Merge branch 'for-linus-3.6' of git://dev.laptop.org/users/dilinger/linux-olpc
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1062
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1067 }
1068 return 0;
1069 }
1070
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1074
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1077 }
1078
1079
1080 /**
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed features.
1085 */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091
1092 /**
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1095 *
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1099 */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114
1115 /**
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1119 *
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1123 */
1124
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 struct net_device *dev;
1128 int no_module;
1129
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1133
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 name);
1141 }
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 const struct net_device_ops *ops = dev->netdev_ops;
1148 int ret;
1149
1150 ASSERT_RTNL();
1151
1152 if (!netif_device_present(dev))
1153 return -ENODEV;
1154
1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 ret = notifier_to_errno(ret);
1157 if (ret)
1158 return ret;
1159
1160 set_bit(__LINK_STATE_START, &dev->state);
1161
1162 if (ops->ndo_validate_addr)
1163 ret = ops->ndo_validate_addr(dev);
1164
1165 if (!ret && ops->ndo_open)
1166 ret = ops->ndo_open(dev);
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 dev->flags |= IFF_UP;
1172 net_dmaengine_get();
1173 dev_set_rx_mode(dev);
1174 dev_activate(dev);
1175 add_device_randomness(dev->dev_addr, dev->addr_len);
1176 }
1177
1178 return ret;
1179 }
1180
1181 /**
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1184 *
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1189 *
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1192 */
1193 int dev_open(struct net_device *dev)
1194 {
1195 int ret;
1196
1197 if (dev->flags & IFF_UP)
1198 return 0;
1199
1200 ret = __dev_open(dev);
1201 if (ret < 0)
1202 return ret;
1203
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207 return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 struct net_device *dev;
1214
1215 ASSERT_RTNL();
1216 might_sleep();
1217
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221 clear_bit(__LINK_STATE_START, &dev->state);
1222
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1225 *
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1228 */
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 }
1231
1232 dev_deactivate_many(head);
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 /*
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1240 *
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1243 */
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1246
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 int retval;
1257 LIST_HEAD(single);
1258
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1261 list_del(&single);
1262 return retval;
1263 }
1264
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1269
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1273
1274 __dev_close_many(head);
1275
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 }
1280
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1283 return 0;
1284 }
1285
1286 /**
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1289 *
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 * chain.
1294 */
1295 int dev_close(struct net_device *dev)
1296 {
1297 if (dev->flags & IFF_UP) {
1298 LIST_HEAD(single);
1299
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1302 list_del(&single);
1303 }
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307
1308
1309 /**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 /*
1320 * If we're trying to disable lro on a vlan device
1321 * use the underlying physical device instead
1322 */
1323 if (is_vlan_dev(dev))
1324 dev = vlan_dev_real_dev(dev);
1325
1326 dev->wanted_features &= ~NETIF_F_LRO;
1327 netdev_update_features(dev);
1328
1329 if (unlikely(dev->features & NETIF_F_LRO))
1330 netdev_WARN(dev, "failed to disable LRO!\n");
1331 }
1332 EXPORT_SYMBOL(dev_disable_lro);
1333
1334
1335 static int dev_boot_phase = 1;
1336
1337 /**
1338 * register_netdevice_notifier - register a network notifier block
1339 * @nb: notifier
1340 *
1341 * Register a notifier to be called when network device events occur.
1342 * The notifier passed is linked into the kernel structures and must
1343 * not be reused until it has been unregistered. A negative errno code
1344 * is returned on a failure.
1345 *
1346 * When registered all registration and up events are replayed
1347 * to the new notifier to allow device to have a race free
1348 * view of the network device list.
1349 */
1350
1351 int register_netdevice_notifier(struct notifier_block *nb)
1352 {
1353 struct net_device *dev;
1354 struct net_device *last;
1355 struct net *net;
1356 int err;
1357
1358 rtnl_lock();
1359 err = raw_notifier_chain_register(&netdev_chain, nb);
1360 if (err)
1361 goto unlock;
1362 if (dev_boot_phase)
1363 goto unlock;
1364 for_each_net(net) {
1365 for_each_netdev(net, dev) {
1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 err = notifier_to_errno(err);
1368 if (err)
1369 goto rollback;
1370
1371 if (!(dev->flags & IFF_UP))
1372 continue;
1373
1374 nb->notifier_call(nb, NETDEV_UP, dev);
1375 }
1376 }
1377
1378 unlock:
1379 rtnl_unlock();
1380 return err;
1381
1382 rollback:
1383 last = dev;
1384 for_each_net(net) {
1385 for_each_netdev(net, dev) {
1386 if (dev == last)
1387 goto outroll;
1388
1389 if (dev->flags & IFF_UP) {
1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 }
1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 }
1396 }
1397
1398 outroll:
1399 raw_notifier_chain_unregister(&netdev_chain, nb);
1400 goto unlock;
1401 }
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1403
1404 /**
1405 * unregister_netdevice_notifier - unregister a network notifier block
1406 * @nb: notifier
1407 *
1408 * Unregister a notifier previously registered by
1409 * register_netdevice_notifier(). The notifier is unlinked into the
1410 * kernel structures and may then be reused. A negative errno code
1411 * is returned on a failure.
1412 *
1413 * After unregistering unregister and down device events are synthesized
1414 * for all devices on the device list to the removed notifier to remove
1415 * the need for special case cleanup code.
1416 */
1417
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 struct net_device *dev;
1421 struct net *net;
1422 int err;
1423
1424 rtnl_lock();
1425 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1426 if (err)
1427 goto unlock;
1428
1429 for_each_net(net) {
1430 for_each_netdev(net, dev) {
1431 if (dev->flags & IFF_UP) {
1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 nb->notifier_call(nb, NETDEV_DOWN, dev);
1434 }
1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1437 }
1438 }
1439 unlock:
1440 rtnl_unlock();
1441 return err;
1442 }
1443 EXPORT_SYMBOL(unregister_netdevice_notifier);
1444
1445 /**
1446 * call_netdevice_notifiers - call all network notifier blocks
1447 * @val: value passed unmodified to notifier function
1448 * @dev: net_device pointer passed unmodified to notifier function
1449 *
1450 * Call all network notifier blocks. Parameters and return value
1451 * are as for raw_notifier_call_chain().
1452 */
1453
1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1455 {
1456 ASSERT_RTNL();
1457 return raw_notifier_call_chain(&netdev_chain, val, dev);
1458 }
1459 EXPORT_SYMBOL(call_netdevice_notifiers);
1460
1461 static struct static_key netstamp_needed __read_mostly;
1462 #ifdef HAVE_JUMP_LABEL
1463 /* We are not allowed to call static_key_slow_dec() from irq context
1464 * If net_disable_timestamp() is called from irq context, defer the
1465 * static_key_slow_dec() calls.
1466 */
1467 static atomic_t netstamp_needed_deferred;
1468 #endif
1469
1470 void net_enable_timestamp(void)
1471 {
1472 #ifdef HAVE_JUMP_LABEL
1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1474
1475 if (deferred) {
1476 while (--deferred)
1477 static_key_slow_dec(&netstamp_needed);
1478 return;
1479 }
1480 #endif
1481 WARN_ON(in_interrupt());
1482 static_key_slow_inc(&netstamp_needed);
1483 }
1484 EXPORT_SYMBOL(net_enable_timestamp);
1485
1486 void net_disable_timestamp(void)
1487 {
1488 #ifdef HAVE_JUMP_LABEL
1489 if (in_interrupt()) {
1490 atomic_inc(&netstamp_needed_deferred);
1491 return;
1492 }
1493 #endif
1494 static_key_slow_dec(&netstamp_needed);
1495 }
1496 EXPORT_SYMBOL(net_disable_timestamp);
1497
1498 static inline void net_timestamp_set(struct sk_buff *skb)
1499 {
1500 skb->tstamp.tv64 = 0;
1501 if (static_key_false(&netstamp_needed))
1502 __net_timestamp(skb);
1503 }
1504
1505 #define net_timestamp_check(COND, SKB) \
1506 if (static_key_false(&netstamp_needed)) { \
1507 if ((COND) && !(SKB)->tstamp.tv64) \
1508 __net_timestamp(SKB); \
1509 } \
1510
1511 static int net_hwtstamp_validate(struct ifreq *ifr)
1512 {
1513 struct hwtstamp_config cfg;
1514 enum hwtstamp_tx_types tx_type;
1515 enum hwtstamp_rx_filters rx_filter;
1516 int tx_type_valid = 0;
1517 int rx_filter_valid = 0;
1518
1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1520 return -EFAULT;
1521
1522 if (cfg.flags) /* reserved for future extensions */
1523 return -EINVAL;
1524
1525 tx_type = cfg.tx_type;
1526 rx_filter = cfg.rx_filter;
1527
1528 switch (tx_type) {
1529 case HWTSTAMP_TX_OFF:
1530 case HWTSTAMP_TX_ON:
1531 case HWTSTAMP_TX_ONESTEP_SYNC:
1532 tx_type_valid = 1;
1533 break;
1534 }
1535
1536 switch (rx_filter) {
1537 case HWTSTAMP_FILTER_NONE:
1538 case HWTSTAMP_FILTER_ALL:
1539 case HWTSTAMP_FILTER_SOME:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1552 rx_filter_valid = 1;
1553 break;
1554 }
1555
1556 if (!tx_type_valid || !rx_filter_valid)
1557 return -ERANGE;
1558
1559 return 0;
1560 }
1561
1562 static inline bool is_skb_forwardable(struct net_device *dev,
1563 struct sk_buff *skb)
1564 {
1565 unsigned int len;
1566
1567 if (!(dev->flags & IFF_UP))
1568 return false;
1569
1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1571 if (skb->len <= len)
1572 return true;
1573
1574 /* if TSO is enabled, we don't care about the length as the packet
1575 * could be forwarded without being segmented before
1576 */
1577 if (skb_is_gso(skb))
1578 return true;
1579
1580 return false;
1581 }
1582
1583 /**
1584 * dev_forward_skb - loopback an skb to another netif
1585 *
1586 * @dev: destination network device
1587 * @skb: buffer to forward
1588 *
1589 * return values:
1590 * NET_RX_SUCCESS (no congestion)
1591 * NET_RX_DROP (packet was dropped, but freed)
1592 *
1593 * dev_forward_skb can be used for injecting an skb from the
1594 * start_xmit function of one device into the receive queue
1595 * of another device.
1596 *
1597 * The receiving device may be in another namespace, so
1598 * we have to clear all information in the skb that could
1599 * impact namespace isolation.
1600 */
1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1602 {
1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1605 atomic_long_inc(&dev->rx_dropped);
1606 kfree_skb(skb);
1607 return NET_RX_DROP;
1608 }
1609 }
1610
1611 skb_orphan(skb);
1612 nf_reset(skb);
1613
1614 if (unlikely(!is_skb_forwardable(dev, skb))) {
1615 atomic_long_inc(&dev->rx_dropped);
1616 kfree_skb(skb);
1617 return NET_RX_DROP;
1618 }
1619 skb->skb_iif = 0;
1620 skb->dev = dev;
1621 skb_dst_drop(skb);
1622 skb->tstamp.tv64 = 0;
1623 skb->pkt_type = PACKET_HOST;
1624 skb->protocol = eth_type_trans(skb, dev);
1625 skb->mark = 0;
1626 secpath_reset(skb);
1627 nf_reset(skb);
1628 return netif_rx(skb);
1629 }
1630 EXPORT_SYMBOL_GPL(dev_forward_skb);
1631
1632 static inline int deliver_skb(struct sk_buff *skb,
1633 struct packet_type *pt_prev,
1634 struct net_device *orig_dev)
1635 {
1636 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1637 return -ENOMEM;
1638 atomic_inc(&skb->users);
1639 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1640 }
1641
1642 /*
1643 * Support routine. Sends outgoing frames to any network
1644 * taps currently in use.
1645 */
1646
1647 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1648 {
1649 struct packet_type *ptype;
1650 struct sk_buff *skb2 = NULL;
1651 struct packet_type *pt_prev = NULL;
1652
1653 rcu_read_lock();
1654 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1655 /* Never send packets back to the socket
1656 * they originated from - MvS (miquels@drinkel.ow.org)
1657 */
1658 if ((ptype->dev == dev || !ptype->dev) &&
1659 (ptype->af_packet_priv == NULL ||
1660 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1661 if (pt_prev) {
1662 deliver_skb(skb2, pt_prev, skb->dev);
1663 pt_prev = ptype;
1664 continue;
1665 }
1666
1667 skb2 = skb_clone(skb, GFP_ATOMIC);
1668 if (!skb2)
1669 break;
1670
1671 net_timestamp_set(skb2);
1672
1673 /* skb->nh should be correctly
1674 set by sender, so that the second statement is
1675 just protection against buggy protocols.
1676 */
1677 skb_reset_mac_header(skb2);
1678
1679 if (skb_network_header(skb2) < skb2->data ||
1680 skb2->network_header > skb2->tail) {
1681 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1682 ntohs(skb2->protocol),
1683 dev->name);
1684 skb_reset_network_header(skb2);
1685 }
1686
1687 skb2->transport_header = skb2->network_header;
1688 skb2->pkt_type = PACKET_OUTGOING;
1689 pt_prev = ptype;
1690 }
1691 }
1692 if (pt_prev)
1693 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1694 rcu_read_unlock();
1695 }
1696
1697 /**
1698 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1699 * @dev: Network device
1700 * @txq: number of queues available
1701 *
1702 * If real_num_tx_queues is changed the tc mappings may no longer be
1703 * valid. To resolve this verify the tc mapping remains valid and if
1704 * not NULL the mapping. With no priorities mapping to this
1705 * offset/count pair it will no longer be used. In the worst case TC0
1706 * is invalid nothing can be done so disable priority mappings. If is
1707 * expected that drivers will fix this mapping if they can before
1708 * calling netif_set_real_num_tx_queues.
1709 */
1710 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1711 {
1712 int i;
1713 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1714
1715 /* If TC0 is invalidated disable TC mapping */
1716 if (tc->offset + tc->count > txq) {
1717 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1718 dev->num_tc = 0;
1719 return;
1720 }
1721
1722 /* Invalidated prio to tc mappings set to TC0 */
1723 for (i = 1; i < TC_BITMASK + 1; i++) {
1724 int q = netdev_get_prio_tc_map(dev, i);
1725
1726 tc = &dev->tc_to_txq[q];
1727 if (tc->offset + tc->count > txq) {
1728 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1729 i, q);
1730 netdev_set_prio_tc_map(dev, i, 0);
1731 }
1732 }
1733 }
1734
1735 /*
1736 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1737 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1738 */
1739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1740 {
1741 int rc;
1742
1743 if (txq < 1 || txq > dev->num_tx_queues)
1744 return -EINVAL;
1745
1746 if (dev->reg_state == NETREG_REGISTERED ||
1747 dev->reg_state == NETREG_UNREGISTERING) {
1748 ASSERT_RTNL();
1749
1750 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1751 txq);
1752 if (rc)
1753 return rc;
1754
1755 if (dev->num_tc)
1756 netif_setup_tc(dev, txq);
1757
1758 if (txq < dev->real_num_tx_queues)
1759 qdisc_reset_all_tx_gt(dev, txq);
1760 }
1761
1762 dev->real_num_tx_queues = txq;
1763 return 0;
1764 }
1765 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1766
1767 #ifdef CONFIG_RPS
1768 /**
1769 * netif_set_real_num_rx_queues - set actual number of RX queues used
1770 * @dev: Network device
1771 * @rxq: Actual number of RX queues
1772 *
1773 * This must be called either with the rtnl_lock held or before
1774 * registration of the net device. Returns 0 on success, or a
1775 * negative error code. If called before registration, it always
1776 * succeeds.
1777 */
1778 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1779 {
1780 int rc;
1781
1782 if (rxq < 1 || rxq > dev->num_rx_queues)
1783 return -EINVAL;
1784
1785 if (dev->reg_state == NETREG_REGISTERED) {
1786 ASSERT_RTNL();
1787
1788 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1789 rxq);
1790 if (rc)
1791 return rc;
1792 }
1793
1794 dev->real_num_rx_queues = rxq;
1795 return 0;
1796 }
1797 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1798 #endif
1799
1800 /**
1801 * netif_get_num_default_rss_queues - default number of RSS queues
1802 *
1803 * This routine should set an upper limit on the number of RSS queues
1804 * used by default by multiqueue devices.
1805 */
1806 int netif_get_num_default_rss_queues(void)
1807 {
1808 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1809 }
1810 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1811
1812 static inline void __netif_reschedule(struct Qdisc *q)
1813 {
1814 struct softnet_data *sd;
1815 unsigned long flags;
1816
1817 local_irq_save(flags);
1818 sd = &__get_cpu_var(softnet_data);
1819 q->next_sched = NULL;
1820 *sd->output_queue_tailp = q;
1821 sd->output_queue_tailp = &q->next_sched;
1822 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1823 local_irq_restore(flags);
1824 }
1825
1826 void __netif_schedule(struct Qdisc *q)
1827 {
1828 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1829 __netif_reschedule(q);
1830 }
1831 EXPORT_SYMBOL(__netif_schedule);
1832
1833 void dev_kfree_skb_irq(struct sk_buff *skb)
1834 {
1835 if (atomic_dec_and_test(&skb->users)) {
1836 struct softnet_data *sd;
1837 unsigned long flags;
1838
1839 local_irq_save(flags);
1840 sd = &__get_cpu_var(softnet_data);
1841 skb->next = sd->completion_queue;
1842 sd->completion_queue = skb;
1843 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1844 local_irq_restore(flags);
1845 }
1846 }
1847 EXPORT_SYMBOL(dev_kfree_skb_irq);
1848
1849 void dev_kfree_skb_any(struct sk_buff *skb)
1850 {
1851 if (in_irq() || irqs_disabled())
1852 dev_kfree_skb_irq(skb);
1853 else
1854 dev_kfree_skb(skb);
1855 }
1856 EXPORT_SYMBOL(dev_kfree_skb_any);
1857
1858
1859 /**
1860 * netif_device_detach - mark device as removed
1861 * @dev: network device
1862 *
1863 * Mark device as removed from system and therefore no longer available.
1864 */
1865 void netif_device_detach(struct net_device *dev)
1866 {
1867 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1868 netif_running(dev)) {
1869 netif_tx_stop_all_queues(dev);
1870 }
1871 }
1872 EXPORT_SYMBOL(netif_device_detach);
1873
1874 /**
1875 * netif_device_attach - mark device as attached
1876 * @dev: network device
1877 *
1878 * Mark device as attached from system and restart if needed.
1879 */
1880 void netif_device_attach(struct net_device *dev)
1881 {
1882 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 netif_running(dev)) {
1884 netif_tx_wake_all_queues(dev);
1885 __netdev_watchdog_up(dev);
1886 }
1887 }
1888 EXPORT_SYMBOL(netif_device_attach);
1889
1890 static void skb_warn_bad_offload(const struct sk_buff *skb)
1891 {
1892 static const netdev_features_t null_features = 0;
1893 struct net_device *dev = skb->dev;
1894 const char *driver = "";
1895
1896 if (dev && dev->dev.parent)
1897 driver = dev_driver_string(dev->dev.parent);
1898
1899 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1900 "gso_type=%d ip_summed=%d\n",
1901 driver, dev ? &dev->features : &null_features,
1902 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1903 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1904 skb_shinfo(skb)->gso_type, skb->ip_summed);
1905 }
1906
1907 /*
1908 * Invalidate hardware checksum when packet is to be mangled, and
1909 * complete checksum manually on outgoing path.
1910 */
1911 int skb_checksum_help(struct sk_buff *skb)
1912 {
1913 __wsum csum;
1914 int ret = 0, offset;
1915
1916 if (skb->ip_summed == CHECKSUM_COMPLETE)
1917 goto out_set_summed;
1918
1919 if (unlikely(skb_shinfo(skb)->gso_size)) {
1920 skb_warn_bad_offload(skb);
1921 return -EINVAL;
1922 }
1923
1924 offset = skb_checksum_start_offset(skb);
1925 BUG_ON(offset >= skb_headlen(skb));
1926 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1927
1928 offset += skb->csum_offset;
1929 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1930
1931 if (skb_cloned(skb) &&
1932 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1933 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1934 if (ret)
1935 goto out;
1936 }
1937
1938 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1939 out_set_summed:
1940 skb->ip_summed = CHECKSUM_NONE;
1941 out:
1942 return ret;
1943 }
1944 EXPORT_SYMBOL(skb_checksum_help);
1945
1946 /**
1947 * skb_gso_segment - Perform segmentation on skb.
1948 * @skb: buffer to segment
1949 * @features: features for the output path (see dev->features)
1950 *
1951 * This function segments the given skb and returns a list of segments.
1952 *
1953 * It may return NULL if the skb requires no segmentation. This is
1954 * only possible when GSO is used for verifying header integrity.
1955 */
1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1957 netdev_features_t features)
1958 {
1959 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1960 struct packet_type *ptype;
1961 __be16 type = skb->protocol;
1962 int vlan_depth = ETH_HLEN;
1963 int err;
1964
1965 while (type == htons(ETH_P_8021Q)) {
1966 struct vlan_hdr *vh;
1967
1968 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1969 return ERR_PTR(-EINVAL);
1970
1971 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1972 type = vh->h_vlan_encapsulated_proto;
1973 vlan_depth += VLAN_HLEN;
1974 }
1975
1976 skb_reset_mac_header(skb);
1977 skb->mac_len = skb->network_header - skb->mac_header;
1978 __skb_pull(skb, skb->mac_len);
1979
1980 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1981 skb_warn_bad_offload(skb);
1982
1983 if (skb_header_cloned(skb) &&
1984 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1985 return ERR_PTR(err);
1986 }
1987
1988 rcu_read_lock();
1989 list_for_each_entry_rcu(ptype,
1990 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1991 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993 err = ptype->gso_send_check(skb);
1994 segs = ERR_PTR(err);
1995 if (err || skb_gso_ok(skb, features))
1996 break;
1997 __skb_push(skb, (skb->data -
1998 skb_network_header(skb)));
1999 }
2000 segs = ptype->gso_segment(skb, features);
2001 break;
2002 }
2003 }
2004 rcu_read_unlock();
2005
2006 __skb_push(skb, skb->data - skb_mac_header(skb));
2007
2008 return segs;
2009 }
2010 EXPORT_SYMBOL(skb_gso_segment);
2011
2012 /* Take action when hardware reception checksum errors are detected. */
2013 #ifdef CONFIG_BUG
2014 void netdev_rx_csum_fault(struct net_device *dev)
2015 {
2016 if (net_ratelimit()) {
2017 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2018 dump_stack();
2019 }
2020 }
2021 EXPORT_SYMBOL(netdev_rx_csum_fault);
2022 #endif
2023
2024 /* Actually, we should eliminate this check as soon as we know, that:
2025 * 1. IOMMU is present and allows to map all the memory.
2026 * 2. No high memory really exists on this machine.
2027 */
2028
2029 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 #ifdef CONFIG_HIGHMEM
2032 int i;
2033 if (!(dev->features & NETIF_F_HIGHDMA)) {
2034 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2035 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2036 if (PageHighMem(skb_frag_page(frag)))
2037 return 1;
2038 }
2039 }
2040
2041 if (PCI_DMA_BUS_IS_PHYS) {
2042 struct device *pdev = dev->dev.parent;
2043
2044 if (!pdev)
2045 return 0;
2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2049 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2050 return 1;
2051 }
2052 }
2053 #endif
2054 return 0;
2055 }
2056
2057 struct dev_gso_cb {
2058 void (*destructor)(struct sk_buff *skb);
2059 };
2060
2061 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2062
2063 static void dev_gso_skb_destructor(struct sk_buff *skb)
2064 {
2065 struct dev_gso_cb *cb;
2066
2067 do {
2068 struct sk_buff *nskb = skb->next;
2069
2070 skb->next = nskb->next;
2071 nskb->next = NULL;
2072 kfree_skb(nskb);
2073 } while (skb->next);
2074
2075 cb = DEV_GSO_CB(skb);
2076 if (cb->destructor)
2077 cb->destructor(skb);
2078 }
2079
2080 /**
2081 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2082 * @skb: buffer to segment
2083 * @features: device features as applicable to this skb
2084 *
2085 * This function segments the given skb and stores the list of segments
2086 * in skb->next.
2087 */
2088 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2089 {
2090 struct sk_buff *segs;
2091
2092 segs = skb_gso_segment(skb, features);
2093
2094 /* Verifying header integrity only. */
2095 if (!segs)
2096 return 0;
2097
2098 if (IS_ERR(segs))
2099 return PTR_ERR(segs);
2100
2101 skb->next = segs;
2102 DEV_GSO_CB(skb)->destructor = skb->destructor;
2103 skb->destructor = dev_gso_skb_destructor;
2104
2105 return 0;
2106 }
2107
2108 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2109 {
2110 return ((features & NETIF_F_GEN_CSUM) ||
2111 ((features & NETIF_F_V4_CSUM) &&
2112 protocol == htons(ETH_P_IP)) ||
2113 ((features & NETIF_F_V6_CSUM) &&
2114 protocol == htons(ETH_P_IPV6)) ||
2115 ((features & NETIF_F_FCOE_CRC) &&
2116 protocol == htons(ETH_P_FCOE)));
2117 }
2118
2119 static netdev_features_t harmonize_features(struct sk_buff *skb,
2120 __be16 protocol, netdev_features_t features)
2121 {
2122 if (!can_checksum_protocol(features, protocol)) {
2123 features &= ~NETIF_F_ALL_CSUM;
2124 features &= ~NETIF_F_SG;
2125 } else if (illegal_highdma(skb->dev, skb)) {
2126 features &= ~NETIF_F_SG;
2127 }
2128
2129 return features;
2130 }
2131
2132 netdev_features_t netif_skb_features(struct sk_buff *skb)
2133 {
2134 __be16 protocol = skb->protocol;
2135 netdev_features_t features = skb->dev->features;
2136
2137 if (protocol == htons(ETH_P_8021Q)) {
2138 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2139 protocol = veh->h_vlan_encapsulated_proto;
2140 } else if (!vlan_tx_tag_present(skb)) {
2141 return harmonize_features(skb, protocol, features);
2142 }
2143
2144 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2145
2146 if (protocol != htons(ETH_P_8021Q)) {
2147 return harmonize_features(skb, protocol, features);
2148 } else {
2149 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2150 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2151 return harmonize_features(skb, protocol, features);
2152 }
2153 }
2154 EXPORT_SYMBOL(netif_skb_features);
2155
2156 /*
2157 * Returns true if either:
2158 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2159 * 2. skb is fragmented and the device does not support SG, or if
2160 * at least one of fragments is in highmem and device does not
2161 * support DMA from it.
2162 */
2163 static inline int skb_needs_linearize(struct sk_buff *skb,
2164 int features)
2165 {
2166 return skb_is_nonlinear(skb) &&
2167 ((skb_has_frag_list(skb) &&
2168 !(features & NETIF_F_FRAGLIST)) ||
2169 (skb_shinfo(skb)->nr_frags &&
2170 !(features & NETIF_F_SG)));
2171 }
2172
2173 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2174 struct netdev_queue *txq)
2175 {
2176 const struct net_device_ops *ops = dev->netdev_ops;
2177 int rc = NETDEV_TX_OK;
2178 unsigned int skb_len;
2179
2180 if (likely(!skb->next)) {
2181 netdev_features_t features;
2182
2183 /*
2184 * If device doesn't need skb->dst, release it right now while
2185 * its hot in this cpu cache
2186 */
2187 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2188 skb_dst_drop(skb);
2189
2190 if (!list_empty(&ptype_all))
2191 dev_queue_xmit_nit(skb, dev);
2192
2193 features = netif_skb_features(skb);
2194
2195 if (vlan_tx_tag_present(skb) &&
2196 !(features & NETIF_F_HW_VLAN_TX)) {
2197 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2198 if (unlikely(!skb))
2199 goto out;
2200
2201 skb->vlan_tci = 0;
2202 }
2203
2204 if (netif_needs_gso(skb, features)) {
2205 if (unlikely(dev_gso_segment(skb, features)))
2206 goto out_kfree_skb;
2207 if (skb->next)
2208 goto gso;
2209 } else {
2210 if (skb_needs_linearize(skb, features) &&
2211 __skb_linearize(skb))
2212 goto out_kfree_skb;
2213
2214 /* If packet is not checksummed and device does not
2215 * support checksumming for this protocol, complete
2216 * checksumming here.
2217 */
2218 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2219 skb_set_transport_header(skb,
2220 skb_checksum_start_offset(skb));
2221 if (!(features & NETIF_F_ALL_CSUM) &&
2222 skb_checksum_help(skb))
2223 goto out_kfree_skb;
2224 }
2225 }
2226
2227 skb_len = skb->len;
2228 rc = ops->ndo_start_xmit(skb, dev);
2229 trace_net_dev_xmit(skb, rc, dev, skb_len);
2230 if (rc == NETDEV_TX_OK)
2231 txq_trans_update(txq);
2232 return rc;
2233 }
2234
2235 gso:
2236 do {
2237 struct sk_buff *nskb = skb->next;
2238
2239 skb->next = nskb->next;
2240 nskb->next = NULL;
2241
2242 /*
2243 * If device doesn't need nskb->dst, release it right now while
2244 * its hot in this cpu cache
2245 */
2246 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2247 skb_dst_drop(nskb);
2248
2249 skb_len = nskb->len;
2250 rc = ops->ndo_start_xmit(nskb, dev);
2251 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2252 if (unlikely(rc != NETDEV_TX_OK)) {
2253 if (rc & ~NETDEV_TX_MASK)
2254 goto out_kfree_gso_skb;
2255 nskb->next = skb->next;
2256 skb->next = nskb;
2257 return rc;
2258 }
2259 txq_trans_update(txq);
2260 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2261 return NETDEV_TX_BUSY;
2262 } while (skb->next);
2263
2264 out_kfree_gso_skb:
2265 if (likely(skb->next == NULL))
2266 skb->destructor = DEV_GSO_CB(skb)->destructor;
2267 out_kfree_skb:
2268 kfree_skb(skb);
2269 out:
2270 return rc;
2271 }
2272
2273 static u32 hashrnd __read_mostly;
2274
2275 /*
2276 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2277 * to be used as a distribution range.
2278 */
2279 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2280 unsigned int num_tx_queues)
2281 {
2282 u32 hash;
2283 u16 qoffset = 0;
2284 u16 qcount = num_tx_queues;
2285
2286 if (skb_rx_queue_recorded(skb)) {
2287 hash = skb_get_rx_queue(skb);
2288 while (unlikely(hash >= num_tx_queues))
2289 hash -= num_tx_queues;
2290 return hash;
2291 }
2292
2293 if (dev->num_tc) {
2294 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2295 qoffset = dev->tc_to_txq[tc].offset;
2296 qcount = dev->tc_to_txq[tc].count;
2297 }
2298
2299 if (skb->sk && skb->sk->sk_hash)
2300 hash = skb->sk->sk_hash;
2301 else
2302 hash = (__force u16) skb->protocol;
2303 hash = jhash_1word(hash, hashrnd);
2304
2305 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2306 }
2307 EXPORT_SYMBOL(__skb_tx_hash);
2308
2309 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2310 {
2311 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2312 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2313 dev->name, queue_index,
2314 dev->real_num_tx_queues);
2315 return 0;
2316 }
2317 return queue_index;
2318 }
2319
2320 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2321 {
2322 #ifdef CONFIG_XPS
2323 struct xps_dev_maps *dev_maps;
2324 struct xps_map *map;
2325 int queue_index = -1;
2326
2327 rcu_read_lock();
2328 dev_maps = rcu_dereference(dev->xps_maps);
2329 if (dev_maps) {
2330 map = rcu_dereference(
2331 dev_maps->cpu_map[raw_smp_processor_id()]);
2332 if (map) {
2333 if (map->len == 1)
2334 queue_index = map->queues[0];
2335 else {
2336 u32 hash;
2337 if (skb->sk && skb->sk->sk_hash)
2338 hash = skb->sk->sk_hash;
2339 else
2340 hash = (__force u16) skb->protocol ^
2341 skb->rxhash;
2342 hash = jhash_1word(hash, hashrnd);
2343 queue_index = map->queues[
2344 ((u64)hash * map->len) >> 32];
2345 }
2346 if (unlikely(queue_index >= dev->real_num_tx_queues))
2347 queue_index = -1;
2348 }
2349 }
2350 rcu_read_unlock();
2351
2352 return queue_index;
2353 #else
2354 return -1;
2355 #endif
2356 }
2357
2358 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2359 struct sk_buff *skb)
2360 {
2361 int queue_index;
2362 const struct net_device_ops *ops = dev->netdev_ops;
2363
2364 if (dev->real_num_tx_queues == 1)
2365 queue_index = 0;
2366 else if (ops->ndo_select_queue) {
2367 queue_index = ops->ndo_select_queue(dev, skb);
2368 queue_index = dev_cap_txqueue(dev, queue_index);
2369 } else {
2370 struct sock *sk = skb->sk;
2371 queue_index = sk_tx_queue_get(sk);
2372
2373 if (queue_index < 0 || skb->ooo_okay ||
2374 queue_index >= dev->real_num_tx_queues) {
2375 int old_index = queue_index;
2376
2377 queue_index = get_xps_queue(dev, skb);
2378 if (queue_index < 0)
2379 queue_index = skb_tx_hash(dev, skb);
2380
2381 if (queue_index != old_index && sk) {
2382 struct dst_entry *dst =
2383 rcu_dereference_check(sk->sk_dst_cache, 1);
2384
2385 if (dst && skb_dst(skb) == dst)
2386 sk_tx_queue_set(sk, queue_index);
2387 }
2388 }
2389 }
2390
2391 skb_set_queue_mapping(skb, queue_index);
2392 return netdev_get_tx_queue(dev, queue_index);
2393 }
2394
2395 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2396 struct net_device *dev,
2397 struct netdev_queue *txq)
2398 {
2399 spinlock_t *root_lock = qdisc_lock(q);
2400 bool contended;
2401 int rc;
2402
2403 qdisc_skb_cb(skb)->pkt_len = skb->len;
2404 qdisc_calculate_pkt_len(skb, q);
2405 /*
2406 * Heuristic to force contended enqueues to serialize on a
2407 * separate lock before trying to get qdisc main lock.
2408 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2409 * and dequeue packets faster.
2410 */
2411 contended = qdisc_is_running(q);
2412 if (unlikely(contended))
2413 spin_lock(&q->busylock);
2414
2415 spin_lock(root_lock);
2416 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2417 kfree_skb(skb);
2418 rc = NET_XMIT_DROP;
2419 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2420 qdisc_run_begin(q)) {
2421 /*
2422 * This is a work-conserving queue; there are no old skbs
2423 * waiting to be sent out; and the qdisc is not running -
2424 * xmit the skb directly.
2425 */
2426 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2427 skb_dst_force(skb);
2428
2429 qdisc_bstats_update(q, skb);
2430
2431 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2432 if (unlikely(contended)) {
2433 spin_unlock(&q->busylock);
2434 contended = false;
2435 }
2436 __qdisc_run(q);
2437 } else
2438 qdisc_run_end(q);
2439
2440 rc = NET_XMIT_SUCCESS;
2441 } else {
2442 skb_dst_force(skb);
2443 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2444 if (qdisc_run_begin(q)) {
2445 if (unlikely(contended)) {
2446 spin_unlock(&q->busylock);
2447 contended = false;
2448 }
2449 __qdisc_run(q);
2450 }
2451 }
2452 spin_unlock(root_lock);
2453 if (unlikely(contended))
2454 spin_unlock(&q->busylock);
2455 return rc;
2456 }
2457
2458 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2459 static void skb_update_prio(struct sk_buff *skb)
2460 {
2461 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2462
2463 if (!skb->priority && skb->sk && map) {
2464 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2465
2466 if (prioidx < map->priomap_len)
2467 skb->priority = map->priomap[prioidx];
2468 }
2469 }
2470 #else
2471 #define skb_update_prio(skb)
2472 #endif
2473
2474 static DEFINE_PER_CPU(int, xmit_recursion);
2475 #define RECURSION_LIMIT 10
2476
2477 /**
2478 * dev_loopback_xmit - loop back @skb
2479 * @skb: buffer to transmit
2480 */
2481 int dev_loopback_xmit(struct sk_buff *skb)
2482 {
2483 skb_reset_mac_header(skb);
2484 __skb_pull(skb, skb_network_offset(skb));
2485 skb->pkt_type = PACKET_LOOPBACK;
2486 skb->ip_summed = CHECKSUM_UNNECESSARY;
2487 WARN_ON(!skb_dst(skb));
2488 skb_dst_force(skb);
2489 netif_rx_ni(skb);
2490 return 0;
2491 }
2492 EXPORT_SYMBOL(dev_loopback_xmit);
2493
2494 /**
2495 * dev_queue_xmit - transmit a buffer
2496 * @skb: buffer to transmit
2497 *
2498 * Queue a buffer for transmission to a network device. The caller must
2499 * have set the device and priority and built the buffer before calling
2500 * this function. The function can be called from an interrupt.
2501 *
2502 * A negative errno code is returned on a failure. A success does not
2503 * guarantee the frame will be transmitted as it may be dropped due
2504 * to congestion or traffic shaping.
2505 *
2506 * -----------------------------------------------------------------------------------
2507 * I notice this method can also return errors from the queue disciplines,
2508 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2509 * be positive.
2510 *
2511 * Regardless of the return value, the skb is consumed, so it is currently
2512 * difficult to retry a send to this method. (You can bump the ref count
2513 * before sending to hold a reference for retry if you are careful.)
2514 *
2515 * When calling this method, interrupts MUST be enabled. This is because
2516 * the BH enable code must have IRQs enabled so that it will not deadlock.
2517 * --BLG
2518 */
2519 int dev_queue_xmit(struct sk_buff *skb)
2520 {
2521 struct net_device *dev = skb->dev;
2522 struct netdev_queue *txq;
2523 struct Qdisc *q;
2524 int rc = -ENOMEM;
2525
2526 /* Disable soft irqs for various locks below. Also
2527 * stops preemption for RCU.
2528 */
2529 rcu_read_lock_bh();
2530
2531 skb_update_prio(skb);
2532
2533 txq = dev_pick_tx(dev, skb);
2534 q = rcu_dereference_bh(txq->qdisc);
2535
2536 #ifdef CONFIG_NET_CLS_ACT
2537 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2538 #endif
2539 trace_net_dev_queue(skb);
2540 if (q->enqueue) {
2541 rc = __dev_xmit_skb(skb, q, dev, txq);
2542 goto out;
2543 }
2544
2545 /* The device has no queue. Common case for software devices:
2546 loopback, all the sorts of tunnels...
2547
2548 Really, it is unlikely that netif_tx_lock protection is necessary
2549 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2550 counters.)
2551 However, it is possible, that they rely on protection
2552 made by us here.
2553
2554 Check this and shot the lock. It is not prone from deadlocks.
2555 Either shot noqueue qdisc, it is even simpler 8)
2556 */
2557 if (dev->flags & IFF_UP) {
2558 int cpu = smp_processor_id(); /* ok because BHs are off */
2559
2560 if (txq->xmit_lock_owner != cpu) {
2561
2562 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2563 goto recursion_alert;
2564
2565 HARD_TX_LOCK(dev, txq, cpu);
2566
2567 if (!netif_xmit_stopped(txq)) {
2568 __this_cpu_inc(xmit_recursion);
2569 rc = dev_hard_start_xmit(skb, dev, txq);
2570 __this_cpu_dec(xmit_recursion);
2571 if (dev_xmit_complete(rc)) {
2572 HARD_TX_UNLOCK(dev, txq);
2573 goto out;
2574 }
2575 }
2576 HARD_TX_UNLOCK(dev, txq);
2577 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2578 dev->name);
2579 } else {
2580 /* Recursion is detected! It is possible,
2581 * unfortunately
2582 */
2583 recursion_alert:
2584 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2585 dev->name);
2586 }
2587 }
2588
2589 rc = -ENETDOWN;
2590 rcu_read_unlock_bh();
2591
2592 kfree_skb(skb);
2593 return rc;
2594 out:
2595 rcu_read_unlock_bh();
2596 return rc;
2597 }
2598 EXPORT_SYMBOL(dev_queue_xmit);
2599
2600
2601 /*=======================================================================
2602 Receiver routines
2603 =======================================================================*/
2604
2605 int netdev_max_backlog __read_mostly = 1000;
2606 int netdev_tstamp_prequeue __read_mostly = 1;
2607 int netdev_budget __read_mostly = 300;
2608 int weight_p __read_mostly = 64; /* old backlog weight */
2609
2610 /* Called with irq disabled */
2611 static inline void ____napi_schedule(struct softnet_data *sd,
2612 struct napi_struct *napi)
2613 {
2614 list_add_tail(&napi->poll_list, &sd->poll_list);
2615 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2616 }
2617
2618 /*
2619 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2620 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2621 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2622 * if hash is a canonical 4-tuple hash over transport ports.
2623 */
2624 void __skb_get_rxhash(struct sk_buff *skb)
2625 {
2626 struct flow_keys keys;
2627 u32 hash;
2628
2629 if (!skb_flow_dissect(skb, &keys))
2630 return;
2631
2632 if (keys.ports) {
2633 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2634 swap(keys.port16[0], keys.port16[1]);
2635 skb->l4_rxhash = 1;
2636 }
2637
2638 /* get a consistent hash (same value on both flow directions) */
2639 if ((__force u32)keys.dst < (__force u32)keys.src)
2640 swap(keys.dst, keys.src);
2641
2642 hash = jhash_3words((__force u32)keys.dst,
2643 (__force u32)keys.src,
2644 (__force u32)keys.ports, hashrnd);
2645 if (!hash)
2646 hash = 1;
2647
2648 skb->rxhash = hash;
2649 }
2650 EXPORT_SYMBOL(__skb_get_rxhash);
2651
2652 #ifdef CONFIG_RPS
2653
2654 /* One global table that all flow-based protocols share. */
2655 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2656 EXPORT_SYMBOL(rps_sock_flow_table);
2657
2658 struct static_key rps_needed __read_mostly;
2659
2660 static struct rps_dev_flow *
2661 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2662 struct rps_dev_flow *rflow, u16 next_cpu)
2663 {
2664 if (next_cpu != RPS_NO_CPU) {
2665 #ifdef CONFIG_RFS_ACCEL
2666 struct netdev_rx_queue *rxqueue;
2667 struct rps_dev_flow_table *flow_table;
2668 struct rps_dev_flow *old_rflow;
2669 u32 flow_id;
2670 u16 rxq_index;
2671 int rc;
2672
2673 /* Should we steer this flow to a different hardware queue? */
2674 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2675 !(dev->features & NETIF_F_NTUPLE))
2676 goto out;
2677 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2678 if (rxq_index == skb_get_rx_queue(skb))
2679 goto out;
2680
2681 rxqueue = dev->_rx + rxq_index;
2682 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2683 if (!flow_table)
2684 goto out;
2685 flow_id = skb->rxhash & flow_table->mask;
2686 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2687 rxq_index, flow_id);
2688 if (rc < 0)
2689 goto out;
2690 old_rflow = rflow;
2691 rflow = &flow_table->flows[flow_id];
2692 rflow->filter = rc;
2693 if (old_rflow->filter == rflow->filter)
2694 old_rflow->filter = RPS_NO_FILTER;
2695 out:
2696 #endif
2697 rflow->last_qtail =
2698 per_cpu(softnet_data, next_cpu).input_queue_head;
2699 }
2700
2701 rflow->cpu = next_cpu;
2702 return rflow;
2703 }
2704
2705 /*
2706 * get_rps_cpu is called from netif_receive_skb and returns the target
2707 * CPU from the RPS map of the receiving queue for a given skb.
2708 * rcu_read_lock must be held on entry.
2709 */
2710 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2711 struct rps_dev_flow **rflowp)
2712 {
2713 struct netdev_rx_queue *rxqueue;
2714 struct rps_map *map;
2715 struct rps_dev_flow_table *flow_table;
2716 struct rps_sock_flow_table *sock_flow_table;
2717 int cpu = -1;
2718 u16 tcpu;
2719
2720 if (skb_rx_queue_recorded(skb)) {
2721 u16 index = skb_get_rx_queue(skb);
2722 if (unlikely(index >= dev->real_num_rx_queues)) {
2723 WARN_ONCE(dev->real_num_rx_queues > 1,
2724 "%s received packet on queue %u, but number "
2725 "of RX queues is %u\n",
2726 dev->name, index, dev->real_num_rx_queues);
2727 goto done;
2728 }
2729 rxqueue = dev->_rx + index;
2730 } else
2731 rxqueue = dev->_rx;
2732
2733 map = rcu_dereference(rxqueue->rps_map);
2734 if (map) {
2735 if (map->len == 1 &&
2736 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2737 tcpu = map->cpus[0];
2738 if (cpu_online(tcpu))
2739 cpu = tcpu;
2740 goto done;
2741 }
2742 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2743 goto done;
2744 }
2745
2746 skb_reset_network_header(skb);
2747 if (!skb_get_rxhash(skb))
2748 goto done;
2749
2750 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2751 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2752 if (flow_table && sock_flow_table) {
2753 u16 next_cpu;
2754 struct rps_dev_flow *rflow;
2755
2756 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2757 tcpu = rflow->cpu;
2758
2759 next_cpu = sock_flow_table->ents[skb->rxhash &
2760 sock_flow_table->mask];
2761
2762 /*
2763 * If the desired CPU (where last recvmsg was done) is
2764 * different from current CPU (one in the rx-queue flow
2765 * table entry), switch if one of the following holds:
2766 * - Current CPU is unset (equal to RPS_NO_CPU).
2767 * - Current CPU is offline.
2768 * - The current CPU's queue tail has advanced beyond the
2769 * last packet that was enqueued using this table entry.
2770 * This guarantees that all previous packets for the flow
2771 * have been dequeued, thus preserving in order delivery.
2772 */
2773 if (unlikely(tcpu != next_cpu) &&
2774 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2775 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2776 rflow->last_qtail)) >= 0))
2777 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2778
2779 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2780 *rflowp = rflow;
2781 cpu = tcpu;
2782 goto done;
2783 }
2784 }
2785
2786 if (map) {
2787 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2788
2789 if (cpu_online(tcpu)) {
2790 cpu = tcpu;
2791 goto done;
2792 }
2793 }
2794
2795 done:
2796 return cpu;
2797 }
2798
2799 #ifdef CONFIG_RFS_ACCEL
2800
2801 /**
2802 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2803 * @dev: Device on which the filter was set
2804 * @rxq_index: RX queue index
2805 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2806 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2807 *
2808 * Drivers that implement ndo_rx_flow_steer() should periodically call
2809 * this function for each installed filter and remove the filters for
2810 * which it returns %true.
2811 */
2812 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2813 u32 flow_id, u16 filter_id)
2814 {
2815 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2816 struct rps_dev_flow_table *flow_table;
2817 struct rps_dev_flow *rflow;
2818 bool expire = true;
2819 int cpu;
2820
2821 rcu_read_lock();
2822 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2823 if (flow_table && flow_id <= flow_table->mask) {
2824 rflow = &flow_table->flows[flow_id];
2825 cpu = ACCESS_ONCE(rflow->cpu);
2826 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2827 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2828 rflow->last_qtail) <
2829 (int)(10 * flow_table->mask)))
2830 expire = false;
2831 }
2832 rcu_read_unlock();
2833 return expire;
2834 }
2835 EXPORT_SYMBOL(rps_may_expire_flow);
2836
2837 #endif /* CONFIG_RFS_ACCEL */
2838
2839 /* Called from hardirq (IPI) context */
2840 static void rps_trigger_softirq(void *data)
2841 {
2842 struct softnet_data *sd = data;
2843
2844 ____napi_schedule(sd, &sd->backlog);
2845 sd->received_rps++;
2846 }
2847
2848 #endif /* CONFIG_RPS */
2849
2850 /*
2851 * Check if this softnet_data structure is another cpu one
2852 * If yes, queue it to our IPI list and return 1
2853 * If no, return 0
2854 */
2855 static int rps_ipi_queued(struct softnet_data *sd)
2856 {
2857 #ifdef CONFIG_RPS
2858 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2859
2860 if (sd != mysd) {
2861 sd->rps_ipi_next = mysd->rps_ipi_list;
2862 mysd->rps_ipi_list = sd;
2863
2864 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2865 return 1;
2866 }
2867 #endif /* CONFIG_RPS */
2868 return 0;
2869 }
2870
2871 /*
2872 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2873 * queue (may be a remote CPU queue).
2874 */
2875 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2876 unsigned int *qtail)
2877 {
2878 struct softnet_data *sd;
2879 unsigned long flags;
2880
2881 sd = &per_cpu(softnet_data, cpu);
2882
2883 local_irq_save(flags);
2884
2885 rps_lock(sd);
2886 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2887 if (skb_queue_len(&sd->input_pkt_queue)) {
2888 enqueue:
2889 __skb_queue_tail(&sd->input_pkt_queue, skb);
2890 input_queue_tail_incr_save(sd, qtail);
2891 rps_unlock(sd);
2892 local_irq_restore(flags);
2893 return NET_RX_SUCCESS;
2894 }
2895
2896 /* Schedule NAPI for backlog device
2897 * We can use non atomic operation since we own the queue lock
2898 */
2899 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2900 if (!rps_ipi_queued(sd))
2901 ____napi_schedule(sd, &sd->backlog);
2902 }
2903 goto enqueue;
2904 }
2905
2906 sd->dropped++;
2907 rps_unlock(sd);
2908
2909 local_irq_restore(flags);
2910
2911 atomic_long_inc(&skb->dev->rx_dropped);
2912 kfree_skb(skb);
2913 return NET_RX_DROP;
2914 }
2915
2916 /**
2917 * netif_rx - post buffer to the network code
2918 * @skb: buffer to post
2919 *
2920 * This function receives a packet from a device driver and queues it for
2921 * the upper (protocol) levels to process. It always succeeds. The buffer
2922 * may be dropped during processing for congestion control or by the
2923 * protocol layers.
2924 *
2925 * return values:
2926 * NET_RX_SUCCESS (no congestion)
2927 * NET_RX_DROP (packet was dropped)
2928 *
2929 */
2930
2931 int netif_rx(struct sk_buff *skb)
2932 {
2933 int ret;
2934
2935 /* if netpoll wants it, pretend we never saw it */
2936 if (netpoll_rx(skb))
2937 return NET_RX_DROP;
2938
2939 net_timestamp_check(netdev_tstamp_prequeue, skb);
2940
2941 trace_netif_rx(skb);
2942 #ifdef CONFIG_RPS
2943 if (static_key_false(&rps_needed)) {
2944 struct rps_dev_flow voidflow, *rflow = &voidflow;
2945 int cpu;
2946
2947 preempt_disable();
2948 rcu_read_lock();
2949
2950 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2951 if (cpu < 0)
2952 cpu = smp_processor_id();
2953
2954 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2955
2956 rcu_read_unlock();
2957 preempt_enable();
2958 } else
2959 #endif
2960 {
2961 unsigned int qtail;
2962 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2963 put_cpu();
2964 }
2965 return ret;
2966 }
2967 EXPORT_SYMBOL(netif_rx);
2968
2969 int netif_rx_ni(struct sk_buff *skb)
2970 {
2971 int err;
2972
2973 preempt_disable();
2974 err = netif_rx(skb);
2975 if (local_softirq_pending())
2976 do_softirq();
2977 preempt_enable();
2978
2979 return err;
2980 }
2981 EXPORT_SYMBOL(netif_rx_ni);
2982
2983 static void net_tx_action(struct softirq_action *h)
2984 {
2985 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2986
2987 if (sd->completion_queue) {
2988 struct sk_buff *clist;
2989
2990 local_irq_disable();
2991 clist = sd->completion_queue;
2992 sd->completion_queue = NULL;
2993 local_irq_enable();
2994
2995 while (clist) {
2996 struct sk_buff *skb = clist;
2997 clist = clist->next;
2998
2999 WARN_ON(atomic_read(&skb->users));
3000 trace_kfree_skb(skb, net_tx_action);
3001 __kfree_skb(skb);
3002 }
3003 }
3004
3005 if (sd->output_queue) {
3006 struct Qdisc *head;
3007
3008 local_irq_disable();
3009 head = sd->output_queue;
3010 sd->output_queue = NULL;
3011 sd->output_queue_tailp = &sd->output_queue;
3012 local_irq_enable();
3013
3014 while (head) {
3015 struct Qdisc *q = head;
3016 spinlock_t *root_lock;
3017
3018 head = head->next_sched;
3019
3020 root_lock = qdisc_lock(q);
3021 if (spin_trylock(root_lock)) {
3022 smp_mb__before_clear_bit();
3023 clear_bit(__QDISC_STATE_SCHED,
3024 &q->state);
3025 qdisc_run(q);
3026 spin_unlock(root_lock);
3027 } else {
3028 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3029 &q->state)) {
3030 __netif_reschedule(q);
3031 } else {
3032 smp_mb__before_clear_bit();
3033 clear_bit(__QDISC_STATE_SCHED,
3034 &q->state);
3035 }
3036 }
3037 }
3038 }
3039 }
3040
3041 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3042 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3043 /* This hook is defined here for ATM LANE */
3044 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3045 unsigned char *addr) __read_mostly;
3046 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3047 #endif
3048
3049 #ifdef CONFIG_NET_CLS_ACT
3050 /* TODO: Maybe we should just force sch_ingress to be compiled in
3051 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3052 * a compare and 2 stores extra right now if we dont have it on
3053 * but have CONFIG_NET_CLS_ACT
3054 * NOTE: This doesn't stop any functionality; if you dont have
3055 * the ingress scheduler, you just can't add policies on ingress.
3056 *
3057 */
3058 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3059 {
3060 struct net_device *dev = skb->dev;
3061 u32 ttl = G_TC_RTTL(skb->tc_verd);
3062 int result = TC_ACT_OK;
3063 struct Qdisc *q;
3064
3065 if (unlikely(MAX_RED_LOOP < ttl++)) {
3066 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3067 skb->skb_iif, dev->ifindex);
3068 return TC_ACT_SHOT;
3069 }
3070
3071 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3072 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3073
3074 q = rxq->qdisc;
3075 if (q != &noop_qdisc) {
3076 spin_lock(qdisc_lock(q));
3077 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3078 result = qdisc_enqueue_root(skb, q);
3079 spin_unlock(qdisc_lock(q));
3080 }
3081
3082 return result;
3083 }
3084
3085 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3086 struct packet_type **pt_prev,
3087 int *ret, struct net_device *orig_dev)
3088 {
3089 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3090
3091 if (!rxq || rxq->qdisc == &noop_qdisc)
3092 goto out;
3093
3094 if (*pt_prev) {
3095 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3096 *pt_prev = NULL;
3097 }
3098
3099 switch (ing_filter(skb, rxq)) {
3100 case TC_ACT_SHOT:
3101 case TC_ACT_STOLEN:
3102 kfree_skb(skb);
3103 return NULL;
3104 }
3105
3106 out:
3107 skb->tc_verd = 0;
3108 return skb;
3109 }
3110 #endif
3111
3112 /**
3113 * netdev_rx_handler_register - register receive handler
3114 * @dev: device to register a handler for
3115 * @rx_handler: receive handler to register
3116 * @rx_handler_data: data pointer that is used by rx handler
3117 *
3118 * Register a receive hander for a device. This handler will then be
3119 * called from __netif_receive_skb. A negative errno code is returned
3120 * on a failure.
3121 *
3122 * The caller must hold the rtnl_mutex.
3123 *
3124 * For a general description of rx_handler, see enum rx_handler_result.
3125 */
3126 int netdev_rx_handler_register(struct net_device *dev,
3127 rx_handler_func_t *rx_handler,
3128 void *rx_handler_data)
3129 {
3130 ASSERT_RTNL();
3131
3132 if (dev->rx_handler)
3133 return -EBUSY;
3134
3135 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3136 rcu_assign_pointer(dev->rx_handler, rx_handler);
3137
3138 return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3141
3142 /**
3143 * netdev_rx_handler_unregister - unregister receive handler
3144 * @dev: device to unregister a handler from
3145 *
3146 * Unregister a receive hander from a device.
3147 *
3148 * The caller must hold the rtnl_mutex.
3149 */
3150 void netdev_rx_handler_unregister(struct net_device *dev)
3151 {
3152
3153 ASSERT_RTNL();
3154 RCU_INIT_POINTER(dev->rx_handler, NULL);
3155 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3156 }
3157 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3158
3159 /*
3160 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3161 * the special handling of PFMEMALLOC skbs.
3162 */
3163 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3164 {
3165 switch (skb->protocol) {
3166 case __constant_htons(ETH_P_ARP):
3167 case __constant_htons(ETH_P_IP):
3168 case __constant_htons(ETH_P_IPV6):
3169 case __constant_htons(ETH_P_8021Q):
3170 return true;
3171 default:
3172 return false;
3173 }
3174 }
3175
3176 static int __netif_receive_skb(struct sk_buff *skb)
3177 {
3178 struct packet_type *ptype, *pt_prev;
3179 rx_handler_func_t *rx_handler;
3180 struct net_device *orig_dev;
3181 struct net_device *null_or_dev;
3182 bool deliver_exact = false;
3183 int ret = NET_RX_DROP;
3184 __be16 type;
3185 unsigned long pflags = current->flags;
3186
3187 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3188
3189 trace_netif_receive_skb(skb);
3190
3191 /*
3192 * PFMEMALLOC skbs are special, they should
3193 * - be delivered to SOCK_MEMALLOC sockets only
3194 * - stay away from userspace
3195 * - have bounded memory usage
3196 *
3197 * Use PF_MEMALLOC as this saves us from propagating the allocation
3198 * context down to all allocation sites.
3199 */
3200 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3201 current->flags |= PF_MEMALLOC;
3202
3203 /* if we've gotten here through NAPI, check netpoll */
3204 if (netpoll_receive_skb(skb))
3205 goto out;
3206
3207 orig_dev = skb->dev;
3208
3209 skb_reset_network_header(skb);
3210 skb_reset_transport_header(skb);
3211 skb_reset_mac_len(skb);
3212
3213 pt_prev = NULL;
3214
3215 rcu_read_lock();
3216
3217 another_round:
3218 skb->skb_iif = skb->dev->ifindex;
3219
3220 __this_cpu_inc(softnet_data.processed);
3221
3222 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3223 skb = vlan_untag(skb);
3224 if (unlikely(!skb))
3225 goto unlock;
3226 }
3227
3228 #ifdef CONFIG_NET_CLS_ACT
3229 if (skb->tc_verd & TC_NCLS) {
3230 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3231 goto ncls;
3232 }
3233 #endif
3234
3235 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3236 goto skip_taps;
3237
3238 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3239 if (!ptype->dev || ptype->dev == skb->dev) {
3240 if (pt_prev)
3241 ret = deliver_skb(skb, pt_prev, orig_dev);
3242 pt_prev = ptype;
3243 }
3244 }
3245
3246 skip_taps:
3247 #ifdef CONFIG_NET_CLS_ACT
3248 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3249 if (!skb)
3250 goto unlock;
3251 ncls:
3252 #endif
3253
3254 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3255 && !skb_pfmemalloc_protocol(skb))
3256 goto drop;
3257
3258 rx_handler = rcu_dereference(skb->dev->rx_handler);
3259 if (vlan_tx_tag_present(skb)) {
3260 if (pt_prev) {
3261 ret = deliver_skb(skb, pt_prev, orig_dev);
3262 pt_prev = NULL;
3263 }
3264 if (vlan_do_receive(&skb, !rx_handler))
3265 goto another_round;
3266 else if (unlikely(!skb))
3267 goto unlock;
3268 }
3269
3270 if (rx_handler) {
3271 if (pt_prev) {
3272 ret = deliver_skb(skb, pt_prev, orig_dev);
3273 pt_prev = NULL;
3274 }
3275 switch (rx_handler(&skb)) {
3276 case RX_HANDLER_CONSUMED:
3277 goto unlock;
3278 case RX_HANDLER_ANOTHER:
3279 goto another_round;
3280 case RX_HANDLER_EXACT:
3281 deliver_exact = true;
3282 case RX_HANDLER_PASS:
3283 break;
3284 default:
3285 BUG();
3286 }
3287 }
3288
3289 /* deliver only exact match when indicated */
3290 null_or_dev = deliver_exact ? skb->dev : NULL;
3291
3292 type = skb->protocol;
3293 list_for_each_entry_rcu(ptype,
3294 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3295 if (ptype->type == type &&
3296 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3297 ptype->dev == orig_dev)) {
3298 if (pt_prev)
3299 ret = deliver_skb(skb, pt_prev, orig_dev);
3300 pt_prev = ptype;
3301 }
3302 }
3303
3304 if (pt_prev) {
3305 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3306 ret = -ENOMEM;
3307 else
3308 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3309 } else {
3310 drop:
3311 atomic_long_inc(&skb->dev->rx_dropped);
3312 kfree_skb(skb);
3313 /* Jamal, now you will not able to escape explaining
3314 * me how you were going to use this. :-)
3315 */
3316 ret = NET_RX_DROP;
3317 }
3318
3319 unlock:
3320 rcu_read_unlock();
3321 out:
3322 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3323 return ret;
3324 }
3325
3326 /**
3327 * netif_receive_skb - process receive buffer from network
3328 * @skb: buffer to process
3329 *
3330 * netif_receive_skb() is the main receive data processing function.
3331 * It always succeeds. The buffer may be dropped during processing
3332 * for congestion control or by the protocol layers.
3333 *
3334 * This function may only be called from softirq context and interrupts
3335 * should be enabled.
3336 *
3337 * Return values (usually ignored):
3338 * NET_RX_SUCCESS: no congestion
3339 * NET_RX_DROP: packet was dropped
3340 */
3341 int netif_receive_skb(struct sk_buff *skb)
3342 {
3343 net_timestamp_check(netdev_tstamp_prequeue, skb);
3344
3345 if (skb_defer_rx_timestamp(skb))
3346 return NET_RX_SUCCESS;
3347
3348 #ifdef CONFIG_RPS
3349 if (static_key_false(&rps_needed)) {
3350 struct rps_dev_flow voidflow, *rflow = &voidflow;
3351 int cpu, ret;
3352
3353 rcu_read_lock();
3354
3355 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3356
3357 if (cpu >= 0) {
3358 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3359 rcu_read_unlock();
3360 return ret;
3361 }
3362 rcu_read_unlock();
3363 }
3364 #endif
3365 return __netif_receive_skb(skb);
3366 }
3367 EXPORT_SYMBOL(netif_receive_skb);
3368
3369 /* Network device is going away, flush any packets still pending
3370 * Called with irqs disabled.
3371 */
3372 static void flush_backlog(void *arg)
3373 {
3374 struct net_device *dev = arg;
3375 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3376 struct sk_buff *skb, *tmp;
3377
3378 rps_lock(sd);
3379 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3380 if (skb->dev == dev) {
3381 __skb_unlink(skb, &sd->input_pkt_queue);
3382 kfree_skb(skb);
3383 input_queue_head_incr(sd);
3384 }
3385 }
3386 rps_unlock(sd);
3387
3388 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3389 if (skb->dev == dev) {
3390 __skb_unlink(skb, &sd->process_queue);
3391 kfree_skb(skb);
3392 input_queue_head_incr(sd);
3393 }
3394 }
3395 }
3396
3397 static int napi_gro_complete(struct sk_buff *skb)
3398 {
3399 struct packet_type *ptype;
3400 __be16 type = skb->protocol;
3401 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3402 int err = -ENOENT;
3403
3404 if (NAPI_GRO_CB(skb)->count == 1) {
3405 skb_shinfo(skb)->gso_size = 0;
3406 goto out;
3407 }
3408
3409 rcu_read_lock();
3410 list_for_each_entry_rcu(ptype, head, list) {
3411 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3412 continue;
3413
3414 err = ptype->gro_complete(skb);
3415 break;
3416 }
3417 rcu_read_unlock();
3418
3419 if (err) {
3420 WARN_ON(&ptype->list == head);
3421 kfree_skb(skb);
3422 return NET_RX_SUCCESS;
3423 }
3424
3425 out:
3426 return netif_receive_skb(skb);
3427 }
3428
3429 inline void napi_gro_flush(struct napi_struct *napi)
3430 {
3431 struct sk_buff *skb, *next;
3432
3433 for (skb = napi->gro_list; skb; skb = next) {
3434 next = skb->next;
3435 skb->next = NULL;
3436 napi_gro_complete(skb);
3437 }
3438
3439 napi->gro_count = 0;
3440 napi->gro_list = NULL;
3441 }
3442 EXPORT_SYMBOL(napi_gro_flush);
3443
3444 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3445 {
3446 struct sk_buff **pp = NULL;
3447 struct packet_type *ptype;
3448 __be16 type = skb->protocol;
3449 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3450 int same_flow;
3451 int mac_len;
3452 enum gro_result ret;
3453
3454 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3455 goto normal;
3456
3457 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3458 goto normal;
3459
3460 rcu_read_lock();
3461 list_for_each_entry_rcu(ptype, head, list) {
3462 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3463 continue;
3464
3465 skb_set_network_header(skb, skb_gro_offset(skb));
3466 mac_len = skb->network_header - skb->mac_header;
3467 skb->mac_len = mac_len;
3468 NAPI_GRO_CB(skb)->same_flow = 0;
3469 NAPI_GRO_CB(skb)->flush = 0;
3470 NAPI_GRO_CB(skb)->free = 0;
3471
3472 pp = ptype->gro_receive(&napi->gro_list, skb);
3473 break;
3474 }
3475 rcu_read_unlock();
3476
3477 if (&ptype->list == head)
3478 goto normal;
3479
3480 same_flow = NAPI_GRO_CB(skb)->same_flow;
3481 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3482
3483 if (pp) {
3484 struct sk_buff *nskb = *pp;
3485
3486 *pp = nskb->next;
3487 nskb->next = NULL;
3488 napi_gro_complete(nskb);
3489 napi->gro_count--;
3490 }
3491
3492 if (same_flow)
3493 goto ok;
3494
3495 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3496 goto normal;
3497
3498 napi->gro_count++;
3499 NAPI_GRO_CB(skb)->count = 1;
3500 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3501 skb->next = napi->gro_list;
3502 napi->gro_list = skb;
3503 ret = GRO_HELD;
3504
3505 pull:
3506 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3507 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3508
3509 BUG_ON(skb->end - skb->tail < grow);
3510
3511 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3512
3513 skb->tail += grow;
3514 skb->data_len -= grow;
3515
3516 skb_shinfo(skb)->frags[0].page_offset += grow;
3517 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3518
3519 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3520 skb_frag_unref(skb, 0);
3521 memmove(skb_shinfo(skb)->frags,
3522 skb_shinfo(skb)->frags + 1,
3523 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3524 }
3525 }
3526
3527 ok:
3528 return ret;
3529
3530 normal:
3531 ret = GRO_NORMAL;
3532 goto pull;
3533 }
3534 EXPORT_SYMBOL(dev_gro_receive);
3535
3536 static inline gro_result_t
3537 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3538 {
3539 struct sk_buff *p;
3540 unsigned int maclen = skb->dev->hard_header_len;
3541
3542 for (p = napi->gro_list; p; p = p->next) {
3543 unsigned long diffs;
3544
3545 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3546 diffs |= p->vlan_tci ^ skb->vlan_tci;
3547 if (maclen == ETH_HLEN)
3548 diffs |= compare_ether_header(skb_mac_header(p),
3549 skb_gro_mac_header(skb));
3550 else if (!diffs)
3551 diffs = memcmp(skb_mac_header(p),
3552 skb_gro_mac_header(skb),
3553 maclen);
3554 NAPI_GRO_CB(p)->same_flow = !diffs;
3555 NAPI_GRO_CB(p)->flush = 0;
3556 }
3557
3558 return dev_gro_receive(napi, skb);
3559 }
3560
3561 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3562 {
3563 switch (ret) {
3564 case GRO_NORMAL:
3565 if (netif_receive_skb(skb))
3566 ret = GRO_DROP;
3567 break;
3568
3569 case GRO_DROP:
3570 kfree_skb(skb);
3571 break;
3572
3573 case GRO_MERGED_FREE:
3574 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3575 kmem_cache_free(skbuff_head_cache, skb);
3576 else
3577 __kfree_skb(skb);
3578 break;
3579
3580 case GRO_HELD:
3581 case GRO_MERGED:
3582 break;
3583 }
3584
3585 return ret;
3586 }
3587 EXPORT_SYMBOL(napi_skb_finish);
3588
3589 void skb_gro_reset_offset(struct sk_buff *skb)
3590 {
3591 NAPI_GRO_CB(skb)->data_offset = 0;
3592 NAPI_GRO_CB(skb)->frag0 = NULL;
3593 NAPI_GRO_CB(skb)->frag0_len = 0;
3594
3595 if (skb->mac_header == skb->tail &&
3596 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3597 NAPI_GRO_CB(skb)->frag0 =
3598 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3599 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3600 }
3601 }
3602 EXPORT_SYMBOL(skb_gro_reset_offset);
3603
3604 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3605 {
3606 skb_gro_reset_offset(skb);
3607
3608 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3609 }
3610 EXPORT_SYMBOL(napi_gro_receive);
3611
3612 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3613 {
3614 __skb_pull(skb, skb_headlen(skb));
3615 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3616 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3617 skb->vlan_tci = 0;
3618 skb->dev = napi->dev;
3619 skb->skb_iif = 0;
3620
3621 napi->skb = skb;
3622 }
3623
3624 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3625 {
3626 struct sk_buff *skb = napi->skb;
3627
3628 if (!skb) {
3629 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3630 if (skb)
3631 napi->skb = skb;
3632 }
3633 return skb;
3634 }
3635 EXPORT_SYMBOL(napi_get_frags);
3636
3637 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3638 gro_result_t ret)
3639 {
3640 switch (ret) {
3641 case GRO_NORMAL:
3642 case GRO_HELD:
3643 skb->protocol = eth_type_trans(skb, skb->dev);
3644
3645 if (ret == GRO_HELD)
3646 skb_gro_pull(skb, -ETH_HLEN);
3647 else if (netif_receive_skb(skb))
3648 ret = GRO_DROP;
3649 break;
3650
3651 case GRO_DROP:
3652 case GRO_MERGED_FREE:
3653 napi_reuse_skb(napi, skb);
3654 break;
3655
3656 case GRO_MERGED:
3657 break;
3658 }
3659
3660 return ret;
3661 }
3662 EXPORT_SYMBOL(napi_frags_finish);
3663
3664 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3665 {
3666 struct sk_buff *skb = napi->skb;
3667 struct ethhdr *eth;
3668 unsigned int hlen;
3669 unsigned int off;
3670
3671 napi->skb = NULL;
3672
3673 skb_reset_mac_header(skb);
3674 skb_gro_reset_offset(skb);
3675
3676 off = skb_gro_offset(skb);
3677 hlen = off + sizeof(*eth);
3678 eth = skb_gro_header_fast(skb, off);
3679 if (skb_gro_header_hard(skb, hlen)) {
3680 eth = skb_gro_header_slow(skb, hlen, off);
3681 if (unlikely(!eth)) {
3682 napi_reuse_skb(napi, skb);
3683 skb = NULL;
3684 goto out;
3685 }
3686 }
3687
3688 skb_gro_pull(skb, sizeof(*eth));
3689
3690 /*
3691 * This works because the only protocols we care about don't require
3692 * special handling. We'll fix it up properly at the end.
3693 */
3694 skb->protocol = eth->h_proto;
3695
3696 out:
3697 return skb;
3698 }
3699
3700 gro_result_t napi_gro_frags(struct napi_struct *napi)
3701 {
3702 struct sk_buff *skb = napi_frags_skb(napi);
3703
3704 if (!skb)
3705 return GRO_DROP;
3706
3707 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3708 }
3709 EXPORT_SYMBOL(napi_gro_frags);
3710
3711 /*
3712 * net_rps_action sends any pending IPI's for rps.
3713 * Note: called with local irq disabled, but exits with local irq enabled.
3714 */
3715 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3716 {
3717 #ifdef CONFIG_RPS
3718 struct softnet_data *remsd = sd->rps_ipi_list;
3719
3720 if (remsd) {
3721 sd->rps_ipi_list = NULL;
3722
3723 local_irq_enable();
3724
3725 /* Send pending IPI's to kick RPS processing on remote cpus. */
3726 while (remsd) {
3727 struct softnet_data *next = remsd->rps_ipi_next;
3728
3729 if (cpu_online(remsd->cpu))
3730 __smp_call_function_single(remsd->cpu,
3731 &remsd->csd, 0);
3732 remsd = next;
3733 }
3734 } else
3735 #endif
3736 local_irq_enable();
3737 }
3738
3739 static int process_backlog(struct napi_struct *napi, int quota)
3740 {
3741 int work = 0;
3742 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3743
3744 #ifdef CONFIG_RPS
3745 /* Check if we have pending ipi, its better to send them now,
3746 * not waiting net_rx_action() end.
3747 */
3748 if (sd->rps_ipi_list) {
3749 local_irq_disable();
3750 net_rps_action_and_irq_enable(sd);
3751 }
3752 #endif
3753 napi->weight = weight_p;
3754 local_irq_disable();
3755 while (work < quota) {
3756 struct sk_buff *skb;
3757 unsigned int qlen;
3758
3759 while ((skb = __skb_dequeue(&sd->process_queue))) {
3760 local_irq_enable();
3761 __netif_receive_skb(skb);
3762 local_irq_disable();
3763 input_queue_head_incr(sd);
3764 if (++work >= quota) {
3765 local_irq_enable();
3766 return work;
3767 }
3768 }
3769
3770 rps_lock(sd);
3771 qlen = skb_queue_len(&sd->input_pkt_queue);
3772 if (qlen)
3773 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3774 &sd->process_queue);
3775
3776 if (qlen < quota - work) {
3777 /*
3778 * Inline a custom version of __napi_complete().
3779 * only current cpu owns and manipulates this napi,
3780 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3781 * we can use a plain write instead of clear_bit(),
3782 * and we dont need an smp_mb() memory barrier.
3783 */
3784 list_del(&napi->poll_list);
3785 napi->state = 0;
3786
3787 quota = work + qlen;
3788 }
3789 rps_unlock(sd);
3790 }
3791 local_irq_enable();
3792
3793 return work;
3794 }
3795
3796 /**
3797 * __napi_schedule - schedule for receive
3798 * @n: entry to schedule
3799 *
3800 * The entry's receive function will be scheduled to run
3801 */
3802 void __napi_schedule(struct napi_struct *n)
3803 {
3804 unsigned long flags;
3805
3806 local_irq_save(flags);
3807 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3808 local_irq_restore(flags);
3809 }
3810 EXPORT_SYMBOL(__napi_schedule);
3811
3812 void __napi_complete(struct napi_struct *n)
3813 {
3814 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3815 BUG_ON(n->gro_list);
3816
3817 list_del(&n->poll_list);
3818 smp_mb__before_clear_bit();
3819 clear_bit(NAPI_STATE_SCHED, &n->state);
3820 }
3821 EXPORT_SYMBOL(__napi_complete);
3822
3823 void napi_complete(struct napi_struct *n)
3824 {
3825 unsigned long flags;
3826
3827 /*
3828 * don't let napi dequeue from the cpu poll list
3829 * just in case its running on a different cpu
3830 */
3831 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3832 return;
3833
3834 napi_gro_flush(n);
3835 local_irq_save(flags);
3836 __napi_complete(n);
3837 local_irq_restore(flags);
3838 }
3839 EXPORT_SYMBOL(napi_complete);
3840
3841 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3842 int (*poll)(struct napi_struct *, int), int weight)
3843 {
3844 INIT_LIST_HEAD(&napi->poll_list);
3845 napi->gro_count = 0;
3846 napi->gro_list = NULL;
3847 napi->skb = NULL;
3848 napi->poll = poll;
3849 napi->weight = weight;
3850 list_add(&napi->dev_list, &dev->napi_list);
3851 napi->dev = dev;
3852 #ifdef CONFIG_NETPOLL
3853 spin_lock_init(&napi->poll_lock);
3854 napi->poll_owner = -1;
3855 #endif
3856 set_bit(NAPI_STATE_SCHED, &napi->state);
3857 }
3858 EXPORT_SYMBOL(netif_napi_add);
3859
3860 void netif_napi_del(struct napi_struct *napi)
3861 {
3862 struct sk_buff *skb, *next;
3863
3864 list_del_init(&napi->dev_list);
3865 napi_free_frags(napi);
3866
3867 for (skb = napi->gro_list; skb; skb = next) {
3868 next = skb->next;
3869 skb->next = NULL;
3870 kfree_skb(skb);
3871 }
3872
3873 napi->gro_list = NULL;
3874 napi->gro_count = 0;
3875 }
3876 EXPORT_SYMBOL(netif_napi_del);
3877
3878 static void net_rx_action(struct softirq_action *h)
3879 {
3880 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3881 unsigned long time_limit = jiffies + 2;
3882 int budget = netdev_budget;
3883 void *have;
3884
3885 local_irq_disable();
3886
3887 while (!list_empty(&sd->poll_list)) {
3888 struct napi_struct *n;
3889 int work, weight;
3890
3891 /* If softirq window is exhuasted then punt.
3892 * Allow this to run for 2 jiffies since which will allow
3893 * an average latency of 1.5/HZ.
3894 */
3895 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3896 goto softnet_break;
3897
3898 local_irq_enable();
3899
3900 /* Even though interrupts have been re-enabled, this
3901 * access is safe because interrupts can only add new
3902 * entries to the tail of this list, and only ->poll()
3903 * calls can remove this head entry from the list.
3904 */
3905 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3906
3907 have = netpoll_poll_lock(n);
3908
3909 weight = n->weight;
3910
3911 /* This NAPI_STATE_SCHED test is for avoiding a race
3912 * with netpoll's poll_napi(). Only the entity which
3913 * obtains the lock and sees NAPI_STATE_SCHED set will
3914 * actually make the ->poll() call. Therefore we avoid
3915 * accidentally calling ->poll() when NAPI is not scheduled.
3916 */
3917 work = 0;
3918 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3919 work = n->poll(n, weight);
3920 trace_napi_poll(n);
3921 }
3922
3923 WARN_ON_ONCE(work > weight);
3924
3925 budget -= work;
3926
3927 local_irq_disable();
3928
3929 /* Drivers must not modify the NAPI state if they
3930 * consume the entire weight. In such cases this code
3931 * still "owns" the NAPI instance and therefore can
3932 * move the instance around on the list at-will.
3933 */
3934 if (unlikely(work == weight)) {
3935 if (unlikely(napi_disable_pending(n))) {
3936 local_irq_enable();
3937 napi_complete(n);
3938 local_irq_disable();
3939 } else
3940 list_move_tail(&n->poll_list, &sd->poll_list);
3941 }
3942
3943 netpoll_poll_unlock(have);
3944 }
3945 out:
3946 net_rps_action_and_irq_enable(sd);
3947
3948 #ifdef CONFIG_NET_DMA
3949 /*
3950 * There may not be any more sk_buffs coming right now, so push
3951 * any pending DMA copies to hardware
3952 */
3953 dma_issue_pending_all();
3954 #endif
3955
3956 return;
3957
3958 softnet_break:
3959 sd->time_squeeze++;
3960 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3961 goto out;
3962 }
3963
3964 static gifconf_func_t *gifconf_list[NPROTO];
3965
3966 /**
3967 * register_gifconf - register a SIOCGIF handler
3968 * @family: Address family
3969 * @gifconf: Function handler
3970 *
3971 * Register protocol dependent address dumping routines. The handler
3972 * that is passed must not be freed or reused until it has been replaced
3973 * by another handler.
3974 */
3975 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3976 {
3977 if (family >= NPROTO)
3978 return -EINVAL;
3979 gifconf_list[family] = gifconf;
3980 return 0;
3981 }
3982 EXPORT_SYMBOL(register_gifconf);
3983
3984
3985 /*
3986 * Map an interface index to its name (SIOCGIFNAME)
3987 */
3988
3989 /*
3990 * We need this ioctl for efficient implementation of the
3991 * if_indextoname() function required by the IPv6 API. Without
3992 * it, we would have to search all the interfaces to find a
3993 * match. --pb
3994 */
3995
3996 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3997 {
3998 struct net_device *dev;
3999 struct ifreq ifr;
4000
4001 /*
4002 * Fetch the caller's info block.
4003 */
4004
4005 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4006 return -EFAULT;
4007
4008 rcu_read_lock();
4009 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4010 if (!dev) {
4011 rcu_read_unlock();
4012 return -ENODEV;
4013 }
4014
4015 strcpy(ifr.ifr_name, dev->name);
4016 rcu_read_unlock();
4017
4018 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4019 return -EFAULT;
4020 return 0;
4021 }
4022
4023 /*
4024 * Perform a SIOCGIFCONF call. This structure will change
4025 * size eventually, and there is nothing I can do about it.
4026 * Thus we will need a 'compatibility mode'.
4027 */
4028
4029 static int dev_ifconf(struct net *net, char __user *arg)
4030 {
4031 struct ifconf ifc;
4032 struct net_device *dev;
4033 char __user *pos;
4034 int len;
4035 int total;
4036 int i;
4037
4038 /*
4039 * Fetch the caller's info block.
4040 */
4041
4042 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4043 return -EFAULT;
4044
4045 pos = ifc.ifc_buf;
4046 len = ifc.ifc_len;
4047
4048 /*
4049 * Loop over the interfaces, and write an info block for each.
4050 */
4051
4052 total = 0;
4053 for_each_netdev(net, dev) {
4054 for (i = 0; i < NPROTO; i++) {
4055 if (gifconf_list[i]) {
4056 int done;
4057 if (!pos)
4058 done = gifconf_list[i](dev, NULL, 0);
4059 else
4060 done = gifconf_list[i](dev, pos + total,
4061 len - total);
4062 if (done < 0)
4063 return -EFAULT;
4064 total += done;
4065 }
4066 }
4067 }
4068
4069 /*
4070 * All done. Write the updated control block back to the caller.
4071 */
4072 ifc.ifc_len = total;
4073
4074 /*
4075 * Both BSD and Solaris return 0 here, so we do too.
4076 */
4077 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4078 }
4079
4080 #ifdef CONFIG_PROC_FS
4081
4082 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4083
4084 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4085 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4086 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4087
4088 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4089 {
4090 struct net *net = seq_file_net(seq);
4091 struct net_device *dev;
4092 struct hlist_node *p;
4093 struct hlist_head *h;
4094 unsigned int count = 0, offset = get_offset(*pos);
4095
4096 h = &net->dev_name_head[get_bucket(*pos)];
4097 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4098 if (++count == offset)
4099 return dev;
4100 }
4101
4102 return NULL;
4103 }
4104
4105 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4106 {
4107 struct net_device *dev;
4108 unsigned int bucket;
4109
4110 do {
4111 dev = dev_from_same_bucket(seq, pos);
4112 if (dev)
4113 return dev;
4114
4115 bucket = get_bucket(*pos) + 1;
4116 *pos = set_bucket_offset(bucket, 1);
4117 } while (bucket < NETDEV_HASHENTRIES);
4118
4119 return NULL;
4120 }
4121
4122 /*
4123 * This is invoked by the /proc filesystem handler to display a device
4124 * in detail.
4125 */
4126 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4127 __acquires(RCU)
4128 {
4129 rcu_read_lock();
4130 if (!*pos)
4131 return SEQ_START_TOKEN;
4132
4133 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4134 return NULL;
4135
4136 return dev_from_bucket(seq, pos);
4137 }
4138
4139 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4140 {
4141 ++*pos;
4142 return dev_from_bucket(seq, pos);
4143 }
4144
4145 void dev_seq_stop(struct seq_file *seq, void *v)
4146 __releases(RCU)
4147 {
4148 rcu_read_unlock();
4149 }
4150
4151 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4152 {
4153 struct rtnl_link_stats64 temp;
4154 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4155
4156 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4157 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4158 dev->name, stats->rx_bytes, stats->rx_packets,
4159 stats->rx_errors,
4160 stats->rx_dropped + stats->rx_missed_errors,
4161 stats->rx_fifo_errors,
4162 stats->rx_length_errors + stats->rx_over_errors +
4163 stats->rx_crc_errors + stats->rx_frame_errors,
4164 stats->rx_compressed, stats->multicast,
4165 stats->tx_bytes, stats->tx_packets,
4166 stats->tx_errors, stats->tx_dropped,
4167 stats->tx_fifo_errors, stats->collisions,
4168 stats->tx_carrier_errors +
4169 stats->tx_aborted_errors +
4170 stats->tx_window_errors +
4171 stats->tx_heartbeat_errors,
4172 stats->tx_compressed);
4173 }
4174
4175 /*
4176 * Called from the PROCfs module. This now uses the new arbitrary sized
4177 * /proc/net interface to create /proc/net/dev
4178 */
4179 static int dev_seq_show(struct seq_file *seq, void *v)
4180 {
4181 if (v == SEQ_START_TOKEN)
4182 seq_puts(seq, "Inter-| Receive "
4183 " | Transmit\n"
4184 " face |bytes packets errs drop fifo frame "
4185 "compressed multicast|bytes packets errs "
4186 "drop fifo colls carrier compressed\n");
4187 else
4188 dev_seq_printf_stats(seq, v);
4189 return 0;
4190 }
4191
4192 static struct softnet_data *softnet_get_online(loff_t *pos)
4193 {
4194 struct softnet_data *sd = NULL;
4195
4196 while (*pos < nr_cpu_ids)
4197 if (cpu_online(*pos)) {
4198 sd = &per_cpu(softnet_data, *pos);
4199 break;
4200 } else
4201 ++*pos;
4202 return sd;
4203 }
4204
4205 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4206 {
4207 return softnet_get_online(pos);
4208 }
4209
4210 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4211 {
4212 ++*pos;
4213 return softnet_get_online(pos);
4214 }
4215
4216 static void softnet_seq_stop(struct seq_file *seq, void *v)
4217 {
4218 }
4219
4220 static int softnet_seq_show(struct seq_file *seq, void *v)
4221 {
4222 struct softnet_data *sd = v;
4223
4224 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4225 sd->processed, sd->dropped, sd->time_squeeze, 0,
4226 0, 0, 0, 0, /* was fastroute */
4227 sd->cpu_collision, sd->received_rps);
4228 return 0;
4229 }
4230
4231 static const struct seq_operations dev_seq_ops = {
4232 .start = dev_seq_start,
4233 .next = dev_seq_next,
4234 .stop = dev_seq_stop,
4235 .show = dev_seq_show,
4236 };
4237
4238 static int dev_seq_open(struct inode *inode, struct file *file)
4239 {
4240 return seq_open_net(inode, file, &dev_seq_ops,
4241 sizeof(struct seq_net_private));
4242 }
4243
4244 static const struct file_operations dev_seq_fops = {
4245 .owner = THIS_MODULE,
4246 .open = dev_seq_open,
4247 .read = seq_read,
4248 .llseek = seq_lseek,
4249 .release = seq_release_net,
4250 };
4251
4252 static const struct seq_operations softnet_seq_ops = {
4253 .start = softnet_seq_start,
4254 .next = softnet_seq_next,
4255 .stop = softnet_seq_stop,
4256 .show = softnet_seq_show,
4257 };
4258
4259 static int softnet_seq_open(struct inode *inode, struct file *file)
4260 {
4261 return seq_open(file, &softnet_seq_ops);
4262 }
4263
4264 static const struct file_operations softnet_seq_fops = {
4265 .owner = THIS_MODULE,
4266 .open = softnet_seq_open,
4267 .read = seq_read,
4268 .llseek = seq_lseek,
4269 .release = seq_release,
4270 };
4271
4272 static void *ptype_get_idx(loff_t pos)
4273 {
4274 struct packet_type *pt = NULL;
4275 loff_t i = 0;
4276 int t;
4277
4278 list_for_each_entry_rcu(pt, &ptype_all, list) {
4279 if (i == pos)
4280 return pt;
4281 ++i;
4282 }
4283
4284 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4285 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4286 if (i == pos)
4287 return pt;
4288 ++i;
4289 }
4290 }
4291 return NULL;
4292 }
4293
4294 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4295 __acquires(RCU)
4296 {
4297 rcu_read_lock();
4298 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4299 }
4300
4301 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4302 {
4303 struct packet_type *pt;
4304 struct list_head *nxt;
4305 int hash;
4306
4307 ++*pos;
4308 if (v == SEQ_START_TOKEN)
4309 return ptype_get_idx(0);
4310
4311 pt = v;
4312 nxt = pt->list.next;
4313 if (pt->type == htons(ETH_P_ALL)) {
4314 if (nxt != &ptype_all)
4315 goto found;
4316 hash = 0;
4317 nxt = ptype_base[0].next;
4318 } else
4319 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4320
4321 while (nxt == &ptype_base[hash]) {
4322 if (++hash >= PTYPE_HASH_SIZE)
4323 return NULL;
4324 nxt = ptype_base[hash].next;
4325 }
4326 found:
4327 return list_entry(nxt, struct packet_type, list);
4328 }
4329
4330 static void ptype_seq_stop(struct seq_file *seq, void *v)
4331 __releases(RCU)
4332 {
4333 rcu_read_unlock();
4334 }
4335
4336 static int ptype_seq_show(struct seq_file *seq, void *v)
4337 {
4338 struct packet_type *pt = v;
4339
4340 if (v == SEQ_START_TOKEN)
4341 seq_puts(seq, "Type Device Function\n");
4342 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4343 if (pt->type == htons(ETH_P_ALL))
4344 seq_puts(seq, "ALL ");
4345 else
4346 seq_printf(seq, "%04x", ntohs(pt->type));
4347
4348 seq_printf(seq, " %-8s %pF\n",
4349 pt->dev ? pt->dev->name : "", pt->func);
4350 }
4351
4352 return 0;
4353 }
4354
4355 static const struct seq_operations ptype_seq_ops = {
4356 .start = ptype_seq_start,
4357 .next = ptype_seq_next,
4358 .stop = ptype_seq_stop,
4359 .show = ptype_seq_show,
4360 };
4361
4362 static int ptype_seq_open(struct inode *inode, struct file *file)
4363 {
4364 return seq_open_net(inode, file, &ptype_seq_ops,
4365 sizeof(struct seq_net_private));
4366 }
4367
4368 static const struct file_operations ptype_seq_fops = {
4369 .owner = THIS_MODULE,
4370 .open = ptype_seq_open,
4371 .read = seq_read,
4372 .llseek = seq_lseek,
4373 .release = seq_release_net,
4374 };
4375
4376
4377 static int __net_init dev_proc_net_init(struct net *net)
4378 {
4379 int rc = -ENOMEM;
4380
4381 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4382 goto out;
4383 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4384 goto out_dev;
4385 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4386 goto out_softnet;
4387
4388 if (wext_proc_init(net))
4389 goto out_ptype;
4390 rc = 0;
4391 out:
4392 return rc;
4393 out_ptype:
4394 proc_net_remove(net, "ptype");
4395 out_softnet:
4396 proc_net_remove(net, "softnet_stat");
4397 out_dev:
4398 proc_net_remove(net, "dev");
4399 goto out;
4400 }
4401
4402 static void __net_exit dev_proc_net_exit(struct net *net)
4403 {
4404 wext_proc_exit(net);
4405
4406 proc_net_remove(net, "ptype");
4407 proc_net_remove(net, "softnet_stat");
4408 proc_net_remove(net, "dev");
4409 }
4410
4411 static struct pernet_operations __net_initdata dev_proc_ops = {
4412 .init = dev_proc_net_init,
4413 .exit = dev_proc_net_exit,
4414 };
4415
4416 static int __init dev_proc_init(void)
4417 {
4418 return register_pernet_subsys(&dev_proc_ops);
4419 }
4420 #else
4421 #define dev_proc_init() 0
4422 #endif /* CONFIG_PROC_FS */
4423
4424
4425 /**
4426 * netdev_set_master - set up master pointer
4427 * @slave: slave device
4428 * @master: new master device
4429 *
4430 * Changes the master device of the slave. Pass %NULL to break the
4431 * bonding. The caller must hold the RTNL semaphore. On a failure
4432 * a negative errno code is returned. On success the reference counts
4433 * are adjusted and the function returns zero.
4434 */
4435 int netdev_set_master(struct net_device *slave, struct net_device *master)
4436 {
4437 struct net_device *old = slave->master;
4438
4439 ASSERT_RTNL();
4440
4441 if (master) {
4442 if (old)
4443 return -EBUSY;
4444 dev_hold(master);
4445 }
4446
4447 slave->master = master;
4448
4449 if (old)
4450 dev_put(old);
4451 return 0;
4452 }
4453 EXPORT_SYMBOL(netdev_set_master);
4454
4455 /**
4456 * netdev_set_bond_master - set up bonding master/slave pair
4457 * @slave: slave device
4458 * @master: new master device
4459 *
4460 * Changes the master device of the slave. Pass %NULL to break the
4461 * bonding. The caller must hold the RTNL semaphore. On a failure
4462 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4463 * to the routing socket and the function returns zero.
4464 */
4465 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4466 {
4467 int err;
4468
4469 ASSERT_RTNL();
4470
4471 err = netdev_set_master(slave, master);
4472 if (err)
4473 return err;
4474 if (master)
4475 slave->flags |= IFF_SLAVE;
4476 else
4477 slave->flags &= ~IFF_SLAVE;
4478
4479 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4480 return 0;
4481 }
4482 EXPORT_SYMBOL(netdev_set_bond_master);
4483
4484 static void dev_change_rx_flags(struct net_device *dev, int flags)
4485 {
4486 const struct net_device_ops *ops = dev->netdev_ops;
4487
4488 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4489 ops->ndo_change_rx_flags(dev, flags);
4490 }
4491
4492 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4493 {
4494 unsigned int old_flags = dev->flags;
4495 uid_t uid;
4496 gid_t gid;
4497
4498 ASSERT_RTNL();
4499
4500 dev->flags |= IFF_PROMISC;
4501 dev->promiscuity += inc;
4502 if (dev->promiscuity == 0) {
4503 /*
4504 * Avoid overflow.
4505 * If inc causes overflow, untouch promisc and return error.
4506 */
4507 if (inc < 0)
4508 dev->flags &= ~IFF_PROMISC;
4509 else {
4510 dev->promiscuity -= inc;
4511 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4512 dev->name);
4513 return -EOVERFLOW;
4514 }
4515 }
4516 if (dev->flags != old_flags) {
4517 pr_info("device %s %s promiscuous mode\n",
4518 dev->name,
4519 dev->flags & IFF_PROMISC ? "entered" : "left");
4520 if (audit_enabled) {
4521 current_uid_gid(&uid, &gid);
4522 audit_log(current->audit_context, GFP_ATOMIC,
4523 AUDIT_ANOM_PROMISCUOUS,
4524 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4525 dev->name, (dev->flags & IFF_PROMISC),
4526 (old_flags & IFF_PROMISC),
4527 audit_get_loginuid(current),
4528 uid, gid,
4529 audit_get_sessionid(current));
4530 }
4531
4532 dev_change_rx_flags(dev, IFF_PROMISC);
4533 }
4534 return 0;
4535 }
4536
4537 /**
4538 * dev_set_promiscuity - update promiscuity count on a device
4539 * @dev: device
4540 * @inc: modifier
4541 *
4542 * Add or remove promiscuity from a device. While the count in the device
4543 * remains above zero the interface remains promiscuous. Once it hits zero
4544 * the device reverts back to normal filtering operation. A negative inc
4545 * value is used to drop promiscuity on the device.
4546 * Return 0 if successful or a negative errno code on error.
4547 */
4548 int dev_set_promiscuity(struct net_device *dev, int inc)
4549 {
4550 unsigned int old_flags = dev->flags;
4551 int err;
4552
4553 err = __dev_set_promiscuity(dev, inc);
4554 if (err < 0)
4555 return err;
4556 if (dev->flags != old_flags)
4557 dev_set_rx_mode(dev);
4558 return err;
4559 }
4560 EXPORT_SYMBOL(dev_set_promiscuity);
4561
4562 /**
4563 * dev_set_allmulti - update allmulti count on a device
4564 * @dev: device
4565 * @inc: modifier
4566 *
4567 * Add or remove reception of all multicast frames to a device. While the
4568 * count in the device remains above zero the interface remains listening
4569 * to all interfaces. Once it hits zero the device reverts back to normal
4570 * filtering operation. A negative @inc value is used to drop the counter
4571 * when releasing a resource needing all multicasts.
4572 * Return 0 if successful or a negative errno code on error.
4573 */
4574
4575 int dev_set_allmulti(struct net_device *dev, int inc)
4576 {
4577 unsigned int old_flags = dev->flags;
4578
4579 ASSERT_RTNL();
4580
4581 dev->flags |= IFF_ALLMULTI;
4582 dev->allmulti += inc;
4583 if (dev->allmulti == 0) {
4584 /*
4585 * Avoid overflow.
4586 * If inc causes overflow, untouch allmulti and return error.
4587 */
4588 if (inc < 0)
4589 dev->flags &= ~IFF_ALLMULTI;
4590 else {
4591 dev->allmulti -= inc;
4592 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4593 dev->name);
4594 return -EOVERFLOW;
4595 }
4596 }
4597 if (dev->flags ^ old_flags) {
4598 dev_change_rx_flags(dev, IFF_ALLMULTI);
4599 dev_set_rx_mode(dev);
4600 }
4601 return 0;
4602 }
4603 EXPORT_SYMBOL(dev_set_allmulti);
4604
4605 /*
4606 * Upload unicast and multicast address lists to device and
4607 * configure RX filtering. When the device doesn't support unicast
4608 * filtering it is put in promiscuous mode while unicast addresses
4609 * are present.
4610 */
4611 void __dev_set_rx_mode(struct net_device *dev)
4612 {
4613 const struct net_device_ops *ops = dev->netdev_ops;
4614
4615 /* dev_open will call this function so the list will stay sane. */
4616 if (!(dev->flags&IFF_UP))
4617 return;
4618
4619 if (!netif_device_present(dev))
4620 return;
4621
4622 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4623 /* Unicast addresses changes may only happen under the rtnl,
4624 * therefore calling __dev_set_promiscuity here is safe.
4625 */
4626 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4627 __dev_set_promiscuity(dev, 1);
4628 dev->uc_promisc = true;
4629 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4630 __dev_set_promiscuity(dev, -1);
4631 dev->uc_promisc = false;
4632 }
4633 }
4634
4635 if (ops->ndo_set_rx_mode)
4636 ops->ndo_set_rx_mode(dev);
4637 }
4638
4639 void dev_set_rx_mode(struct net_device *dev)
4640 {
4641 netif_addr_lock_bh(dev);
4642 __dev_set_rx_mode(dev);
4643 netif_addr_unlock_bh(dev);
4644 }
4645
4646 /**
4647 * dev_get_flags - get flags reported to userspace
4648 * @dev: device
4649 *
4650 * Get the combination of flag bits exported through APIs to userspace.
4651 */
4652 unsigned int dev_get_flags(const struct net_device *dev)
4653 {
4654 unsigned int flags;
4655
4656 flags = (dev->flags & ~(IFF_PROMISC |
4657 IFF_ALLMULTI |
4658 IFF_RUNNING |
4659 IFF_LOWER_UP |
4660 IFF_DORMANT)) |
4661 (dev->gflags & (IFF_PROMISC |
4662 IFF_ALLMULTI));
4663
4664 if (netif_running(dev)) {
4665 if (netif_oper_up(dev))
4666 flags |= IFF_RUNNING;
4667 if (netif_carrier_ok(dev))
4668 flags |= IFF_LOWER_UP;
4669 if (netif_dormant(dev))
4670 flags |= IFF_DORMANT;
4671 }
4672
4673 return flags;
4674 }
4675 EXPORT_SYMBOL(dev_get_flags);
4676
4677 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4678 {
4679 unsigned int old_flags = dev->flags;
4680 int ret;
4681
4682 ASSERT_RTNL();
4683
4684 /*
4685 * Set the flags on our device.
4686 */
4687
4688 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4689 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4690 IFF_AUTOMEDIA)) |
4691 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4692 IFF_ALLMULTI));
4693
4694 /*
4695 * Load in the correct multicast list now the flags have changed.
4696 */
4697
4698 if ((old_flags ^ flags) & IFF_MULTICAST)
4699 dev_change_rx_flags(dev, IFF_MULTICAST);
4700
4701 dev_set_rx_mode(dev);
4702
4703 /*
4704 * Have we downed the interface. We handle IFF_UP ourselves
4705 * according to user attempts to set it, rather than blindly
4706 * setting it.
4707 */
4708
4709 ret = 0;
4710 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4711 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4712
4713 if (!ret)
4714 dev_set_rx_mode(dev);
4715 }
4716
4717 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4718 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4719
4720 dev->gflags ^= IFF_PROMISC;
4721 dev_set_promiscuity(dev, inc);
4722 }
4723
4724 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4725 is important. Some (broken) drivers set IFF_PROMISC, when
4726 IFF_ALLMULTI is requested not asking us and not reporting.
4727 */
4728 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4729 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4730
4731 dev->gflags ^= IFF_ALLMULTI;
4732 dev_set_allmulti(dev, inc);
4733 }
4734
4735 return ret;
4736 }
4737
4738 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4739 {
4740 unsigned int changes = dev->flags ^ old_flags;
4741
4742 if (changes & IFF_UP) {
4743 if (dev->flags & IFF_UP)
4744 call_netdevice_notifiers(NETDEV_UP, dev);
4745 else
4746 call_netdevice_notifiers(NETDEV_DOWN, dev);
4747 }
4748
4749 if (dev->flags & IFF_UP &&
4750 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4751 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4752 }
4753
4754 /**
4755 * dev_change_flags - change device settings
4756 * @dev: device
4757 * @flags: device state flags
4758 *
4759 * Change settings on device based state flags. The flags are
4760 * in the userspace exported format.
4761 */
4762 int dev_change_flags(struct net_device *dev, unsigned int flags)
4763 {
4764 int ret;
4765 unsigned int changes, old_flags = dev->flags;
4766
4767 ret = __dev_change_flags(dev, flags);
4768 if (ret < 0)
4769 return ret;
4770
4771 changes = old_flags ^ dev->flags;
4772 if (changes)
4773 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4774
4775 __dev_notify_flags(dev, old_flags);
4776 return ret;
4777 }
4778 EXPORT_SYMBOL(dev_change_flags);
4779
4780 /**
4781 * dev_set_mtu - Change maximum transfer unit
4782 * @dev: device
4783 * @new_mtu: new transfer unit
4784 *
4785 * Change the maximum transfer size of the network device.
4786 */
4787 int dev_set_mtu(struct net_device *dev, int new_mtu)
4788 {
4789 const struct net_device_ops *ops = dev->netdev_ops;
4790 int err;
4791
4792 if (new_mtu == dev->mtu)
4793 return 0;
4794
4795 /* MTU must be positive. */
4796 if (new_mtu < 0)
4797 return -EINVAL;
4798
4799 if (!netif_device_present(dev))
4800 return -ENODEV;
4801
4802 err = 0;
4803 if (ops->ndo_change_mtu)
4804 err = ops->ndo_change_mtu(dev, new_mtu);
4805 else
4806 dev->mtu = new_mtu;
4807
4808 if (!err && dev->flags & IFF_UP)
4809 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4810 return err;
4811 }
4812 EXPORT_SYMBOL(dev_set_mtu);
4813
4814 /**
4815 * dev_set_group - Change group this device belongs to
4816 * @dev: device
4817 * @new_group: group this device should belong to
4818 */
4819 void dev_set_group(struct net_device *dev, int new_group)
4820 {
4821 dev->group = new_group;
4822 }
4823 EXPORT_SYMBOL(dev_set_group);
4824
4825 /**
4826 * dev_set_mac_address - Change Media Access Control Address
4827 * @dev: device
4828 * @sa: new address
4829 *
4830 * Change the hardware (MAC) address of the device
4831 */
4832 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4833 {
4834 const struct net_device_ops *ops = dev->netdev_ops;
4835 int err;
4836
4837 if (!ops->ndo_set_mac_address)
4838 return -EOPNOTSUPP;
4839 if (sa->sa_family != dev->type)
4840 return -EINVAL;
4841 if (!netif_device_present(dev))
4842 return -ENODEV;
4843 err = ops->ndo_set_mac_address(dev, sa);
4844 if (!err)
4845 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4846 add_device_randomness(dev->dev_addr, dev->addr_len);
4847 return err;
4848 }
4849 EXPORT_SYMBOL(dev_set_mac_address);
4850
4851 /*
4852 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4853 */
4854 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4855 {
4856 int err;
4857 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4858
4859 if (!dev)
4860 return -ENODEV;
4861
4862 switch (cmd) {
4863 case SIOCGIFFLAGS: /* Get interface flags */
4864 ifr->ifr_flags = (short) dev_get_flags(dev);
4865 return 0;
4866
4867 case SIOCGIFMETRIC: /* Get the metric on the interface
4868 (currently unused) */
4869 ifr->ifr_metric = 0;
4870 return 0;
4871
4872 case SIOCGIFMTU: /* Get the MTU of a device */
4873 ifr->ifr_mtu = dev->mtu;
4874 return 0;
4875
4876 case SIOCGIFHWADDR:
4877 if (!dev->addr_len)
4878 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4879 else
4880 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4881 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4882 ifr->ifr_hwaddr.sa_family = dev->type;
4883 return 0;
4884
4885 case SIOCGIFSLAVE:
4886 err = -EINVAL;
4887 break;
4888
4889 case SIOCGIFMAP:
4890 ifr->ifr_map.mem_start = dev->mem_start;
4891 ifr->ifr_map.mem_end = dev->mem_end;
4892 ifr->ifr_map.base_addr = dev->base_addr;
4893 ifr->ifr_map.irq = dev->irq;
4894 ifr->ifr_map.dma = dev->dma;
4895 ifr->ifr_map.port = dev->if_port;
4896 return 0;
4897
4898 case SIOCGIFINDEX:
4899 ifr->ifr_ifindex = dev->ifindex;
4900 return 0;
4901
4902 case SIOCGIFTXQLEN:
4903 ifr->ifr_qlen = dev->tx_queue_len;
4904 return 0;
4905
4906 default:
4907 /* dev_ioctl() should ensure this case
4908 * is never reached
4909 */
4910 WARN_ON(1);
4911 err = -ENOTTY;
4912 break;
4913
4914 }
4915 return err;
4916 }
4917
4918 /*
4919 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4920 */
4921 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4922 {
4923 int err;
4924 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4925 const struct net_device_ops *ops;
4926
4927 if (!dev)
4928 return -ENODEV;
4929
4930 ops = dev->netdev_ops;
4931
4932 switch (cmd) {
4933 case SIOCSIFFLAGS: /* Set interface flags */
4934 return dev_change_flags(dev, ifr->ifr_flags);
4935
4936 case SIOCSIFMETRIC: /* Set the metric on the interface
4937 (currently unused) */
4938 return -EOPNOTSUPP;
4939
4940 case SIOCSIFMTU: /* Set the MTU of a device */
4941 return dev_set_mtu(dev, ifr->ifr_mtu);
4942
4943 case SIOCSIFHWADDR:
4944 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4945
4946 case SIOCSIFHWBROADCAST:
4947 if (ifr->ifr_hwaddr.sa_family != dev->type)
4948 return -EINVAL;
4949 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4950 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4951 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4952 return 0;
4953
4954 case SIOCSIFMAP:
4955 if (ops->ndo_set_config) {
4956 if (!netif_device_present(dev))
4957 return -ENODEV;
4958 return ops->ndo_set_config(dev, &ifr->ifr_map);
4959 }
4960 return -EOPNOTSUPP;
4961
4962 case SIOCADDMULTI:
4963 if (!ops->ndo_set_rx_mode ||
4964 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4965 return -EINVAL;
4966 if (!netif_device_present(dev))
4967 return -ENODEV;
4968 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4969
4970 case SIOCDELMULTI:
4971 if (!ops->ndo_set_rx_mode ||
4972 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4973 return -EINVAL;
4974 if (!netif_device_present(dev))
4975 return -ENODEV;
4976 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4977
4978 case SIOCSIFTXQLEN:
4979 if (ifr->ifr_qlen < 0)
4980 return -EINVAL;
4981 dev->tx_queue_len = ifr->ifr_qlen;
4982 return 0;
4983
4984 case SIOCSIFNAME:
4985 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4986 return dev_change_name(dev, ifr->ifr_newname);
4987
4988 case SIOCSHWTSTAMP:
4989 err = net_hwtstamp_validate(ifr);
4990 if (err)
4991 return err;
4992 /* fall through */
4993
4994 /*
4995 * Unknown or private ioctl
4996 */
4997 default:
4998 if ((cmd >= SIOCDEVPRIVATE &&
4999 cmd <= SIOCDEVPRIVATE + 15) ||
5000 cmd == SIOCBONDENSLAVE ||
5001 cmd == SIOCBONDRELEASE ||
5002 cmd == SIOCBONDSETHWADDR ||
5003 cmd == SIOCBONDSLAVEINFOQUERY ||
5004 cmd == SIOCBONDINFOQUERY ||
5005 cmd == SIOCBONDCHANGEACTIVE ||
5006 cmd == SIOCGMIIPHY ||
5007 cmd == SIOCGMIIREG ||
5008 cmd == SIOCSMIIREG ||
5009 cmd == SIOCBRADDIF ||
5010 cmd == SIOCBRDELIF ||
5011 cmd == SIOCSHWTSTAMP ||
5012 cmd == SIOCWANDEV) {
5013 err = -EOPNOTSUPP;
5014 if (ops->ndo_do_ioctl) {
5015 if (netif_device_present(dev))
5016 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5017 else
5018 err = -ENODEV;
5019 }
5020 } else
5021 err = -EINVAL;
5022
5023 }
5024 return err;
5025 }
5026
5027 /*
5028 * This function handles all "interface"-type I/O control requests. The actual
5029 * 'doing' part of this is dev_ifsioc above.
5030 */
5031
5032 /**
5033 * dev_ioctl - network device ioctl
5034 * @net: the applicable net namespace
5035 * @cmd: command to issue
5036 * @arg: pointer to a struct ifreq in user space
5037 *
5038 * Issue ioctl functions to devices. This is normally called by the
5039 * user space syscall interfaces but can sometimes be useful for
5040 * other purposes. The return value is the return from the syscall if
5041 * positive or a negative errno code on error.
5042 */
5043
5044 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5045 {
5046 struct ifreq ifr;
5047 int ret;
5048 char *colon;
5049
5050 /* One special case: SIOCGIFCONF takes ifconf argument
5051 and requires shared lock, because it sleeps writing
5052 to user space.
5053 */
5054
5055 if (cmd == SIOCGIFCONF) {
5056 rtnl_lock();
5057 ret = dev_ifconf(net, (char __user *) arg);
5058 rtnl_unlock();
5059 return ret;
5060 }
5061 if (cmd == SIOCGIFNAME)
5062 return dev_ifname(net, (struct ifreq __user *)arg);
5063
5064 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5065 return -EFAULT;
5066
5067 ifr.ifr_name[IFNAMSIZ-1] = 0;
5068
5069 colon = strchr(ifr.ifr_name, ':');
5070 if (colon)
5071 *colon = 0;
5072
5073 /*
5074 * See which interface the caller is talking about.
5075 */
5076
5077 switch (cmd) {
5078 /*
5079 * These ioctl calls:
5080 * - can be done by all.
5081 * - atomic and do not require locking.
5082 * - return a value
5083 */
5084 case SIOCGIFFLAGS:
5085 case SIOCGIFMETRIC:
5086 case SIOCGIFMTU:
5087 case SIOCGIFHWADDR:
5088 case SIOCGIFSLAVE:
5089 case SIOCGIFMAP:
5090 case SIOCGIFINDEX:
5091 case SIOCGIFTXQLEN:
5092 dev_load(net, ifr.ifr_name);
5093 rcu_read_lock();
5094 ret = dev_ifsioc_locked(net, &ifr, cmd);
5095 rcu_read_unlock();
5096 if (!ret) {
5097 if (colon)
5098 *colon = ':';
5099 if (copy_to_user(arg, &ifr,
5100 sizeof(struct ifreq)))
5101 ret = -EFAULT;
5102 }
5103 return ret;
5104
5105 case SIOCETHTOOL:
5106 dev_load(net, ifr.ifr_name);
5107 rtnl_lock();
5108 ret = dev_ethtool(net, &ifr);
5109 rtnl_unlock();
5110 if (!ret) {
5111 if (colon)
5112 *colon = ':';
5113 if (copy_to_user(arg, &ifr,
5114 sizeof(struct ifreq)))
5115 ret = -EFAULT;
5116 }
5117 return ret;
5118
5119 /*
5120 * These ioctl calls:
5121 * - require superuser power.
5122 * - require strict serialization.
5123 * - return a value
5124 */
5125 case SIOCGMIIPHY:
5126 case SIOCGMIIREG:
5127 case SIOCSIFNAME:
5128 if (!capable(CAP_NET_ADMIN))
5129 return -EPERM;
5130 dev_load(net, ifr.ifr_name);
5131 rtnl_lock();
5132 ret = dev_ifsioc(net, &ifr, cmd);
5133 rtnl_unlock();
5134 if (!ret) {
5135 if (colon)
5136 *colon = ':';
5137 if (copy_to_user(arg, &ifr,
5138 sizeof(struct ifreq)))
5139 ret = -EFAULT;
5140 }
5141 return ret;
5142
5143 /*
5144 * These ioctl calls:
5145 * - require superuser power.
5146 * - require strict serialization.
5147 * - do not return a value
5148 */
5149 case SIOCSIFFLAGS:
5150 case SIOCSIFMETRIC:
5151 case SIOCSIFMTU:
5152 case SIOCSIFMAP:
5153 case SIOCSIFHWADDR:
5154 case SIOCSIFSLAVE:
5155 case SIOCADDMULTI:
5156 case SIOCDELMULTI:
5157 case SIOCSIFHWBROADCAST:
5158 case SIOCSIFTXQLEN:
5159 case SIOCSMIIREG:
5160 case SIOCBONDENSLAVE:
5161 case SIOCBONDRELEASE:
5162 case SIOCBONDSETHWADDR:
5163 case SIOCBONDCHANGEACTIVE:
5164 case SIOCBRADDIF:
5165 case SIOCBRDELIF:
5166 case SIOCSHWTSTAMP:
5167 if (!capable(CAP_NET_ADMIN))
5168 return -EPERM;
5169 /* fall through */
5170 case SIOCBONDSLAVEINFOQUERY:
5171 case SIOCBONDINFOQUERY:
5172 dev_load(net, ifr.ifr_name);
5173 rtnl_lock();
5174 ret = dev_ifsioc(net, &ifr, cmd);
5175 rtnl_unlock();
5176 return ret;
5177
5178 case SIOCGIFMEM:
5179 /* Get the per device memory space. We can add this but
5180 * currently do not support it */
5181 case SIOCSIFMEM:
5182 /* Set the per device memory buffer space.
5183 * Not applicable in our case */
5184 case SIOCSIFLINK:
5185 return -ENOTTY;
5186
5187 /*
5188 * Unknown or private ioctl.
5189 */
5190 default:
5191 if (cmd == SIOCWANDEV ||
5192 (cmd >= SIOCDEVPRIVATE &&
5193 cmd <= SIOCDEVPRIVATE + 15)) {
5194 dev_load(net, ifr.ifr_name);
5195 rtnl_lock();
5196 ret = dev_ifsioc(net, &ifr, cmd);
5197 rtnl_unlock();
5198 if (!ret && copy_to_user(arg, &ifr,
5199 sizeof(struct ifreq)))
5200 ret = -EFAULT;
5201 return ret;
5202 }
5203 /* Take care of Wireless Extensions */
5204 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5205 return wext_handle_ioctl(net, &ifr, cmd, arg);
5206 return -ENOTTY;
5207 }
5208 }
5209
5210
5211 /**
5212 * dev_new_index - allocate an ifindex
5213 * @net: the applicable net namespace
5214 *
5215 * Returns a suitable unique value for a new device interface
5216 * number. The caller must hold the rtnl semaphore or the
5217 * dev_base_lock to be sure it remains unique.
5218 */
5219 static int dev_new_index(struct net *net)
5220 {
5221 static int ifindex;
5222 for (;;) {
5223 if (++ifindex <= 0)
5224 ifindex = 1;
5225 if (!__dev_get_by_index(net, ifindex))
5226 return ifindex;
5227 }
5228 }
5229
5230 /* Delayed registration/unregisteration */
5231 static LIST_HEAD(net_todo_list);
5232
5233 static void net_set_todo(struct net_device *dev)
5234 {
5235 list_add_tail(&dev->todo_list, &net_todo_list);
5236 }
5237
5238 static void rollback_registered_many(struct list_head *head)
5239 {
5240 struct net_device *dev, *tmp;
5241
5242 BUG_ON(dev_boot_phase);
5243 ASSERT_RTNL();
5244
5245 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5246 /* Some devices call without registering
5247 * for initialization unwind. Remove those
5248 * devices and proceed with the remaining.
5249 */
5250 if (dev->reg_state == NETREG_UNINITIALIZED) {
5251 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5252 dev->name, dev);
5253
5254 WARN_ON(1);
5255 list_del(&dev->unreg_list);
5256 continue;
5257 }
5258 dev->dismantle = true;
5259 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5260 }
5261
5262 /* If device is running, close it first. */
5263 dev_close_many(head);
5264
5265 list_for_each_entry(dev, head, unreg_list) {
5266 /* And unlink it from device chain. */
5267 unlist_netdevice(dev);
5268
5269 dev->reg_state = NETREG_UNREGISTERING;
5270 }
5271
5272 synchronize_net();
5273
5274 list_for_each_entry(dev, head, unreg_list) {
5275 /* Shutdown queueing discipline. */
5276 dev_shutdown(dev);
5277
5278
5279 /* Notify protocols, that we are about to destroy
5280 this device. They should clean all the things.
5281 */
5282 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5283
5284 if (!dev->rtnl_link_ops ||
5285 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5286 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5287
5288 /*
5289 * Flush the unicast and multicast chains
5290 */
5291 dev_uc_flush(dev);
5292 dev_mc_flush(dev);
5293
5294 if (dev->netdev_ops->ndo_uninit)
5295 dev->netdev_ops->ndo_uninit(dev);
5296
5297 /* Notifier chain MUST detach us from master device. */
5298 WARN_ON(dev->master);
5299
5300 /* Remove entries from kobject tree */
5301 netdev_unregister_kobject(dev);
5302 }
5303
5304 /* Process any work delayed until the end of the batch */
5305 dev = list_first_entry(head, struct net_device, unreg_list);
5306 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5307
5308 synchronize_net();
5309
5310 list_for_each_entry(dev, head, unreg_list)
5311 dev_put(dev);
5312 }
5313
5314 static void rollback_registered(struct net_device *dev)
5315 {
5316 LIST_HEAD(single);
5317
5318 list_add(&dev->unreg_list, &single);
5319 rollback_registered_many(&single);
5320 list_del(&single);
5321 }
5322
5323 static netdev_features_t netdev_fix_features(struct net_device *dev,
5324 netdev_features_t features)
5325 {
5326 /* Fix illegal checksum combinations */
5327 if ((features & NETIF_F_HW_CSUM) &&
5328 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5329 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5330 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5331 }
5332
5333 /* Fix illegal SG+CSUM combinations. */
5334 if ((features & NETIF_F_SG) &&
5335 !(features & NETIF_F_ALL_CSUM)) {
5336 netdev_dbg(dev,
5337 "Dropping NETIF_F_SG since no checksum feature.\n");
5338 features &= ~NETIF_F_SG;
5339 }
5340
5341 /* TSO requires that SG is present as well. */
5342 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5343 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5344 features &= ~NETIF_F_ALL_TSO;
5345 }
5346
5347 /* TSO ECN requires that TSO is present as well. */
5348 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5349 features &= ~NETIF_F_TSO_ECN;
5350
5351 /* Software GSO depends on SG. */
5352 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5353 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5354 features &= ~NETIF_F_GSO;
5355 }
5356
5357 /* UFO needs SG and checksumming */
5358 if (features & NETIF_F_UFO) {
5359 /* maybe split UFO into V4 and V6? */
5360 if (!((features & NETIF_F_GEN_CSUM) ||
5361 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5362 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5363 netdev_dbg(dev,
5364 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5365 features &= ~NETIF_F_UFO;
5366 }
5367
5368 if (!(features & NETIF_F_SG)) {
5369 netdev_dbg(dev,
5370 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5371 features &= ~NETIF_F_UFO;
5372 }
5373 }
5374
5375 return features;
5376 }
5377
5378 int __netdev_update_features(struct net_device *dev)
5379 {
5380 netdev_features_t features;
5381 int err = 0;
5382
5383 ASSERT_RTNL();
5384
5385 features = netdev_get_wanted_features(dev);
5386
5387 if (dev->netdev_ops->ndo_fix_features)
5388 features = dev->netdev_ops->ndo_fix_features(dev, features);
5389
5390 /* driver might be less strict about feature dependencies */
5391 features = netdev_fix_features(dev, features);
5392
5393 if (dev->features == features)
5394 return 0;
5395
5396 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5397 &dev->features, &features);
5398
5399 if (dev->netdev_ops->ndo_set_features)
5400 err = dev->netdev_ops->ndo_set_features(dev, features);
5401
5402 if (unlikely(err < 0)) {
5403 netdev_err(dev,
5404 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5405 err, &features, &dev->features);
5406 return -1;
5407 }
5408
5409 if (!err)
5410 dev->features = features;
5411
5412 return 1;
5413 }
5414
5415 /**
5416 * netdev_update_features - recalculate device features
5417 * @dev: the device to check
5418 *
5419 * Recalculate dev->features set and send notifications if it
5420 * has changed. Should be called after driver or hardware dependent
5421 * conditions might have changed that influence the features.
5422 */
5423 void netdev_update_features(struct net_device *dev)
5424 {
5425 if (__netdev_update_features(dev))
5426 netdev_features_change(dev);
5427 }
5428 EXPORT_SYMBOL(netdev_update_features);
5429
5430 /**
5431 * netdev_change_features - recalculate device features
5432 * @dev: the device to check
5433 *
5434 * Recalculate dev->features set and send notifications even
5435 * if they have not changed. Should be called instead of
5436 * netdev_update_features() if also dev->vlan_features might
5437 * have changed to allow the changes to be propagated to stacked
5438 * VLAN devices.
5439 */
5440 void netdev_change_features(struct net_device *dev)
5441 {
5442 __netdev_update_features(dev);
5443 netdev_features_change(dev);
5444 }
5445 EXPORT_SYMBOL(netdev_change_features);
5446
5447 /**
5448 * netif_stacked_transfer_operstate - transfer operstate
5449 * @rootdev: the root or lower level device to transfer state from
5450 * @dev: the device to transfer operstate to
5451 *
5452 * Transfer operational state from root to device. This is normally
5453 * called when a stacking relationship exists between the root
5454 * device and the device(a leaf device).
5455 */
5456 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5457 struct net_device *dev)
5458 {
5459 if (rootdev->operstate == IF_OPER_DORMANT)
5460 netif_dormant_on(dev);
5461 else
5462 netif_dormant_off(dev);
5463
5464 if (netif_carrier_ok(rootdev)) {
5465 if (!netif_carrier_ok(dev))
5466 netif_carrier_on(dev);
5467 } else {
5468 if (netif_carrier_ok(dev))
5469 netif_carrier_off(dev);
5470 }
5471 }
5472 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5473
5474 #ifdef CONFIG_RPS
5475 static int netif_alloc_rx_queues(struct net_device *dev)
5476 {
5477 unsigned int i, count = dev->num_rx_queues;
5478 struct netdev_rx_queue *rx;
5479
5480 BUG_ON(count < 1);
5481
5482 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5483 if (!rx) {
5484 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5485 return -ENOMEM;
5486 }
5487 dev->_rx = rx;
5488
5489 for (i = 0; i < count; i++)
5490 rx[i].dev = dev;
5491 return 0;
5492 }
5493 #endif
5494
5495 static void netdev_init_one_queue(struct net_device *dev,
5496 struct netdev_queue *queue, void *_unused)
5497 {
5498 /* Initialize queue lock */
5499 spin_lock_init(&queue->_xmit_lock);
5500 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5501 queue->xmit_lock_owner = -1;
5502 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5503 queue->dev = dev;
5504 #ifdef CONFIG_BQL
5505 dql_init(&queue->dql, HZ);
5506 #endif
5507 }
5508
5509 static int netif_alloc_netdev_queues(struct net_device *dev)
5510 {
5511 unsigned int count = dev->num_tx_queues;
5512 struct netdev_queue *tx;
5513
5514 BUG_ON(count < 1);
5515
5516 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5517 if (!tx) {
5518 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5519 return -ENOMEM;
5520 }
5521 dev->_tx = tx;
5522
5523 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5524 spin_lock_init(&dev->tx_global_lock);
5525
5526 return 0;
5527 }
5528
5529 /**
5530 * register_netdevice - register a network device
5531 * @dev: device to register
5532 *
5533 * Take a completed network device structure and add it to the kernel
5534 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5535 * chain. 0 is returned on success. A negative errno code is returned
5536 * on a failure to set up the device, or if the name is a duplicate.
5537 *
5538 * Callers must hold the rtnl semaphore. You may want
5539 * register_netdev() instead of this.
5540 *
5541 * BUGS:
5542 * The locking appears insufficient to guarantee two parallel registers
5543 * will not get the same name.
5544 */
5545
5546 int register_netdevice(struct net_device *dev)
5547 {
5548 int ret;
5549 struct net *net = dev_net(dev);
5550
5551 BUG_ON(dev_boot_phase);
5552 ASSERT_RTNL();
5553
5554 might_sleep();
5555
5556 /* When net_device's are persistent, this will be fatal. */
5557 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5558 BUG_ON(!net);
5559
5560 spin_lock_init(&dev->addr_list_lock);
5561 netdev_set_addr_lockdep_class(dev);
5562
5563 dev->iflink = -1;
5564
5565 ret = dev_get_valid_name(dev, dev->name);
5566 if (ret < 0)
5567 goto out;
5568
5569 /* Init, if this function is available */
5570 if (dev->netdev_ops->ndo_init) {
5571 ret = dev->netdev_ops->ndo_init(dev);
5572 if (ret) {
5573 if (ret > 0)
5574 ret = -EIO;
5575 goto out;
5576 }
5577 }
5578
5579 dev->ifindex = dev_new_index(net);
5580 if (dev->iflink == -1)
5581 dev->iflink = dev->ifindex;
5582
5583 /* Transfer changeable features to wanted_features and enable
5584 * software offloads (GSO and GRO).
5585 */
5586 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5587 dev->features |= NETIF_F_SOFT_FEATURES;
5588 dev->wanted_features = dev->features & dev->hw_features;
5589
5590 /* Turn on no cache copy if HW is doing checksum */
5591 if (!(dev->flags & IFF_LOOPBACK)) {
5592 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5593 if (dev->features & NETIF_F_ALL_CSUM) {
5594 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5595 dev->features |= NETIF_F_NOCACHE_COPY;
5596 }
5597 }
5598
5599 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5600 */
5601 dev->vlan_features |= NETIF_F_HIGHDMA;
5602
5603 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5604 ret = notifier_to_errno(ret);
5605 if (ret)
5606 goto err_uninit;
5607
5608 ret = netdev_register_kobject(dev);
5609 if (ret)
5610 goto err_uninit;
5611 dev->reg_state = NETREG_REGISTERED;
5612
5613 __netdev_update_features(dev);
5614
5615 /*
5616 * Default initial state at registry is that the
5617 * device is present.
5618 */
5619
5620 set_bit(__LINK_STATE_PRESENT, &dev->state);
5621
5622 dev_init_scheduler(dev);
5623 dev_hold(dev);
5624 list_netdevice(dev);
5625 add_device_randomness(dev->dev_addr, dev->addr_len);
5626
5627 /* Notify protocols, that a new device appeared. */
5628 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5629 ret = notifier_to_errno(ret);
5630 if (ret) {
5631 rollback_registered(dev);
5632 dev->reg_state = NETREG_UNREGISTERED;
5633 }
5634 /*
5635 * Prevent userspace races by waiting until the network
5636 * device is fully setup before sending notifications.
5637 */
5638 if (!dev->rtnl_link_ops ||
5639 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5640 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5641
5642 out:
5643 return ret;
5644
5645 err_uninit:
5646 if (dev->netdev_ops->ndo_uninit)
5647 dev->netdev_ops->ndo_uninit(dev);
5648 goto out;
5649 }
5650 EXPORT_SYMBOL(register_netdevice);
5651
5652 /**
5653 * init_dummy_netdev - init a dummy network device for NAPI
5654 * @dev: device to init
5655 *
5656 * This takes a network device structure and initialize the minimum
5657 * amount of fields so it can be used to schedule NAPI polls without
5658 * registering a full blown interface. This is to be used by drivers
5659 * that need to tie several hardware interfaces to a single NAPI
5660 * poll scheduler due to HW limitations.
5661 */
5662 int init_dummy_netdev(struct net_device *dev)
5663 {
5664 /* Clear everything. Note we don't initialize spinlocks
5665 * are they aren't supposed to be taken by any of the
5666 * NAPI code and this dummy netdev is supposed to be
5667 * only ever used for NAPI polls
5668 */
5669 memset(dev, 0, sizeof(struct net_device));
5670
5671 /* make sure we BUG if trying to hit standard
5672 * register/unregister code path
5673 */
5674 dev->reg_state = NETREG_DUMMY;
5675
5676 /* NAPI wants this */
5677 INIT_LIST_HEAD(&dev->napi_list);
5678
5679 /* a dummy interface is started by default */
5680 set_bit(__LINK_STATE_PRESENT, &dev->state);
5681 set_bit(__LINK_STATE_START, &dev->state);
5682
5683 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5684 * because users of this 'device' dont need to change
5685 * its refcount.
5686 */
5687
5688 return 0;
5689 }
5690 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5691
5692
5693 /**
5694 * register_netdev - register a network device
5695 * @dev: device to register
5696 *
5697 * Take a completed network device structure and add it to the kernel
5698 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5699 * chain. 0 is returned on success. A negative errno code is returned
5700 * on a failure to set up the device, or if the name is a duplicate.
5701 *
5702 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5703 * and expands the device name if you passed a format string to
5704 * alloc_netdev.
5705 */
5706 int register_netdev(struct net_device *dev)
5707 {
5708 int err;
5709
5710 rtnl_lock();
5711 err = register_netdevice(dev);
5712 rtnl_unlock();
5713 return err;
5714 }
5715 EXPORT_SYMBOL(register_netdev);
5716
5717 int netdev_refcnt_read(const struct net_device *dev)
5718 {
5719 int i, refcnt = 0;
5720
5721 for_each_possible_cpu(i)
5722 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5723 return refcnt;
5724 }
5725 EXPORT_SYMBOL(netdev_refcnt_read);
5726
5727 /**
5728 * netdev_wait_allrefs - wait until all references are gone.
5729 *
5730 * This is called when unregistering network devices.
5731 *
5732 * Any protocol or device that holds a reference should register
5733 * for netdevice notification, and cleanup and put back the
5734 * reference if they receive an UNREGISTER event.
5735 * We can get stuck here if buggy protocols don't correctly
5736 * call dev_put.
5737 */
5738 static void netdev_wait_allrefs(struct net_device *dev)
5739 {
5740 unsigned long rebroadcast_time, warning_time;
5741 int refcnt;
5742
5743 linkwatch_forget_dev(dev);
5744
5745 rebroadcast_time = warning_time = jiffies;
5746 refcnt = netdev_refcnt_read(dev);
5747
5748 while (refcnt != 0) {
5749 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5750 rtnl_lock();
5751
5752 /* Rebroadcast unregister notification */
5753 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5754 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5755 * should have already handle it the first time */
5756
5757 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5758 &dev->state)) {
5759 /* We must not have linkwatch events
5760 * pending on unregister. If this
5761 * happens, we simply run the queue
5762 * unscheduled, resulting in a noop
5763 * for this device.
5764 */
5765 linkwatch_run_queue();
5766 }
5767
5768 __rtnl_unlock();
5769
5770 rebroadcast_time = jiffies;
5771 }
5772
5773 msleep(250);
5774
5775 refcnt = netdev_refcnt_read(dev);
5776
5777 if (time_after(jiffies, warning_time + 10 * HZ)) {
5778 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5779 dev->name, refcnt);
5780 warning_time = jiffies;
5781 }
5782 }
5783 }
5784
5785 /* The sequence is:
5786 *
5787 * rtnl_lock();
5788 * ...
5789 * register_netdevice(x1);
5790 * register_netdevice(x2);
5791 * ...
5792 * unregister_netdevice(y1);
5793 * unregister_netdevice(y2);
5794 * ...
5795 * rtnl_unlock();
5796 * free_netdev(y1);
5797 * free_netdev(y2);
5798 *
5799 * We are invoked by rtnl_unlock().
5800 * This allows us to deal with problems:
5801 * 1) We can delete sysfs objects which invoke hotplug
5802 * without deadlocking with linkwatch via keventd.
5803 * 2) Since we run with the RTNL semaphore not held, we can sleep
5804 * safely in order to wait for the netdev refcnt to drop to zero.
5805 *
5806 * We must not return until all unregister events added during
5807 * the interval the lock was held have been completed.
5808 */
5809 void netdev_run_todo(void)
5810 {
5811 struct list_head list;
5812
5813 /* Snapshot list, allow later requests */
5814 list_replace_init(&net_todo_list, &list);
5815
5816 __rtnl_unlock();
5817
5818 /* Wait for rcu callbacks to finish before attempting to drain
5819 * the device list. This usually avoids a 250ms wait.
5820 */
5821 if (!list_empty(&list))
5822 rcu_barrier();
5823
5824 while (!list_empty(&list)) {
5825 struct net_device *dev
5826 = list_first_entry(&list, struct net_device, todo_list);
5827 list_del(&dev->todo_list);
5828
5829 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5830 pr_err("network todo '%s' but state %d\n",
5831 dev->name, dev->reg_state);
5832 dump_stack();
5833 continue;
5834 }
5835
5836 dev->reg_state = NETREG_UNREGISTERED;
5837
5838 on_each_cpu(flush_backlog, dev, 1);
5839
5840 netdev_wait_allrefs(dev);
5841
5842 /* paranoia */
5843 BUG_ON(netdev_refcnt_read(dev));
5844 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5845 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5846 WARN_ON(dev->dn_ptr);
5847
5848 if (dev->destructor)
5849 dev->destructor(dev);
5850
5851 /* Free network device */
5852 kobject_put(&dev->dev.kobj);
5853 }
5854 }
5855
5856 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5857 * fields in the same order, with only the type differing.
5858 */
5859 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5860 const struct net_device_stats *netdev_stats)
5861 {
5862 #if BITS_PER_LONG == 64
5863 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5864 memcpy(stats64, netdev_stats, sizeof(*stats64));
5865 #else
5866 size_t i, n = sizeof(*stats64) / sizeof(u64);
5867 const unsigned long *src = (const unsigned long *)netdev_stats;
5868 u64 *dst = (u64 *)stats64;
5869
5870 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5871 sizeof(*stats64) / sizeof(u64));
5872 for (i = 0; i < n; i++)
5873 dst[i] = src[i];
5874 #endif
5875 }
5876 EXPORT_SYMBOL(netdev_stats_to_stats64);
5877
5878 /**
5879 * dev_get_stats - get network device statistics
5880 * @dev: device to get statistics from
5881 * @storage: place to store stats
5882 *
5883 * Get network statistics from device. Return @storage.
5884 * The device driver may provide its own method by setting
5885 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5886 * otherwise the internal statistics structure is used.
5887 */
5888 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5889 struct rtnl_link_stats64 *storage)
5890 {
5891 const struct net_device_ops *ops = dev->netdev_ops;
5892
5893 if (ops->ndo_get_stats64) {
5894 memset(storage, 0, sizeof(*storage));
5895 ops->ndo_get_stats64(dev, storage);
5896 } else if (ops->ndo_get_stats) {
5897 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5898 } else {
5899 netdev_stats_to_stats64(storage, &dev->stats);
5900 }
5901 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5902 return storage;
5903 }
5904 EXPORT_SYMBOL(dev_get_stats);
5905
5906 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5907 {
5908 struct netdev_queue *queue = dev_ingress_queue(dev);
5909
5910 #ifdef CONFIG_NET_CLS_ACT
5911 if (queue)
5912 return queue;
5913 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5914 if (!queue)
5915 return NULL;
5916 netdev_init_one_queue(dev, queue, NULL);
5917 queue->qdisc = &noop_qdisc;
5918 queue->qdisc_sleeping = &noop_qdisc;
5919 rcu_assign_pointer(dev->ingress_queue, queue);
5920 #endif
5921 return queue;
5922 }
5923
5924 /**
5925 * alloc_netdev_mqs - allocate network device
5926 * @sizeof_priv: size of private data to allocate space for
5927 * @name: device name format string
5928 * @setup: callback to initialize device
5929 * @txqs: the number of TX subqueues to allocate
5930 * @rxqs: the number of RX subqueues to allocate
5931 *
5932 * Allocates a struct net_device with private data area for driver use
5933 * and performs basic initialization. Also allocates subquue structs
5934 * for each queue on the device.
5935 */
5936 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5937 void (*setup)(struct net_device *),
5938 unsigned int txqs, unsigned int rxqs)
5939 {
5940 struct net_device *dev;
5941 size_t alloc_size;
5942 struct net_device *p;
5943
5944 BUG_ON(strlen(name) >= sizeof(dev->name));
5945
5946 if (txqs < 1) {
5947 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5948 return NULL;
5949 }
5950
5951 #ifdef CONFIG_RPS
5952 if (rxqs < 1) {
5953 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5954 return NULL;
5955 }
5956 #endif
5957
5958 alloc_size = sizeof(struct net_device);
5959 if (sizeof_priv) {
5960 /* ensure 32-byte alignment of private area */
5961 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5962 alloc_size += sizeof_priv;
5963 }
5964 /* ensure 32-byte alignment of whole construct */
5965 alloc_size += NETDEV_ALIGN - 1;
5966
5967 p = kzalloc(alloc_size, GFP_KERNEL);
5968 if (!p) {
5969 pr_err("alloc_netdev: Unable to allocate device\n");
5970 return NULL;
5971 }
5972
5973 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5974 dev->padded = (char *)dev - (char *)p;
5975
5976 dev->pcpu_refcnt = alloc_percpu(int);
5977 if (!dev->pcpu_refcnt)
5978 goto free_p;
5979
5980 if (dev_addr_init(dev))
5981 goto free_pcpu;
5982
5983 dev_mc_init(dev);
5984 dev_uc_init(dev);
5985
5986 dev_net_set(dev, &init_net);
5987
5988 dev->gso_max_size = GSO_MAX_SIZE;
5989
5990 INIT_LIST_HEAD(&dev->napi_list);
5991 INIT_LIST_HEAD(&dev->unreg_list);
5992 INIT_LIST_HEAD(&dev->link_watch_list);
5993 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5994 setup(dev);
5995
5996 dev->num_tx_queues = txqs;
5997 dev->real_num_tx_queues = txqs;
5998 if (netif_alloc_netdev_queues(dev))
5999 goto free_all;
6000
6001 #ifdef CONFIG_RPS
6002 dev->num_rx_queues = rxqs;
6003 dev->real_num_rx_queues = rxqs;
6004 if (netif_alloc_rx_queues(dev))
6005 goto free_all;
6006 #endif
6007
6008 strcpy(dev->name, name);
6009 dev->group = INIT_NETDEV_GROUP;
6010 return dev;
6011
6012 free_all:
6013 free_netdev(dev);
6014 return NULL;
6015
6016 free_pcpu:
6017 free_percpu(dev->pcpu_refcnt);
6018 kfree(dev->_tx);
6019 #ifdef CONFIG_RPS
6020 kfree(dev->_rx);
6021 #endif
6022
6023 free_p:
6024 kfree(p);
6025 return NULL;
6026 }
6027 EXPORT_SYMBOL(alloc_netdev_mqs);
6028
6029 /**
6030 * free_netdev - free network device
6031 * @dev: device
6032 *
6033 * This function does the last stage of destroying an allocated device
6034 * interface. The reference to the device object is released.
6035 * If this is the last reference then it will be freed.
6036 */
6037 void free_netdev(struct net_device *dev)
6038 {
6039 struct napi_struct *p, *n;
6040
6041 release_net(dev_net(dev));
6042
6043 kfree(dev->_tx);
6044 #ifdef CONFIG_RPS
6045 kfree(dev->_rx);
6046 #endif
6047
6048 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6049
6050 /* Flush device addresses */
6051 dev_addr_flush(dev);
6052
6053 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6054 netif_napi_del(p);
6055
6056 free_percpu(dev->pcpu_refcnt);
6057 dev->pcpu_refcnt = NULL;
6058
6059 /* Compatibility with error handling in drivers */
6060 if (dev->reg_state == NETREG_UNINITIALIZED) {
6061 kfree((char *)dev - dev->padded);
6062 return;
6063 }
6064
6065 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6066 dev->reg_state = NETREG_RELEASED;
6067
6068 /* will free via device release */
6069 put_device(&dev->dev);
6070 }
6071 EXPORT_SYMBOL(free_netdev);
6072
6073 /**
6074 * synchronize_net - Synchronize with packet receive processing
6075 *
6076 * Wait for packets currently being received to be done.
6077 * Does not block later packets from starting.
6078 */
6079 void synchronize_net(void)
6080 {
6081 might_sleep();
6082 if (rtnl_is_locked())
6083 synchronize_rcu_expedited();
6084 else
6085 synchronize_rcu();
6086 }
6087 EXPORT_SYMBOL(synchronize_net);
6088
6089 /**
6090 * unregister_netdevice_queue - remove device from the kernel
6091 * @dev: device
6092 * @head: list
6093 *
6094 * This function shuts down a device interface and removes it
6095 * from the kernel tables.
6096 * If head not NULL, device is queued to be unregistered later.
6097 *
6098 * Callers must hold the rtnl semaphore. You may want
6099 * unregister_netdev() instead of this.
6100 */
6101
6102 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6103 {
6104 ASSERT_RTNL();
6105
6106 if (head) {
6107 list_move_tail(&dev->unreg_list, head);
6108 } else {
6109 rollback_registered(dev);
6110 /* Finish processing unregister after unlock */
6111 net_set_todo(dev);
6112 }
6113 }
6114 EXPORT_SYMBOL(unregister_netdevice_queue);
6115
6116 /**
6117 * unregister_netdevice_many - unregister many devices
6118 * @head: list of devices
6119 */
6120 void unregister_netdevice_many(struct list_head *head)
6121 {
6122 struct net_device *dev;
6123
6124 if (!list_empty(head)) {
6125 rollback_registered_many(head);
6126 list_for_each_entry(dev, head, unreg_list)
6127 net_set_todo(dev);
6128 }
6129 }
6130 EXPORT_SYMBOL(unregister_netdevice_many);
6131
6132 /**
6133 * unregister_netdev - remove device from the kernel
6134 * @dev: device
6135 *
6136 * This function shuts down a device interface and removes it
6137 * from the kernel tables.
6138 *
6139 * This is just a wrapper for unregister_netdevice that takes
6140 * the rtnl semaphore. In general you want to use this and not
6141 * unregister_netdevice.
6142 */
6143 void unregister_netdev(struct net_device *dev)
6144 {
6145 rtnl_lock();
6146 unregister_netdevice(dev);
6147 rtnl_unlock();
6148 }
6149 EXPORT_SYMBOL(unregister_netdev);
6150
6151 /**
6152 * dev_change_net_namespace - move device to different nethost namespace
6153 * @dev: device
6154 * @net: network namespace
6155 * @pat: If not NULL name pattern to try if the current device name
6156 * is already taken in the destination network namespace.
6157 *
6158 * This function shuts down a device interface and moves it
6159 * to a new network namespace. On success 0 is returned, on
6160 * a failure a netagive errno code is returned.
6161 *
6162 * Callers must hold the rtnl semaphore.
6163 */
6164
6165 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6166 {
6167 int err;
6168
6169 ASSERT_RTNL();
6170
6171 /* Don't allow namespace local devices to be moved. */
6172 err = -EINVAL;
6173 if (dev->features & NETIF_F_NETNS_LOCAL)
6174 goto out;
6175
6176 /* Ensure the device has been registrered */
6177 err = -EINVAL;
6178 if (dev->reg_state != NETREG_REGISTERED)
6179 goto out;
6180
6181 /* Get out if there is nothing todo */
6182 err = 0;
6183 if (net_eq(dev_net(dev), net))
6184 goto out;
6185
6186 /* Pick the destination device name, and ensure
6187 * we can use it in the destination network namespace.
6188 */
6189 err = -EEXIST;
6190 if (__dev_get_by_name(net, dev->name)) {
6191 /* We get here if we can't use the current device name */
6192 if (!pat)
6193 goto out;
6194 if (dev_get_valid_name(dev, pat) < 0)
6195 goto out;
6196 }
6197
6198 /*
6199 * And now a mini version of register_netdevice unregister_netdevice.
6200 */
6201
6202 /* If device is running close it first. */
6203 dev_close(dev);
6204
6205 /* And unlink it from device chain */
6206 err = -ENODEV;
6207 unlist_netdevice(dev);
6208
6209 synchronize_net();
6210
6211 /* Shutdown queueing discipline. */
6212 dev_shutdown(dev);
6213
6214 /* Notify protocols, that we are about to destroy
6215 this device. They should clean all the things.
6216
6217 Note that dev->reg_state stays at NETREG_REGISTERED.
6218 This is wanted because this way 8021q and macvlan know
6219 the device is just moving and can keep their slaves up.
6220 */
6221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6222 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6223 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6224
6225 /*
6226 * Flush the unicast and multicast chains
6227 */
6228 dev_uc_flush(dev);
6229 dev_mc_flush(dev);
6230
6231 /* Actually switch the network namespace */
6232 dev_net_set(dev, net);
6233
6234 /* If there is an ifindex conflict assign a new one */
6235 if (__dev_get_by_index(net, dev->ifindex)) {
6236 int iflink = (dev->iflink == dev->ifindex);
6237 dev->ifindex = dev_new_index(net);
6238 if (iflink)
6239 dev->iflink = dev->ifindex;
6240 }
6241
6242 /* Fixup kobjects */
6243 err = device_rename(&dev->dev, dev->name);
6244 WARN_ON(err);
6245
6246 /* Add the device back in the hashes */
6247 list_netdevice(dev);
6248
6249 /* Notify protocols, that a new device appeared. */
6250 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6251
6252 /*
6253 * Prevent userspace races by waiting until the network
6254 * device is fully setup before sending notifications.
6255 */
6256 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6257
6258 synchronize_net();
6259 err = 0;
6260 out:
6261 return err;
6262 }
6263 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6264
6265 static int dev_cpu_callback(struct notifier_block *nfb,
6266 unsigned long action,
6267 void *ocpu)
6268 {
6269 struct sk_buff **list_skb;
6270 struct sk_buff *skb;
6271 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6272 struct softnet_data *sd, *oldsd;
6273
6274 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6275 return NOTIFY_OK;
6276
6277 local_irq_disable();
6278 cpu = smp_processor_id();
6279 sd = &per_cpu(softnet_data, cpu);
6280 oldsd = &per_cpu(softnet_data, oldcpu);
6281
6282 /* Find end of our completion_queue. */
6283 list_skb = &sd->completion_queue;
6284 while (*list_skb)
6285 list_skb = &(*list_skb)->next;
6286 /* Append completion queue from offline CPU. */
6287 *list_skb = oldsd->completion_queue;
6288 oldsd->completion_queue = NULL;
6289
6290 /* Append output queue from offline CPU. */
6291 if (oldsd->output_queue) {
6292 *sd->output_queue_tailp = oldsd->output_queue;
6293 sd->output_queue_tailp = oldsd->output_queue_tailp;
6294 oldsd->output_queue = NULL;
6295 oldsd->output_queue_tailp = &oldsd->output_queue;
6296 }
6297 /* Append NAPI poll list from offline CPU. */
6298 if (!list_empty(&oldsd->poll_list)) {
6299 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6300 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6301 }
6302
6303 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6304 local_irq_enable();
6305
6306 /* Process offline CPU's input_pkt_queue */
6307 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6308 netif_rx(skb);
6309 input_queue_head_incr(oldsd);
6310 }
6311 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6312 netif_rx(skb);
6313 input_queue_head_incr(oldsd);
6314 }
6315
6316 return NOTIFY_OK;
6317 }
6318
6319
6320 /**
6321 * netdev_increment_features - increment feature set by one
6322 * @all: current feature set
6323 * @one: new feature set
6324 * @mask: mask feature set
6325 *
6326 * Computes a new feature set after adding a device with feature set
6327 * @one to the master device with current feature set @all. Will not
6328 * enable anything that is off in @mask. Returns the new feature set.
6329 */
6330 netdev_features_t netdev_increment_features(netdev_features_t all,
6331 netdev_features_t one, netdev_features_t mask)
6332 {
6333 if (mask & NETIF_F_GEN_CSUM)
6334 mask |= NETIF_F_ALL_CSUM;
6335 mask |= NETIF_F_VLAN_CHALLENGED;
6336
6337 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6338 all &= one | ~NETIF_F_ALL_FOR_ALL;
6339
6340 /* If one device supports hw checksumming, set for all. */
6341 if (all & NETIF_F_GEN_CSUM)
6342 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6343
6344 return all;
6345 }
6346 EXPORT_SYMBOL(netdev_increment_features);
6347
6348 static struct hlist_head *netdev_create_hash(void)
6349 {
6350 int i;
6351 struct hlist_head *hash;
6352
6353 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6354 if (hash != NULL)
6355 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6356 INIT_HLIST_HEAD(&hash[i]);
6357
6358 return hash;
6359 }
6360
6361 /* Initialize per network namespace state */
6362 static int __net_init netdev_init(struct net *net)
6363 {
6364 if (net != &init_net)
6365 INIT_LIST_HEAD(&net->dev_base_head);
6366
6367 net->dev_name_head = netdev_create_hash();
6368 if (net->dev_name_head == NULL)
6369 goto err_name;
6370
6371 net->dev_index_head = netdev_create_hash();
6372 if (net->dev_index_head == NULL)
6373 goto err_idx;
6374
6375 return 0;
6376
6377 err_idx:
6378 kfree(net->dev_name_head);
6379 err_name:
6380 return -ENOMEM;
6381 }
6382
6383 /**
6384 * netdev_drivername - network driver for the device
6385 * @dev: network device
6386 *
6387 * Determine network driver for device.
6388 */
6389 const char *netdev_drivername(const struct net_device *dev)
6390 {
6391 const struct device_driver *driver;
6392 const struct device *parent;
6393 const char *empty = "";
6394
6395 parent = dev->dev.parent;
6396 if (!parent)
6397 return empty;
6398
6399 driver = parent->driver;
6400 if (driver && driver->name)
6401 return driver->name;
6402 return empty;
6403 }
6404
6405 int __netdev_printk(const char *level, const struct net_device *dev,
6406 struct va_format *vaf)
6407 {
6408 int r;
6409
6410 if (dev && dev->dev.parent)
6411 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6412 netdev_name(dev), vaf);
6413 else if (dev)
6414 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6415 else
6416 r = printk("%s(NULL net_device): %pV", level, vaf);
6417
6418 return r;
6419 }
6420 EXPORT_SYMBOL(__netdev_printk);
6421
6422 int netdev_printk(const char *level, const struct net_device *dev,
6423 const char *format, ...)
6424 {
6425 struct va_format vaf;
6426 va_list args;
6427 int r;
6428
6429 va_start(args, format);
6430
6431 vaf.fmt = format;
6432 vaf.va = &args;
6433
6434 r = __netdev_printk(level, dev, &vaf);
6435 va_end(args);
6436
6437 return r;
6438 }
6439 EXPORT_SYMBOL(netdev_printk);
6440
6441 #define define_netdev_printk_level(func, level) \
6442 int func(const struct net_device *dev, const char *fmt, ...) \
6443 { \
6444 int r; \
6445 struct va_format vaf; \
6446 va_list args; \
6447 \
6448 va_start(args, fmt); \
6449 \
6450 vaf.fmt = fmt; \
6451 vaf.va = &args; \
6452 \
6453 r = __netdev_printk(level, dev, &vaf); \
6454 va_end(args); \
6455 \
6456 return r; \
6457 } \
6458 EXPORT_SYMBOL(func);
6459
6460 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6461 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6462 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6463 define_netdev_printk_level(netdev_err, KERN_ERR);
6464 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6465 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6466 define_netdev_printk_level(netdev_info, KERN_INFO);
6467
6468 static void __net_exit netdev_exit(struct net *net)
6469 {
6470 kfree(net->dev_name_head);
6471 kfree(net->dev_index_head);
6472 }
6473
6474 static struct pernet_operations __net_initdata netdev_net_ops = {
6475 .init = netdev_init,
6476 .exit = netdev_exit,
6477 };
6478
6479 static void __net_exit default_device_exit(struct net *net)
6480 {
6481 struct net_device *dev, *aux;
6482 /*
6483 * Push all migratable network devices back to the
6484 * initial network namespace
6485 */
6486 rtnl_lock();
6487 for_each_netdev_safe(net, dev, aux) {
6488 int err;
6489 char fb_name[IFNAMSIZ];
6490
6491 /* Ignore unmoveable devices (i.e. loopback) */
6492 if (dev->features & NETIF_F_NETNS_LOCAL)
6493 continue;
6494
6495 /* Leave virtual devices for the generic cleanup */
6496 if (dev->rtnl_link_ops)
6497 continue;
6498
6499 /* Push remaining network devices to init_net */
6500 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6501 err = dev_change_net_namespace(dev, &init_net, fb_name);
6502 if (err) {
6503 pr_emerg("%s: failed to move %s to init_net: %d\n",
6504 __func__, dev->name, err);
6505 BUG();
6506 }
6507 }
6508 rtnl_unlock();
6509 }
6510
6511 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6512 {
6513 /* At exit all network devices most be removed from a network
6514 * namespace. Do this in the reverse order of registration.
6515 * Do this across as many network namespaces as possible to
6516 * improve batching efficiency.
6517 */
6518 struct net_device *dev;
6519 struct net *net;
6520 LIST_HEAD(dev_kill_list);
6521
6522 rtnl_lock();
6523 list_for_each_entry(net, net_list, exit_list) {
6524 for_each_netdev_reverse(net, dev) {
6525 if (dev->rtnl_link_ops)
6526 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6527 else
6528 unregister_netdevice_queue(dev, &dev_kill_list);
6529 }
6530 }
6531 unregister_netdevice_many(&dev_kill_list);
6532 list_del(&dev_kill_list);
6533 rtnl_unlock();
6534 }
6535
6536 static struct pernet_operations __net_initdata default_device_ops = {
6537 .exit = default_device_exit,
6538 .exit_batch = default_device_exit_batch,
6539 };
6540
6541 /*
6542 * Initialize the DEV module. At boot time this walks the device list and
6543 * unhooks any devices that fail to initialise (normally hardware not
6544 * present) and leaves us with a valid list of present and active devices.
6545 *
6546 */
6547
6548 /*
6549 * This is called single threaded during boot, so no need
6550 * to take the rtnl semaphore.
6551 */
6552 static int __init net_dev_init(void)
6553 {
6554 int i, rc = -ENOMEM;
6555
6556 BUG_ON(!dev_boot_phase);
6557
6558 if (dev_proc_init())
6559 goto out;
6560
6561 if (netdev_kobject_init())
6562 goto out;
6563
6564 INIT_LIST_HEAD(&ptype_all);
6565 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6566 INIT_LIST_HEAD(&ptype_base[i]);
6567
6568 if (register_pernet_subsys(&netdev_net_ops))
6569 goto out;
6570
6571 /*
6572 * Initialise the packet receive queues.
6573 */
6574
6575 for_each_possible_cpu(i) {
6576 struct softnet_data *sd = &per_cpu(softnet_data, i);
6577
6578 memset(sd, 0, sizeof(*sd));
6579 skb_queue_head_init(&sd->input_pkt_queue);
6580 skb_queue_head_init(&sd->process_queue);
6581 sd->completion_queue = NULL;
6582 INIT_LIST_HEAD(&sd->poll_list);
6583 sd->output_queue = NULL;
6584 sd->output_queue_tailp = &sd->output_queue;
6585 #ifdef CONFIG_RPS
6586 sd->csd.func = rps_trigger_softirq;
6587 sd->csd.info = sd;
6588 sd->csd.flags = 0;
6589 sd->cpu = i;
6590 #endif
6591
6592 sd->backlog.poll = process_backlog;
6593 sd->backlog.weight = weight_p;
6594 sd->backlog.gro_list = NULL;
6595 sd->backlog.gro_count = 0;
6596 }
6597
6598 dev_boot_phase = 0;
6599
6600 /* The loopback device is special if any other network devices
6601 * is present in a network namespace the loopback device must
6602 * be present. Since we now dynamically allocate and free the
6603 * loopback device ensure this invariant is maintained by
6604 * keeping the loopback device as the first device on the
6605 * list of network devices. Ensuring the loopback devices
6606 * is the first device that appears and the last network device
6607 * that disappears.
6608 */
6609 if (register_pernet_device(&loopback_net_ops))
6610 goto out;
6611
6612 if (register_pernet_device(&default_device_ops))
6613 goto out;
6614
6615 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6616 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6617
6618 hotcpu_notifier(dev_cpu_callback, 0);
6619 dst_init();
6620 dev_mcast_init();
6621 rc = 0;
6622 out:
6623 return rc;
6624 }
6625
6626 subsys_initcall(net_dev_init);
6627
6628 static int __init initialize_hashrnd(void)
6629 {
6630 get_random_bytes(&hashrnd, sizeof(hashrnd));
6631 return 0;
6632 }
6633
6634 late_initcall_sync(initialize_hashrnd);
6635
This page took 0.16557 seconds and 6 git commands to generate.