Merge branch 'neigh_cleanups'
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 #include <linux/inetdevice.h>
42 #include <net/addrconf.h>
43
44 #define DEBUG
45 #define NEIGH_DEBUG 1
46 #define neigh_dbg(level, fmt, ...) \
47 do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50 } while (0)
51
52 #define PNEIGH_HASHMASK 0xF
53
54 static void neigh_timer_handler(unsigned long arg);
55 static void __neigh_notify(struct neighbour *n, int type, int flags);
56 static void neigh_update_notify(struct neighbour *neigh);
57 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59 #ifdef CONFIG_PROC_FS
60 static const struct file_operations neigh_stat_seq_fops;
61 #endif
62
63 /*
64 Neighbour hash table buckets are protected with rwlock tbl->lock.
65
66 - All the scans/updates to hash buckets MUST be made under this lock.
67 - NOTHING clever should be made under this lock: no callbacks
68 to protocol backends, no attempts to send something to network.
69 It will result in deadlocks, if backend/driver wants to use neighbour
70 cache.
71 - If the entry requires some non-trivial actions, increase
72 its reference count and release table lock.
73
74 Neighbour entries are protected:
75 - with reference count.
76 - with rwlock neigh->lock
77
78 Reference count prevents destruction.
79
80 neigh->lock mainly serializes ll address data and its validity state.
81 However, the same lock is used to protect another entry fields:
82 - timer
83 - resolution queue
84
85 Again, nothing clever shall be made under neigh->lock,
86 the most complicated procedure, which we allow is dev->hard_header.
87 It is supposed, that dev->hard_header is simplistic and does
88 not make callbacks to neighbour tables.
89 */
90
91 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
92 {
93 kfree_skb(skb);
94 return -ENETDOWN;
95 }
96
97 static void neigh_cleanup_and_release(struct neighbour *neigh)
98 {
99 if (neigh->parms->neigh_cleanup)
100 neigh->parms->neigh_cleanup(neigh);
101
102 __neigh_notify(neigh, RTM_DELNEIGH, 0);
103 neigh_release(neigh);
104 }
105
106 /*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 return base ? (prandom_u32() % base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117
118
119 static int neigh_forced_gc(struct neigh_table *tbl)
120 {
121 int shrunk = 0;
122 int i;
123 struct neigh_hash_table *nht;
124
125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
126
127 write_lock_bh(&tbl->lock);
128 nht = rcu_dereference_protected(tbl->nht,
129 lockdep_is_held(&tbl->lock));
130 for (i = 0; i < (1 << nht->hash_shift); i++) {
131 struct neighbour *n;
132 struct neighbour __rcu **np;
133
134 np = &nht->hash_buckets[i];
135 while ((n = rcu_dereference_protected(*np,
136 lockdep_is_held(&tbl->lock))) != NULL) {
137 /* Neighbour record may be discarded if:
138 * - nobody refers to it.
139 * - it is not permanent
140 */
141 write_lock(&n->lock);
142 if (atomic_read(&n->refcnt) == 1 &&
143 !(n->nud_state & NUD_PERMANENT)) {
144 rcu_assign_pointer(*np,
145 rcu_dereference_protected(n->next,
146 lockdep_is_held(&tbl->lock)));
147 n->dead = 1;
148 shrunk = 1;
149 write_unlock(&n->lock);
150 neigh_cleanup_and_release(n);
151 continue;
152 }
153 write_unlock(&n->lock);
154 np = &n->next;
155 }
156 }
157
158 tbl->last_flush = jiffies;
159
160 write_unlock_bh(&tbl->lock);
161
162 return shrunk;
163 }
164
165 static void neigh_add_timer(struct neighbour *n, unsigned long when)
166 {
167 neigh_hold(n);
168 if (unlikely(mod_timer(&n->timer, when))) {
169 printk("NEIGH: BUG, double timer add, state is %x\n",
170 n->nud_state);
171 dump_stack();
172 }
173 }
174
175 static int neigh_del_timer(struct neighbour *n)
176 {
177 if ((n->nud_state & NUD_IN_TIMER) &&
178 del_timer(&n->timer)) {
179 neigh_release(n);
180 return 1;
181 }
182 return 0;
183 }
184
185 static void pneigh_queue_purge(struct sk_buff_head *list)
186 {
187 struct sk_buff *skb;
188
189 while ((skb = skb_dequeue(list)) != NULL) {
190 dev_put(skb->dev);
191 kfree_skb(skb);
192 }
193 }
194
195 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
196 {
197 int i;
198 struct neigh_hash_table *nht;
199
200 nht = rcu_dereference_protected(tbl->nht,
201 lockdep_is_held(&tbl->lock));
202
203 for (i = 0; i < (1 << nht->hash_shift); i++) {
204 struct neighbour *n;
205 struct neighbour __rcu **np = &nht->hash_buckets[i];
206
207 while ((n = rcu_dereference_protected(*np,
208 lockdep_is_held(&tbl->lock))) != NULL) {
209 if (dev && n->dev != dev) {
210 np = &n->next;
211 continue;
212 }
213 rcu_assign_pointer(*np,
214 rcu_dereference_protected(n->next,
215 lockdep_is_held(&tbl->lock)));
216 write_lock(&n->lock);
217 neigh_del_timer(n);
218 n->dead = 1;
219
220 if (atomic_read(&n->refcnt) != 1) {
221 /* The most unpleasant situation.
222 We must destroy neighbour entry,
223 but someone still uses it.
224
225 The destroy will be delayed until
226 the last user releases us, but
227 we must kill timers etc. and move
228 it to safe state.
229 */
230 __skb_queue_purge(&n->arp_queue);
231 n->arp_queue_len_bytes = 0;
232 n->output = neigh_blackhole;
233 if (n->nud_state & NUD_VALID)
234 n->nud_state = NUD_NOARP;
235 else
236 n->nud_state = NUD_NONE;
237 neigh_dbg(2, "neigh %p is stray\n", n);
238 }
239 write_unlock(&n->lock);
240 neigh_cleanup_and_release(n);
241 }
242 }
243 }
244
245 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 write_unlock_bh(&tbl->lock);
250 }
251 EXPORT_SYMBOL(neigh_changeaddr);
252
253 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
254 {
255 write_lock_bh(&tbl->lock);
256 neigh_flush_dev(tbl, dev);
257 pneigh_ifdown(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259
260 del_timer_sync(&tbl->proxy_timer);
261 pneigh_queue_purge(&tbl->proxy_queue);
262 return 0;
263 }
264 EXPORT_SYMBOL(neigh_ifdown);
265
266 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
267 {
268 struct neighbour *n = NULL;
269 unsigned long now = jiffies;
270 int entries;
271
272 entries = atomic_inc_return(&tbl->entries) - 1;
273 if (entries >= tbl->gc_thresh3 ||
274 (entries >= tbl->gc_thresh2 &&
275 time_after(now, tbl->last_flush + 5 * HZ))) {
276 if (!neigh_forced_gc(tbl) &&
277 entries >= tbl->gc_thresh3)
278 goto out_entries;
279 }
280
281 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
282 if (!n)
283 goto out_entries;
284
285 __skb_queue_head_init(&n->arp_queue);
286 rwlock_init(&n->lock);
287 seqlock_init(&n->ha_lock);
288 n->updated = n->used = now;
289 n->nud_state = NUD_NONE;
290 n->output = neigh_blackhole;
291 seqlock_init(&n->hh.hh_lock);
292 n->parms = neigh_parms_clone(&tbl->parms);
293 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
294
295 NEIGH_CACHE_STAT_INC(tbl, allocs);
296 n->tbl = tbl;
297 atomic_set(&n->refcnt, 1);
298 n->dead = 1;
299 out:
300 return n;
301
302 out_entries:
303 atomic_dec(&tbl->entries);
304 goto out;
305 }
306
307 static void neigh_get_hash_rnd(u32 *x)
308 {
309 get_random_bytes(x, sizeof(*x));
310 *x |= 1;
311 }
312
313 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
314 {
315 size_t size = (1 << shift) * sizeof(struct neighbour *);
316 struct neigh_hash_table *ret;
317 struct neighbour __rcu **buckets;
318 int i;
319
320 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
321 if (!ret)
322 return NULL;
323 if (size <= PAGE_SIZE)
324 buckets = kzalloc(size, GFP_ATOMIC);
325 else
326 buckets = (struct neighbour __rcu **)
327 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
328 get_order(size));
329 if (!buckets) {
330 kfree(ret);
331 return NULL;
332 }
333 ret->hash_buckets = buckets;
334 ret->hash_shift = shift;
335 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
336 neigh_get_hash_rnd(&ret->hash_rnd[i]);
337 return ret;
338 }
339
340 static void neigh_hash_free_rcu(struct rcu_head *head)
341 {
342 struct neigh_hash_table *nht = container_of(head,
343 struct neigh_hash_table,
344 rcu);
345 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
346 struct neighbour __rcu **buckets = nht->hash_buckets;
347
348 if (size <= PAGE_SIZE)
349 kfree(buckets);
350 else
351 free_pages((unsigned long)buckets, get_order(size));
352 kfree(nht);
353 }
354
355 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
356 unsigned long new_shift)
357 {
358 unsigned int i, hash;
359 struct neigh_hash_table *new_nht, *old_nht;
360
361 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
362
363 old_nht = rcu_dereference_protected(tbl->nht,
364 lockdep_is_held(&tbl->lock));
365 new_nht = neigh_hash_alloc(new_shift);
366 if (!new_nht)
367 return old_nht;
368
369 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
370 struct neighbour *n, *next;
371
372 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
373 lockdep_is_held(&tbl->lock));
374 n != NULL;
375 n = next) {
376 hash = tbl->hash(n->primary_key, n->dev,
377 new_nht->hash_rnd);
378
379 hash >>= (32 - new_nht->hash_shift);
380 next = rcu_dereference_protected(n->next,
381 lockdep_is_held(&tbl->lock));
382
383 rcu_assign_pointer(n->next,
384 rcu_dereference_protected(
385 new_nht->hash_buckets[hash],
386 lockdep_is_held(&tbl->lock)));
387 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
388 }
389 }
390
391 rcu_assign_pointer(tbl->nht, new_nht);
392 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
393 return new_nht;
394 }
395
396 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
397 struct net_device *dev)
398 {
399 struct neighbour *n;
400 int key_len = tbl->key_len;
401 u32 hash_val;
402 struct neigh_hash_table *nht;
403
404 NEIGH_CACHE_STAT_INC(tbl, lookups);
405
406 rcu_read_lock_bh();
407 nht = rcu_dereference_bh(tbl->nht);
408 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
409
410 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
411 n != NULL;
412 n = rcu_dereference_bh(n->next)) {
413 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
414 if (!atomic_inc_not_zero(&n->refcnt))
415 n = NULL;
416 NEIGH_CACHE_STAT_INC(tbl, hits);
417 break;
418 }
419 }
420
421 rcu_read_unlock_bh();
422 return n;
423 }
424 EXPORT_SYMBOL(neigh_lookup);
425
426 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
427 const void *pkey)
428 {
429 struct neighbour *n;
430 int key_len = tbl->key_len;
431 u32 hash_val;
432 struct neigh_hash_table *nht;
433
434 NEIGH_CACHE_STAT_INC(tbl, lookups);
435
436 rcu_read_lock_bh();
437 nht = rcu_dereference_bh(tbl->nht);
438 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
439
440 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
441 n != NULL;
442 n = rcu_dereference_bh(n->next)) {
443 if (!memcmp(n->primary_key, pkey, key_len) &&
444 net_eq(dev_net(n->dev), net)) {
445 if (!atomic_inc_not_zero(&n->refcnt))
446 n = NULL;
447 NEIGH_CACHE_STAT_INC(tbl, hits);
448 break;
449 }
450 }
451
452 rcu_read_unlock_bh();
453 return n;
454 }
455 EXPORT_SYMBOL(neigh_lookup_nodev);
456
457 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
458 struct net_device *dev, bool want_ref)
459 {
460 u32 hash_val;
461 int key_len = tbl->key_len;
462 int error;
463 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
464 struct neigh_hash_table *nht;
465
466 if (!n) {
467 rc = ERR_PTR(-ENOBUFS);
468 goto out;
469 }
470
471 memcpy(n->primary_key, pkey, key_len);
472 n->dev = dev;
473 dev_hold(dev);
474
475 /* Protocol specific setup. */
476 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
477 rc = ERR_PTR(error);
478 goto out_neigh_release;
479 }
480
481 if (dev->netdev_ops->ndo_neigh_construct) {
482 error = dev->netdev_ops->ndo_neigh_construct(n);
483 if (error < 0) {
484 rc = ERR_PTR(error);
485 goto out_neigh_release;
486 }
487 }
488
489 /* Device specific setup. */
490 if (n->parms->neigh_setup &&
491 (error = n->parms->neigh_setup(n)) < 0) {
492 rc = ERR_PTR(error);
493 goto out_neigh_release;
494 }
495
496 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
497
498 write_lock_bh(&tbl->lock);
499 nht = rcu_dereference_protected(tbl->nht,
500 lockdep_is_held(&tbl->lock));
501
502 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
503 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
504
505 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
506
507 if (n->parms->dead) {
508 rc = ERR_PTR(-EINVAL);
509 goto out_tbl_unlock;
510 }
511
512 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
513 lockdep_is_held(&tbl->lock));
514 n1 != NULL;
515 n1 = rcu_dereference_protected(n1->next,
516 lockdep_is_held(&tbl->lock))) {
517 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
518 if (want_ref)
519 neigh_hold(n1);
520 rc = n1;
521 goto out_tbl_unlock;
522 }
523 }
524
525 n->dead = 0;
526 if (want_ref)
527 neigh_hold(n);
528 rcu_assign_pointer(n->next,
529 rcu_dereference_protected(nht->hash_buckets[hash_val],
530 lockdep_is_held(&tbl->lock)));
531 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
532 write_unlock_bh(&tbl->lock);
533 neigh_dbg(2, "neigh %p is created\n", n);
534 rc = n;
535 out:
536 return rc;
537 out_tbl_unlock:
538 write_unlock_bh(&tbl->lock);
539 out_neigh_release:
540 neigh_release(n);
541 goto out;
542 }
543 EXPORT_SYMBOL(__neigh_create);
544
545 static u32 pneigh_hash(const void *pkey, int key_len)
546 {
547 u32 hash_val = *(u32 *)(pkey + key_len - 4);
548 hash_val ^= (hash_val >> 16);
549 hash_val ^= hash_val >> 8;
550 hash_val ^= hash_val >> 4;
551 hash_val &= PNEIGH_HASHMASK;
552 return hash_val;
553 }
554
555 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
556 struct net *net,
557 const void *pkey,
558 int key_len,
559 struct net_device *dev)
560 {
561 while (n) {
562 if (!memcmp(n->key, pkey, key_len) &&
563 net_eq(pneigh_net(n), net) &&
564 (n->dev == dev || !n->dev))
565 return n;
566 n = n->next;
567 }
568 return NULL;
569 }
570
571 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
572 struct net *net, const void *pkey, struct net_device *dev)
573 {
574 int key_len = tbl->key_len;
575 u32 hash_val = pneigh_hash(pkey, key_len);
576
577 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
578 net, pkey, key_len, dev);
579 }
580 EXPORT_SYMBOL_GPL(__pneigh_lookup);
581
582 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
583 struct net *net, const void *pkey,
584 struct net_device *dev, int creat)
585 {
586 struct pneigh_entry *n;
587 int key_len = tbl->key_len;
588 u32 hash_val = pneigh_hash(pkey, key_len);
589
590 read_lock_bh(&tbl->lock);
591 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
592 net, pkey, key_len, dev);
593 read_unlock_bh(&tbl->lock);
594
595 if (n || !creat)
596 goto out;
597
598 ASSERT_RTNL();
599
600 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
601 if (!n)
602 goto out;
603
604 write_pnet(&n->net, hold_net(net));
605 memcpy(n->key, pkey, key_len);
606 n->dev = dev;
607 if (dev)
608 dev_hold(dev);
609
610 if (tbl->pconstructor && tbl->pconstructor(n)) {
611 if (dev)
612 dev_put(dev);
613 release_net(net);
614 kfree(n);
615 n = NULL;
616 goto out;
617 }
618
619 write_lock_bh(&tbl->lock);
620 n->next = tbl->phash_buckets[hash_val];
621 tbl->phash_buckets[hash_val] = n;
622 write_unlock_bh(&tbl->lock);
623 out:
624 return n;
625 }
626 EXPORT_SYMBOL(pneigh_lookup);
627
628
629 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
630 struct net_device *dev)
631 {
632 struct pneigh_entry *n, **np;
633 int key_len = tbl->key_len;
634 u32 hash_val = pneigh_hash(pkey, key_len);
635
636 write_lock_bh(&tbl->lock);
637 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
638 np = &n->next) {
639 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
640 net_eq(pneigh_net(n), net)) {
641 *np = n->next;
642 write_unlock_bh(&tbl->lock);
643 if (tbl->pdestructor)
644 tbl->pdestructor(n);
645 if (n->dev)
646 dev_put(n->dev);
647 release_net(pneigh_net(n));
648 kfree(n);
649 return 0;
650 }
651 }
652 write_unlock_bh(&tbl->lock);
653 return -ENOENT;
654 }
655
656 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
657 {
658 struct pneigh_entry *n, **np;
659 u32 h;
660
661 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
662 np = &tbl->phash_buckets[h];
663 while ((n = *np) != NULL) {
664 if (!dev || n->dev == dev) {
665 *np = n->next;
666 if (tbl->pdestructor)
667 tbl->pdestructor(n);
668 if (n->dev)
669 dev_put(n->dev);
670 release_net(pneigh_net(n));
671 kfree(n);
672 continue;
673 }
674 np = &n->next;
675 }
676 }
677 return -ENOENT;
678 }
679
680 static void neigh_parms_destroy(struct neigh_parms *parms);
681
682 static inline void neigh_parms_put(struct neigh_parms *parms)
683 {
684 if (atomic_dec_and_test(&parms->refcnt))
685 neigh_parms_destroy(parms);
686 }
687
688 /*
689 * neighbour must already be out of the table;
690 *
691 */
692 void neigh_destroy(struct neighbour *neigh)
693 {
694 struct net_device *dev = neigh->dev;
695
696 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
697
698 if (!neigh->dead) {
699 pr_warn("Destroying alive neighbour %p\n", neigh);
700 dump_stack();
701 return;
702 }
703
704 if (neigh_del_timer(neigh))
705 pr_warn("Impossible event\n");
706
707 write_lock_bh(&neigh->lock);
708 __skb_queue_purge(&neigh->arp_queue);
709 write_unlock_bh(&neigh->lock);
710 neigh->arp_queue_len_bytes = 0;
711
712 if (dev->netdev_ops->ndo_neigh_destroy)
713 dev->netdev_ops->ndo_neigh_destroy(neigh);
714
715 dev_put(dev);
716 neigh_parms_put(neigh->parms);
717
718 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
719
720 atomic_dec(&neigh->tbl->entries);
721 kfree_rcu(neigh, rcu);
722 }
723 EXPORT_SYMBOL(neigh_destroy);
724
725 /* Neighbour state is suspicious;
726 disable fast path.
727
728 Called with write_locked neigh.
729 */
730 static void neigh_suspect(struct neighbour *neigh)
731 {
732 neigh_dbg(2, "neigh %p is suspected\n", neigh);
733
734 neigh->output = neigh->ops->output;
735 }
736
737 /* Neighbour state is OK;
738 enable fast path.
739
740 Called with write_locked neigh.
741 */
742 static void neigh_connect(struct neighbour *neigh)
743 {
744 neigh_dbg(2, "neigh %p is connected\n", neigh);
745
746 neigh->output = neigh->ops->connected_output;
747 }
748
749 static void neigh_periodic_work(struct work_struct *work)
750 {
751 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
752 struct neighbour *n;
753 struct neighbour __rcu **np;
754 unsigned int i;
755 struct neigh_hash_table *nht;
756
757 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
758
759 write_lock_bh(&tbl->lock);
760 nht = rcu_dereference_protected(tbl->nht,
761 lockdep_is_held(&tbl->lock));
762
763 /*
764 * periodically recompute ReachableTime from random function
765 */
766
767 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
768 struct neigh_parms *p;
769 tbl->last_rand = jiffies;
770 list_for_each_entry(p, &tbl->parms_list, list)
771 p->reachable_time =
772 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
773 }
774
775 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
776 goto out;
777
778 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
779 np = &nht->hash_buckets[i];
780
781 while ((n = rcu_dereference_protected(*np,
782 lockdep_is_held(&tbl->lock))) != NULL) {
783 unsigned int state;
784
785 write_lock(&n->lock);
786
787 state = n->nud_state;
788 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
789 write_unlock(&n->lock);
790 goto next_elt;
791 }
792
793 if (time_before(n->used, n->confirmed))
794 n->used = n->confirmed;
795
796 if (atomic_read(&n->refcnt) == 1 &&
797 (state == NUD_FAILED ||
798 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
799 *np = n->next;
800 n->dead = 1;
801 write_unlock(&n->lock);
802 neigh_cleanup_and_release(n);
803 continue;
804 }
805 write_unlock(&n->lock);
806
807 next_elt:
808 np = &n->next;
809 }
810 /*
811 * It's fine to release lock here, even if hash table
812 * grows while we are preempted.
813 */
814 write_unlock_bh(&tbl->lock);
815 cond_resched();
816 write_lock_bh(&tbl->lock);
817 nht = rcu_dereference_protected(tbl->nht,
818 lockdep_is_held(&tbl->lock));
819 }
820 out:
821 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
822 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
823 * BASE_REACHABLE_TIME.
824 */
825 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
826 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
827 write_unlock_bh(&tbl->lock);
828 }
829
830 static __inline__ int neigh_max_probes(struct neighbour *n)
831 {
832 struct neigh_parms *p = n->parms;
833 int max_probes = NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES);
834 if (!(n->nud_state & NUD_PROBE))
835 max_probes += NEIGH_VAR(p, MCAST_PROBES);
836 return max_probes;
837 }
838
839 static void neigh_invalidate(struct neighbour *neigh)
840 __releases(neigh->lock)
841 __acquires(neigh->lock)
842 {
843 struct sk_buff *skb;
844
845 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
846 neigh_dbg(2, "neigh %p is failed\n", neigh);
847 neigh->updated = jiffies;
848
849 /* It is very thin place. report_unreachable is very complicated
850 routine. Particularly, it can hit the same neighbour entry!
851
852 So that, we try to be accurate and avoid dead loop. --ANK
853 */
854 while (neigh->nud_state == NUD_FAILED &&
855 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
856 write_unlock(&neigh->lock);
857 neigh->ops->error_report(neigh, skb);
858 write_lock(&neigh->lock);
859 }
860 __skb_queue_purge(&neigh->arp_queue);
861 neigh->arp_queue_len_bytes = 0;
862 }
863
864 static void neigh_probe(struct neighbour *neigh)
865 __releases(neigh->lock)
866 {
867 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
868 /* keep skb alive even if arp_queue overflows */
869 if (skb)
870 skb = skb_copy(skb, GFP_ATOMIC);
871 write_unlock(&neigh->lock);
872 neigh->ops->solicit(neigh, skb);
873 atomic_inc(&neigh->probes);
874 kfree_skb(skb);
875 }
876
877 /* Called when a timer expires for a neighbour entry. */
878
879 static void neigh_timer_handler(unsigned long arg)
880 {
881 unsigned long now, next;
882 struct neighbour *neigh = (struct neighbour *)arg;
883 unsigned int state;
884 int notify = 0;
885
886 write_lock(&neigh->lock);
887
888 state = neigh->nud_state;
889 now = jiffies;
890 next = now + HZ;
891
892 if (!(state & NUD_IN_TIMER))
893 goto out;
894
895 if (state & NUD_REACHABLE) {
896 if (time_before_eq(now,
897 neigh->confirmed + neigh->parms->reachable_time)) {
898 neigh_dbg(2, "neigh %p is still alive\n", neigh);
899 next = neigh->confirmed + neigh->parms->reachable_time;
900 } else if (time_before_eq(now,
901 neigh->used +
902 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
903 neigh_dbg(2, "neigh %p is delayed\n", neigh);
904 neigh->nud_state = NUD_DELAY;
905 neigh->updated = jiffies;
906 neigh_suspect(neigh);
907 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
908 } else {
909 neigh_dbg(2, "neigh %p is suspected\n", neigh);
910 neigh->nud_state = NUD_STALE;
911 neigh->updated = jiffies;
912 neigh_suspect(neigh);
913 notify = 1;
914 }
915 } else if (state & NUD_DELAY) {
916 if (time_before_eq(now,
917 neigh->confirmed +
918 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
919 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
920 neigh->nud_state = NUD_REACHABLE;
921 neigh->updated = jiffies;
922 neigh_connect(neigh);
923 notify = 1;
924 next = neigh->confirmed + neigh->parms->reachable_time;
925 } else {
926 neigh_dbg(2, "neigh %p is probed\n", neigh);
927 neigh->nud_state = NUD_PROBE;
928 neigh->updated = jiffies;
929 atomic_set(&neigh->probes, 0);
930 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
931 }
932 } else {
933 /* NUD_PROBE|NUD_INCOMPLETE */
934 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
935 }
936
937 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
938 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
939 neigh->nud_state = NUD_FAILED;
940 notify = 1;
941 neigh_invalidate(neigh);
942 goto out;
943 }
944
945 if (neigh->nud_state & NUD_IN_TIMER) {
946 if (time_before(next, jiffies + HZ/2))
947 next = jiffies + HZ/2;
948 if (!mod_timer(&neigh->timer, next))
949 neigh_hold(neigh);
950 }
951 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
952 neigh_probe(neigh);
953 } else {
954 out:
955 write_unlock(&neigh->lock);
956 }
957
958 if (notify)
959 neigh_update_notify(neigh);
960
961 neigh_release(neigh);
962 }
963
964 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
965 {
966 int rc;
967 bool immediate_probe = false;
968
969 write_lock_bh(&neigh->lock);
970
971 rc = 0;
972 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
973 goto out_unlock_bh;
974
975 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
976 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
977 NEIGH_VAR(neigh->parms, APP_PROBES)) {
978 unsigned long next, now = jiffies;
979
980 atomic_set(&neigh->probes,
981 NEIGH_VAR(neigh->parms, UCAST_PROBES));
982 neigh->nud_state = NUD_INCOMPLETE;
983 neigh->updated = now;
984 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
985 HZ/2);
986 neigh_add_timer(neigh, next);
987 immediate_probe = true;
988 } else {
989 neigh->nud_state = NUD_FAILED;
990 neigh->updated = jiffies;
991 write_unlock_bh(&neigh->lock);
992
993 kfree_skb(skb);
994 return 1;
995 }
996 } else if (neigh->nud_state & NUD_STALE) {
997 neigh_dbg(2, "neigh %p is delayed\n", neigh);
998 neigh->nud_state = NUD_DELAY;
999 neigh->updated = jiffies;
1000 neigh_add_timer(neigh, jiffies +
1001 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1002 }
1003
1004 if (neigh->nud_state == NUD_INCOMPLETE) {
1005 if (skb) {
1006 while (neigh->arp_queue_len_bytes + skb->truesize >
1007 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1008 struct sk_buff *buff;
1009
1010 buff = __skb_dequeue(&neigh->arp_queue);
1011 if (!buff)
1012 break;
1013 neigh->arp_queue_len_bytes -= buff->truesize;
1014 kfree_skb(buff);
1015 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1016 }
1017 skb_dst_force(skb);
1018 __skb_queue_tail(&neigh->arp_queue, skb);
1019 neigh->arp_queue_len_bytes += skb->truesize;
1020 }
1021 rc = 1;
1022 }
1023 out_unlock_bh:
1024 if (immediate_probe)
1025 neigh_probe(neigh);
1026 else
1027 write_unlock(&neigh->lock);
1028 local_bh_enable();
1029 return rc;
1030 }
1031 EXPORT_SYMBOL(__neigh_event_send);
1032
1033 static void neigh_update_hhs(struct neighbour *neigh)
1034 {
1035 struct hh_cache *hh;
1036 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1037 = NULL;
1038
1039 if (neigh->dev->header_ops)
1040 update = neigh->dev->header_ops->cache_update;
1041
1042 if (update) {
1043 hh = &neigh->hh;
1044 if (hh->hh_len) {
1045 write_seqlock_bh(&hh->hh_lock);
1046 update(hh, neigh->dev, neigh->ha);
1047 write_sequnlock_bh(&hh->hh_lock);
1048 }
1049 }
1050 }
1051
1052
1053
1054 /* Generic update routine.
1055 -- lladdr is new lladdr or NULL, if it is not supplied.
1056 -- new is new state.
1057 -- flags
1058 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1059 if it is different.
1060 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1061 lladdr instead of overriding it
1062 if it is different.
1063 It also allows to retain current state
1064 if lladdr is unchanged.
1065 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1066
1067 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1068 NTF_ROUTER flag.
1069 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1070 a router.
1071
1072 Caller MUST hold reference count on the entry.
1073 */
1074
1075 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1076 u32 flags)
1077 {
1078 u8 old;
1079 int err;
1080 int notify = 0;
1081 struct net_device *dev;
1082 int update_isrouter = 0;
1083
1084 write_lock_bh(&neigh->lock);
1085
1086 dev = neigh->dev;
1087 old = neigh->nud_state;
1088 err = -EPERM;
1089
1090 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1091 (old & (NUD_NOARP | NUD_PERMANENT)))
1092 goto out;
1093
1094 if (!(new & NUD_VALID)) {
1095 neigh_del_timer(neigh);
1096 if (old & NUD_CONNECTED)
1097 neigh_suspect(neigh);
1098 neigh->nud_state = new;
1099 err = 0;
1100 notify = old & NUD_VALID;
1101 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1102 (new & NUD_FAILED)) {
1103 neigh_invalidate(neigh);
1104 notify = 1;
1105 }
1106 goto out;
1107 }
1108
1109 /* Compare new lladdr with cached one */
1110 if (!dev->addr_len) {
1111 /* First case: device needs no address. */
1112 lladdr = neigh->ha;
1113 } else if (lladdr) {
1114 /* The second case: if something is already cached
1115 and a new address is proposed:
1116 - compare new & old
1117 - if they are different, check override flag
1118 */
1119 if ((old & NUD_VALID) &&
1120 !memcmp(lladdr, neigh->ha, dev->addr_len))
1121 lladdr = neigh->ha;
1122 } else {
1123 /* No address is supplied; if we know something,
1124 use it, otherwise discard the request.
1125 */
1126 err = -EINVAL;
1127 if (!(old & NUD_VALID))
1128 goto out;
1129 lladdr = neigh->ha;
1130 }
1131
1132 if (new & NUD_CONNECTED)
1133 neigh->confirmed = jiffies;
1134 neigh->updated = jiffies;
1135
1136 /* If entry was valid and address is not changed,
1137 do not change entry state, if new one is STALE.
1138 */
1139 err = 0;
1140 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1141 if (old & NUD_VALID) {
1142 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1143 update_isrouter = 0;
1144 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1145 (old & NUD_CONNECTED)) {
1146 lladdr = neigh->ha;
1147 new = NUD_STALE;
1148 } else
1149 goto out;
1150 } else {
1151 if (lladdr == neigh->ha && new == NUD_STALE &&
1152 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1153 (old & NUD_CONNECTED))
1154 )
1155 new = old;
1156 }
1157 }
1158
1159 if (new != old) {
1160 neigh_del_timer(neigh);
1161 if (new & NUD_IN_TIMER)
1162 neigh_add_timer(neigh, (jiffies +
1163 ((new & NUD_REACHABLE) ?
1164 neigh->parms->reachable_time :
1165 0)));
1166 neigh->nud_state = new;
1167 notify = 1;
1168 }
1169
1170 if (lladdr != neigh->ha) {
1171 write_seqlock(&neigh->ha_lock);
1172 memcpy(&neigh->ha, lladdr, dev->addr_len);
1173 write_sequnlock(&neigh->ha_lock);
1174 neigh_update_hhs(neigh);
1175 if (!(new & NUD_CONNECTED))
1176 neigh->confirmed = jiffies -
1177 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1178 notify = 1;
1179 }
1180 if (new == old)
1181 goto out;
1182 if (new & NUD_CONNECTED)
1183 neigh_connect(neigh);
1184 else
1185 neigh_suspect(neigh);
1186 if (!(old & NUD_VALID)) {
1187 struct sk_buff *skb;
1188
1189 /* Again: avoid dead loop if something went wrong */
1190
1191 while (neigh->nud_state & NUD_VALID &&
1192 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1193 struct dst_entry *dst = skb_dst(skb);
1194 struct neighbour *n2, *n1 = neigh;
1195 write_unlock_bh(&neigh->lock);
1196
1197 rcu_read_lock();
1198
1199 /* Why not just use 'neigh' as-is? The problem is that
1200 * things such as shaper, eql, and sch_teql can end up
1201 * using alternative, different, neigh objects to output
1202 * the packet in the output path. So what we need to do
1203 * here is re-lookup the top-level neigh in the path so
1204 * we can reinject the packet there.
1205 */
1206 n2 = NULL;
1207 if (dst) {
1208 n2 = dst_neigh_lookup_skb(dst, skb);
1209 if (n2)
1210 n1 = n2;
1211 }
1212 n1->output(n1, skb);
1213 if (n2)
1214 neigh_release(n2);
1215 rcu_read_unlock();
1216
1217 write_lock_bh(&neigh->lock);
1218 }
1219 __skb_queue_purge(&neigh->arp_queue);
1220 neigh->arp_queue_len_bytes = 0;
1221 }
1222 out:
1223 if (update_isrouter) {
1224 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1225 (neigh->flags | NTF_ROUTER) :
1226 (neigh->flags & ~NTF_ROUTER);
1227 }
1228 write_unlock_bh(&neigh->lock);
1229
1230 if (notify)
1231 neigh_update_notify(neigh);
1232
1233 return err;
1234 }
1235 EXPORT_SYMBOL(neigh_update);
1236
1237 /* Update the neigh to listen temporarily for probe responses, even if it is
1238 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1239 */
1240 void __neigh_set_probe_once(struct neighbour *neigh)
1241 {
1242 neigh->updated = jiffies;
1243 if (!(neigh->nud_state & NUD_FAILED))
1244 return;
1245 neigh->nud_state = NUD_INCOMPLETE;
1246 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1247 neigh_add_timer(neigh,
1248 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1249 }
1250 EXPORT_SYMBOL(__neigh_set_probe_once);
1251
1252 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1253 u8 *lladdr, void *saddr,
1254 struct net_device *dev)
1255 {
1256 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1257 lladdr || !dev->addr_len);
1258 if (neigh)
1259 neigh_update(neigh, lladdr, NUD_STALE,
1260 NEIGH_UPDATE_F_OVERRIDE);
1261 return neigh;
1262 }
1263 EXPORT_SYMBOL(neigh_event_ns);
1264
1265 /* called with read_lock_bh(&n->lock); */
1266 static void neigh_hh_init(struct neighbour *n)
1267 {
1268 struct net_device *dev = n->dev;
1269 __be16 prot = n->tbl->protocol;
1270 struct hh_cache *hh = &n->hh;
1271
1272 write_lock_bh(&n->lock);
1273
1274 /* Only one thread can come in here and initialize the
1275 * hh_cache entry.
1276 */
1277 if (!hh->hh_len)
1278 dev->header_ops->cache(n, hh, prot);
1279
1280 write_unlock_bh(&n->lock);
1281 }
1282
1283 /* Slow and careful. */
1284
1285 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1286 {
1287 int rc = 0;
1288
1289 if (!neigh_event_send(neigh, skb)) {
1290 int err;
1291 struct net_device *dev = neigh->dev;
1292 unsigned int seq;
1293
1294 if (dev->header_ops->cache && !neigh->hh.hh_len)
1295 neigh_hh_init(neigh);
1296
1297 do {
1298 __skb_pull(skb, skb_network_offset(skb));
1299 seq = read_seqbegin(&neigh->ha_lock);
1300 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1301 neigh->ha, NULL, skb->len);
1302 } while (read_seqretry(&neigh->ha_lock, seq));
1303
1304 if (err >= 0)
1305 rc = dev_queue_xmit(skb);
1306 else
1307 goto out_kfree_skb;
1308 }
1309 out:
1310 return rc;
1311 out_kfree_skb:
1312 rc = -EINVAL;
1313 kfree_skb(skb);
1314 goto out;
1315 }
1316 EXPORT_SYMBOL(neigh_resolve_output);
1317
1318 /* As fast as possible without hh cache */
1319
1320 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1321 {
1322 struct net_device *dev = neigh->dev;
1323 unsigned int seq;
1324 int err;
1325
1326 do {
1327 __skb_pull(skb, skb_network_offset(skb));
1328 seq = read_seqbegin(&neigh->ha_lock);
1329 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1330 neigh->ha, NULL, skb->len);
1331 } while (read_seqretry(&neigh->ha_lock, seq));
1332
1333 if (err >= 0)
1334 err = dev_queue_xmit(skb);
1335 else {
1336 err = -EINVAL;
1337 kfree_skb(skb);
1338 }
1339 return err;
1340 }
1341 EXPORT_SYMBOL(neigh_connected_output);
1342
1343 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1344 {
1345 return dev_queue_xmit(skb);
1346 }
1347 EXPORT_SYMBOL(neigh_direct_output);
1348
1349 static void neigh_proxy_process(unsigned long arg)
1350 {
1351 struct neigh_table *tbl = (struct neigh_table *)arg;
1352 long sched_next = 0;
1353 unsigned long now = jiffies;
1354 struct sk_buff *skb, *n;
1355
1356 spin_lock(&tbl->proxy_queue.lock);
1357
1358 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1359 long tdif = NEIGH_CB(skb)->sched_next - now;
1360
1361 if (tdif <= 0) {
1362 struct net_device *dev = skb->dev;
1363
1364 __skb_unlink(skb, &tbl->proxy_queue);
1365 if (tbl->proxy_redo && netif_running(dev)) {
1366 rcu_read_lock();
1367 tbl->proxy_redo(skb);
1368 rcu_read_unlock();
1369 } else {
1370 kfree_skb(skb);
1371 }
1372
1373 dev_put(dev);
1374 } else if (!sched_next || tdif < sched_next)
1375 sched_next = tdif;
1376 }
1377 del_timer(&tbl->proxy_timer);
1378 if (sched_next)
1379 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1380 spin_unlock(&tbl->proxy_queue.lock);
1381 }
1382
1383 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1384 struct sk_buff *skb)
1385 {
1386 unsigned long now = jiffies;
1387
1388 unsigned long sched_next = now + (prandom_u32() %
1389 NEIGH_VAR(p, PROXY_DELAY));
1390
1391 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1392 kfree_skb(skb);
1393 return;
1394 }
1395
1396 NEIGH_CB(skb)->sched_next = sched_next;
1397 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1398
1399 spin_lock(&tbl->proxy_queue.lock);
1400 if (del_timer(&tbl->proxy_timer)) {
1401 if (time_before(tbl->proxy_timer.expires, sched_next))
1402 sched_next = tbl->proxy_timer.expires;
1403 }
1404 skb_dst_drop(skb);
1405 dev_hold(skb->dev);
1406 __skb_queue_tail(&tbl->proxy_queue, skb);
1407 mod_timer(&tbl->proxy_timer, sched_next);
1408 spin_unlock(&tbl->proxy_queue.lock);
1409 }
1410 EXPORT_SYMBOL(pneigh_enqueue);
1411
1412 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1413 struct net *net, int ifindex)
1414 {
1415 struct neigh_parms *p;
1416
1417 list_for_each_entry(p, &tbl->parms_list, list) {
1418 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1419 (!p->dev && !ifindex && net_eq(net, &init_net)))
1420 return p;
1421 }
1422
1423 return NULL;
1424 }
1425
1426 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1427 struct neigh_table *tbl)
1428 {
1429 struct neigh_parms *p;
1430 struct net *net = dev_net(dev);
1431 const struct net_device_ops *ops = dev->netdev_ops;
1432
1433 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1434 if (p) {
1435 p->tbl = tbl;
1436 atomic_set(&p->refcnt, 1);
1437 p->reachable_time =
1438 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1439 dev_hold(dev);
1440 p->dev = dev;
1441 write_pnet(&p->net, hold_net(net));
1442 p->sysctl_table = NULL;
1443
1444 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1445 release_net(net);
1446 dev_put(dev);
1447 kfree(p);
1448 return NULL;
1449 }
1450
1451 write_lock_bh(&tbl->lock);
1452 list_add(&p->list, &tbl->parms.list);
1453 write_unlock_bh(&tbl->lock);
1454
1455 neigh_parms_data_state_cleanall(p);
1456 }
1457 return p;
1458 }
1459 EXPORT_SYMBOL(neigh_parms_alloc);
1460
1461 static void neigh_rcu_free_parms(struct rcu_head *head)
1462 {
1463 struct neigh_parms *parms =
1464 container_of(head, struct neigh_parms, rcu_head);
1465
1466 neigh_parms_put(parms);
1467 }
1468
1469 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1470 {
1471 if (!parms || parms == &tbl->parms)
1472 return;
1473 write_lock_bh(&tbl->lock);
1474 list_del(&parms->list);
1475 parms->dead = 1;
1476 write_unlock_bh(&tbl->lock);
1477 if (parms->dev)
1478 dev_put(parms->dev);
1479 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1480 }
1481 EXPORT_SYMBOL(neigh_parms_release);
1482
1483 static void neigh_parms_destroy(struct neigh_parms *parms)
1484 {
1485 release_net(neigh_parms_net(parms));
1486 kfree(parms);
1487 }
1488
1489 static struct lock_class_key neigh_table_proxy_queue_class;
1490
1491 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1492
1493 void neigh_table_init(int index, struct neigh_table *tbl)
1494 {
1495 unsigned long now = jiffies;
1496 unsigned long phsize;
1497
1498 INIT_LIST_HEAD(&tbl->parms_list);
1499 list_add(&tbl->parms.list, &tbl->parms_list);
1500 write_pnet(&tbl->parms.net, &init_net);
1501 atomic_set(&tbl->parms.refcnt, 1);
1502 tbl->parms.reachable_time =
1503 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1504
1505 tbl->stats = alloc_percpu(struct neigh_statistics);
1506 if (!tbl->stats)
1507 panic("cannot create neighbour cache statistics");
1508
1509 #ifdef CONFIG_PROC_FS
1510 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1511 &neigh_stat_seq_fops, tbl))
1512 panic("cannot create neighbour proc dir entry");
1513 #endif
1514
1515 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1516
1517 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1518 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1519
1520 if (!tbl->nht || !tbl->phash_buckets)
1521 panic("cannot allocate neighbour cache hashes");
1522
1523 if (!tbl->entry_size)
1524 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1525 tbl->key_len, NEIGH_PRIV_ALIGN);
1526 else
1527 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1528
1529 rwlock_init(&tbl->lock);
1530 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1531 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1532 tbl->parms.reachable_time);
1533 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1534 skb_queue_head_init_class(&tbl->proxy_queue,
1535 &neigh_table_proxy_queue_class);
1536
1537 tbl->last_flush = now;
1538 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1539
1540 neigh_tables[index] = tbl;
1541 }
1542 EXPORT_SYMBOL(neigh_table_init);
1543
1544 int neigh_table_clear(int index, struct neigh_table *tbl)
1545 {
1546 neigh_tables[index] = NULL;
1547 /* It is not clean... Fix it to unload IPv6 module safely */
1548 cancel_delayed_work_sync(&tbl->gc_work);
1549 del_timer_sync(&tbl->proxy_timer);
1550 pneigh_queue_purge(&tbl->proxy_queue);
1551 neigh_ifdown(tbl, NULL);
1552 if (atomic_read(&tbl->entries))
1553 pr_crit("neighbour leakage\n");
1554
1555 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1556 neigh_hash_free_rcu);
1557 tbl->nht = NULL;
1558
1559 kfree(tbl->phash_buckets);
1560 tbl->phash_buckets = NULL;
1561
1562 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1563
1564 free_percpu(tbl->stats);
1565 tbl->stats = NULL;
1566
1567 return 0;
1568 }
1569 EXPORT_SYMBOL(neigh_table_clear);
1570
1571 static struct neigh_table *neigh_find_table(int family)
1572 {
1573 struct neigh_table *tbl = NULL;
1574
1575 switch (family) {
1576 case AF_INET:
1577 tbl = neigh_tables[NEIGH_ARP_TABLE];
1578 break;
1579 case AF_INET6:
1580 tbl = neigh_tables[NEIGH_ND_TABLE];
1581 break;
1582 case AF_DECnet:
1583 tbl = neigh_tables[NEIGH_DN_TABLE];
1584 break;
1585 }
1586
1587 return tbl;
1588 }
1589
1590 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1591 {
1592 struct net *net = sock_net(skb->sk);
1593 struct ndmsg *ndm;
1594 struct nlattr *dst_attr;
1595 struct neigh_table *tbl;
1596 struct neighbour *neigh;
1597 struct net_device *dev = NULL;
1598 int err = -EINVAL;
1599
1600 ASSERT_RTNL();
1601 if (nlmsg_len(nlh) < sizeof(*ndm))
1602 goto out;
1603
1604 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1605 if (dst_attr == NULL)
1606 goto out;
1607
1608 ndm = nlmsg_data(nlh);
1609 if (ndm->ndm_ifindex) {
1610 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1611 if (dev == NULL) {
1612 err = -ENODEV;
1613 goto out;
1614 }
1615 }
1616
1617 tbl = neigh_find_table(ndm->ndm_family);
1618 if (tbl == NULL)
1619 return -EAFNOSUPPORT;
1620
1621 if (nla_len(dst_attr) < tbl->key_len)
1622 goto out;
1623
1624 if (ndm->ndm_flags & NTF_PROXY) {
1625 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1626 goto out;
1627 }
1628
1629 if (dev == NULL)
1630 goto out;
1631
1632 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1633 if (neigh == NULL) {
1634 err = -ENOENT;
1635 goto out;
1636 }
1637
1638 err = neigh_update(neigh, NULL, NUD_FAILED,
1639 NEIGH_UPDATE_F_OVERRIDE |
1640 NEIGH_UPDATE_F_ADMIN);
1641 neigh_release(neigh);
1642
1643 out:
1644 return err;
1645 }
1646
1647 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1648 {
1649 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1650 struct net *net = sock_net(skb->sk);
1651 struct ndmsg *ndm;
1652 struct nlattr *tb[NDA_MAX+1];
1653 struct neigh_table *tbl;
1654 struct net_device *dev = NULL;
1655 struct neighbour *neigh;
1656 void *dst, *lladdr;
1657 int err;
1658
1659 ASSERT_RTNL();
1660 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1661 if (err < 0)
1662 goto out;
1663
1664 err = -EINVAL;
1665 if (tb[NDA_DST] == NULL)
1666 goto out;
1667
1668 ndm = nlmsg_data(nlh);
1669 if (ndm->ndm_ifindex) {
1670 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1671 if (dev == NULL) {
1672 err = -ENODEV;
1673 goto out;
1674 }
1675
1676 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1677 goto out;
1678 }
1679
1680 tbl = neigh_find_table(ndm->ndm_family);
1681 if (tbl == NULL)
1682 return -EAFNOSUPPORT;
1683
1684 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1685 goto out;
1686 dst = nla_data(tb[NDA_DST]);
1687 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1688
1689 if (ndm->ndm_flags & NTF_PROXY) {
1690 struct pneigh_entry *pn;
1691
1692 err = -ENOBUFS;
1693 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1694 if (pn) {
1695 pn->flags = ndm->ndm_flags;
1696 err = 0;
1697 }
1698 goto out;
1699 }
1700
1701 if (dev == NULL)
1702 goto out;
1703
1704 neigh = neigh_lookup(tbl, dst, dev);
1705 if (neigh == NULL) {
1706 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1707 err = -ENOENT;
1708 goto out;
1709 }
1710
1711 neigh = __neigh_lookup_errno(tbl, dst, dev);
1712 if (IS_ERR(neigh)) {
1713 err = PTR_ERR(neigh);
1714 goto out;
1715 }
1716 } else {
1717 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1718 err = -EEXIST;
1719 neigh_release(neigh);
1720 goto out;
1721 }
1722
1723 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1724 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1725 }
1726
1727 if (ndm->ndm_flags & NTF_USE) {
1728 neigh_event_send(neigh, NULL);
1729 err = 0;
1730 } else
1731 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1732 neigh_release(neigh);
1733
1734 out:
1735 return err;
1736 }
1737
1738 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1739 {
1740 struct nlattr *nest;
1741
1742 nest = nla_nest_start(skb, NDTA_PARMS);
1743 if (nest == NULL)
1744 return -ENOBUFS;
1745
1746 if ((parms->dev &&
1747 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1748 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1749 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1750 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1751 /* approximative value for deprecated QUEUE_LEN (in packets) */
1752 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1753 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1754 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1755 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1756 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1757 NEIGH_VAR(parms, UCAST_PROBES)) ||
1758 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1759 NEIGH_VAR(parms, MCAST_PROBES)) ||
1760 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1761 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1762 NEIGH_VAR(parms, BASE_REACHABLE_TIME)) ||
1763 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1764 NEIGH_VAR(parms, GC_STALETIME)) ||
1765 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1766 NEIGH_VAR(parms, DELAY_PROBE_TIME)) ||
1767 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1768 NEIGH_VAR(parms, RETRANS_TIME)) ||
1769 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1770 NEIGH_VAR(parms, ANYCAST_DELAY)) ||
1771 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1772 NEIGH_VAR(parms, PROXY_DELAY)) ||
1773 nla_put_msecs(skb, NDTPA_LOCKTIME,
1774 NEIGH_VAR(parms, LOCKTIME)))
1775 goto nla_put_failure;
1776 return nla_nest_end(skb, nest);
1777
1778 nla_put_failure:
1779 nla_nest_cancel(skb, nest);
1780 return -EMSGSIZE;
1781 }
1782
1783 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1784 u32 pid, u32 seq, int type, int flags)
1785 {
1786 struct nlmsghdr *nlh;
1787 struct ndtmsg *ndtmsg;
1788
1789 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1790 if (nlh == NULL)
1791 return -EMSGSIZE;
1792
1793 ndtmsg = nlmsg_data(nlh);
1794
1795 read_lock_bh(&tbl->lock);
1796 ndtmsg->ndtm_family = tbl->family;
1797 ndtmsg->ndtm_pad1 = 0;
1798 ndtmsg->ndtm_pad2 = 0;
1799
1800 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1801 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1802 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1803 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1804 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1805 goto nla_put_failure;
1806 {
1807 unsigned long now = jiffies;
1808 unsigned int flush_delta = now - tbl->last_flush;
1809 unsigned int rand_delta = now - tbl->last_rand;
1810 struct neigh_hash_table *nht;
1811 struct ndt_config ndc = {
1812 .ndtc_key_len = tbl->key_len,
1813 .ndtc_entry_size = tbl->entry_size,
1814 .ndtc_entries = atomic_read(&tbl->entries),
1815 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1816 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1817 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1818 };
1819
1820 rcu_read_lock_bh();
1821 nht = rcu_dereference_bh(tbl->nht);
1822 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1823 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1824 rcu_read_unlock_bh();
1825
1826 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1827 goto nla_put_failure;
1828 }
1829
1830 {
1831 int cpu;
1832 struct ndt_stats ndst;
1833
1834 memset(&ndst, 0, sizeof(ndst));
1835
1836 for_each_possible_cpu(cpu) {
1837 struct neigh_statistics *st;
1838
1839 st = per_cpu_ptr(tbl->stats, cpu);
1840 ndst.ndts_allocs += st->allocs;
1841 ndst.ndts_destroys += st->destroys;
1842 ndst.ndts_hash_grows += st->hash_grows;
1843 ndst.ndts_res_failed += st->res_failed;
1844 ndst.ndts_lookups += st->lookups;
1845 ndst.ndts_hits += st->hits;
1846 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1847 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1848 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1849 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1850 }
1851
1852 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1853 goto nla_put_failure;
1854 }
1855
1856 BUG_ON(tbl->parms.dev);
1857 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1858 goto nla_put_failure;
1859
1860 read_unlock_bh(&tbl->lock);
1861 nlmsg_end(skb, nlh);
1862 return 0;
1863
1864 nla_put_failure:
1865 read_unlock_bh(&tbl->lock);
1866 nlmsg_cancel(skb, nlh);
1867 return -EMSGSIZE;
1868 }
1869
1870 static int neightbl_fill_param_info(struct sk_buff *skb,
1871 struct neigh_table *tbl,
1872 struct neigh_parms *parms,
1873 u32 pid, u32 seq, int type,
1874 unsigned int flags)
1875 {
1876 struct ndtmsg *ndtmsg;
1877 struct nlmsghdr *nlh;
1878
1879 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1880 if (nlh == NULL)
1881 return -EMSGSIZE;
1882
1883 ndtmsg = nlmsg_data(nlh);
1884
1885 read_lock_bh(&tbl->lock);
1886 ndtmsg->ndtm_family = tbl->family;
1887 ndtmsg->ndtm_pad1 = 0;
1888 ndtmsg->ndtm_pad2 = 0;
1889
1890 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1891 neightbl_fill_parms(skb, parms) < 0)
1892 goto errout;
1893
1894 read_unlock_bh(&tbl->lock);
1895 nlmsg_end(skb, nlh);
1896 return 0;
1897 errout:
1898 read_unlock_bh(&tbl->lock);
1899 nlmsg_cancel(skb, nlh);
1900 return -EMSGSIZE;
1901 }
1902
1903 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1904 [NDTA_NAME] = { .type = NLA_STRING },
1905 [NDTA_THRESH1] = { .type = NLA_U32 },
1906 [NDTA_THRESH2] = { .type = NLA_U32 },
1907 [NDTA_THRESH3] = { .type = NLA_U32 },
1908 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1909 [NDTA_PARMS] = { .type = NLA_NESTED },
1910 };
1911
1912 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1913 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1914 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1915 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1916 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1917 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1918 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1919 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1920 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1921 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1922 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1923 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1924 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1925 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1926 };
1927
1928 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1929 {
1930 struct net *net = sock_net(skb->sk);
1931 struct neigh_table *tbl;
1932 struct ndtmsg *ndtmsg;
1933 struct nlattr *tb[NDTA_MAX+1];
1934 bool found = false;
1935 int err, tidx;
1936
1937 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1938 nl_neightbl_policy);
1939 if (err < 0)
1940 goto errout;
1941
1942 if (tb[NDTA_NAME] == NULL) {
1943 err = -EINVAL;
1944 goto errout;
1945 }
1946
1947 ndtmsg = nlmsg_data(nlh);
1948
1949 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
1950 tbl = neigh_tables[tidx];
1951 if (!tbl)
1952 continue;
1953 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1954 continue;
1955 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
1956 found = true;
1957 break;
1958 }
1959 }
1960
1961 if (!found)
1962 return -ENOENT;
1963
1964 /*
1965 * We acquire tbl->lock to be nice to the periodic timers and
1966 * make sure they always see a consistent set of values.
1967 */
1968 write_lock_bh(&tbl->lock);
1969
1970 if (tb[NDTA_PARMS]) {
1971 struct nlattr *tbp[NDTPA_MAX+1];
1972 struct neigh_parms *p;
1973 int i, ifindex = 0;
1974
1975 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1976 nl_ntbl_parm_policy);
1977 if (err < 0)
1978 goto errout_tbl_lock;
1979
1980 if (tbp[NDTPA_IFINDEX])
1981 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1982
1983 p = lookup_neigh_parms(tbl, net, ifindex);
1984 if (p == NULL) {
1985 err = -ENOENT;
1986 goto errout_tbl_lock;
1987 }
1988
1989 for (i = 1; i <= NDTPA_MAX; i++) {
1990 if (tbp[i] == NULL)
1991 continue;
1992
1993 switch (i) {
1994 case NDTPA_QUEUE_LEN:
1995 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
1996 nla_get_u32(tbp[i]) *
1997 SKB_TRUESIZE(ETH_FRAME_LEN));
1998 break;
1999 case NDTPA_QUEUE_LENBYTES:
2000 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2001 nla_get_u32(tbp[i]));
2002 break;
2003 case NDTPA_PROXY_QLEN:
2004 NEIGH_VAR_SET(p, PROXY_QLEN,
2005 nla_get_u32(tbp[i]));
2006 break;
2007 case NDTPA_APP_PROBES:
2008 NEIGH_VAR_SET(p, APP_PROBES,
2009 nla_get_u32(tbp[i]));
2010 break;
2011 case NDTPA_UCAST_PROBES:
2012 NEIGH_VAR_SET(p, UCAST_PROBES,
2013 nla_get_u32(tbp[i]));
2014 break;
2015 case NDTPA_MCAST_PROBES:
2016 NEIGH_VAR_SET(p, MCAST_PROBES,
2017 nla_get_u32(tbp[i]));
2018 break;
2019 case NDTPA_BASE_REACHABLE_TIME:
2020 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2021 nla_get_msecs(tbp[i]));
2022 /* update reachable_time as well, otherwise, the change will
2023 * only be effective after the next time neigh_periodic_work
2024 * decides to recompute it (can be multiple minutes)
2025 */
2026 p->reachable_time =
2027 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2028 break;
2029 case NDTPA_GC_STALETIME:
2030 NEIGH_VAR_SET(p, GC_STALETIME,
2031 nla_get_msecs(tbp[i]));
2032 break;
2033 case NDTPA_DELAY_PROBE_TIME:
2034 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2035 nla_get_msecs(tbp[i]));
2036 break;
2037 case NDTPA_RETRANS_TIME:
2038 NEIGH_VAR_SET(p, RETRANS_TIME,
2039 nla_get_msecs(tbp[i]));
2040 break;
2041 case NDTPA_ANYCAST_DELAY:
2042 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2043 nla_get_msecs(tbp[i]));
2044 break;
2045 case NDTPA_PROXY_DELAY:
2046 NEIGH_VAR_SET(p, PROXY_DELAY,
2047 nla_get_msecs(tbp[i]));
2048 break;
2049 case NDTPA_LOCKTIME:
2050 NEIGH_VAR_SET(p, LOCKTIME,
2051 nla_get_msecs(tbp[i]));
2052 break;
2053 }
2054 }
2055 }
2056
2057 err = -ENOENT;
2058 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2059 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2060 !net_eq(net, &init_net))
2061 goto errout_tbl_lock;
2062
2063 if (tb[NDTA_THRESH1])
2064 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2065
2066 if (tb[NDTA_THRESH2])
2067 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2068
2069 if (tb[NDTA_THRESH3])
2070 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2071
2072 if (tb[NDTA_GC_INTERVAL])
2073 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2074
2075 err = 0;
2076
2077 errout_tbl_lock:
2078 write_unlock_bh(&tbl->lock);
2079 errout:
2080 return err;
2081 }
2082
2083 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2084 {
2085 struct net *net = sock_net(skb->sk);
2086 int family, tidx, nidx = 0;
2087 int tbl_skip = cb->args[0];
2088 int neigh_skip = cb->args[1];
2089 struct neigh_table *tbl;
2090
2091 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2092
2093 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2094 struct neigh_parms *p;
2095
2096 tbl = neigh_tables[tidx];
2097 if (!tbl)
2098 continue;
2099
2100 if (tidx < tbl_skip || (family && tbl->family != family))
2101 continue;
2102
2103 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2104 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2105 NLM_F_MULTI) < 0)
2106 break;
2107
2108 nidx = 0;
2109 p = list_next_entry(&tbl->parms, list);
2110 list_for_each_entry_from(p, &tbl->parms_list, list) {
2111 if (!net_eq(neigh_parms_net(p), net))
2112 continue;
2113
2114 if (nidx < neigh_skip)
2115 goto next;
2116
2117 if (neightbl_fill_param_info(skb, tbl, p,
2118 NETLINK_CB(cb->skb).portid,
2119 cb->nlh->nlmsg_seq,
2120 RTM_NEWNEIGHTBL,
2121 NLM_F_MULTI) < 0)
2122 goto out;
2123 next:
2124 nidx++;
2125 }
2126
2127 neigh_skip = 0;
2128 }
2129 out:
2130 cb->args[0] = tidx;
2131 cb->args[1] = nidx;
2132
2133 return skb->len;
2134 }
2135
2136 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2137 u32 pid, u32 seq, int type, unsigned int flags)
2138 {
2139 unsigned long now = jiffies;
2140 struct nda_cacheinfo ci;
2141 struct nlmsghdr *nlh;
2142 struct ndmsg *ndm;
2143
2144 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2145 if (nlh == NULL)
2146 return -EMSGSIZE;
2147
2148 ndm = nlmsg_data(nlh);
2149 ndm->ndm_family = neigh->ops->family;
2150 ndm->ndm_pad1 = 0;
2151 ndm->ndm_pad2 = 0;
2152 ndm->ndm_flags = neigh->flags;
2153 ndm->ndm_type = neigh->type;
2154 ndm->ndm_ifindex = neigh->dev->ifindex;
2155
2156 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2157 goto nla_put_failure;
2158
2159 read_lock_bh(&neigh->lock);
2160 ndm->ndm_state = neigh->nud_state;
2161 if (neigh->nud_state & NUD_VALID) {
2162 char haddr[MAX_ADDR_LEN];
2163
2164 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2165 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2166 read_unlock_bh(&neigh->lock);
2167 goto nla_put_failure;
2168 }
2169 }
2170
2171 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2172 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2173 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2174 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2175 read_unlock_bh(&neigh->lock);
2176
2177 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2178 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2179 goto nla_put_failure;
2180
2181 nlmsg_end(skb, nlh);
2182 return 0;
2183
2184 nla_put_failure:
2185 nlmsg_cancel(skb, nlh);
2186 return -EMSGSIZE;
2187 }
2188
2189 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2190 u32 pid, u32 seq, int type, unsigned int flags,
2191 struct neigh_table *tbl)
2192 {
2193 struct nlmsghdr *nlh;
2194 struct ndmsg *ndm;
2195
2196 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2197 if (nlh == NULL)
2198 return -EMSGSIZE;
2199
2200 ndm = nlmsg_data(nlh);
2201 ndm->ndm_family = tbl->family;
2202 ndm->ndm_pad1 = 0;
2203 ndm->ndm_pad2 = 0;
2204 ndm->ndm_flags = pn->flags | NTF_PROXY;
2205 ndm->ndm_type = RTN_UNICAST;
2206 ndm->ndm_ifindex = pn->dev->ifindex;
2207 ndm->ndm_state = NUD_NONE;
2208
2209 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2210 goto nla_put_failure;
2211
2212 nlmsg_end(skb, nlh);
2213 return 0;
2214
2215 nla_put_failure:
2216 nlmsg_cancel(skb, nlh);
2217 return -EMSGSIZE;
2218 }
2219
2220 static void neigh_update_notify(struct neighbour *neigh)
2221 {
2222 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2223 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2224 }
2225
2226 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2227 struct netlink_callback *cb)
2228 {
2229 struct net *net = sock_net(skb->sk);
2230 struct neighbour *n;
2231 int rc, h, s_h = cb->args[1];
2232 int idx, s_idx = idx = cb->args[2];
2233 struct neigh_hash_table *nht;
2234
2235 rcu_read_lock_bh();
2236 nht = rcu_dereference_bh(tbl->nht);
2237
2238 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2239 if (h > s_h)
2240 s_idx = 0;
2241 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2242 n != NULL;
2243 n = rcu_dereference_bh(n->next)) {
2244 if (!net_eq(dev_net(n->dev), net))
2245 continue;
2246 if (idx < s_idx)
2247 goto next;
2248 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2249 cb->nlh->nlmsg_seq,
2250 RTM_NEWNEIGH,
2251 NLM_F_MULTI) < 0) {
2252 rc = -1;
2253 goto out;
2254 }
2255 next:
2256 idx++;
2257 }
2258 }
2259 rc = skb->len;
2260 out:
2261 rcu_read_unlock_bh();
2262 cb->args[1] = h;
2263 cb->args[2] = idx;
2264 return rc;
2265 }
2266
2267 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2268 struct netlink_callback *cb)
2269 {
2270 struct pneigh_entry *n;
2271 struct net *net = sock_net(skb->sk);
2272 int rc, h, s_h = cb->args[3];
2273 int idx, s_idx = idx = cb->args[4];
2274
2275 read_lock_bh(&tbl->lock);
2276
2277 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2278 if (h > s_h)
2279 s_idx = 0;
2280 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2281 if (dev_net(n->dev) != net)
2282 continue;
2283 if (idx < s_idx)
2284 goto next;
2285 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2286 cb->nlh->nlmsg_seq,
2287 RTM_NEWNEIGH,
2288 NLM_F_MULTI, tbl) < 0) {
2289 read_unlock_bh(&tbl->lock);
2290 rc = -1;
2291 goto out;
2292 }
2293 next:
2294 idx++;
2295 }
2296 }
2297
2298 read_unlock_bh(&tbl->lock);
2299 rc = skb->len;
2300 out:
2301 cb->args[3] = h;
2302 cb->args[4] = idx;
2303 return rc;
2304
2305 }
2306
2307 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2308 {
2309 struct neigh_table *tbl;
2310 int t, family, s_t;
2311 int proxy = 0;
2312 int err;
2313
2314 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2315
2316 /* check for full ndmsg structure presence, family member is
2317 * the same for both structures
2318 */
2319 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2320 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2321 proxy = 1;
2322
2323 s_t = cb->args[0];
2324
2325 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2326 tbl = neigh_tables[t];
2327
2328 if (!tbl)
2329 continue;
2330 if (t < s_t || (family && tbl->family != family))
2331 continue;
2332 if (t > s_t)
2333 memset(&cb->args[1], 0, sizeof(cb->args) -
2334 sizeof(cb->args[0]));
2335 if (proxy)
2336 err = pneigh_dump_table(tbl, skb, cb);
2337 else
2338 err = neigh_dump_table(tbl, skb, cb);
2339 if (err < 0)
2340 break;
2341 }
2342
2343 cb->args[0] = t;
2344 return skb->len;
2345 }
2346
2347 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2348 {
2349 int chain;
2350 struct neigh_hash_table *nht;
2351
2352 rcu_read_lock_bh();
2353 nht = rcu_dereference_bh(tbl->nht);
2354
2355 read_lock(&tbl->lock); /* avoid resizes */
2356 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2357 struct neighbour *n;
2358
2359 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2360 n != NULL;
2361 n = rcu_dereference_bh(n->next))
2362 cb(n, cookie);
2363 }
2364 read_unlock(&tbl->lock);
2365 rcu_read_unlock_bh();
2366 }
2367 EXPORT_SYMBOL(neigh_for_each);
2368
2369 /* The tbl->lock must be held as a writer and BH disabled. */
2370 void __neigh_for_each_release(struct neigh_table *tbl,
2371 int (*cb)(struct neighbour *))
2372 {
2373 int chain;
2374 struct neigh_hash_table *nht;
2375
2376 nht = rcu_dereference_protected(tbl->nht,
2377 lockdep_is_held(&tbl->lock));
2378 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2379 struct neighbour *n;
2380 struct neighbour __rcu **np;
2381
2382 np = &nht->hash_buckets[chain];
2383 while ((n = rcu_dereference_protected(*np,
2384 lockdep_is_held(&tbl->lock))) != NULL) {
2385 int release;
2386
2387 write_lock(&n->lock);
2388 release = cb(n);
2389 if (release) {
2390 rcu_assign_pointer(*np,
2391 rcu_dereference_protected(n->next,
2392 lockdep_is_held(&tbl->lock)));
2393 n->dead = 1;
2394 } else
2395 np = &n->next;
2396 write_unlock(&n->lock);
2397 if (release)
2398 neigh_cleanup_and_release(n);
2399 }
2400 }
2401 }
2402 EXPORT_SYMBOL(__neigh_for_each_release);
2403
2404 #ifdef CONFIG_PROC_FS
2405
2406 static struct neighbour *neigh_get_first(struct seq_file *seq)
2407 {
2408 struct neigh_seq_state *state = seq->private;
2409 struct net *net = seq_file_net(seq);
2410 struct neigh_hash_table *nht = state->nht;
2411 struct neighbour *n = NULL;
2412 int bucket = state->bucket;
2413
2414 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2415 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2416 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2417
2418 while (n) {
2419 if (!net_eq(dev_net(n->dev), net))
2420 goto next;
2421 if (state->neigh_sub_iter) {
2422 loff_t fakep = 0;
2423 void *v;
2424
2425 v = state->neigh_sub_iter(state, n, &fakep);
2426 if (!v)
2427 goto next;
2428 }
2429 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2430 break;
2431 if (n->nud_state & ~NUD_NOARP)
2432 break;
2433 next:
2434 n = rcu_dereference_bh(n->next);
2435 }
2436
2437 if (n)
2438 break;
2439 }
2440 state->bucket = bucket;
2441
2442 return n;
2443 }
2444
2445 static struct neighbour *neigh_get_next(struct seq_file *seq,
2446 struct neighbour *n,
2447 loff_t *pos)
2448 {
2449 struct neigh_seq_state *state = seq->private;
2450 struct net *net = seq_file_net(seq);
2451 struct neigh_hash_table *nht = state->nht;
2452
2453 if (state->neigh_sub_iter) {
2454 void *v = state->neigh_sub_iter(state, n, pos);
2455 if (v)
2456 return n;
2457 }
2458 n = rcu_dereference_bh(n->next);
2459
2460 while (1) {
2461 while (n) {
2462 if (!net_eq(dev_net(n->dev), net))
2463 goto next;
2464 if (state->neigh_sub_iter) {
2465 void *v = state->neigh_sub_iter(state, n, pos);
2466 if (v)
2467 return n;
2468 goto next;
2469 }
2470 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2471 break;
2472
2473 if (n->nud_state & ~NUD_NOARP)
2474 break;
2475 next:
2476 n = rcu_dereference_bh(n->next);
2477 }
2478
2479 if (n)
2480 break;
2481
2482 if (++state->bucket >= (1 << nht->hash_shift))
2483 break;
2484
2485 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2486 }
2487
2488 if (n && pos)
2489 --(*pos);
2490 return n;
2491 }
2492
2493 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2494 {
2495 struct neighbour *n = neigh_get_first(seq);
2496
2497 if (n) {
2498 --(*pos);
2499 while (*pos) {
2500 n = neigh_get_next(seq, n, pos);
2501 if (!n)
2502 break;
2503 }
2504 }
2505 return *pos ? NULL : n;
2506 }
2507
2508 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2509 {
2510 struct neigh_seq_state *state = seq->private;
2511 struct net *net = seq_file_net(seq);
2512 struct neigh_table *tbl = state->tbl;
2513 struct pneigh_entry *pn = NULL;
2514 int bucket = state->bucket;
2515
2516 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2517 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2518 pn = tbl->phash_buckets[bucket];
2519 while (pn && !net_eq(pneigh_net(pn), net))
2520 pn = pn->next;
2521 if (pn)
2522 break;
2523 }
2524 state->bucket = bucket;
2525
2526 return pn;
2527 }
2528
2529 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2530 struct pneigh_entry *pn,
2531 loff_t *pos)
2532 {
2533 struct neigh_seq_state *state = seq->private;
2534 struct net *net = seq_file_net(seq);
2535 struct neigh_table *tbl = state->tbl;
2536
2537 do {
2538 pn = pn->next;
2539 } while (pn && !net_eq(pneigh_net(pn), net));
2540
2541 while (!pn) {
2542 if (++state->bucket > PNEIGH_HASHMASK)
2543 break;
2544 pn = tbl->phash_buckets[state->bucket];
2545 while (pn && !net_eq(pneigh_net(pn), net))
2546 pn = pn->next;
2547 if (pn)
2548 break;
2549 }
2550
2551 if (pn && pos)
2552 --(*pos);
2553
2554 return pn;
2555 }
2556
2557 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2558 {
2559 struct pneigh_entry *pn = pneigh_get_first(seq);
2560
2561 if (pn) {
2562 --(*pos);
2563 while (*pos) {
2564 pn = pneigh_get_next(seq, pn, pos);
2565 if (!pn)
2566 break;
2567 }
2568 }
2569 return *pos ? NULL : pn;
2570 }
2571
2572 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2573 {
2574 struct neigh_seq_state *state = seq->private;
2575 void *rc;
2576 loff_t idxpos = *pos;
2577
2578 rc = neigh_get_idx(seq, &idxpos);
2579 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2580 rc = pneigh_get_idx(seq, &idxpos);
2581
2582 return rc;
2583 }
2584
2585 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2586 __acquires(rcu_bh)
2587 {
2588 struct neigh_seq_state *state = seq->private;
2589
2590 state->tbl = tbl;
2591 state->bucket = 0;
2592 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2593
2594 rcu_read_lock_bh();
2595 state->nht = rcu_dereference_bh(tbl->nht);
2596
2597 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2598 }
2599 EXPORT_SYMBOL(neigh_seq_start);
2600
2601 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2602 {
2603 struct neigh_seq_state *state;
2604 void *rc;
2605
2606 if (v == SEQ_START_TOKEN) {
2607 rc = neigh_get_first(seq);
2608 goto out;
2609 }
2610
2611 state = seq->private;
2612 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2613 rc = neigh_get_next(seq, v, NULL);
2614 if (rc)
2615 goto out;
2616 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2617 rc = pneigh_get_first(seq);
2618 } else {
2619 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2620 rc = pneigh_get_next(seq, v, NULL);
2621 }
2622 out:
2623 ++(*pos);
2624 return rc;
2625 }
2626 EXPORT_SYMBOL(neigh_seq_next);
2627
2628 void neigh_seq_stop(struct seq_file *seq, void *v)
2629 __releases(rcu_bh)
2630 {
2631 rcu_read_unlock_bh();
2632 }
2633 EXPORT_SYMBOL(neigh_seq_stop);
2634
2635 /* statistics via seq_file */
2636
2637 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2638 {
2639 struct neigh_table *tbl = seq->private;
2640 int cpu;
2641
2642 if (*pos == 0)
2643 return SEQ_START_TOKEN;
2644
2645 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2646 if (!cpu_possible(cpu))
2647 continue;
2648 *pos = cpu+1;
2649 return per_cpu_ptr(tbl->stats, cpu);
2650 }
2651 return NULL;
2652 }
2653
2654 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2655 {
2656 struct neigh_table *tbl = seq->private;
2657 int cpu;
2658
2659 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2660 if (!cpu_possible(cpu))
2661 continue;
2662 *pos = cpu+1;
2663 return per_cpu_ptr(tbl->stats, cpu);
2664 }
2665 return NULL;
2666 }
2667
2668 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2669 {
2670
2671 }
2672
2673 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2674 {
2675 struct neigh_table *tbl = seq->private;
2676 struct neigh_statistics *st = v;
2677
2678 if (v == SEQ_START_TOKEN) {
2679 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2680 return 0;
2681 }
2682
2683 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2684 "%08lx %08lx %08lx %08lx %08lx\n",
2685 atomic_read(&tbl->entries),
2686
2687 st->allocs,
2688 st->destroys,
2689 st->hash_grows,
2690
2691 st->lookups,
2692 st->hits,
2693
2694 st->res_failed,
2695
2696 st->rcv_probes_mcast,
2697 st->rcv_probes_ucast,
2698
2699 st->periodic_gc_runs,
2700 st->forced_gc_runs,
2701 st->unres_discards
2702 );
2703
2704 return 0;
2705 }
2706
2707 static const struct seq_operations neigh_stat_seq_ops = {
2708 .start = neigh_stat_seq_start,
2709 .next = neigh_stat_seq_next,
2710 .stop = neigh_stat_seq_stop,
2711 .show = neigh_stat_seq_show,
2712 };
2713
2714 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2715 {
2716 int ret = seq_open(file, &neigh_stat_seq_ops);
2717
2718 if (!ret) {
2719 struct seq_file *sf = file->private_data;
2720 sf->private = PDE_DATA(inode);
2721 }
2722 return ret;
2723 };
2724
2725 static const struct file_operations neigh_stat_seq_fops = {
2726 .owner = THIS_MODULE,
2727 .open = neigh_stat_seq_open,
2728 .read = seq_read,
2729 .llseek = seq_lseek,
2730 .release = seq_release,
2731 };
2732
2733 #endif /* CONFIG_PROC_FS */
2734
2735 static inline size_t neigh_nlmsg_size(void)
2736 {
2737 return NLMSG_ALIGN(sizeof(struct ndmsg))
2738 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2739 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2740 + nla_total_size(sizeof(struct nda_cacheinfo))
2741 + nla_total_size(4); /* NDA_PROBES */
2742 }
2743
2744 static void __neigh_notify(struct neighbour *n, int type, int flags)
2745 {
2746 struct net *net = dev_net(n->dev);
2747 struct sk_buff *skb;
2748 int err = -ENOBUFS;
2749
2750 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2751 if (skb == NULL)
2752 goto errout;
2753
2754 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2755 if (err < 0) {
2756 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2757 WARN_ON(err == -EMSGSIZE);
2758 kfree_skb(skb);
2759 goto errout;
2760 }
2761 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2762 return;
2763 errout:
2764 if (err < 0)
2765 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2766 }
2767
2768 void neigh_app_ns(struct neighbour *n)
2769 {
2770 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2771 }
2772 EXPORT_SYMBOL(neigh_app_ns);
2773
2774 #ifdef CONFIG_SYSCTL
2775 static int zero;
2776 static int int_max = INT_MAX;
2777 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2778
2779 static int proc_unres_qlen(struct ctl_table *ctl, int write,
2780 void __user *buffer, size_t *lenp, loff_t *ppos)
2781 {
2782 int size, ret;
2783 struct ctl_table tmp = *ctl;
2784
2785 tmp.extra1 = &zero;
2786 tmp.extra2 = &unres_qlen_max;
2787 tmp.data = &size;
2788
2789 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2790 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2791
2792 if (write && !ret)
2793 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2794 return ret;
2795 }
2796
2797 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2798 int family)
2799 {
2800 switch (family) {
2801 case AF_INET:
2802 return __in_dev_arp_parms_get_rcu(dev);
2803 case AF_INET6:
2804 return __in6_dev_nd_parms_get_rcu(dev);
2805 }
2806 return NULL;
2807 }
2808
2809 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2810 int index)
2811 {
2812 struct net_device *dev;
2813 int family = neigh_parms_family(p);
2814
2815 rcu_read_lock();
2816 for_each_netdev_rcu(net, dev) {
2817 struct neigh_parms *dst_p =
2818 neigh_get_dev_parms_rcu(dev, family);
2819
2820 if (dst_p && !test_bit(index, dst_p->data_state))
2821 dst_p->data[index] = p->data[index];
2822 }
2823 rcu_read_unlock();
2824 }
2825
2826 static void neigh_proc_update(struct ctl_table *ctl, int write)
2827 {
2828 struct net_device *dev = ctl->extra1;
2829 struct neigh_parms *p = ctl->extra2;
2830 struct net *net = neigh_parms_net(p);
2831 int index = (int *) ctl->data - p->data;
2832
2833 if (!write)
2834 return;
2835
2836 set_bit(index, p->data_state);
2837 if (!dev) /* NULL dev means this is default value */
2838 neigh_copy_dflt_parms(net, p, index);
2839 }
2840
2841 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2842 void __user *buffer,
2843 size_t *lenp, loff_t *ppos)
2844 {
2845 struct ctl_table tmp = *ctl;
2846 int ret;
2847
2848 tmp.extra1 = &zero;
2849 tmp.extra2 = &int_max;
2850
2851 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2852 neigh_proc_update(ctl, write);
2853 return ret;
2854 }
2855
2856 int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2857 void __user *buffer, size_t *lenp, loff_t *ppos)
2858 {
2859 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2860
2861 neigh_proc_update(ctl, write);
2862 return ret;
2863 }
2864 EXPORT_SYMBOL(neigh_proc_dointvec);
2865
2866 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2867 void __user *buffer,
2868 size_t *lenp, loff_t *ppos)
2869 {
2870 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2871
2872 neigh_proc_update(ctl, write);
2873 return ret;
2874 }
2875 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2876
2877 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2878 void __user *buffer,
2879 size_t *lenp, loff_t *ppos)
2880 {
2881 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2882
2883 neigh_proc_update(ctl, write);
2884 return ret;
2885 }
2886
2887 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2888 void __user *buffer,
2889 size_t *lenp, loff_t *ppos)
2890 {
2891 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2892
2893 neigh_proc_update(ctl, write);
2894 return ret;
2895 }
2896 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2897
2898 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2899 void __user *buffer,
2900 size_t *lenp, loff_t *ppos)
2901 {
2902 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2903
2904 neigh_proc_update(ctl, write);
2905 return ret;
2906 }
2907
2908 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
2909 void __user *buffer,
2910 size_t *lenp, loff_t *ppos)
2911 {
2912 struct neigh_parms *p = ctl->extra2;
2913 int ret;
2914
2915 if (strcmp(ctl->procname, "base_reachable_time") == 0)
2916 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2917 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
2918 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2919 else
2920 ret = -1;
2921
2922 if (write && ret == 0) {
2923 /* update reachable_time as well, otherwise, the change will
2924 * only be effective after the next time neigh_periodic_work
2925 * decides to recompute it
2926 */
2927 p->reachable_time =
2928 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2929 }
2930 return ret;
2931 }
2932
2933 #define NEIGH_PARMS_DATA_OFFSET(index) \
2934 (&((struct neigh_parms *) 0)->data[index])
2935
2936 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
2937 [NEIGH_VAR_ ## attr] = { \
2938 .procname = name, \
2939 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
2940 .maxlen = sizeof(int), \
2941 .mode = mval, \
2942 .proc_handler = proc, \
2943 }
2944
2945 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
2946 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
2947
2948 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
2949 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
2950
2951 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
2952 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
2953
2954 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
2955 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2956
2957 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
2958 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2959
2960 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
2961 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
2962
2963 static struct neigh_sysctl_table {
2964 struct ctl_table_header *sysctl_header;
2965 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2966 } neigh_sysctl_template __read_mostly = {
2967 .neigh_vars = {
2968 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
2969 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
2970 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
2971 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
2972 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
2973 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
2974 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
2975 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
2976 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
2977 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
2978 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
2979 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
2980 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
2981 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
2982 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
2983 [NEIGH_VAR_GC_INTERVAL] = {
2984 .procname = "gc_interval",
2985 .maxlen = sizeof(int),
2986 .mode = 0644,
2987 .proc_handler = proc_dointvec_jiffies,
2988 },
2989 [NEIGH_VAR_GC_THRESH1] = {
2990 .procname = "gc_thresh1",
2991 .maxlen = sizeof(int),
2992 .mode = 0644,
2993 .extra1 = &zero,
2994 .extra2 = &int_max,
2995 .proc_handler = proc_dointvec_minmax,
2996 },
2997 [NEIGH_VAR_GC_THRESH2] = {
2998 .procname = "gc_thresh2",
2999 .maxlen = sizeof(int),
3000 .mode = 0644,
3001 .extra1 = &zero,
3002 .extra2 = &int_max,
3003 .proc_handler = proc_dointvec_minmax,
3004 },
3005 [NEIGH_VAR_GC_THRESH3] = {
3006 .procname = "gc_thresh3",
3007 .maxlen = sizeof(int),
3008 .mode = 0644,
3009 .extra1 = &zero,
3010 .extra2 = &int_max,
3011 .proc_handler = proc_dointvec_minmax,
3012 },
3013 {},
3014 },
3015 };
3016
3017 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3018 proc_handler *handler)
3019 {
3020 int i;
3021 struct neigh_sysctl_table *t;
3022 const char *dev_name_source;
3023 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3024 char *p_name;
3025
3026 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3027 if (!t)
3028 goto err;
3029
3030 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3031 t->neigh_vars[i].data += (long) p;
3032 t->neigh_vars[i].extra1 = dev;
3033 t->neigh_vars[i].extra2 = p;
3034 }
3035
3036 if (dev) {
3037 dev_name_source = dev->name;
3038 /* Terminate the table early */
3039 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3040 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3041 } else {
3042 struct neigh_table *tbl = p->tbl;
3043 dev_name_source = "default";
3044 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3045 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3046 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3047 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3048 }
3049
3050 if (handler) {
3051 /* RetransTime */
3052 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3053 /* ReachableTime */
3054 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3055 /* RetransTime (in milliseconds)*/
3056 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3057 /* ReachableTime (in milliseconds) */
3058 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3059 } else {
3060 /* Those handlers will update p->reachable_time after
3061 * base_reachable_time(_ms) is set to ensure the new timer starts being
3062 * applied after the next neighbour update instead of waiting for
3063 * neigh_periodic_work to update its value (can be multiple minutes)
3064 * So any handler that replaces them should do this as well
3065 */
3066 /* ReachableTime */
3067 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3068 neigh_proc_base_reachable_time;
3069 /* ReachableTime (in milliseconds) */
3070 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3071 neigh_proc_base_reachable_time;
3072 }
3073
3074 /* Don't export sysctls to unprivileged users */
3075 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3076 t->neigh_vars[0].procname = NULL;
3077
3078 switch (neigh_parms_family(p)) {
3079 case AF_INET:
3080 p_name = "ipv4";
3081 break;
3082 case AF_INET6:
3083 p_name = "ipv6";
3084 break;
3085 default:
3086 BUG();
3087 }
3088
3089 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3090 p_name, dev_name_source);
3091 t->sysctl_header =
3092 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3093 if (!t->sysctl_header)
3094 goto free;
3095
3096 p->sysctl_table = t;
3097 return 0;
3098
3099 free:
3100 kfree(t);
3101 err:
3102 return -ENOBUFS;
3103 }
3104 EXPORT_SYMBOL(neigh_sysctl_register);
3105
3106 void neigh_sysctl_unregister(struct neigh_parms *p)
3107 {
3108 if (p->sysctl_table) {
3109 struct neigh_sysctl_table *t = p->sysctl_table;
3110 p->sysctl_table = NULL;
3111 unregister_net_sysctl_table(t->sysctl_header);
3112 kfree(t);
3113 }
3114 }
3115 EXPORT_SYMBOL(neigh_sysctl_unregister);
3116
3117 #endif /* CONFIG_SYSCTL */
3118
3119 static int __init neigh_init(void)
3120 {
3121 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3122 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3123 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3124
3125 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3126 NULL);
3127 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3128
3129 return 0;
3130 }
3131
3132 subsys_initcall(neigh_init);
3133
This page took 0.113248 seconds and 5 git commands to generate.