 if (atomic_dec_and_test(&skb->users)) {
1685 struct softnet_data *sd;
1686 unsigned long flags;
1687
1688 local_irq_save(flags);
1689 sd = &__get_cpu_var(softnet_data);
1690 skb->next = sd->completion_queue;
1691 sd->completion_queue = skb;
1692 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1693 local_irq_restore(flags);
1694 }
1695 }
1696 EXPORT_SYMBOL(dev_kfree_skb_irq);
1697
1698 void dev_kfree_skb_any(struct sk_buff *skb)
1699 {
1700 if (in_irq() || irqs_disabled())
1701 dev_kfree_skb_irq(skb);
1702 else
1703 dev_kfree_skb(skb);
1704 }
1705 EXPORT_SYMBOL(dev_kfree_skb_any);
1706
1707
1708 /**
1709 * netif_device_detach - mark device as removed
1710 * @dev: network device
1711 *
1712 * Mark device as removed from system and therefore no longer available.
1713 */
1714 void netif_device_detach(struct net_device *dev)
1715 {
1716 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1717 netif_running(dev)) {
1718 netif_tx_stop_all_queues(dev);
1719 }
1720 }
1721 EXPORT_SYMBOL(netif_device_detach);
1722
1723 /**
1724 * netif_device_attach - mark device as attached
1725 * @dev: network device
1726 *
1727 * Mark device as attached from system and restart if needed.
1728 */
1729 void netif_device_attach(struct net_device *dev)
1730 {
1731 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1732 netif_running(dev)) {
1733 netif_tx_wake_all_queues(dev);
1734 __netdev_watchdog_up(dev);
1735 }
1736 }
1737 EXPORT_SYMBOL(netif_device_attach);
1738
1739 /**
1740 * skb_dev_set -- assign a new device to a buffer
1741 * @skb: buffer for the new device
1742 * @dev: network device
1743 *
1744 * If an skb is owned by a device already, we have to reset
1745 * all data private to the namespace a device belongs to
1746 * before assigning it a new device.
1747 */
1748 #ifdef CONFIG_NET_NS
1749 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1750 {
1751 skb_dst_drop(skb);
1752 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1753 secpath_reset(skb);
1754 nf_reset(skb);
1755 skb_init_secmark(skb);
1756 skb->mark = 0;
1757 skb->priority = 0;
1758 skb->nf_trace = 0;
1759 skb->ipvs_property = 0;
1760 #ifdef CONFIG_NET_SCHED
1761 skb->tc_index = 0;
1762 #endif
1763 }
1764 skb->dev = dev;
1765 }
1766 EXPORT_SYMBOL(skb_set_dev);
1767 #endif /* CONFIG_NET_NS */
1768
1769 /*
1770 * Invalidate hardware checksum when packet is to be mangled, and
1771 * complete checksum manually on outgoing path.
1772 */
1773 int skb_checksum_help(struct sk_buff *skb)
1774 {
1775 __wsum csum;
1776 int ret = 0, offset;
1777
1778 if (skb->ip_summed == CHECKSUM_COMPLETE)
1779 goto out_set_summed;
1780
1781 if (unlikely(skb_shinfo(skb)->gso_size)) {
1782 /* Let GSO fix up the checksum. */
1783 goto out_set_summed;
1784 }
1785
1786 offset = skb_checksum_start_offset(skb);
1787 BUG_ON(offset >= skb_headlen(skb));
1788 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1789
1790 offset += skb->csum_offset;
1791 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1792
1793 if (skb_cloned(skb) &&
1794 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1795 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1796 if (ret)
1797 goto out;
1798 }
1799
1800 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1801 out_set_summed:
1802 skb->ip_summed = CHECKSUM_NONE;
1803 out:
1804 return ret;
1805 }
1806 EXPORT_SYMBOL(skb_checksum_help);
1807
1808 /**
1809 * skb_gso_segment - Perform segmentation on skb.
1810 * @skb: buffer to segment
1811 * @features: features for the output path (see dev->features)
1812 *
1813 * This function segments the given skb and returns a list of segments.
1814 *
1815 * It may return NULL if the skb requires no segmentation. This is
1816 * only possible when GSO is used for verifying header integrity.
1817 */
1818 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1819 {
1820 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1821 struct packet_type *ptype;
1822 __be16 type = skb->protocol;
1823 int vlan_depth = ETH_HLEN;
1824 int err;
1825
1826 while (type == htons(ETH_P_8021Q)) {
1827 struct vlan_hdr *vh;
1828
1829 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1830 return ERR_PTR(-EINVAL);
1831
1832 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1833 type = vh->h_vlan_encapsulated_proto;
1834 vlan_depth += VLAN_HLEN;
1835 }
1836
1837 skb_reset_mac_header(skb);
1838 skb->mac_len = skb->network_header - skb->mac_header;
1839 __skb_pull(skb, skb->mac_len);
1840
1841 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1842 struct net_device *dev = skb->dev;
1843 struct ethtool_drvinfo info = {};
1844
1845 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1846 dev->ethtool_ops->get_drvinfo(dev, &info);
1847
1848 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1849 info.driver, dev ? dev->features : 0L,
1850 skb->sk ? skb->sk->sk_route_caps : 0L,
1851 skb->len, skb->data_len, skb->ip_summed);
1852
1853 if (skb_header_cloned(skb) &&
1854 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1855 return ERR_PTR(err);
1856 }
1857
1858 rcu_read_lock();
1859 list_for_each_entry_rcu(ptype,
1860 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1861 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1862 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1863 err = ptype->gso_send_check(skb);
1864 segs = ERR_PTR(err);
1865 if (err || skb_gso_ok(skb, features))
1866 break;
1867 __skb_push(skb, (skb->data -
1868 skb_network_header(skb)));
1869 }
1870 segs = ptype->gso_segment(skb, features);
1871 break;
1872 }
1873 }
1874 rcu_read_unlock();
1875
1876 __skb_push(skb, skb->data - skb_mac_header(skb));
1877
1878 return segs;
1879 }
1880 EXPORT_SYMBOL(skb_gso_segment);
1881
1882 /* Take action when hardware reception checksum errors are detected. */
1883 #ifdef CONFIG_BUG
1884 void netdev_rx_csum_fault(struct net_device *dev)
1885 {
1886 if (net_ratelimit()) {
1887 printk(KERN_ERR "%s: hw csum failure.\n",
1888 dev ? dev->name : "<unknown>");
1889 dump_stack();
1890 }
1891 }
1892 EXPORT_SYMBOL(netdev_rx_csum_fault);
1893 #endif
1894
1895 /* Actually, we should eliminate this check as soon as we know, that:
1896 * 1. IOMMU is present and allows to map all the memory.
1897 * 2. No high memory really exists on this machine.
1898 */
1899
1900 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1901 {
1902 #ifdef CONFIG_HIGHMEM
1903 int i;
1904 if (!(dev->features & NETIF_F_HIGHDMA)) {
1905 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1906 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1907 return 1;
1908 }
1909
1910 if (PCI_DMA_BUS_IS_PHYS) {
1911 struct device *pdev = dev->dev.parent;
1912
1913 if (!pdev)
1914 return 0;
1915 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1916 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1917 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1918 return 1;
1919 }
1920 }
1921 #endif
1922 return 0;
1923 }
1924
1925 struct dev_gso_cb {
1926 void (*destructor)(struct sk_buff *skb);
1927 };
1928
1929 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1930
1931 static void dev_gso_skb_destructor(struct sk_buff *skb)
1932 {
1933 struct dev_gso_cb *cb;
1934
1935 do {
1936 struct sk_buff *nskb = skb->next;
1937
1938 skb->next = nskb->next;
1939 nskb->next = NULL;
1940 kfree_skb(nskb);
1941 } while (skb->next);
1942
1943 cb = DEV_GSO_CB(skb);
1944 if (cb->destructor)
1945 cb->destructor(skb);
1946 }
1947
1948 /**
1949 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1950 * @skb: buffer to segment
1951 * @features: device features as applicable to this skb
1952 *
1953 * This function segments the given skb and stores the list of segments
1954 * in skb->next.
1955 */
1956 static int dev_gso_segment(struct sk_buff *skb, int features)
1957 {
1958 struct sk_buff *segs;
1959
1960 segs = skb_gso_segment(skb, features);
1961
1962 /* Verifying header integrity only. */
1963 if (!segs)
1964 return 0;
1965
1966 if (IS_ERR(segs))
1967 return PTR_ERR(segs);
1968
1969 skb->next = segs;
1970 DEV_GSO_CB(skb)->destructor = skb->destructor;
1971 skb->destructor = dev_gso_skb_destructor;
1972
1973 return 0;
1974 }
1975
1976 /*
1977 * Try to orphan skb early, right before transmission by the device.
1978 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1979 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1980 */
1981 static inline void skb_orphan_try(struct sk_buff *skb)
1982 {
1983 struct sock *sk = skb->sk;
1984
1985 if (sk && !skb_shinfo(skb)->tx_flags) {
1986 /* skb_tx_hash() wont be able to get sk.
1987 * We copy sk_hash into skb->rxhash
1988 */
1989 if (!skb->rxhash)
1990 skb->rxhash = sk->sk_hash;
1991 skb_orphan(skb);
1992 }
1993 }
1994
1995 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1996 {
1997 return ((features & NETIF_F_GEN_CSUM) ||
1998 ((features & NETIF_F_V4_CSUM) &&
1999 protocol == htons(ETH_P_IP)) ||
2000 ((features & NETIF_F_V6_CSUM) &&
2001 protocol == htons(ETH_P_IPV6)) ||
2002 ((features & NETIF_F_FCOE_CRC) &&
2003 protocol == htons(ETH_P_FCOE)));
2004 }
2005
2006 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2007 {
2008 if (!can_checksum_protocol(features, protocol)) {
2009 features &= ~NETIF_F_ALL_CSUM;
2010 features &= ~NETIF_F_SG;
2011 } else if (illegal_highdma(skb->dev, skb)) {
2012 features &= ~NETIF_F_SG;
2013 }
2014
2015 return features;
2016 }
2017
2018 int netif_skb_features(struct sk_buff *skb)
2019 {
2020 __be16 protocol = skb->protocol;
2021 int features = skb->dev->features;
2022
2023 if (protocol == htons(ETH_P_8021Q)) {
2024 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2025 protocol = veh->h_vlan_encapsulated_proto;
2026 } else if (!vlan_tx_tag_present(skb)) {
2027 return harmonize_features(skb, protocol, features);
2028 }
2029
2030 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2031
2032 if (protocol != htons(ETH_P_8021Q)) {
2033 return harmonize_features(skb, protocol, features);
2034 } else {
2035 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2036 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2037 return harmonize_features(skb, protocol, features);
2038 }
2039 }
2040 EXPORT_SYMBOL(netif_skb_features);
2041
2042 /*
2043 * Returns true if either:
2044 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2045 * 2. skb is fragmented and the device does not support SG, or if
2046 * at least one of fragments is in highmem and device does not
2047 * support DMA from it.
2048 */
2049 static inline int skb_needs_linearize(struct sk_buff *skb,
2050 int features)
2051 {
2052 return skb_is_nonlinear(skb) &&
2053 ((skb_has_frag_list(skb) &&
2054 !(features & NETIF_F_FRAGLIST)) ||
2055 (skb_shinfo(skb)->nr_frags &&
2056 !(features & NETIF_F_SG)));
2057 }
2058
2059 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2060 struct netdev_queue *txq)
2061 {
2062 const struct net_device_ops *ops = dev->netdev_ops;
2063 int rc = NETDEV_TX_OK;
2064
2065 if (likely(!skb->next)) {
2066 int features;
2067
2068 /*
2069 * If device doesnt need skb->dst, release it right now while
2070 * its hot in this cpu cache
2071 */
2072 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2073 skb_dst_drop(skb);
2074
2075 if (!list_empty(&ptype_all))
2076 dev_queue_xmit_nit(skb, dev);
2077
2078 skb_orphan_try(skb);
2079
2080 features = netif_skb_features(skb);
2081
2082 if (vlan_tx_tag_present(skb) &&
2083 !(features & NETIF_F_HW_VLAN_TX)) {
2084 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2085 if (unlikely(!skb))
2086 goto out;
2087
2088 skb->vlan_tci = 0;
2089 }
2090
2091 if (netif_needs_gso(skb, features)) {
2092 if (unlikely(dev_gso_segment(skb, features)))
2093 goto out_kfree_skb;
2094 if (skb->next)
2095 goto gso;
2096 } else {
2097 if (skb_needs_linearize(skb, features) &&
2098 __skb_linearize(skb))
2099 goto out_kfree_skb;
2100
2101 /* If packet is not checksummed and device does not
2102 * support checksumming for this protocol, complete
2103 * checksumming here.
2104 */
2105 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2106 skb_set_transport_header(skb,
2107 skb_checksum_start_offset(skb));
2108 if (!(features & NETIF_F_ALL_CSUM) &&
2109 skb_checksum_help(skb))
2110 goto out_kfree_skb;
2111 }
2112 }
2113
2114 rc = ops->ndo_start_xmit(skb, dev);
2115 trace_net_dev_xmit(skb, rc);
2116 if (rc == NETDEV_TX_OK)
2117 txq_trans_update(txq);
2118 return rc;
2119 }
2120
2121 gso:
2122 do {
2123 struct sk_buff *nskb = skb->next;
2124
2125 skb->next = nskb->next;
2126 nskb->next = NULL;
2127
2128 /*
2129 * If device doesnt need nskb->dst, release it right now while
2130 * its hot in this cpu cache
2131 */
2132 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2133 skb_dst_drop(nskb);
2134
2135 rc = ops->ndo_start_xmit(nskb, dev);
2136 trace_net_dev_xmit(nskb, rc);
2137 if (unlikely(rc != NETDEV_TX_OK)) {
2138 if (rc & ~NETDEV_TX_MASK)
2139 goto out_kfree_gso_skb;
2140 nskb->next = skb->next;
2141 skb->next = nskb;
2142 return rc;
2143 }
2144 txq_trans_update(txq);
2145 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2146 return NETDEV_TX_BUSY;
2147 } while (skb->next);
2148
2149 out_kfree_gso_skb:
2150 if (likely(skb->next == NULL))
2151 skb->destructor = DEV_GSO_CB(skb)->destructor;
2152 out_kfree_skb:
2153 kfree_skb(skb);
2154 out:
2155 return rc;
2156 }
2157
2158 static u32 hashrnd __read_mostly;
2159
2160 /*
2161 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2162 * to be used as a distribution range.
2163 */
2164 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2165 unsigned int num_tx_queues)
2166 {
2167 u32 hash;
2168
2169 if (skb_rx_queue_recorded(skb)) {
2170 hash = skb_get_rx_queue(skb);
2171 while (unlikely(hash >= num_tx_queues))
2172 hash -= num_tx_queues;
2173 return hash;
2174 }
2175
2176 if (skb->sk && skb->sk->sk_hash)
2177 hash = skb->sk->sk_hash;
2178 else
2179 hash = (__force u16) skb->protocol ^ skb->rxhash;
2180 hash = jhash_1word(hash, hashrnd);
2181
2182 return (u16) (((u64) hash * num_tx_queues) >> 32);
2183 }
2184 EXPORT_SYMBOL(__skb_tx_hash);
2185
2186 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2187 {
2188 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2189 if (net_ratelimit()) {
2190 pr_warning("%s selects TX queue %d, but "
2191 "real number of TX queues is %d\n",
2192 dev->name, queue_index, dev->real_num_tx_queues);
2193 }
2194 return 0;
2195 }
2196 return queue_index;
2197 }
2198
2199 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2200 {
2201 #ifdef CONFIG_XPS
2202 struct xps_dev_maps *dev_maps;
2203 struct xps_map *map;
2204 int queue_index = -1;
2205
2206 rcu_read_lock();
2207 dev_maps = rcu_dereference(dev->xps_maps);
2208 if (dev_maps) {
2209 map = rcu_dereference(
2210 dev_maps->cpu_map[raw_smp_processor_id()]);
2211 if (map) {
2212 if (map->len == 1)
2213 queue_index = map->queues[0];
2214 else {
2215 u32 hash;
2216 if (skb->sk && skb->sk->sk_hash)
2217 hash = skb->sk->sk_hash;
2218 else
2219 hash = (__force u16) skb->protocol ^
2220 skb->rxhash;
2221 hash = jhash_1word(hash, hashrnd);
2222 queue_index = map->queues[
2223 ((u64)hash * map->len) >> 32];
2224 }
2225 if (unlikely(queue_index >= dev->real_num_tx_queues))
2226 queue_index = -1;
2227 }
2228 }
2229 rcu_read_unlock();
2230
2231 return queue_index;
2232 #else
2233 return -1;
2234 #endif
2235 }
2236
2237 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2238 struct sk_buff *skb)
2239 {
2240 int queue_index;
2241 const struct net_device_ops *ops = dev->netdev_ops;
2242
2243 if (dev->real_num_tx_queues == 1)
2244 queue_index = 0;
2245 else if (ops->ndo_select_queue) {
2246 queue_index = ops->ndo_select_queue(dev, skb);
2247 queue_index = dev_cap_txqueue(dev, queue_index);
2248 } else {
2249 struct sock *sk = skb->sk;
2250 queue_index = sk_tx_queue_get(sk);
2251
2252 if (queue_index < 0 || skb->ooo_okay ||
2253 queue_index >= dev->real_num_tx_queues) {
2254 int old_index = queue_index;
2255
2256 queue_index = get_xps_queue(dev, skb);
2257 if (queue_index < 0)
2258 queue_index = skb_tx_hash(dev, skb);
2259
2260 if (queue_index != old_index && sk) {
2261 struct dst_entry *dst =
2262 rcu_dereference_check(sk->sk_dst_cache, 1);
2263
2264 if (dst && skb_dst(skb) == dst)
2265 sk_tx_queue_set(sk, queue_index);
2266 }
2267 }
2268 }
2269
2270 skb_set_queue_mapping(skb, queue_index);
2271 return netdev_get_tx_queue(dev, queue_index);
2272 }
2273
2274 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2275 struct net_device *dev,
2276 struct netdev_queue *txq)
2277 {
2278 spinlock_t *root_lock = qdisc_lock(q);
2279 bool contended = qdisc_is_running(q);
2280 int rc;
2281
2282 /*
2283 * Heuristic to force contended enqueues to serialize on a
2284 * separate lock before trying to get qdisc main lock.
2285 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2286 * and dequeue packets faster.
2287 */
2288 if (unlikely(contended))
2289 spin_lock(&q->busylock);
2290
2291 spin_lock(root_lock);
2292 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2293 kfree_skb(skb);
2294 rc = NET_XMIT_DROP;
2295 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2296 qdisc_run_begin(q)) {
2297 /*
2298 * This is a work-conserving queue; there are no old skbs
2299 * waiting to be sent out; and the qdisc is not running -
2300 * xmit the skb directly.
2301 */
2302 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2303 skb_dst_force(skb);
2304
2305 qdisc_skb_cb(skb)->pkt_len = skb->len;
2306 qdisc_bstats_update(q, skb);
2307
2308 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2309 if (unlikely(contended)) {
2310 spin_unlock(&q->busylock);
2311 contended = false;
2312 }
2313 __qdisc_run(q);
2314 } else
2315 qdisc_run_end(q);
2316
2317 rc = NET_XMIT_SUCCESS;
2318 } else {
2319 skb_dst_force(skb);
2320 rc = qdisc_enqueue_root(skb, q);
2321 if (qdisc_run_begin(q)) {
2322 if (unlikely(contended)) {
2323 spin_unlock(&q->busylock);
2324 contended = false;
2325 }
2326 __qdisc_run(q);
2327 }
2328 }
2329 spin_unlock(root_lock);
2330 if (unlikely(contended))
2331 spin_unlock(&q->busylock);
2332 return rc;
2333 }
2334
2335 static DEFINE_PER_CPU(int, xmit_recursion);
2336 #define RECURSION_LIMIT 10
2337
2338 /**
2339 * dev_queue_xmit - transmit a buffer
2340 * @skb: buffer to transmit
2341 *
2342 * Queue a buffer for transmission to a network device. The caller must
2343 * have set the device and priority and built the buffer before calling
2344 * this function. The function can be called from an interrupt.
2345 *
2346 * A negative errno code is returned on a failure. A success does not
2347 * guarantee the frame will be transmitted as it may be dropped due
2348 * to congestion or traffic shaping.
2349 *
2350 * -----------------------------------------------------------------------------------
2351 * I notice this method can also return errors from the queue disciplines,
2352 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2353 * be positive.
2354 *
2355 * Regardless of the return value, the skb is consumed, so it is currently
2356 * difficult to retry a send to this method. (You can bump the ref count
2357 * before sending to hold a reference for retry if you are careful.)
2358 *
2359 * When calling this method, interrupts MUST be enabled. This is because
2360 * the BH enable code must have IRQs enabled so that it will not deadlock.
2361 * --BLG
2362 */
2363 int dev_queue_xmit(struct sk_buff *skb)
2364 {
2365 struct net_device *dev = skb->dev;
2366 struct netdev_queue *txq;
2367 struct Qdisc *q;
2368 int rc = -ENOMEM;
2369
2370 /* Disable soft irqs for various locks below. Also
2371 * stops preemption for RCU.
2372 */
2373 rcu_read_lock_bh();
2374
2375 txq = dev_pick_tx(dev, skb);
2376 q = rcu_dereference_bh(txq->qdisc);
2377
2378 #ifdef CONFIG_NET_CLS_ACT
2379 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2380 #endif
2381 trace_net_dev_queue(skb);
2382 if (q->enqueue) {
2383 rc = __dev_xmit_skb(skb, q, dev, txq);
2384 goto out;
2385 }
2386
2387 /* The device has no queue. Common case for software devices:
2388 loopback, all the sorts of tunnels...
2389
2390 Really, it is unlikely that netif_tx_lock protection is necessary
2391 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2392 counters.)
2393 However, it is possible, that they rely on protection
2394 made by us here.
2395
2396 Check this and shot the lock. It is not prone from deadlocks.
2397 Either shot noqueue qdisc, it is even simpler 8)
2398 */
2399 if (dev->flags & IFF_UP) {
2400 int cpu = smp_processor_id(); /* ok because BHs are off */
2401
2402 if (txq->xmit_lock_owner != cpu) {
2403
2404 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2405 goto recursion_alert;
2406
2407 HARD_TX_LOCK(dev, txq, cpu);
2408
2409 if (!netif_tx_queue_stopped(txq)) {
2410 __this_cpu_inc(xmit_recursion);
2411 rc = dev_hard_start_xmit(skb, dev, txq);
2412 __this_cpu_dec(xmit_recursion);
2413 if (dev_xmit_complete(rc)) {
2414 HARD_TX_UNLOCK(dev, txq);
2415 goto out;
2416 }
2417 }
2418 HARD_TX_UNLOCK(dev, txq);
2419 if (net_ratelimit())
2420 printk(KERN_CRIT "Virtual device %s asks to "
2421 "queue packet!\n", dev->name);
2422 } else {
2423 /* Recursion is detected! It is possible,
2424 * unfortunately
2425 */
2426 recursion_alert:
2427 if (net_ratelimit())
2428 printk(KERN_CRIT "Dead loop on virtual device "
2429 "%s, fix it urgently!\n", dev->name);
2430 }
2431 }
2432
2433 rc = -ENETDOWN;
2434 rcu_read_unlock_bh();
2435
2436 kfree_skb(skb);
2437 return rc;
2438 out:
2439 rcu_read_unlock_bh();
2440 return rc;
2441 }
2442 EXPORT_SYMBOL(dev_queue_xmit);
2443
2444
2445 /*=======================================================================
2446 Receiver routines
2447 =======================================================================*/
2448
2449 int netdev_max_backlog __read_mostly = 1000;
2450 int netdev_tstamp_prequeue __read_mostly = 1;
2451 int netdev_budget __read_mostly = 300;
2452 int weight_p __read_mostly = 64; /* old backlog weight */
2453
2454 /* Called with irq disabled */
2455 static inline void ____napi_schedule(struct softnet_data *sd,
2456 struct napi_struct *napi)
2457 {
2458 list_add_tail(&napi->poll_list, &sd->poll_list);
2459 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2460 }
2461
2462 /*
2463 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2464 * and src/dst port numbers. Returns a non-zero hash number on success
2465 * and 0 on failure.
2466 */
2467 __u32 __skb_get_rxhash(struct sk_buff *skb)
2468 {
2469 int nhoff, hash = 0, poff;
2470 struct ipv6hdr *ip6;
2471 struct iphdr *ip;
2472 u8 ip_proto;
2473 u32 addr1, addr2, ihl;
2474 union {
2475 u32 v32;
2476 u16 v16[2];
2477 } ports;
2478
2479 nhoff = skb_network_offset(skb);
2480
2481 switch (skb->protocol) {
2482 case __constant_htons(ETH_P_IP):
2483 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2484 goto done;
2485
2486 ip = (struct iphdr *) (skb->data + nhoff);
2487 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2488 ip_proto = 0;
2489 else
2490 ip_proto = ip->protocol;
2491 addr1 = (__force u32) ip->saddr;
2492 addr2 = (__force u32) ip->daddr;
2493 ihl = ip->ihl;
2494 break;
2495 case __constant_htons(ETH_P_IPV6):
2496 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2497 goto done;
2498
2499 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2500 ip_proto = ip6->nexthdr;
2501 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2502 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2503 ihl = (40 >> 2);
2504 break;
2505 default:
2506 goto done;
2507 }
2508
2509 ports.v32 = 0;
2510 poff = proto_ports_offset(ip_proto);
2511 if (poff >= 0) {
2512 nhoff += ihl * 4 + poff;
2513 if (pskb_may_pull(skb, nhoff + 4)) {
2514 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2515 if (ports.v16[1] < ports.v16[0])
2516 swap(ports.v16[0], ports.v16[1]);
2517 }
2518 }
2519
2520 /* get a consistent hash (same value on both flow directions) */
2521 if (addr2 < addr1)
2522 swap(addr1, addr2);
2523
2524 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2525 if (!hash)
2526 hash = 1;
2527
2528 done:
2529 return hash;
2530 }
2531 EXPORT_SYMBOL(__skb_get_rxhash);
2532
2533 #ifdef CONFIG_RPS
2534
2535 /* One global table that all flow-based protocols share. */
2536 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2537 EXPORT_SYMBOL(rps_sock_flow_table);
2538
2539 /*
2540 * get_rps_cpu is called from netif_receive_skb and returns the target
2541 * CPU from the RPS map of the receiving queue for a given skb.
2542 * rcu_read_lock must be held on entry.
2543 */
2544 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2545 struct rps_dev_flow **rflowp)
2546 {
2547 struct netdev_rx_queue *rxqueue;
2548 struct rps_map *map;
2549 struct rps_dev_flow_table *flow_table;
2550 struct rps_sock_flow_table *sock_flow_table;
2551 int cpu = -1;
2552 u16 tcpu;
2553
2554 if (skb_rx_queue_recorded(skb)) {
2555 u16 index = skb_get_rx_queue(skb);
2556 if (unlikely(index >= dev->real_num_rx_queues)) {
2557 WARN_ONCE(dev->real_num_rx_queues > 1,
2558 "%s received packet on queue %u, but number "
2559 "of RX queues is %u\n",
2560 dev->name, index, dev->real_num_rx_queues);
2561 goto done;
2562 }
2563 rxqueue = dev->_rx + index;
2564 } else
2565 rxqueue = dev->_rx;
2566
2567 map = rcu_dereference(rxqueue->rps_map);
2568 if (map) {
2569 if (map->len == 1 &&
2570 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2571 tcpu = map->cpus[0];
2572 if (cpu_online(tcpu))
2573 cpu = tcpu;
2574 goto done;
2575 }
2576 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2577 goto done;
2578 }
2579
2580 skb_reset_network_header(skb);
2581 if (!skb_get_rxhash(skb))
2582 goto done;
2583
2584 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2585 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2586 if (flow_table && sock_flow_table) {
2587 u16 next_cpu;
2588 struct rps_dev_flow *rflow;
2589
2590 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2591 tcpu = rflow->cpu;
2592
2593 next_cpu = sock_flow_table->ents[skb->rxhash &
2594 sock_flow_table->mask];
2595
2596 /*
2597 * If the desired CPU (where last recvmsg was done) is
2598 * different from current CPU (one in the rx-queue flow
2599 * table entry), switch if one of the following holds:
2600 * - Current CPU is unset (equal to RPS_NO_CPU).
2601 * - Current CPU is offline.
2602 * - The current CPU's queue tail has advanced beyond the
2603 * last packet that was enqueued using this table entry.
2604 * This guarantees that all previous packets for the flow
2605 * have been dequeued, thus preserving in order delivery.
2606 */
2607 if (unlikely(tcpu != next_cpu) &&
2608 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2609 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2610 rflow->last_qtail)) >= 0)) {
2611 tcpu = rflow->cpu = next_cpu;
2612 if (tcpu != RPS_NO_CPU)
2613 rflow->last_qtail = per_cpu(softnet_data,
2614 tcpu).input_queue_head;
2615 }
2616 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2617 *rflowp = rflow;
2618 cpu = tcpu;
2619 goto done;
2620 }
2621 }
2622
2623 if (map) {
2624 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2625
2626 if (cpu_online(tcpu)) {
2627 cpu = tcpu;
2628 goto done;
2629 }
2630 }
2631
2632 done:
2633 return cpu;
2634 }
2635
2636 /* Called from hardirq (IPI) context */
2637 static void rps_trigger_softirq(void *data)
2638 {
2639 struct softnet_data *sd = data;
2640
2641 ____napi_schedule(sd, &sd->backlog);
2642 sd->received_rps++;
2643 }
2644
2645 #endif /* CONFIG_RPS */
2646
2647 /*
2648 * Check if this softnet_data structure is another cpu one
2649 * If yes, queue it to our IPI list and return 1
2650 * If no, return 0
2651 */
2652 static int rps_ipi_queued(struct softnet_data *sd)
2653 {
2654 #ifdef CONFIG_RPS
2655 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2656
2657 if (sd != mysd) {
2658 sd->rps_ipi_next = mysd->rps_ipi_list;
2659 mysd->rps_ipi_list = sd;
2660
2661 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2662 return 1;
2663 }
2664 #endif /* CONFIG_RPS */
2665 return 0;
2666 }
2667
2668 /*
2669 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2670 * queue (may be a remote CPU queue).
2671 */
2672 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2673 unsigned int *qtail)
2674 {
2675 struct softnet_data *sd;
2676 unsigned long flags;
2677
2678 sd = &per_cpu(softnet_data, cpu);
2679
2680 local_irq_save(flags);
2681
2682 rps_lock(sd);
2683 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2684 if (skb_queue_len(&sd->input_pkt_queue)) {
2685 enqueue:
2686 __skb_queue_tail(&sd->input_pkt_queue, skb);
2687 input_queue_tail_incr_save(sd, qtail);
2688 rps_unlock(sd);
2689 local_irq_restore(flags);
2690 return NET_RX_SUCCESS;
2691 }
2692
2693 /* Schedule NAPI for backlog device
2694 * We can use non atomic operation since we own the queue lock
2695 */
2696 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2697 if (!rps_ipi_queued(sd))
2698 ____napi_schedule(sd, &sd->backlog);
2699 }
2700 goto enqueue;
2701 }
2702
2703 sd->dropped++;
2704 rps_unlock(sd);
2705
2706 local_irq_restore(flags);
2707
2708 atomic_long_inc(&skb->dev->rx_dropped);
2709 kfree_skb(skb);
2710 return NET_RX_DROP;
2711 }
2712
2713 /**
2714 * netif_rx - post buffer to the network code
2715 * @skb: buffer to post
2716 *
2717 * This function receives a packet from a device driver and queues it for
2718 * the upper (protocol) levels to process. It always succeeds. The buffer
2719 * may be dropped during processing for congestion control or by the
2720 * protocol layers.
2721 *
2722 * return values:
2723 * NET_RX_SUCCESS (no congestion)
2724 * NET_RX_DROP (packet was dropped)
2725 *
2726 */
2727
2728 int netif_rx(struct sk_buff *skb)
2729 {
2730 int ret;
2731
2732 /* if netpoll wants it, pretend we never saw it */
2733 if (netpoll_rx(skb))
2734 return NET_RX_DROP;
2735
2736 if (netdev_tstamp_prequeue)
2737 net_timestamp_check(skb);
2738
2739 trace_netif_rx(skb);
2740 #ifdef CONFIG_RPS
2741 {
2742 struct rps_dev_flow voidflow, *rflow = &voidflow;
2743 int cpu;
2744
2745 preempt_disable();
2746 rcu_read_lock();
2747
2748 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2749 if (cpu < 0)
2750 cpu = smp_processor_id();
2751
2752 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2753
2754 rcu_read_unlock();
2755 preempt_enable();
2756 }
2757 #else
2758 {
2759 unsigned int qtail;
2760 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2761 put_cpu();
2762 }
2763 #endif
2764 return ret;
2765 }
2766 EXPORT_SYMBOL(netif_rx);
2767
2768 int netif_rx_ni(struct sk_buff *skb)
2769 {
2770 int err;
2771
2772 preempt_disable();
2773 err = netif_rx(skb);
2774 if (local_softirq_pending())
2775 do_softirq();
2776 preempt_enable();
2777
2778 return err;
2779 }
2780 EXPORT_SYMBOL(netif_rx_ni);
2781
2782 static void net_tx_action(struct softirq_action *h)
2783 {
2784 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2785
2786 if (sd->completion_queue) {
2787 struct sk_buff *clist;
2788
2789 local_irq_disable();
2790 clist = sd->completion_queue;
2791 sd->completion_queue = NULL;
2792 local_irq_enable();
2793
2794 while (clist) {
2795 struct sk_buff *skb = clist;
2796 clist = clist->next;
2797
2798 WARN_ON(atomic_read(&skb->users));
2799 trace_kfree_skb(skb, net_tx_action);
2800 __kfree_skb(skb);
2801 }
2802 }
2803
2804 if (sd->output_queue) {
2805 struct Qdisc *head;
2806
2807 local_irq_disable();
2808 head = sd->output_queue;
2809 sd->output_queue = NULL;
2810 sd->output_queue_tailp = &sd->output_queue;
2811 local_irq_enable();
2812
2813 while (head) {
2814 struct Qdisc *q = head;
2815 spinlock_t *root_lock;
2816
2817 head = head->next_sched;
2818
2819 root_lock = qdisc_lock(q);
2820 if (spin_trylock(root_lock)) {
2821 smp_mb__before_clear_bit();
2822 clear_bit(__QDISC_STATE_SCHED,
2823 &q->state);
2824 qdisc_run(q);
2825 spin_unlock(root_lock);
2826 } else {
2827 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2828 &q->state)) {
2829 __netif_reschedule(q);
2830 } else {
2831 smp_mb__before_clear_bit();
2832 clear_bit(__QDISC_STATE_SCHED,
2833 &q->state);
2834 }
2835 }
2836 }
2837 }
2838 }
2839
2840 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2841 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2842 /* This hook is defined here for ATM LANE */
2843 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2844 unsigned char *addr) __read_mostly;
2845 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2846 #endif
2847
2848 #ifdef CONFIG_NET_CLS_ACT
2849 /* TODO: Maybe we should just force sch_ingress to be compiled in
2850 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2851 * a compare and 2 stores extra right now if we dont have it on
2852 * but have CONFIG_NET_CLS_ACT
2853 * NOTE: This doesnt stop any functionality; if you dont have
2854 * the ingress scheduler, you just cant add policies on ingress.
2855 *
2856 */
2857 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2858 {
2859 struct net_device *dev = skb->dev;
2860 u32 ttl = G_TC_RTTL(skb->tc_verd);
2861 int result = TC_ACT_OK;
2862 struct Qdisc *q;
2863
2864 if (unlikely(MAX_RED_LOOP < ttl++)) {
2865 if (net_ratelimit())
2866 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2867 skb->skb_iif, dev->ifindex);
2868 return TC_ACT_SHOT;
2869 }
2870
2871 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2872 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2873
2874 q = rxq->qdisc;
2875 if (q != &noop_qdisc) {
2876 spin_lock(qdisc_lock(q));
2877 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2878 result = qdisc_enqueue_root(skb, q);
2879 spin_unlock(qdisc_lock(q));
2880 }
2881
2882 return result;
2883 }
2884
2885 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2886 struct packet_type **pt_prev,
2887 int *ret, struct net_device *orig_dev)
2888 {
2889 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2890
2891 if (!rxq || rxq->qdisc == &noop_qdisc)
2892 goto out;
2893
2894 if (*pt_prev) {
2895 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2896 *pt_prev = NULL;
2897 }
2898
2899 switch (ing_filter(skb, rxq)) {
2900 case TC_ACT_SHOT:
2901 case TC_ACT_STOLEN:
2902 kfree_skb(skb);
2903 return NULL;
2904 }
2905
2906 out:
2907 skb->tc_verd = 0;
2908 return skb;
2909 }
2910 #endif
2911
2912 /**
2913 * netdev_rx_handler_register - register receive handler
2914 * @dev: device to register a handler for
2915 * @rx_handler: receive handler to register
2916 * @rx_handler_data: data pointer that is used by rx handler
2917 *
2918 * Register a receive hander for a device. This handler will then be
2919 * called from __netif_receive_skb. A negative errno code is returned
2920 * on a failure.
2921 *
2922 * The caller must hold the rtnl_mutex.
2923 */
2924 int netdev_rx_handler_register(struct net_device *dev,
2925 rx_handler_func_t *rx_handler,
2926 void *rx_handler_data)
2927 {
2928 ASSERT_RTNL();
2929
2930 if (dev->rx_handler)
2931 return -EBUSY;
2932
2933 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2934 rcu_assign_pointer(dev->rx_handler, rx_handler);
2935
2936 return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2939
2940 /**
2941 * netdev_rx_handler_unregister - unregister receive handler
2942 * @dev: device to unregister a handler from
2943 *
2944 * Unregister a receive hander from a device.
2945 *
2946 * The caller must hold the rtnl_mutex.
2947 */
2948 void netdev_rx_handler_unregister(struct net_device *dev)
2949 {
2950
2951 ASSERT_RTNL();
2952 rcu_assign_pointer(dev->rx_handler, NULL);
2953 rcu_assign_pointer(dev->rx_handler_data, NULL);
2954 }
2955 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2956
2957 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2958 struct net_device *master)
2959 {
2960 if (skb->pkt_type == PACKET_HOST) {
2961 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2962
2963 memcpy(dest, master->dev_addr, ETH_ALEN);
2964 }
2965 }
2966
2967 /* On bonding slaves other than the currently active slave, suppress
2968 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2969 * ARP on active-backup slaves with arp_validate enabled.
2970 */
2971 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2972 {
2973 struct net_device *dev = skb->dev;
2974
2975 if (master->priv_flags & IFF_MASTER_ARPMON)
2976 dev->last_rx = jiffies;
2977
2978 if ((master->priv_flags & IFF_MASTER_ALB) &&
2979 (master->priv_flags & IFF_BRIDGE_PORT)) {
2980 /* Do address unmangle. The local destination address
2981 * will be always the one master has. Provides the right
2982 * functionality in a bridge.
2983 */
2984 skb_bond_set_mac_by_master(skb, master);
2985 }
2986
2987 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2988 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2989 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2990 return 0;
2991
2992 if (master->priv_flags & IFF_MASTER_ALB) {
2993 if (skb->pkt_type != PACKET_BROADCAST &&
2994 skb->pkt_type != PACKET_MULTICAST)
2995 return 0;
2996 }
2997 if (master->priv_flags & IFF_MASTER_8023AD &&
2998 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2999 return 0;
3000
3001 return 1;
3002 }
3003 return 0;
3004 }
3005 EXPORT_SYMBOL(__skb_bond_should_drop);
3006
3007 static int __netif_receive_skb(struct sk_buff *skb)
3008 {
3009 struct packet_type *ptype, *pt_prev;
3010 rx_handler_func_t *rx_handler;
3011 struct net_device *orig_dev;
3012 struct net_device *master;
3013 struct net_device *null_or_orig;
3014 struct net_device *orig_or_bond;
3015 int ret = NET_RX_DROP;
3016 __be16 type;
3017
3018 if (!netdev_tstamp_prequeue)
3019 net_timestamp_check(skb);
3020
3021 trace_netif_receive_skb(skb);
3022
3023 /* if we've gotten here through NAPI, check netpoll */
3024 if (netpoll_receive_skb(skb))
3025 return NET_RX_DROP;
3026
3027 if (!skb->skb_iif)
3028 skb->skb_iif = skb->dev->ifindex;
3029
3030 /*
3031 * bonding note: skbs received on inactive slaves should only
3032 * be delivered to pkt handlers that are exact matches. Also
3033 * the deliver_no_wcard flag will be set. If packet handlers
3034 * are sensitive to duplicate packets these skbs will need to
3035 * be dropped at the handler.
3036 */
3037 null_or_orig = NULL;
3038 orig_dev = skb->dev;
3039 master = ACCESS_ONCE(orig_dev->master);
3040 if (skb->deliver_no_wcard)
3041 null_or_orig = orig_dev;
3042 else if (master) {
3043 if (skb_bond_should_drop(skb, master)) {
3044 skb->deliver_no_wcard = 1;
3045 null_or_orig = orig_dev; /* deliver only exact match */
3046 } else
3047 skb->dev = master;
3048 }
3049
3050 __this_cpu_inc(softnet_data.processed);
3051 skb_reset_network_header(skb);
3052 skb_reset_transport_header(skb);
3053 skb->mac_len = skb->network_header - skb->mac_header;
3054
3055 pt_prev = NULL;
3056
3057 rcu_read_lock();
3058
3059 #ifdef CONFIG_NET_CLS_ACT
3060 if (skb->tc_verd & TC_NCLS) {
3061 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3062 goto ncls;
3063 }
3064 #endif
3065
3066 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3067 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3068 ptype->dev == orig_dev) {
3069 if (pt_prev)
3070 ret = deliver_skb(skb, pt_prev, orig_dev);
3071 pt_prev = ptype;
3072 }
3073 }
3074
3075 #ifdef CONFIG_NET_CLS_ACT
3076 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3077 if (!skb)
3078 goto out;
3079 ncls:
3080 #endif
3081
3082 /* Handle special case of bridge or macvlan */
3083 rx_handler = rcu_dereference(skb->dev->rx_handler);
3084 if (rx_handler) {
3085 if (pt_prev) {
3086 ret = deliver_skb(skb, pt_prev, orig_dev);
3087 pt_prev = NULL;
3088 }
3089 skb = rx_handler(skb);
3090 if (!skb)
3091 goto out;
3092 }
3093
3094 if (vlan_tx_tag_present(skb)) {
3095 if (pt_prev) {
3096 ret = deliver_skb(skb, pt_prev, orig_dev);
3097 pt_prev = NULL;
3098 }
3099 if (vlan_hwaccel_do_receive(&skb)) {
3100 ret = __netif_receive_skb(skb);
3101 goto out;
3102 } else if (unlikely(!skb))
3103 goto out;
3104 }
3105
3106 /*
3107 * Make sure frames received on VLAN interfaces stacked on
3108 * bonding interfaces still make their way to any base bonding
3109 * device that may have registered for a specific ptype. The
3110 * handler may have to adjust skb->dev and orig_dev.
3111 */
3112 orig_or_bond = orig_dev;
3113 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3114 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3115 orig_or_bond = vlan_dev_real_dev(skb->dev);
3116 }
3117
3118 type = skb->protocol;
3119 list_for_each_entry_rcu(ptype,
3120 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3121 if (ptype->type == type && (ptype->dev == null_or_orig ||
3122 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3123 ptype->dev == orig_or_bond)) {
3124 if (pt_prev)
3125 ret = deliver_skb(skb, pt_prev, orig_dev);
3126 pt_prev = ptype;
3127 }
3128 }
3129
3130 if (pt_prev) {
3131 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3132 } else {
3133 atomic_long_inc(&skb->dev->rx_dropped);
3134 kfree_skb(skb);
3135 /* Jamal, now you will not able to escape explaining
3136 * me how you were going to use this. :-)
3137 */
3138 ret = NET_RX_DROP;
3139 }
3140
3141 out:
3142 rcu_read_unlock();
3143 return ret;
3144 }
3145
3146 /**
3147 * netif_receive_skb - process receive buffer from network
3148 * @skb: buffer to process
3149 *
3150 * netif_receive_skb() is the main receive data processing function.
3151 * It always succeeds. The buffer may be dropped during processing
3152 * for congestion control or by the protocol layers.
3153 *
3154 * This function may only be called from softirq context and interrupts
3155 * should be enabled.
3156 *
3157 * Return values (usually ignored):
3158 * NET_RX_SUCCESS: no congestion
3159 * NET_RX_DROP: packet was dropped
3160 */
3161 int netif_receive_skb(struct sk_buff *skb)
3162 {
3163 if (netdev_tstamp_prequeue)
3164 net_timestamp_check(skb);
3165
3166 if (skb_defer_rx_timestamp(skb))
3167 return NET_RX_SUCCESS;
3168
3169 #ifdef CONFIG_RPS
3170 {
3171 struct rps_dev_flow voidflow, *rflow = &voidflow;
3172 int cpu, ret;
3173
3174 rcu_read_lock();
3175
3176 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3177
3178 if (cpu >= 0) {
3179 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3180 rcu_read_unlock();
3181 } else {
3182 rcu_read_unlock();
3183 ret = __netif_receive_skb(skb);
3184 }
3185
3186 return ret;
3187 }
3188 #else
3189 return __netif_receive_skb(skb);
3190 #endif
3191 }
3192 EXPORT_SYMBOL(netif_receive_skb);
3193
3194 /* Network device is going away, flush any packets still pending
3195 * Called with irqs disabled.
3196 */
3197 static void flush_backlog(void *arg)
3198 {
3199 struct net_device *dev = arg;
3200 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3201 struct sk_buff *skb, *tmp;
3202
3203 rps_lock(sd);
3204 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3205 if (skb->dev == dev) {
3206 __skb_unlink(skb, &sd->input_pkt_queue);
3207 kfree_skb(skb);
3208 input_queue_head_incr(sd);
3209 }
3210 }
3211 rps_unlock(sd);
3212
3213 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3214 if (skb->dev == dev) {
3215 __skb_unlink(skb, &sd->process_queue);
3216 kfree_skb(skb);
3217 input_queue_head_incr(sd);
3218 }
3219 }
3220 }
3221
3222 static int napi_gro_complete(struct sk_buff *skb)
3223 {
3224 struct packet_type *ptype;
3225 __be16 type = skb->protocol;
3226 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3227 int err = -ENOENT;
3228
3229 if (NAPI_GRO_CB(skb)->count == 1) {
3230 skb_shinfo(skb)->gso_size = 0;
3231 goto out;
3232 }
3233
3234 rcu_read_lock();
3235 list_for_each_entry_rcu(ptype, head, list) {
3236 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3237 continue;
3238
3239 err = ptype->gro_complete(skb);
3240 break;
3241 }
3242 rcu_read_unlock();
3243
3244 if (err) {
3245 WARN_ON(&ptype->list == head);
3246 kfree_skb(skb);
3247 return NET_RX_SUCCESS;
3248 }
3249
3250 out:
3251 return netif_receive_skb(skb);
3252 }
3253
3254 inline void napi_gro_flush(struct napi_struct *napi)
3255 {
3256 struct sk_buff *skb, *next;
3257
3258 for (skb = napi->gro_list; skb; skb = next) {
3259 next = skb->next;
3260 skb->next = NULL;
3261 napi_gro_complete(skb);
3262 }
3263
3264 napi->gro_count = 0;
3265 napi->gro_list = NULL;
3266 }
3267 EXPORT_SYMBOL(napi_gro_flush);
3268
3269 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3270 {
3271 struct sk_buff **pp = NULL;
3272 struct packet_type *ptype;
3273 __be16 type = skb->protocol;
3274 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3275 int same_flow;
3276 int mac_len;
3277 enum gro_result ret;
3278
3279 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3280 goto normal;
3281
3282 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3283 goto normal;
3284
3285 rcu_read_lock();
3286 list_for_each_entry_rcu(ptype, head, list) {
3287 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3288 continue;
3289
3290 skb_set_network_header(skb, skb_gro_offset(skb));
3291 mac_len = skb->network_header - skb->mac_header;
3292 skb->mac_len = mac_len;
3293 NAPI_GRO_CB(skb)->same_flow = 0;
3294 NAPI_GRO_CB(skb)->flush = 0;
3295 NAPI_GRO_CB(skb)->free = 0;
3296
3297 pp = ptype->gro_receive(&napi->gro_list, skb);
3298 break;
3299 }
3300 rcu_read_unlock();
3301
3302 if (&ptype->list == head)
3303 goto normal;
3304
3305 same_flow = NAPI_GRO_CB(skb)->same_flow;
3306 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3307
3308 if (pp) {
3309 struct sk_buff *nskb = *pp;
3310
3311 *pp = nskb->next;
3312 nskb->next = NULL;
3313 napi_gro_complete(nskb);
3314 napi->gro_count--;
3315 }
3316
3317 if (same_flow)
3318 goto ok;
3319
3320 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3321 goto normal;
3322
3323 napi->gro_count++;
3324 NAPI_GRO_CB(skb)->count = 1;
3325 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3326 skb->next = napi->gro_list;
3327 napi->gro_list = skb;
3328 ret = GRO_HELD;
3329
3330 pull:
3331 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3332 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3333
3334 BUG_ON(skb->end - skb->tail < grow);
3335
3336 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3337
3338 skb->tail += grow;
3339 skb->data_len -= grow;
3340
3341 skb_shinfo(skb)->frags[0].page_offset += grow;
3342 skb_shinfo(skb)->frags[0].size -= grow;
3343
3344 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3345 put_page(skb_shinfo(skb)->frags[0].page);
3346 memmove(skb_shinfo(skb)->frags,
3347 skb_shinfo(skb)->frags + 1,
3348 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3349 }
3350 }
3351
3352 ok:
3353 return ret;
3354
3355 normal:
3356 ret = GRO_NORMAL;
3357 goto pull;
3358 }
3359 EXPORT_SYMBOL(dev_gro_receive);
3360
3361 static inline gro_result_t
3362 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3363 {
3364 struct sk_buff *p;
3365
3366 for (p = napi->gro_list; p; p = p->next) {
3367 unsigned long diffs;
3368
3369 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3370 diffs |= p->vlan_tci ^ skb->vlan_tci;
3371 diffs |= compare_ether_header(skb_mac_header(p),
3372 skb_gro_mac_header(skb));
3373 NAPI_GRO_CB(p)->same_flow = !diffs;
3374 NAPI_GRO_CB(p)->flush = 0;
3375 }
3376
3377 return dev_gro_receive(napi, skb);
3378 }
3379
3380 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3381 {
3382 switch (ret) {
3383 case GRO_NORMAL:
3384 if (netif_receive_skb(skb))
3385 ret = GRO_DROP;
3386 break;
3387
3388 case GRO_DROP:
3389 case GRO_MERGED_FREE:
3390 kfree_skb(skb);
3391 break;
3392
3393 case GRO_HELD:
3394 case GRO_MERGED:
3395 break;
3396 }
3397
3398 return ret;
3399 }
3400 EXPORT_SYMBOL(napi_skb_finish);
3401
3402 void skb_gro_reset_offset(struct sk_buff *skb)
3403 {
3404 NAPI_GRO_CB(skb)->data_offset = 0;
3405 NAPI_GRO_CB(skb)->frag0 = NULL;
3406 NAPI_GRO_CB(skb)->frag0_len = 0;
3407
3408 if (skb->mac_header == skb->tail &&
3409 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3410 NAPI_GRO_CB(skb)->frag0 =
3411 page_address(skb_shinfo(skb)->frags[0].page) +
3412 skb_shinfo(skb)->frags[0].page_offset;
3413 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3414 }
3415 }
3416 EXPORT_SYMBOL(skb_gro_reset_offset);
3417
3418 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3419 {
3420 skb_gro_reset_offset(skb);
3421
3422 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3423 }
3424 EXPORT_SYMBOL(napi_gro_receive);
3425
3426 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3427 {
3428 __skb_pull(skb, skb_headlen(skb));
3429 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3430 skb->vlan_tci = 0;
3431 skb->dev = napi->dev;
3432 skb->skb_iif = 0;
3433
3434 napi->skb = skb;
3435 }
3436
3437 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3438 {
3439 struct sk_buff *skb = napi->skb;
3440
3441 if (!skb) {
3442 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3443 if (skb)
3444 napi->skb = skb;
3445 }
3446 return skb;
3447 }
3448 EXPORT_SYMBOL(napi_get_frags);
3449
3450 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3451 gro_result_t ret)
3452 {
3453 switch (ret) {
3454 case GRO_NORMAL:
3455 case GRO_HELD:
3456 skb->protocol = eth_type_trans(skb, skb->dev);
3457
3458 if (ret == GRO_HELD)
3459 skb_gro_pull(skb, -ETH_HLEN);
3460 else if (netif_receive_skb(skb))
3461 ret = GRO_DROP;
3462 break;
3463
3464 case GRO_DROP:
3465 case GRO_MERGED_FREE:
3466 napi_reuse_skb(napi, skb);
3467 break;
3468
3469 case GRO_MERGED:
3470 break;
3471 }
3472
3473 return ret;
3474 }
3475 EXPORT_SYMBOL(napi_frags_finish);
3476
3477 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3478 {
3479 struct sk_buff *skb = napi->skb;
3480 struct ethhdr *eth;
3481 unsigned int hlen;
3482 unsigned int off;
3483
3484 napi->skb = NULL;
3485
3486 skb_reset_mac_header(skb);
3487 skb_gro_reset_offset(skb);
3488
3489 off = skb_gro_offset(skb);
3490 hlen = off + sizeof(*eth);
3491 eth = skb_gro_header_fast(skb, off);
3492 if (skb_gro_header_hard(skb, hlen)) {
3493 eth = skb_gro_header_slow(skb, hlen, off);
3494 if (unlikely(!eth)) {
3495 napi_reuse_skb(napi, skb);
3496 skb = NULL;
3497 goto out;
3498 }
3499 }
3500
3501 skb_gro_pull(skb, sizeof(*eth));
3502
3503 /*
3504 * This works because the only protocols we care about don't require
3505 * special handling. We'll fix it up properly at the end.
3506 */
3507 skb->protocol = eth->h_proto;
3508
3509 out:
3510 return skb;
3511 }
3512 EXPORT_SYMBOL(napi_frags_skb);
3513
3514 gro_result_t napi_gro_frags(struct napi_struct *napi)
3515 {
3516 struct sk_buff *skb = napi_frags_skb(napi);
3517
3518 if (!skb)
3519 return GRO_DROP;
3520
3521 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3522 }
3523 EXPORT_SYMBOL(napi_gro_frags);
3524
3525 /*
3526 * net_rps_action sends any pending IPI's for rps.
3527 * Note: called with local irq disabled, but exits with local irq enabled.
3528 */
3529 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3530 {
3531 #ifdef CONFIG_RPS
3532 struct softnet_data *remsd = sd->rps_ipi_list;
3533
3534 if (remsd) {
3535 sd->rps_ipi_list = NULL;
3536
3537 local_irq_enable();
3538
3539 /* Send pending IPI's to kick RPS processing on remote cpus. */
3540 while (remsd) {
3541 struct softnet_data *next = remsd->rps_ipi_next;
3542
3543 if (cpu_online(remsd->cpu))
3544 __smp_call_function_single(remsd->cpu,
3545 &remsd->csd, 0);
3546 remsd = next;
3547 }
3548 } else
3549 #endif
3550 local_irq_enable();
3551 }
3552
3553 static int process_backlog(struct napi_struct *napi, int quota)
3554 {
3555 int work = 0;
3556 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3557
3558 #ifdef CONFIG_RPS
3559 /* Check if we have pending ipi, its better to send them now,
3560 * not waiting net_rx_action() end.
3561 */
3562 if (sd->rps_ipi_list) {
3563 local_irq_disable();
3564 net_rps_action_and_irq_enable(sd);
3565 }
3566 #endif
3567 napi->weight = weight_p;
3568 local_irq_disable();
3569 while (work < quota) {
3570 struct sk_buff *skb;
3571 unsigned int qlen;
3572
3573 while ((skb = __skb_dequeue(&sd->process_queue))) {
3574 local_irq_enable();
3575 __netif_receive_skb(skb);
3576 local_irq_disable();
3577 input_queue_head_incr(sd);
3578 if (++work >= quota) {
3579 local_irq_enable();
3580 return work;
3581 }
3582 }
3583
3584 rps_lock(sd);
3585 qlen = skb_queue_len(&sd->input_pkt_queue);
3586 if (qlen)
3587 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3588 &sd->process_queue);
3589
3590 if (qlen < quota - work) {
3591 /*
3592 * Inline a custom version of __napi_complete().
3593 * only current cpu owns and manipulates this napi,
3594 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3595 * we can use a plain write instead of clear_bit(),
3596 * and we dont need an smp_mb() memory barrier.
3597 */
3598 list_del(&napi->poll_list);
3599 napi->state = 0;
3600
3601 quota = work + qlen;
3602 }
3603 rps_unlock(sd);
3604 }
3605 local_irq_enable();
3606
3607 return work;
3608 }
3609
3610 /**
3611 * __napi_schedule - schedule for receive
3612 * @n: entry to schedule
3613 *
3614 * The entry's receive function will be scheduled to run
3615 */
3616 void __napi_schedule(struct napi_struct *n)
3617 {
3618 unsigned long flags;
3619
3620 local_irq_save(flags);
3621 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3622 local_irq_restore(flags);
3623 }
3624 EXPORT_SYMBOL(__napi_schedule);
3625
3626 void __napi_complete(struct napi_struct *n)
3627 {
3628 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3629 BUG_ON(n->gro_list);
3630
3631 list_del(&n->poll_list);
3632 smp_mb__before_clear_bit();
3633 clear_bit(NAPI_STATE_SCHED, &n->state);
3634 }
3635 EXPORT_SYMBOL(__napi_complete);
3636
3637 void napi_complete(struct napi_struct *n)
3638 {
3639 unsigned long flags;
3640
3641 /*
3642 * don't let napi dequeue from the cpu poll list
3643 * just in case its running on a different cpu
3644 */
3645 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3646 return;
3647
3648 napi_gro_flush(n);
3649 local_irq_save(flags);
3650 __napi_complete(n);
3651 local_irq_restore(flags);
3652 }
3653 EXPORT_SYMBOL(napi_complete);
3654
3655 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3656 int (*poll)(struct napi_struct *, int), int weight)
3657 {
3658 INIT_LIST_HEAD(&napi->poll_list);
3659 napi->gro_count = 0;
3660 napi->gro_list = NULL;
3661 napi->skb = NULL;
3662 napi->poll = poll;
3663 napi->weight = weight;
3664 list_add(&napi->dev_list, &dev->napi_list);
3665 napi->dev = dev;
3666 #ifdef CONFIG_NETPOLL
3667 spin_lock_init(&napi->poll_lock);
3668 napi->poll_owner = -1;
3669 #endif
3670 set_bit(NAPI_STATE_SCHED, &napi->state);
3671 }
3672 EXPORT_SYMBOL(netif_napi_add);
3673
3674 void netif_napi_del(struct napi_struct *napi)
3675 {
3676 struct sk_buff *skb, *next;
3677
3678 list_del_init(&napi->dev_list);
3679 napi_free_frags(napi);
3680
3681 for (skb = napi->gro_list; skb; skb = next) {
3682 next = skb->next;
3683 skb->next = NULL;
3684 kfree_skb(skb);
3685 }
3686
3687 napi->gro_list = NULL;
3688 napi->gro_count = 0;
3689 }
3690 EXPORT_SYMBOL(netif_napi_del);
3691
3692 static void net_rx_action(struct softirq_action *h)
3693 {
3694 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3695 unsigned long time_limit = jiffies + 2;
3696 int budget = netdev_budget;
3697 void *have;
3698
3699 local_irq_disable();
3700
3701 while (!list_empty(&sd->poll_list)) {
3702 struct napi_struct *n;
3703 int work, weight;
3704
3705 /* If softirq window is exhuasted then punt.
3706 * Allow this to run for 2 jiffies since which will allow
3707 * an average latency of 1.5/HZ.
3708 */
3709 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3710 goto softnet_break;
3711
3712 local_irq_enable();
3713
3714 /* Even though interrupts have been re-enabled, this
3715 * access is safe because interrupts can only add new
3716 * entries to the tail of this list, and only ->poll()
3717 * calls can remove this head entry from the list.
3718 */
3719 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3720
3721 have = netpoll_poll_lock(n);
3722
3723 weight = n->weight;
3724
3725 /* This NAPI_STATE_SCHED test is for avoiding a race
3726 * with netpoll's poll_napi(). Only the entity which
3727 * obtains the lock and sees NAPI_STATE_SCHED set will
3728 * actually make the ->poll() call. Therefore we avoid
3729 * accidently calling ->poll() when NAPI is not scheduled.
3730 */
3731 work = 0;
3732 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3733 work = n->poll(n, weight);
3734 trace_napi_poll(n);
3735 }
3736
3737 WARN_ON_ONCE(work > weight);
3738
3739 budget -= work;
3740
3741 local_irq_disable();
3742
3743 /* Drivers must not modify the NAPI state if they
3744 * consume the entire weight. In such cases this code
3745 * still "owns" the NAPI instance and therefore can
3746 * move the instance around on the list at-will.
3747 */
3748 if (unlikely(work == weight)) {
3749 if (unlikely(napi_disable_pending(n))) {
3750 local_irq_enable();
3751 napi_complete(n);
3752 local_irq_disable();
3753 } else
3754 list_move_tail(&n->poll_list, &sd->poll_list);
3755 }
3756
3757 netpoll_poll_unlock(have);
3758 }
3759 out:
3760 net_rps_action_and_irq_enable(sd);
3761
3762 #ifdef CONFIG_NET_DMA
3763 /*
3764 * There may not be any more sk_buffs coming right now, so push
3765 * any pending DMA copies to hardware
3766 */
3767 dma_issue_pending_all();
3768 #endif
3769
3770 return;
3771
3772 softnet_break:
3773 sd->time_squeeze++;
3774 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3775 goto out;
3776 }
3777
3778 static gifconf_func_t *gifconf_list[NPROTO];
3779
3780 /**
3781 * register_gifconf - register a SIOCGIF handler
3782 * @family: Address family
3783 * @gifconf: Function handler
3784 *
3785 * Register protocol dependent address dumping routines. The handler
3786 * that is passed must not be freed or reused until it has been replaced
3787 * by another handler.
3788 */
3789 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3790 {
3791 if (family >= NPROTO)
3792 return -EINVAL;
3793 gifconf_list[family] = gifconf;
3794 return 0;
3795 }
3796 EXPORT_SYMBOL(register_gifconf);
3797
3798
3799 /*
3800 * Map an interface index to its name (SIOCGIFNAME)
3801 */
3802
3803 /*
3804 * We need this ioctl for efficient implementation of the
3805 * if_indextoname() function required by the IPv6 API. Without
3806 * it, we would have to search all the interfaces to find a
3807 * match. --pb
3808 */
3809
3810 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3811 {
3812 struct net_device *dev;
3813 struct ifreq ifr;
3814
3815 /*
3816 * Fetch the caller's info block.
3817 */
3818
3819 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3820 return -EFAULT;
3821
3822 rcu_read_lock();
3823 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3824 if (!dev) {
3825 rcu_read_unlock();
3826 return -ENODEV;
3827 }
3828
3829 strcpy(ifr.ifr_name, dev->name);
3830 rcu_read_unlock();
3831
3832 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3833 return -EFAULT;
3834 return 0;
3835 }
3836
3837 /*
3838 * Perform a SIOCGIFCONF call. This structure will change
3839 * size eventually, and there is nothing I can do about it.
3840 * Thus we will need a 'compatibility mode'.
3841 */
3842
3843 static int dev_ifconf(struct net *net, char __user *arg)
3844 {
3845 struct ifconf ifc;
3846 struct net_device *dev;
3847 char __user *pos;
3848 int len;
3849 int total;
3850 int i;
3851
3852 /*
3853 * Fetch the caller's info block.
3854 */
3855
3856 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3857 return -EFAULT;
3858
3859 pos = ifc.ifc_buf;
3860 len = ifc.ifc_len;
3861
3862 /*
3863 * Loop over the interfaces, and write an info block for each.
3864 */
3865
3866 total = 0;
3867 for_each_netdev(net, dev) {
3868 for (i = 0; i < NPROTO; i++) {
3869 if (gifconf_list[i]) {
3870 int done;
3871 if (!pos)
3872 done = gifconf_list[i](dev, NULL, 0);
3873 else
3874 done = gifconf_list[i](dev, pos + total,
3875 len - total);
3876 if (done < 0)
3877 return -EFAULT;
3878 total += done;
3879 }
3880 }
3881 }
3882
3883 /*
3884 * All done. Write the updated control block back to the caller.
3885 */
3886 ifc.ifc_len = total;
3887
3888 /*
3889 * Both BSD and Solaris return 0 here, so we do too.
3890 */
3891 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3892 }
3893
3894 #ifdef CONFIG_PROC_FS
3895 /*
3896 * This is invoked by the /proc filesystem handler to display a device
3897 * in detail.
3898 */
3899 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3900 __acquires(RCU)
3901 {
3902 struct net *net = seq_file_net(seq);
3903 loff_t off;
3904 struct net_device *dev;
3905
3906 rcu_read_lock();
3907 if (!*pos)
3908 return SEQ_START_TOKEN;
3909
3910 off = 1;
3911 for_each_netdev_rcu(net, dev)
3912 if (off++ == *pos)
3913 return dev;
3914
3915 return NULL;
3916 }
3917
3918 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3919 {
3920 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3921 first_net_device(seq_file_net(seq)) :
3922 next_net_device((struct net_device *)v);
3923
3924 ++*pos;
3925 return rcu_dereference(dev);
3926 }
3927
3928 void dev_seq_stop(struct seq_file *seq, void *v)
3929 __releases(RCU)
3930 {
3931 rcu_read_unlock();
3932 }
3933
3934 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3935 {
3936 struct rtnl_link_stats64 temp;
3937 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3938
3939 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3940 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3941 dev->name, stats->rx_bytes, stats->rx_packets,
3942 stats->rx_errors,
3943 stats->rx_dropped + stats->rx_missed_errors,
3944 stats->rx_fifo_errors,
3945 stats->rx_length_errors + stats->rx_over_errors +
3946 stats->rx_crc_errors + stats->rx_frame_errors,
3947 stats->rx_compressed, stats->multicast,
3948 stats->tx_bytes, stats->tx_packets,
3949 stats->tx_errors, stats->tx_dropped,
3950 stats->tx_fifo_errors, stats->collisions,
3951 stats->tx_carrier_errors +
3952 stats->tx_aborted_errors +
3953 stats->tx_window_errors +
3954 stats->tx_heartbeat_errors,
3955 stats->tx_compressed);
3956 }
3957
3958 /*
3959 * Called from the PROCfs module. This now uses the new arbitrary sized
3960 * /proc/net interface to create /proc/net/dev
3961 */
3962 static int dev_seq_show(struct seq_file *seq, void *v)
3963 {
3964 if (v == SEQ_START_TOKEN)
3965 seq_puts(seq, "Inter-| Receive "
3966 " | Transmit\n"
3967 " face |bytes packets errs drop fifo frame "
3968 "compressed multicast|bytes packets errs "
3969 "drop fifo colls carrier compressed\n");
3970 else
3971 dev_seq_printf_stats(seq, v);
3972 return 0;
3973 }
3974
3975 static struct softnet_data *softnet_get_online(loff_t *pos)
3976 {
3977 struct softnet_data *sd = NULL;
3978
3979 while (*pos < nr_cpu_ids)
3980 if (cpu_online(*pos)) {
3981 sd = &per_cpu(softnet_data, *pos);
3982 break;
3983 } else
3984 ++*pos;
3985 return sd;
3986 }
3987
3988 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3989 {
3990 return softnet_get_online(pos);
3991 }
3992
3993 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3994 {
3995 ++*pos;
3996 return softnet_get_online(pos);
3997 }
3998
3999 static void softnet_seq_stop(struct seq_file *seq, void *v)
4000 {
4001 }
4002
4003 static int softnet_seq_show(struct seq_file *seq, void *v)
4004 {
4005 struct softnet_data *sd = v;
4006
4007 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4008 sd->processed, sd->dropped, sd->time_squeeze, 0,
4009 0, 0, 0, 0, /* was fastroute */
4010 sd->cpu_collision, sd->received_rps);
4011 return 0;
4012 }
4013
4014 static const struct seq_operations dev_seq_ops = {
4015 .start = dev_seq_start,
4016 .next = dev_seq_next,
4017 .stop = dev_seq_stop,
4018 .show = dev_seq_show,
4019 };
4020
4021 static int dev_seq_open(struct inode *inode, struct file *file)
4022 {
4023 return seq_open_net(inode, file, &dev_seq_ops,
4024 sizeof(struct seq_net_private));
4025 }
4026
4027 static const struct file_operations dev_seq_fops = {
4028 .owner = THIS_MODULE,
4029 .open = dev_seq_open,
4030 .read = seq_read,
4031 .llseek = seq_lseek,
4032 .release = seq_release_net,
4033 };
4034
4035 static const struct seq_operations softnet_seq_ops = {
4036 .start = softnet_seq_start,
4037 .next = softnet_seq_next,
4038 .stop = softnet_seq_stop,
4039 .show = softnet_seq_show,
4040 };
4041
4042 static int softnet_seq_open(struct inode *inode, struct file *file)
4043 {
4044 return seq_open(file, &softnet_seq_ops);
4045 }
4046
4047 static const struct file_operations softnet_seq_fops = {
4048 .owner = THIS_MODULE,
4049 .open = softnet_seq_open,
4050 .read = seq_read,
4051 .llseek = seq_lseek,
4052 .release = seq_release,
4053 };
4054
4055 static void *ptype_get_idx(loff_t pos)
4056 {
4057 struct packet_type *pt = NULL;
4058 loff_t i = 0;
4059 int t;
4060
4061 list_for_each_entry_rcu(pt, &ptype_all, list) {
4062 if (i == pos)
4063 return pt;
4064 ++i;
4065 }
4066
4067 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4068 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4069 if (i == pos)
4070 return pt;
4071 ++i;
4072 }
4073 }
4074 return NULL;
4075 }
4076
4077 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4078 __acquires(RCU)
4079 {
4080 rcu_read_lock();
4081 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4082 }
4083
4084 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4085 {
4086 struct packet_type *pt;
4087 struct list_head *nxt;
4088 int hash;
4089
4090 ++*pos;
4091 if (v == SEQ_START_TOKEN)
4092 return ptype_get_idx(0);
4093
4094 pt = v;
4095 nxt = pt->list.next;
4096 if (pt->type == htons(ETH_P_ALL)) {
4097 if (nxt != &ptype_all)
4098 goto found;
4099 hash = 0;
4100 nxt = ptype_base[0].next;
4101 } else
4102 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4103
4104 while (nxt == &ptype_base[hash]) {
4105 if (++hash >= PTYPE_HASH_SIZE)
4106 return NULL;
4107 nxt = ptype_base[hash].next;
4108 }
4109 found:
4110 return list_entry(nxt, struct packet_type, list);
4111 }
4112
4113 static void ptype_seq_stop(struct seq_file *seq, void *v)
4114 __releases(RCU)
4115 {
4116 rcu_read_unlock();
4117 }
4118
4119 static int ptype_seq_show(struct seq_file *seq, void *v)
4120 {
4121 struct packet_type *pt = v;
4122
4123 if (v == SEQ_START_TOKEN)
4124 seq_puts(seq, "Type Device Function\n");
4125 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4126 if (pt->type == htons(ETH_P_ALL))
4127 seq_puts(seq, "ALL ");
4128 else
4129 seq_printf(seq, "%04x", ntohs(pt->type));
4130
4131 seq_printf(seq, " %-8s %pF\n",
4132 pt->dev ? pt->dev->name : "", pt->func);
4133 }
4134
4135 return 0;
4136 }
4137
4138 static const struct seq_operations ptype_seq_ops = {
4139 .start = ptype_seq_start,
4140 .next = ptype_seq_next,
4141 .stop = ptype_seq_stop,
4142 .show = ptype_seq_show,
4143 };
4144
4145 static int ptype_seq_open(struct inode *inode, struct file *file)
4146 {
4147 return seq_open_net(inode, file, &ptype_seq_ops,
4148 sizeof(struct seq_net_private));
4149 }
4150
4151 static const struct file_operations ptype_seq_fops = {
4152 .owner = THIS_MODULE,
4153 .open = ptype_seq_open,
4154 .read = seq_read,
4155 .llseek = seq_lseek,
4156 .release = seq_release_net,
4157 };
4158
4159
4160 static int __net_init dev_proc_net_init(struct net *net)
4161 {
4162 int rc = -ENOMEM;
4163
4164 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4165 goto out;
4166 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4167 goto out_dev;
4168 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4169 goto out_softnet;
4170
4171 if (wext_proc_init(net))
4172 goto out_ptype;
4173 rc = 0;
4174 out:
4175 return rc;
4176 out_ptype:
4177 proc_net_remove(net, "ptype");
4178 out_softnet:
4179 proc_net_remove(net, "softnet_stat");
4180 out_dev:
4181 proc_net_remove(net, "dev");
4182 goto out;
4183 }
4184
4185 static void __net_exit dev_proc_net_exit(struct net *net)
4186 {
4187 wext_proc_exit(net);
4188
4189 proc_net_remove(net, "ptype");
4190 proc_net_remove(net, "softnet_stat");
4191 proc_net_remove(net, "dev");
4192 }
4193
4194 static struct pernet_operations __net_initdata dev_proc_ops = {
4195 .init = dev_proc_net_init,
4196 .exit = dev_proc_net_exit,
4197 };
4198
4199 static int __init dev_proc_init(void)
4200 {
4201 return register_pernet_subsys(&dev_proc_ops);
4202 }
4203 #else
4204 #define dev_proc_init() 0
4205 #endif /* CONFIG_PROC_FS */
4206
4207
4208 /**
4209 * netdev_set_master - set up master/slave pair
4210 * @slave: slave device
4211 * @master: new master device
4212 *
4213 * Changes the master device of the slave. Pass %NULL to break the
4214 * bonding. The caller must hold the RTNL semaphore. On a failure
4215 * a negative errno code is returned. On success the reference counts
4216 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4217 * function returns zero.
4218 */
4219 int netdev_set_master(struct net_device *slave, struct net_device *master)
4220 {
4221 struct net_device *old = slave->master;
4222
4223 ASSERT_RTNL();
4224
4225 if (master) {
4226 if (old)
4227 return -EBUSY;
4228 dev_hold(master);
4229 }
4230
4231 slave->master = master;
4232
4233 if (old) {
4234 synchronize_net();
4235 dev_put(old);
4236 }
4237 if (master)
4238 slave->flags |= IFF_SLAVE;
4239 else
4240 slave->flags &= ~IFF_SLAVE;
4241
4242 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4243 return 0;
4244 }
4245 EXPORT_SYMBOL(netdev_set_master);
4246
4247 static void dev_change_rx_flags(struct net_device *dev, int flags)
4248 {
4249 const struct net_device_ops *ops = dev->netdev_ops;
4250
4251 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4252 ops->ndo_change_rx_flags(dev, flags);
4253 }
4254
4255 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4256 {
4257 unsigned short old_flags = dev->flags;
4258 uid_t uid;
4259 gid_t gid;
4260
4261 ASSERT_RTNL();
4262
4263 dev->flags |= IFF_PROMISC;
4264 dev->promiscuity += inc;
4265 if (dev->promiscuity == 0) {
4266 /*
4267 * Avoid overflow.
4268 * If inc causes overflow, untouch promisc and return error.
4269 */
4270 if (inc < 0)
4271 dev->flags &= ~IFF_PROMISC;
4272 else {
4273 dev->promiscuity -= inc;
4274 printk(KERN_WARNING "%s: promiscuity touches roof, "
4275 "set promiscuity failed, promiscuity feature "
4276 "of device might be broken.\n", dev->name);
4277 return -EOVERFLOW;
4278 }
4279 }
4280 if (dev->flags != old_flags) {
4281 printk(KERN_INFO "device %s %s promiscuous mode\n",
4282 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4283 "left");
4284 if (audit_enabled) {
4285 current_uid_gid(&uid, &gid);
4286 audit_log(current->audit_context, GFP_ATOMIC,
4287 AUDIT_ANOM_PROMISCUOUS,
4288 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4289 dev->name, (dev->flags & IFF_PROMISC),
4290 (old_flags & IFF_PROMISC),
4291 audit_get_loginuid(current),
4292 uid, gid,
4293 audit_get_sessionid(current));
4294 }
4295
4296 dev_change_rx_flags(dev, IFF_PROMISC);
4297 }
4298 return 0;
4299 }
4300
4301 /**
4302 * dev_set_promiscuity - update promiscuity count on a device
4303 * @dev: device
4304 * @inc: modifier
4305 *
4306 * Add or remove promiscuity from a device. While the count in the device
4307 * remains above zero the interface remains promiscuous. Once it hits zero
4308 * the device reverts back to normal filtering operation. A negative inc
4309 * value is used to drop promiscuity on the device.
4310 * Return 0 if successful or a negative errno code on error.
4311 */
4312 int dev_set_promiscuity(struct net_device *dev, int inc)
4313 {
4314 unsigned short old_flags = dev->flags;
4315 int err;
4316
4317 err = __dev_set_promiscuity(dev, inc);
4318 if (err < 0)
4319 return err;
4320 if (dev->flags != old_flags)
4321 dev_set_rx_mode(dev);
4322 return err;
4323 }
4324 EXPORT_SYMBOL(dev_set_promiscuity);
4325
4326 /**
4327 * dev_set_allmulti - update allmulti count on a device
4328 * @dev: device
4329 * @inc: modifier
4330 *
4331 * Add or remove reception of all multicast frames to a device. While the
4332 * count in the device remains above zero the interface remains listening
4333 * to all interfaces. Once it hits zero the device reverts back to normal
4334 * filtering operation. A negative @inc value is used to drop the counter
4335 * when releasing a resource needing all multicasts.
4336 * Return 0 if successful or a negative errno code on error.
4337 */
4338
4339 int dev_set_allmulti(struct net_device *dev, int inc)
4340 {
4341 unsigned short old_flags = dev->flags;
4342
4343 ASSERT_RTNL();
4344
4345 dev->flags |= IFF_ALLMULTI;
4346 dev->allmulti += inc;
4347 if (dev->allmulti == 0) {
4348 /*
4349 * Avoid overflow.
4350 * If inc causes overflow, untouch allmulti and return error.
4351 */
4352 if (inc < 0)
4353 dev->flags &= ~IFF_ALLMULTI;
4354 else {
4355 dev->allmulti -= inc;
4356 printk(KERN_WARNING "%s: allmulti touches roof, "
4357 "set allmulti failed, allmulti feature of "
4358 "device might be broken.\n", dev->name);
4359 return -EOVERFLOW;
4360 }
4361 }
4362 if (dev->flags ^ old_flags) {
4363 dev_change_rx_flags(dev, IFF_ALLMULTI);
4364 dev_set_rx_mode(dev);
4365 }
4366 return 0;
4367 }
4368 EXPORT_SYMBOL(dev_set_allmulti);
4369
4370 /*
4371 * Upload unicast and multicast address lists to device and
4372 * configure RX filtering. When the device doesn't support unicast
4373 * filtering it is put in promiscuous mode while unicast addresses
4374 * are present.
4375 */
4376 void __dev_set_rx_mode(struct net_device *dev)
4377 {
4378 const struct net_device_ops *ops = dev->netdev_ops;
4379
4380 /* dev_open will call this function so the list will stay sane. */
4381 if (!(dev->flags&IFF_UP))
4382 return;
4383
4384 if (!netif_device_present(dev))
4385 return;
4386
4387 if (ops->ndo_set_rx_mode)
4388 ops->ndo_set_rx_mode(dev);
4389 else {
4390 /* Unicast addresses changes may only happen under the rtnl,
4391 * therefore calling __dev_set_promiscuity here is safe.
4392 */
4393 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4394 __dev_set_promiscuity(dev, 1);
4395 dev->uc_promisc = 1;
4396 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4397 __dev_set_promiscuity(dev, -1);
4398 dev->uc_promisc = 0;
4399 }
4400
4401 if (ops->ndo_set_multicast_list)
4402 ops->ndo_set_multicast_list(dev);
4403 }
4404 }
4405
4406 void dev_set_rx_mode(struct net_device *dev)
4407 {
4408 netif_addr_lock_bh(dev);
4409 __dev_set_rx_mode(dev);
4410 netif_addr_unlock_bh(dev);
4411 }
4412
4413 /**
4414 * dev_get_flags - get flags reported to userspace
4415 * @dev: device
4416 *
4417 * Get the combination of flag bits exported through APIs to userspace.
4418 */
4419 unsigned dev_get_flags(const struct net_device *dev)
4420 {
4421 unsigned flags;
4422
4423 flags = (dev->flags & ~(IFF_PROMISC |
4424 IFF_ALLMULTI |
4425 IFF_RUNNING |
4426 IFF_LOWER_UP |
4427 IFF_DORMANT)) |
4428 (dev->gflags & (IFF_PROMISC |
4429 IFF_ALLMULTI));
4430
4431 if (netif_running(dev)) {
4432 if (netif_oper_up(dev))
4433 flags |= IFF_RUNNING;
4434 if (netif_carrier_ok(dev))
4435 flags |= IFF_LOWER_UP;
4436 if (netif_dormant(dev))
4437 flags |= IFF_DORMANT;
4438 }
4439
4440 return flags;
4441 }
4442 EXPORT_SYMBOL(dev_get_flags);
4443
4444 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4445 {
4446 int old_flags = dev->flags;
4447 int ret;
4448
4449 ASSERT_RTNL();
4450
4451 /*
4452 * Set the flags on our device.
4453 */
4454
4455 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4456 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4457 IFF_AUTOMEDIA)) |
4458 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4459 IFF_ALLMULTI));
4460
4461 /*
4462 * Load in the correct multicast list now the flags have changed.
4463 */
4464
4465 if ((old_flags ^ flags) & IFF_MULTICAST)
4466 dev_change_rx_flags(dev, IFF_MULTICAST);
4467
4468 dev_set_rx_mode(dev);
4469
4470 /*
4471 * Have we downed the interface. We handle IFF_UP ourselves
4472 * according to user attempts to set it, rather than blindly
4473 * setting it.
4474 */
4475
4476 ret = 0;
4477 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4478 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4479
4480 if (!ret)
4481 dev_set_rx_mode(dev);
4482 }
4483
4484 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4485 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4486
4487 dev->gflags ^= IFF_PROMISC;
4488 dev_set_promiscuity(dev, inc);
4489 }
4490
4491 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4492 is important. Some (broken) drivers set IFF_PROMISC, when
4493 IFF_ALLMULTI is requested not asking us and not reporting.
4494 */
4495 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4496 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4497
4498 dev->gflags ^= IFF_ALLMULTI;
4499 dev_set_allmulti(dev, inc);
4500 }
4501
4502 return ret;
4503 }
4504
4505 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4506 {
4507 unsigned int changes = dev->flags ^ old_flags;
4508
4509 if (changes & IFF_UP) {
4510 if (dev->flags & IFF_UP)
4511 call_netdevice_notifiers(NETDEV_UP, dev);
4512 else
4513 call_netdevice_notifiers(NETDEV_DOWN, dev);
4514 }
4515
4516 if (dev->flags & IFF_UP &&
4517 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4518 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4519 }
4520
4521 /**
4522 * dev_change_flags - change device settings
4523 * @dev: device
4524 * @flags: device state flags
4525 *
4526 * Change settings on device based state flags. The flags are
4527 * in the userspace exported format.
4528 */
4529 int dev_change_flags(struct net_device *dev, unsigned flags)
4530 {
4531 int ret, changes;
4532 int old_flags = dev->flags;
4533
4534 ret = __dev_change_flags(dev, flags);
4535 if (ret < 0)
4536 return ret;
4537
4538 changes = old_flags ^ dev->flags;
4539 if (changes)
4540 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4541
4542 __dev_notify_flags(dev, old_flags);
4543 return ret;
4544 }
4545 EXPORT_SYMBOL(dev_change_flags);
4546
4547 /**
4548 * dev_set_mtu - Change maximum transfer unit
4549 * @dev: device
4550 * @new_mtu: new transfer unit
4551 *
4552 * Change the maximum transfer size of the network device.
4553 */
4554 int dev_set_mtu(struct net_device *dev, int new_mtu)
4555 {
4556 const struct net_device_ops *ops = dev->netdev_ops;
4557 int err;
4558
4559 if (new_mtu == dev->mtu)
4560 return 0;
4561
4562 /* MTU must be positive. */
4563 if (new_mtu < 0)
4564 return -EINVAL;
4565
4566 if (!netif_device_present(dev))
4567 return -ENODEV;
4568
4569 err = 0;
4570 if (ops->ndo_change_mtu)
4571 err = ops->ndo_change_mtu(dev, new_mtu);
4572 else
4573 dev->mtu = new_mtu;
4574
4575 if (!err && dev->flags & IFF_UP)
4576 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4577 return err;
4578 }
4579 EXPORT_SYMBOL(dev_set_mtu);
4580
4581 /**
4582 * dev_set_mac_address - Change Media Access Control Address
4583 * @dev: device
4584 * @sa: new address
4585 *
4586 * Change the hardware (MAC) address of the device
4587 */
4588 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4589 {
4590 const struct net_device_ops *ops = dev->netdev_ops;
4591 int err;
4592
4593 if (!ops->ndo_set_mac_address)
4594 return -EOPNOTSUPP;
4595 if (sa->sa_family != dev->type)
4596 return -EINVAL;
4597 if (!netif_device_present(dev))
4598 return -ENODEV;
4599 err = ops->ndo_set_mac_address(dev, sa);
4600 if (!err)
4601 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4602 return err;
4603 }
4604 EXPORT_SYMBOL(dev_set_mac_address);
4605
4606 /*
4607 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4608 */
4609 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4610 {
4611 int err;
4612 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4613
4614 if (!dev)
4615 return -ENODEV;
4616
4617 switch (cmd) {
4618 case SIOCGIFFLAGS: /* Get interface flags */
4619 ifr->ifr_flags = (short) dev_get_flags(dev);
4620 return 0;
4621
4622 case SIOCGIFMETRIC: /* Get the metric on the interface
4623 (currently unused) */
4624 ifr->ifr_metric = 0;
4625 return 0;
4626
4627 case SIOCGIFMTU: /* Get the MTU of a device */
4628 ifr->ifr_mtu = dev->mtu;
4629 return 0;
4630
4631 case SIOCGIFHWADDR:
4632 if (!dev->addr_len)
4633 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4634 else
4635 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4636 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4637 ifr->ifr_hwaddr.sa_family = dev->type;
4638 return 0;
4639
4640 case SIOCGIFSLAVE:
4641 err = -EINVAL;
4642 break;
4643
4644 case SIOCGIFMAP:
4645 ifr->ifr_map.mem_start = dev->mem_start;
4646 ifr->ifr_map.mem_end = dev->mem_end;
4647 ifr->ifr_map.base_addr = dev->base_addr;
4648 ifr->ifr_map.irq = dev->irq;
4649 ifr->ifr_map.dma = dev->dma;
4650 ifr->ifr_map.port = dev->if_port;
4651 return 0;
4652
4653 case SIOCGIFINDEX:
4654 ifr->ifr_ifindex = dev->ifindex;
4655 return 0;
4656
4657 case SIOCGIFTXQLEN:
4658 ifr->ifr_qlen = dev->tx_queue_len;
4659 return 0;
4660
4661 default:
4662 /* dev_ioctl() should ensure this case
4663 * is never reached
4664 */
4665 WARN_ON(1);
4666 err = -EINVAL;
4667 break;
4668
4669 }
4670 return err;
4671 }
4672
4673 /*
4674 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4675 */
4676 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4677 {
4678 int err;
4679 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4680 const struct net_device_ops *ops;
4681
4682 if (!dev)
4683 return -ENODEV;
4684
4685 ops = dev->netdev_ops;
4686
4687 switch (cmd) {
4688 case SIOCSIFFLAGS: /* Set interface flags */
4689 return dev_change_flags(dev, ifr->ifr_flags);
4690
4691 case SIOCSIFMETRIC: /* Set the metric on the interface
4692 (currently unused) */
4693 return -EOPNOTSUPP;
4694
4695 case SIOCSIFMTU: /* Set the MTU of a device */
4696 return dev_set_mtu(dev, ifr->ifr_mtu);
4697
4698 case SIOCSIFHWADDR:
4699 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4700
4701 case SIOCSIFHWBROADCAST:
4702 if (ifr->ifr_hwaddr.sa_family != dev->type)
4703 return -EINVAL;
4704 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4705 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4706 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4707 return 0;
4708
4709 case SIOCSIFMAP:
4710 if (ops->ndo_set_config) {
4711 if (!netif_device_present(dev))
4712 return -ENODEV;
4713 return ops->ndo_set_config(dev, &ifr->ifr_map);
4714 }
4715 return -EOPNOTSUPP;
4716
4717 case SIOCADDMULTI:
4718 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4719 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4720 return -EINVAL;
4721 if (!netif_device_present(dev))
4722 return -ENODEV;
4723 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4724
4725 case SIOCDELMULTI:
4726 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4727 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4728 return -EINVAL;
4729 if (!netif_device_present(dev))
4730 return -ENODEV;
4731 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4732
4733 case SIOCSIFTXQLEN:
4734 if (ifr->ifr_qlen < 0)
4735 return -EINVAL;
4736 dev->tx_queue_len = ifr->ifr_qlen;
4737 return 0;
4738
4739 case SIOCSIFNAME:
4740 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4741 return dev_change_name(dev, ifr->ifr_newname);
4742
4743 /*
4744 * Unknown or private ioctl
4745 */
4746 default:
4747 if ((cmd >= SIOCDEVPRIVATE &&
4748 cmd <= SIOCDEVPRIVATE + 15) ||
4749 cmd == SIOCBONDENSLAVE ||
4750 cmd == SIOCBONDRELEASE ||
4751 cmd == SIOCBONDSETHWADDR ||
4752 cmd == SIOCBONDSLAVEINFOQUERY ||
4753 cmd == SIOCBONDINFOQUERY ||
4754 cmd == SIOCBONDCHANGEACTIVE ||
4755 cmd == SIOCGMIIPHY ||
4756 cmd == SIOCGMIIREG ||
4757 cmd == SIOCSMIIREG ||
4758 cmd == SIOCBRADDIF ||
4759 cmd == SIOCBRDELIF ||
4760 cmd == SIOCSHWTSTAMP ||
4761 cmd == SIOCWANDEV) {
4762 err = -EOPNOTSUPP;
4763 if (ops->ndo_do_ioctl) {
4764 if (netif_device_present(dev))
4765 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4766 else
4767 err = -ENODEV;
4768 }
4769 } else
4770 err = -EINVAL;
4771
4772 }
4773 return err;
4774 }
4775
4776 /*
4777 * This function handles all "interface"-type I/O control requests. The actual
4778 * 'doing' part of this is dev_ifsioc above.
4779 */
4780
4781 /**
4782 * dev_ioctl - network device ioctl
4783 * @net: the applicable net namespace
4784 * @cmd: command to issue
4785 * @arg: pointer to a struct ifreq in user space
4786 *
4787 * Issue ioctl functions to devices. This is normally called by the
4788 * user space syscall interfaces but can sometimes be useful for
4789 * other purposes. The return value is the return from the syscall if
4790 * positive or a negative errno code on error.
4791 */
4792
4793 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4794 {
4795 struct ifreq ifr;
4796 int ret;
4797 char *colon;
4798
4799 /* One special case: SIOCGIFCONF takes ifconf argument
4800 and requires shared lock, because it sleeps writing
4801 to user space.
4802 */
4803
4804 if (cmd == SIOCGIFCONF) {
4805 rtnl_lock();
4806 ret = dev_ifconf(net, (char __user *) arg);
4807 rtnl_unlock();
4808 return ret;
4809 }
4810 if (cmd == SIOCGIFNAME)
4811 return dev_ifname(net, (struct ifreq __user *)arg);
4812
4813 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4814 return -EFAULT;
4815
4816 ifr.ifr_name[IFNAMSIZ-1] = 0;
4817
4818 colon = strchr(ifr.ifr_name, ':');
4819 if (colon)
4820 *colon = 0;
4821
4822 /*
4823 * See which interface the caller is talking about.
4824 */
4825
4826 switch (cmd) {
4827 /*
4828 * These ioctl calls:
4829 * - can be done by all.
4830 * - atomic and do not require locking.
4831 * - return a value
4832 */
4833 case SIOCGIFFLAGS:
4834 case SIOCGIFMETRIC:
4835 case SIOCGIFMTU:
4836 case SIOCGIFHWADDR:
4837 case SIOCGIFSLAVE:
4838 case SIOCGIFMAP:
4839 case SIOCGIFINDEX:
4840 case SIOCGIFTXQLEN:
4841 dev_load(net, ifr.ifr_name);
4842 rcu_read_lock();
4843 ret = dev_ifsioc_locked(net, &ifr, cmd);
4844 rcu_read_unlock();
4845 if (!ret) {
4846 if (colon)
4847 *colon = ':';
4848 if (copy_to_user(arg, &ifr,
4849 sizeof(struct ifreq)))
4850 ret = -EFAULT;
4851 }
4852 return ret;
4853
4854 case SIOCETHTOOL:
4855 dev_load(net, ifr.ifr_name);
4856 rtnl_lock();
4857 ret = dev_ethtool(net, &ifr);
4858 rtnl_unlock();
4859 if (!ret) {
4860 if (colon)
4861 *colon = ':';
4862 if (copy_to_user(arg, &ifr,
4863 sizeof(struct ifreq)))
4864 ret = -EFAULT;
4865 }
4866 return ret;
4867
4868 /*
4869 * These ioctl calls:
4870 * - require superuser power.
4871 * - require strict serialization.
4872 * - return a value
4873 */
4874 case SIOCGMIIPHY:
4875 case SIOCGMIIREG:
4876 case SIOCSIFNAME:
4877 if (!capable(CAP_NET_ADMIN))
4878 return -EPERM;
4879 dev_load(net, ifr.ifr_name);
4880 rtnl_lock();
4881 ret = dev_ifsioc(net, &ifr, cmd);
4882 rtnl_unlock();
4883 if (!ret) {
4884 if (colon)
4885 *colon = ':';
4886 if (copy_to_user(arg, &ifr,
4887 sizeof(struct ifreq)))
4888 ret = -EFAULT;
4889 }
4890 return ret;
4891
4892 /*
4893 * These ioctl calls:
4894 * - require superuser power.
4895 * - require strict serialization.
4896 * - do not return a value
4897 */
4898 case SIOCSIFFLAGS:
4899 case SIOCSIFMETRIC:
4900 case SIOCSIFMTU:
4901 case SIOCSIFMAP:
4902 case SIOCSIFHWADDR:
4903 case SIOCSIFSLAVE:
4904 case SIOCADDMULTI:
4905 case SIOCDELMULTI:
4906 case SIOCSIFHWBROADCAST:
4907 case SIOCSIFTXQLEN:
4908 case SIOCSMIIREG:
4909 case SIOCBONDENSLAVE:
4910 case SIOCBONDRELEASE:
4911 case SIOCBONDSETHWADDR:
4912 case SIOCBONDCHANGEACTIVE:
4913 case SIOCBRADDIF:
4914 case SIOCBRDELIF:
4915 case SIOCSHWTSTAMP:
4916 if (!capable(CAP_NET_ADMIN))
4917 return -EPERM;
4918 /* fall through */
4919 case SIOCBONDSLAVEINFOQUERY:
4920 case SIOCBONDINFOQUERY:
4921 dev_load(net, ifr.ifr_name);
4922 rtnl_lock();
4923 ret = dev_ifsioc(net, &ifr, cmd);
4924 rtnl_unlock();
4925 return ret;
4926
4927 case SIOCGIFMEM:
4928 /* Get the per device memory space. We can add this but
4929 * currently do not support it */
4930 case SIOCSIFMEM:
4931 /* Set the per device memory buffer space.
4932 * Not applicable in our case */
4933 case SIOCSIFLINK:
4934 return -EINVAL;
4935
4936 /*
4937 * Unknown or private ioctl.
4938 */
4939 default:
4940 if (cmd == SIOCWANDEV ||
4941 (cmd >= SIOCDEVPRIVATE &&
4942 cmd <= SIOCDEVPRIVATE + 15)) {
4943 dev_load(net, ifr.ifr_name);
4944 rtnl_lock();
4945 ret = dev_ifsioc(net, &ifr, cmd);
4946 rtnl_unlock();
4947 if (!ret && copy_to_user(arg, &ifr,
4948 sizeof(struct ifreq)))
4949 ret = -EFAULT;
4950 return ret;
4951 }
4952 /* Take care of Wireless Extensions */
4953 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4954 return wext_handle_ioctl(net, &ifr, cmd, arg);
4955 return -EINVAL;
4956 }
4957 }
4958
4959
4960 /**
4961 * dev_new_index - allocate an ifindex
4962 * @net: the applicable net namespace
4963 *
4964 * Returns a suitable unique value for a new device interface
4965 * number. The caller must hold the rtnl semaphore or the
4966 * dev_base_lock to be sure it remains unique.
4967 */
4968 static int dev_new_index(struct net *net)
4969 {
4970 static int ifindex;
4971 for (;;) {
4972 if (++ifindex <= 0)
4973 ifindex = 1;
4974 if (!__dev_get_by_index(net, ifindex))
4975 return ifindex;
4976 }
4977 }
4978
4979 /* Delayed registration/unregisteration */
4980 static LIST_HEAD(net_todo_list);
4981
4982 static void net_set_todo(struct net_device *dev)
4983 {
4984 list_add_tail(&dev->todo_list, &net_todo_list);
4985 }
4986
4987 static void rollback_registered_many(struct list_head *head)
4988 {
4989 struct net_device *dev, *tmp;
4990
4991 BUG_ON(dev_boot_phase);
4992 ASSERT_RTNL();
4993
4994 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4995 /* Some devices call without registering
4996 * for initialization unwind. Remove those
4997 * devices and proceed with the remaining.
4998 */
4999 if (dev->reg_state == NETREG_UNINITIALIZED) {
5000 pr_debug("unregister_netdevice: device %s/%p never "
5001 "was registered\n", dev->name, dev);
5002
5003 WARN_ON(1);
5004 list_del(&dev->unreg_list);
5005 continue;
5006 }
5007
5008 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5009 }
5010
5011 /* If device is running, close it first. */
5012 dev_close_many(head);
5013
5014 list_for_each_entry(dev, head, unreg_list) {
5015 /* And unlink it from device chain. */
5016 unlist_netdevice(dev);
5017
5018 dev->reg_state = NETREG_UNREGISTERING;
5019 }
5020
5021 synchronize_net();
5022
5023 list_for_each_entry(dev, head, unreg_list) {
5024 /* Shutdown queueing discipline. */
5025 dev_shutdown(dev);
5026
5027
5028 /* Notify protocols, that we are about to destroy
5029 this device. They should clean all the things.
5030 */
5031 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5032
5033 if (!dev->rtnl_link_ops ||
5034 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5035 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5036
5037 /*
5038 * Flush the unicast and multicast chains
5039 */
5040 dev_uc_flush(dev);
5041 dev_mc_flush(dev);
5042
5043 if (dev->netdev_ops->ndo_uninit)
5044 dev->netdev_ops->ndo_uninit(dev);
5045
5046 /* Notifier chain MUST detach us from master device. */
5047 WARN_ON(dev->master);
5048
5049 /* Remove entries from kobject tree */
5050 netdev_unregister_kobject(dev);
5051 }
5052
5053 /* Process any work delayed until the end of the batch */
5054 dev = list_first_entry(head, struct net_device, unreg_list);
5055 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5056
5057 rcu_barrier();
5058
5059 list_for_each_entry(dev, head, unreg_list)
5060 dev_put(dev);
5061 }
5062
5063 static void rollback_registered(struct net_device *dev)
5064 {
5065 LIST_HEAD(single);
5066
5067 list_add(&dev->unreg_list, &single);
5068 rollback_registered_many(&single);
5069 }
5070
5071 unsigned long netdev_fix_features(unsigned long features, const char *name)
5072 {
5073 /* Fix illegal SG+CSUM combinations. */
5074 if ((features & NETIF_F_SG) &&
5075 !(features & NETIF_F_ALL_CSUM)) {
5076 if (name)
5077 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5078 "checksum feature.\n", name);
5079 features &= ~NETIF_F_SG;
5080 }
5081
5082 /* TSO requires that SG is present as well. */
5083 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5084 if (name)
5085 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5086 "SG feature.\n", name);
5087 features &= ~NETIF_F_TSO;
5088 }
5089
5090 if (features & NETIF_F_UFO) {
5091 /* maybe split UFO into V4 and V6? */
5092 if (!((features & NETIF_F_GEN_CSUM) ||
5093 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5094 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5095 if (name)
5096 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5097 "since no checksum offload features.\n",
5098 name);
5099 features &= ~NETIF_F_UFO;
5100 }
5101
5102 if (!(features & NETIF_F_SG)) {
5103 if (name)
5104 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5105 "since no NETIF_F_SG feature.\n", name);
5106 features &= ~NETIF_F_UFO;
5107 }
5108 }
5109
5110 return features;
5111 }
5112 EXPORT_SYMBOL(netdev_fix_features);
5113
5114 /**
5115 * netif_stacked_transfer_operstate - transfer operstate
5116 * @rootdev: the root or lower level device to transfer state from
5117 * @dev: the device to transfer operstate to
5118 *
5119 * Transfer operational state from root to device. This is normally
5120 * called when a stacking relationship exists between the root
5121 * device and the device(a leaf device).
5122 */
5123 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5124 struct net_device *dev)
5125 {
5126 if (rootdev->operstate == IF_OPER_DORMANT)
5127 netif_dormant_on(dev);
5128 else
5129 netif_dormant_off(dev);
5130
5131 if (netif_carrier_ok(rootdev)) {
5132 if (!netif_carrier_ok(dev))
5133 netif_carrier_on(dev);
5134 } else {
5135 if (netif_carrier_ok(dev))
5136 netif_carrier_off(dev);
5137 }
5138 }
5139 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5140
5141 #ifdef CONFIG_RPS
5142 static int netif_alloc_rx_queues(struct net_device *dev)
5143 {
5144 unsigned int i, count = dev->num_rx_queues;
5145 struct netdev_rx_queue *rx;
5146
5147 BUG_ON(count < 1);
5148
5149 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5150 if (!rx) {
5151 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5152 return -ENOMEM;
5153 }
5154 dev->_rx = rx;
5155
5156 for (i = 0; i < count; i++)
5157 rx[i].dev = dev;
5158 return 0;
5159 }
5160 #endif
5161
5162 static void netdev_init_one_queue(struct net_device *dev,
5163 struct netdev_queue *queue, void *_unused)
5164 {
5165 /* Initialize queue lock */
5166 spin_lock_init(&queue->_xmit_lock);
5167 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5168 queue->xmit_lock_owner = -1;
5169 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5170 queue->dev = dev;
5171 }
5172
5173 static int netif_alloc_netdev_queues(struct net_device *dev)
5174 {
5175 unsigned int count = dev->num_tx_queues;
5176 struct netdev_queue *tx;
5177
5178 BUG_ON(count < 1);
5179
5180 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5181 if (!tx) {
5182 pr_err("netdev: Unable to allocate %u tx queues.\n",
5183 count);
5184 return -ENOMEM;
5185 }
5186 dev->_tx = tx;
5187
5188 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5189 spin_lock_init(&dev->tx_global_lock);
5190
5191 return 0;
5192 }
5193
5194 /**
5195 * register_netdevice - register a network device
5196 * @dev: device to register
5197 *
5198 * Take a completed network device structure and add it to the kernel
5199 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5200 * chain. 0 is returned on success. A negative errno code is returned
5201 * on a failure to set up the device, or if the name is a duplicate.
5202 *
5203 * Callers must hold the rtnl semaphore. You may want
5204 * register_netdev() instead of this.
5205 *
5206 * BUGS:
5207 * The locking appears insufficient to guarantee two parallel registers
5208 * will not get the same name.
5209 */
5210
5211 int register_netdevice(struct net_device *dev)
5212 {
5213 int ret;
5214 struct net *net = dev_net(dev);
5215
5216 BUG_ON(dev_boot_phase);
5217 ASSERT_RTNL();
5218
5219 might_sleep();
5220
5221 /* When net_device's are persistent, this will be fatal. */
5222 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5223 BUG_ON(!net);
5224
5225 spin_lock_init(&dev->addr_list_lock);
5226 netdev_set_addr_lockdep_class(dev);
5227
5228 dev->iflink = -1;
5229
5230 /* Init, if this function is available */
5231 if (dev->netdev_ops->ndo_init) {
5232 ret = dev->netdev_ops->ndo_init(dev);
5233 if (ret) {
5234 if (ret > 0)
5235 ret = -EIO;
5236 goto out;
5237 }
5238 }
5239
5240 ret = dev_get_valid_name(dev, dev->name, 0);
5241 if (ret)
5242 goto err_uninit;
5243
5244 dev->ifindex = dev_new_index(net);
5245 if (dev->iflink == -1)
5246 dev->iflink = dev->ifindex;
5247
5248 /* Fix illegal checksum combinations */
5249 if ((dev->features & NETIF_F_HW_CSUM) &&
5250 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5251 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5252 dev->name);
5253 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5254 }
5255
5256 if ((dev->features & NETIF_F_NO_CSUM) &&
5257 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5258 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5259 dev->name);
5260 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5261 }
5262
5263 dev->features = netdev_fix_features(dev->features, dev->name);
5264
5265 /* Enable software GSO if SG is supported. */
5266 if (dev->features & NETIF_F_SG)
5267 dev->features |= NETIF_F_GSO;
5268
5269 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5270 * vlan_dev_init() will do the dev->features check, so these features
5271 * are enabled only if supported by underlying device.
5272 */
5273 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5274
5275 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5276 ret = notifier_to_errno(ret);
5277 if (ret)
5278 goto err_uninit;
5279
5280 ret = netdev_register_kobject(dev);
5281 if (ret)
5282 goto err_uninit;
5283 dev->reg_state = NETREG_REGISTERED;
5284
5285 /*
5286 * Default initial state at registry is that the
5287 * device is present.
5288 */
5289
5290 set_bit(__LINK_STATE_PRESENT, &dev->state);
5291
5292 dev_init_scheduler(dev);
5293 dev_hold(dev);
5294 list_netdevice(dev);
5295
5296 /* Notify protocols, that a new device appeared. */
5297 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5298 ret = notifier_to_errno(ret);
5299 if (ret) {
5300 rollback_registered(dev);
5301 dev->reg_state = NETREG_UNREGISTERED;
5302 }
5303 /*
5304 * Prevent userspace races by waiting until the network
5305 * device is fully setup before sending notifications.
5306 */
5307 if (!dev->rtnl_link_ops ||
5308 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5309 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5310
5311 out:
5312 return ret;
5313
5314 err_uninit:
5315 if (dev->netdev_ops->ndo_uninit)
5316 dev->netdev_ops->ndo_uninit(dev);
5317 goto out;
5318 }
5319 EXPORT_SYMBOL(register_netdevice);
5320
5321 /**
5322 * init_dummy_netdev - init a dummy network device for NAPI
5323 * @dev: device to init
5324 *
5325 * This takes a network device structure and initialize the minimum
5326 * amount of fields so it can be used to schedule NAPI polls without
5327 * registering a full blown interface. This is to be used by drivers
5328 * that need to tie several hardware interfaces to a single NAPI
5329 * poll scheduler due to HW limitations.
5330 */
5331 int init_dummy_netdev(struct net_device *dev)
5332 {
5333 /* Clear everything. Note we don't initialize spinlocks
5334 * are they aren't supposed to be taken by any of the
5335 * NAPI code and this dummy netdev is supposed to be
5336 * only ever used for NAPI polls
5337 */
5338 memset(dev, 0, sizeof(struct net_device));
5339
5340 /* make sure we BUG if trying to hit standard
5341 * register/unregister code path
5342 */
5343 dev->reg_state = NETREG_DUMMY;
5344
5345 /* NAPI wants this */
5346 INIT_LIST_HEAD(&dev->napi_list);
5347
5348 /* a dummy interface is started by default */
5349 set_bit(__LINK_STATE_PRESENT, &dev->state);
5350 set_bit(__LINK_STATE_START, &dev->state);
5351
5352 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5353 * because users of this 'device' dont need to change
5354 * its refcount.
5355 */
5356
5357 return 0;
5358 }
5359 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5360
5361
5362 /**
5363 * register_netdev - register a network device
5364 * @dev: device to register
5365 *
5366 * Take a completed network device structure and add it to the kernel
5367 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5368 * chain. 0 is returned on success. A negative errno code is returned
5369 * on a failure to set up the device, or if the name is a duplicate.
5370 *
5371 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5372 * and expands the device name if you passed a format string to
5373 * alloc_netdev.
5374 */
5375 int register_netdev(struct net_device *dev)
5376 {
5377 int err;
5378
5379 rtnl_lock();
5380
5381 /*
5382 * If the name is a format string the caller wants us to do a
5383 * name allocation.
5384 */
5385 if (strchr(dev->name, '%')) {
5386 err = dev_alloc_name(dev, dev->name);
5387 if (err < 0)
5388 goto out;
5389 }
5390
5391 err = register_netdevice(dev);
5392 out:
5393 rtnl_unlock();
5394 return err;
5395 }
5396 EXPORT_SYMBOL(register_netdev);
5397
5398 int netdev_refcnt_read(const struct net_device *dev)
5399 {
5400 int i, refcnt = 0;
5401
5402 for_each_possible_cpu(i)
5403 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5404 return refcnt;
5405 }
5406 EXPORT_SYMBOL(netdev_refcnt_read);
5407
5408 /*
5409 * netdev_wait_allrefs - wait until all references are gone.
5410 *
5411 * This is called when unregistering network devices.
5412 *
5413 * Any protocol or device that holds a reference should register
5414 * for netdevice notification, and cleanup and put back the
5415 * reference if they receive an UNREGISTER event.
5416 * We can get stuck here if buggy protocols don't correctly
5417 * call dev_put.
5418 */
5419 static void netdev_wait_allrefs(struct net_device *dev)
5420 {
5421 unsigned long rebroadcast_time, warning_time;
5422 int refcnt;
5423
5424 linkwatch_forget_dev(dev);
5425
5426 rebroadcast_time = warning_time = jiffies;
5427 refcnt = netdev_refcnt_read(dev);
5428
5429 while (refcnt != 0) {
5430 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5431 rtnl_lock();
5432
5433 /* Rebroadcast unregister notification */
5434 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5435 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5436 * should have already handle it the first time */
5437
5438 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5439 &dev->state)) {
5440 /* We must not have linkwatch events
5441 * pending on unregister. If this
5442 * happens, we simply run the queue
5443 * unscheduled, resulting in a noop
5444 * for this device.
5445 */
5446 linkwatch_run_queue();
5447 }
5448
5449 __rtnl_unlock();
5450
5451 rebroadcast_time = jiffies;
5452 }
5453
5454 msleep(250);
5455
5456 refcnt = netdev_refcnt_read(dev);
5457
5458 if (time_after(jiffies, warning_time + 10 * HZ)) {
5459 printk(KERN_EMERG "unregister_netdevice: "
5460 "waiting for %s to become free. Usage "
5461 "count = %d\n",
5462 dev->name, refcnt);
5463 warning_time = jiffies;
5464 }
5465 }
5466 }
5467
5468 /* The sequence is:
5469 *
5470 * rtnl_lock();
5471 * ...
5472 * register_netdevice(x1);
5473 * register_netdevice(x2);
5474 * ...
5475 * unregister_netdevice(y1);
5476 * unregister_netdevice(y2);
5477 * ...
5478 * rtnl_unlock();
5479 * free_netdev(y1);
5480 * free_netdev(y2);
5481 *
5482 * We are invoked by rtnl_unlock().
5483 * This allows us to deal with problems:
5484 * 1) We can delete sysfs objects which invoke hotplug
5485 * without deadlocking with linkwatch via keventd.
5486 * 2) Since we run with the RTNL semaphore not held, we can sleep
5487 * safely in order to wait for the netdev refcnt to drop to zero.
5488 *
5489 * We must not return until all unregister events added during
5490 * the interval the lock was held have been completed.
5491 */
5492 void netdev_run_todo(void)
5493 {
5494 struct list_head list;
5495
5496 /* Snapshot list, allow later requests */
5497 list_replace_init(&net_todo_list, &list);
5498
5499 __rtnl_unlock();
5500
5501 while (!list_empty(&list)) {
5502 struct net_device *dev
5503 = list_first_entry(&list, struct net_device, todo_list);
5504 list_del(&dev->todo_list);
5505
5506 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5507 printk(KERN_ERR "network todo '%s' but state %d\n",
5508 dev->name, dev->reg_state);
5509 dump_stack();
5510 continue;
5511 }
5512
5513 dev->reg_state = NETREG_UNREGISTERED;
5514
5515 on_each_cpu(flush_backlog, dev, 1);
5516
5517 netdev_wait_allrefs(dev);
5518
5519 /* paranoia */
5520 BUG_ON(netdev_refcnt_read(dev));
5521 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5522 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5523 WARN_ON(dev->dn_ptr);
5524
5525 if (dev->destructor)
5526 dev->destructor(dev);
5527
5528 /* Free network device */
5529 kobject_put(&dev->dev.kobj);
5530 }
5531 }
5532
5533 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5534 * fields in the same order, with only the type differing.
5535 */
5536 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5537 const struct net_device_stats *netdev_stats)
5538 {
5539 #if BITS_PER_LONG == 64
5540 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5541 memcpy(stats64, netdev_stats, sizeof(*stats64));
5542 #else
5543 size_t i, n = sizeof(*stats64) / sizeof(u64);
5544 const unsigned long *src = (const unsigned long *)netdev_stats;
5545 u64 *dst = (u64 *)stats64;
5546
5547 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5548 sizeof(*stats64) / sizeof(u64));
5549 for (i = 0; i < n; i++)
5550 dst[i] = src[i];
5551 #endif
5552 }
5553
5554 /**
5555 * dev_get_stats - get network device statistics
5556 * @dev: device to get statistics from
5557 * @storage: place to store stats
5558 *
5559 * Get network statistics from device. Return @storage.
5560 * The device driver may provide its own method by setting
5561 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5562 * otherwise the internal statistics structure is used.
5563 */
5564 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5565 struct rtnl_link_stats64 *storage)
5566 {
5567 const struct net_device_ops *ops = dev->netdev_ops;
5568
5569 if (ops->ndo_get_stats64) {
5570 memset(storage, 0, sizeof(*storage));
5571 ops->ndo_get_stats64(dev, storage);
5572 } else if (ops->ndo_get_stats) {
5573 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5574 } else {
5575 netdev_stats_to_stats64(storage, &dev->stats);
5576 }
5577 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5578 return storage;
5579 }
5580 EXPORT_SYMBOL(dev_get_stats);
5581
5582 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5583 {
5584 struct netdev_queue *queue = dev_ingress_queue(dev);
5585
5586 #ifdef CONFIG_NET_CLS_ACT
5587 if (queue)
5588 return queue;
5589 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5590 if (!queue)
5591 return NULL;
5592 netdev_init_one_queue(dev, queue, NULL);
5593 queue->qdisc = &noop_qdisc;
5594 queue->qdisc_sleeping = &noop_qdisc;
5595 rcu_assign_pointer(dev->ingress_queue, queue);
5596 #endif
5597 return queue;
5598 }
5599
5600 /**
5601 * alloc_netdev_mqs - allocate network device
5602 * @sizeof_priv: size of private data to allocate space for
5603 * @name: device name format string
5604 * @setup: callback to initialize device
5605 * @txqs: the number of TX subqueues to allocate
5606 * @rxqs: the number of RX subqueues to allocate
5607 *
5608 * Allocates a struct net_device with private data area for driver use
5609 * and performs basic initialization. Also allocates subquue structs
5610 * for each queue on the device.
5611 */
5612 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5613 void (*setup)(struct net_device *),
5614 unsigned int txqs, unsigned int rxqs)
5615 {
5616 struct net_device *dev;
5617 size_t alloc_size;
5618 struct net_device *p;
5619
5620 BUG_ON(strlen(name) >= sizeof(dev->name));
5621
5622 if (txqs < 1) {
5623 pr_err("alloc_netdev: Unable to allocate device "
5624 "with zero queues.\n");
5625 return NULL;
5626 }
5627
5628 #ifdef CONFIG_RPS
5629 if (rxqs < 1) {
5630 pr_err("alloc_netdev: Unable to allocate device "
5631 "with zero RX queues.\n");
5632 return NULL;
5633 }
5634 #endif
5635
5636 alloc_size = sizeof(struct net_device);
5637 if (sizeof_priv) {
5638 /* ensure 32-byte alignment of private area */
5639 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5640 alloc_size += sizeof_priv;
5641 }
5642 /* ensure 32-byte alignment of whole construct */
5643 alloc_size += NETDEV_ALIGN - 1;
5644
5645 p = kzalloc(alloc_size, GFP_KERNEL);
5646 if (!p) {
5647 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5648 return NULL;
5649 }
5650
5651 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5652 dev->padded = (char *)dev - (char *)p;
5653
5654 dev->pcpu_refcnt = alloc_percpu(int);
5655 if (!dev->pcpu_refcnt)
5656 goto free_p;
5657
5658 if (dev_addr_init(dev))
5659 goto free_pcpu;
5660
5661 dev_mc_init(dev);
5662 dev_uc_init(dev);
5663
5664 dev_net_set(dev, &init_net);
5665
5666 dev->gso_max_size = GSO_MAX_SIZE;
5667
5668 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5669 dev->ethtool_ntuple_list.count = 0;
5670 INIT_LIST_HEAD(&dev->napi_list);
5671 INIT_LIST_HEAD(&dev->unreg_list);
5672 INIT_LIST_HEAD(&dev->link_watch_list);
5673 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5674 setup(dev);
5675
5676 dev->num_tx_queues = txqs;
5677 dev->real_num_tx_queues = txqs;
5678 if (netif_alloc_netdev_queues(dev))
5679 goto free_all;
5680
5681 #ifdef CONFIG_RPS
5682 dev->num_rx_queues = rxqs;
5683 dev->real_num_rx_queues = rxqs;
5684 if (netif_alloc_rx_queues(dev))
5685 goto free_all;
5686 #endif
5687
5688 strcpy(dev->name, name);
5689 return dev;
5690
5691 free_all:
5692 free_netdev(dev);
5693 return NULL;
5694
5695 free_pcpu:
5696 free_percpu(dev->pcpu_refcnt);
5697 kfree(dev->_tx);
5698 #ifdef CONFIG_RPS
5699 kfree(dev->_rx);
5700 #endif
5701
5702 free_p:
5703 kfree(p);
5704 return NULL;
5705 }
5706 EXPORT_SYMBOL(alloc_netdev_mqs);
5707
5708 /**
5709 * free_netdev - free network device
5710 * @dev: device
5711 *
5712 * This function does the last stage of destroying an allocated device
5713 * interface. The reference to the device object is released.
5714 * If this is the last reference then it will be freed.
5715 */
5716 void free_netdev(struct net_device *dev)
5717 {
5718 struct napi_struct *p, *n;
5719
5720 release_net(dev_net(dev));
5721
5722 kfree(dev->_tx);
5723 #ifdef CONFIG_RPS
5724 kfree(dev->_rx);
5725 #endif
5726
5727 kfree(rcu_dereference_raw(dev->ingress_queue));
5728
5729 /* Flush device addresses */
5730 dev_addr_flush(dev);
5731
5732 /* Clear ethtool n-tuple list */
5733 ethtool_ntuple_flush(dev);
5734
5735 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5736 netif_napi_del(p);
5737
5738 free_percpu(dev->pcpu_refcnt);
5739 dev->pcpu_refcnt = NULL;
5740
5741 /* Compatibility with error handling in drivers */
5742 if (dev->reg_state == NETREG_UNINITIALIZED) {
5743 kfree((char *)dev - dev->padded);
5744 return;
5745 }
5746
5747 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5748 dev->reg_state = NETREG_RELEASED;
5749
5750 /* will free via device release */
5751 put_device(&dev->dev);
5752 }
5753 EXPORT_SYMBOL(free_netdev);
5754
5755 /**
5756 * synchronize_net - Synchronize with packet receive processing
5757 *
5758 * Wait for packets currently being received to be done.
5759 * Does not block later packets from starting.
5760 */
5761 void synchronize_net(void)
5762 {
5763 might_sleep();
5764 synchronize_rcu();
5765 }
5766 EXPORT_SYMBOL(synchronize_net);
5767
5768 /**
5769 * unregister_netdevice_queue - remove device from the kernel
5770 * @dev: device
5771 * @head: list
5772 *
5773 * This function shuts down a device interface and removes it
5774 * from the kernel tables.
5775 * If head not NULL, device is queued to be unregistered later.
5776 *
5777 * Callers must hold the rtnl semaphore. You may want
5778 * unregister_netdev() instead of this.
5779 */
5780
5781 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5782 {
5783 ASSERT_RTNL();
5784
5785 if (head) {
5786 list_move_tail(&dev->unreg_list, head);
5787 } else {
5788 rollback_registered(dev);
5789 /* Finish processing unregister after unlock */
5790 net_set_todo(dev);
5791 }
5792 }
5793 EXPORT_SYMBOL(unregister_netdevice_queue);
5794
5795 /**
5796 * unregister_netdevice_many - unregister many devices
5797 * @head: list of devices
5798 */
5799 void unregister_netdevice_many(struct list_head *head)
5800 {
5801 struct net_device *dev;
5802
5803 if (!list_empty(head)) {
5804 rollback_registered_many(head);
5805 list_for_each_entry(dev, head, unreg_list)
5806 net_set_todo(dev);
5807 }
5808 }
5809 EXPORT_SYMBOL(unregister_netdevice_many);
5810
5811 /**
5812 * unregister_netdev - remove device from the kernel
5813 * @dev: device
5814 *
5815 * This function shuts down a device interface and removes it
5816 * from the kernel tables.
5817 *
5818 * This is just a wrapper for unregister_netdevice that takes
5819 * the rtnl semaphore. In general you want to use this and not
5820 * unregister_netdevice.
5821 */
5822 void unregister_netdev(struct net_device *dev)
5823 {
5824 rtnl_lock();
5825 unregister_netdevice(dev);
5826 rtnl_unlock();
5827 }
5828 EXPORT_SYMBOL(unregister_netdev);
5829
5830 /**
5831 * dev_change_net_namespace - move device to different nethost namespace
5832 * @dev: device
5833 * @net: network namespace
5834 * @pat: If not NULL name pattern to try if the current device name
5835 * is already taken in the destination network namespace.
5836 *
5837 * This function shuts down a device interface and moves it
5838 * to a new network namespace. On success 0 is returned, on
5839 * a failure a netagive errno code is returned.
5840 *
5841 * Callers must hold the rtnl semaphore.
5842 */
5843
5844 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5845 {
5846 int err;
5847
5848 ASSERT_RTNL();
5849
5850 /* Don't allow namespace local devices to be moved. */
5851 err = -EINVAL;
5852 if (dev->features & NETIF_F_NETNS_LOCAL)
5853 goto out;
5854
5855 /* Ensure the device has been registrered */
5856 err = -EINVAL;
5857 if (dev->reg_state != NETREG_REGISTERED)
5858 goto out;
5859
5860 /* Get out if there is nothing todo */
5861 err = 0;
5862 if (net_eq(dev_net(dev), net))
5863 goto out;
5864
5865 /* Pick the destination device name, and ensure
5866 * we can use it in the destination network namespace.
5867 */
5868 err = -EEXIST;
5869 if (__dev_get_by_name(net, dev->name)) {
5870 /* We get here if we can't use the current device name */
5871 if (!pat)
5872 goto out;
5873 if (dev_get_valid_name(dev, pat, 1))
5874 goto out;
5875 }
5876
5877 /*
5878 * And now a mini version of register_netdevice unregister_netdevice.
5879 */
5880
5881 /* If device is running close it first. */
5882 dev_close(dev);
5883
5884 /* And unlink it from device chain */
5885 err = -ENODEV;
5886 unlist_netdevice(dev);
5887
5888 synchronize_net();
5889
5890 /* Shutdown queueing discipline. */
5891 dev_shutdown(dev);
5892
5893 /* Notify protocols, that we are about to destroy
5894 this device. They should clean all the things.
5895
5896 Note that dev->reg_state stays at NETREG_REGISTERED.
5897 This is wanted because this way 8021q and macvlan know
5898 the device is just moving and can keep their slaves up.
5899 */
5900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5901 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5902
5903 /*
5904 * Flush the unicast and multicast chains
5905 */
5906 dev_uc_flush(dev);
5907 dev_mc_flush(dev);
5908
5909 /* Actually switch the network namespace */
5910 dev_net_set(dev, net);
5911
5912 /* If there is an ifindex conflict assign a new one */
5913 if (__dev_get_by_index(net, dev->ifindex)) {
5914 int iflink = (dev->iflink == dev->ifindex);
5915 dev->ifindex = dev_new_index(net);
5916 if (iflink)
5917 dev->iflink = dev->ifindex;
5918 }
5919
5920 /* Fixup kobjects */
5921 err = device_rename(&dev->dev, dev->name);
5922 WARN_ON(err);
5923
5924 /* Add the device back in the hashes */
5925 list_netdevice(dev);
5926
5927 /* Notify protocols, that a new device appeared. */
5928 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5929
5930 /*
5931 * Prevent userspace races by waiting until the network
5932 * device is fully setup before sending notifications.
5933 */
5934 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5935
5936 synchronize_net();
5937 err = 0;
5938 out:
5939 return err;
5940 }
5941 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5942
5943 static int dev_cpu_callback(struct notifier_block *nfb,
5944 unsigned long action,
5945 void *ocpu)
5946 {
5947 struct sk_buff **list_skb;
5948 struct sk_buff *skb;
5949 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5950 struct softnet_data *sd, *oldsd;
5951
5952 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5953 return NOTIFY_OK;
5954
5955 local_irq_disable();
5956 cpu = smp_processor_id();
5957 sd = &per_cpu(softnet_data, cpu);
5958 oldsd = &per_cpu(softnet_data, oldcpu);
5959
5960 /* Find end of our completion_queue. */
5961 list_skb = &sd->completion_queue;
5962 while (*list_skb)
5963 list_skb = &(*list_skb)->next;
5964 /* Append completion queue from offline CPU. */
5965 *list_skb = oldsd->completion_queue;
5966 oldsd->completion_queue = NULL;
5967
5968 /* Append output queue from offline CPU. */
5969 if (oldsd->output_queue) {
5970 *sd->output_queue_tailp = oldsd->output_queue;
5971 sd->output_queue_tailp = oldsd->output_queue_tailp;
5972 oldsd->output_queue = NULL;
5973 oldsd->output_queue_tailp = &oldsd->output_queue;
5974 }
5975
5976 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5977 local_irq_enable();
5978
5979 /* Process offline CPU's input_pkt_queue */
5980 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5981 netif_rx(skb);
5982 input_queue_head_incr(oldsd);
5983 }
5984 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5985 netif_rx(skb);
5986 input_queue_head_incr(oldsd);
5987 }
5988
5989 return NOTIFY_OK;
5990 }
5991
5992
5993 /**
5994 * netdev_increment_features - increment feature set by one
5995 * @all: current feature set
5996 * @one: new feature set
5997 * @mask: mask feature set
5998 *
5999 * Computes a new feature set after adding a device with feature set
6000 * @one to the master device with current feature set @all. Will not
6001 * enable anything that is off in @mask. Returns the new feature set.
6002 */
6003 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6004 unsigned long mask)
6005 {
6006 /* If device needs checksumming, downgrade to it. */
6007 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6008 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6009 else if (mask & NETIF_F_ALL_CSUM) {
6010 /* If one device supports v4/v6 checksumming, set for all. */
6011 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6012 !(all & NETIF_F_GEN_CSUM)) {
6013 all &= ~NETIF_F_ALL_CSUM;
6014 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6015 }
6016
6017 /* If one device supports hw checksumming, set for all. */
6018 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6019 all &= ~NETIF_F_ALL_CSUM;
6020 all |= NETIF_F_HW_CSUM;
6021 }
6022 }
6023
6024 one |= NETIF_F_ALL_CSUM;
6025
6026 one |= all & NETIF_F_ONE_FOR_ALL;
6027 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6028 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6029
6030 return all;
6031 }
6032 EXPORT_SYMBOL(netdev_increment_features);
6033
6034 static struct hlist_head *netdev_create_hash(void)
6035 {
6036 int i;
6037 struct hlist_head *hash;
6038
6039 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6040 if (hash != NULL)
6041 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6042 INIT_HLIST_HEAD(&hash[i]);
6043
6044 return hash;
6045 }
6046
6047 /* Initialize per network namespace state */
6048 static int __net_init netdev_init(struct net *net)
6049 {
6050 INIT_LIST_HEAD(&net->dev_base_head);
6051
6052 net->dev_name_head = netdev_create_hash();
6053 if (net->dev_name_head == NULL)
6054 goto err_name;
6055
6056 net->dev_index_head = netdev_create_hash();
6057 if (net->dev_index_head == NULL)
6058 goto err_idx;
6059
6060 return 0;
6061
6062 err_idx:
6063 kfree(net->dev_name_head);
6064 err_name:
6065 return -ENOMEM;
6066 }
6067
6068 /**
6069 * netdev_drivername - network driver for the device
6070 * @dev: network device
6071 * @buffer: buffer for resulting name
6072 * @len: size of buffer
6073 *
6074 * Determine network driver for device.
6075 */
6076 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6077 {
6078 const struct device_driver *driver;
6079 const struct device *parent;
6080
6081 if (len <= 0 || !buffer)
6082 return buffer;
6083 buffer[0] = 0;
6084
6085 parent = dev->dev.parent;
6086
6087 if (!parent)
6088 return buffer;
6089
6090 driver = parent->driver;
6091 if (driver && driver->name)
6092 strlcpy(buffer, driver->name, len);
6093 return buffer;
6094 }
6095
6096 static int __netdev_printk(const char *level, const struct net_device *dev,
6097 struct va_format *vaf)
6098 {
6099 int r;
6100
6101 if (dev && dev->dev.parent)
6102 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6103 netdev_name(dev), vaf);
6104 else if (dev)
6105 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6106 else
6107 r = printk("%s(NULL net_device): %pV", level, vaf);
6108
6109 return r;
6110 }
6111
6112 int netdev_printk(const char *level, const struct net_device *dev,
6113 const char *format, ...)
6114 {
6115 struct va_format vaf;
6116 va_list args;
6117 int r;
6118
6119 va_start(args, format);
6120
6121 vaf.fmt = format;
6122 vaf.va = &args;
6123
6124 r = __netdev_printk(level, dev, &vaf);
6125 va_end(args);
6126
6127 return r;
6128 }
6129 EXPORT_SYMBOL(netdev_printk);
6130
6131 #define define_netdev_printk_level(func, level) \
6132 int func(const struct net_device *dev, const char *fmt, ...) \
6133 { \
6134 int r; \
6135 struct va_format vaf; \
6136 va_list args; \
6137 \
6138 va_start(args, fmt); \
6139 \
6140 vaf.fmt = fmt; \
6141 vaf.va = &args; \
6142 \
6143 r = __netdev_printk(level, dev, &vaf); \
6144 va_end(args); \
6145 \
6146 return r; \
6147 } \
6148 EXPORT_SYMBOL(func);
6149
6150 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6151 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6152 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6153 define_netdev_printk_level(netdev_err, KERN_ERR);
6154 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6155 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6156 define_netdev_printk_level(netdev_info, KERN_INFO);
6157
6158 static void __net_exit netdev_exit(struct net *net)
6159 {
6160 kfree(net->dev_name_head);
6161 kfree(net->dev_index_head);
6162 }
6163
6164 static struct pernet_operations __net_initdata netdev_net_ops = {
6165 .init = netdev_init,
6166 .exit = netdev_exit,
6167 };
6168
6169 static void __net_exit default_device_exit(struct net *net)
6170 {
6171 struct net_device *dev, *aux;
6172 /*
6173 * Push all migratable network devices back to the
6174 * initial network namespace
6175 */
6176 rtnl_lock();
6177 for_each_netdev_safe(net, dev, aux) {
6178 int err;
6179 char fb_name[IFNAMSIZ];
6180
6181 /* Ignore unmoveable devices (i.e. loopback) */
6182 if (dev->features & NETIF_F_NETNS_LOCAL)
6183 continue;
6184
6185 /* Leave virtual devices for the generic cleanup */
6186 if (dev->rtnl_link_ops)
6187 continue;
6188
6189 /* Push remaing network devices to init_net */
6190 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6191 err = dev_change_net_namespace(dev, &init_net, fb_name);
6192 if (err) {
6193 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6194 __func__, dev->name, err);
6195 BUG();
6196 }
6197 }
6198 rtnl_unlock();
6199 }
6200
6201 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6202 {
6203 /* At exit all network devices most be removed from a network
6204 * namespace. Do this in the reverse order of registration.
6205 * Do this across as many network namespaces as possible to
6206 * improve batching efficiency.
6207 */
6208 struct net_device *dev;
6209 struct net *net;
6210 LIST_HEAD(dev_kill_list);
6211
6212 rtnl_lock();
6213 list_for_each_entry(net, net_list, exit_list) {
6214 for_each_netdev_reverse(net, dev) {
6215 if (dev->rtnl_link_ops)
6216 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6217 else
6218 unregister_netdevice_queue(dev, &dev_kill_list);
6219 }
6220 }
6221 unregister_netdevice_many(&dev_kill_list);
6222 rtnl_unlock();
6223 }
6224
6225 static struct pernet_operations __net_initdata default_device_ops = {
6226 .exit = default_device_exit,
6227 .exit_batch = default_device_exit_batch,
6228 };
6229
6230 /*
6231 * Initialize the DEV module. At boot time this walks the device list and
6232 * unhooks any devices that fail to initialise (normally hardware not
6233 * present) and leaves us with a valid list of present and active devices.
6234 *
6235 */
6236
6237 /*
6238 * This is called single threaded during boot, so no need
6239 * to take the rtnl semaphore.
6240 */
6241 static int __init net_dev_init(void)
6242 {
6243 int i, rc = -ENOMEM;
6244
6245 BUG_ON(!dev_boot_phase);
6246
6247 if (dev_proc_init())
6248 goto out;
6249
6250 if (netdev_kobject_init())
6251 goto out;
6252
6253 INIT_LIST_HEAD(&ptype_all);
6254 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6255 INIT_LIST_HEAD(&ptype_base[i]);
6256
6257 if (register_pernet_subsys(&netdev_net_ops))
6258 goto out;
6259
6260 /*
6261 * Initialise the packet receive queues.
6262 */
6263
6264 for_each_possible_cpu(i) {
6265 struct softnet_data *sd = &per_cpu(softnet_data, i);
6266
6267 memset(sd, 0, sizeof(*sd));
6268 skb_queue_head_init(&sd->input_pkt_queue);
6269 skb_queue_head_init(&sd->process_queue);
6270 sd->completion_queue = NULL;
6271 INIT_LIST_HEAD(&sd->poll_list);
6272 sd->output_queue = NULL;
6273 sd->output_queue_tailp = &sd->output_queue;
6274 #ifdef CONFIG_RPS
6275 sd->csd.func = rps_trigger_softirq;
6276 sd->csd.info = sd;
6277 sd->csd.flags = 0;
6278 sd->cpu = i;
6279 #endif
6280
6281 sd->backlog.poll = process_backlog;
6282 sd->backlog.weight = weight_p;
6283 sd->backlog.gro_list = NULL;
6284 sd->backlog.gro_count = 0;
6285 }
6286
6287 dev_boot_phase = 0;
6288
6289 /* The loopback device is special if any other network devices
6290 * is present in a network namespace the loopback device must
6291 * be present. Since we now dynamically allocate and free the
6292 * loopback device ensure this invariant is maintained by
6293 * keeping the loopback device as the first device on the
6294 * list of network devices. Ensuring the loopback devices
6295 * is the first device that appears and the last network device
6296 * that disappears.
6297 */
6298 if (register_pernet_device(&loopback_net_ops))
6299 goto out;
6300
6301 if (register_pernet_device(&default_device_ops))
6302 goto out;
6303
6304 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6305 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6306
6307 hotcpu_notifier(dev_cpu_callback, 0);
6308 dst_init();
6309 dev_mcast_init();
6310 rc = 0;
6311 out:
6312 return rc;
6313 }
6314
6315 subsys_initcall(net_dev_init);
6316
6317 static int __init initialize_hashrnd(void)
6318 {
6319 get_random_bytes(&hashrnd, sizeof(hashrnd));
6320 return 0;
6321 }
6322
6323 late_initcall_sync(initialize_hashrnd);
6324
This page took 0.162328 seconds and 6 git commands to generate.