Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 */
757
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
760 {
761 struct net_device *dev;
762
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 struct net_device *dev;
775
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev, *ret = NULL;
788
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
795 }
796 rcu_read_unlock();
797 return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800
801 /**
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
806 *
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
810 */
811
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
814 {
815 struct net_device *dev, *ret;
816
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
822 }
823 }
824 return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827
828 /**
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
831 *
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
835 */
836 int dev_valid_name(const char *name)
837 {
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
844
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
849 }
850 return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853
854 /**
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
876
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
879 /*
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
883 */
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
886
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
891
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
897
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
902 }
903
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
906 }
907
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
912
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
916 */
917 return -ENFILE;
918 }
919
920 /**
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
924 *
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
932 */
933
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
939
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 struct net *net;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955
956 if (!dev_valid_name(name))
957 return -EINVAL;
958
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
965
966 return 0;
967 }
968
969 /**
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
973 *
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
976 */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
983
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
986
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
990
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
993
994 memcpy(oldname, dev->name, IFNAMSIZ);
995
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
999
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1005 }
1006
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1010
1011 synchronize_rcu();
1012
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1016
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1019
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1030 }
1031 }
1032
1033 return err;
1034 }
1035
1036 /**
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1041 *
1042 * Set ifalias for a device,
1043 */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 ASSERT_RTNL();
1047
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1050
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1055 }
1056 return 0;
1057 }
1058
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1062
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1065 }
1066
1067
1068 /**
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1071 *
1072 * Called to indicate a device has changed features.
1073 */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079
1080 /**
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1087 */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 }
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102
1103 /**
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1107 *
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1111 */
1112
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 struct net_device *dev;
1116
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1120
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1130
1131 ASSERT_RTNL();
1132
1133 /*
1134 * Is it even present?
1135 */
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1138
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Call device private open method
1146 */
1147 set_bit(__LINK_STATE_START, &dev->state);
1148
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1151
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1154
1155 /*
1156 * If it went open OK then:
1157 */
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 /*
1163 * Set the flags.
1164 */
1165 dev->flags |= IFF_UP;
1166
1167 /*
1168 * Enable NET_DMA
1169 */
1170 net_dmaengine_get();
1171
1172 /*
1173 * Initialize multicasting status
1174 */
1175 dev_set_rx_mode(dev);
1176
1177 /*
1178 * Wakeup transmit queue engine
1179 */
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 /*
1203 * Is it already up?
1204 */
1205 if (dev->flags & IFF_UP)
1206 return 0;
1207
1208 /*
1209 * Open device
1210 */
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1214
1215 /*
1216 * ... and announce new interface.
1217 */
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224
1225 static int __dev_close(struct net_device *dev)
1226 {
1227 const struct net_device_ops *ops = dev->netdev_ops;
1228
1229 ASSERT_RTNL();
1230 might_sleep();
1231
1232 /*
1233 * Tell people we are going down, so that they can
1234 * prepare to death, when device is still operating.
1235 */
1236 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1237
1238 clear_bit(__LINK_STATE_START, &dev->state);
1239
1240 /* Synchronize to scheduled poll. We cannot touch poll list,
1241 * it can be even on different cpu. So just clear netif_running().
1242 *
1243 * dev->stop() will invoke napi_disable() on all of it's
1244 * napi_struct instances on this device.
1245 */
1246 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1247
1248 dev_deactivate(dev);
1249
1250 /*
1251 * Call the device specific close. This cannot fail.
1252 * Only if device is UP
1253 *
1254 * We allow it to be called even after a DETACH hot-plug
1255 * event.
1256 */
1257 if (ops->ndo_stop)
1258 ops->ndo_stop(dev);
1259
1260 /*
1261 * Device is now down.
1262 */
1263
1264 dev->flags &= ~IFF_UP;
1265
1266 /*
1267 * Shutdown NET_DMA
1268 */
1269 net_dmaengine_put();
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * dev_close - shutdown an interface.
1276 * @dev: device to shutdown
1277 *
1278 * This function moves an active device into down state. A
1279 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1280 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1281 * chain.
1282 */
1283 int dev_close(struct net_device *dev)
1284 {
1285 if (!(dev->flags & IFF_UP))
1286 return 0;
1287
1288 __dev_close(dev);
1289
1290 /*
1291 * Tell people we are down
1292 */
1293 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1294 call_netdevice_notifiers(NETDEV_DOWN, dev);
1295
1296 return 0;
1297 }
1298 EXPORT_SYMBOL(dev_close);
1299
1300
1301 /**
1302 * dev_disable_lro - disable Large Receive Offload on a device
1303 * @dev: device
1304 *
1305 * Disable Large Receive Offload (LRO) on a net device. Must be
1306 * called under RTNL. This is needed if received packets may be
1307 * forwarded to another interface.
1308 */
1309 void dev_disable_lro(struct net_device *dev)
1310 {
1311 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1312 dev->ethtool_ops->set_flags) {
1313 u32 flags = dev->ethtool_ops->get_flags(dev);
1314 if (flags & ETH_FLAG_LRO) {
1315 flags &= ~ETH_FLAG_LRO;
1316 dev->ethtool_ops->set_flags(dev, flags);
1317 }
1318 }
1319 WARN_ON(dev->features & NETIF_F_LRO);
1320 }
1321 EXPORT_SYMBOL(dev_disable_lro);
1322
1323
1324 static int dev_boot_phase = 1;
1325
1326 /*
1327 * Device change register/unregister. These are not inline or static
1328 * as we export them to the world.
1329 */
1330
1331 /**
1332 * register_netdevice_notifier - register a network notifier block
1333 * @nb: notifier
1334 *
1335 * Register a notifier to be called when network device events occur.
1336 * The notifier passed is linked into the kernel structures and must
1337 * not be reused until it has been unregistered. A negative errno code
1338 * is returned on a failure.
1339 *
1340 * When registered all registration and up events are replayed
1341 * to the new notifier to allow device to have a race free
1342 * view of the network device list.
1343 */
1344
1345 int register_netdevice_notifier(struct notifier_block *nb)
1346 {
1347 struct net_device *dev;
1348 struct net_device *last;
1349 struct net *net;
1350 int err;
1351
1352 rtnl_lock();
1353 err = raw_notifier_chain_register(&netdev_chain, nb);
1354 if (err)
1355 goto unlock;
1356 if (dev_boot_phase)
1357 goto unlock;
1358 for_each_net(net) {
1359 for_each_netdev(net, dev) {
1360 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1361 err = notifier_to_errno(err);
1362 if (err)
1363 goto rollback;
1364
1365 if (!(dev->flags & IFF_UP))
1366 continue;
1367
1368 nb->notifier_call(nb, NETDEV_UP, dev);
1369 }
1370 }
1371
1372 unlock:
1373 rtnl_unlock();
1374 return err;
1375
1376 rollback:
1377 last = dev;
1378 for_each_net(net) {
1379 for_each_netdev(net, dev) {
1380 if (dev == last)
1381 break;
1382
1383 if (dev->flags & IFF_UP) {
1384 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1385 nb->notifier_call(nb, NETDEV_DOWN, dev);
1386 }
1387 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1388 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1389 }
1390 }
1391
1392 raw_notifier_chain_unregister(&netdev_chain, nb);
1393 goto unlock;
1394 }
1395 EXPORT_SYMBOL(register_netdevice_notifier);
1396
1397 /**
1398 * unregister_netdevice_notifier - unregister a network notifier block
1399 * @nb: notifier
1400 *
1401 * Unregister a notifier previously registered by
1402 * register_netdevice_notifier(). The notifier is unlinked into the
1403 * kernel structures and may then be reused. A negative errno code
1404 * is returned on a failure.
1405 */
1406
1407 int unregister_netdevice_notifier(struct notifier_block *nb)
1408 {
1409 int err;
1410
1411 rtnl_lock();
1412 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1413 rtnl_unlock();
1414 return err;
1415 }
1416 EXPORT_SYMBOL(unregister_netdevice_notifier);
1417
1418 /**
1419 * call_netdevice_notifiers - call all network notifier blocks
1420 * @val: value passed unmodified to notifier function
1421 * @dev: net_device pointer passed unmodified to notifier function
1422 *
1423 * Call all network notifier blocks. Parameters and return value
1424 * are as for raw_notifier_call_chain().
1425 */
1426
1427 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1428 {
1429 ASSERT_RTNL();
1430 return raw_notifier_call_chain(&netdev_chain, val, dev);
1431 }
1432
1433 /* When > 0 there are consumers of rx skb time stamps */
1434 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1435
1436 void net_enable_timestamp(void)
1437 {
1438 atomic_inc(&netstamp_needed);
1439 }
1440 EXPORT_SYMBOL(net_enable_timestamp);
1441
1442 void net_disable_timestamp(void)
1443 {
1444 atomic_dec(&netstamp_needed);
1445 }
1446 EXPORT_SYMBOL(net_disable_timestamp);
1447
1448 static inline void net_timestamp_set(struct sk_buff *skb)
1449 {
1450 if (atomic_read(&netstamp_needed))
1451 __net_timestamp(skb);
1452 else
1453 skb->tstamp.tv64 = 0;
1454 }
1455
1456 static inline void net_timestamp_check(struct sk_buff *skb)
1457 {
1458 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 }
1461
1462 /**
1463 * dev_forward_skb - loopback an skb to another netif
1464 *
1465 * @dev: destination network device
1466 * @skb: buffer to forward
1467 *
1468 * return values:
1469 * NET_RX_SUCCESS (no congestion)
1470 * NET_RX_DROP (packet was dropped, but freed)
1471 *
1472 * dev_forward_skb can be used for injecting an skb from the
1473 * start_xmit function of one device into the receive queue
1474 * of another device.
1475 *
1476 * The receiving device may be in another namespace, so
1477 * we have to clear all information in the skb that could
1478 * impact namespace isolation.
1479 */
1480 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1481 {
1482 skb_orphan(skb);
1483 nf_reset(skb);
1484
1485 if (unlikely(!(dev->flags & IFF_UP) ||
1486 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1487 atomic_long_inc(&dev->rx_dropped);
1488 kfree_skb(skb);
1489 return NET_RX_DROP;
1490 }
1491 skb_set_dev(skb, dev);
1492 skb->tstamp.tv64 = 0;
1493 skb->pkt_type = PACKET_HOST;
1494 skb->protocol = eth_type_trans(skb, dev);
1495 return netif_rx(skb);
1496 }
1497 EXPORT_SYMBOL_GPL(dev_forward_skb);
1498
1499 /*
1500 * Support routine. Sends outgoing frames to any network
1501 * taps currently in use.
1502 */
1503
1504 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1505 {
1506 struct packet_type *ptype;
1507
1508 #ifdef CONFIG_NET_CLS_ACT
1509 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1510 net_timestamp_set(skb);
1511 #else
1512 net_timestamp_set(skb);
1513 #endif
1514
1515 rcu_read_lock();
1516 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1517 /* Never send packets back to the socket
1518 * they originated from - MvS (miquels@drinkel.ow.org)
1519 */
1520 if ((ptype->dev == dev || !ptype->dev) &&
1521 (ptype->af_packet_priv == NULL ||
1522 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1523 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1524 if (!skb2)
1525 break;
1526
1527 /* skb->nh should be correctly
1528 set by sender, so that the second statement is
1529 just protection against buggy protocols.
1530 */
1531 skb_reset_mac_header(skb2);
1532
1533 if (skb_network_header(skb2) < skb2->data ||
1534 skb2->network_header > skb2->tail) {
1535 if (net_ratelimit())
1536 printk(KERN_CRIT "protocol %04x is "
1537 "buggy, dev %s\n",
1538 ntohs(skb2->protocol),
1539 dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551 /*
1552 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1553 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1554 */
1555 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1556 {
1557 int rc;
1558
1559 if (txq < 1 || txq > dev->num_tx_queues)
1560 return -EINVAL;
1561
1562 if (dev->reg_state == NETREG_REGISTERED) {
1563 ASSERT_RTNL();
1564
1565 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1566 txq);
1567 if (rc)
1568 return rc;
1569
1570 if (txq < dev->real_num_tx_queues)
1571 qdisc_reset_all_tx_gt(dev, txq);
1572 }
1573
1574 dev->real_num_tx_queues = txq;
1575 return 0;
1576 }
1577 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1578
1579 #ifdef CONFIG_RPS
1580 /**
1581 * netif_set_real_num_rx_queues - set actual number of RX queues used
1582 * @dev: Network device
1583 * @rxq: Actual number of RX queues
1584 *
1585 * This must be called either with the rtnl_lock held or before
1586 * registration of the net device. Returns 0 on success, or a
1587 * negative error code. If called before registration, it always
1588 * succeeds.
1589 */
1590 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1591 {
1592 int rc;
1593
1594 if (rxq < 1 || rxq > dev->num_rx_queues)
1595 return -EINVAL;
1596
1597 if (dev->reg_state == NETREG_REGISTERED) {
1598 ASSERT_RTNL();
1599
1600 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1601 rxq);
1602 if (rc)
1603 return rc;
1604 }
1605
1606 dev->real_num_rx_queues = rxq;
1607 return 0;
1608 }
1609 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1610 #endif
1611
1612 static inline void __netif_reschedule(struct Qdisc *q)
1613 {
1614 struct softnet_data *sd;
1615 unsigned long flags;
1616
1617 local_irq_save(flags);
1618 sd = &__get_cpu_var(softnet_data);
1619 q->next_sched = NULL;
1620 *sd->output_queue_tailp = q;
1621 sd->output_queue_tailp = &q->next_sched;
1622 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1623 local_irq_restore(flags);
1624 }
1625
1626 void __netif_schedule(struct Qdisc *q)
1627 {
1628 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1629 __netif_reschedule(q);
1630 }
1631 EXPORT_SYMBOL(__netif_schedule);
1632
1633 void dev_kfree_skb_irq(struct sk_buff *skb)
1634 {
1635 if (atomic_dec_and_test(&skb->users)) {
1636 struct softnet_data *sd;
1637 unsigned long flags;
1638
1639 local_irq_save(flags);
1640 sd = &__get_cpu_var(softnet_data);
1641 skb->next = sd->completion_queue;
1642 sd->completion_queue = skb;
1643 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1644 local_irq_restore(flags);
1645 }
1646 }
1647 EXPORT_SYMBOL(dev_kfree_skb_irq);
1648
1649 void dev_kfree_skb_any(struct sk_buff *skb)
1650 {
1651 if (in_irq() || irqs_disabled())
1652 dev_kfree_skb_irq(skb);
1653 else
1654 dev_kfree_skb(skb);
1655 }
1656 EXPORT_SYMBOL(dev_kfree_skb_any);
1657
1658
1659 /**
1660 * netif_device_detach - mark device as removed
1661 * @dev: network device
1662 *
1663 * Mark device as removed from system and therefore no longer available.
1664 */
1665 void netif_device_detach(struct net_device *dev)
1666 {
1667 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1668 netif_running(dev)) {
1669 netif_tx_stop_all_queues(dev);
1670 }
1671 }
1672 EXPORT_SYMBOL(netif_device_detach);
1673
1674 /**
1675 * netif_device_attach - mark device as attached
1676 * @dev: network device
1677 *
1678 * Mark device as attached from system and restart if needed.
1679 */
1680 void netif_device_attach(struct net_device *dev)
1681 {
1682 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1683 netif_running(dev)) {
1684 netif_tx_wake_all_queues(dev);
1685 __netdev_watchdog_up(dev);
1686 }
1687 }
1688 EXPORT_SYMBOL(netif_device_attach);
1689
1690 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1691 {
1692 return ((features & NETIF_F_NO_CSUM) ||
1693 ((features & NETIF_F_V4_CSUM) &&
1694 protocol == htons(ETH_P_IP)) ||
1695 ((features & NETIF_F_V6_CSUM) &&
1696 protocol == htons(ETH_P_IPV6)) ||
1697 ((features & NETIF_F_FCOE_CRC) &&
1698 protocol == htons(ETH_P_FCOE)));
1699 }
1700
1701 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1702 {
1703 __be16 protocol = skb->protocol;
1704 int features = dev->features;
1705
1706 if (vlan_tx_tag_present(skb)) {
1707 features &= dev->vlan_features;
1708 } else if (protocol == htons(ETH_P_8021Q)) {
1709 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1710 protocol = veh->h_vlan_encapsulated_proto;
1711 features &= dev->vlan_features;
1712 }
1713
1714 return can_checksum_protocol(features, protocol);
1715 }
1716
1717 /**
1718 * skb_dev_set -- assign a new device to a buffer
1719 * @skb: buffer for the new device
1720 * @dev: network device
1721 *
1722 * If an skb is owned by a device already, we have to reset
1723 * all data private to the namespace a device belongs to
1724 * before assigning it a new device.
1725 */
1726 #ifdef CONFIG_NET_NS
1727 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1728 {
1729 skb_dst_drop(skb);
1730 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1731 secpath_reset(skb);
1732 nf_reset(skb);
1733 skb_init_secmark(skb);
1734 skb->mark = 0;
1735 skb->priority = 0;
1736 skb->nf_trace = 0;
1737 skb->ipvs_property = 0;
1738 #ifdef CONFIG_NET_SCHED
1739 skb->tc_index = 0;
1740 #endif
1741 }
1742 skb->dev = dev;
1743 }
1744 EXPORT_SYMBOL(skb_set_dev);
1745 #endif /* CONFIG_NET_NS */
1746
1747 /*
1748 * Invalidate hardware checksum when packet is to be mangled, and
1749 * complete checksum manually on outgoing path.
1750 */
1751 int skb_checksum_help(struct sk_buff *skb)
1752 {
1753 __wsum csum;
1754 int ret = 0, offset;
1755
1756 if (skb->ip_summed == CHECKSUM_COMPLETE)
1757 goto out_set_summed;
1758
1759 if (unlikely(skb_shinfo(skb)->gso_size)) {
1760 /* Let GSO fix up the checksum. */
1761 goto out_set_summed;
1762 }
1763
1764 offset = skb->csum_start - skb_headroom(skb);
1765 BUG_ON(offset >= skb_headlen(skb));
1766 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1767
1768 offset += skb->csum_offset;
1769 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1770
1771 if (skb_cloned(skb) &&
1772 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1773 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1774 if (ret)
1775 goto out;
1776 }
1777
1778 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1779 out_set_summed:
1780 skb->ip_summed = CHECKSUM_NONE;
1781 out:
1782 return ret;
1783 }
1784 EXPORT_SYMBOL(skb_checksum_help);
1785
1786 /**
1787 * skb_gso_segment - Perform segmentation on skb.
1788 * @skb: buffer to segment
1789 * @features: features for the output path (see dev->features)
1790 *
1791 * This function segments the given skb and returns a list of segments.
1792 *
1793 * It may return NULL if the skb requires no segmentation. This is
1794 * only possible when GSO is used for verifying header integrity.
1795 */
1796 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1797 {
1798 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1799 struct packet_type *ptype;
1800 __be16 type = skb->protocol;
1801 int vlan_depth = ETH_HLEN;
1802 int err;
1803
1804 while (type == htons(ETH_P_8021Q)) {
1805 struct vlan_hdr *vh;
1806
1807 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1808 return ERR_PTR(-EINVAL);
1809
1810 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1811 type = vh->h_vlan_encapsulated_proto;
1812 vlan_depth += VLAN_HLEN;
1813 }
1814
1815 skb_reset_mac_header(skb);
1816 skb->mac_len = skb->network_header - skb->mac_header;
1817 __skb_pull(skb, skb->mac_len);
1818
1819 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1820 struct net_device *dev = skb->dev;
1821 struct ethtool_drvinfo info = {};
1822
1823 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1824 dev->ethtool_ops->get_drvinfo(dev, &info);
1825
1826 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1827 info.driver, dev ? dev->features : 0L,
1828 skb->sk ? skb->sk->sk_route_caps : 0L,
1829 skb->len, skb->data_len, skb->ip_summed);
1830
1831 if (skb_header_cloned(skb) &&
1832 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1833 return ERR_PTR(err);
1834 }
1835
1836 rcu_read_lock();
1837 list_for_each_entry_rcu(ptype,
1838 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1839 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1840 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1841 err = ptype->gso_send_check(skb);
1842 segs = ERR_PTR(err);
1843 if (err || skb_gso_ok(skb, features))
1844 break;
1845 __skb_push(skb, (skb->data -
1846 skb_network_header(skb)));
1847 }
1848 segs = ptype->gso_segment(skb, features);
1849 break;
1850 }
1851 }
1852 rcu_read_unlock();
1853
1854 __skb_push(skb, skb->data - skb_mac_header(skb));
1855
1856 return segs;
1857 }
1858 EXPORT_SYMBOL(skb_gso_segment);
1859
1860 /* Take action when hardware reception checksum errors are detected. */
1861 #ifdef CONFIG_BUG
1862 void netdev_rx_csum_fault(struct net_device *dev)
1863 {
1864 if (net_ratelimit()) {
1865 printk(KERN_ERR "%s: hw csum failure.\n",
1866 dev ? dev->name : "<unknown>");
1867 dump_stack();
1868 }
1869 }
1870 EXPORT_SYMBOL(netdev_rx_csum_fault);
1871 #endif
1872
1873 /* Actually, we should eliminate this check as soon as we know, that:
1874 * 1. IOMMU is present and allows to map all the memory.
1875 * 2. No high memory really exists on this machine.
1876 */
1877
1878 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1879 {
1880 #ifdef CONFIG_HIGHMEM
1881 int i;
1882 if (!(dev->features & NETIF_F_HIGHDMA)) {
1883 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1884 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1885 return 1;
1886 }
1887
1888 if (PCI_DMA_BUS_IS_PHYS) {
1889 struct device *pdev = dev->dev.parent;
1890
1891 if (!pdev)
1892 return 0;
1893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1895 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1896 return 1;
1897 }
1898 }
1899 #endif
1900 return 0;
1901 }
1902
1903 struct dev_gso_cb {
1904 void (*destructor)(struct sk_buff *skb);
1905 };
1906
1907 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1908
1909 static void dev_gso_skb_destructor(struct sk_buff *skb)
1910 {
1911 struct dev_gso_cb *cb;
1912
1913 do {
1914 struct sk_buff *nskb = skb->next;
1915
1916 skb->next = nskb->next;
1917 nskb->next = NULL;
1918 kfree_skb(nskb);
1919 } while (skb->next);
1920
1921 cb = DEV_GSO_CB(skb);
1922 if (cb->destructor)
1923 cb->destructor(skb);
1924 }
1925
1926 /**
1927 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1928 * @skb: buffer to segment
1929 *
1930 * This function segments the given skb and stores the list of segments
1931 * in skb->next.
1932 */
1933 static int dev_gso_segment(struct sk_buff *skb)
1934 {
1935 struct net_device *dev = skb->dev;
1936 struct sk_buff *segs;
1937 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1938 NETIF_F_SG : 0);
1939
1940 segs = skb_gso_segment(skb, features);
1941
1942 /* Verifying header integrity only. */
1943 if (!segs)
1944 return 0;
1945
1946 if (IS_ERR(segs))
1947 return PTR_ERR(segs);
1948
1949 skb->next = segs;
1950 DEV_GSO_CB(skb)->destructor = skb->destructor;
1951 skb->destructor = dev_gso_skb_destructor;
1952
1953 return 0;
1954 }
1955
1956 /*
1957 * Try to orphan skb early, right before transmission by the device.
1958 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1959 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1960 */
1961 static inline void skb_orphan_try(struct sk_buff *skb)
1962 {
1963 struct sock *sk = skb->sk;
1964
1965 if (sk && !skb_shinfo(skb)->tx_flags) {
1966 /* skb_tx_hash() wont be able to get sk.
1967 * We copy sk_hash into skb->rxhash
1968 */
1969 if (!skb->rxhash)
1970 skb->rxhash = sk->sk_hash;
1971 skb_orphan(skb);
1972 }
1973 }
1974
1975 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
1976 {
1977 __be16 protocol = skb->protocol;
1978
1979 if (protocol == htons(ETH_P_8021Q)) {
1980 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1981 protocol = veh->h_vlan_encapsulated_proto;
1982 } else if (!skb->vlan_tci)
1983 return dev->features;
1984
1985 if (protocol != htons(ETH_P_8021Q))
1986 return dev->features & dev->vlan_features;
1987 else
1988 return 0;
1989 }
1990 EXPORT_SYMBOL(netif_get_vlan_features);
1991
1992 /*
1993 * Returns true if either:
1994 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1995 * 2. skb is fragmented and the device does not support SG, or if
1996 * at least one of fragments is in highmem and device does not
1997 * support DMA from it.
1998 */
1999 static inline int skb_needs_linearize(struct sk_buff *skb,
2000 struct net_device *dev)
2001 {
2002 if (skb_is_nonlinear(skb)) {
2003 int features = dev->features;
2004
2005 if (vlan_tx_tag_present(skb))
2006 features &= dev->vlan_features;
2007
2008 return (skb_has_frag_list(skb) &&
2009 !(features & NETIF_F_FRAGLIST)) ||
2010 (skb_shinfo(skb)->nr_frags &&
2011 (!(features & NETIF_F_SG) ||
2012 illegal_highdma(dev, skb)));
2013 }
2014
2015 return 0;
2016 }
2017
2018 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2019 struct netdev_queue *txq)
2020 {
2021 const struct net_device_ops *ops = dev->netdev_ops;
2022 int rc = NETDEV_TX_OK;
2023
2024 if (likely(!skb->next)) {
2025 /*
2026 * If device doesnt need skb->dst, release it right now while
2027 * its hot in this cpu cache
2028 */
2029 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2030 skb_dst_drop(skb);
2031
2032 if (!list_empty(&ptype_all))
2033 dev_queue_xmit_nit(skb, dev);
2034
2035 skb_orphan_try(skb);
2036
2037 if (vlan_tx_tag_present(skb) &&
2038 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2039 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2040 if (unlikely(!skb))
2041 goto out;
2042
2043 skb->vlan_tci = 0;
2044 }
2045
2046 if (netif_needs_gso(dev, skb)) {
2047 if (unlikely(dev_gso_segment(skb)))
2048 goto out_kfree_skb;
2049 if (skb->next)
2050 goto gso;
2051 } else {
2052 if (skb_needs_linearize(skb, dev) &&
2053 __skb_linearize(skb))
2054 goto out_kfree_skb;
2055
2056 /* If packet is not checksummed and device does not
2057 * support checksumming for this protocol, complete
2058 * checksumming here.
2059 */
2060 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2061 skb_set_transport_header(skb, skb->csum_start -
2062 skb_headroom(skb));
2063 if (!dev_can_checksum(dev, skb) &&
2064 skb_checksum_help(skb))
2065 goto out_kfree_skb;
2066 }
2067 }
2068
2069 rc = ops->ndo_start_xmit(skb, dev);
2070 trace_net_dev_xmit(skb, rc);
2071 if (rc == NETDEV_TX_OK)
2072 txq_trans_update(txq);
2073 return rc;
2074 }
2075
2076 gso:
2077 do {
2078 struct sk_buff *nskb = skb->next;
2079
2080 skb->next = nskb->next;
2081 nskb->next = NULL;
2082
2083 /*
2084 * If device doesnt need nskb->dst, release it right now while
2085 * its hot in this cpu cache
2086 */
2087 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2088 skb_dst_drop(nskb);
2089
2090 rc = ops->ndo_start_xmit(nskb, dev);
2091 trace_net_dev_xmit(nskb, rc);
2092 if (unlikely(rc != NETDEV_TX_OK)) {
2093 if (rc & ~NETDEV_TX_MASK)
2094 goto out_kfree_gso_skb;
2095 nskb->next = skb->next;
2096 skb->next = nskb;
2097 return rc;
2098 }
2099 txq_trans_update(txq);
2100 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2101 return NETDEV_TX_BUSY;
2102 } while (skb->next);
2103
2104 out_kfree_gso_skb:
2105 if (likely(skb->next == NULL))
2106 skb->destructor = DEV_GSO_CB(skb)->destructor;
2107 out_kfree_skb:
2108 kfree_skb(skb);
2109 out:
2110 return rc;
2111 }
2112
2113 static u32 hashrnd __read_mostly;
2114
2115 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2116 {
2117 u32 hash;
2118
2119 if (skb_rx_queue_recorded(skb)) {
2120 hash = skb_get_rx_queue(skb);
2121 while (unlikely(hash >= dev->real_num_tx_queues))
2122 hash -= dev->real_num_tx_queues;
2123 return hash;
2124 }
2125
2126 if (skb->sk && skb->sk->sk_hash)
2127 hash = skb->sk->sk_hash;
2128 else
2129 hash = (__force u16) skb->protocol ^ skb->rxhash;
2130 hash = jhash_1word(hash, hashrnd);
2131
2132 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2133 }
2134 EXPORT_SYMBOL(skb_tx_hash);
2135
2136 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2137 {
2138 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2139 if (net_ratelimit()) {
2140 pr_warning("%s selects TX queue %d, but "
2141 "real number of TX queues is %d\n",
2142 dev->name, queue_index, dev->real_num_tx_queues);
2143 }
2144 return 0;
2145 }
2146 return queue_index;
2147 }
2148
2149 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2150 {
2151 #ifdef CONFIG_XPS
2152 struct xps_dev_maps *dev_maps;
2153 struct xps_map *map;
2154 int queue_index = -1;
2155
2156 rcu_read_lock();
2157 dev_maps = rcu_dereference(dev->xps_maps);
2158 if (dev_maps) {
2159 map = rcu_dereference(
2160 dev_maps->cpu_map[raw_smp_processor_id()]);
2161 if (map) {
2162 if (map->len == 1)
2163 queue_index = map->queues[0];
2164 else {
2165 u32 hash;
2166 if (skb->sk && skb->sk->sk_hash)
2167 hash = skb->sk->sk_hash;
2168 else
2169 hash = (__force u16) skb->protocol ^
2170 skb->rxhash;
2171 hash = jhash_1word(hash, hashrnd);
2172 queue_index = map->queues[
2173 ((u64)hash * map->len) >> 32];
2174 }
2175 if (unlikely(queue_index >= dev->real_num_tx_queues))
2176 queue_index = -1;
2177 }
2178 }
2179 rcu_read_unlock();
2180
2181 return queue_index;
2182 #else
2183 return -1;
2184 #endif
2185 }
2186
2187 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2188 struct sk_buff *skb)
2189 {
2190 int queue_index;
2191 const struct net_device_ops *ops = dev->netdev_ops;
2192
2193 if (dev->real_num_tx_queues == 1)
2194 queue_index = 0;
2195 else if (ops->ndo_select_queue) {
2196 queue_index = ops->ndo_select_queue(dev, skb);
2197 queue_index = dev_cap_txqueue(dev, queue_index);
2198 } else {
2199 struct sock *sk = skb->sk;
2200 queue_index = sk_tx_queue_get(sk);
2201
2202 if (queue_index < 0 || skb->ooo_okay ||
2203 queue_index >= dev->real_num_tx_queues) {
2204 int old_index = queue_index;
2205
2206 queue_index = get_xps_queue(dev, skb);
2207 if (queue_index < 0)
2208 queue_index = skb_tx_hash(dev, skb);
2209
2210 if (queue_index != old_index && sk) {
2211 struct dst_entry *dst =
2212 rcu_dereference_check(sk->sk_dst_cache, 1);
2213
2214 if (dst && skb_dst(skb) == dst)
2215 sk_tx_queue_set(sk, queue_index);
2216 }
2217 }
2218 }
2219
2220 skb_set_queue_mapping(skb, queue_index);
2221 return netdev_get_tx_queue(dev, queue_index);
2222 }
2223
2224 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2225 struct net_device *dev,
2226 struct netdev_queue *txq)
2227 {
2228 spinlock_t *root_lock = qdisc_lock(q);
2229 bool contended = qdisc_is_running(q);
2230 int rc;
2231
2232 /*
2233 * Heuristic to force contended enqueues to serialize on a
2234 * separate lock before trying to get qdisc main lock.
2235 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2236 * and dequeue packets faster.
2237 */
2238 if (unlikely(contended))
2239 spin_lock(&q->busylock);
2240
2241 spin_lock(root_lock);
2242 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2243 kfree_skb(skb);
2244 rc = NET_XMIT_DROP;
2245 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2246 qdisc_run_begin(q)) {
2247 /*
2248 * This is a work-conserving queue; there are no old skbs
2249 * waiting to be sent out; and the qdisc is not running -
2250 * xmit the skb directly.
2251 */
2252 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2253 skb_dst_force(skb);
2254 __qdisc_update_bstats(q, skb->len);
2255 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2256 if (unlikely(contended)) {
2257 spin_unlock(&q->busylock);
2258 contended = false;
2259 }
2260 __qdisc_run(q);
2261 } else
2262 qdisc_run_end(q);
2263
2264 rc = NET_XMIT_SUCCESS;
2265 } else {
2266 skb_dst_force(skb);
2267 rc = qdisc_enqueue_root(skb, q);
2268 if (qdisc_run_begin(q)) {
2269 if (unlikely(contended)) {
2270 spin_unlock(&q->busylock);
2271 contended = false;
2272 }
2273 __qdisc_run(q);
2274 }
2275 }
2276 spin_unlock(root_lock);
2277 if (unlikely(contended))
2278 spin_unlock(&q->busylock);
2279 return rc;
2280 }
2281
2282 static DEFINE_PER_CPU(int, xmit_recursion);
2283 #define RECURSION_LIMIT 10
2284
2285 /**
2286 * dev_queue_xmit - transmit a buffer
2287 * @skb: buffer to transmit
2288 *
2289 * Queue a buffer for transmission to a network device. The caller must
2290 * have set the device and priority and built the buffer before calling
2291 * this function. The function can be called from an interrupt.
2292 *
2293 * A negative errno code is returned on a failure. A success does not
2294 * guarantee the frame will be transmitted as it may be dropped due
2295 * to congestion or traffic shaping.
2296 *
2297 * -----------------------------------------------------------------------------------
2298 * I notice this method can also return errors from the queue disciplines,
2299 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2300 * be positive.
2301 *
2302 * Regardless of the return value, the skb is consumed, so it is currently
2303 * difficult to retry a send to this method. (You can bump the ref count
2304 * before sending to hold a reference for retry if you are careful.)
2305 *
2306 * When calling this method, interrupts MUST be enabled. This is because
2307 * the BH enable code must have IRQs enabled so that it will not deadlock.
2308 * --BLG
2309 */
2310 int dev_queue_xmit(struct sk_buff *skb)
2311 {
2312 struct net_device *dev = skb->dev;
2313 struct netdev_queue *txq;
2314 struct Qdisc *q;
2315 int rc = -ENOMEM;
2316
2317 /* Disable soft irqs for various locks below. Also
2318 * stops preemption for RCU.
2319 */
2320 rcu_read_lock_bh();
2321
2322 txq = dev_pick_tx(dev, skb);
2323 q = rcu_dereference_bh(txq->qdisc);
2324
2325 #ifdef CONFIG_NET_CLS_ACT
2326 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2327 #endif
2328 trace_net_dev_queue(skb);
2329 if (q->enqueue) {
2330 rc = __dev_xmit_skb(skb, q, dev, txq);
2331 goto out;
2332 }
2333
2334 /* The device has no queue. Common case for software devices:
2335 loopback, all the sorts of tunnels...
2336
2337 Really, it is unlikely that netif_tx_lock protection is necessary
2338 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2339 counters.)
2340 However, it is possible, that they rely on protection
2341 made by us here.
2342
2343 Check this and shot the lock. It is not prone from deadlocks.
2344 Either shot noqueue qdisc, it is even simpler 8)
2345 */
2346 if (dev->flags & IFF_UP) {
2347 int cpu = smp_processor_id(); /* ok because BHs are off */
2348
2349 if (txq->xmit_lock_owner != cpu) {
2350
2351 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2352 goto recursion_alert;
2353
2354 HARD_TX_LOCK(dev, txq, cpu);
2355
2356 if (!netif_tx_queue_stopped(txq)) {
2357 __this_cpu_inc(xmit_recursion);
2358 rc = dev_hard_start_xmit(skb, dev, txq);
2359 __this_cpu_dec(xmit_recursion);
2360 if (dev_xmit_complete(rc)) {
2361 HARD_TX_UNLOCK(dev, txq);
2362 goto out;
2363 }
2364 }
2365 HARD_TX_UNLOCK(dev, txq);
2366 if (net_ratelimit())
2367 printk(KERN_CRIT "Virtual device %s asks to "
2368 "queue packet!\n", dev->name);
2369 } else {
2370 /* Recursion is detected! It is possible,
2371 * unfortunately
2372 */
2373 recursion_alert:
2374 if (net_ratelimit())
2375 printk(KERN_CRIT "Dead loop on virtual device "
2376 "%s, fix it urgently!\n", dev->name);
2377 }
2378 }
2379
2380 rc = -ENETDOWN;
2381 rcu_read_unlock_bh();
2382
2383 kfree_skb(skb);
2384 return rc;
2385 out:
2386 rcu_read_unlock_bh();
2387 return rc;
2388 }
2389 EXPORT_SYMBOL(dev_queue_xmit);
2390
2391
2392 /*=======================================================================
2393 Receiver routines
2394 =======================================================================*/
2395
2396 int netdev_max_backlog __read_mostly = 1000;
2397 int netdev_tstamp_prequeue __read_mostly = 1;
2398 int netdev_budget __read_mostly = 300;
2399 int weight_p __read_mostly = 64; /* old backlog weight */
2400
2401 /* Called with irq disabled */
2402 static inline void ____napi_schedule(struct softnet_data *sd,
2403 struct napi_struct *napi)
2404 {
2405 list_add_tail(&napi->poll_list, &sd->poll_list);
2406 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2407 }
2408
2409 /*
2410 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2411 * and src/dst port numbers. Returns a non-zero hash number on success
2412 * and 0 on failure.
2413 */
2414 __u32 __skb_get_rxhash(struct sk_buff *skb)
2415 {
2416 int nhoff, hash = 0, poff;
2417 struct ipv6hdr *ip6;
2418 struct iphdr *ip;
2419 u8 ip_proto;
2420 u32 addr1, addr2, ihl;
2421 union {
2422 u32 v32;
2423 u16 v16[2];
2424 } ports;
2425
2426 nhoff = skb_network_offset(skb);
2427
2428 switch (skb->protocol) {
2429 case __constant_htons(ETH_P_IP):
2430 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2431 goto done;
2432
2433 ip = (struct iphdr *) (skb->data + nhoff);
2434 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2435 ip_proto = 0;
2436 else
2437 ip_proto = ip->protocol;
2438 addr1 = (__force u32) ip->saddr;
2439 addr2 = (__force u32) ip->daddr;
2440 ihl = ip->ihl;
2441 break;
2442 case __constant_htons(ETH_P_IPV6):
2443 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2444 goto done;
2445
2446 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2447 ip_proto = ip6->nexthdr;
2448 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2449 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2450 ihl = (40 >> 2);
2451 break;
2452 default:
2453 goto done;
2454 }
2455
2456 ports.v32 = 0;
2457 poff = proto_ports_offset(ip_proto);
2458 if (poff >= 0) {
2459 nhoff += ihl * 4 + poff;
2460 if (pskb_may_pull(skb, nhoff + 4)) {
2461 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2462 if (ports.v16[1] < ports.v16[0])
2463 swap(ports.v16[0], ports.v16[1]);
2464 }
2465 }
2466
2467 /* get a consistent hash (same value on both flow directions) */
2468 if (addr2 < addr1)
2469 swap(addr1, addr2);
2470
2471 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2472 if (!hash)
2473 hash = 1;
2474
2475 done:
2476 return hash;
2477 }
2478 EXPORT_SYMBOL(__skb_get_rxhash);
2479
2480 #ifdef CONFIG_RPS
2481
2482 /* One global table that all flow-based protocols share. */
2483 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2484 EXPORT_SYMBOL(rps_sock_flow_table);
2485
2486 /*
2487 * get_rps_cpu is called from netif_receive_skb and returns the target
2488 * CPU from the RPS map of the receiving queue for a given skb.
2489 * rcu_read_lock must be held on entry.
2490 */
2491 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2492 struct rps_dev_flow **rflowp)
2493 {
2494 struct netdev_rx_queue *rxqueue;
2495 struct rps_map *map;
2496 struct rps_dev_flow_table *flow_table;
2497 struct rps_sock_flow_table *sock_flow_table;
2498 int cpu = -1;
2499 u16 tcpu;
2500
2501 if (skb_rx_queue_recorded(skb)) {
2502 u16 index = skb_get_rx_queue(skb);
2503 if (unlikely(index >= dev->real_num_rx_queues)) {
2504 WARN_ONCE(dev->real_num_rx_queues > 1,
2505 "%s received packet on queue %u, but number "
2506 "of RX queues is %u\n",
2507 dev->name, index, dev->real_num_rx_queues);
2508 goto done;
2509 }
2510 rxqueue = dev->_rx + index;
2511 } else
2512 rxqueue = dev->_rx;
2513
2514 map = rcu_dereference(rxqueue->rps_map);
2515 if (map) {
2516 if (map->len == 1) {
2517 tcpu = map->cpus[0];
2518 if (cpu_online(tcpu))
2519 cpu = tcpu;
2520 goto done;
2521 }
2522 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2523 goto done;
2524 }
2525
2526 skb_reset_network_header(skb);
2527 if (!skb_get_rxhash(skb))
2528 goto done;
2529
2530 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2531 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2532 if (flow_table && sock_flow_table) {
2533 u16 next_cpu;
2534 struct rps_dev_flow *rflow;
2535
2536 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2537 tcpu = rflow->cpu;
2538
2539 next_cpu = sock_flow_table->ents[skb->rxhash &
2540 sock_flow_table->mask];
2541
2542 /*
2543 * If the desired CPU (where last recvmsg was done) is
2544 * different from current CPU (one in the rx-queue flow
2545 * table entry), switch if one of the following holds:
2546 * - Current CPU is unset (equal to RPS_NO_CPU).
2547 * - Current CPU is offline.
2548 * - The current CPU's queue tail has advanced beyond the
2549 * last packet that was enqueued using this table entry.
2550 * This guarantees that all previous packets for the flow
2551 * have been dequeued, thus preserving in order delivery.
2552 */
2553 if (unlikely(tcpu != next_cpu) &&
2554 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2555 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2556 rflow->last_qtail)) >= 0)) {
2557 tcpu = rflow->cpu = next_cpu;
2558 if (tcpu != RPS_NO_CPU)
2559 rflow->last_qtail = per_cpu(softnet_data,
2560 tcpu).input_queue_head;
2561 }
2562 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2563 *rflowp = rflow;
2564 cpu = tcpu;
2565 goto done;
2566 }
2567 }
2568
2569 if (map) {
2570 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2571
2572 if (cpu_online(tcpu)) {
2573 cpu = tcpu;
2574 goto done;
2575 }
2576 }
2577
2578 done:
2579 return cpu;
2580 }
2581
2582 /* Called from hardirq (IPI) context */
2583 static void rps_trigger_softirq(void *data)
2584 {
2585 struct softnet_data *sd = data;
2586
2587 ____napi_schedule(sd, &sd->backlog);
2588 sd->received_rps++;
2589 }
2590
2591 #endif /* CONFIG_RPS */
2592
2593 /*
2594 * Check if this softnet_data structure is another cpu one
2595 * If yes, queue it to our IPI list and return 1
2596 * If no, return 0
2597 */
2598 static int rps_ipi_queued(struct softnet_data *sd)
2599 {
2600 #ifdef CONFIG_RPS
2601 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2602
2603 if (sd != mysd) {
2604 sd->rps_ipi_next = mysd->rps_ipi_list;
2605 mysd->rps_ipi_list = sd;
2606
2607 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2608 return 1;
2609 }
2610 #endif /* CONFIG_RPS */
2611 return 0;
2612 }
2613
2614 /*
2615 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2616 * queue (may be a remote CPU queue).
2617 */
2618 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2619 unsigned int *qtail)
2620 {
2621 struct softnet_data *sd;
2622 unsigned long flags;
2623
2624 sd = &per_cpu(softnet_data, cpu);
2625
2626 local_irq_save(flags);
2627
2628 rps_lock(sd);
2629 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2630 if (skb_queue_len(&sd->input_pkt_queue)) {
2631 enqueue:
2632 __skb_queue_tail(&sd->input_pkt_queue, skb);
2633 input_queue_tail_incr_save(sd, qtail);
2634 rps_unlock(sd);
2635 local_irq_restore(flags);
2636 return NET_RX_SUCCESS;
2637 }
2638
2639 /* Schedule NAPI for backlog device
2640 * We can use non atomic operation since we own the queue lock
2641 */
2642 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2643 if (!rps_ipi_queued(sd))
2644 ____napi_schedule(sd, &sd->backlog);
2645 }
2646 goto enqueue;
2647 }
2648
2649 sd->dropped++;
2650 rps_unlock(sd);
2651
2652 local_irq_restore(flags);
2653
2654 atomic_long_inc(&skb->dev->rx_dropped);
2655 kfree_skb(skb);
2656 return NET_RX_DROP;
2657 }
2658
2659 /**
2660 * netif_rx - post buffer to the network code
2661 * @skb: buffer to post
2662 *
2663 * This function receives a packet from a device driver and queues it for
2664 * the upper (protocol) levels to process. It always succeeds. The buffer
2665 * may be dropped during processing for congestion control or by the
2666 * protocol layers.
2667 *
2668 * return values:
2669 * NET_RX_SUCCESS (no congestion)
2670 * NET_RX_DROP (packet was dropped)
2671 *
2672 */
2673
2674 int netif_rx(struct sk_buff *skb)
2675 {
2676 int ret;
2677
2678 /* if netpoll wants it, pretend we never saw it */
2679 if (netpoll_rx(skb))
2680 return NET_RX_DROP;
2681
2682 if (netdev_tstamp_prequeue)
2683 net_timestamp_check(skb);
2684
2685 trace_netif_rx(skb);
2686 #ifdef CONFIG_RPS
2687 {
2688 struct rps_dev_flow voidflow, *rflow = &voidflow;
2689 int cpu;
2690
2691 preempt_disable();
2692 rcu_read_lock();
2693
2694 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2695 if (cpu < 0)
2696 cpu = smp_processor_id();
2697
2698 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2699
2700 rcu_read_unlock();
2701 preempt_enable();
2702 }
2703 #else
2704 {
2705 unsigned int qtail;
2706 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2707 put_cpu();
2708 }
2709 #endif
2710 return ret;
2711 }
2712 EXPORT_SYMBOL(netif_rx);
2713
2714 int netif_rx_ni(struct sk_buff *skb)
2715 {
2716 int err;
2717
2718 preempt_disable();
2719 err = netif_rx(skb);
2720 if (local_softirq_pending())
2721 do_softirq();
2722 preempt_enable();
2723
2724 return err;
2725 }
2726 EXPORT_SYMBOL(netif_rx_ni);
2727
2728 static void net_tx_action(struct softirq_action *h)
2729 {
2730 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2731
2732 if (sd->completion_queue) {
2733 struct sk_buff *clist;
2734
2735 local_irq_disable();
2736 clist = sd->completion_queue;
2737 sd->completion_queue = NULL;
2738 local_irq_enable();
2739
2740 while (clist) {
2741 struct sk_buff *skb = clist;
2742 clist = clist->next;
2743
2744 WARN_ON(atomic_read(&skb->users));
2745 trace_kfree_skb(skb, net_tx_action);
2746 __kfree_skb(skb);
2747 }
2748 }
2749
2750 if (sd->output_queue) {
2751 struct Qdisc *head;
2752
2753 local_irq_disable();
2754 head = sd->output_queue;
2755 sd->output_queue = NULL;
2756 sd->output_queue_tailp = &sd->output_queue;
2757 local_irq_enable();
2758
2759 while (head) {
2760 struct Qdisc *q = head;
2761 spinlock_t *root_lock;
2762
2763 head = head->next_sched;
2764
2765 root_lock = qdisc_lock(q);
2766 if (spin_trylock(root_lock)) {
2767 smp_mb__before_clear_bit();
2768 clear_bit(__QDISC_STATE_SCHED,
2769 &q->state);
2770 qdisc_run(q);
2771 spin_unlock(root_lock);
2772 } else {
2773 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2774 &q->state)) {
2775 __netif_reschedule(q);
2776 } else {
2777 smp_mb__before_clear_bit();
2778 clear_bit(__QDISC_STATE_SCHED,
2779 &q->state);
2780 }
2781 }
2782 }
2783 }
2784 }
2785
2786 static inline int deliver_skb(struct sk_buff *skb,
2787 struct packet_type *pt_prev,
2788 struct net_device *orig_dev)
2789 {
2790 atomic_inc(&skb->users);
2791 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2792 }
2793
2794 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2795 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2796 /* This hook is defined here for ATM LANE */
2797 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2798 unsigned char *addr) __read_mostly;
2799 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2800 #endif
2801
2802 #ifdef CONFIG_NET_CLS_ACT
2803 /* TODO: Maybe we should just force sch_ingress to be compiled in
2804 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2805 * a compare and 2 stores extra right now if we dont have it on
2806 * but have CONFIG_NET_CLS_ACT
2807 * NOTE: This doesnt stop any functionality; if you dont have
2808 * the ingress scheduler, you just cant add policies on ingress.
2809 *
2810 */
2811 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2812 {
2813 struct net_device *dev = skb->dev;
2814 u32 ttl = G_TC_RTTL(skb->tc_verd);
2815 int result = TC_ACT_OK;
2816 struct Qdisc *q;
2817
2818 if (unlikely(MAX_RED_LOOP < ttl++)) {
2819 if (net_ratelimit())
2820 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2821 skb->skb_iif, dev->ifindex);
2822 return TC_ACT_SHOT;
2823 }
2824
2825 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2826 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2827
2828 q = rxq->qdisc;
2829 if (q != &noop_qdisc) {
2830 spin_lock(qdisc_lock(q));
2831 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2832 result = qdisc_enqueue_root(skb, q);
2833 spin_unlock(qdisc_lock(q));
2834 }
2835
2836 return result;
2837 }
2838
2839 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2840 struct packet_type **pt_prev,
2841 int *ret, struct net_device *orig_dev)
2842 {
2843 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2844
2845 if (!rxq || rxq->qdisc == &noop_qdisc)
2846 goto out;
2847
2848 if (*pt_prev) {
2849 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2850 *pt_prev = NULL;
2851 }
2852
2853 switch (ing_filter(skb, rxq)) {
2854 case TC_ACT_SHOT:
2855 case TC_ACT_STOLEN:
2856 kfree_skb(skb);
2857 return NULL;
2858 }
2859
2860 out:
2861 skb->tc_verd = 0;
2862 return skb;
2863 }
2864 #endif
2865
2866 /**
2867 * netdev_rx_handler_register - register receive handler
2868 * @dev: device to register a handler for
2869 * @rx_handler: receive handler to register
2870 * @rx_handler_data: data pointer that is used by rx handler
2871 *
2872 * Register a receive hander for a device. This handler will then be
2873 * called from __netif_receive_skb. A negative errno code is returned
2874 * on a failure.
2875 *
2876 * The caller must hold the rtnl_mutex.
2877 */
2878 int netdev_rx_handler_register(struct net_device *dev,
2879 rx_handler_func_t *rx_handler,
2880 void *rx_handler_data)
2881 {
2882 ASSERT_RTNL();
2883
2884 if (dev->rx_handler)
2885 return -EBUSY;
2886
2887 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2888 rcu_assign_pointer(dev->rx_handler, rx_handler);
2889
2890 return 0;
2891 }
2892 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2893
2894 /**
2895 * netdev_rx_handler_unregister - unregister receive handler
2896 * @dev: device to unregister a handler from
2897 *
2898 * Unregister a receive hander from a device.
2899 *
2900 * The caller must hold the rtnl_mutex.
2901 */
2902 void netdev_rx_handler_unregister(struct net_device *dev)
2903 {
2904
2905 ASSERT_RTNL();
2906 rcu_assign_pointer(dev->rx_handler, NULL);
2907 rcu_assign_pointer(dev->rx_handler_data, NULL);
2908 }
2909 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2910
2911 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2912 struct net_device *master)
2913 {
2914 if (skb->pkt_type == PACKET_HOST) {
2915 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2916
2917 memcpy(dest, master->dev_addr, ETH_ALEN);
2918 }
2919 }
2920
2921 /* On bonding slaves other than the currently active slave, suppress
2922 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2923 * ARP on active-backup slaves with arp_validate enabled.
2924 */
2925 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2926 {
2927 struct net_device *dev = skb->dev;
2928
2929 if (master->priv_flags & IFF_MASTER_ARPMON)
2930 dev->last_rx = jiffies;
2931
2932 if ((master->priv_flags & IFF_MASTER_ALB) &&
2933 (master->priv_flags & IFF_BRIDGE_PORT)) {
2934 /* Do address unmangle. The local destination address
2935 * will be always the one master has. Provides the right
2936 * functionality in a bridge.
2937 */
2938 skb_bond_set_mac_by_master(skb, master);
2939 }
2940
2941 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2942 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2943 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2944 return 0;
2945
2946 if (master->priv_flags & IFF_MASTER_ALB) {
2947 if (skb->pkt_type != PACKET_BROADCAST &&
2948 skb->pkt_type != PACKET_MULTICAST)
2949 return 0;
2950 }
2951 if (master->priv_flags & IFF_MASTER_8023AD &&
2952 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2953 return 0;
2954
2955 return 1;
2956 }
2957 return 0;
2958 }
2959 EXPORT_SYMBOL(__skb_bond_should_drop);
2960
2961 static int __netif_receive_skb(struct sk_buff *skb)
2962 {
2963 struct packet_type *ptype, *pt_prev;
2964 rx_handler_func_t *rx_handler;
2965 struct net_device *orig_dev;
2966 struct net_device *master;
2967 struct net_device *null_or_orig;
2968 struct net_device *orig_or_bond;
2969 int ret = NET_RX_DROP;
2970 __be16 type;
2971
2972 if (!netdev_tstamp_prequeue)
2973 net_timestamp_check(skb);
2974
2975 trace_netif_receive_skb(skb);
2976
2977 /* if we've gotten here through NAPI, check netpoll */
2978 if (netpoll_receive_skb(skb))
2979 return NET_RX_DROP;
2980
2981 if (!skb->skb_iif)
2982 skb->skb_iif = skb->dev->ifindex;
2983
2984 /*
2985 * bonding note: skbs received on inactive slaves should only
2986 * be delivered to pkt handlers that are exact matches. Also
2987 * the deliver_no_wcard flag will be set. If packet handlers
2988 * are sensitive to duplicate packets these skbs will need to
2989 * be dropped at the handler.
2990 */
2991 null_or_orig = NULL;
2992 orig_dev = skb->dev;
2993 master = ACCESS_ONCE(orig_dev->master);
2994 if (skb->deliver_no_wcard)
2995 null_or_orig = orig_dev;
2996 else if (master) {
2997 if (skb_bond_should_drop(skb, master)) {
2998 skb->deliver_no_wcard = 1;
2999 null_or_orig = orig_dev; /* deliver only exact match */
3000 } else
3001 skb->dev = master;
3002 }
3003
3004 __this_cpu_inc(softnet_data.processed);
3005 skb_reset_network_header(skb);
3006 skb_reset_transport_header(skb);
3007 skb->mac_len = skb->network_header - skb->mac_header;
3008
3009 pt_prev = NULL;
3010
3011 rcu_read_lock();
3012
3013 #ifdef CONFIG_NET_CLS_ACT
3014 if (skb->tc_verd & TC_NCLS) {
3015 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3016 goto ncls;
3017 }
3018 #endif
3019
3020 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3021 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3022 ptype->dev == orig_dev) {
3023 if (pt_prev)
3024 ret = deliver_skb(skb, pt_prev, orig_dev);
3025 pt_prev = ptype;
3026 }
3027 }
3028
3029 #ifdef CONFIG_NET_CLS_ACT
3030 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3031 if (!skb)
3032 goto out;
3033 ncls:
3034 #endif
3035
3036 /* Handle special case of bridge or macvlan */
3037 rx_handler = rcu_dereference(skb->dev->rx_handler);
3038 if (rx_handler) {
3039 if (pt_prev) {
3040 ret = deliver_skb(skb, pt_prev, orig_dev);
3041 pt_prev = NULL;
3042 }
3043 skb = rx_handler(skb);
3044 if (!skb)
3045 goto out;
3046 }
3047
3048 if (vlan_tx_tag_present(skb)) {
3049 if (pt_prev) {
3050 ret = deliver_skb(skb, pt_prev, orig_dev);
3051 pt_prev = NULL;
3052 }
3053 if (vlan_hwaccel_do_receive(&skb)) {
3054 ret = __netif_receive_skb(skb);
3055 goto out;
3056 } else if (unlikely(!skb))
3057 goto out;
3058 }
3059
3060 /*
3061 * Make sure frames received on VLAN interfaces stacked on
3062 * bonding interfaces still make their way to any base bonding
3063 * device that may have registered for a specific ptype. The
3064 * handler may have to adjust skb->dev and orig_dev.
3065 */
3066 orig_or_bond = orig_dev;
3067 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3068 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3069 orig_or_bond = vlan_dev_real_dev(skb->dev);
3070 }
3071
3072 type = skb->protocol;
3073 list_for_each_entry_rcu(ptype,
3074 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3075 if (ptype->type == type && (ptype->dev == null_or_orig ||
3076 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3077 ptype->dev == orig_or_bond)) {
3078 if (pt_prev)
3079 ret = deliver_skb(skb, pt_prev, orig_dev);
3080 pt_prev = ptype;
3081 }
3082 }
3083
3084 if (pt_prev) {
3085 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3086 } else {
3087 atomic_long_inc(&skb->dev->rx_dropped);
3088 kfree_skb(skb);
3089 /* Jamal, now you will not able to escape explaining
3090 * me how you were going to use this. :-)
3091 */
3092 ret = NET_RX_DROP;
3093 }
3094
3095 out:
3096 rcu_read_unlock();
3097 return ret;
3098 }
3099
3100 /**
3101 * netif_receive_skb - process receive buffer from network
3102 * @skb: buffer to process
3103 *
3104 * netif_receive_skb() is the main receive data processing function.
3105 * It always succeeds. The buffer may be dropped during processing
3106 * for congestion control or by the protocol layers.
3107 *
3108 * This function may only be called from softirq context and interrupts
3109 * should be enabled.
3110 *
3111 * Return values (usually ignored):
3112 * NET_RX_SUCCESS: no congestion
3113 * NET_RX_DROP: packet was dropped
3114 */
3115 int netif_receive_skb(struct sk_buff *skb)
3116 {
3117 if (netdev_tstamp_prequeue)
3118 net_timestamp_check(skb);
3119
3120 if (skb_defer_rx_timestamp(skb))
3121 return NET_RX_SUCCESS;
3122
3123 #ifdef CONFIG_RPS
3124 {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3126 int cpu, ret;
3127
3128 rcu_read_lock();
3129
3130 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3131
3132 if (cpu >= 0) {
3133 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3134 rcu_read_unlock();
3135 } else {
3136 rcu_read_unlock();
3137 ret = __netif_receive_skb(skb);
3138 }
3139
3140 return ret;
3141 }
3142 #else
3143 return __netif_receive_skb(skb);
3144 #endif
3145 }
3146 EXPORT_SYMBOL(netif_receive_skb);
3147
3148 /* Network device is going away, flush any packets still pending
3149 * Called with irqs disabled.
3150 */
3151 static void flush_backlog(void *arg)
3152 {
3153 struct net_device *dev = arg;
3154 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3155 struct sk_buff *skb, *tmp;
3156
3157 rps_lock(sd);
3158 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3159 if (skb->dev == dev) {
3160 __skb_unlink(skb, &sd->input_pkt_queue);
3161 kfree_skb(skb);
3162 input_queue_head_incr(sd);
3163 }
3164 }
3165 rps_unlock(sd);
3166
3167 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3168 if (skb->dev == dev) {
3169 __skb_unlink(skb, &sd->process_queue);
3170 kfree_skb(skb);
3171 input_queue_head_incr(sd);
3172 }
3173 }
3174 }
3175
3176 static int napi_gro_complete(struct sk_buff *skb)
3177 {
3178 struct packet_type *ptype;
3179 __be16 type = skb->protocol;
3180 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3181 int err = -ENOENT;
3182
3183 if (NAPI_GRO_CB(skb)->count == 1) {
3184 skb_shinfo(skb)->gso_size = 0;
3185 goto out;
3186 }
3187
3188 rcu_read_lock();
3189 list_for_each_entry_rcu(ptype, head, list) {
3190 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3191 continue;
3192
3193 err = ptype->gro_complete(skb);
3194 break;
3195 }
3196 rcu_read_unlock();
3197
3198 if (err) {
3199 WARN_ON(&ptype->list == head);
3200 kfree_skb(skb);
3201 return NET_RX_SUCCESS;
3202 }
3203
3204 out:
3205 return netif_receive_skb(skb);
3206 }
3207
3208 inline void napi_gro_flush(struct napi_struct *napi)
3209 {
3210 struct sk_buff *skb, *next;
3211
3212 for (skb = napi->gro_list; skb; skb = next) {
3213 next = skb->next;
3214 skb->next = NULL;
3215 napi_gro_complete(skb);
3216 }
3217
3218 napi->gro_count = 0;
3219 napi->gro_list = NULL;
3220 }
3221 EXPORT_SYMBOL(napi_gro_flush);
3222
3223 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3224 {
3225 struct sk_buff **pp = NULL;
3226 struct packet_type *ptype;
3227 __be16 type = skb->protocol;
3228 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3229 int same_flow;
3230 int mac_len;
3231 enum gro_result ret;
3232
3233 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3234 goto normal;
3235
3236 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3237 goto normal;
3238
3239 rcu_read_lock();
3240 list_for_each_entry_rcu(ptype, head, list) {
3241 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3242 continue;
3243
3244 skb_set_network_header(skb, skb_gro_offset(skb));
3245 mac_len = skb->network_header - skb->mac_header;
3246 skb->mac_len = mac_len;
3247 NAPI_GRO_CB(skb)->same_flow = 0;
3248 NAPI_GRO_CB(skb)->flush = 0;
3249 NAPI_GRO_CB(skb)->free = 0;
3250
3251 pp = ptype->gro_receive(&napi->gro_list, skb);
3252 break;
3253 }
3254 rcu_read_unlock();
3255
3256 if (&ptype->list == head)
3257 goto normal;
3258
3259 same_flow = NAPI_GRO_CB(skb)->same_flow;
3260 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3261
3262 if (pp) {
3263 struct sk_buff *nskb = *pp;
3264
3265 *pp = nskb->next;
3266 nskb->next = NULL;
3267 napi_gro_complete(nskb);
3268 napi->gro_count--;
3269 }
3270
3271 if (same_flow)
3272 goto ok;
3273
3274 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3275 goto normal;
3276
3277 napi->gro_count++;
3278 NAPI_GRO_CB(skb)->count = 1;
3279 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3280 skb->next = napi->gro_list;
3281 napi->gro_list = skb;
3282 ret = GRO_HELD;
3283
3284 pull:
3285 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3286 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3287
3288 BUG_ON(skb->end - skb->tail < grow);
3289
3290 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3291
3292 skb->tail += grow;
3293 skb->data_len -= grow;
3294
3295 skb_shinfo(skb)->frags[0].page_offset += grow;
3296 skb_shinfo(skb)->frags[0].size -= grow;
3297
3298 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3299 put_page(skb_shinfo(skb)->frags[0].page);
3300 memmove(skb_shinfo(skb)->frags,
3301 skb_shinfo(skb)->frags + 1,
3302 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3303 }
3304 }
3305
3306 ok:
3307 return ret;
3308
3309 normal:
3310 ret = GRO_NORMAL;
3311 goto pull;
3312 }
3313 EXPORT_SYMBOL(dev_gro_receive);
3314
3315 static inline gro_result_t
3316 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3317 {
3318 struct sk_buff *p;
3319
3320 for (p = napi->gro_list; p; p = p->next) {
3321 unsigned long diffs;
3322
3323 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3324 diffs |= p->vlan_tci ^ skb->vlan_tci;
3325 diffs |= compare_ether_header(skb_mac_header(p),
3326 skb_gro_mac_header(skb));
3327 NAPI_GRO_CB(p)->same_flow = !diffs;
3328 NAPI_GRO_CB(p)->flush = 0;
3329 }
3330
3331 return dev_gro_receive(napi, skb);
3332 }
3333
3334 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3335 {
3336 switch (ret) {
3337 case GRO_NORMAL:
3338 if (netif_receive_skb(skb))
3339 ret = GRO_DROP;
3340 break;
3341
3342 case GRO_DROP:
3343 case GRO_MERGED_FREE:
3344 kfree_skb(skb);
3345 break;
3346
3347 case GRO_HELD:
3348 case GRO_MERGED:
3349 break;
3350 }
3351
3352 return ret;
3353 }
3354 EXPORT_SYMBOL(napi_skb_finish);
3355
3356 void skb_gro_reset_offset(struct sk_buff *skb)
3357 {
3358 NAPI_GRO_CB(skb)->data_offset = 0;
3359 NAPI_GRO_CB(skb)->frag0 = NULL;
3360 NAPI_GRO_CB(skb)->frag0_len = 0;
3361
3362 if (skb->mac_header == skb->tail &&
3363 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3364 NAPI_GRO_CB(skb)->frag0 =
3365 page_address(skb_shinfo(skb)->frags[0].page) +
3366 skb_shinfo(skb)->frags[0].page_offset;
3367 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3368 }
3369 }
3370 EXPORT_SYMBOL(skb_gro_reset_offset);
3371
3372 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3373 {
3374 skb_gro_reset_offset(skb);
3375
3376 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3377 }
3378 EXPORT_SYMBOL(napi_gro_receive);
3379
3380 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3381 {
3382 __skb_pull(skb, skb_headlen(skb));
3383 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3384 skb->vlan_tci = 0;
3385
3386 napi->skb = skb;
3387 }
3388
3389 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3390 {
3391 struct sk_buff *skb = napi->skb;
3392
3393 if (!skb) {
3394 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3395 if (skb)
3396 napi->skb = skb;
3397 }
3398 return skb;
3399 }
3400 EXPORT_SYMBOL(napi_get_frags);
3401
3402 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3403 gro_result_t ret)
3404 {
3405 switch (ret) {
3406 case GRO_NORMAL:
3407 case GRO_HELD:
3408 skb->protocol = eth_type_trans(skb, skb->dev);
3409
3410 if (ret == GRO_HELD)
3411 skb_gro_pull(skb, -ETH_HLEN);
3412 else if (netif_receive_skb(skb))
3413 ret = GRO_DROP;
3414 break;
3415
3416 case GRO_DROP:
3417 case GRO_MERGED_FREE:
3418 napi_reuse_skb(napi, skb);
3419 break;
3420
3421 case GRO_MERGED:
3422 break;
3423 }
3424
3425 return ret;
3426 }
3427 EXPORT_SYMBOL(napi_frags_finish);
3428
3429 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3430 {
3431 struct sk_buff *skb = napi->skb;
3432 struct ethhdr *eth;
3433 unsigned int hlen;
3434 unsigned int off;
3435
3436 napi->skb = NULL;
3437
3438 skb_reset_mac_header(skb);
3439 skb_gro_reset_offset(skb);
3440
3441 off = skb_gro_offset(skb);
3442 hlen = off + sizeof(*eth);
3443 eth = skb_gro_header_fast(skb, off);
3444 if (skb_gro_header_hard(skb, hlen)) {
3445 eth = skb_gro_header_slow(skb, hlen, off);
3446 if (unlikely(!eth)) {
3447 napi_reuse_skb(napi, skb);
3448 skb = NULL;
3449 goto out;
3450 }
3451 }
3452
3453 skb_gro_pull(skb, sizeof(*eth));
3454
3455 /*
3456 * This works because the only protocols we care about don't require
3457 * special handling. We'll fix it up properly at the end.
3458 */
3459 skb->protocol = eth->h_proto;
3460
3461 out:
3462 return skb;
3463 }
3464 EXPORT_SYMBOL(napi_frags_skb);
3465
3466 gro_result_t napi_gro_frags(struct napi_struct *napi)
3467 {
3468 struct sk_buff *skb = napi_frags_skb(napi);
3469
3470 if (!skb)
3471 return GRO_DROP;
3472
3473 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3474 }
3475 EXPORT_SYMBOL(napi_gro_frags);
3476
3477 /*
3478 * net_rps_action sends any pending IPI's for rps.
3479 * Note: called with local irq disabled, but exits with local irq enabled.
3480 */
3481 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3482 {
3483 #ifdef CONFIG_RPS
3484 struct softnet_data *remsd = sd->rps_ipi_list;
3485
3486 if (remsd) {
3487 sd->rps_ipi_list = NULL;
3488
3489 local_irq_enable();
3490
3491 /* Send pending IPI's to kick RPS processing on remote cpus. */
3492 while (remsd) {
3493 struct softnet_data *next = remsd->rps_ipi_next;
3494
3495 if (cpu_online(remsd->cpu))
3496 __smp_call_function_single(remsd->cpu,
3497 &remsd->csd, 0);
3498 remsd = next;
3499 }
3500 } else
3501 #endif
3502 local_irq_enable();
3503 }
3504
3505 static int process_backlog(struct napi_struct *napi, int quota)
3506 {
3507 int work = 0;
3508 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3509
3510 #ifdef CONFIG_RPS
3511 /* Check if we have pending ipi, its better to send them now,
3512 * not waiting net_rx_action() end.
3513 */
3514 if (sd->rps_ipi_list) {
3515 local_irq_disable();
3516 net_rps_action_and_irq_enable(sd);
3517 }
3518 #endif
3519 napi->weight = weight_p;
3520 local_irq_disable();
3521 while (work < quota) {
3522 struct sk_buff *skb;
3523 unsigned int qlen;
3524
3525 while ((skb = __skb_dequeue(&sd->process_queue))) {
3526 local_irq_enable();
3527 __netif_receive_skb(skb);
3528 local_irq_disable();
3529 input_queue_head_incr(sd);
3530 if (++work >= quota) {
3531 local_irq_enable();
3532 return work;
3533 }
3534 }
3535
3536 rps_lock(sd);
3537 qlen = skb_queue_len(&sd->input_pkt_queue);
3538 if (qlen)
3539 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3540 &sd->process_queue);
3541
3542 if (qlen < quota - work) {
3543 /*
3544 * Inline a custom version of __napi_complete().
3545 * only current cpu owns and manipulates this napi,
3546 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3547 * we can use a plain write instead of clear_bit(),
3548 * and we dont need an smp_mb() memory barrier.
3549 */
3550 list_del(&napi->poll_list);
3551 napi->state = 0;
3552
3553 quota = work + qlen;
3554 }
3555 rps_unlock(sd);
3556 }
3557 local_irq_enable();
3558
3559 return work;
3560 }
3561
3562 /**
3563 * __napi_schedule - schedule for receive
3564 * @n: entry to schedule
3565 *
3566 * The entry's receive function will be scheduled to run
3567 */
3568 void __napi_schedule(struct napi_struct *n)
3569 {
3570 unsigned long flags;
3571
3572 local_irq_save(flags);
3573 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3574 local_irq_restore(flags);
3575 }
3576 EXPORT_SYMBOL(__napi_schedule);
3577
3578 void __napi_complete(struct napi_struct *n)
3579 {
3580 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3581 BUG_ON(n->gro_list);
3582
3583 list_del(&n->poll_list);
3584 smp_mb__before_clear_bit();
3585 clear_bit(NAPI_STATE_SCHED, &n->state);
3586 }
3587 EXPORT_SYMBOL(__napi_complete);
3588
3589 void napi_complete(struct napi_struct *n)
3590 {
3591 unsigned long flags;
3592
3593 /*
3594 * don't let napi dequeue from the cpu poll list
3595 * just in case its running on a different cpu
3596 */
3597 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3598 return;
3599
3600 napi_gro_flush(n);
3601 local_irq_save(flags);
3602 __napi_complete(n);
3603 local_irq_restore(flags);
3604 }
3605 EXPORT_SYMBOL(napi_complete);
3606
3607 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3608 int (*poll)(struct napi_struct *, int), int weight)
3609 {
3610 INIT_LIST_HEAD(&napi->poll_list);
3611 napi->gro_count = 0;
3612 napi->gro_list = NULL;
3613 napi->skb = NULL;
3614 napi->poll = poll;
3615 napi->weight = weight;
3616 list_add(&napi->dev_list, &dev->napi_list);
3617 napi->dev = dev;
3618 #ifdef CONFIG_NETPOLL
3619 spin_lock_init(&napi->poll_lock);
3620 napi->poll_owner = -1;
3621 #endif
3622 set_bit(NAPI_STATE_SCHED, &napi->state);
3623 }
3624 EXPORT_SYMBOL(netif_napi_add);
3625
3626 void netif_napi_del(struct napi_struct *napi)
3627 {
3628 struct sk_buff *skb, *next;
3629
3630 list_del_init(&napi->dev_list);
3631 napi_free_frags(napi);
3632
3633 for (skb = napi->gro_list; skb; skb = next) {
3634 next = skb->next;
3635 skb->next = NULL;
3636 kfree_skb(skb);
3637 }
3638
3639 napi->gro_list = NULL;
3640 napi->gro_count = 0;
3641 }
3642 EXPORT_SYMBOL(netif_napi_del);
3643
3644 static void net_rx_action(struct softirq_action *h)
3645 {
3646 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3647 unsigned long time_limit = jiffies + 2;
3648 int budget = netdev_budget;
3649 void *have;
3650
3651 local_irq_disable();
3652
3653 while (!list_empty(&sd->poll_list)) {
3654 struct napi_struct *n;
3655 int work, weight;
3656
3657 /* If softirq window is exhuasted then punt.
3658 * Allow this to run for 2 jiffies since which will allow
3659 * an average latency of 1.5/HZ.
3660 */
3661 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3662 goto softnet_break;
3663
3664 local_irq_enable();
3665
3666 /* Even though interrupts have been re-enabled, this
3667 * access is safe because interrupts can only add new
3668 * entries to the tail of this list, and only ->poll()
3669 * calls can remove this head entry from the list.
3670 */
3671 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3672
3673 have = netpoll_poll_lock(n);
3674
3675 weight = n->weight;
3676
3677 /* This NAPI_STATE_SCHED test is for avoiding a race
3678 * with netpoll's poll_napi(). Only the entity which
3679 * obtains the lock and sees NAPI_STATE_SCHED set will
3680 * actually make the ->poll() call. Therefore we avoid
3681 * accidently calling ->poll() when NAPI is not scheduled.
3682 */
3683 work = 0;
3684 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3685 work = n->poll(n, weight);
3686 trace_napi_poll(n);
3687 }
3688
3689 WARN_ON_ONCE(work > weight);
3690
3691 budget -= work;
3692
3693 local_irq_disable();
3694
3695 /* Drivers must not modify the NAPI state if they
3696 * consume the entire weight. In such cases this code
3697 * still "owns" the NAPI instance and therefore can
3698 * move the instance around on the list at-will.
3699 */
3700 if (unlikely(work == weight)) {
3701 if (unlikely(napi_disable_pending(n))) {
3702 local_irq_enable();
3703 napi_complete(n);
3704 local_irq_disable();
3705 } else
3706 list_move_tail(&n->poll_list, &sd->poll_list);
3707 }
3708
3709 netpoll_poll_unlock(have);
3710 }
3711 out:
3712 net_rps_action_and_irq_enable(sd);
3713
3714 #ifdef CONFIG_NET_DMA
3715 /*
3716 * There may not be any more sk_buffs coming right now, so push
3717 * any pending DMA copies to hardware
3718 */
3719 dma_issue_pending_all();
3720 #endif
3721
3722 return;
3723
3724 softnet_break:
3725 sd->time_squeeze++;
3726 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3727 goto out;
3728 }
3729
3730 static gifconf_func_t *gifconf_list[NPROTO];
3731
3732 /**
3733 * register_gifconf - register a SIOCGIF handler
3734 * @family: Address family
3735 * @gifconf: Function handler
3736 *
3737 * Register protocol dependent address dumping routines. The handler
3738 * that is passed must not be freed or reused until it has been replaced
3739 * by another handler.
3740 */
3741 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3742 {
3743 if (family >= NPROTO)
3744 return -EINVAL;
3745 gifconf_list[family] = gifconf;
3746 return 0;
3747 }
3748 EXPORT_SYMBOL(register_gifconf);
3749
3750
3751 /*
3752 * Map an interface index to its name (SIOCGIFNAME)
3753 */
3754
3755 /*
3756 * We need this ioctl for efficient implementation of the
3757 * if_indextoname() function required by the IPv6 API. Without
3758 * it, we would have to search all the interfaces to find a
3759 * match. --pb
3760 */
3761
3762 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3763 {
3764 struct net_device *dev;
3765 struct ifreq ifr;
3766
3767 /*
3768 * Fetch the caller's info block.
3769 */
3770
3771 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3772 return -EFAULT;
3773
3774 rcu_read_lock();
3775 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3776 if (!dev) {
3777 rcu_read_unlock();
3778 return -ENODEV;
3779 }
3780
3781 strcpy(ifr.ifr_name, dev->name);
3782 rcu_read_unlock();
3783
3784 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3785 return -EFAULT;
3786 return 0;
3787 }
3788
3789 /*
3790 * Perform a SIOCGIFCONF call. This structure will change
3791 * size eventually, and there is nothing I can do about it.
3792 * Thus we will need a 'compatibility mode'.
3793 */
3794
3795 static int dev_ifconf(struct net *net, char __user *arg)
3796 {
3797 struct ifconf ifc;
3798 struct net_device *dev;
3799 char __user *pos;
3800 int len;
3801 int total;
3802 int i;
3803
3804 /*
3805 * Fetch the caller's info block.
3806 */
3807
3808 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3809 return -EFAULT;
3810
3811 pos = ifc.ifc_buf;
3812 len = ifc.ifc_len;
3813
3814 /*
3815 * Loop over the interfaces, and write an info block for each.
3816 */
3817
3818 total = 0;
3819 for_each_netdev(net, dev) {
3820 for (i = 0; i < NPROTO; i++) {
3821 if (gifconf_list[i]) {
3822 int done;
3823 if (!pos)
3824 done = gifconf_list[i](dev, NULL, 0);
3825 else
3826 done = gifconf_list[i](dev, pos + total,
3827 len - total);
3828 if (done < 0)
3829 return -EFAULT;
3830 total += done;
3831 }
3832 }
3833 }
3834
3835 /*
3836 * All done. Write the updated control block back to the caller.
3837 */
3838 ifc.ifc_len = total;
3839
3840 /*
3841 * Both BSD and Solaris return 0 here, so we do too.
3842 */
3843 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3844 }
3845
3846 #ifdef CONFIG_PROC_FS
3847 /*
3848 * This is invoked by the /proc filesystem handler to display a device
3849 * in detail.
3850 */
3851 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3852 __acquires(RCU)
3853 {
3854 struct net *net = seq_file_net(seq);
3855 loff_t off;
3856 struct net_device *dev;
3857
3858 rcu_read_lock();
3859 if (!*pos)
3860 return SEQ_START_TOKEN;
3861
3862 off = 1;
3863 for_each_netdev_rcu(net, dev)
3864 if (off++ == *pos)
3865 return dev;
3866
3867 return NULL;
3868 }
3869
3870 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3871 {
3872 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3873 first_net_device(seq_file_net(seq)) :
3874 next_net_device((struct net_device *)v);
3875
3876 ++*pos;
3877 return rcu_dereference(dev);
3878 }
3879
3880 void dev_seq_stop(struct seq_file *seq, void *v)
3881 __releases(RCU)
3882 {
3883 rcu_read_unlock();
3884 }
3885
3886 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3887 {
3888 struct rtnl_link_stats64 temp;
3889 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3890
3891 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3892 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3893 dev->name, stats->rx_bytes, stats->rx_packets,
3894 stats->rx_errors,
3895 stats->rx_dropped + stats->rx_missed_errors,
3896 stats->rx_fifo_errors,
3897 stats->rx_length_errors + stats->rx_over_errors +
3898 stats->rx_crc_errors + stats->rx_frame_errors,
3899 stats->rx_compressed, stats->multicast,
3900 stats->tx_bytes, stats->tx_packets,
3901 stats->tx_errors, stats->tx_dropped,
3902 stats->tx_fifo_errors, stats->collisions,
3903 stats->tx_carrier_errors +
3904 stats->tx_aborted_errors +
3905 stats->tx_window_errors +
3906 stats->tx_heartbeat_errors,
3907 stats->tx_compressed);
3908 }
3909
3910 /*
3911 * Called from the PROCfs module. This now uses the new arbitrary sized
3912 * /proc/net interface to create /proc/net/dev
3913 */
3914 static int dev_seq_show(struct seq_file *seq, void *v)
3915 {
3916 if (v == SEQ_START_TOKEN)
3917 seq_puts(seq, "Inter-| Receive "
3918 " | Transmit\n"
3919 " face |bytes packets errs drop fifo frame "
3920 "compressed multicast|bytes packets errs "
3921 "drop fifo colls carrier compressed\n");
3922 else
3923 dev_seq_printf_stats(seq, v);
3924 return 0;
3925 }
3926
3927 static struct softnet_data *softnet_get_online(loff_t *pos)
3928 {
3929 struct softnet_data *sd = NULL;
3930
3931 while (*pos < nr_cpu_ids)
3932 if (cpu_online(*pos)) {
3933 sd = &per_cpu(softnet_data, *pos);
3934 break;
3935 } else
3936 ++*pos;
3937 return sd;
3938 }
3939
3940 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3941 {
3942 return softnet_get_online(pos);
3943 }
3944
3945 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3946 {
3947 ++*pos;
3948 return softnet_get_online(pos);
3949 }
3950
3951 static void softnet_seq_stop(struct seq_file *seq, void *v)
3952 {
3953 }
3954
3955 static int softnet_seq_show(struct seq_file *seq, void *v)
3956 {
3957 struct softnet_data *sd = v;
3958
3959 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3960 sd->processed, sd->dropped, sd->time_squeeze, 0,
3961 0, 0, 0, 0, /* was fastroute */
3962 sd->cpu_collision, sd->received_rps);
3963 return 0;
3964 }
3965
3966 static const struct seq_operations dev_seq_ops = {
3967 .start = dev_seq_start,
3968 .next = dev_seq_next,
3969 .stop = dev_seq_stop,
3970 .show = dev_seq_show,
3971 };
3972
3973 static int dev_seq_open(struct inode *inode, struct file *file)
3974 {
3975 return seq_open_net(inode, file, &dev_seq_ops,
3976 sizeof(struct seq_net_private));
3977 }
3978
3979 static const struct file_operations dev_seq_fops = {
3980 .owner = THIS_MODULE,
3981 .open = dev_seq_open,
3982 .read = seq_read,
3983 .llseek = seq_lseek,
3984 .release = seq_release_net,
3985 };
3986
3987 static const struct seq_operations softnet_seq_ops = {
3988 .start = softnet_seq_start,
3989 .next = softnet_seq_next,
3990 .stop = softnet_seq_stop,
3991 .show = softnet_seq_show,
3992 };
3993
3994 static int softnet_seq_open(struct inode *inode, struct file *file)
3995 {
3996 return seq_open(file, &softnet_seq_ops);
3997 }
3998
3999 static const struct file_operations softnet_seq_fops = {
4000 .owner = THIS_MODULE,
4001 .open = softnet_seq_open,
4002 .read = seq_read,
4003 .llseek = seq_lseek,
4004 .release = seq_release,
4005 };
4006
4007 static void *ptype_get_idx(loff_t pos)
4008 {
4009 struct packet_type *pt = NULL;
4010 loff_t i = 0;
4011 int t;
4012
4013 list_for_each_entry_rcu(pt, &ptype_all, list) {
4014 if (i == pos)
4015 return pt;
4016 ++i;
4017 }
4018
4019 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4020 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4021 if (i == pos)
4022 return pt;
4023 ++i;
4024 }
4025 }
4026 return NULL;
4027 }
4028
4029 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4030 __acquires(RCU)
4031 {
4032 rcu_read_lock();
4033 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4034 }
4035
4036 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4037 {
4038 struct packet_type *pt;
4039 struct list_head *nxt;
4040 int hash;
4041
4042 ++*pos;
4043 if (v == SEQ_START_TOKEN)
4044 return ptype_get_idx(0);
4045
4046 pt = v;
4047 nxt = pt->list.next;
4048 if (pt->type == htons(ETH_P_ALL)) {
4049 if (nxt != &ptype_all)
4050 goto found;
4051 hash = 0;
4052 nxt = ptype_base[0].next;
4053 } else
4054 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4055
4056 while (nxt == &ptype_base[hash]) {
4057 if (++hash >= PTYPE_HASH_SIZE)
4058 return NULL;
4059 nxt = ptype_base[hash].next;
4060 }
4061 found:
4062 return list_entry(nxt, struct packet_type, list);
4063 }
4064
4065 static void ptype_seq_stop(struct seq_file *seq, void *v)
4066 __releases(RCU)
4067 {
4068 rcu_read_unlock();
4069 }
4070
4071 static int ptype_seq_show(struct seq_file *seq, void *v)
4072 {
4073 struct packet_type *pt = v;
4074
4075 if (v == SEQ_START_TOKEN)
4076 seq_puts(seq, "Type Device Function\n");
4077 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4078 if (pt->type == htons(ETH_P_ALL))
4079 seq_puts(seq, "ALL ");
4080 else
4081 seq_printf(seq, "%04x", ntohs(pt->type));
4082
4083 seq_printf(seq, " %-8s %pF\n",
4084 pt->dev ? pt->dev->name : "", pt->func);
4085 }
4086
4087 return 0;
4088 }
4089
4090 static const struct seq_operations ptype_seq_ops = {
4091 .start = ptype_seq_start,
4092 .next = ptype_seq_next,
4093 .stop = ptype_seq_stop,
4094 .show = ptype_seq_show,
4095 };
4096
4097 static int ptype_seq_open(struct inode *inode, struct file *file)
4098 {
4099 return seq_open_net(inode, file, &ptype_seq_ops,
4100 sizeof(struct seq_net_private));
4101 }
4102
4103 static const struct file_operations ptype_seq_fops = {
4104 .owner = THIS_MODULE,
4105 .open = ptype_seq_open,
4106 .read = seq_read,
4107 .llseek = seq_lseek,
4108 .release = seq_release_net,
4109 };
4110
4111
4112 static int __net_init dev_proc_net_init(struct net *net)
4113 {
4114 int rc = -ENOMEM;
4115
4116 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4117 goto out;
4118 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4119 goto out_dev;
4120 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4121 goto out_softnet;
4122
4123 if (wext_proc_init(net))
4124 goto out_ptype;
4125 rc = 0;
4126 out:
4127 return rc;
4128 out_ptype:
4129 proc_net_remove(net, "ptype");
4130 out_softnet:
4131 proc_net_remove(net, "softnet_stat");
4132 out_dev:
4133 proc_net_remove(net, "dev");
4134 goto out;
4135 }
4136
4137 static void __net_exit dev_proc_net_exit(struct net *net)
4138 {
4139 wext_proc_exit(net);
4140
4141 proc_net_remove(net, "ptype");
4142 proc_net_remove(net, "softnet_stat");
4143 proc_net_remove(net, "dev");
4144 }
4145
4146 static struct pernet_operations __net_initdata dev_proc_ops = {
4147 .init = dev_proc_net_init,
4148 .exit = dev_proc_net_exit,
4149 };
4150
4151 static int __init dev_proc_init(void)
4152 {
4153 return register_pernet_subsys(&dev_proc_ops);
4154 }
4155 #else
4156 #define dev_proc_init() 0
4157 #endif /* CONFIG_PROC_FS */
4158
4159
4160 /**
4161 * netdev_set_master - set up master/slave pair
4162 * @slave: slave device
4163 * @master: new master device
4164 *
4165 * Changes the master device of the slave. Pass %NULL to break the
4166 * bonding. The caller must hold the RTNL semaphore. On a failure
4167 * a negative errno code is returned. On success the reference counts
4168 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4169 * function returns zero.
4170 */
4171 int netdev_set_master(struct net_device *slave, struct net_device *master)
4172 {
4173 struct net_device *old = slave->master;
4174
4175 ASSERT_RTNL();
4176
4177 if (master) {
4178 if (old)
4179 return -EBUSY;
4180 dev_hold(master);
4181 }
4182
4183 slave->master = master;
4184
4185 if (old) {
4186 synchronize_net();
4187 dev_put(old);
4188 }
4189 if (master)
4190 slave->flags |= IFF_SLAVE;
4191 else
4192 slave->flags &= ~IFF_SLAVE;
4193
4194 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4195 return 0;
4196 }
4197 EXPORT_SYMBOL(netdev_set_master);
4198
4199 static void dev_change_rx_flags(struct net_device *dev, int flags)
4200 {
4201 const struct net_device_ops *ops = dev->netdev_ops;
4202
4203 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4204 ops->ndo_change_rx_flags(dev, flags);
4205 }
4206
4207 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4208 {
4209 unsigned short old_flags = dev->flags;
4210 uid_t uid;
4211 gid_t gid;
4212
4213 ASSERT_RTNL();
4214
4215 dev->flags |= IFF_PROMISC;
4216 dev->promiscuity += inc;
4217 if (dev->promiscuity == 0) {
4218 /*
4219 * Avoid overflow.
4220 * If inc causes overflow, untouch promisc and return error.
4221 */
4222 if (inc < 0)
4223 dev->flags &= ~IFF_PROMISC;
4224 else {
4225 dev->promiscuity -= inc;
4226 printk(KERN_WARNING "%s: promiscuity touches roof, "
4227 "set promiscuity failed, promiscuity feature "
4228 "of device might be broken.\n", dev->name);
4229 return -EOVERFLOW;
4230 }
4231 }
4232 if (dev->flags != old_flags) {
4233 printk(KERN_INFO "device %s %s promiscuous mode\n",
4234 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4235 "left");
4236 if (audit_enabled) {
4237 current_uid_gid(&uid, &gid);
4238 audit_log(current->audit_context, GFP_ATOMIC,
4239 AUDIT_ANOM_PROMISCUOUS,
4240 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4241 dev->name, (dev->flags & IFF_PROMISC),
4242 (old_flags & IFF_PROMISC),
4243 audit_get_loginuid(current),
4244 uid, gid,
4245 audit_get_sessionid(current));
4246 }
4247
4248 dev_change_rx_flags(dev, IFF_PROMISC);
4249 }
4250 return 0;
4251 }
4252
4253 /**
4254 * dev_set_promiscuity - update promiscuity count on a device
4255 * @dev: device
4256 * @inc: modifier
4257 *
4258 * Add or remove promiscuity from a device. While the count in the device
4259 * remains above zero the interface remains promiscuous. Once it hits zero
4260 * the device reverts back to normal filtering operation. A negative inc
4261 * value is used to drop promiscuity on the device.
4262 * Return 0 if successful or a negative errno code on error.
4263 */
4264 int dev_set_promiscuity(struct net_device *dev, int inc)
4265 {
4266 unsigned short old_flags = dev->flags;
4267 int err;
4268
4269 err = __dev_set_promiscuity(dev, inc);
4270 if (err < 0)
4271 return err;
4272 if (dev->flags != old_flags)
4273 dev_set_rx_mode(dev);
4274 return err;
4275 }
4276 EXPORT_SYMBOL(dev_set_promiscuity);
4277
4278 /**
4279 * dev_set_allmulti - update allmulti count on a device
4280 * @dev: device
4281 * @inc: modifier
4282 *
4283 * Add or remove reception of all multicast frames to a device. While the
4284 * count in the device remains above zero the interface remains listening
4285 * to all interfaces. Once it hits zero the device reverts back to normal
4286 * filtering operation. A negative @inc value is used to drop the counter
4287 * when releasing a resource needing all multicasts.
4288 * Return 0 if successful or a negative errno code on error.
4289 */
4290
4291 int dev_set_allmulti(struct net_device *dev, int inc)
4292 {
4293 unsigned short old_flags = dev->flags;
4294
4295 ASSERT_RTNL();
4296
4297 dev->flags |= IFF_ALLMULTI;
4298 dev->allmulti += inc;
4299 if (dev->allmulti == 0) {
4300 /*
4301 * Avoid overflow.
4302 * If inc causes overflow, untouch allmulti and return error.
4303 */
4304 if (inc < 0)
4305 dev->flags &= ~IFF_ALLMULTI;
4306 else {
4307 dev->allmulti -= inc;
4308 printk(KERN_WARNING "%s: allmulti touches roof, "
4309 "set allmulti failed, allmulti feature of "
4310 "device might be broken.\n", dev->name);
4311 return -EOVERFLOW;
4312 }
4313 }
4314 if (dev->flags ^ old_flags) {
4315 dev_change_rx_flags(dev, IFF_ALLMULTI);
4316 dev_set_rx_mode(dev);
4317 }
4318 return 0;
4319 }
4320 EXPORT_SYMBOL(dev_set_allmulti);
4321
4322 /*
4323 * Upload unicast and multicast address lists to device and
4324 * configure RX filtering. When the device doesn't support unicast
4325 * filtering it is put in promiscuous mode while unicast addresses
4326 * are present.
4327 */
4328 void __dev_set_rx_mode(struct net_device *dev)
4329 {
4330 const struct net_device_ops *ops = dev->netdev_ops;
4331
4332 /* dev_open will call this function so the list will stay sane. */
4333 if (!(dev->flags&IFF_UP))
4334 return;
4335
4336 if (!netif_device_present(dev))
4337 return;
4338
4339 if (ops->ndo_set_rx_mode)
4340 ops->ndo_set_rx_mode(dev);
4341 else {
4342 /* Unicast addresses changes may only happen under the rtnl,
4343 * therefore calling __dev_set_promiscuity here is safe.
4344 */
4345 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4346 __dev_set_promiscuity(dev, 1);
4347 dev->uc_promisc = 1;
4348 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4349 __dev_set_promiscuity(dev, -1);
4350 dev->uc_promisc = 0;
4351 }
4352
4353 if (ops->ndo_set_multicast_list)
4354 ops->ndo_set_multicast_list(dev);
4355 }
4356 }
4357
4358 void dev_set_rx_mode(struct net_device *dev)
4359 {
4360 netif_addr_lock_bh(dev);
4361 __dev_set_rx_mode(dev);
4362 netif_addr_unlock_bh(dev);
4363 }
4364
4365 /**
4366 * dev_get_flags - get flags reported to userspace
4367 * @dev: device
4368 *
4369 * Get the combination of flag bits exported through APIs to userspace.
4370 */
4371 unsigned dev_get_flags(const struct net_device *dev)
4372 {
4373 unsigned flags;
4374
4375 flags = (dev->flags & ~(IFF_PROMISC |
4376 IFF_ALLMULTI |
4377 IFF_RUNNING |
4378 IFF_LOWER_UP |
4379 IFF_DORMANT)) |
4380 (dev->gflags & (IFF_PROMISC |
4381 IFF_ALLMULTI));
4382
4383 if (netif_running(dev)) {
4384 if (netif_oper_up(dev))
4385 flags |= IFF_RUNNING;
4386 if (netif_carrier_ok(dev))
4387 flags |= IFF_LOWER_UP;
4388 if (netif_dormant(dev))
4389 flags |= IFF_DORMANT;
4390 }
4391
4392 return flags;
4393 }
4394 EXPORT_SYMBOL(dev_get_flags);
4395
4396 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4397 {
4398 int old_flags = dev->flags;
4399 int ret;
4400
4401 ASSERT_RTNL();
4402
4403 /*
4404 * Set the flags on our device.
4405 */
4406
4407 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4408 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4409 IFF_AUTOMEDIA)) |
4410 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4411 IFF_ALLMULTI));
4412
4413 /*
4414 * Load in the correct multicast list now the flags have changed.
4415 */
4416
4417 if ((old_flags ^ flags) & IFF_MULTICAST)
4418 dev_change_rx_flags(dev, IFF_MULTICAST);
4419
4420 dev_set_rx_mode(dev);
4421
4422 /*
4423 * Have we downed the interface. We handle IFF_UP ourselves
4424 * according to user attempts to set it, rather than blindly
4425 * setting it.
4426 */
4427
4428 ret = 0;
4429 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4430 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4431
4432 if (!ret)
4433 dev_set_rx_mode(dev);
4434 }
4435
4436 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4437 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4438
4439 dev->gflags ^= IFF_PROMISC;
4440 dev_set_promiscuity(dev, inc);
4441 }
4442
4443 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4444 is important. Some (broken) drivers set IFF_PROMISC, when
4445 IFF_ALLMULTI is requested not asking us and not reporting.
4446 */
4447 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4448 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4449
4450 dev->gflags ^= IFF_ALLMULTI;
4451 dev_set_allmulti(dev, inc);
4452 }
4453
4454 return ret;
4455 }
4456
4457 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4458 {
4459 unsigned int changes = dev->flags ^ old_flags;
4460
4461 if (changes & IFF_UP) {
4462 if (dev->flags & IFF_UP)
4463 call_netdevice_notifiers(NETDEV_UP, dev);
4464 else
4465 call_netdevice_notifiers(NETDEV_DOWN, dev);
4466 }
4467
4468 if (dev->flags & IFF_UP &&
4469 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4470 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4471 }
4472
4473 /**
4474 * dev_change_flags - change device settings
4475 * @dev: device
4476 * @flags: device state flags
4477 *
4478 * Change settings on device based state flags. The flags are
4479 * in the userspace exported format.
4480 */
4481 int dev_change_flags(struct net_device *dev, unsigned flags)
4482 {
4483 int ret, changes;
4484 int old_flags = dev->flags;
4485
4486 ret = __dev_change_flags(dev, flags);
4487 if (ret < 0)
4488 return ret;
4489
4490 changes = old_flags ^ dev->flags;
4491 if (changes)
4492 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4493
4494 __dev_notify_flags(dev, old_flags);
4495 return ret;
4496 }
4497 EXPORT_SYMBOL(dev_change_flags);
4498
4499 /**
4500 * dev_set_mtu - Change maximum transfer unit
4501 * @dev: device
4502 * @new_mtu: new transfer unit
4503 *
4504 * Change the maximum transfer size of the network device.
4505 */
4506 int dev_set_mtu(struct net_device *dev, int new_mtu)
4507 {
4508 const struct net_device_ops *ops = dev->netdev_ops;
4509 int err;
4510
4511 if (new_mtu == dev->mtu)
4512 return 0;
4513
4514 /* MTU must be positive. */
4515 if (new_mtu < 0)
4516 return -EINVAL;
4517
4518 if (!netif_device_present(dev))
4519 return -ENODEV;
4520
4521 err = 0;
4522 if (ops->ndo_change_mtu)
4523 err = ops->ndo_change_mtu(dev, new_mtu);
4524 else
4525 dev->mtu = new_mtu;
4526
4527 if (!err && dev->flags & IFF_UP)
4528 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4529 return err;
4530 }
4531 EXPORT_SYMBOL(dev_set_mtu);
4532
4533 /**
4534 * dev_set_mac_address - Change Media Access Control Address
4535 * @dev: device
4536 * @sa: new address
4537 *
4538 * Change the hardware (MAC) address of the device
4539 */
4540 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4541 {
4542 const struct net_device_ops *ops = dev->netdev_ops;
4543 int err;
4544
4545 if (!ops->ndo_set_mac_address)
4546 return -EOPNOTSUPP;
4547 if (sa->sa_family != dev->type)
4548 return -EINVAL;
4549 if (!netif_device_present(dev))
4550 return -ENODEV;
4551 err = ops->ndo_set_mac_address(dev, sa);
4552 if (!err)
4553 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4554 return err;
4555 }
4556 EXPORT_SYMBOL(dev_set_mac_address);
4557
4558 /*
4559 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4560 */
4561 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4562 {
4563 int err;
4564 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4565
4566 if (!dev)
4567 return -ENODEV;
4568
4569 switch (cmd) {
4570 case SIOCGIFFLAGS: /* Get interface flags */
4571 ifr->ifr_flags = (short) dev_get_flags(dev);
4572 return 0;
4573
4574 case SIOCGIFMETRIC: /* Get the metric on the interface
4575 (currently unused) */
4576 ifr->ifr_metric = 0;
4577 return 0;
4578
4579 case SIOCGIFMTU: /* Get the MTU of a device */
4580 ifr->ifr_mtu = dev->mtu;
4581 return 0;
4582
4583 case SIOCGIFHWADDR:
4584 if (!dev->addr_len)
4585 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4586 else
4587 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4588 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4589 ifr->ifr_hwaddr.sa_family = dev->type;
4590 return 0;
4591
4592 case SIOCGIFSLAVE:
4593 err = -EINVAL;
4594 break;
4595
4596 case SIOCGIFMAP:
4597 ifr->ifr_map.mem_start = dev->mem_start;
4598 ifr->ifr_map.mem_end = dev->mem_end;
4599 ifr->ifr_map.base_addr = dev->base_addr;
4600 ifr->ifr_map.irq = dev->irq;
4601 ifr->ifr_map.dma = dev->dma;
4602 ifr->ifr_map.port = dev->if_port;
4603 return 0;
4604
4605 case SIOCGIFINDEX:
4606 ifr->ifr_ifindex = dev->ifindex;
4607 return 0;
4608
4609 case SIOCGIFTXQLEN:
4610 ifr->ifr_qlen = dev->tx_queue_len;
4611 return 0;
4612
4613 default:
4614 /* dev_ioctl() should ensure this case
4615 * is never reached
4616 */
4617 WARN_ON(1);
4618 err = -EINVAL;
4619 break;
4620
4621 }
4622 return err;
4623 }
4624
4625 /*
4626 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4627 */
4628 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4629 {
4630 int err;
4631 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4632 const struct net_device_ops *ops;
4633
4634 if (!dev)
4635 return -ENODEV;
4636
4637 ops = dev->netdev_ops;
4638
4639 switch (cmd) {
4640 case SIOCSIFFLAGS: /* Set interface flags */
4641 return dev_change_flags(dev, ifr->ifr_flags);
4642
4643 case SIOCSIFMETRIC: /* Set the metric on the interface
4644 (currently unused) */
4645 return -EOPNOTSUPP;
4646
4647 case SIOCSIFMTU: /* Set the MTU of a device */
4648 return dev_set_mtu(dev, ifr->ifr_mtu);
4649
4650 case SIOCSIFHWADDR:
4651 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4652
4653 case SIOCSIFHWBROADCAST:
4654 if (ifr->ifr_hwaddr.sa_family != dev->type)
4655 return -EINVAL;
4656 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4657 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4658 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4659 return 0;
4660
4661 case SIOCSIFMAP:
4662 if (ops->ndo_set_config) {
4663 if (!netif_device_present(dev))
4664 return -ENODEV;
4665 return ops->ndo_set_config(dev, &ifr->ifr_map);
4666 }
4667 return -EOPNOTSUPP;
4668
4669 case SIOCADDMULTI:
4670 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4671 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4672 return -EINVAL;
4673 if (!netif_device_present(dev))
4674 return -ENODEV;
4675 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4676
4677 case SIOCDELMULTI:
4678 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4679 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4680 return -EINVAL;
4681 if (!netif_device_present(dev))
4682 return -ENODEV;
4683 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4684
4685 case SIOCSIFTXQLEN:
4686 if (ifr->ifr_qlen < 0)
4687 return -EINVAL;
4688 dev->tx_queue_len = ifr->ifr_qlen;
4689 return 0;
4690
4691 case SIOCSIFNAME:
4692 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4693 return dev_change_name(dev, ifr->ifr_newname);
4694
4695 /*
4696 * Unknown or private ioctl
4697 */
4698 default:
4699 if ((cmd >= SIOCDEVPRIVATE &&
4700 cmd <= SIOCDEVPRIVATE + 15) ||
4701 cmd == SIOCBONDENSLAVE ||
4702 cmd == SIOCBONDRELEASE ||
4703 cmd == SIOCBONDSETHWADDR ||
4704 cmd == SIOCBONDSLAVEINFOQUERY ||
4705 cmd == SIOCBONDINFOQUERY ||
4706 cmd == SIOCBONDCHANGEACTIVE ||
4707 cmd == SIOCGMIIPHY ||
4708 cmd == SIOCGMIIREG ||
4709 cmd == SIOCSMIIREG ||
4710 cmd == SIOCBRADDIF ||
4711 cmd == SIOCBRDELIF ||
4712 cmd == SIOCSHWTSTAMP ||
4713 cmd == SIOCWANDEV) {
4714 err = -EOPNOTSUPP;
4715 if (ops->ndo_do_ioctl) {
4716 if (netif_device_present(dev))
4717 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4718 else
4719 err = -ENODEV;
4720 }
4721 } else
4722 err = -EINVAL;
4723
4724 }
4725 return err;
4726 }
4727
4728 /*
4729 * This function handles all "interface"-type I/O control requests. The actual
4730 * 'doing' part of this is dev_ifsioc above.
4731 */
4732
4733 /**
4734 * dev_ioctl - network device ioctl
4735 * @net: the applicable net namespace
4736 * @cmd: command to issue
4737 * @arg: pointer to a struct ifreq in user space
4738 *
4739 * Issue ioctl functions to devices. This is normally called by the
4740 * user space syscall interfaces but can sometimes be useful for
4741 * other purposes. The return value is the return from the syscall if
4742 * positive or a negative errno code on error.
4743 */
4744
4745 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4746 {
4747 struct ifreq ifr;
4748 int ret;
4749 char *colon;
4750
4751 /* One special case: SIOCGIFCONF takes ifconf argument
4752 and requires shared lock, because it sleeps writing
4753 to user space.
4754 */
4755
4756 if (cmd == SIOCGIFCONF) {
4757 rtnl_lock();
4758 ret = dev_ifconf(net, (char __user *) arg);
4759 rtnl_unlock();
4760 return ret;
4761 }
4762 if (cmd == SIOCGIFNAME)
4763 return dev_ifname(net, (struct ifreq __user *)arg);
4764
4765 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4766 return -EFAULT;
4767
4768 ifr.ifr_name[IFNAMSIZ-1] = 0;
4769
4770 colon = strchr(ifr.ifr_name, ':');
4771 if (colon)
4772 *colon = 0;
4773
4774 /*
4775 * See which interface the caller is talking about.
4776 */
4777
4778 switch (cmd) {
4779 /*
4780 * These ioctl calls:
4781 * - can be done by all.
4782 * - atomic and do not require locking.
4783 * - return a value
4784 */
4785 case SIOCGIFFLAGS:
4786 case SIOCGIFMETRIC:
4787 case SIOCGIFMTU:
4788 case SIOCGIFHWADDR:
4789 case SIOCGIFSLAVE:
4790 case SIOCGIFMAP:
4791 case SIOCGIFINDEX:
4792 case SIOCGIFTXQLEN:
4793 dev_load(net, ifr.ifr_name);
4794 rcu_read_lock();
4795 ret = dev_ifsioc_locked(net, &ifr, cmd);
4796 rcu_read_unlock();
4797 if (!ret) {
4798 if (colon)
4799 *colon = ':';
4800 if (copy_to_user(arg, &ifr,
4801 sizeof(struct ifreq)))
4802 ret = -EFAULT;
4803 }
4804 return ret;
4805
4806 case SIOCETHTOOL:
4807 dev_load(net, ifr.ifr_name);
4808 rtnl_lock();
4809 ret = dev_ethtool(net, &ifr);
4810 rtnl_unlock();
4811 if (!ret) {
4812 if (colon)
4813 *colon = ':';
4814 if (copy_to_user(arg, &ifr,
4815 sizeof(struct ifreq)))
4816 ret = -EFAULT;
4817 }
4818 return ret;
4819
4820 /*
4821 * These ioctl calls:
4822 * - require superuser power.
4823 * - require strict serialization.
4824 * - return a value
4825 */
4826 case SIOCGMIIPHY:
4827 case SIOCGMIIREG:
4828 case SIOCSIFNAME:
4829 if (!capable(CAP_NET_ADMIN))
4830 return -EPERM;
4831 dev_load(net, ifr.ifr_name);
4832 rtnl_lock();
4833 ret = dev_ifsioc(net, &ifr, cmd);
4834 rtnl_unlock();
4835 if (!ret) {
4836 if (colon)
4837 *colon = ':';
4838 if (copy_to_user(arg, &ifr,
4839 sizeof(struct ifreq)))
4840 ret = -EFAULT;
4841 }
4842 return ret;
4843
4844 /*
4845 * These ioctl calls:
4846 * - require superuser power.
4847 * - require strict serialization.
4848 * - do not return a value
4849 */
4850 case SIOCSIFFLAGS:
4851 case SIOCSIFMETRIC:
4852 case SIOCSIFMTU:
4853 case SIOCSIFMAP:
4854 case SIOCSIFHWADDR:
4855 case SIOCSIFSLAVE:
4856 case SIOCADDMULTI:
4857 case SIOCDELMULTI:
4858 case SIOCSIFHWBROADCAST:
4859 case SIOCSIFTXQLEN:
4860 case SIOCSMIIREG:
4861 case SIOCBONDENSLAVE:
4862 case SIOCBONDRELEASE:
4863 case SIOCBONDSETHWADDR:
4864 case SIOCBONDCHANGEACTIVE:
4865 case SIOCBRADDIF:
4866 case SIOCBRDELIF:
4867 case SIOCSHWTSTAMP:
4868 if (!capable(CAP_NET_ADMIN))
4869 return -EPERM;
4870 /* fall through */
4871 case SIOCBONDSLAVEINFOQUERY:
4872 case SIOCBONDINFOQUERY:
4873 dev_load(net, ifr.ifr_name);
4874 rtnl_lock();
4875 ret = dev_ifsioc(net, &ifr, cmd);
4876 rtnl_unlock();
4877 return ret;
4878
4879 case SIOCGIFMEM:
4880 /* Get the per device memory space. We can add this but
4881 * currently do not support it */
4882 case SIOCSIFMEM:
4883 /* Set the per device memory buffer space.
4884 * Not applicable in our case */
4885 case SIOCSIFLINK:
4886 return -EINVAL;
4887
4888 /*
4889 * Unknown or private ioctl.
4890 */
4891 default:
4892 if (cmd == SIOCWANDEV ||
4893 (cmd >= SIOCDEVPRIVATE &&
4894 cmd <= SIOCDEVPRIVATE + 15)) {
4895 dev_load(net, ifr.ifr_name);
4896 rtnl_lock();
4897 ret = dev_ifsioc(net, &ifr, cmd);
4898 rtnl_unlock();
4899 if (!ret && copy_to_user(arg, &ifr,
4900 sizeof(struct ifreq)))
4901 ret = -EFAULT;
4902 return ret;
4903 }
4904 /* Take care of Wireless Extensions */
4905 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4906 return wext_handle_ioctl(net, &ifr, cmd, arg);
4907 return -EINVAL;
4908 }
4909 }
4910
4911
4912 /**
4913 * dev_new_index - allocate an ifindex
4914 * @net: the applicable net namespace
4915 *
4916 * Returns a suitable unique value for a new device interface
4917 * number. The caller must hold the rtnl semaphore or the
4918 * dev_base_lock to be sure it remains unique.
4919 */
4920 static int dev_new_index(struct net *net)
4921 {
4922 static int ifindex;
4923 for (;;) {
4924 if (++ifindex <= 0)
4925 ifindex = 1;
4926 if (!__dev_get_by_index(net, ifindex))
4927 return ifindex;
4928 }
4929 }
4930
4931 /* Delayed registration/unregisteration */
4932 static LIST_HEAD(net_todo_list);
4933
4934 static void net_set_todo(struct net_device *dev)
4935 {
4936 list_add_tail(&dev->todo_list, &net_todo_list);
4937 }
4938
4939 static void rollback_registered_many(struct list_head *head)
4940 {
4941 struct net_device *dev, *tmp;
4942
4943 BUG_ON(dev_boot_phase);
4944 ASSERT_RTNL();
4945
4946 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4947 /* Some devices call without registering
4948 * for initialization unwind. Remove those
4949 * devices and proceed with the remaining.
4950 */
4951 if (dev->reg_state == NETREG_UNINITIALIZED) {
4952 pr_debug("unregister_netdevice: device %s/%p never "
4953 "was registered\n", dev->name, dev);
4954
4955 WARN_ON(1);
4956 list_del(&dev->unreg_list);
4957 continue;
4958 }
4959
4960 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4961
4962 /* If device is running, close it first. */
4963 dev_close(dev);
4964
4965 /* And unlink it from device chain. */
4966 unlist_netdevice(dev);
4967
4968 dev->reg_state = NETREG_UNREGISTERING;
4969 }
4970
4971 synchronize_net();
4972
4973 list_for_each_entry(dev, head, unreg_list) {
4974 /* Shutdown queueing discipline. */
4975 dev_shutdown(dev);
4976
4977
4978 /* Notify protocols, that we are about to destroy
4979 this device. They should clean all the things.
4980 */
4981 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4982
4983 if (!dev->rtnl_link_ops ||
4984 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4985 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4986
4987 /*
4988 * Flush the unicast and multicast chains
4989 */
4990 dev_uc_flush(dev);
4991 dev_mc_flush(dev);
4992
4993 if (dev->netdev_ops->ndo_uninit)
4994 dev->netdev_ops->ndo_uninit(dev);
4995
4996 /* Notifier chain MUST detach us from master device. */
4997 WARN_ON(dev->master);
4998
4999 /* Remove entries from kobject tree */
5000 netdev_unregister_kobject(dev);
5001 }
5002
5003 /* Process any work delayed until the end of the batch */
5004 dev = list_first_entry(head, struct net_device, unreg_list);
5005 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5006
5007 rcu_barrier();
5008
5009 list_for_each_entry(dev, head, unreg_list)
5010 dev_put(dev);
5011 }
5012
5013 static void rollback_registered(struct net_device *dev)
5014 {
5015 LIST_HEAD(single);
5016
5017 list_add(&dev->unreg_list, &single);
5018 rollback_registered_many(&single);
5019 }
5020
5021 unsigned long netdev_fix_features(unsigned long features, const char *name)
5022 {
5023 /* Fix illegal SG+CSUM combinations. */
5024 if ((features & NETIF_F_SG) &&
5025 !(features & NETIF_F_ALL_CSUM)) {
5026 if (name)
5027 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5028 "checksum feature.\n", name);
5029 features &= ~NETIF_F_SG;
5030 }
5031
5032 /* TSO requires that SG is present as well. */
5033 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5034 if (name)
5035 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5036 "SG feature.\n", name);
5037 features &= ~NETIF_F_TSO;
5038 }
5039
5040 if (features & NETIF_F_UFO) {
5041 /* maybe split UFO into V4 and V6? */
5042 if (!((features & NETIF_F_GEN_CSUM) ||
5043 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5044 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5045 if (name)
5046 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5047 "since no checksum offload features.\n",
5048 name);
5049 features &= ~NETIF_F_UFO;
5050 }
5051
5052 if (!(features & NETIF_F_SG)) {
5053 if (name)
5054 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5055 "since no NETIF_F_SG feature.\n", name);
5056 features &= ~NETIF_F_UFO;
5057 }
5058 }
5059
5060 return features;
5061 }
5062 EXPORT_SYMBOL(netdev_fix_features);
5063
5064 /**
5065 * netif_stacked_transfer_operstate - transfer operstate
5066 * @rootdev: the root or lower level device to transfer state from
5067 * @dev: the device to transfer operstate to
5068 *
5069 * Transfer operational state from root to device. This is normally
5070 * called when a stacking relationship exists between the root
5071 * device and the device(a leaf device).
5072 */
5073 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5074 struct net_device *dev)
5075 {
5076 if (rootdev->operstate == IF_OPER_DORMANT)
5077 netif_dormant_on(dev);
5078 else
5079 netif_dormant_off(dev);
5080
5081 if (netif_carrier_ok(rootdev)) {
5082 if (!netif_carrier_ok(dev))
5083 netif_carrier_on(dev);
5084 } else {
5085 if (netif_carrier_ok(dev))
5086 netif_carrier_off(dev);
5087 }
5088 }
5089 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5090
5091 #ifdef CONFIG_RPS
5092 static int netif_alloc_rx_queues(struct net_device *dev)
5093 {
5094 unsigned int i, count = dev->num_rx_queues;
5095 struct netdev_rx_queue *rx;
5096
5097 BUG_ON(count < 1);
5098
5099 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5100 if (!rx) {
5101 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5102 return -ENOMEM;
5103 }
5104 dev->_rx = rx;
5105
5106 for (i = 0; i < count; i++)
5107 rx[i].dev = dev;
5108 return 0;
5109 }
5110 #endif
5111
5112 static void netdev_init_one_queue(struct net_device *dev,
5113 struct netdev_queue *queue, void *_unused)
5114 {
5115 /* Initialize queue lock */
5116 spin_lock_init(&queue->_xmit_lock);
5117 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5118 queue->xmit_lock_owner = -1;
5119 netdev_queue_numa_node_write(queue, -1);
5120 queue->dev = dev;
5121 }
5122
5123 static int netif_alloc_netdev_queues(struct net_device *dev)
5124 {
5125 unsigned int count = dev->num_tx_queues;
5126 struct netdev_queue *tx;
5127
5128 BUG_ON(count < 1);
5129
5130 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5131 if (!tx) {
5132 pr_err("netdev: Unable to allocate %u tx queues.\n",
5133 count);
5134 return -ENOMEM;
5135 }
5136 dev->_tx = tx;
5137
5138 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5139 spin_lock_init(&dev->tx_global_lock);
5140
5141 return 0;
5142 }
5143
5144 /**
5145 * register_netdevice - register a network device
5146 * @dev: device to register
5147 *
5148 * Take a completed network device structure and add it to the kernel
5149 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5150 * chain. 0 is returned on success. A negative errno code is returned
5151 * on a failure to set up the device, or if the name is a duplicate.
5152 *
5153 * Callers must hold the rtnl semaphore. You may want
5154 * register_netdev() instead of this.
5155 *
5156 * BUGS:
5157 * The locking appears insufficient to guarantee two parallel registers
5158 * will not get the same name.
5159 */
5160
5161 int register_netdevice(struct net_device *dev)
5162 {
5163 int ret;
5164 struct net *net = dev_net(dev);
5165
5166 BUG_ON(dev_boot_phase);
5167 ASSERT_RTNL();
5168
5169 might_sleep();
5170
5171 /* When net_device's are persistent, this will be fatal. */
5172 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5173 BUG_ON(!net);
5174
5175 spin_lock_init(&dev->addr_list_lock);
5176 netdev_set_addr_lockdep_class(dev);
5177
5178 dev->iflink = -1;
5179
5180 /* Init, if this function is available */
5181 if (dev->netdev_ops->ndo_init) {
5182 ret = dev->netdev_ops->ndo_init(dev);
5183 if (ret) {
5184 if (ret > 0)
5185 ret = -EIO;
5186 goto out;
5187 }
5188 }
5189
5190 ret = dev_get_valid_name(dev, dev->name, 0);
5191 if (ret)
5192 goto err_uninit;
5193
5194 dev->ifindex = dev_new_index(net);
5195 if (dev->iflink == -1)
5196 dev->iflink = dev->ifindex;
5197
5198 /* Fix illegal checksum combinations */
5199 if ((dev->features & NETIF_F_HW_CSUM) &&
5200 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5201 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5202 dev->name);
5203 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5204 }
5205
5206 if ((dev->features & NETIF_F_NO_CSUM) &&
5207 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5208 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5209 dev->name);
5210 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5211 }
5212
5213 dev->features = netdev_fix_features(dev->features, dev->name);
5214
5215 /* Enable software GSO if SG is supported. */
5216 if (dev->features & NETIF_F_SG)
5217 dev->features |= NETIF_F_GSO;
5218
5219 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5220 * vlan_dev_init() will do the dev->features check, so these features
5221 * are enabled only if supported by underlying device.
5222 */
5223 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5224
5225 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5226 ret = notifier_to_errno(ret);
5227 if (ret)
5228 goto err_uninit;
5229
5230 ret = netdev_register_kobject(dev);
5231 if (ret)
5232 goto err_uninit;
5233 dev->reg_state = NETREG_REGISTERED;
5234
5235 /*
5236 * Default initial state at registry is that the
5237 * device is present.
5238 */
5239
5240 set_bit(__LINK_STATE_PRESENT, &dev->state);
5241
5242 dev_init_scheduler(dev);
5243 dev_hold(dev);
5244 list_netdevice(dev);
5245
5246 /* Notify protocols, that a new device appeared. */
5247 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5248 ret = notifier_to_errno(ret);
5249 if (ret) {
5250 rollback_registered(dev);
5251 dev->reg_state = NETREG_UNREGISTERED;
5252 }
5253 /*
5254 * Prevent userspace races by waiting until the network
5255 * device is fully setup before sending notifications.
5256 */
5257 if (!dev->rtnl_link_ops ||
5258 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5259 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5260
5261 out:
5262 return ret;
5263
5264 err_uninit:
5265 if (dev->netdev_ops->ndo_uninit)
5266 dev->netdev_ops->ndo_uninit(dev);
5267 goto out;
5268 }
5269 EXPORT_SYMBOL(register_netdevice);
5270
5271 /**
5272 * init_dummy_netdev - init a dummy network device for NAPI
5273 * @dev: device to init
5274 *
5275 * This takes a network device structure and initialize the minimum
5276 * amount of fields so it can be used to schedule NAPI polls without
5277 * registering a full blown interface. This is to be used by drivers
5278 * that need to tie several hardware interfaces to a single NAPI
5279 * poll scheduler due to HW limitations.
5280 */
5281 int init_dummy_netdev(struct net_device *dev)
5282 {
5283 /* Clear everything. Note we don't initialize spinlocks
5284 * are they aren't supposed to be taken by any of the
5285 * NAPI code and this dummy netdev is supposed to be
5286 * only ever used for NAPI polls
5287 */
5288 memset(dev, 0, sizeof(struct net_device));
5289
5290 /* make sure we BUG if trying to hit standard
5291 * register/unregister code path
5292 */
5293 dev->reg_state = NETREG_DUMMY;
5294
5295 /* NAPI wants this */
5296 INIT_LIST_HEAD(&dev->napi_list);
5297
5298 /* a dummy interface is started by default */
5299 set_bit(__LINK_STATE_PRESENT, &dev->state);
5300 set_bit(__LINK_STATE_START, &dev->state);
5301
5302 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5303 * because users of this 'device' dont need to change
5304 * its refcount.
5305 */
5306
5307 return 0;
5308 }
5309 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5310
5311
5312 /**
5313 * register_netdev - register a network device
5314 * @dev: device to register
5315 *
5316 * Take a completed network device structure and add it to the kernel
5317 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5318 * chain. 0 is returned on success. A negative errno code is returned
5319 * on a failure to set up the device, or if the name is a duplicate.
5320 *
5321 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5322 * and expands the device name if you passed a format string to
5323 * alloc_netdev.
5324 */
5325 int register_netdev(struct net_device *dev)
5326 {
5327 int err;
5328
5329 rtnl_lock();
5330
5331 /*
5332 * If the name is a format string the caller wants us to do a
5333 * name allocation.
5334 */
5335 if (strchr(dev->name, '%')) {
5336 err = dev_alloc_name(dev, dev->name);
5337 if (err < 0)
5338 goto out;
5339 }
5340
5341 err = register_netdevice(dev);
5342 out:
5343 rtnl_unlock();
5344 return err;
5345 }
5346 EXPORT_SYMBOL(register_netdev);
5347
5348 int netdev_refcnt_read(const struct net_device *dev)
5349 {
5350 int i, refcnt = 0;
5351
5352 for_each_possible_cpu(i)
5353 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5354 return refcnt;
5355 }
5356 EXPORT_SYMBOL(netdev_refcnt_read);
5357
5358 /*
5359 * netdev_wait_allrefs - wait until all references are gone.
5360 *
5361 * This is called when unregistering network devices.
5362 *
5363 * Any protocol or device that holds a reference should register
5364 * for netdevice notification, and cleanup and put back the
5365 * reference if they receive an UNREGISTER event.
5366 * We can get stuck here if buggy protocols don't correctly
5367 * call dev_put.
5368 */
5369 static void netdev_wait_allrefs(struct net_device *dev)
5370 {
5371 unsigned long rebroadcast_time, warning_time;
5372 int refcnt;
5373
5374 linkwatch_forget_dev(dev);
5375
5376 rebroadcast_time = warning_time = jiffies;
5377 refcnt = netdev_refcnt_read(dev);
5378
5379 while (refcnt != 0) {
5380 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5381 rtnl_lock();
5382
5383 /* Rebroadcast unregister notification */
5384 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5385 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5386 * should have already handle it the first time */
5387
5388 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5389 &dev->state)) {
5390 /* We must not have linkwatch events
5391 * pending on unregister. If this
5392 * happens, we simply run the queue
5393 * unscheduled, resulting in a noop
5394 * for this device.
5395 */
5396 linkwatch_run_queue();
5397 }
5398
5399 __rtnl_unlock();
5400
5401 rebroadcast_time = jiffies;
5402 }
5403
5404 msleep(250);
5405
5406 refcnt = netdev_refcnt_read(dev);
5407
5408 if (time_after(jiffies, warning_time + 10 * HZ)) {
5409 printk(KERN_EMERG "unregister_netdevice: "
5410 "waiting for %s to become free. Usage "
5411 "count = %d\n",
5412 dev->name, refcnt);
5413 warning_time = jiffies;
5414 }
5415 }
5416 }
5417
5418 /* The sequence is:
5419 *
5420 * rtnl_lock();
5421 * ...
5422 * register_netdevice(x1);
5423 * register_netdevice(x2);
5424 * ...
5425 * unregister_netdevice(y1);
5426 * unregister_netdevice(y2);
5427 * ...
5428 * rtnl_unlock();
5429 * free_netdev(y1);
5430 * free_netdev(y2);
5431 *
5432 * We are invoked by rtnl_unlock().
5433 * This allows us to deal with problems:
5434 * 1) We can delete sysfs objects which invoke hotplug
5435 * without deadlocking with linkwatch via keventd.
5436 * 2) Since we run with the RTNL semaphore not held, we can sleep
5437 * safely in order to wait for the netdev refcnt to drop to zero.
5438 *
5439 * We must not return until all unregister events added during
5440 * the interval the lock was held have been completed.
5441 */
5442 void netdev_run_todo(void)
5443 {
5444 struct list_head list;
5445
5446 /* Snapshot list, allow later requests */
5447 list_replace_init(&net_todo_list, &list);
5448
5449 __rtnl_unlock();
5450
5451 while (!list_empty(&list)) {
5452 struct net_device *dev
5453 = list_first_entry(&list, struct net_device, todo_list);
5454 list_del(&dev->todo_list);
5455
5456 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5457 printk(KERN_ERR "network todo '%s' but state %d\n",
5458 dev->name, dev->reg_state);
5459 dump_stack();
5460 continue;
5461 }
5462
5463 dev->reg_state = NETREG_UNREGISTERED;
5464
5465 on_each_cpu(flush_backlog, dev, 1);
5466
5467 netdev_wait_allrefs(dev);
5468
5469 /* paranoia */
5470 BUG_ON(netdev_refcnt_read(dev));
5471 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5472 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5473 WARN_ON(dev->dn_ptr);
5474
5475 if (dev->destructor)
5476 dev->destructor(dev);
5477
5478 /* Free network device */
5479 kobject_put(&dev->dev.kobj);
5480 }
5481 }
5482
5483 /**
5484 * dev_txq_stats_fold - fold tx_queues stats
5485 * @dev: device to get statistics from
5486 * @stats: struct rtnl_link_stats64 to hold results
5487 */
5488 void dev_txq_stats_fold(const struct net_device *dev,
5489 struct rtnl_link_stats64 *stats)
5490 {
5491 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5492 unsigned int i;
5493 struct netdev_queue *txq;
5494
5495 for (i = 0; i < dev->num_tx_queues; i++) {
5496 txq = netdev_get_tx_queue(dev, i);
5497 spin_lock_bh(&txq->_xmit_lock);
5498 tx_bytes += txq->tx_bytes;
5499 tx_packets += txq->tx_packets;
5500 tx_dropped += txq->tx_dropped;
5501 spin_unlock_bh(&txq->_xmit_lock);
5502 }
5503 if (tx_bytes || tx_packets || tx_dropped) {
5504 stats->tx_bytes = tx_bytes;
5505 stats->tx_packets = tx_packets;
5506 stats->tx_dropped = tx_dropped;
5507 }
5508 }
5509 EXPORT_SYMBOL(dev_txq_stats_fold);
5510
5511 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5512 * fields in the same order, with only the type differing.
5513 */
5514 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5515 const struct net_device_stats *netdev_stats)
5516 {
5517 #if BITS_PER_LONG == 64
5518 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5519 memcpy(stats64, netdev_stats, sizeof(*stats64));
5520 #else
5521 size_t i, n = sizeof(*stats64) / sizeof(u64);
5522 const unsigned long *src = (const unsigned long *)netdev_stats;
5523 u64 *dst = (u64 *)stats64;
5524
5525 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5526 sizeof(*stats64) / sizeof(u64));
5527 for (i = 0; i < n; i++)
5528 dst[i] = src[i];
5529 #endif
5530 }
5531
5532 /**
5533 * dev_get_stats - get network device statistics
5534 * @dev: device to get statistics from
5535 * @storage: place to store stats
5536 *
5537 * Get network statistics from device. Return @storage.
5538 * The device driver may provide its own method by setting
5539 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5540 * otherwise the internal statistics structure is used.
5541 */
5542 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5543 struct rtnl_link_stats64 *storage)
5544 {
5545 const struct net_device_ops *ops = dev->netdev_ops;
5546
5547 if (ops->ndo_get_stats64) {
5548 memset(storage, 0, sizeof(*storage));
5549 ops->ndo_get_stats64(dev, storage);
5550 } else if (ops->ndo_get_stats) {
5551 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5552 } else {
5553 netdev_stats_to_stats64(storage, &dev->stats);
5554 dev_txq_stats_fold(dev, storage);
5555 }
5556 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5557 return storage;
5558 }
5559 EXPORT_SYMBOL(dev_get_stats);
5560
5561 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5562 {
5563 struct netdev_queue *queue = dev_ingress_queue(dev);
5564
5565 #ifdef CONFIG_NET_CLS_ACT
5566 if (queue)
5567 return queue;
5568 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5569 if (!queue)
5570 return NULL;
5571 netdev_init_one_queue(dev, queue, NULL);
5572 queue->qdisc = &noop_qdisc;
5573 queue->qdisc_sleeping = &noop_qdisc;
5574 rcu_assign_pointer(dev->ingress_queue, queue);
5575 #endif
5576 return queue;
5577 }
5578
5579 /**
5580 * alloc_netdev_mq - allocate network device
5581 * @sizeof_priv: size of private data to allocate space for
5582 * @name: device name format string
5583 * @setup: callback to initialize device
5584 * @queue_count: the number of subqueues to allocate
5585 *
5586 * Allocates a struct net_device with private data area for driver use
5587 * and performs basic initialization. Also allocates subquue structs
5588 * for each queue on the device at the end of the netdevice.
5589 */
5590 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5591 void (*setup)(struct net_device *), unsigned int queue_count)
5592 {
5593 struct net_device *dev;
5594 size_t alloc_size;
5595 struct net_device *p;
5596
5597 BUG_ON(strlen(name) >= sizeof(dev->name));
5598
5599 if (queue_count < 1) {
5600 pr_err("alloc_netdev: Unable to allocate device "
5601 "with zero queues.\n");
5602 return NULL;
5603 }
5604
5605 alloc_size = sizeof(struct net_device);
5606 if (sizeof_priv) {
5607 /* ensure 32-byte alignment of private area */
5608 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5609 alloc_size += sizeof_priv;
5610 }
5611 /* ensure 32-byte alignment of whole construct */
5612 alloc_size += NETDEV_ALIGN - 1;
5613
5614 p = kzalloc(alloc_size, GFP_KERNEL);
5615 if (!p) {
5616 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5617 return NULL;
5618 }
5619
5620 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5621 dev->padded = (char *)dev - (char *)p;
5622
5623 dev->pcpu_refcnt = alloc_percpu(int);
5624 if (!dev->pcpu_refcnt)
5625 goto free_p;
5626
5627 if (dev_addr_init(dev))
5628 goto free_pcpu;
5629
5630 dev_mc_init(dev);
5631 dev_uc_init(dev);
5632
5633 dev_net_set(dev, &init_net);
5634
5635 dev->num_tx_queues = queue_count;
5636 dev->real_num_tx_queues = queue_count;
5637 if (netif_alloc_netdev_queues(dev))
5638 goto free_pcpu;
5639
5640 #ifdef CONFIG_RPS
5641 dev->num_rx_queues = queue_count;
5642 dev->real_num_rx_queues = queue_count;
5643 if (netif_alloc_rx_queues(dev))
5644 goto free_pcpu;
5645 #endif
5646
5647 dev->gso_max_size = GSO_MAX_SIZE;
5648
5649 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5650 dev->ethtool_ntuple_list.count = 0;
5651 INIT_LIST_HEAD(&dev->napi_list);
5652 INIT_LIST_HEAD(&dev->unreg_list);
5653 INIT_LIST_HEAD(&dev->link_watch_list);
5654 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5655 setup(dev);
5656 strcpy(dev->name, name);
5657 return dev;
5658
5659 free_pcpu:
5660 free_percpu(dev->pcpu_refcnt);
5661 kfree(dev->_tx);
5662 #ifdef CONFIG_RPS
5663 kfree(dev->_rx);
5664 #endif
5665
5666 free_p:
5667 kfree(p);
5668 return NULL;
5669 }
5670 EXPORT_SYMBOL(alloc_netdev_mq);
5671
5672 /**
5673 * free_netdev - free network device
5674 * @dev: device
5675 *
5676 * This function does the last stage of destroying an allocated device
5677 * interface. The reference to the device object is released.
5678 * If this is the last reference then it will be freed.
5679 */
5680 void free_netdev(struct net_device *dev)
5681 {
5682 struct napi_struct *p, *n;
5683
5684 release_net(dev_net(dev));
5685
5686 kfree(dev->_tx);
5687 #ifdef CONFIG_RPS
5688 kfree(dev->_rx);
5689 #endif
5690
5691 kfree(rcu_dereference_raw(dev->ingress_queue));
5692
5693 /* Flush device addresses */
5694 dev_addr_flush(dev);
5695
5696 /* Clear ethtool n-tuple list */
5697 ethtool_ntuple_flush(dev);
5698
5699 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5700 netif_napi_del(p);
5701
5702 free_percpu(dev->pcpu_refcnt);
5703 dev->pcpu_refcnt = NULL;
5704
5705 /* Compatibility with error handling in drivers */
5706 if (dev->reg_state == NETREG_UNINITIALIZED) {
5707 kfree((char *)dev - dev->padded);
5708 return;
5709 }
5710
5711 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5712 dev->reg_state = NETREG_RELEASED;
5713
5714 /* will free via device release */
5715 put_device(&dev->dev);
5716 }
5717 EXPORT_SYMBOL(free_netdev);
5718
5719 /**
5720 * synchronize_net - Synchronize with packet receive processing
5721 *
5722 * Wait for packets currently being received to be done.
5723 * Does not block later packets from starting.
5724 */
5725 void synchronize_net(void)
5726 {
5727 might_sleep();
5728 synchronize_rcu();
5729 }
5730 EXPORT_SYMBOL(synchronize_net);
5731
5732 /**
5733 * unregister_netdevice_queue - remove device from the kernel
5734 * @dev: device
5735 * @head: list
5736 *
5737 * This function shuts down a device interface and removes it
5738 * from the kernel tables.
5739 * If head not NULL, device is queued to be unregistered later.
5740 *
5741 * Callers must hold the rtnl semaphore. You may want
5742 * unregister_netdev() instead of this.
5743 */
5744
5745 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5746 {
5747 ASSERT_RTNL();
5748
5749 if (head) {
5750 list_move_tail(&dev->unreg_list, head);
5751 } else {
5752 rollback_registered(dev);
5753 /* Finish processing unregister after unlock */
5754 net_set_todo(dev);
5755 }
5756 }
5757 EXPORT_SYMBOL(unregister_netdevice_queue);
5758
5759 /**
5760 * unregister_netdevice_many - unregister many devices
5761 * @head: list of devices
5762 */
5763 void unregister_netdevice_many(struct list_head *head)
5764 {
5765 struct net_device *dev;
5766
5767 if (!list_empty(head)) {
5768 rollback_registered_many(head);
5769 list_for_each_entry(dev, head, unreg_list)
5770 net_set_todo(dev);
5771 }
5772 }
5773 EXPORT_SYMBOL(unregister_netdevice_many);
5774
5775 /**
5776 * unregister_netdev - remove device from the kernel
5777 * @dev: device
5778 *
5779 * This function shuts down a device interface and removes it
5780 * from the kernel tables.
5781 *
5782 * This is just a wrapper for unregister_netdevice that takes
5783 * the rtnl semaphore. In general you want to use this and not
5784 * unregister_netdevice.
5785 */
5786 void unregister_netdev(struct net_device *dev)
5787 {
5788 rtnl_lock();
5789 unregister_netdevice(dev);
5790 rtnl_unlock();
5791 }
5792 EXPORT_SYMBOL(unregister_netdev);
5793
5794 /**
5795 * dev_change_net_namespace - move device to different nethost namespace
5796 * @dev: device
5797 * @net: network namespace
5798 * @pat: If not NULL name pattern to try if the current device name
5799 * is already taken in the destination network namespace.
5800 *
5801 * This function shuts down a device interface and moves it
5802 * to a new network namespace. On success 0 is returned, on
5803 * a failure a netagive errno code is returned.
5804 *
5805 * Callers must hold the rtnl semaphore.
5806 */
5807
5808 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5809 {
5810 int err;
5811
5812 ASSERT_RTNL();
5813
5814 /* Don't allow namespace local devices to be moved. */
5815 err = -EINVAL;
5816 if (dev->features & NETIF_F_NETNS_LOCAL)
5817 goto out;
5818
5819 /* Ensure the device has been registrered */
5820 err = -EINVAL;
5821 if (dev->reg_state != NETREG_REGISTERED)
5822 goto out;
5823
5824 /* Get out if there is nothing todo */
5825 err = 0;
5826 if (net_eq(dev_net(dev), net))
5827 goto out;
5828
5829 /* Pick the destination device name, and ensure
5830 * we can use it in the destination network namespace.
5831 */
5832 err = -EEXIST;
5833 if (__dev_get_by_name(net, dev->name)) {
5834 /* We get here if we can't use the current device name */
5835 if (!pat)
5836 goto out;
5837 if (dev_get_valid_name(dev, pat, 1))
5838 goto out;
5839 }
5840
5841 /*
5842 * And now a mini version of register_netdevice unregister_netdevice.
5843 */
5844
5845 /* If device is running close it first. */
5846 dev_close(dev);
5847
5848 /* And unlink it from device chain */
5849 err = -ENODEV;
5850 unlist_netdevice(dev);
5851
5852 synchronize_net();
5853
5854 /* Shutdown queueing discipline. */
5855 dev_shutdown(dev);
5856
5857 /* Notify protocols, that we are about to destroy
5858 this device. They should clean all the things.
5859
5860 Note that dev->reg_state stays at NETREG_REGISTERED.
5861 This is wanted because this way 8021q and macvlan know
5862 the device is just moving and can keep their slaves up.
5863 */
5864 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5865 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5866
5867 /*
5868 * Flush the unicast and multicast chains
5869 */
5870 dev_uc_flush(dev);
5871 dev_mc_flush(dev);
5872
5873 /* Actually switch the network namespace */
5874 dev_net_set(dev, net);
5875
5876 /* If there is an ifindex conflict assign a new one */
5877 if (__dev_get_by_index(net, dev->ifindex)) {
5878 int iflink = (dev->iflink == dev->ifindex);
5879 dev->ifindex = dev_new_index(net);
5880 if (iflink)
5881 dev->iflink = dev->ifindex;
5882 }
5883
5884 /* Fixup kobjects */
5885 err = device_rename(&dev->dev, dev->name);
5886 WARN_ON(err);
5887
5888 /* Add the device back in the hashes */
5889 list_netdevice(dev);
5890
5891 /* Notify protocols, that a new device appeared. */
5892 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5893
5894 /*
5895 * Prevent userspace races by waiting until the network
5896 * device is fully setup before sending notifications.
5897 */
5898 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5899
5900 synchronize_net();
5901 err = 0;
5902 out:
5903 return err;
5904 }
5905 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5906
5907 static int dev_cpu_callback(struct notifier_block *nfb,
5908 unsigned long action,
5909 void *ocpu)
5910 {
5911 struct sk_buff **list_skb;
5912 struct sk_buff *skb;
5913 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5914 struct softnet_data *sd, *oldsd;
5915
5916 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5917 return NOTIFY_OK;
5918
5919 local_irq_disable();
5920 cpu = smp_processor_id();
5921 sd = &per_cpu(softnet_data, cpu);
5922 oldsd = &per_cpu(softnet_data, oldcpu);
5923
5924 /* Find end of our completion_queue. */
5925 list_skb = &sd->completion_queue;
5926 while (*list_skb)
5927 list_skb = &(*list_skb)->next;
5928 /* Append completion queue from offline CPU. */
5929 *list_skb = oldsd->completion_queue;
5930 oldsd->completion_queue = NULL;
5931
5932 /* Append output queue from offline CPU. */
5933 if (oldsd->output_queue) {
5934 *sd->output_queue_tailp = oldsd->output_queue;
5935 sd->output_queue_tailp = oldsd->output_queue_tailp;
5936 oldsd->output_queue = NULL;
5937 oldsd->output_queue_tailp = &oldsd->output_queue;
5938 }
5939
5940 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5941 local_irq_enable();
5942
5943 /* Process offline CPU's input_pkt_queue */
5944 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5945 netif_rx(skb);
5946 input_queue_head_incr(oldsd);
5947 }
5948 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5949 netif_rx(skb);
5950 input_queue_head_incr(oldsd);
5951 }
5952
5953 return NOTIFY_OK;
5954 }
5955
5956
5957 /**
5958 * netdev_increment_features - increment feature set by one
5959 * @all: current feature set
5960 * @one: new feature set
5961 * @mask: mask feature set
5962 *
5963 * Computes a new feature set after adding a device with feature set
5964 * @one to the master device with current feature set @all. Will not
5965 * enable anything that is off in @mask. Returns the new feature set.
5966 */
5967 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5968 unsigned long mask)
5969 {
5970 /* If device needs checksumming, downgrade to it. */
5971 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5972 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5973 else if (mask & NETIF_F_ALL_CSUM) {
5974 /* If one device supports v4/v6 checksumming, set for all. */
5975 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5976 !(all & NETIF_F_GEN_CSUM)) {
5977 all &= ~NETIF_F_ALL_CSUM;
5978 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5979 }
5980
5981 /* If one device supports hw checksumming, set for all. */
5982 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5983 all &= ~NETIF_F_ALL_CSUM;
5984 all |= NETIF_F_HW_CSUM;
5985 }
5986 }
5987
5988 one |= NETIF_F_ALL_CSUM;
5989
5990 one |= all & NETIF_F_ONE_FOR_ALL;
5991 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5992 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5993
5994 return all;
5995 }
5996 EXPORT_SYMBOL(netdev_increment_features);
5997
5998 static struct hlist_head *netdev_create_hash(void)
5999 {
6000 int i;
6001 struct hlist_head *hash;
6002
6003 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6004 if (hash != NULL)
6005 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6006 INIT_HLIST_HEAD(&hash[i]);
6007
6008 return hash;
6009 }
6010
6011 /* Initialize per network namespace state */
6012 static int __net_init netdev_init(struct net *net)
6013 {
6014 INIT_LIST_HEAD(&net->dev_base_head);
6015
6016 net->dev_name_head = netdev_create_hash();
6017 if (net->dev_name_head == NULL)
6018 goto err_name;
6019
6020 net->dev_index_head = netdev_create_hash();
6021 if (net->dev_index_head == NULL)
6022 goto err_idx;
6023
6024 return 0;
6025
6026 err_idx:
6027 kfree(net->dev_name_head);
6028 err_name:
6029 return -ENOMEM;
6030 }
6031
6032 /**
6033 * netdev_drivername - network driver for the device
6034 * @dev: network device
6035 * @buffer: buffer for resulting name
6036 * @len: size of buffer
6037 *
6038 * Determine network driver for device.
6039 */
6040 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6041 {
6042 const struct device_driver *driver;
6043 const struct device *parent;
6044
6045 if (len <= 0 || !buffer)
6046 return buffer;
6047 buffer[0] = 0;
6048
6049 parent = dev->dev.parent;
6050
6051 if (!parent)
6052 return buffer;
6053
6054 driver = parent->driver;
6055 if (driver && driver->name)
6056 strlcpy(buffer, driver->name, len);
6057 return buffer;
6058 }
6059
6060 static int __netdev_printk(const char *level, const struct net_device *dev,
6061 struct va_format *vaf)
6062 {
6063 int r;
6064
6065 if (dev && dev->dev.parent)
6066 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6067 netdev_name(dev), vaf);
6068 else if (dev)
6069 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6070 else
6071 r = printk("%s(NULL net_device): %pV", level, vaf);
6072
6073 return r;
6074 }
6075
6076 int netdev_printk(const char *level, const struct net_device *dev,
6077 const char *format, ...)
6078 {
6079 struct va_format vaf;
6080 va_list args;
6081 int r;
6082
6083 va_start(args, format);
6084
6085 vaf.fmt = format;
6086 vaf.va = &args;
6087
6088 r = __netdev_printk(level, dev, &vaf);
6089 va_end(args);
6090
6091 return r;
6092 }
6093 EXPORT_SYMBOL(netdev_printk);
6094
6095 #define define_netdev_printk_level(func, level) \
6096 int func(const struct net_device *dev, const char *fmt, ...) \
6097 { \
6098 int r; \
6099 struct va_format vaf; \
6100 va_list args; \
6101 \
6102 va_start(args, fmt); \
6103 \
6104 vaf.fmt = fmt; \
6105 vaf.va = &args; \
6106 \
6107 r = __netdev_printk(level, dev, &vaf); \
6108 va_end(args); \
6109 \
6110 return r; \
6111 } \
6112 EXPORT_SYMBOL(func);
6113
6114 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6115 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6116 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6117 define_netdev_printk_level(netdev_err, KERN_ERR);
6118 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6119 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6120 define_netdev_printk_level(netdev_info, KERN_INFO);
6121
6122 static void __net_exit netdev_exit(struct net *net)
6123 {
6124 kfree(net->dev_name_head);
6125 kfree(net->dev_index_head);
6126 }
6127
6128 static struct pernet_operations __net_initdata netdev_net_ops = {
6129 .init = netdev_init,
6130 .exit = netdev_exit,
6131 };
6132
6133 static void __net_exit default_device_exit(struct net *net)
6134 {
6135 struct net_device *dev, *aux;
6136 /*
6137 * Push all migratable network devices back to the
6138 * initial network namespace
6139 */
6140 rtnl_lock();
6141 for_each_netdev_safe(net, dev, aux) {
6142 int err;
6143 char fb_name[IFNAMSIZ];
6144
6145 /* Ignore unmoveable devices (i.e. loopback) */
6146 if (dev->features & NETIF_F_NETNS_LOCAL)
6147 continue;
6148
6149 /* Leave virtual devices for the generic cleanup */
6150 if (dev->rtnl_link_ops)
6151 continue;
6152
6153 /* Push remaing network devices to init_net */
6154 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6155 err = dev_change_net_namespace(dev, &init_net, fb_name);
6156 if (err) {
6157 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6158 __func__, dev->name, err);
6159 BUG();
6160 }
6161 }
6162 rtnl_unlock();
6163 }
6164
6165 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6166 {
6167 /* At exit all network devices most be removed from a network
6168 * namespace. Do this in the reverse order of registeration.
6169 * Do this across as many network namespaces as possible to
6170 * improve batching efficiency.
6171 */
6172 struct net_device *dev;
6173 struct net *net;
6174 LIST_HEAD(dev_kill_list);
6175
6176 rtnl_lock();
6177 list_for_each_entry(net, net_list, exit_list) {
6178 for_each_netdev_reverse(net, dev) {
6179 if (dev->rtnl_link_ops)
6180 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6181 else
6182 unregister_netdevice_queue(dev, &dev_kill_list);
6183 }
6184 }
6185 unregister_netdevice_many(&dev_kill_list);
6186 rtnl_unlock();
6187 }
6188
6189 static struct pernet_operations __net_initdata default_device_ops = {
6190 .exit = default_device_exit,
6191 .exit_batch = default_device_exit_batch,
6192 };
6193
6194 /*
6195 * Initialize the DEV module. At boot time this walks the device list and
6196 * unhooks any devices that fail to initialise (normally hardware not
6197 * present) and leaves us with a valid list of present and active devices.
6198 *
6199 */
6200
6201 /*
6202 * This is called single threaded during boot, so no need
6203 * to take the rtnl semaphore.
6204 */
6205 static int __init net_dev_init(void)
6206 {
6207 int i, rc = -ENOMEM;
6208
6209 BUG_ON(!dev_boot_phase);
6210
6211 if (dev_proc_init())
6212 goto out;
6213
6214 if (netdev_kobject_init())
6215 goto out;
6216
6217 INIT_LIST_HEAD(&ptype_all);
6218 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6219 INIT_LIST_HEAD(&ptype_base[i]);
6220
6221 if (register_pernet_subsys(&netdev_net_ops))
6222 goto out;
6223
6224 /*
6225 * Initialise the packet receive queues.
6226 */
6227
6228 for_each_possible_cpu(i) {
6229 struct softnet_data *sd = &per_cpu(softnet_data, i);
6230
6231 memset(sd, 0, sizeof(*sd));
6232 skb_queue_head_init(&sd->input_pkt_queue);
6233 skb_queue_head_init(&sd->process_queue);
6234 sd->completion_queue = NULL;
6235 INIT_LIST_HEAD(&sd->poll_list);
6236 sd->output_queue = NULL;
6237 sd->output_queue_tailp = &sd->output_queue;
6238 #ifdef CONFIG_RPS
6239 sd->csd.func = rps_trigger_softirq;
6240 sd->csd.info = sd;
6241 sd->csd.flags = 0;
6242 sd->cpu = i;
6243 #endif
6244
6245 sd->backlog.poll = process_backlog;
6246 sd->backlog.weight = weight_p;
6247 sd->backlog.gro_list = NULL;
6248 sd->backlog.gro_count = 0;
6249 }
6250
6251 dev_boot_phase = 0;
6252
6253 /* The loopback device is special if any other network devices
6254 * is present in a network namespace the loopback device must
6255 * be present. Since we now dynamically allocate and free the
6256 * loopback device ensure this invariant is maintained by
6257 * keeping the loopback device as the first device on the
6258 * list of network devices. Ensuring the loopback devices
6259 * is the first device that appears and the last network device
6260 * that disappears.
6261 */
6262 if (register_pernet_device(&loopback_net_ops))
6263 goto out;
6264
6265 if (register_pernet_device(&default_device_ops))
6266 goto out;
6267
6268 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6269 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6270
6271 hotcpu_notifier(dev_cpu_callback, 0);
6272 dst_init();
6273 dev_mcast_init();
6274 rc = 0;
6275 out:
6276 return rc;
6277 }
6278
6279 subsys_initcall(net_dev_init);
6280
6281 static int __init initialize_hashrnd(void)
6282 {
6283 get_random_bytes(&hashrnd, sizeof(hashrnd));
6284 return 0;
6285 }
6286
6287 late_initcall_sync(initialize_hashrnd);
6288
This page took 0.243976 seconds and 6 git commands to generate.