gro: Restore correct value to gso_size
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_tx_stop_all_queues(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_tx_wake_all_queues(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)) ||
1461 ((features & NETIF_F_FCOE_CRC) &&
1462 protocol == htons(ETH_P_FCOE)));
1463 }
1464
1465 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1466 {
1467 if (can_checksum_protocol(dev->features, skb->protocol))
1468 return true;
1469
1470 if (skb->protocol == htons(ETH_P_8021Q)) {
1471 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1472 if (can_checksum_protocol(dev->features & dev->vlan_features,
1473 veh->h_vlan_encapsulated_proto))
1474 return true;
1475 }
1476
1477 return false;
1478 }
1479
1480 /*
1481 * Invalidate hardware checksum when packet is to be mangled, and
1482 * complete checksum manually on outgoing path.
1483 */
1484 int skb_checksum_help(struct sk_buff *skb)
1485 {
1486 __wsum csum;
1487 int ret = 0, offset;
1488
1489 if (skb->ip_summed == CHECKSUM_COMPLETE)
1490 goto out_set_summed;
1491
1492 if (unlikely(skb_shinfo(skb)->gso_size)) {
1493 /* Let GSO fix up the checksum. */
1494 goto out_set_summed;
1495 }
1496
1497 offset = skb->csum_start - skb_headroom(skb);
1498 BUG_ON(offset >= skb_headlen(skb));
1499 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1500
1501 offset += skb->csum_offset;
1502 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1503
1504 if (skb_cloned(skb) &&
1505 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1506 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1507 if (ret)
1508 goto out;
1509 }
1510
1511 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1512 out_set_summed:
1513 skb->ip_summed = CHECKSUM_NONE;
1514 out:
1515 return ret;
1516 }
1517
1518 /**
1519 * skb_gso_segment - Perform segmentation on skb.
1520 * @skb: buffer to segment
1521 * @features: features for the output path (see dev->features)
1522 *
1523 * This function segments the given skb and returns a list of segments.
1524 *
1525 * It may return NULL if the skb requires no segmentation. This is
1526 * only possible when GSO is used for verifying header integrity.
1527 */
1528 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1529 {
1530 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1531 struct packet_type *ptype;
1532 __be16 type = skb->protocol;
1533 int err;
1534
1535 skb_reset_mac_header(skb);
1536 skb->mac_len = skb->network_header - skb->mac_header;
1537 __skb_pull(skb, skb->mac_len);
1538
1539 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1540 struct net_device *dev = skb->dev;
1541 struct ethtool_drvinfo info = {};
1542
1543 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1544 dev->ethtool_ops->get_drvinfo(dev, &info);
1545
1546 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1547 "ip_summed=%d",
1548 info.driver, dev ? dev->features : 0L,
1549 skb->sk ? skb->sk->sk_route_caps : 0L,
1550 skb->len, skb->data_len, skb->ip_summed);
1551
1552 if (skb_header_cloned(skb) &&
1553 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1554 return ERR_PTR(err);
1555 }
1556
1557 rcu_read_lock();
1558 list_for_each_entry_rcu(ptype,
1559 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1560 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1561 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1562 err = ptype->gso_send_check(skb);
1563 segs = ERR_PTR(err);
1564 if (err || skb_gso_ok(skb, features))
1565 break;
1566 __skb_push(skb, (skb->data -
1567 skb_network_header(skb)));
1568 }
1569 segs = ptype->gso_segment(skb, features);
1570 break;
1571 }
1572 }
1573 rcu_read_unlock();
1574
1575 __skb_push(skb, skb->data - skb_mac_header(skb));
1576
1577 return segs;
1578 }
1579
1580 EXPORT_SYMBOL(skb_gso_segment);
1581
1582 /* Take action when hardware reception checksum errors are detected. */
1583 #ifdef CONFIG_BUG
1584 void netdev_rx_csum_fault(struct net_device *dev)
1585 {
1586 if (net_ratelimit()) {
1587 printk(KERN_ERR "%s: hw csum failure.\n",
1588 dev ? dev->name : "<unknown>");
1589 dump_stack();
1590 }
1591 }
1592 EXPORT_SYMBOL(netdev_rx_csum_fault);
1593 #endif
1594
1595 /* Actually, we should eliminate this check as soon as we know, that:
1596 * 1. IOMMU is present and allows to map all the memory.
1597 * 2. No high memory really exists on this machine.
1598 */
1599
1600 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 #ifdef CONFIG_HIGHMEM
1603 int i;
1604
1605 if (dev->features & NETIF_F_HIGHDMA)
1606 return 0;
1607
1608 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1609 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1610 return 1;
1611
1612 #endif
1613 return 0;
1614 }
1615
1616 struct dev_gso_cb {
1617 void (*destructor)(struct sk_buff *skb);
1618 };
1619
1620 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1621
1622 static void dev_gso_skb_destructor(struct sk_buff *skb)
1623 {
1624 struct dev_gso_cb *cb;
1625
1626 do {
1627 struct sk_buff *nskb = skb->next;
1628
1629 skb->next = nskb->next;
1630 nskb->next = NULL;
1631 kfree_skb(nskb);
1632 } while (skb->next);
1633
1634 cb = DEV_GSO_CB(skb);
1635 if (cb->destructor)
1636 cb->destructor(skb);
1637 }
1638
1639 /**
1640 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1641 * @skb: buffer to segment
1642 *
1643 * This function segments the given skb and stores the list of segments
1644 * in skb->next.
1645 */
1646 static int dev_gso_segment(struct sk_buff *skb)
1647 {
1648 struct net_device *dev = skb->dev;
1649 struct sk_buff *segs;
1650 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1651 NETIF_F_SG : 0);
1652
1653 segs = skb_gso_segment(skb, features);
1654
1655 /* Verifying header integrity only. */
1656 if (!segs)
1657 return 0;
1658
1659 if (IS_ERR(segs))
1660 return PTR_ERR(segs);
1661
1662 skb->next = segs;
1663 DEV_GSO_CB(skb)->destructor = skb->destructor;
1664 skb->destructor = dev_gso_skb_destructor;
1665
1666 return 0;
1667 }
1668
1669 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1670 struct netdev_queue *txq)
1671 {
1672 const struct net_device_ops *ops = dev->netdev_ops;
1673 int rc;
1674
1675 if (likely(!skb->next)) {
1676 if (!list_empty(&ptype_all))
1677 dev_queue_xmit_nit(skb, dev);
1678
1679 if (netif_needs_gso(dev, skb)) {
1680 if (unlikely(dev_gso_segment(skb)))
1681 goto out_kfree_skb;
1682 if (skb->next)
1683 goto gso;
1684 }
1685
1686 rc = ops->ndo_start_xmit(skb, dev);
1687 /*
1688 * TODO: if skb_orphan() was called by
1689 * dev->hard_start_xmit() (for example, the unmodified
1690 * igb driver does that; bnx2 doesn't), then
1691 * skb_tx_software_timestamp() will be unable to send
1692 * back the time stamp.
1693 *
1694 * How can this be prevented? Always create another
1695 * reference to the socket before calling
1696 * dev->hard_start_xmit()? Prevent that skb_orphan()
1697 * does anything in dev->hard_start_xmit() by clearing
1698 * the skb destructor before the call and restoring it
1699 * afterwards, then doing the skb_orphan() ourselves?
1700 */
1701 return rc;
1702 }
1703
1704 gso:
1705 do {
1706 struct sk_buff *nskb = skb->next;
1707
1708 skb->next = nskb->next;
1709 nskb->next = NULL;
1710 rc = ops->ndo_start_xmit(nskb, dev);
1711 if (unlikely(rc)) {
1712 nskb->next = skb->next;
1713 skb->next = nskb;
1714 return rc;
1715 }
1716 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1717 return NETDEV_TX_BUSY;
1718 } while (skb->next);
1719
1720 skb->destructor = DEV_GSO_CB(skb)->destructor;
1721
1722 out_kfree_skb:
1723 kfree_skb(skb);
1724 return 0;
1725 }
1726
1727 static u32 skb_tx_hashrnd;
1728
1729 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1730 {
1731 u32 hash;
1732
1733 if (skb_rx_queue_recorded(skb)) {
1734 hash = skb_get_rx_queue(skb);
1735 } else if (skb->sk && skb->sk->sk_hash) {
1736 hash = skb->sk->sk_hash;
1737 } else
1738 hash = skb->protocol;
1739
1740 hash = jhash_1word(hash, skb_tx_hashrnd);
1741
1742 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1743 }
1744 EXPORT_SYMBOL(skb_tx_hash);
1745
1746 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1747 struct sk_buff *skb)
1748 {
1749 const struct net_device_ops *ops = dev->netdev_ops;
1750 u16 queue_index = 0;
1751
1752 if (ops->ndo_select_queue)
1753 queue_index = ops->ndo_select_queue(dev, skb);
1754 else if (dev->real_num_tx_queues > 1)
1755 queue_index = skb_tx_hash(dev, skb);
1756
1757 skb_set_queue_mapping(skb, queue_index);
1758 return netdev_get_tx_queue(dev, queue_index);
1759 }
1760
1761 /**
1762 * dev_queue_xmit - transmit a buffer
1763 * @skb: buffer to transmit
1764 *
1765 * Queue a buffer for transmission to a network device. The caller must
1766 * have set the device and priority and built the buffer before calling
1767 * this function. The function can be called from an interrupt.
1768 *
1769 * A negative errno code is returned on a failure. A success does not
1770 * guarantee the frame will be transmitted as it may be dropped due
1771 * to congestion or traffic shaping.
1772 *
1773 * -----------------------------------------------------------------------------------
1774 * I notice this method can also return errors from the queue disciplines,
1775 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1776 * be positive.
1777 *
1778 * Regardless of the return value, the skb is consumed, so it is currently
1779 * difficult to retry a send to this method. (You can bump the ref count
1780 * before sending to hold a reference for retry if you are careful.)
1781 *
1782 * When calling this method, interrupts MUST be enabled. This is because
1783 * the BH enable code must have IRQs enabled so that it will not deadlock.
1784 * --BLG
1785 */
1786 int dev_queue_xmit(struct sk_buff *skb)
1787 {
1788 struct net_device *dev = skb->dev;
1789 struct netdev_queue *txq;
1790 struct Qdisc *q;
1791 int rc = -ENOMEM;
1792
1793 /* GSO will handle the following emulations directly. */
1794 if (netif_needs_gso(dev, skb))
1795 goto gso;
1796
1797 if (skb_shinfo(skb)->frag_list &&
1798 !(dev->features & NETIF_F_FRAGLIST) &&
1799 __skb_linearize(skb))
1800 goto out_kfree_skb;
1801
1802 /* Fragmented skb is linearized if device does not support SG,
1803 * or if at least one of fragments is in highmem and device
1804 * does not support DMA from it.
1805 */
1806 if (skb_shinfo(skb)->nr_frags &&
1807 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1808 __skb_linearize(skb))
1809 goto out_kfree_skb;
1810
1811 /* If packet is not checksummed and device does not support
1812 * checksumming for this protocol, complete checksumming here.
1813 */
1814 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1815 skb_set_transport_header(skb, skb->csum_start -
1816 skb_headroom(skb));
1817 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1818 goto out_kfree_skb;
1819 }
1820
1821 gso:
1822 /* Disable soft irqs for various locks below. Also
1823 * stops preemption for RCU.
1824 */
1825 rcu_read_lock_bh();
1826
1827 txq = dev_pick_tx(dev, skb);
1828 q = rcu_dereference(txq->qdisc);
1829
1830 #ifdef CONFIG_NET_CLS_ACT
1831 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1832 #endif
1833 if (q->enqueue) {
1834 spinlock_t *root_lock = qdisc_lock(q);
1835
1836 spin_lock(root_lock);
1837
1838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1839 kfree_skb(skb);
1840 rc = NET_XMIT_DROP;
1841 } else {
1842 rc = qdisc_enqueue_root(skb, q);
1843 qdisc_run(q);
1844 }
1845 spin_unlock(root_lock);
1846
1847 goto out;
1848 }
1849
1850 /* The device has no queue. Common case for software devices:
1851 loopback, all the sorts of tunnels...
1852
1853 Really, it is unlikely that netif_tx_lock protection is necessary
1854 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1855 counters.)
1856 However, it is possible, that they rely on protection
1857 made by us here.
1858
1859 Check this and shot the lock. It is not prone from deadlocks.
1860 Either shot noqueue qdisc, it is even simpler 8)
1861 */
1862 if (dev->flags & IFF_UP) {
1863 int cpu = smp_processor_id(); /* ok because BHs are off */
1864
1865 if (txq->xmit_lock_owner != cpu) {
1866
1867 HARD_TX_LOCK(dev, txq, cpu);
1868
1869 if (!netif_tx_queue_stopped(txq)) {
1870 rc = 0;
1871 if (!dev_hard_start_xmit(skb, dev, txq)) {
1872 HARD_TX_UNLOCK(dev, txq);
1873 goto out;
1874 }
1875 }
1876 HARD_TX_UNLOCK(dev, txq);
1877 if (net_ratelimit())
1878 printk(KERN_CRIT "Virtual device %s asks to "
1879 "queue packet!\n", dev->name);
1880 } else {
1881 /* Recursion is detected! It is possible,
1882 * unfortunately */
1883 if (net_ratelimit())
1884 printk(KERN_CRIT "Dead loop on virtual device "
1885 "%s, fix it urgently!\n", dev->name);
1886 }
1887 }
1888
1889 rc = -ENETDOWN;
1890 rcu_read_unlock_bh();
1891
1892 out_kfree_skb:
1893 kfree_skb(skb);
1894 return rc;
1895 out:
1896 rcu_read_unlock_bh();
1897 return rc;
1898 }
1899
1900
1901 /*=======================================================================
1902 Receiver routines
1903 =======================================================================*/
1904
1905 int netdev_max_backlog __read_mostly = 1000;
1906 int netdev_budget __read_mostly = 300;
1907 int weight_p __read_mostly = 64; /* old backlog weight */
1908
1909 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1910
1911
1912 /**
1913 * netif_rx - post buffer to the network code
1914 * @skb: buffer to post
1915 *
1916 * This function receives a packet from a device driver and queues it for
1917 * the upper (protocol) levels to process. It always succeeds. The buffer
1918 * may be dropped during processing for congestion control or by the
1919 * protocol layers.
1920 *
1921 * return values:
1922 * NET_RX_SUCCESS (no congestion)
1923 * NET_RX_DROP (packet was dropped)
1924 *
1925 */
1926
1927 int netif_rx(struct sk_buff *skb)
1928 {
1929 struct softnet_data *queue;
1930 unsigned long flags;
1931
1932 /* if netpoll wants it, pretend we never saw it */
1933 if (netpoll_rx(skb))
1934 return NET_RX_DROP;
1935
1936 if (!skb->tstamp.tv64)
1937 net_timestamp(skb);
1938
1939 /*
1940 * The code is rearranged so that the path is the most
1941 * short when CPU is congested, but is still operating.
1942 */
1943 local_irq_save(flags);
1944 queue = &__get_cpu_var(softnet_data);
1945
1946 __get_cpu_var(netdev_rx_stat).total++;
1947 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1948 if (queue->input_pkt_queue.qlen) {
1949 enqueue:
1950 __skb_queue_tail(&queue->input_pkt_queue, skb);
1951 local_irq_restore(flags);
1952 return NET_RX_SUCCESS;
1953 }
1954
1955 napi_schedule(&queue->backlog);
1956 goto enqueue;
1957 }
1958
1959 __get_cpu_var(netdev_rx_stat).dropped++;
1960 local_irq_restore(flags);
1961
1962 kfree_skb(skb);
1963 return NET_RX_DROP;
1964 }
1965
1966 int netif_rx_ni(struct sk_buff *skb)
1967 {
1968 int err;
1969
1970 preempt_disable();
1971 err = netif_rx(skb);
1972 if (local_softirq_pending())
1973 do_softirq();
1974 preempt_enable();
1975
1976 return err;
1977 }
1978
1979 EXPORT_SYMBOL(netif_rx_ni);
1980
1981 static void net_tx_action(struct softirq_action *h)
1982 {
1983 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1984
1985 if (sd->completion_queue) {
1986 struct sk_buff *clist;
1987
1988 local_irq_disable();
1989 clist = sd->completion_queue;
1990 sd->completion_queue = NULL;
1991 local_irq_enable();
1992
1993 while (clist) {
1994 struct sk_buff *skb = clist;
1995 clist = clist->next;
1996
1997 WARN_ON(atomic_read(&skb->users));
1998 __kfree_skb(skb);
1999 }
2000 }
2001
2002 if (sd->output_queue) {
2003 struct Qdisc *head;
2004
2005 local_irq_disable();
2006 head = sd->output_queue;
2007 sd->output_queue = NULL;
2008 local_irq_enable();
2009
2010 while (head) {
2011 struct Qdisc *q = head;
2012 spinlock_t *root_lock;
2013
2014 head = head->next_sched;
2015
2016 root_lock = qdisc_lock(q);
2017 if (spin_trylock(root_lock)) {
2018 smp_mb__before_clear_bit();
2019 clear_bit(__QDISC_STATE_SCHED,
2020 &q->state);
2021 qdisc_run(q);
2022 spin_unlock(root_lock);
2023 } else {
2024 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2025 &q->state)) {
2026 __netif_reschedule(q);
2027 } else {
2028 smp_mb__before_clear_bit();
2029 clear_bit(__QDISC_STATE_SCHED,
2030 &q->state);
2031 }
2032 }
2033 }
2034 }
2035 }
2036
2037 static inline int deliver_skb(struct sk_buff *skb,
2038 struct packet_type *pt_prev,
2039 struct net_device *orig_dev)
2040 {
2041 atomic_inc(&skb->users);
2042 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2043 }
2044
2045 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2046 /* These hooks defined here for ATM */
2047 struct net_bridge;
2048 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2049 unsigned char *addr);
2050 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2051
2052 /*
2053 * If bridge module is loaded call bridging hook.
2054 * returns NULL if packet was consumed.
2055 */
2056 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2057 struct sk_buff *skb) __read_mostly;
2058 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2059 struct packet_type **pt_prev, int *ret,
2060 struct net_device *orig_dev)
2061 {
2062 struct net_bridge_port *port;
2063
2064 if (skb->pkt_type == PACKET_LOOPBACK ||
2065 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2066 return skb;
2067
2068 if (*pt_prev) {
2069 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2070 *pt_prev = NULL;
2071 }
2072
2073 return br_handle_frame_hook(port, skb);
2074 }
2075 #else
2076 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2077 #endif
2078
2079 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2080 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2081 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2082
2083 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2084 struct packet_type **pt_prev,
2085 int *ret,
2086 struct net_device *orig_dev)
2087 {
2088 if (skb->dev->macvlan_port == NULL)
2089 return skb;
2090
2091 if (*pt_prev) {
2092 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2093 *pt_prev = NULL;
2094 }
2095 return macvlan_handle_frame_hook(skb);
2096 }
2097 #else
2098 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2099 #endif
2100
2101 #ifdef CONFIG_NET_CLS_ACT
2102 /* TODO: Maybe we should just force sch_ingress to be compiled in
2103 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2104 * a compare and 2 stores extra right now if we dont have it on
2105 * but have CONFIG_NET_CLS_ACT
2106 * NOTE: This doesnt stop any functionality; if you dont have
2107 * the ingress scheduler, you just cant add policies on ingress.
2108 *
2109 */
2110 static int ing_filter(struct sk_buff *skb)
2111 {
2112 struct net_device *dev = skb->dev;
2113 u32 ttl = G_TC_RTTL(skb->tc_verd);
2114 struct netdev_queue *rxq;
2115 int result = TC_ACT_OK;
2116 struct Qdisc *q;
2117
2118 if (MAX_RED_LOOP < ttl++) {
2119 printk(KERN_WARNING
2120 "Redir loop detected Dropping packet (%d->%d)\n",
2121 skb->iif, dev->ifindex);
2122 return TC_ACT_SHOT;
2123 }
2124
2125 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2126 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2127
2128 rxq = &dev->rx_queue;
2129
2130 q = rxq->qdisc;
2131 if (q != &noop_qdisc) {
2132 spin_lock(qdisc_lock(q));
2133 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2134 result = qdisc_enqueue_root(skb, q);
2135 spin_unlock(qdisc_lock(q));
2136 }
2137
2138 return result;
2139 }
2140
2141 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2142 struct packet_type **pt_prev,
2143 int *ret, struct net_device *orig_dev)
2144 {
2145 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2146 goto out;
2147
2148 if (*pt_prev) {
2149 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2150 *pt_prev = NULL;
2151 } else {
2152 /* Huh? Why does turning on AF_PACKET affect this? */
2153 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2154 }
2155
2156 switch (ing_filter(skb)) {
2157 case TC_ACT_SHOT:
2158 case TC_ACT_STOLEN:
2159 kfree_skb(skb);
2160 return NULL;
2161 }
2162
2163 out:
2164 skb->tc_verd = 0;
2165 return skb;
2166 }
2167 #endif
2168
2169 /*
2170 * netif_nit_deliver - deliver received packets to network taps
2171 * @skb: buffer
2172 *
2173 * This function is used to deliver incoming packets to network
2174 * taps. It should be used when the normal netif_receive_skb path
2175 * is bypassed, for example because of VLAN acceleration.
2176 */
2177 void netif_nit_deliver(struct sk_buff *skb)
2178 {
2179 struct packet_type *ptype;
2180
2181 if (list_empty(&ptype_all))
2182 return;
2183
2184 skb_reset_network_header(skb);
2185 skb_reset_transport_header(skb);
2186 skb->mac_len = skb->network_header - skb->mac_header;
2187
2188 rcu_read_lock();
2189 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2190 if (!ptype->dev || ptype->dev == skb->dev)
2191 deliver_skb(skb, ptype, skb->dev);
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 /**
2197 * netif_receive_skb - process receive buffer from network
2198 * @skb: buffer to process
2199 *
2200 * netif_receive_skb() is the main receive data processing function.
2201 * It always succeeds. The buffer may be dropped during processing
2202 * for congestion control or by the protocol layers.
2203 *
2204 * This function may only be called from softirq context and interrupts
2205 * should be enabled.
2206 *
2207 * Return values (usually ignored):
2208 * NET_RX_SUCCESS: no congestion
2209 * NET_RX_DROP: packet was dropped
2210 */
2211 int netif_receive_skb(struct sk_buff *skb)
2212 {
2213 struct packet_type *ptype, *pt_prev;
2214 struct net_device *orig_dev;
2215 struct net_device *null_or_orig;
2216 int ret = NET_RX_DROP;
2217 __be16 type;
2218
2219 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2220 return NET_RX_SUCCESS;
2221
2222 /* if we've gotten here through NAPI, check netpoll */
2223 if (netpoll_receive_skb(skb))
2224 return NET_RX_DROP;
2225
2226 if (!skb->tstamp.tv64)
2227 net_timestamp(skb);
2228
2229 if (!skb->iif)
2230 skb->iif = skb->dev->ifindex;
2231
2232 null_or_orig = NULL;
2233 orig_dev = skb->dev;
2234 if (orig_dev->master) {
2235 if (skb_bond_should_drop(skb))
2236 null_or_orig = orig_dev; /* deliver only exact match */
2237 else
2238 skb->dev = orig_dev->master;
2239 }
2240
2241 __get_cpu_var(netdev_rx_stat).total++;
2242
2243 skb_reset_network_header(skb);
2244 skb_reset_transport_header(skb);
2245 skb->mac_len = skb->network_header - skb->mac_header;
2246
2247 pt_prev = NULL;
2248
2249 rcu_read_lock();
2250
2251 #ifdef CONFIG_NET_CLS_ACT
2252 if (skb->tc_verd & TC_NCLS) {
2253 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2254 goto ncls;
2255 }
2256 #endif
2257
2258 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2259 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2260 ptype->dev == orig_dev) {
2261 if (pt_prev)
2262 ret = deliver_skb(skb, pt_prev, orig_dev);
2263 pt_prev = ptype;
2264 }
2265 }
2266
2267 #ifdef CONFIG_NET_CLS_ACT
2268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2269 if (!skb)
2270 goto out;
2271 ncls:
2272 #endif
2273
2274 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2275 if (!skb)
2276 goto out;
2277 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2278 if (!skb)
2279 goto out;
2280
2281 skb_orphan(skb);
2282
2283 type = skb->protocol;
2284 list_for_each_entry_rcu(ptype,
2285 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2286 if (ptype->type == type &&
2287 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2288 ptype->dev == orig_dev)) {
2289 if (pt_prev)
2290 ret = deliver_skb(skb, pt_prev, orig_dev);
2291 pt_prev = ptype;
2292 }
2293 }
2294
2295 if (pt_prev) {
2296 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2297 } else {
2298 kfree_skb(skb);
2299 /* Jamal, now you will not able to escape explaining
2300 * me how you were going to use this. :-)
2301 */
2302 ret = NET_RX_DROP;
2303 }
2304
2305 out:
2306 rcu_read_unlock();
2307 return ret;
2308 }
2309
2310 /* Network device is going away, flush any packets still pending */
2311 static void flush_backlog(void *arg)
2312 {
2313 struct net_device *dev = arg;
2314 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2315 struct sk_buff *skb, *tmp;
2316
2317 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2318 if (skb->dev == dev) {
2319 __skb_unlink(skb, &queue->input_pkt_queue);
2320 kfree_skb(skb);
2321 }
2322 }
2323
2324 static int napi_gro_complete(struct sk_buff *skb)
2325 {
2326 struct packet_type *ptype;
2327 __be16 type = skb->protocol;
2328 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2329 int err = -ENOENT;
2330
2331 if (NAPI_GRO_CB(skb)->count == 1) {
2332 skb_shinfo(skb)->gso_size = 0;
2333 goto out;
2334 }
2335
2336 rcu_read_lock();
2337 list_for_each_entry_rcu(ptype, head, list) {
2338 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2339 continue;
2340
2341 err = ptype->gro_complete(skb);
2342 break;
2343 }
2344 rcu_read_unlock();
2345
2346 if (err) {
2347 WARN_ON(&ptype->list == head);
2348 kfree_skb(skb);
2349 return NET_RX_SUCCESS;
2350 }
2351
2352 out:
2353 return netif_receive_skb(skb);
2354 }
2355
2356 void napi_gro_flush(struct napi_struct *napi)
2357 {
2358 struct sk_buff *skb, *next;
2359
2360 for (skb = napi->gro_list; skb; skb = next) {
2361 next = skb->next;
2362 skb->next = NULL;
2363 napi_gro_complete(skb);
2364 }
2365
2366 napi->gro_count = 0;
2367 napi->gro_list = NULL;
2368 }
2369 EXPORT_SYMBOL(napi_gro_flush);
2370
2371 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2372 {
2373 unsigned int offset = skb_gro_offset(skb);
2374
2375 hlen += offset;
2376 if (hlen <= skb_headlen(skb))
2377 return skb->data + offset;
2378
2379 if (unlikely(!skb_shinfo(skb)->nr_frags ||
2380 skb_shinfo(skb)->frags[0].size <=
2381 hlen - skb_headlen(skb) ||
2382 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2383 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2384
2385 return page_address(skb_shinfo(skb)->frags[0].page) +
2386 skb_shinfo(skb)->frags[0].page_offset +
2387 offset - skb_headlen(skb);
2388 }
2389 EXPORT_SYMBOL(skb_gro_header);
2390
2391 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2392 {
2393 struct sk_buff **pp = NULL;
2394 struct packet_type *ptype;
2395 __be16 type = skb->protocol;
2396 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2397 int same_flow;
2398 int mac_len;
2399 int ret;
2400
2401 if (!(skb->dev->features & NETIF_F_GRO))
2402 goto normal;
2403
2404 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2405 goto normal;
2406
2407 rcu_read_lock();
2408 list_for_each_entry_rcu(ptype, head, list) {
2409 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2410 continue;
2411
2412 skb_set_network_header(skb, skb_gro_offset(skb));
2413 mac_len = skb->network_header - skb->mac_header;
2414 skb->mac_len = mac_len;
2415 NAPI_GRO_CB(skb)->same_flow = 0;
2416 NAPI_GRO_CB(skb)->flush = 0;
2417 NAPI_GRO_CB(skb)->free = 0;
2418
2419 pp = ptype->gro_receive(&napi->gro_list, skb);
2420 break;
2421 }
2422 rcu_read_unlock();
2423
2424 if (&ptype->list == head)
2425 goto normal;
2426
2427 same_flow = NAPI_GRO_CB(skb)->same_flow;
2428 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2429
2430 if (pp) {
2431 struct sk_buff *nskb = *pp;
2432
2433 *pp = nskb->next;
2434 nskb->next = NULL;
2435 napi_gro_complete(nskb);
2436 napi->gro_count--;
2437 }
2438
2439 if (same_flow)
2440 goto ok;
2441
2442 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2443 goto normal;
2444
2445 napi->gro_count++;
2446 NAPI_GRO_CB(skb)->count = 1;
2447 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2448 skb->next = napi->gro_list;
2449 napi->gro_list = skb;
2450 ret = GRO_HELD;
2451
2452 pull:
2453 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2454 if (napi->gro_list == skb)
2455 napi->gro_list = skb->next;
2456 ret = GRO_DROP;
2457 }
2458
2459 ok:
2460 return ret;
2461
2462 normal:
2463 ret = GRO_NORMAL;
2464 goto pull;
2465 }
2466 EXPORT_SYMBOL(dev_gro_receive);
2467
2468 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2469 {
2470 struct sk_buff *p;
2471
2472 if (netpoll_rx_on(skb))
2473 return GRO_NORMAL;
2474
2475 for (p = napi->gro_list; p; p = p->next) {
2476 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2477 && !compare_ether_header(skb_mac_header(p),
2478 skb_gro_mac_header(skb));
2479 NAPI_GRO_CB(p)->flush = 0;
2480 }
2481
2482 return dev_gro_receive(napi, skb);
2483 }
2484
2485 int napi_skb_finish(int ret, struct sk_buff *skb)
2486 {
2487 int err = NET_RX_SUCCESS;
2488
2489 switch (ret) {
2490 case GRO_NORMAL:
2491 return netif_receive_skb(skb);
2492
2493 case GRO_DROP:
2494 err = NET_RX_DROP;
2495 /* fall through */
2496
2497 case GRO_MERGED_FREE:
2498 kfree_skb(skb);
2499 break;
2500 }
2501
2502 return err;
2503 }
2504 EXPORT_SYMBOL(napi_skb_finish);
2505
2506 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2507 {
2508 skb_gro_reset_offset(skb);
2509
2510 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2511 }
2512 EXPORT_SYMBOL(napi_gro_receive);
2513
2514 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2515 {
2516 __skb_pull(skb, skb_headlen(skb));
2517 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2518
2519 napi->skb = skb;
2520 }
2521 EXPORT_SYMBOL(napi_reuse_skb);
2522
2523 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2524 struct napi_gro_fraginfo *info)
2525 {
2526 struct net_device *dev = napi->dev;
2527 struct sk_buff *skb = napi->skb;
2528 struct ethhdr *eth;
2529 skb_frag_t *frag;
2530 int i;
2531
2532 napi->skb = NULL;
2533
2534 if (!skb) {
2535 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2536 if (!skb)
2537 goto out;
2538
2539 skb_reserve(skb, NET_IP_ALIGN);
2540 }
2541
2542 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2543 frag = &info->frags[info->nr_frags - 1];
2544
2545 for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) {
2546 skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2547 frag->size);
2548 frag++;
2549 }
2550 skb_shinfo(skb)->nr_frags = info->nr_frags;
2551
2552 skb->data_len = info->len;
2553 skb->len += info->len;
2554 skb->truesize += info->len;
2555
2556 skb_reset_mac_header(skb);
2557 skb_gro_reset_offset(skb);
2558
2559 eth = skb_gro_header(skb, sizeof(*eth));
2560 if (!eth) {
2561 napi_reuse_skb(napi, skb);
2562 skb = NULL;
2563 goto out;
2564 }
2565
2566 skb_gro_pull(skb, sizeof(*eth));
2567
2568 /*
2569 * This works because the only protocols we care about don't require
2570 * special handling. We'll fix it up properly at the end.
2571 */
2572 skb->protocol = eth->h_proto;
2573
2574 skb->ip_summed = info->ip_summed;
2575 skb->csum = info->csum;
2576
2577 out:
2578 return skb;
2579 }
2580 EXPORT_SYMBOL(napi_fraginfo_skb);
2581
2582 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2583 {
2584 int err = NET_RX_SUCCESS;
2585
2586 switch (ret) {
2587 case GRO_NORMAL:
2588 case GRO_HELD:
2589 skb->protocol = eth_type_trans(skb, napi->dev);
2590
2591 if (ret == GRO_NORMAL)
2592 return netif_receive_skb(skb);
2593
2594 skb_gro_pull(skb, -ETH_HLEN);
2595 break;
2596
2597 case GRO_DROP:
2598 err = NET_RX_DROP;
2599 /* fall through */
2600
2601 case GRO_MERGED_FREE:
2602 napi_reuse_skb(napi, skb);
2603 break;
2604 }
2605
2606 return err;
2607 }
2608 EXPORT_SYMBOL(napi_frags_finish);
2609
2610 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2611 {
2612 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2613
2614 if (!skb)
2615 return NET_RX_DROP;
2616
2617 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2618 }
2619 EXPORT_SYMBOL(napi_gro_frags);
2620
2621 static int process_backlog(struct napi_struct *napi, int quota)
2622 {
2623 int work = 0;
2624 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2625 unsigned long start_time = jiffies;
2626
2627 napi->weight = weight_p;
2628 do {
2629 struct sk_buff *skb;
2630
2631 local_irq_disable();
2632 skb = __skb_dequeue(&queue->input_pkt_queue);
2633 if (!skb) {
2634 __napi_complete(napi);
2635 local_irq_enable();
2636 break;
2637 }
2638 local_irq_enable();
2639
2640 netif_receive_skb(skb);
2641 } while (++work < quota && jiffies == start_time);
2642
2643 return work;
2644 }
2645
2646 /**
2647 * __napi_schedule - schedule for receive
2648 * @n: entry to schedule
2649 *
2650 * The entry's receive function will be scheduled to run
2651 */
2652 void __napi_schedule(struct napi_struct *n)
2653 {
2654 unsigned long flags;
2655
2656 local_irq_save(flags);
2657 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2658 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2659 local_irq_restore(flags);
2660 }
2661 EXPORT_SYMBOL(__napi_schedule);
2662
2663 void __napi_complete(struct napi_struct *n)
2664 {
2665 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2666 BUG_ON(n->gro_list);
2667
2668 list_del(&n->poll_list);
2669 smp_mb__before_clear_bit();
2670 clear_bit(NAPI_STATE_SCHED, &n->state);
2671 }
2672 EXPORT_SYMBOL(__napi_complete);
2673
2674 void napi_complete(struct napi_struct *n)
2675 {
2676 unsigned long flags;
2677
2678 /*
2679 * don't let napi dequeue from the cpu poll list
2680 * just in case its running on a different cpu
2681 */
2682 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2683 return;
2684
2685 napi_gro_flush(n);
2686 local_irq_save(flags);
2687 __napi_complete(n);
2688 local_irq_restore(flags);
2689 }
2690 EXPORT_SYMBOL(napi_complete);
2691
2692 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2693 int (*poll)(struct napi_struct *, int), int weight)
2694 {
2695 INIT_LIST_HEAD(&napi->poll_list);
2696 napi->gro_count = 0;
2697 napi->gro_list = NULL;
2698 napi->skb = NULL;
2699 napi->poll = poll;
2700 napi->weight = weight;
2701 list_add(&napi->dev_list, &dev->napi_list);
2702 napi->dev = dev;
2703 #ifdef CONFIG_NETPOLL
2704 spin_lock_init(&napi->poll_lock);
2705 napi->poll_owner = -1;
2706 #endif
2707 set_bit(NAPI_STATE_SCHED, &napi->state);
2708 }
2709 EXPORT_SYMBOL(netif_napi_add);
2710
2711 void netif_napi_del(struct napi_struct *napi)
2712 {
2713 struct sk_buff *skb, *next;
2714
2715 list_del_init(&napi->dev_list);
2716 kfree_skb(napi->skb);
2717
2718 for (skb = napi->gro_list; skb; skb = next) {
2719 next = skb->next;
2720 skb->next = NULL;
2721 kfree_skb(skb);
2722 }
2723
2724 napi->gro_list = NULL;
2725 napi->gro_count = 0;
2726 }
2727 EXPORT_SYMBOL(netif_napi_del);
2728
2729
2730 static void net_rx_action(struct softirq_action *h)
2731 {
2732 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2733 unsigned long time_limit = jiffies + 2;
2734 int budget = netdev_budget;
2735 void *have;
2736
2737 local_irq_disable();
2738
2739 while (!list_empty(list)) {
2740 struct napi_struct *n;
2741 int work, weight;
2742
2743 /* If softirq window is exhuasted then punt.
2744 * Allow this to run for 2 jiffies since which will allow
2745 * an average latency of 1.5/HZ.
2746 */
2747 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2748 goto softnet_break;
2749
2750 local_irq_enable();
2751
2752 /* Even though interrupts have been re-enabled, this
2753 * access is safe because interrupts can only add new
2754 * entries to the tail of this list, and only ->poll()
2755 * calls can remove this head entry from the list.
2756 */
2757 n = list_entry(list->next, struct napi_struct, poll_list);
2758
2759 have = netpoll_poll_lock(n);
2760
2761 weight = n->weight;
2762
2763 /* This NAPI_STATE_SCHED test is for avoiding a race
2764 * with netpoll's poll_napi(). Only the entity which
2765 * obtains the lock and sees NAPI_STATE_SCHED set will
2766 * actually make the ->poll() call. Therefore we avoid
2767 * accidently calling ->poll() when NAPI is not scheduled.
2768 */
2769 work = 0;
2770 if (test_bit(NAPI_STATE_SCHED, &n->state))
2771 work = n->poll(n, weight);
2772
2773 WARN_ON_ONCE(work > weight);
2774
2775 budget -= work;
2776
2777 local_irq_disable();
2778
2779 /* Drivers must not modify the NAPI state if they
2780 * consume the entire weight. In such cases this code
2781 * still "owns" the NAPI instance and therefore can
2782 * move the instance around on the list at-will.
2783 */
2784 if (unlikely(work == weight)) {
2785 if (unlikely(napi_disable_pending(n)))
2786 __napi_complete(n);
2787 else
2788 list_move_tail(&n->poll_list, list);
2789 }
2790
2791 netpoll_poll_unlock(have);
2792 }
2793 out:
2794 local_irq_enable();
2795
2796 #ifdef CONFIG_NET_DMA
2797 /*
2798 * There may not be any more sk_buffs coming right now, so push
2799 * any pending DMA copies to hardware
2800 */
2801 dma_issue_pending_all();
2802 #endif
2803
2804 return;
2805
2806 softnet_break:
2807 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2808 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2809 goto out;
2810 }
2811
2812 static gifconf_func_t * gifconf_list [NPROTO];
2813
2814 /**
2815 * register_gifconf - register a SIOCGIF handler
2816 * @family: Address family
2817 * @gifconf: Function handler
2818 *
2819 * Register protocol dependent address dumping routines. The handler
2820 * that is passed must not be freed or reused until it has been replaced
2821 * by another handler.
2822 */
2823 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2824 {
2825 if (family >= NPROTO)
2826 return -EINVAL;
2827 gifconf_list[family] = gifconf;
2828 return 0;
2829 }
2830
2831
2832 /*
2833 * Map an interface index to its name (SIOCGIFNAME)
2834 */
2835
2836 /*
2837 * We need this ioctl for efficient implementation of the
2838 * if_indextoname() function required by the IPv6 API. Without
2839 * it, we would have to search all the interfaces to find a
2840 * match. --pb
2841 */
2842
2843 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2844 {
2845 struct net_device *dev;
2846 struct ifreq ifr;
2847
2848 /*
2849 * Fetch the caller's info block.
2850 */
2851
2852 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2853 return -EFAULT;
2854
2855 read_lock(&dev_base_lock);
2856 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2857 if (!dev) {
2858 read_unlock(&dev_base_lock);
2859 return -ENODEV;
2860 }
2861
2862 strcpy(ifr.ifr_name, dev->name);
2863 read_unlock(&dev_base_lock);
2864
2865 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2866 return -EFAULT;
2867 return 0;
2868 }
2869
2870 /*
2871 * Perform a SIOCGIFCONF call. This structure will change
2872 * size eventually, and there is nothing I can do about it.
2873 * Thus we will need a 'compatibility mode'.
2874 */
2875
2876 static int dev_ifconf(struct net *net, char __user *arg)
2877 {
2878 struct ifconf ifc;
2879 struct net_device *dev;
2880 char __user *pos;
2881 int len;
2882 int total;
2883 int i;
2884
2885 /*
2886 * Fetch the caller's info block.
2887 */
2888
2889 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2890 return -EFAULT;
2891
2892 pos = ifc.ifc_buf;
2893 len = ifc.ifc_len;
2894
2895 /*
2896 * Loop over the interfaces, and write an info block for each.
2897 */
2898
2899 total = 0;
2900 for_each_netdev(net, dev) {
2901 for (i = 0; i < NPROTO; i++) {
2902 if (gifconf_list[i]) {
2903 int done;
2904 if (!pos)
2905 done = gifconf_list[i](dev, NULL, 0);
2906 else
2907 done = gifconf_list[i](dev, pos + total,
2908 len - total);
2909 if (done < 0)
2910 return -EFAULT;
2911 total += done;
2912 }
2913 }
2914 }
2915
2916 /*
2917 * All done. Write the updated control block back to the caller.
2918 */
2919 ifc.ifc_len = total;
2920
2921 /*
2922 * Both BSD and Solaris return 0 here, so we do too.
2923 */
2924 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2925 }
2926
2927 #ifdef CONFIG_PROC_FS
2928 /*
2929 * This is invoked by the /proc filesystem handler to display a device
2930 * in detail.
2931 */
2932 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2933 __acquires(dev_base_lock)
2934 {
2935 struct net *net = seq_file_net(seq);
2936 loff_t off;
2937 struct net_device *dev;
2938
2939 read_lock(&dev_base_lock);
2940 if (!*pos)
2941 return SEQ_START_TOKEN;
2942
2943 off = 1;
2944 for_each_netdev(net, dev)
2945 if (off++ == *pos)
2946 return dev;
2947
2948 return NULL;
2949 }
2950
2951 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2952 {
2953 struct net *net = seq_file_net(seq);
2954 ++*pos;
2955 return v == SEQ_START_TOKEN ?
2956 first_net_device(net) : next_net_device((struct net_device *)v);
2957 }
2958
2959 void dev_seq_stop(struct seq_file *seq, void *v)
2960 __releases(dev_base_lock)
2961 {
2962 read_unlock(&dev_base_lock);
2963 }
2964
2965 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2966 {
2967 const struct net_device_stats *stats = dev_get_stats(dev);
2968
2969 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2970 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2971 dev->name, stats->rx_bytes, stats->rx_packets,
2972 stats->rx_errors,
2973 stats->rx_dropped + stats->rx_missed_errors,
2974 stats->rx_fifo_errors,
2975 stats->rx_length_errors + stats->rx_over_errors +
2976 stats->rx_crc_errors + stats->rx_frame_errors,
2977 stats->rx_compressed, stats->multicast,
2978 stats->tx_bytes, stats->tx_packets,
2979 stats->tx_errors, stats->tx_dropped,
2980 stats->tx_fifo_errors, stats->collisions,
2981 stats->tx_carrier_errors +
2982 stats->tx_aborted_errors +
2983 stats->tx_window_errors +
2984 stats->tx_heartbeat_errors,
2985 stats->tx_compressed);
2986 }
2987
2988 /*
2989 * Called from the PROCfs module. This now uses the new arbitrary sized
2990 * /proc/net interface to create /proc/net/dev
2991 */
2992 static int dev_seq_show(struct seq_file *seq, void *v)
2993 {
2994 if (v == SEQ_START_TOKEN)
2995 seq_puts(seq, "Inter-| Receive "
2996 " | Transmit\n"
2997 " face |bytes packets errs drop fifo frame "
2998 "compressed multicast|bytes packets errs "
2999 "drop fifo colls carrier compressed\n");
3000 else
3001 dev_seq_printf_stats(seq, v);
3002 return 0;
3003 }
3004
3005 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3006 {
3007 struct netif_rx_stats *rc = NULL;
3008
3009 while (*pos < nr_cpu_ids)
3010 if (cpu_online(*pos)) {
3011 rc = &per_cpu(netdev_rx_stat, *pos);
3012 break;
3013 } else
3014 ++*pos;
3015 return rc;
3016 }
3017
3018 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3019 {
3020 return softnet_get_online(pos);
3021 }
3022
3023 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3024 {
3025 ++*pos;
3026 return softnet_get_online(pos);
3027 }
3028
3029 static void softnet_seq_stop(struct seq_file *seq, void *v)
3030 {
3031 }
3032
3033 static int softnet_seq_show(struct seq_file *seq, void *v)
3034 {
3035 struct netif_rx_stats *s = v;
3036
3037 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3038 s->total, s->dropped, s->time_squeeze, 0,
3039 0, 0, 0, 0, /* was fastroute */
3040 s->cpu_collision );
3041 return 0;
3042 }
3043
3044 static const struct seq_operations dev_seq_ops = {
3045 .start = dev_seq_start,
3046 .next = dev_seq_next,
3047 .stop = dev_seq_stop,
3048 .show = dev_seq_show,
3049 };
3050
3051 static int dev_seq_open(struct inode *inode, struct file *file)
3052 {
3053 return seq_open_net(inode, file, &dev_seq_ops,
3054 sizeof(struct seq_net_private));
3055 }
3056
3057 static const struct file_operations dev_seq_fops = {
3058 .owner = THIS_MODULE,
3059 .open = dev_seq_open,
3060 .read = seq_read,
3061 .llseek = seq_lseek,
3062 .release = seq_release_net,
3063 };
3064
3065 static const struct seq_operations softnet_seq_ops = {
3066 .start = softnet_seq_start,
3067 .next = softnet_seq_next,
3068 .stop = softnet_seq_stop,
3069 .show = softnet_seq_show,
3070 };
3071
3072 static int softnet_seq_open(struct inode *inode, struct file *file)
3073 {
3074 return seq_open(file, &softnet_seq_ops);
3075 }
3076
3077 static const struct file_operations softnet_seq_fops = {
3078 .owner = THIS_MODULE,
3079 .open = softnet_seq_open,
3080 .read = seq_read,
3081 .llseek = seq_lseek,
3082 .release = seq_release,
3083 };
3084
3085 static void *ptype_get_idx(loff_t pos)
3086 {
3087 struct packet_type *pt = NULL;
3088 loff_t i = 0;
3089 int t;
3090
3091 list_for_each_entry_rcu(pt, &ptype_all, list) {
3092 if (i == pos)
3093 return pt;
3094 ++i;
3095 }
3096
3097 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3098 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3099 if (i == pos)
3100 return pt;
3101 ++i;
3102 }
3103 }
3104 return NULL;
3105 }
3106
3107 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3108 __acquires(RCU)
3109 {
3110 rcu_read_lock();
3111 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3112 }
3113
3114 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3115 {
3116 struct packet_type *pt;
3117 struct list_head *nxt;
3118 int hash;
3119
3120 ++*pos;
3121 if (v == SEQ_START_TOKEN)
3122 return ptype_get_idx(0);
3123
3124 pt = v;
3125 nxt = pt->list.next;
3126 if (pt->type == htons(ETH_P_ALL)) {
3127 if (nxt != &ptype_all)
3128 goto found;
3129 hash = 0;
3130 nxt = ptype_base[0].next;
3131 } else
3132 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3133
3134 while (nxt == &ptype_base[hash]) {
3135 if (++hash >= PTYPE_HASH_SIZE)
3136 return NULL;
3137 nxt = ptype_base[hash].next;
3138 }
3139 found:
3140 return list_entry(nxt, struct packet_type, list);
3141 }
3142
3143 static void ptype_seq_stop(struct seq_file *seq, void *v)
3144 __releases(RCU)
3145 {
3146 rcu_read_unlock();
3147 }
3148
3149 static int ptype_seq_show(struct seq_file *seq, void *v)
3150 {
3151 struct packet_type *pt = v;
3152
3153 if (v == SEQ_START_TOKEN)
3154 seq_puts(seq, "Type Device Function\n");
3155 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3156 if (pt->type == htons(ETH_P_ALL))
3157 seq_puts(seq, "ALL ");
3158 else
3159 seq_printf(seq, "%04x", ntohs(pt->type));
3160
3161 seq_printf(seq, " %-8s %pF\n",
3162 pt->dev ? pt->dev->name : "", pt->func);
3163 }
3164
3165 return 0;
3166 }
3167
3168 static const struct seq_operations ptype_seq_ops = {
3169 .start = ptype_seq_start,
3170 .next = ptype_seq_next,
3171 .stop = ptype_seq_stop,
3172 .show = ptype_seq_show,
3173 };
3174
3175 static int ptype_seq_open(struct inode *inode, struct file *file)
3176 {
3177 return seq_open_net(inode, file, &ptype_seq_ops,
3178 sizeof(struct seq_net_private));
3179 }
3180
3181 static const struct file_operations ptype_seq_fops = {
3182 .owner = THIS_MODULE,
3183 .open = ptype_seq_open,
3184 .read = seq_read,
3185 .llseek = seq_lseek,
3186 .release = seq_release_net,
3187 };
3188
3189
3190 static int __net_init dev_proc_net_init(struct net *net)
3191 {
3192 int rc = -ENOMEM;
3193
3194 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3195 goto out;
3196 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3197 goto out_dev;
3198 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3199 goto out_softnet;
3200
3201 if (wext_proc_init(net))
3202 goto out_ptype;
3203 rc = 0;
3204 out:
3205 return rc;
3206 out_ptype:
3207 proc_net_remove(net, "ptype");
3208 out_softnet:
3209 proc_net_remove(net, "softnet_stat");
3210 out_dev:
3211 proc_net_remove(net, "dev");
3212 goto out;
3213 }
3214
3215 static void __net_exit dev_proc_net_exit(struct net *net)
3216 {
3217 wext_proc_exit(net);
3218
3219 proc_net_remove(net, "ptype");
3220 proc_net_remove(net, "softnet_stat");
3221 proc_net_remove(net, "dev");
3222 }
3223
3224 static struct pernet_operations __net_initdata dev_proc_ops = {
3225 .init = dev_proc_net_init,
3226 .exit = dev_proc_net_exit,
3227 };
3228
3229 static int __init dev_proc_init(void)
3230 {
3231 return register_pernet_subsys(&dev_proc_ops);
3232 }
3233 #else
3234 #define dev_proc_init() 0
3235 #endif /* CONFIG_PROC_FS */
3236
3237
3238 /**
3239 * netdev_set_master - set up master/slave pair
3240 * @slave: slave device
3241 * @master: new master device
3242 *
3243 * Changes the master device of the slave. Pass %NULL to break the
3244 * bonding. The caller must hold the RTNL semaphore. On a failure
3245 * a negative errno code is returned. On success the reference counts
3246 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3247 * function returns zero.
3248 */
3249 int netdev_set_master(struct net_device *slave, struct net_device *master)
3250 {
3251 struct net_device *old = slave->master;
3252
3253 ASSERT_RTNL();
3254
3255 if (master) {
3256 if (old)
3257 return -EBUSY;
3258 dev_hold(master);
3259 }
3260
3261 slave->master = master;
3262
3263 synchronize_net();
3264
3265 if (old)
3266 dev_put(old);
3267
3268 if (master)
3269 slave->flags |= IFF_SLAVE;
3270 else
3271 slave->flags &= ~IFF_SLAVE;
3272
3273 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3274 return 0;
3275 }
3276
3277 static void dev_change_rx_flags(struct net_device *dev, int flags)
3278 {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280
3281 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3282 ops->ndo_change_rx_flags(dev, flags);
3283 }
3284
3285 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3286 {
3287 unsigned short old_flags = dev->flags;
3288 uid_t uid;
3289 gid_t gid;
3290
3291 ASSERT_RTNL();
3292
3293 dev->flags |= IFF_PROMISC;
3294 dev->promiscuity += inc;
3295 if (dev->promiscuity == 0) {
3296 /*
3297 * Avoid overflow.
3298 * If inc causes overflow, untouch promisc and return error.
3299 */
3300 if (inc < 0)
3301 dev->flags &= ~IFF_PROMISC;
3302 else {
3303 dev->promiscuity -= inc;
3304 printk(KERN_WARNING "%s: promiscuity touches roof, "
3305 "set promiscuity failed, promiscuity feature "
3306 "of device might be broken.\n", dev->name);
3307 return -EOVERFLOW;
3308 }
3309 }
3310 if (dev->flags != old_flags) {
3311 printk(KERN_INFO "device %s %s promiscuous mode\n",
3312 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3313 "left");
3314 if (audit_enabled) {
3315 current_uid_gid(&uid, &gid);
3316 audit_log(current->audit_context, GFP_ATOMIC,
3317 AUDIT_ANOM_PROMISCUOUS,
3318 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3319 dev->name, (dev->flags & IFF_PROMISC),
3320 (old_flags & IFF_PROMISC),
3321 audit_get_loginuid(current),
3322 uid, gid,
3323 audit_get_sessionid(current));
3324 }
3325
3326 dev_change_rx_flags(dev, IFF_PROMISC);
3327 }
3328 return 0;
3329 }
3330
3331 /**
3332 * dev_set_promiscuity - update promiscuity count on a device
3333 * @dev: device
3334 * @inc: modifier
3335 *
3336 * Add or remove promiscuity from a device. While the count in the device
3337 * remains above zero the interface remains promiscuous. Once it hits zero
3338 * the device reverts back to normal filtering operation. A negative inc
3339 * value is used to drop promiscuity on the device.
3340 * Return 0 if successful or a negative errno code on error.
3341 */
3342 int dev_set_promiscuity(struct net_device *dev, int inc)
3343 {
3344 unsigned short old_flags = dev->flags;
3345 int err;
3346
3347 err = __dev_set_promiscuity(dev, inc);
3348 if (err < 0)
3349 return err;
3350 if (dev->flags != old_flags)
3351 dev_set_rx_mode(dev);
3352 return err;
3353 }
3354
3355 /**
3356 * dev_set_allmulti - update allmulti count on a device
3357 * @dev: device
3358 * @inc: modifier
3359 *
3360 * Add or remove reception of all multicast frames to a device. While the
3361 * count in the device remains above zero the interface remains listening
3362 * to all interfaces. Once it hits zero the device reverts back to normal
3363 * filtering operation. A negative @inc value is used to drop the counter
3364 * when releasing a resource needing all multicasts.
3365 * Return 0 if successful or a negative errno code on error.
3366 */
3367
3368 int dev_set_allmulti(struct net_device *dev, int inc)
3369 {
3370 unsigned short old_flags = dev->flags;
3371
3372 ASSERT_RTNL();
3373
3374 dev->flags |= IFF_ALLMULTI;
3375 dev->allmulti += inc;
3376 if (dev->allmulti == 0) {
3377 /*
3378 * Avoid overflow.
3379 * If inc causes overflow, untouch allmulti and return error.
3380 */
3381 if (inc < 0)
3382 dev->flags &= ~IFF_ALLMULTI;
3383 else {
3384 dev->allmulti -= inc;
3385 printk(KERN_WARNING "%s: allmulti touches roof, "
3386 "set allmulti failed, allmulti feature of "
3387 "device might be broken.\n", dev->name);
3388 return -EOVERFLOW;
3389 }
3390 }
3391 if (dev->flags ^ old_flags) {
3392 dev_change_rx_flags(dev, IFF_ALLMULTI);
3393 dev_set_rx_mode(dev);
3394 }
3395 return 0;
3396 }
3397
3398 /*
3399 * Upload unicast and multicast address lists to device and
3400 * configure RX filtering. When the device doesn't support unicast
3401 * filtering it is put in promiscuous mode while unicast addresses
3402 * are present.
3403 */
3404 void __dev_set_rx_mode(struct net_device *dev)
3405 {
3406 const struct net_device_ops *ops = dev->netdev_ops;
3407
3408 /* dev_open will call this function so the list will stay sane. */
3409 if (!(dev->flags&IFF_UP))
3410 return;
3411
3412 if (!netif_device_present(dev))
3413 return;
3414
3415 if (ops->ndo_set_rx_mode)
3416 ops->ndo_set_rx_mode(dev);
3417 else {
3418 /* Unicast addresses changes may only happen under the rtnl,
3419 * therefore calling __dev_set_promiscuity here is safe.
3420 */
3421 if (dev->uc_count > 0 && !dev->uc_promisc) {
3422 __dev_set_promiscuity(dev, 1);
3423 dev->uc_promisc = 1;
3424 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3425 __dev_set_promiscuity(dev, -1);
3426 dev->uc_promisc = 0;
3427 }
3428
3429 if (ops->ndo_set_multicast_list)
3430 ops->ndo_set_multicast_list(dev);
3431 }
3432 }
3433
3434 void dev_set_rx_mode(struct net_device *dev)
3435 {
3436 netif_addr_lock_bh(dev);
3437 __dev_set_rx_mode(dev);
3438 netif_addr_unlock_bh(dev);
3439 }
3440
3441 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3442 void *addr, int alen, int glbl)
3443 {
3444 struct dev_addr_list *da;
3445
3446 for (; (da = *list) != NULL; list = &da->next) {
3447 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3448 alen == da->da_addrlen) {
3449 if (glbl) {
3450 int old_glbl = da->da_gusers;
3451 da->da_gusers = 0;
3452 if (old_glbl == 0)
3453 break;
3454 }
3455 if (--da->da_users)
3456 return 0;
3457
3458 *list = da->next;
3459 kfree(da);
3460 (*count)--;
3461 return 0;
3462 }
3463 }
3464 return -ENOENT;
3465 }
3466
3467 int __dev_addr_add(struct dev_addr_list **list, int *count,
3468 void *addr, int alen, int glbl)
3469 {
3470 struct dev_addr_list *da;
3471
3472 for (da = *list; da != NULL; da = da->next) {
3473 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3474 da->da_addrlen == alen) {
3475 if (glbl) {
3476 int old_glbl = da->da_gusers;
3477 da->da_gusers = 1;
3478 if (old_glbl)
3479 return 0;
3480 }
3481 da->da_users++;
3482 return 0;
3483 }
3484 }
3485
3486 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3487 if (da == NULL)
3488 return -ENOMEM;
3489 memcpy(da->da_addr, addr, alen);
3490 da->da_addrlen = alen;
3491 da->da_users = 1;
3492 da->da_gusers = glbl ? 1 : 0;
3493 da->next = *list;
3494 *list = da;
3495 (*count)++;
3496 return 0;
3497 }
3498
3499 /**
3500 * dev_unicast_delete - Release secondary unicast address.
3501 * @dev: device
3502 * @addr: address to delete
3503 * @alen: length of @addr
3504 *
3505 * Release reference to a secondary unicast address and remove it
3506 * from the device if the reference count drops to zero.
3507 *
3508 * The caller must hold the rtnl_mutex.
3509 */
3510 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3511 {
3512 int err;
3513
3514 ASSERT_RTNL();
3515
3516 netif_addr_lock_bh(dev);
3517 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3518 if (!err)
3519 __dev_set_rx_mode(dev);
3520 netif_addr_unlock_bh(dev);
3521 return err;
3522 }
3523 EXPORT_SYMBOL(dev_unicast_delete);
3524
3525 /**
3526 * dev_unicast_add - add a secondary unicast address
3527 * @dev: device
3528 * @addr: address to add
3529 * @alen: length of @addr
3530 *
3531 * Add a secondary unicast address to the device or increase
3532 * the reference count if it already exists.
3533 *
3534 * The caller must hold the rtnl_mutex.
3535 */
3536 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3537 {
3538 int err;
3539
3540 ASSERT_RTNL();
3541
3542 netif_addr_lock_bh(dev);
3543 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3544 if (!err)
3545 __dev_set_rx_mode(dev);
3546 netif_addr_unlock_bh(dev);
3547 return err;
3548 }
3549 EXPORT_SYMBOL(dev_unicast_add);
3550
3551 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3552 struct dev_addr_list **from, int *from_count)
3553 {
3554 struct dev_addr_list *da, *next;
3555 int err = 0;
3556
3557 da = *from;
3558 while (da != NULL) {
3559 next = da->next;
3560 if (!da->da_synced) {
3561 err = __dev_addr_add(to, to_count,
3562 da->da_addr, da->da_addrlen, 0);
3563 if (err < 0)
3564 break;
3565 da->da_synced = 1;
3566 da->da_users++;
3567 } else if (da->da_users == 1) {
3568 __dev_addr_delete(to, to_count,
3569 da->da_addr, da->da_addrlen, 0);
3570 __dev_addr_delete(from, from_count,
3571 da->da_addr, da->da_addrlen, 0);
3572 }
3573 da = next;
3574 }
3575 return err;
3576 }
3577
3578 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3579 struct dev_addr_list **from, int *from_count)
3580 {
3581 struct dev_addr_list *da, *next;
3582
3583 da = *from;
3584 while (da != NULL) {
3585 next = da->next;
3586 if (da->da_synced) {
3587 __dev_addr_delete(to, to_count,
3588 da->da_addr, da->da_addrlen, 0);
3589 da->da_synced = 0;
3590 __dev_addr_delete(from, from_count,
3591 da->da_addr, da->da_addrlen, 0);
3592 }
3593 da = next;
3594 }
3595 }
3596
3597 /**
3598 * dev_unicast_sync - Synchronize device's unicast list to another device
3599 * @to: destination device
3600 * @from: source device
3601 *
3602 * Add newly added addresses to the destination device and release
3603 * addresses that have no users left. The source device must be
3604 * locked by netif_tx_lock_bh.
3605 *
3606 * This function is intended to be called from the dev->set_rx_mode
3607 * function of layered software devices.
3608 */
3609 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3610 {
3611 int err = 0;
3612
3613 netif_addr_lock_bh(to);
3614 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3615 &from->uc_list, &from->uc_count);
3616 if (!err)
3617 __dev_set_rx_mode(to);
3618 netif_addr_unlock_bh(to);
3619 return err;
3620 }
3621 EXPORT_SYMBOL(dev_unicast_sync);
3622
3623 /**
3624 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3625 * @to: destination device
3626 * @from: source device
3627 *
3628 * Remove all addresses that were added to the destination device by
3629 * dev_unicast_sync(). This function is intended to be called from the
3630 * dev->stop function of layered software devices.
3631 */
3632 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3633 {
3634 netif_addr_lock_bh(from);
3635 netif_addr_lock(to);
3636
3637 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3638 &from->uc_list, &from->uc_count);
3639 __dev_set_rx_mode(to);
3640
3641 netif_addr_unlock(to);
3642 netif_addr_unlock_bh(from);
3643 }
3644 EXPORT_SYMBOL(dev_unicast_unsync);
3645
3646 static void __dev_addr_discard(struct dev_addr_list **list)
3647 {
3648 struct dev_addr_list *tmp;
3649
3650 while (*list != NULL) {
3651 tmp = *list;
3652 *list = tmp->next;
3653 if (tmp->da_users > tmp->da_gusers)
3654 printk("__dev_addr_discard: address leakage! "
3655 "da_users=%d\n", tmp->da_users);
3656 kfree(tmp);
3657 }
3658 }
3659
3660 static void dev_addr_discard(struct net_device *dev)
3661 {
3662 netif_addr_lock_bh(dev);
3663
3664 __dev_addr_discard(&dev->uc_list);
3665 dev->uc_count = 0;
3666
3667 __dev_addr_discard(&dev->mc_list);
3668 dev->mc_count = 0;
3669
3670 netif_addr_unlock_bh(dev);
3671 }
3672
3673 /**
3674 * dev_get_flags - get flags reported to userspace
3675 * @dev: device
3676 *
3677 * Get the combination of flag bits exported through APIs to userspace.
3678 */
3679 unsigned dev_get_flags(const struct net_device *dev)
3680 {
3681 unsigned flags;
3682
3683 flags = (dev->flags & ~(IFF_PROMISC |
3684 IFF_ALLMULTI |
3685 IFF_RUNNING |
3686 IFF_LOWER_UP |
3687 IFF_DORMANT)) |
3688 (dev->gflags & (IFF_PROMISC |
3689 IFF_ALLMULTI));
3690
3691 if (netif_running(dev)) {
3692 if (netif_oper_up(dev))
3693 flags |= IFF_RUNNING;
3694 if (netif_carrier_ok(dev))
3695 flags |= IFF_LOWER_UP;
3696 if (netif_dormant(dev))
3697 flags |= IFF_DORMANT;
3698 }
3699
3700 return flags;
3701 }
3702
3703 /**
3704 * dev_change_flags - change device settings
3705 * @dev: device
3706 * @flags: device state flags
3707 *
3708 * Change settings on device based state flags. The flags are
3709 * in the userspace exported format.
3710 */
3711 int dev_change_flags(struct net_device *dev, unsigned flags)
3712 {
3713 int ret, changes;
3714 int old_flags = dev->flags;
3715
3716 ASSERT_RTNL();
3717
3718 /*
3719 * Set the flags on our device.
3720 */
3721
3722 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3723 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3724 IFF_AUTOMEDIA)) |
3725 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3726 IFF_ALLMULTI));
3727
3728 /*
3729 * Load in the correct multicast list now the flags have changed.
3730 */
3731
3732 if ((old_flags ^ flags) & IFF_MULTICAST)
3733 dev_change_rx_flags(dev, IFF_MULTICAST);
3734
3735 dev_set_rx_mode(dev);
3736
3737 /*
3738 * Have we downed the interface. We handle IFF_UP ourselves
3739 * according to user attempts to set it, rather than blindly
3740 * setting it.
3741 */
3742
3743 ret = 0;
3744 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3745 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3746
3747 if (!ret)
3748 dev_set_rx_mode(dev);
3749 }
3750
3751 if (dev->flags & IFF_UP &&
3752 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3753 IFF_VOLATILE)))
3754 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3755
3756 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3757 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3758 dev->gflags ^= IFF_PROMISC;
3759 dev_set_promiscuity(dev, inc);
3760 }
3761
3762 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3763 is important. Some (broken) drivers set IFF_PROMISC, when
3764 IFF_ALLMULTI is requested not asking us and not reporting.
3765 */
3766 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3767 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3768 dev->gflags ^= IFF_ALLMULTI;
3769 dev_set_allmulti(dev, inc);
3770 }
3771
3772 /* Exclude state transition flags, already notified */
3773 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3774 if (changes)
3775 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3776
3777 return ret;
3778 }
3779
3780 /**
3781 * dev_set_mtu - Change maximum transfer unit
3782 * @dev: device
3783 * @new_mtu: new transfer unit
3784 *
3785 * Change the maximum transfer size of the network device.
3786 */
3787 int dev_set_mtu(struct net_device *dev, int new_mtu)
3788 {
3789 const struct net_device_ops *ops = dev->netdev_ops;
3790 int err;
3791
3792 if (new_mtu == dev->mtu)
3793 return 0;
3794
3795 /* MTU must be positive. */
3796 if (new_mtu < 0)
3797 return -EINVAL;
3798
3799 if (!netif_device_present(dev))
3800 return -ENODEV;
3801
3802 err = 0;
3803 if (ops->ndo_change_mtu)
3804 err = ops->ndo_change_mtu(dev, new_mtu);
3805 else
3806 dev->mtu = new_mtu;
3807
3808 if (!err && dev->flags & IFF_UP)
3809 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3810 return err;
3811 }
3812
3813 /**
3814 * dev_set_mac_address - Change Media Access Control Address
3815 * @dev: device
3816 * @sa: new address
3817 *
3818 * Change the hardware (MAC) address of the device
3819 */
3820 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3821 {
3822 const struct net_device_ops *ops = dev->netdev_ops;
3823 int err;
3824
3825 if (!ops->ndo_set_mac_address)
3826 return -EOPNOTSUPP;
3827 if (sa->sa_family != dev->type)
3828 return -EINVAL;
3829 if (!netif_device_present(dev))
3830 return -ENODEV;
3831 err = ops->ndo_set_mac_address(dev, sa);
3832 if (!err)
3833 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3834 return err;
3835 }
3836
3837 /*
3838 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3839 */
3840 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3841 {
3842 int err;
3843 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3844
3845 if (!dev)
3846 return -ENODEV;
3847
3848 switch (cmd) {
3849 case SIOCGIFFLAGS: /* Get interface flags */
3850 ifr->ifr_flags = dev_get_flags(dev);
3851 return 0;
3852
3853 case SIOCGIFMETRIC: /* Get the metric on the interface
3854 (currently unused) */
3855 ifr->ifr_metric = 0;
3856 return 0;
3857
3858 case SIOCGIFMTU: /* Get the MTU of a device */
3859 ifr->ifr_mtu = dev->mtu;
3860 return 0;
3861
3862 case SIOCGIFHWADDR:
3863 if (!dev->addr_len)
3864 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3865 else
3866 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3867 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3868 ifr->ifr_hwaddr.sa_family = dev->type;
3869 return 0;
3870
3871 case SIOCGIFSLAVE:
3872 err = -EINVAL;
3873 break;
3874
3875 case SIOCGIFMAP:
3876 ifr->ifr_map.mem_start = dev->mem_start;
3877 ifr->ifr_map.mem_end = dev->mem_end;
3878 ifr->ifr_map.base_addr = dev->base_addr;
3879 ifr->ifr_map.irq = dev->irq;
3880 ifr->ifr_map.dma = dev->dma;
3881 ifr->ifr_map.port = dev->if_port;
3882 return 0;
3883
3884 case SIOCGIFINDEX:
3885 ifr->ifr_ifindex = dev->ifindex;
3886 return 0;
3887
3888 case SIOCGIFTXQLEN:
3889 ifr->ifr_qlen = dev->tx_queue_len;
3890 return 0;
3891
3892 default:
3893 /* dev_ioctl() should ensure this case
3894 * is never reached
3895 */
3896 WARN_ON(1);
3897 err = -EINVAL;
3898 break;
3899
3900 }
3901 return err;
3902 }
3903
3904 /*
3905 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3906 */
3907 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3908 {
3909 int err;
3910 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3911 const struct net_device_ops *ops;
3912
3913 if (!dev)
3914 return -ENODEV;
3915
3916 ops = dev->netdev_ops;
3917
3918 switch (cmd) {
3919 case SIOCSIFFLAGS: /* Set interface flags */
3920 return dev_change_flags(dev, ifr->ifr_flags);
3921
3922 case SIOCSIFMETRIC: /* Set the metric on the interface
3923 (currently unused) */
3924 return -EOPNOTSUPP;
3925
3926 case SIOCSIFMTU: /* Set the MTU of a device */
3927 return dev_set_mtu(dev, ifr->ifr_mtu);
3928
3929 case SIOCSIFHWADDR:
3930 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3931
3932 case SIOCSIFHWBROADCAST:
3933 if (ifr->ifr_hwaddr.sa_family != dev->type)
3934 return -EINVAL;
3935 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3936 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3937 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3938 return 0;
3939
3940 case SIOCSIFMAP:
3941 if (ops->ndo_set_config) {
3942 if (!netif_device_present(dev))
3943 return -ENODEV;
3944 return ops->ndo_set_config(dev, &ifr->ifr_map);
3945 }
3946 return -EOPNOTSUPP;
3947
3948 case SIOCADDMULTI:
3949 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3950 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3951 return -EINVAL;
3952 if (!netif_device_present(dev))
3953 return -ENODEV;
3954 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3955 dev->addr_len, 1);
3956
3957 case SIOCDELMULTI:
3958 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3959 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3960 return -EINVAL;
3961 if (!netif_device_present(dev))
3962 return -ENODEV;
3963 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3964 dev->addr_len, 1);
3965
3966 case SIOCSIFTXQLEN:
3967 if (ifr->ifr_qlen < 0)
3968 return -EINVAL;
3969 dev->tx_queue_len = ifr->ifr_qlen;
3970 return 0;
3971
3972 case SIOCSIFNAME:
3973 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3974 return dev_change_name(dev, ifr->ifr_newname);
3975
3976 /*
3977 * Unknown or private ioctl
3978 */
3979
3980 default:
3981 if ((cmd >= SIOCDEVPRIVATE &&
3982 cmd <= SIOCDEVPRIVATE + 15) ||
3983 cmd == SIOCBONDENSLAVE ||
3984 cmd == SIOCBONDRELEASE ||
3985 cmd == SIOCBONDSETHWADDR ||
3986 cmd == SIOCBONDSLAVEINFOQUERY ||
3987 cmd == SIOCBONDINFOQUERY ||
3988 cmd == SIOCBONDCHANGEACTIVE ||
3989 cmd == SIOCGMIIPHY ||
3990 cmd == SIOCGMIIREG ||
3991 cmd == SIOCSMIIREG ||
3992 cmd == SIOCBRADDIF ||
3993 cmd == SIOCBRDELIF ||
3994 cmd == SIOCSHWTSTAMP ||
3995 cmd == SIOCWANDEV) {
3996 err = -EOPNOTSUPP;
3997 if (ops->ndo_do_ioctl) {
3998 if (netif_device_present(dev))
3999 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4000 else
4001 err = -ENODEV;
4002 }
4003 } else
4004 err = -EINVAL;
4005
4006 }
4007 return err;
4008 }
4009
4010 /*
4011 * This function handles all "interface"-type I/O control requests. The actual
4012 * 'doing' part of this is dev_ifsioc above.
4013 */
4014
4015 /**
4016 * dev_ioctl - network device ioctl
4017 * @net: the applicable net namespace
4018 * @cmd: command to issue
4019 * @arg: pointer to a struct ifreq in user space
4020 *
4021 * Issue ioctl functions to devices. This is normally called by the
4022 * user space syscall interfaces but can sometimes be useful for
4023 * other purposes. The return value is the return from the syscall if
4024 * positive or a negative errno code on error.
4025 */
4026
4027 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4028 {
4029 struct ifreq ifr;
4030 int ret;
4031 char *colon;
4032
4033 /* One special case: SIOCGIFCONF takes ifconf argument
4034 and requires shared lock, because it sleeps writing
4035 to user space.
4036 */
4037
4038 if (cmd == SIOCGIFCONF) {
4039 rtnl_lock();
4040 ret = dev_ifconf(net, (char __user *) arg);
4041 rtnl_unlock();
4042 return ret;
4043 }
4044 if (cmd == SIOCGIFNAME)
4045 return dev_ifname(net, (struct ifreq __user *)arg);
4046
4047 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4048 return -EFAULT;
4049
4050 ifr.ifr_name[IFNAMSIZ-1] = 0;
4051
4052 colon = strchr(ifr.ifr_name, ':');
4053 if (colon)
4054 *colon = 0;
4055
4056 /*
4057 * See which interface the caller is talking about.
4058 */
4059
4060 switch (cmd) {
4061 /*
4062 * These ioctl calls:
4063 * - can be done by all.
4064 * - atomic and do not require locking.
4065 * - return a value
4066 */
4067 case SIOCGIFFLAGS:
4068 case SIOCGIFMETRIC:
4069 case SIOCGIFMTU:
4070 case SIOCGIFHWADDR:
4071 case SIOCGIFSLAVE:
4072 case SIOCGIFMAP:
4073 case SIOCGIFINDEX:
4074 case SIOCGIFTXQLEN:
4075 dev_load(net, ifr.ifr_name);
4076 read_lock(&dev_base_lock);
4077 ret = dev_ifsioc_locked(net, &ifr, cmd);
4078 read_unlock(&dev_base_lock);
4079 if (!ret) {
4080 if (colon)
4081 *colon = ':';
4082 if (copy_to_user(arg, &ifr,
4083 sizeof(struct ifreq)))
4084 ret = -EFAULT;
4085 }
4086 return ret;
4087
4088 case SIOCETHTOOL:
4089 dev_load(net, ifr.ifr_name);
4090 rtnl_lock();
4091 ret = dev_ethtool(net, &ifr);
4092 rtnl_unlock();
4093 if (!ret) {
4094 if (colon)
4095 *colon = ':';
4096 if (copy_to_user(arg, &ifr,
4097 sizeof(struct ifreq)))
4098 ret = -EFAULT;
4099 }
4100 return ret;
4101
4102 /*
4103 * These ioctl calls:
4104 * - require superuser power.
4105 * - require strict serialization.
4106 * - return a value
4107 */
4108 case SIOCGMIIPHY:
4109 case SIOCGMIIREG:
4110 case SIOCSIFNAME:
4111 if (!capable(CAP_NET_ADMIN))
4112 return -EPERM;
4113 dev_load(net, ifr.ifr_name);
4114 rtnl_lock();
4115 ret = dev_ifsioc(net, &ifr, cmd);
4116 rtnl_unlock();
4117 if (!ret) {
4118 if (colon)
4119 *colon = ':';
4120 if (copy_to_user(arg, &ifr,
4121 sizeof(struct ifreq)))
4122 ret = -EFAULT;
4123 }
4124 return ret;
4125
4126 /*
4127 * These ioctl calls:
4128 * - require superuser power.
4129 * - require strict serialization.
4130 * - do not return a value
4131 */
4132 case SIOCSIFFLAGS:
4133 case SIOCSIFMETRIC:
4134 case SIOCSIFMTU:
4135 case SIOCSIFMAP:
4136 case SIOCSIFHWADDR:
4137 case SIOCSIFSLAVE:
4138 case SIOCADDMULTI:
4139 case SIOCDELMULTI:
4140 case SIOCSIFHWBROADCAST:
4141 case SIOCSIFTXQLEN:
4142 case SIOCSMIIREG:
4143 case SIOCBONDENSLAVE:
4144 case SIOCBONDRELEASE:
4145 case SIOCBONDSETHWADDR:
4146 case SIOCBONDCHANGEACTIVE:
4147 case SIOCBRADDIF:
4148 case SIOCBRDELIF:
4149 case SIOCSHWTSTAMP:
4150 if (!capable(CAP_NET_ADMIN))
4151 return -EPERM;
4152 /* fall through */
4153 case SIOCBONDSLAVEINFOQUERY:
4154 case SIOCBONDINFOQUERY:
4155 dev_load(net, ifr.ifr_name);
4156 rtnl_lock();
4157 ret = dev_ifsioc(net, &ifr, cmd);
4158 rtnl_unlock();
4159 return ret;
4160
4161 case SIOCGIFMEM:
4162 /* Get the per device memory space. We can add this but
4163 * currently do not support it */
4164 case SIOCSIFMEM:
4165 /* Set the per device memory buffer space.
4166 * Not applicable in our case */
4167 case SIOCSIFLINK:
4168 return -EINVAL;
4169
4170 /*
4171 * Unknown or private ioctl.
4172 */
4173 default:
4174 if (cmd == SIOCWANDEV ||
4175 (cmd >= SIOCDEVPRIVATE &&
4176 cmd <= SIOCDEVPRIVATE + 15)) {
4177 dev_load(net, ifr.ifr_name);
4178 rtnl_lock();
4179 ret = dev_ifsioc(net, &ifr, cmd);
4180 rtnl_unlock();
4181 if (!ret && copy_to_user(arg, &ifr,
4182 sizeof(struct ifreq)))
4183 ret = -EFAULT;
4184 return ret;
4185 }
4186 /* Take care of Wireless Extensions */
4187 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4188 return wext_handle_ioctl(net, &ifr, cmd, arg);
4189 return -EINVAL;
4190 }
4191 }
4192
4193
4194 /**
4195 * dev_new_index - allocate an ifindex
4196 * @net: the applicable net namespace
4197 *
4198 * Returns a suitable unique value for a new device interface
4199 * number. The caller must hold the rtnl semaphore or the
4200 * dev_base_lock to be sure it remains unique.
4201 */
4202 static int dev_new_index(struct net *net)
4203 {
4204 static int ifindex;
4205 for (;;) {
4206 if (++ifindex <= 0)
4207 ifindex = 1;
4208 if (!__dev_get_by_index(net, ifindex))
4209 return ifindex;
4210 }
4211 }
4212
4213 /* Delayed registration/unregisteration */
4214 static LIST_HEAD(net_todo_list);
4215
4216 static void net_set_todo(struct net_device *dev)
4217 {
4218 list_add_tail(&dev->todo_list, &net_todo_list);
4219 }
4220
4221 static void rollback_registered(struct net_device *dev)
4222 {
4223 BUG_ON(dev_boot_phase);
4224 ASSERT_RTNL();
4225
4226 /* Some devices call without registering for initialization unwind. */
4227 if (dev->reg_state == NETREG_UNINITIALIZED) {
4228 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4229 "was registered\n", dev->name, dev);
4230
4231 WARN_ON(1);
4232 return;
4233 }
4234
4235 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4236
4237 /* If device is running, close it first. */
4238 dev_close(dev);
4239
4240 /* And unlink it from device chain. */
4241 unlist_netdevice(dev);
4242
4243 dev->reg_state = NETREG_UNREGISTERING;
4244
4245 synchronize_net();
4246
4247 /* Shutdown queueing discipline. */
4248 dev_shutdown(dev);
4249
4250
4251 /* Notify protocols, that we are about to destroy
4252 this device. They should clean all the things.
4253 */
4254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4255
4256 /*
4257 * Flush the unicast and multicast chains
4258 */
4259 dev_addr_discard(dev);
4260
4261 if (dev->netdev_ops->ndo_uninit)
4262 dev->netdev_ops->ndo_uninit(dev);
4263
4264 /* Notifier chain MUST detach us from master device. */
4265 WARN_ON(dev->master);
4266
4267 /* Remove entries from kobject tree */
4268 netdev_unregister_kobject(dev);
4269
4270 synchronize_net();
4271
4272 dev_put(dev);
4273 }
4274
4275 static void __netdev_init_queue_locks_one(struct net_device *dev,
4276 struct netdev_queue *dev_queue,
4277 void *_unused)
4278 {
4279 spin_lock_init(&dev_queue->_xmit_lock);
4280 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4281 dev_queue->xmit_lock_owner = -1;
4282 }
4283
4284 static void netdev_init_queue_locks(struct net_device *dev)
4285 {
4286 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4287 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4288 }
4289
4290 unsigned long netdev_fix_features(unsigned long features, const char *name)
4291 {
4292 /* Fix illegal SG+CSUM combinations. */
4293 if ((features & NETIF_F_SG) &&
4294 !(features & NETIF_F_ALL_CSUM)) {
4295 if (name)
4296 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4297 "checksum feature.\n", name);
4298 features &= ~NETIF_F_SG;
4299 }
4300
4301 /* TSO requires that SG is present as well. */
4302 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4303 if (name)
4304 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4305 "SG feature.\n", name);
4306 features &= ~NETIF_F_TSO;
4307 }
4308
4309 if (features & NETIF_F_UFO) {
4310 if (!(features & NETIF_F_GEN_CSUM)) {
4311 if (name)
4312 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4313 "since no NETIF_F_HW_CSUM feature.\n",
4314 name);
4315 features &= ~NETIF_F_UFO;
4316 }
4317
4318 if (!(features & NETIF_F_SG)) {
4319 if (name)
4320 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4321 "since no NETIF_F_SG feature.\n", name);
4322 features &= ~NETIF_F_UFO;
4323 }
4324 }
4325
4326 return features;
4327 }
4328 EXPORT_SYMBOL(netdev_fix_features);
4329
4330 /* Some devices need to (re-)set their netdev_ops inside
4331 * ->init() or similar. If that happens, we have to setup
4332 * the compat pointers again.
4333 */
4334 void netdev_resync_ops(struct net_device *dev)
4335 {
4336 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4337 const struct net_device_ops *ops = dev->netdev_ops;
4338
4339 dev->init = ops->ndo_init;
4340 dev->uninit = ops->ndo_uninit;
4341 dev->open = ops->ndo_open;
4342 dev->change_rx_flags = ops->ndo_change_rx_flags;
4343 dev->set_rx_mode = ops->ndo_set_rx_mode;
4344 dev->set_multicast_list = ops->ndo_set_multicast_list;
4345 dev->set_mac_address = ops->ndo_set_mac_address;
4346 dev->validate_addr = ops->ndo_validate_addr;
4347 dev->do_ioctl = ops->ndo_do_ioctl;
4348 dev->set_config = ops->ndo_set_config;
4349 dev->change_mtu = ops->ndo_change_mtu;
4350 dev->neigh_setup = ops->ndo_neigh_setup;
4351 dev->tx_timeout = ops->ndo_tx_timeout;
4352 dev->get_stats = ops->ndo_get_stats;
4353 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4354 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4355 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4356 #ifdef CONFIG_NET_POLL_CONTROLLER
4357 dev->poll_controller = ops->ndo_poll_controller;
4358 #endif
4359 #endif
4360 }
4361 EXPORT_SYMBOL(netdev_resync_ops);
4362
4363 /**
4364 * register_netdevice - register a network device
4365 * @dev: device to register
4366 *
4367 * Take a completed network device structure and add it to the kernel
4368 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4369 * chain. 0 is returned on success. A negative errno code is returned
4370 * on a failure to set up the device, or if the name is a duplicate.
4371 *
4372 * Callers must hold the rtnl semaphore. You may want
4373 * register_netdev() instead of this.
4374 *
4375 * BUGS:
4376 * The locking appears insufficient to guarantee two parallel registers
4377 * will not get the same name.
4378 */
4379
4380 int register_netdevice(struct net_device *dev)
4381 {
4382 struct hlist_head *head;
4383 struct hlist_node *p;
4384 int ret;
4385 struct net *net = dev_net(dev);
4386
4387 BUG_ON(dev_boot_phase);
4388 ASSERT_RTNL();
4389
4390 might_sleep();
4391
4392 /* When net_device's are persistent, this will be fatal. */
4393 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4394 BUG_ON(!net);
4395
4396 spin_lock_init(&dev->addr_list_lock);
4397 netdev_set_addr_lockdep_class(dev);
4398 netdev_init_queue_locks(dev);
4399
4400 dev->iflink = -1;
4401
4402 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4403 /* Netdevice_ops API compatiability support.
4404 * This is temporary until all network devices are converted.
4405 */
4406 if (dev->netdev_ops) {
4407 netdev_resync_ops(dev);
4408 } else {
4409 char drivername[64];
4410 pr_info("%s (%s): not using net_device_ops yet\n",
4411 dev->name, netdev_drivername(dev, drivername, 64));
4412
4413 /* This works only because net_device_ops and the
4414 compatiablity structure are the same. */
4415 dev->netdev_ops = (void *) &(dev->init);
4416 }
4417 #endif
4418
4419 /* Init, if this function is available */
4420 if (dev->netdev_ops->ndo_init) {
4421 ret = dev->netdev_ops->ndo_init(dev);
4422 if (ret) {
4423 if (ret > 0)
4424 ret = -EIO;
4425 goto out;
4426 }
4427 }
4428
4429 if (!dev_valid_name(dev->name)) {
4430 ret = -EINVAL;
4431 goto err_uninit;
4432 }
4433
4434 dev->ifindex = dev_new_index(net);
4435 if (dev->iflink == -1)
4436 dev->iflink = dev->ifindex;
4437
4438 /* Check for existence of name */
4439 head = dev_name_hash(net, dev->name);
4440 hlist_for_each(p, head) {
4441 struct net_device *d
4442 = hlist_entry(p, struct net_device, name_hlist);
4443 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4444 ret = -EEXIST;
4445 goto err_uninit;
4446 }
4447 }
4448
4449 /* Fix illegal checksum combinations */
4450 if ((dev->features & NETIF_F_HW_CSUM) &&
4451 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4452 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4453 dev->name);
4454 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4455 }
4456
4457 if ((dev->features & NETIF_F_NO_CSUM) &&
4458 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4459 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4460 dev->name);
4461 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4462 }
4463
4464 dev->features = netdev_fix_features(dev->features, dev->name);
4465
4466 /* Enable software GSO if SG is supported. */
4467 if (dev->features & NETIF_F_SG)
4468 dev->features |= NETIF_F_GSO;
4469
4470 netdev_initialize_kobject(dev);
4471 ret = netdev_register_kobject(dev);
4472 if (ret)
4473 goto err_uninit;
4474 dev->reg_state = NETREG_REGISTERED;
4475
4476 /*
4477 * Default initial state at registry is that the
4478 * device is present.
4479 */
4480
4481 set_bit(__LINK_STATE_PRESENT, &dev->state);
4482
4483 dev_init_scheduler(dev);
4484 dev_hold(dev);
4485 list_netdevice(dev);
4486
4487 /* Notify protocols, that a new device appeared. */
4488 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4489 ret = notifier_to_errno(ret);
4490 if (ret) {
4491 rollback_registered(dev);
4492 dev->reg_state = NETREG_UNREGISTERED;
4493 }
4494
4495 out:
4496 return ret;
4497
4498 err_uninit:
4499 if (dev->netdev_ops->ndo_uninit)
4500 dev->netdev_ops->ndo_uninit(dev);
4501 goto out;
4502 }
4503
4504 /**
4505 * init_dummy_netdev - init a dummy network device for NAPI
4506 * @dev: device to init
4507 *
4508 * This takes a network device structure and initialize the minimum
4509 * amount of fields so it can be used to schedule NAPI polls without
4510 * registering a full blown interface. This is to be used by drivers
4511 * that need to tie several hardware interfaces to a single NAPI
4512 * poll scheduler due to HW limitations.
4513 */
4514 int init_dummy_netdev(struct net_device *dev)
4515 {
4516 /* Clear everything. Note we don't initialize spinlocks
4517 * are they aren't supposed to be taken by any of the
4518 * NAPI code and this dummy netdev is supposed to be
4519 * only ever used for NAPI polls
4520 */
4521 memset(dev, 0, sizeof(struct net_device));
4522
4523 /* make sure we BUG if trying to hit standard
4524 * register/unregister code path
4525 */
4526 dev->reg_state = NETREG_DUMMY;
4527
4528 /* initialize the ref count */
4529 atomic_set(&dev->refcnt, 1);
4530
4531 /* NAPI wants this */
4532 INIT_LIST_HEAD(&dev->napi_list);
4533
4534 /* a dummy interface is started by default */
4535 set_bit(__LINK_STATE_PRESENT, &dev->state);
4536 set_bit(__LINK_STATE_START, &dev->state);
4537
4538 return 0;
4539 }
4540 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4541
4542
4543 /**
4544 * register_netdev - register a network device
4545 * @dev: device to register
4546 *
4547 * Take a completed network device structure and add it to the kernel
4548 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4549 * chain. 0 is returned on success. A negative errno code is returned
4550 * on a failure to set up the device, or if the name is a duplicate.
4551 *
4552 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4553 * and expands the device name if you passed a format string to
4554 * alloc_netdev.
4555 */
4556 int register_netdev(struct net_device *dev)
4557 {
4558 int err;
4559
4560 rtnl_lock();
4561
4562 /*
4563 * If the name is a format string the caller wants us to do a
4564 * name allocation.
4565 */
4566 if (strchr(dev->name, '%')) {
4567 err = dev_alloc_name(dev, dev->name);
4568 if (err < 0)
4569 goto out;
4570 }
4571
4572 err = register_netdevice(dev);
4573 out:
4574 rtnl_unlock();
4575 return err;
4576 }
4577 EXPORT_SYMBOL(register_netdev);
4578
4579 /*
4580 * netdev_wait_allrefs - wait until all references are gone.
4581 *
4582 * This is called when unregistering network devices.
4583 *
4584 * Any protocol or device that holds a reference should register
4585 * for netdevice notification, and cleanup and put back the
4586 * reference if they receive an UNREGISTER event.
4587 * We can get stuck here if buggy protocols don't correctly
4588 * call dev_put.
4589 */
4590 static void netdev_wait_allrefs(struct net_device *dev)
4591 {
4592 unsigned long rebroadcast_time, warning_time;
4593
4594 rebroadcast_time = warning_time = jiffies;
4595 while (atomic_read(&dev->refcnt) != 0) {
4596 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4597 rtnl_lock();
4598
4599 /* Rebroadcast unregister notification */
4600 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4601
4602 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4603 &dev->state)) {
4604 /* We must not have linkwatch events
4605 * pending on unregister. If this
4606 * happens, we simply run the queue
4607 * unscheduled, resulting in a noop
4608 * for this device.
4609 */
4610 linkwatch_run_queue();
4611 }
4612
4613 __rtnl_unlock();
4614
4615 rebroadcast_time = jiffies;
4616 }
4617
4618 msleep(250);
4619
4620 if (time_after(jiffies, warning_time + 10 * HZ)) {
4621 printk(KERN_EMERG "unregister_netdevice: "
4622 "waiting for %s to become free. Usage "
4623 "count = %d\n",
4624 dev->name, atomic_read(&dev->refcnt));
4625 warning_time = jiffies;
4626 }
4627 }
4628 }
4629
4630 /* The sequence is:
4631 *
4632 * rtnl_lock();
4633 * ...
4634 * register_netdevice(x1);
4635 * register_netdevice(x2);
4636 * ...
4637 * unregister_netdevice(y1);
4638 * unregister_netdevice(y2);
4639 * ...
4640 * rtnl_unlock();
4641 * free_netdev(y1);
4642 * free_netdev(y2);
4643 *
4644 * We are invoked by rtnl_unlock().
4645 * This allows us to deal with problems:
4646 * 1) We can delete sysfs objects which invoke hotplug
4647 * without deadlocking with linkwatch via keventd.
4648 * 2) Since we run with the RTNL semaphore not held, we can sleep
4649 * safely in order to wait for the netdev refcnt to drop to zero.
4650 *
4651 * We must not return until all unregister events added during
4652 * the interval the lock was held have been completed.
4653 */
4654 void netdev_run_todo(void)
4655 {
4656 struct list_head list;
4657
4658 /* Snapshot list, allow later requests */
4659 list_replace_init(&net_todo_list, &list);
4660
4661 __rtnl_unlock();
4662
4663 while (!list_empty(&list)) {
4664 struct net_device *dev
4665 = list_entry(list.next, struct net_device, todo_list);
4666 list_del(&dev->todo_list);
4667
4668 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4669 printk(KERN_ERR "network todo '%s' but state %d\n",
4670 dev->name, dev->reg_state);
4671 dump_stack();
4672 continue;
4673 }
4674
4675 dev->reg_state = NETREG_UNREGISTERED;
4676
4677 on_each_cpu(flush_backlog, dev, 1);
4678
4679 netdev_wait_allrefs(dev);
4680
4681 /* paranoia */
4682 BUG_ON(atomic_read(&dev->refcnt));
4683 WARN_ON(dev->ip_ptr);
4684 WARN_ON(dev->ip6_ptr);
4685 WARN_ON(dev->dn_ptr);
4686
4687 if (dev->destructor)
4688 dev->destructor(dev);
4689
4690 /* Free network device */
4691 kobject_put(&dev->dev.kobj);
4692 }
4693 }
4694
4695 /**
4696 * dev_get_stats - get network device statistics
4697 * @dev: device to get statistics from
4698 *
4699 * Get network statistics from device. The device driver may provide
4700 * its own method by setting dev->netdev_ops->get_stats; otherwise
4701 * the internal statistics structure is used.
4702 */
4703 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4704 {
4705 const struct net_device_ops *ops = dev->netdev_ops;
4706
4707 if (ops->ndo_get_stats)
4708 return ops->ndo_get_stats(dev);
4709 else
4710 return &dev->stats;
4711 }
4712 EXPORT_SYMBOL(dev_get_stats);
4713
4714 static void netdev_init_one_queue(struct net_device *dev,
4715 struct netdev_queue *queue,
4716 void *_unused)
4717 {
4718 queue->dev = dev;
4719 }
4720
4721 static void netdev_init_queues(struct net_device *dev)
4722 {
4723 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4724 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4725 spin_lock_init(&dev->tx_global_lock);
4726 }
4727
4728 /**
4729 * alloc_netdev_mq - allocate network device
4730 * @sizeof_priv: size of private data to allocate space for
4731 * @name: device name format string
4732 * @setup: callback to initialize device
4733 * @queue_count: the number of subqueues to allocate
4734 *
4735 * Allocates a struct net_device with private data area for driver use
4736 * and performs basic initialization. Also allocates subquue structs
4737 * for each queue on the device at the end of the netdevice.
4738 */
4739 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4740 void (*setup)(struct net_device *), unsigned int queue_count)
4741 {
4742 struct netdev_queue *tx;
4743 struct net_device *dev;
4744 size_t alloc_size;
4745 void *p;
4746
4747 BUG_ON(strlen(name) >= sizeof(dev->name));
4748
4749 alloc_size = sizeof(struct net_device);
4750 if (sizeof_priv) {
4751 /* ensure 32-byte alignment of private area */
4752 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4753 alloc_size += sizeof_priv;
4754 }
4755 /* ensure 32-byte alignment of whole construct */
4756 alloc_size += NETDEV_ALIGN_CONST;
4757
4758 p = kzalloc(alloc_size, GFP_KERNEL);
4759 if (!p) {
4760 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4761 return NULL;
4762 }
4763
4764 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4765 if (!tx) {
4766 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4767 "tx qdiscs.\n");
4768 kfree(p);
4769 return NULL;
4770 }
4771
4772 dev = (struct net_device *)
4773 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4774 dev->padded = (char *)dev - (char *)p;
4775 dev_net_set(dev, &init_net);
4776
4777 dev->_tx = tx;
4778 dev->num_tx_queues = queue_count;
4779 dev->real_num_tx_queues = queue_count;
4780
4781 dev->gso_max_size = GSO_MAX_SIZE;
4782
4783 netdev_init_queues(dev);
4784
4785 INIT_LIST_HEAD(&dev->napi_list);
4786 setup(dev);
4787 strcpy(dev->name, name);
4788 return dev;
4789 }
4790 EXPORT_SYMBOL(alloc_netdev_mq);
4791
4792 /**
4793 * free_netdev - free network device
4794 * @dev: device
4795 *
4796 * This function does the last stage of destroying an allocated device
4797 * interface. The reference to the device object is released.
4798 * If this is the last reference then it will be freed.
4799 */
4800 void free_netdev(struct net_device *dev)
4801 {
4802 struct napi_struct *p, *n;
4803
4804 release_net(dev_net(dev));
4805
4806 kfree(dev->_tx);
4807
4808 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4809 netif_napi_del(p);
4810
4811 /* Compatibility with error handling in drivers */
4812 if (dev->reg_state == NETREG_UNINITIALIZED) {
4813 kfree((char *)dev - dev->padded);
4814 return;
4815 }
4816
4817 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4818 dev->reg_state = NETREG_RELEASED;
4819
4820 /* will free via device release */
4821 put_device(&dev->dev);
4822 }
4823
4824 /**
4825 * synchronize_net - Synchronize with packet receive processing
4826 *
4827 * Wait for packets currently being received to be done.
4828 * Does not block later packets from starting.
4829 */
4830 void synchronize_net(void)
4831 {
4832 might_sleep();
4833 synchronize_rcu();
4834 }
4835
4836 /**
4837 * unregister_netdevice - remove device from the kernel
4838 * @dev: device
4839 *
4840 * This function shuts down a device interface and removes it
4841 * from the kernel tables.
4842 *
4843 * Callers must hold the rtnl semaphore. You may want
4844 * unregister_netdev() instead of this.
4845 */
4846
4847 void unregister_netdevice(struct net_device *dev)
4848 {
4849 ASSERT_RTNL();
4850
4851 rollback_registered(dev);
4852 /* Finish processing unregister after unlock */
4853 net_set_todo(dev);
4854 }
4855
4856 /**
4857 * unregister_netdev - remove device from the kernel
4858 * @dev: device
4859 *
4860 * This function shuts down a device interface and removes it
4861 * from the kernel tables.
4862 *
4863 * This is just a wrapper for unregister_netdevice that takes
4864 * the rtnl semaphore. In general you want to use this and not
4865 * unregister_netdevice.
4866 */
4867 void unregister_netdev(struct net_device *dev)
4868 {
4869 rtnl_lock();
4870 unregister_netdevice(dev);
4871 rtnl_unlock();
4872 }
4873
4874 EXPORT_SYMBOL(unregister_netdev);
4875
4876 /**
4877 * dev_change_net_namespace - move device to different nethost namespace
4878 * @dev: device
4879 * @net: network namespace
4880 * @pat: If not NULL name pattern to try if the current device name
4881 * is already taken in the destination network namespace.
4882 *
4883 * This function shuts down a device interface and moves it
4884 * to a new network namespace. On success 0 is returned, on
4885 * a failure a netagive errno code is returned.
4886 *
4887 * Callers must hold the rtnl semaphore.
4888 */
4889
4890 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4891 {
4892 char buf[IFNAMSIZ];
4893 const char *destname;
4894 int err;
4895
4896 ASSERT_RTNL();
4897
4898 /* Don't allow namespace local devices to be moved. */
4899 err = -EINVAL;
4900 if (dev->features & NETIF_F_NETNS_LOCAL)
4901 goto out;
4902
4903 #ifdef CONFIG_SYSFS
4904 /* Don't allow real devices to be moved when sysfs
4905 * is enabled.
4906 */
4907 err = -EINVAL;
4908 if (dev->dev.parent)
4909 goto out;
4910 #endif
4911
4912 /* Ensure the device has been registrered */
4913 err = -EINVAL;
4914 if (dev->reg_state != NETREG_REGISTERED)
4915 goto out;
4916
4917 /* Get out if there is nothing todo */
4918 err = 0;
4919 if (net_eq(dev_net(dev), net))
4920 goto out;
4921
4922 /* Pick the destination device name, and ensure
4923 * we can use it in the destination network namespace.
4924 */
4925 err = -EEXIST;
4926 destname = dev->name;
4927 if (__dev_get_by_name(net, destname)) {
4928 /* We get here if we can't use the current device name */
4929 if (!pat)
4930 goto out;
4931 if (!dev_valid_name(pat))
4932 goto out;
4933 if (strchr(pat, '%')) {
4934 if (__dev_alloc_name(net, pat, buf) < 0)
4935 goto out;
4936 destname = buf;
4937 } else
4938 destname = pat;
4939 if (__dev_get_by_name(net, destname))
4940 goto out;
4941 }
4942
4943 /*
4944 * And now a mini version of register_netdevice unregister_netdevice.
4945 */
4946
4947 /* If device is running close it first. */
4948 dev_close(dev);
4949
4950 /* And unlink it from device chain */
4951 err = -ENODEV;
4952 unlist_netdevice(dev);
4953
4954 synchronize_net();
4955
4956 /* Shutdown queueing discipline. */
4957 dev_shutdown(dev);
4958
4959 /* Notify protocols, that we are about to destroy
4960 this device. They should clean all the things.
4961 */
4962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4963
4964 /*
4965 * Flush the unicast and multicast chains
4966 */
4967 dev_addr_discard(dev);
4968
4969 netdev_unregister_kobject(dev);
4970
4971 /* Actually switch the network namespace */
4972 dev_net_set(dev, net);
4973
4974 /* Assign the new device name */
4975 if (destname != dev->name)
4976 strcpy(dev->name, destname);
4977
4978 /* If there is an ifindex conflict assign a new one */
4979 if (__dev_get_by_index(net, dev->ifindex)) {
4980 int iflink = (dev->iflink == dev->ifindex);
4981 dev->ifindex = dev_new_index(net);
4982 if (iflink)
4983 dev->iflink = dev->ifindex;
4984 }
4985
4986 /* Fixup kobjects */
4987 err = netdev_register_kobject(dev);
4988 WARN_ON(err);
4989
4990 /* Add the device back in the hashes */
4991 list_netdevice(dev);
4992
4993 /* Notify protocols, that a new device appeared. */
4994 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4995
4996 synchronize_net();
4997 err = 0;
4998 out:
4999 return err;
5000 }
5001
5002 static int dev_cpu_callback(struct notifier_block *nfb,
5003 unsigned long action,
5004 void *ocpu)
5005 {
5006 struct sk_buff **list_skb;
5007 struct Qdisc **list_net;
5008 struct sk_buff *skb;
5009 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5010 struct softnet_data *sd, *oldsd;
5011
5012 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5013 return NOTIFY_OK;
5014
5015 local_irq_disable();
5016 cpu = smp_processor_id();
5017 sd = &per_cpu(softnet_data, cpu);
5018 oldsd = &per_cpu(softnet_data, oldcpu);
5019
5020 /* Find end of our completion_queue. */
5021 list_skb = &sd->completion_queue;
5022 while (*list_skb)
5023 list_skb = &(*list_skb)->next;
5024 /* Append completion queue from offline CPU. */
5025 *list_skb = oldsd->completion_queue;
5026 oldsd->completion_queue = NULL;
5027
5028 /* Find end of our output_queue. */
5029 list_net = &sd->output_queue;
5030 while (*list_net)
5031 list_net = &(*list_net)->next_sched;
5032 /* Append output queue from offline CPU. */
5033 *list_net = oldsd->output_queue;
5034 oldsd->output_queue = NULL;
5035
5036 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5037 local_irq_enable();
5038
5039 /* Process offline CPU's input_pkt_queue */
5040 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5041 netif_rx(skb);
5042
5043 return NOTIFY_OK;
5044 }
5045
5046
5047 /**
5048 * netdev_increment_features - increment feature set by one
5049 * @all: current feature set
5050 * @one: new feature set
5051 * @mask: mask feature set
5052 *
5053 * Computes a new feature set after adding a device with feature set
5054 * @one to the master device with current feature set @all. Will not
5055 * enable anything that is off in @mask. Returns the new feature set.
5056 */
5057 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5058 unsigned long mask)
5059 {
5060 /* If device needs checksumming, downgrade to it. */
5061 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5062 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5063 else if (mask & NETIF_F_ALL_CSUM) {
5064 /* If one device supports v4/v6 checksumming, set for all. */
5065 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5066 !(all & NETIF_F_GEN_CSUM)) {
5067 all &= ~NETIF_F_ALL_CSUM;
5068 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5069 }
5070
5071 /* If one device supports hw checksumming, set for all. */
5072 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5073 all &= ~NETIF_F_ALL_CSUM;
5074 all |= NETIF_F_HW_CSUM;
5075 }
5076 }
5077
5078 one |= NETIF_F_ALL_CSUM;
5079
5080 one |= all & NETIF_F_ONE_FOR_ALL;
5081 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5082 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5083
5084 return all;
5085 }
5086 EXPORT_SYMBOL(netdev_increment_features);
5087
5088 static struct hlist_head *netdev_create_hash(void)
5089 {
5090 int i;
5091 struct hlist_head *hash;
5092
5093 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5094 if (hash != NULL)
5095 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5096 INIT_HLIST_HEAD(&hash[i]);
5097
5098 return hash;
5099 }
5100
5101 /* Initialize per network namespace state */
5102 static int __net_init netdev_init(struct net *net)
5103 {
5104 INIT_LIST_HEAD(&net->dev_base_head);
5105
5106 net->dev_name_head = netdev_create_hash();
5107 if (net->dev_name_head == NULL)
5108 goto err_name;
5109
5110 net->dev_index_head = netdev_create_hash();
5111 if (net->dev_index_head == NULL)
5112 goto err_idx;
5113
5114 return 0;
5115
5116 err_idx:
5117 kfree(net->dev_name_head);
5118 err_name:
5119 return -ENOMEM;
5120 }
5121
5122 /**
5123 * netdev_drivername - network driver for the device
5124 * @dev: network device
5125 * @buffer: buffer for resulting name
5126 * @len: size of buffer
5127 *
5128 * Determine network driver for device.
5129 */
5130 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5131 {
5132 const struct device_driver *driver;
5133 const struct device *parent;
5134
5135 if (len <= 0 || !buffer)
5136 return buffer;
5137 buffer[0] = 0;
5138
5139 parent = dev->dev.parent;
5140
5141 if (!parent)
5142 return buffer;
5143
5144 driver = parent->driver;
5145 if (driver && driver->name)
5146 strlcpy(buffer, driver->name, len);
5147 return buffer;
5148 }
5149
5150 static void __net_exit netdev_exit(struct net *net)
5151 {
5152 kfree(net->dev_name_head);
5153 kfree(net->dev_index_head);
5154 }
5155
5156 static struct pernet_operations __net_initdata netdev_net_ops = {
5157 .init = netdev_init,
5158 .exit = netdev_exit,
5159 };
5160
5161 static void __net_exit default_device_exit(struct net *net)
5162 {
5163 struct net_device *dev;
5164 /*
5165 * Push all migratable of the network devices back to the
5166 * initial network namespace
5167 */
5168 rtnl_lock();
5169 restart:
5170 for_each_netdev(net, dev) {
5171 int err;
5172 char fb_name[IFNAMSIZ];
5173
5174 /* Ignore unmoveable devices (i.e. loopback) */
5175 if (dev->features & NETIF_F_NETNS_LOCAL)
5176 continue;
5177
5178 /* Delete virtual devices */
5179 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5180 dev->rtnl_link_ops->dellink(dev);
5181 goto restart;
5182 }
5183
5184 /* Push remaing network devices to init_net */
5185 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5186 err = dev_change_net_namespace(dev, &init_net, fb_name);
5187 if (err) {
5188 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5189 __func__, dev->name, err);
5190 BUG();
5191 }
5192 goto restart;
5193 }
5194 rtnl_unlock();
5195 }
5196
5197 static struct pernet_operations __net_initdata default_device_ops = {
5198 .exit = default_device_exit,
5199 };
5200
5201 /*
5202 * Initialize the DEV module. At boot time this walks the device list and
5203 * unhooks any devices that fail to initialise (normally hardware not
5204 * present) and leaves us with a valid list of present and active devices.
5205 *
5206 */
5207
5208 /*
5209 * This is called single threaded during boot, so no need
5210 * to take the rtnl semaphore.
5211 */
5212 static int __init net_dev_init(void)
5213 {
5214 int i, rc = -ENOMEM;
5215
5216 BUG_ON(!dev_boot_phase);
5217
5218 if (dev_proc_init())
5219 goto out;
5220
5221 if (netdev_kobject_init())
5222 goto out;
5223
5224 INIT_LIST_HEAD(&ptype_all);
5225 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5226 INIT_LIST_HEAD(&ptype_base[i]);
5227
5228 if (register_pernet_subsys(&netdev_net_ops))
5229 goto out;
5230
5231 /*
5232 * Initialise the packet receive queues.
5233 */
5234
5235 for_each_possible_cpu(i) {
5236 struct softnet_data *queue;
5237
5238 queue = &per_cpu(softnet_data, i);
5239 skb_queue_head_init(&queue->input_pkt_queue);
5240 queue->completion_queue = NULL;
5241 INIT_LIST_HEAD(&queue->poll_list);
5242
5243 queue->backlog.poll = process_backlog;
5244 queue->backlog.weight = weight_p;
5245 queue->backlog.gro_list = NULL;
5246 queue->backlog.gro_count = 0;
5247 }
5248
5249 dev_boot_phase = 0;
5250
5251 /* The loopback device is special if any other network devices
5252 * is present in a network namespace the loopback device must
5253 * be present. Since we now dynamically allocate and free the
5254 * loopback device ensure this invariant is maintained by
5255 * keeping the loopback device as the first device on the
5256 * list of network devices. Ensuring the loopback devices
5257 * is the first device that appears and the last network device
5258 * that disappears.
5259 */
5260 if (register_pernet_device(&loopback_net_ops))
5261 goto out;
5262
5263 if (register_pernet_device(&default_device_ops))
5264 goto out;
5265
5266 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5267 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5268
5269 hotcpu_notifier(dev_cpu_callback, 0);
5270 dst_init();
5271 dev_mcast_init();
5272 rc = 0;
5273 out:
5274 return rc;
5275 }
5276
5277 subsys_initcall(net_dev_init);
5278
5279 static int __init initialize_hashrnd(void)
5280 {
5281 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5282 return 0;
5283 }
5284
5285 late_initcall_sync(initialize_hashrnd);
5286
5287 EXPORT_SYMBOL(__dev_get_by_index);
5288 EXPORT_SYMBOL(__dev_get_by_name);
5289 EXPORT_SYMBOL(__dev_remove_pack);
5290 EXPORT_SYMBOL(dev_valid_name);
5291 EXPORT_SYMBOL(dev_add_pack);
5292 EXPORT_SYMBOL(dev_alloc_name);
5293 EXPORT_SYMBOL(dev_close);
5294 EXPORT_SYMBOL(dev_get_by_flags);
5295 EXPORT_SYMBOL(dev_get_by_index);
5296 EXPORT_SYMBOL(dev_get_by_name);
5297 EXPORT_SYMBOL(dev_open);
5298 EXPORT_SYMBOL(dev_queue_xmit);
5299 EXPORT_SYMBOL(dev_remove_pack);
5300 EXPORT_SYMBOL(dev_set_allmulti);
5301 EXPORT_SYMBOL(dev_set_promiscuity);
5302 EXPORT_SYMBOL(dev_change_flags);
5303 EXPORT_SYMBOL(dev_set_mtu);
5304 EXPORT_SYMBOL(dev_set_mac_address);
5305 EXPORT_SYMBOL(free_netdev);
5306 EXPORT_SYMBOL(netdev_boot_setup_check);
5307 EXPORT_SYMBOL(netdev_set_master);
5308 EXPORT_SYMBOL(netdev_state_change);
5309 EXPORT_SYMBOL(netif_receive_skb);
5310 EXPORT_SYMBOL(netif_rx);
5311 EXPORT_SYMBOL(register_gifconf);
5312 EXPORT_SYMBOL(register_netdevice);
5313 EXPORT_SYMBOL(register_netdevice_notifier);
5314 EXPORT_SYMBOL(skb_checksum_help);
5315 EXPORT_SYMBOL(synchronize_net);
5316 EXPORT_SYMBOL(unregister_netdevice);
5317 EXPORT_SYMBOL(unregister_netdevice_notifier);
5318 EXPORT_SYMBOL(net_enable_timestamp);
5319 EXPORT_SYMBOL(net_disable_timestamp);
5320 EXPORT_SYMBOL(dev_get_flags);
5321
5322 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5323 EXPORT_SYMBOL(br_handle_frame_hook);
5324 EXPORT_SYMBOL(br_fdb_get_hook);
5325 EXPORT_SYMBOL(br_fdb_put_hook);
5326 #endif
5327
5328 EXPORT_SYMBOL(dev_load);
5329
5330 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.268236 seconds and 6 git commands to generate.