Merge tag 'iommu-updates-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 #include <linux/inetdevice.h>
42 #include <net/addrconf.h>
43
44 #define DEBUG
45 #define NEIGH_DEBUG 1
46 #define neigh_dbg(level, fmt, ...) \
47 do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50 } while (0)
51
52 #define PNEIGH_HASHMASK 0xF
53
54 static void neigh_timer_handler(unsigned long arg);
55 static void __neigh_notify(struct neighbour *n, int type, int flags);
56 static void neigh_update_notify(struct neighbour *neigh);
57 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59 #ifdef CONFIG_PROC_FS
60 static const struct file_operations neigh_stat_seq_fops;
61 #endif
62
63 /*
64 Neighbour hash table buckets are protected with rwlock tbl->lock.
65
66 - All the scans/updates to hash buckets MUST be made under this lock.
67 - NOTHING clever should be made under this lock: no callbacks
68 to protocol backends, no attempts to send something to network.
69 It will result in deadlocks, if backend/driver wants to use neighbour
70 cache.
71 - If the entry requires some non-trivial actions, increase
72 its reference count and release table lock.
73
74 Neighbour entries are protected:
75 - with reference count.
76 - with rwlock neigh->lock
77
78 Reference count prevents destruction.
79
80 neigh->lock mainly serializes ll address data and its validity state.
81 However, the same lock is used to protect another entry fields:
82 - timer
83 - resolution queue
84
85 Again, nothing clever shall be made under neigh->lock,
86 the most complicated procedure, which we allow is dev->hard_header.
87 It is supposed, that dev->hard_header is simplistic and does
88 not make callbacks to neighbour tables.
89 */
90
91 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
92 {
93 kfree_skb(skb);
94 return -ENETDOWN;
95 }
96
97 static void neigh_cleanup_and_release(struct neighbour *neigh)
98 {
99 if (neigh->parms->neigh_cleanup)
100 neigh->parms->neigh_cleanup(neigh);
101
102 __neigh_notify(neigh, RTM_DELNEIGH, 0);
103 neigh_release(neigh);
104 }
105
106 /*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 return base ? (prandom_u32() % base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117
118
119 static int neigh_forced_gc(struct neigh_table *tbl)
120 {
121 int shrunk = 0;
122 int i;
123 struct neigh_hash_table *nht;
124
125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
126
127 write_lock_bh(&tbl->lock);
128 nht = rcu_dereference_protected(tbl->nht,
129 lockdep_is_held(&tbl->lock));
130 for (i = 0; i < (1 << nht->hash_shift); i++) {
131 struct neighbour *n;
132 struct neighbour __rcu **np;
133
134 np = &nht->hash_buckets[i];
135 while ((n = rcu_dereference_protected(*np,
136 lockdep_is_held(&tbl->lock))) != NULL) {
137 /* Neighbour record may be discarded if:
138 * - nobody refers to it.
139 * - it is not permanent
140 */
141 write_lock(&n->lock);
142 if (atomic_read(&n->refcnt) == 1 &&
143 !(n->nud_state & NUD_PERMANENT)) {
144 rcu_assign_pointer(*np,
145 rcu_dereference_protected(n->next,
146 lockdep_is_held(&tbl->lock)));
147 n->dead = 1;
148 shrunk = 1;
149 write_unlock(&n->lock);
150 neigh_cleanup_and_release(n);
151 continue;
152 }
153 write_unlock(&n->lock);
154 np = &n->next;
155 }
156 }
157
158 tbl->last_flush = jiffies;
159
160 write_unlock_bh(&tbl->lock);
161
162 return shrunk;
163 }
164
165 static void neigh_add_timer(struct neighbour *n, unsigned long when)
166 {
167 neigh_hold(n);
168 if (unlikely(mod_timer(&n->timer, when))) {
169 printk("NEIGH: BUG, double timer add, state is %x\n",
170 n->nud_state);
171 dump_stack();
172 }
173 }
174
175 static int neigh_del_timer(struct neighbour *n)
176 {
177 if ((n->nud_state & NUD_IN_TIMER) &&
178 del_timer(&n->timer)) {
179 neigh_release(n);
180 return 1;
181 }
182 return 0;
183 }
184
185 static void pneigh_queue_purge(struct sk_buff_head *list)
186 {
187 struct sk_buff *skb;
188
189 while ((skb = skb_dequeue(list)) != NULL) {
190 dev_put(skb->dev);
191 kfree_skb(skb);
192 }
193 }
194
195 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
196 {
197 int i;
198 struct neigh_hash_table *nht;
199
200 nht = rcu_dereference_protected(tbl->nht,
201 lockdep_is_held(&tbl->lock));
202
203 for (i = 0; i < (1 << nht->hash_shift); i++) {
204 struct neighbour *n;
205 struct neighbour __rcu **np = &nht->hash_buckets[i];
206
207 while ((n = rcu_dereference_protected(*np,
208 lockdep_is_held(&tbl->lock))) != NULL) {
209 if (dev && n->dev != dev) {
210 np = &n->next;
211 continue;
212 }
213 rcu_assign_pointer(*np,
214 rcu_dereference_protected(n->next,
215 lockdep_is_held(&tbl->lock)));
216 write_lock(&n->lock);
217 neigh_del_timer(n);
218 n->dead = 1;
219
220 if (atomic_read(&n->refcnt) != 1) {
221 /* The most unpleasant situation.
222 We must destroy neighbour entry,
223 but someone still uses it.
224
225 The destroy will be delayed until
226 the last user releases us, but
227 we must kill timers etc. and move
228 it to safe state.
229 */
230 __skb_queue_purge(&n->arp_queue);
231 n->arp_queue_len_bytes = 0;
232 n->output = neigh_blackhole;
233 if (n->nud_state & NUD_VALID)
234 n->nud_state = NUD_NOARP;
235 else
236 n->nud_state = NUD_NONE;
237 neigh_dbg(2, "neigh %p is stray\n", n);
238 }
239 write_unlock(&n->lock);
240 neigh_cleanup_and_release(n);
241 }
242 }
243 }
244
245 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 write_unlock_bh(&tbl->lock);
250 }
251 EXPORT_SYMBOL(neigh_changeaddr);
252
253 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
254 {
255 write_lock_bh(&tbl->lock);
256 neigh_flush_dev(tbl, dev);
257 pneigh_ifdown(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259
260 del_timer_sync(&tbl->proxy_timer);
261 pneigh_queue_purge(&tbl->proxy_queue);
262 return 0;
263 }
264 EXPORT_SYMBOL(neigh_ifdown);
265
266 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
267 {
268 struct neighbour *n = NULL;
269 unsigned long now = jiffies;
270 int entries;
271
272 entries = atomic_inc_return(&tbl->entries) - 1;
273 if (entries >= tbl->gc_thresh3 ||
274 (entries >= tbl->gc_thresh2 &&
275 time_after(now, tbl->last_flush + 5 * HZ))) {
276 if (!neigh_forced_gc(tbl) &&
277 entries >= tbl->gc_thresh3) {
278 net_info_ratelimited("%s: neighbor table overflow!\n",
279 tbl->id);
280 NEIGH_CACHE_STAT_INC(tbl, table_fulls);
281 goto out_entries;
282 }
283 }
284
285 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
286 if (!n)
287 goto out_entries;
288
289 __skb_queue_head_init(&n->arp_queue);
290 rwlock_init(&n->lock);
291 seqlock_init(&n->ha_lock);
292 n->updated = n->used = now;
293 n->nud_state = NUD_NONE;
294 n->output = neigh_blackhole;
295 seqlock_init(&n->hh.hh_lock);
296 n->parms = neigh_parms_clone(&tbl->parms);
297 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
298
299 NEIGH_CACHE_STAT_INC(tbl, allocs);
300 n->tbl = tbl;
301 atomic_set(&n->refcnt, 1);
302 n->dead = 1;
303 out:
304 return n;
305
306 out_entries:
307 atomic_dec(&tbl->entries);
308 goto out;
309 }
310
311 static void neigh_get_hash_rnd(u32 *x)
312 {
313 get_random_bytes(x, sizeof(*x));
314 *x |= 1;
315 }
316
317 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
318 {
319 size_t size = (1 << shift) * sizeof(struct neighbour *);
320 struct neigh_hash_table *ret;
321 struct neighbour __rcu **buckets;
322 int i;
323
324 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
325 if (!ret)
326 return NULL;
327 if (size <= PAGE_SIZE)
328 buckets = kzalloc(size, GFP_ATOMIC);
329 else
330 buckets = (struct neighbour __rcu **)
331 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
332 get_order(size));
333 if (!buckets) {
334 kfree(ret);
335 return NULL;
336 }
337 ret->hash_buckets = buckets;
338 ret->hash_shift = shift;
339 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
340 neigh_get_hash_rnd(&ret->hash_rnd[i]);
341 return ret;
342 }
343
344 static void neigh_hash_free_rcu(struct rcu_head *head)
345 {
346 struct neigh_hash_table *nht = container_of(head,
347 struct neigh_hash_table,
348 rcu);
349 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
350 struct neighbour __rcu **buckets = nht->hash_buckets;
351
352 if (size <= PAGE_SIZE)
353 kfree(buckets);
354 else
355 free_pages((unsigned long)buckets, get_order(size));
356 kfree(nht);
357 }
358
359 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
360 unsigned long new_shift)
361 {
362 unsigned int i, hash;
363 struct neigh_hash_table *new_nht, *old_nht;
364
365 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
366
367 old_nht = rcu_dereference_protected(tbl->nht,
368 lockdep_is_held(&tbl->lock));
369 new_nht = neigh_hash_alloc(new_shift);
370 if (!new_nht)
371 return old_nht;
372
373 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
374 struct neighbour *n, *next;
375
376 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
377 lockdep_is_held(&tbl->lock));
378 n != NULL;
379 n = next) {
380 hash = tbl->hash(n->primary_key, n->dev,
381 new_nht->hash_rnd);
382
383 hash >>= (32 - new_nht->hash_shift);
384 next = rcu_dereference_protected(n->next,
385 lockdep_is_held(&tbl->lock));
386
387 rcu_assign_pointer(n->next,
388 rcu_dereference_protected(
389 new_nht->hash_buckets[hash],
390 lockdep_is_held(&tbl->lock)));
391 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
392 }
393 }
394
395 rcu_assign_pointer(tbl->nht, new_nht);
396 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
397 return new_nht;
398 }
399
400 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
401 struct net_device *dev)
402 {
403 struct neighbour *n;
404
405 NEIGH_CACHE_STAT_INC(tbl, lookups);
406
407 rcu_read_lock_bh();
408 n = __neigh_lookup_noref(tbl, pkey, dev);
409 if (n) {
410 if (!atomic_inc_not_zero(&n->refcnt))
411 n = NULL;
412 NEIGH_CACHE_STAT_INC(tbl, hits);
413 }
414
415 rcu_read_unlock_bh();
416 return n;
417 }
418 EXPORT_SYMBOL(neigh_lookup);
419
420 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
421 const void *pkey)
422 {
423 struct neighbour *n;
424 int key_len = tbl->key_len;
425 u32 hash_val;
426 struct neigh_hash_table *nht;
427
428 NEIGH_CACHE_STAT_INC(tbl, lookups);
429
430 rcu_read_lock_bh();
431 nht = rcu_dereference_bh(tbl->nht);
432 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
433
434 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
435 n != NULL;
436 n = rcu_dereference_bh(n->next)) {
437 if (!memcmp(n->primary_key, pkey, key_len) &&
438 net_eq(dev_net(n->dev), net)) {
439 if (!atomic_inc_not_zero(&n->refcnt))
440 n = NULL;
441 NEIGH_CACHE_STAT_INC(tbl, hits);
442 break;
443 }
444 }
445
446 rcu_read_unlock_bh();
447 return n;
448 }
449 EXPORT_SYMBOL(neigh_lookup_nodev);
450
451 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
452 struct net_device *dev, bool want_ref)
453 {
454 u32 hash_val;
455 int key_len = tbl->key_len;
456 int error;
457 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
458 struct neigh_hash_table *nht;
459
460 if (!n) {
461 rc = ERR_PTR(-ENOBUFS);
462 goto out;
463 }
464
465 memcpy(n->primary_key, pkey, key_len);
466 n->dev = dev;
467 dev_hold(dev);
468
469 /* Protocol specific setup. */
470 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
471 rc = ERR_PTR(error);
472 goto out_neigh_release;
473 }
474
475 if (dev->netdev_ops->ndo_neigh_construct) {
476 error = dev->netdev_ops->ndo_neigh_construct(n);
477 if (error < 0) {
478 rc = ERR_PTR(error);
479 goto out_neigh_release;
480 }
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 if (want_ref)
513 neigh_hold(n1);
514 rc = n1;
515 goto out_tbl_unlock;
516 }
517 }
518
519 n->dead = 0;
520 if (want_ref)
521 neigh_hold(n);
522 rcu_assign_pointer(n->next,
523 rcu_dereference_protected(nht->hash_buckets[hash_val],
524 lockdep_is_held(&tbl->lock)));
525 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
526 write_unlock_bh(&tbl->lock);
527 neigh_dbg(2, "neigh %p is created\n", n);
528 rc = n;
529 out:
530 return rc;
531 out_tbl_unlock:
532 write_unlock_bh(&tbl->lock);
533 out_neigh_release:
534 neigh_release(n);
535 goto out;
536 }
537 EXPORT_SYMBOL(__neigh_create);
538
539 static u32 pneigh_hash(const void *pkey, int key_len)
540 {
541 u32 hash_val = *(u32 *)(pkey + key_len - 4);
542 hash_val ^= (hash_val >> 16);
543 hash_val ^= hash_val >> 8;
544 hash_val ^= hash_val >> 4;
545 hash_val &= PNEIGH_HASHMASK;
546 return hash_val;
547 }
548
549 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
550 struct net *net,
551 const void *pkey,
552 int key_len,
553 struct net_device *dev)
554 {
555 while (n) {
556 if (!memcmp(n->key, pkey, key_len) &&
557 net_eq(pneigh_net(n), net) &&
558 (n->dev == dev || !n->dev))
559 return n;
560 n = n->next;
561 }
562 return NULL;
563 }
564
565 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
566 struct net *net, const void *pkey, struct net_device *dev)
567 {
568 int key_len = tbl->key_len;
569 u32 hash_val = pneigh_hash(pkey, key_len);
570
571 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
572 net, pkey, key_len, dev);
573 }
574 EXPORT_SYMBOL_GPL(__pneigh_lookup);
575
576 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
577 struct net *net, const void *pkey,
578 struct net_device *dev, int creat)
579 {
580 struct pneigh_entry *n;
581 int key_len = tbl->key_len;
582 u32 hash_val = pneigh_hash(pkey, key_len);
583
584 read_lock_bh(&tbl->lock);
585 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
586 net, pkey, key_len, dev);
587 read_unlock_bh(&tbl->lock);
588
589 if (n || !creat)
590 goto out;
591
592 ASSERT_RTNL();
593
594 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
595 if (!n)
596 goto out;
597
598 write_pnet(&n->net, net);
599 memcpy(n->key, pkey, key_len);
600 n->dev = dev;
601 if (dev)
602 dev_hold(dev);
603
604 if (tbl->pconstructor && tbl->pconstructor(n)) {
605 if (dev)
606 dev_put(dev);
607 kfree(n);
608 n = NULL;
609 goto out;
610 }
611
612 write_lock_bh(&tbl->lock);
613 n->next = tbl->phash_buckets[hash_val];
614 tbl->phash_buckets[hash_val] = n;
615 write_unlock_bh(&tbl->lock);
616 out:
617 return n;
618 }
619 EXPORT_SYMBOL(pneigh_lookup);
620
621
622 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
623 struct net_device *dev)
624 {
625 struct pneigh_entry *n, **np;
626 int key_len = tbl->key_len;
627 u32 hash_val = pneigh_hash(pkey, key_len);
628
629 write_lock_bh(&tbl->lock);
630 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
631 np = &n->next) {
632 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
633 net_eq(pneigh_net(n), net)) {
634 *np = n->next;
635 write_unlock_bh(&tbl->lock);
636 if (tbl->pdestructor)
637 tbl->pdestructor(n);
638 if (n->dev)
639 dev_put(n->dev);
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646 }
647
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649 {
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 kfree(n);
663 continue;
664 }
665 np = &n->next;
666 }
667 }
668 return -ENOENT;
669 }
670
671 static void neigh_parms_destroy(struct neigh_parms *parms);
672
673 static inline void neigh_parms_put(struct neigh_parms *parms)
674 {
675 if (atomic_dec_and_test(&parms->refcnt))
676 neigh_parms_destroy(parms);
677 }
678
679 /*
680 * neighbour must already be out of the table;
681 *
682 */
683 void neigh_destroy(struct neighbour *neigh)
684 {
685 struct net_device *dev = neigh->dev;
686
687 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
688
689 if (!neigh->dead) {
690 pr_warn("Destroying alive neighbour %p\n", neigh);
691 dump_stack();
692 return;
693 }
694
695 if (neigh_del_timer(neigh))
696 pr_warn("Impossible event\n");
697
698 write_lock_bh(&neigh->lock);
699 __skb_queue_purge(&neigh->arp_queue);
700 write_unlock_bh(&neigh->lock);
701 neigh->arp_queue_len_bytes = 0;
702
703 if (dev->netdev_ops->ndo_neigh_destroy)
704 dev->netdev_ops->ndo_neigh_destroy(neigh);
705
706 dev_put(dev);
707 neigh_parms_put(neigh->parms);
708
709 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
710
711 atomic_dec(&neigh->tbl->entries);
712 kfree_rcu(neigh, rcu);
713 }
714 EXPORT_SYMBOL(neigh_destroy);
715
716 /* Neighbour state is suspicious;
717 disable fast path.
718
719 Called with write_locked neigh.
720 */
721 static void neigh_suspect(struct neighbour *neigh)
722 {
723 neigh_dbg(2, "neigh %p is suspected\n", neigh);
724
725 neigh->output = neigh->ops->output;
726 }
727
728 /* Neighbour state is OK;
729 enable fast path.
730
731 Called with write_locked neigh.
732 */
733 static void neigh_connect(struct neighbour *neigh)
734 {
735 neigh_dbg(2, "neigh %p is connected\n", neigh);
736
737 neigh->output = neigh->ops->connected_output;
738 }
739
740 static void neigh_periodic_work(struct work_struct *work)
741 {
742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
743 struct neighbour *n;
744 struct neighbour __rcu **np;
745 unsigned int i;
746 struct neigh_hash_table *nht;
747
748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
749
750 write_lock_bh(&tbl->lock);
751 nht = rcu_dereference_protected(tbl->nht,
752 lockdep_is_held(&tbl->lock));
753
754 /*
755 * periodically recompute ReachableTime from random function
756 */
757
758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
759 struct neigh_parms *p;
760 tbl->last_rand = jiffies;
761 list_for_each_entry(p, &tbl->parms_list, list)
762 p->reachable_time =
763 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
764 }
765
766 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
767 goto out;
768
769 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
770 np = &nht->hash_buckets[i];
771
772 while ((n = rcu_dereference_protected(*np,
773 lockdep_is_held(&tbl->lock))) != NULL) {
774 unsigned int state;
775
776 write_lock(&n->lock);
777
778 state = n->nud_state;
779 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
780 write_unlock(&n->lock);
781 goto next_elt;
782 }
783
784 if (time_before(n->used, n->confirmed))
785 n->used = n->confirmed;
786
787 if (atomic_read(&n->refcnt) == 1 &&
788 (state == NUD_FAILED ||
789 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
790 *np = n->next;
791 n->dead = 1;
792 write_unlock(&n->lock);
793 neigh_cleanup_and_release(n);
794 continue;
795 }
796 write_unlock(&n->lock);
797
798 next_elt:
799 np = &n->next;
800 }
801 /*
802 * It's fine to release lock here, even if hash table
803 * grows while we are preempted.
804 */
805 write_unlock_bh(&tbl->lock);
806 cond_resched();
807 write_lock_bh(&tbl->lock);
808 nht = rcu_dereference_protected(tbl->nht,
809 lockdep_is_held(&tbl->lock));
810 }
811 out:
812 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
813 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
814 * BASE_REACHABLE_TIME.
815 */
816 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
817 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
818 write_unlock_bh(&tbl->lock);
819 }
820
821 static __inline__ int neigh_max_probes(struct neighbour *n)
822 {
823 struct neigh_parms *p = n->parms;
824 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
825 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
826 NEIGH_VAR(p, MCAST_PROBES));
827 }
828
829 static void neigh_invalidate(struct neighbour *neigh)
830 __releases(neigh->lock)
831 __acquires(neigh->lock)
832 {
833 struct sk_buff *skb;
834
835 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
836 neigh_dbg(2, "neigh %p is failed\n", neigh);
837 neigh->updated = jiffies;
838
839 /* It is very thin place. report_unreachable is very complicated
840 routine. Particularly, it can hit the same neighbour entry!
841
842 So that, we try to be accurate and avoid dead loop. --ANK
843 */
844 while (neigh->nud_state == NUD_FAILED &&
845 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
846 write_unlock(&neigh->lock);
847 neigh->ops->error_report(neigh, skb);
848 write_lock(&neigh->lock);
849 }
850 __skb_queue_purge(&neigh->arp_queue);
851 neigh->arp_queue_len_bytes = 0;
852 }
853
854 static void neigh_probe(struct neighbour *neigh)
855 __releases(neigh->lock)
856 {
857 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
858 /* keep skb alive even if arp_queue overflows */
859 if (skb)
860 skb = skb_clone(skb, GFP_ATOMIC);
861 write_unlock(&neigh->lock);
862 neigh->ops->solicit(neigh, skb);
863 atomic_inc(&neigh->probes);
864 kfree_skb(skb);
865 }
866
867 /* Called when a timer expires for a neighbour entry. */
868
869 static void neigh_timer_handler(unsigned long arg)
870 {
871 unsigned long now, next;
872 struct neighbour *neigh = (struct neighbour *)arg;
873 unsigned int state;
874 int notify = 0;
875
876 write_lock(&neigh->lock);
877
878 state = neigh->nud_state;
879 now = jiffies;
880 next = now + HZ;
881
882 if (!(state & NUD_IN_TIMER))
883 goto out;
884
885 if (state & NUD_REACHABLE) {
886 if (time_before_eq(now,
887 neigh->confirmed + neigh->parms->reachable_time)) {
888 neigh_dbg(2, "neigh %p is still alive\n", neigh);
889 next = neigh->confirmed + neigh->parms->reachable_time;
890 } else if (time_before_eq(now,
891 neigh->used +
892 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
893 neigh_dbg(2, "neigh %p is delayed\n", neigh);
894 neigh->nud_state = NUD_DELAY;
895 neigh->updated = jiffies;
896 neigh_suspect(neigh);
897 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
898 } else {
899 neigh_dbg(2, "neigh %p is suspected\n", neigh);
900 neigh->nud_state = NUD_STALE;
901 neigh->updated = jiffies;
902 neigh_suspect(neigh);
903 notify = 1;
904 }
905 } else if (state & NUD_DELAY) {
906 if (time_before_eq(now,
907 neigh->confirmed +
908 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
909 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
910 neigh->nud_state = NUD_REACHABLE;
911 neigh->updated = jiffies;
912 neigh_connect(neigh);
913 notify = 1;
914 next = neigh->confirmed + neigh->parms->reachable_time;
915 } else {
916 neigh_dbg(2, "neigh %p is probed\n", neigh);
917 neigh->nud_state = NUD_PROBE;
918 neigh->updated = jiffies;
919 atomic_set(&neigh->probes, 0);
920 notify = 1;
921 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
922 }
923 } else {
924 /* NUD_PROBE|NUD_INCOMPLETE */
925 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
926 }
927
928 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
929 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
930 neigh->nud_state = NUD_FAILED;
931 notify = 1;
932 neigh_invalidate(neigh);
933 goto out;
934 }
935
936 if (neigh->nud_state & NUD_IN_TIMER) {
937 if (time_before(next, jiffies + HZ/2))
938 next = jiffies + HZ/2;
939 if (!mod_timer(&neigh->timer, next))
940 neigh_hold(neigh);
941 }
942 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
943 neigh_probe(neigh);
944 } else {
945 out:
946 write_unlock(&neigh->lock);
947 }
948
949 if (notify)
950 neigh_update_notify(neigh);
951
952 neigh_release(neigh);
953 }
954
955 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
956 {
957 int rc;
958 bool immediate_probe = false;
959
960 write_lock_bh(&neigh->lock);
961
962 rc = 0;
963 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
964 goto out_unlock_bh;
965 if (neigh->dead)
966 goto out_dead;
967
968 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
969 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
970 NEIGH_VAR(neigh->parms, APP_PROBES)) {
971 unsigned long next, now = jiffies;
972
973 atomic_set(&neigh->probes,
974 NEIGH_VAR(neigh->parms, UCAST_PROBES));
975 neigh->nud_state = NUD_INCOMPLETE;
976 neigh->updated = now;
977 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
978 HZ/2);
979 neigh_add_timer(neigh, next);
980 immediate_probe = true;
981 } else {
982 neigh->nud_state = NUD_FAILED;
983 neigh->updated = jiffies;
984 write_unlock_bh(&neigh->lock);
985
986 kfree_skb(skb);
987 return 1;
988 }
989 } else if (neigh->nud_state & NUD_STALE) {
990 neigh_dbg(2, "neigh %p is delayed\n", neigh);
991 neigh->nud_state = NUD_DELAY;
992 neigh->updated = jiffies;
993 neigh_add_timer(neigh, jiffies +
994 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
995 }
996
997 if (neigh->nud_state == NUD_INCOMPLETE) {
998 if (skb) {
999 while (neigh->arp_queue_len_bytes + skb->truesize >
1000 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1001 struct sk_buff *buff;
1002
1003 buff = __skb_dequeue(&neigh->arp_queue);
1004 if (!buff)
1005 break;
1006 neigh->arp_queue_len_bytes -= buff->truesize;
1007 kfree_skb(buff);
1008 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1009 }
1010 skb_dst_force(skb);
1011 __skb_queue_tail(&neigh->arp_queue, skb);
1012 neigh->arp_queue_len_bytes += skb->truesize;
1013 }
1014 rc = 1;
1015 }
1016 out_unlock_bh:
1017 if (immediate_probe)
1018 neigh_probe(neigh);
1019 else
1020 write_unlock(&neigh->lock);
1021 local_bh_enable();
1022 return rc;
1023
1024 out_dead:
1025 if (neigh->nud_state & NUD_STALE)
1026 goto out_unlock_bh;
1027 write_unlock_bh(&neigh->lock);
1028 kfree_skb(skb);
1029 return 1;
1030 }
1031 EXPORT_SYMBOL(__neigh_event_send);
1032
1033 static void neigh_update_hhs(struct neighbour *neigh)
1034 {
1035 struct hh_cache *hh;
1036 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1037 = NULL;
1038
1039 if (neigh->dev->header_ops)
1040 update = neigh->dev->header_ops->cache_update;
1041
1042 if (update) {
1043 hh = &neigh->hh;
1044 if (hh->hh_len) {
1045 write_seqlock_bh(&hh->hh_lock);
1046 update(hh, neigh->dev, neigh->ha);
1047 write_sequnlock_bh(&hh->hh_lock);
1048 }
1049 }
1050 }
1051
1052
1053
1054 /* Generic update routine.
1055 -- lladdr is new lladdr or NULL, if it is not supplied.
1056 -- new is new state.
1057 -- flags
1058 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1059 if it is different.
1060 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1061 lladdr instead of overriding it
1062 if it is different.
1063 It also allows to retain current state
1064 if lladdr is unchanged.
1065 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1066
1067 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1068 NTF_ROUTER flag.
1069 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1070 a router.
1071
1072 Caller MUST hold reference count on the entry.
1073 */
1074
1075 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1076 u32 flags)
1077 {
1078 u8 old;
1079 int err;
1080 int notify = 0;
1081 struct net_device *dev;
1082 int update_isrouter = 0;
1083
1084 write_lock_bh(&neigh->lock);
1085
1086 dev = neigh->dev;
1087 old = neigh->nud_state;
1088 err = -EPERM;
1089
1090 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1091 (old & (NUD_NOARP | NUD_PERMANENT)))
1092 goto out;
1093 if (neigh->dead)
1094 goto out;
1095
1096 if (!(new & NUD_VALID)) {
1097 neigh_del_timer(neigh);
1098 if (old & NUD_CONNECTED)
1099 neigh_suspect(neigh);
1100 neigh->nud_state = new;
1101 err = 0;
1102 notify = old & NUD_VALID;
1103 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1104 (new & NUD_FAILED)) {
1105 neigh_invalidate(neigh);
1106 notify = 1;
1107 }
1108 goto out;
1109 }
1110
1111 /* Compare new lladdr with cached one */
1112 if (!dev->addr_len) {
1113 /* First case: device needs no address. */
1114 lladdr = neigh->ha;
1115 } else if (lladdr) {
1116 /* The second case: if something is already cached
1117 and a new address is proposed:
1118 - compare new & old
1119 - if they are different, check override flag
1120 */
1121 if ((old & NUD_VALID) &&
1122 !memcmp(lladdr, neigh->ha, dev->addr_len))
1123 lladdr = neigh->ha;
1124 } else {
1125 /* No address is supplied; if we know something,
1126 use it, otherwise discard the request.
1127 */
1128 err = -EINVAL;
1129 if (!(old & NUD_VALID))
1130 goto out;
1131 lladdr = neigh->ha;
1132 }
1133
1134 if (new & NUD_CONNECTED)
1135 neigh->confirmed = jiffies;
1136 neigh->updated = jiffies;
1137
1138 /* If entry was valid and address is not changed,
1139 do not change entry state, if new one is STALE.
1140 */
1141 err = 0;
1142 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1143 if (old & NUD_VALID) {
1144 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1145 update_isrouter = 0;
1146 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1147 (old & NUD_CONNECTED)) {
1148 lladdr = neigh->ha;
1149 new = NUD_STALE;
1150 } else
1151 goto out;
1152 } else {
1153 if (lladdr == neigh->ha && new == NUD_STALE &&
1154 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1155 (old & NUD_CONNECTED))
1156 )
1157 new = old;
1158 }
1159 }
1160
1161 if (new != old) {
1162 neigh_del_timer(neigh);
1163 if (new & NUD_PROBE)
1164 atomic_set(&neigh->probes, 0);
1165 if (new & NUD_IN_TIMER)
1166 neigh_add_timer(neigh, (jiffies +
1167 ((new & NUD_REACHABLE) ?
1168 neigh->parms->reachable_time :
1169 0)));
1170 neigh->nud_state = new;
1171 notify = 1;
1172 }
1173
1174 if (lladdr != neigh->ha) {
1175 write_seqlock(&neigh->ha_lock);
1176 memcpy(&neigh->ha, lladdr, dev->addr_len);
1177 write_sequnlock(&neigh->ha_lock);
1178 neigh_update_hhs(neigh);
1179 if (!(new & NUD_CONNECTED))
1180 neigh->confirmed = jiffies -
1181 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1182 notify = 1;
1183 }
1184 if (new == old)
1185 goto out;
1186 if (new & NUD_CONNECTED)
1187 neigh_connect(neigh);
1188 else
1189 neigh_suspect(neigh);
1190 if (!(old & NUD_VALID)) {
1191 struct sk_buff *skb;
1192
1193 /* Again: avoid dead loop if something went wrong */
1194
1195 while (neigh->nud_state & NUD_VALID &&
1196 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1197 struct dst_entry *dst = skb_dst(skb);
1198 struct neighbour *n2, *n1 = neigh;
1199 write_unlock_bh(&neigh->lock);
1200
1201 rcu_read_lock();
1202
1203 /* Why not just use 'neigh' as-is? The problem is that
1204 * things such as shaper, eql, and sch_teql can end up
1205 * using alternative, different, neigh objects to output
1206 * the packet in the output path. So what we need to do
1207 * here is re-lookup the top-level neigh in the path so
1208 * we can reinject the packet there.
1209 */
1210 n2 = NULL;
1211 if (dst) {
1212 n2 = dst_neigh_lookup_skb(dst, skb);
1213 if (n2)
1214 n1 = n2;
1215 }
1216 n1->output(n1, skb);
1217 if (n2)
1218 neigh_release(n2);
1219 rcu_read_unlock();
1220
1221 write_lock_bh(&neigh->lock);
1222 }
1223 __skb_queue_purge(&neigh->arp_queue);
1224 neigh->arp_queue_len_bytes = 0;
1225 }
1226 out:
1227 if (update_isrouter) {
1228 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1229 (neigh->flags | NTF_ROUTER) :
1230 (neigh->flags & ~NTF_ROUTER);
1231 }
1232 write_unlock_bh(&neigh->lock);
1233
1234 if (notify)
1235 neigh_update_notify(neigh);
1236
1237 return err;
1238 }
1239 EXPORT_SYMBOL(neigh_update);
1240
1241 /* Update the neigh to listen temporarily for probe responses, even if it is
1242 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1243 */
1244 void __neigh_set_probe_once(struct neighbour *neigh)
1245 {
1246 if (neigh->dead)
1247 return;
1248 neigh->updated = jiffies;
1249 if (!(neigh->nud_state & NUD_FAILED))
1250 return;
1251 neigh->nud_state = NUD_INCOMPLETE;
1252 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1253 neigh_add_timer(neigh,
1254 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1255 }
1256 EXPORT_SYMBOL(__neigh_set_probe_once);
1257
1258 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1259 u8 *lladdr, void *saddr,
1260 struct net_device *dev)
1261 {
1262 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1263 lladdr || !dev->addr_len);
1264 if (neigh)
1265 neigh_update(neigh, lladdr, NUD_STALE,
1266 NEIGH_UPDATE_F_OVERRIDE);
1267 return neigh;
1268 }
1269 EXPORT_SYMBOL(neigh_event_ns);
1270
1271 /* called with read_lock_bh(&n->lock); */
1272 static void neigh_hh_init(struct neighbour *n)
1273 {
1274 struct net_device *dev = n->dev;
1275 __be16 prot = n->tbl->protocol;
1276 struct hh_cache *hh = &n->hh;
1277
1278 write_lock_bh(&n->lock);
1279
1280 /* Only one thread can come in here and initialize the
1281 * hh_cache entry.
1282 */
1283 if (!hh->hh_len)
1284 dev->header_ops->cache(n, hh, prot);
1285
1286 write_unlock_bh(&n->lock);
1287 }
1288
1289 /* Slow and careful. */
1290
1291 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1292 {
1293 int rc = 0;
1294
1295 if (!neigh_event_send(neigh, skb)) {
1296 int err;
1297 struct net_device *dev = neigh->dev;
1298 unsigned int seq;
1299
1300 if (dev->header_ops->cache && !neigh->hh.hh_len)
1301 neigh_hh_init(neigh);
1302
1303 do {
1304 __skb_pull(skb, skb_network_offset(skb));
1305 seq = read_seqbegin(&neigh->ha_lock);
1306 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1307 neigh->ha, NULL, skb->len);
1308 } while (read_seqretry(&neigh->ha_lock, seq));
1309
1310 if (err >= 0)
1311 rc = dev_queue_xmit(skb);
1312 else
1313 goto out_kfree_skb;
1314 }
1315 out:
1316 return rc;
1317 out_kfree_skb:
1318 rc = -EINVAL;
1319 kfree_skb(skb);
1320 goto out;
1321 }
1322 EXPORT_SYMBOL(neigh_resolve_output);
1323
1324 /* As fast as possible without hh cache */
1325
1326 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1327 {
1328 struct net_device *dev = neigh->dev;
1329 unsigned int seq;
1330 int err;
1331
1332 do {
1333 __skb_pull(skb, skb_network_offset(skb));
1334 seq = read_seqbegin(&neigh->ha_lock);
1335 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1336 neigh->ha, NULL, skb->len);
1337 } while (read_seqretry(&neigh->ha_lock, seq));
1338
1339 if (err >= 0)
1340 err = dev_queue_xmit(skb);
1341 else {
1342 err = -EINVAL;
1343 kfree_skb(skb);
1344 }
1345 return err;
1346 }
1347 EXPORT_SYMBOL(neigh_connected_output);
1348
1349 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1350 {
1351 return dev_queue_xmit(skb);
1352 }
1353 EXPORT_SYMBOL(neigh_direct_output);
1354
1355 static void neigh_proxy_process(unsigned long arg)
1356 {
1357 struct neigh_table *tbl = (struct neigh_table *)arg;
1358 long sched_next = 0;
1359 unsigned long now = jiffies;
1360 struct sk_buff *skb, *n;
1361
1362 spin_lock(&tbl->proxy_queue.lock);
1363
1364 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1365 long tdif = NEIGH_CB(skb)->sched_next - now;
1366
1367 if (tdif <= 0) {
1368 struct net_device *dev = skb->dev;
1369
1370 __skb_unlink(skb, &tbl->proxy_queue);
1371 if (tbl->proxy_redo && netif_running(dev)) {
1372 rcu_read_lock();
1373 tbl->proxy_redo(skb);
1374 rcu_read_unlock();
1375 } else {
1376 kfree_skb(skb);
1377 }
1378
1379 dev_put(dev);
1380 } else if (!sched_next || tdif < sched_next)
1381 sched_next = tdif;
1382 }
1383 del_timer(&tbl->proxy_timer);
1384 if (sched_next)
1385 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1386 spin_unlock(&tbl->proxy_queue.lock);
1387 }
1388
1389 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1390 struct sk_buff *skb)
1391 {
1392 unsigned long now = jiffies;
1393
1394 unsigned long sched_next = now + (prandom_u32() %
1395 NEIGH_VAR(p, PROXY_DELAY));
1396
1397 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1398 kfree_skb(skb);
1399 return;
1400 }
1401
1402 NEIGH_CB(skb)->sched_next = sched_next;
1403 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1404
1405 spin_lock(&tbl->proxy_queue.lock);
1406 if (del_timer(&tbl->proxy_timer)) {
1407 if (time_before(tbl->proxy_timer.expires, sched_next))
1408 sched_next = tbl->proxy_timer.expires;
1409 }
1410 skb_dst_drop(skb);
1411 dev_hold(skb->dev);
1412 __skb_queue_tail(&tbl->proxy_queue, skb);
1413 mod_timer(&tbl->proxy_timer, sched_next);
1414 spin_unlock(&tbl->proxy_queue.lock);
1415 }
1416 EXPORT_SYMBOL(pneigh_enqueue);
1417
1418 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1419 struct net *net, int ifindex)
1420 {
1421 struct neigh_parms *p;
1422
1423 list_for_each_entry(p, &tbl->parms_list, list) {
1424 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1425 (!p->dev && !ifindex && net_eq(net, &init_net)))
1426 return p;
1427 }
1428
1429 return NULL;
1430 }
1431
1432 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1433 struct neigh_table *tbl)
1434 {
1435 struct neigh_parms *p;
1436 struct net *net = dev_net(dev);
1437 const struct net_device_ops *ops = dev->netdev_ops;
1438
1439 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1440 if (p) {
1441 p->tbl = tbl;
1442 atomic_set(&p->refcnt, 1);
1443 p->reachable_time =
1444 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1445 dev_hold(dev);
1446 p->dev = dev;
1447 write_pnet(&p->net, net);
1448 p->sysctl_table = NULL;
1449
1450 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1451 dev_put(dev);
1452 kfree(p);
1453 return NULL;
1454 }
1455
1456 write_lock_bh(&tbl->lock);
1457 list_add(&p->list, &tbl->parms.list);
1458 write_unlock_bh(&tbl->lock);
1459
1460 neigh_parms_data_state_cleanall(p);
1461 }
1462 return p;
1463 }
1464 EXPORT_SYMBOL(neigh_parms_alloc);
1465
1466 static void neigh_rcu_free_parms(struct rcu_head *head)
1467 {
1468 struct neigh_parms *parms =
1469 container_of(head, struct neigh_parms, rcu_head);
1470
1471 neigh_parms_put(parms);
1472 }
1473
1474 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1475 {
1476 if (!parms || parms == &tbl->parms)
1477 return;
1478 write_lock_bh(&tbl->lock);
1479 list_del(&parms->list);
1480 parms->dead = 1;
1481 write_unlock_bh(&tbl->lock);
1482 if (parms->dev)
1483 dev_put(parms->dev);
1484 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1485 }
1486 EXPORT_SYMBOL(neigh_parms_release);
1487
1488 static void neigh_parms_destroy(struct neigh_parms *parms)
1489 {
1490 kfree(parms);
1491 }
1492
1493 static struct lock_class_key neigh_table_proxy_queue_class;
1494
1495 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1496
1497 void neigh_table_init(int index, struct neigh_table *tbl)
1498 {
1499 unsigned long now = jiffies;
1500 unsigned long phsize;
1501
1502 INIT_LIST_HEAD(&tbl->parms_list);
1503 list_add(&tbl->parms.list, &tbl->parms_list);
1504 write_pnet(&tbl->parms.net, &init_net);
1505 atomic_set(&tbl->parms.refcnt, 1);
1506 tbl->parms.reachable_time =
1507 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1508
1509 tbl->stats = alloc_percpu(struct neigh_statistics);
1510 if (!tbl->stats)
1511 panic("cannot create neighbour cache statistics");
1512
1513 #ifdef CONFIG_PROC_FS
1514 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1515 &neigh_stat_seq_fops, tbl))
1516 panic("cannot create neighbour proc dir entry");
1517 #endif
1518
1519 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1520
1521 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1522 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1523
1524 if (!tbl->nht || !tbl->phash_buckets)
1525 panic("cannot allocate neighbour cache hashes");
1526
1527 if (!tbl->entry_size)
1528 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1529 tbl->key_len, NEIGH_PRIV_ALIGN);
1530 else
1531 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1532
1533 rwlock_init(&tbl->lock);
1534 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1535 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1536 tbl->parms.reachable_time);
1537 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1538 skb_queue_head_init_class(&tbl->proxy_queue,
1539 &neigh_table_proxy_queue_class);
1540
1541 tbl->last_flush = now;
1542 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1543
1544 neigh_tables[index] = tbl;
1545 }
1546 EXPORT_SYMBOL(neigh_table_init);
1547
1548 int neigh_table_clear(int index, struct neigh_table *tbl)
1549 {
1550 neigh_tables[index] = NULL;
1551 /* It is not clean... Fix it to unload IPv6 module safely */
1552 cancel_delayed_work_sync(&tbl->gc_work);
1553 del_timer_sync(&tbl->proxy_timer);
1554 pneigh_queue_purge(&tbl->proxy_queue);
1555 neigh_ifdown(tbl, NULL);
1556 if (atomic_read(&tbl->entries))
1557 pr_crit("neighbour leakage\n");
1558
1559 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1560 neigh_hash_free_rcu);
1561 tbl->nht = NULL;
1562
1563 kfree(tbl->phash_buckets);
1564 tbl->phash_buckets = NULL;
1565
1566 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1567
1568 free_percpu(tbl->stats);
1569 tbl->stats = NULL;
1570
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(neigh_table_clear);
1574
1575 static struct neigh_table *neigh_find_table(int family)
1576 {
1577 struct neigh_table *tbl = NULL;
1578
1579 switch (family) {
1580 case AF_INET:
1581 tbl = neigh_tables[NEIGH_ARP_TABLE];
1582 break;
1583 case AF_INET6:
1584 tbl = neigh_tables[NEIGH_ND_TABLE];
1585 break;
1586 case AF_DECnet:
1587 tbl = neigh_tables[NEIGH_DN_TABLE];
1588 break;
1589 }
1590
1591 return tbl;
1592 }
1593
1594 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1595 {
1596 struct net *net = sock_net(skb->sk);
1597 struct ndmsg *ndm;
1598 struct nlattr *dst_attr;
1599 struct neigh_table *tbl;
1600 struct neighbour *neigh;
1601 struct net_device *dev = NULL;
1602 int err = -EINVAL;
1603
1604 ASSERT_RTNL();
1605 if (nlmsg_len(nlh) < sizeof(*ndm))
1606 goto out;
1607
1608 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1609 if (dst_attr == NULL)
1610 goto out;
1611
1612 ndm = nlmsg_data(nlh);
1613 if (ndm->ndm_ifindex) {
1614 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1615 if (dev == NULL) {
1616 err = -ENODEV;
1617 goto out;
1618 }
1619 }
1620
1621 tbl = neigh_find_table(ndm->ndm_family);
1622 if (tbl == NULL)
1623 return -EAFNOSUPPORT;
1624
1625 if (nla_len(dst_attr) < tbl->key_len)
1626 goto out;
1627
1628 if (ndm->ndm_flags & NTF_PROXY) {
1629 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1630 goto out;
1631 }
1632
1633 if (dev == NULL)
1634 goto out;
1635
1636 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1637 if (neigh == NULL) {
1638 err = -ENOENT;
1639 goto out;
1640 }
1641
1642 err = neigh_update(neigh, NULL, NUD_FAILED,
1643 NEIGH_UPDATE_F_OVERRIDE |
1644 NEIGH_UPDATE_F_ADMIN);
1645 neigh_release(neigh);
1646
1647 out:
1648 return err;
1649 }
1650
1651 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1652 {
1653 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1654 struct net *net = sock_net(skb->sk);
1655 struct ndmsg *ndm;
1656 struct nlattr *tb[NDA_MAX+1];
1657 struct neigh_table *tbl;
1658 struct net_device *dev = NULL;
1659 struct neighbour *neigh;
1660 void *dst, *lladdr;
1661 int err;
1662
1663 ASSERT_RTNL();
1664 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1665 if (err < 0)
1666 goto out;
1667
1668 err = -EINVAL;
1669 if (tb[NDA_DST] == NULL)
1670 goto out;
1671
1672 ndm = nlmsg_data(nlh);
1673 if (ndm->ndm_ifindex) {
1674 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1675 if (dev == NULL) {
1676 err = -ENODEV;
1677 goto out;
1678 }
1679
1680 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1681 goto out;
1682 }
1683
1684 tbl = neigh_find_table(ndm->ndm_family);
1685 if (tbl == NULL)
1686 return -EAFNOSUPPORT;
1687
1688 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1689 goto out;
1690 dst = nla_data(tb[NDA_DST]);
1691 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1692
1693 if (ndm->ndm_flags & NTF_PROXY) {
1694 struct pneigh_entry *pn;
1695
1696 err = -ENOBUFS;
1697 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1698 if (pn) {
1699 pn->flags = ndm->ndm_flags;
1700 err = 0;
1701 }
1702 goto out;
1703 }
1704
1705 if (dev == NULL)
1706 goto out;
1707
1708 neigh = neigh_lookup(tbl, dst, dev);
1709 if (neigh == NULL) {
1710 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1711 err = -ENOENT;
1712 goto out;
1713 }
1714
1715 neigh = __neigh_lookup_errno(tbl, dst, dev);
1716 if (IS_ERR(neigh)) {
1717 err = PTR_ERR(neigh);
1718 goto out;
1719 }
1720 } else {
1721 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1722 err = -EEXIST;
1723 neigh_release(neigh);
1724 goto out;
1725 }
1726
1727 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1728 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1729 }
1730
1731 if (ndm->ndm_flags & NTF_USE) {
1732 neigh_event_send(neigh, NULL);
1733 err = 0;
1734 } else
1735 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1736 neigh_release(neigh);
1737
1738 out:
1739 return err;
1740 }
1741
1742 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1743 {
1744 struct nlattr *nest;
1745
1746 nest = nla_nest_start(skb, NDTA_PARMS);
1747 if (nest == NULL)
1748 return -ENOBUFS;
1749
1750 if ((parms->dev &&
1751 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1752 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1753 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1754 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1755 /* approximative value for deprecated QUEUE_LEN (in packets) */
1756 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1757 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1758 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1759 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1760 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1761 NEIGH_VAR(parms, UCAST_PROBES)) ||
1762 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1763 NEIGH_VAR(parms, MCAST_PROBES)) ||
1764 nla_put_u32(skb, NDTPA_MCAST_REPROBES,
1765 NEIGH_VAR(parms, MCAST_REPROBES)) ||
1766 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
1767 NDTPA_PAD) ||
1768 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1769 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
1770 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1771 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
1772 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1773 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
1774 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1775 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
1776 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1777 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
1778 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1779 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
1780 nla_put_msecs(skb, NDTPA_LOCKTIME,
1781 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD))
1782 goto nla_put_failure;
1783 return nla_nest_end(skb, nest);
1784
1785 nla_put_failure:
1786 nla_nest_cancel(skb, nest);
1787 return -EMSGSIZE;
1788 }
1789
1790 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1791 u32 pid, u32 seq, int type, int flags)
1792 {
1793 struct nlmsghdr *nlh;
1794 struct ndtmsg *ndtmsg;
1795
1796 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1797 if (nlh == NULL)
1798 return -EMSGSIZE;
1799
1800 ndtmsg = nlmsg_data(nlh);
1801
1802 read_lock_bh(&tbl->lock);
1803 ndtmsg->ndtm_family = tbl->family;
1804 ndtmsg->ndtm_pad1 = 0;
1805 ndtmsg->ndtm_pad2 = 0;
1806
1807 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1808 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) ||
1809 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1810 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1811 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1812 goto nla_put_failure;
1813 {
1814 unsigned long now = jiffies;
1815 unsigned int flush_delta = now - tbl->last_flush;
1816 unsigned int rand_delta = now - tbl->last_rand;
1817 struct neigh_hash_table *nht;
1818 struct ndt_config ndc = {
1819 .ndtc_key_len = tbl->key_len,
1820 .ndtc_entry_size = tbl->entry_size,
1821 .ndtc_entries = atomic_read(&tbl->entries),
1822 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1823 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1824 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1825 };
1826
1827 rcu_read_lock_bh();
1828 nht = rcu_dereference_bh(tbl->nht);
1829 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1830 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1831 rcu_read_unlock_bh();
1832
1833 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1834 goto nla_put_failure;
1835 }
1836
1837 {
1838 int cpu;
1839 struct ndt_stats ndst;
1840
1841 memset(&ndst, 0, sizeof(ndst));
1842
1843 for_each_possible_cpu(cpu) {
1844 struct neigh_statistics *st;
1845
1846 st = per_cpu_ptr(tbl->stats, cpu);
1847 ndst.ndts_allocs += st->allocs;
1848 ndst.ndts_destroys += st->destroys;
1849 ndst.ndts_hash_grows += st->hash_grows;
1850 ndst.ndts_res_failed += st->res_failed;
1851 ndst.ndts_lookups += st->lookups;
1852 ndst.ndts_hits += st->hits;
1853 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1854 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1855 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1856 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1857 ndst.ndts_table_fulls += st->table_fulls;
1858 }
1859
1860 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
1861 NDTA_PAD))
1862 goto nla_put_failure;
1863 }
1864
1865 BUG_ON(tbl->parms.dev);
1866 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1867 goto nla_put_failure;
1868
1869 read_unlock_bh(&tbl->lock);
1870 nlmsg_end(skb, nlh);
1871 return 0;
1872
1873 nla_put_failure:
1874 read_unlock_bh(&tbl->lock);
1875 nlmsg_cancel(skb, nlh);
1876 return -EMSGSIZE;
1877 }
1878
1879 static int neightbl_fill_param_info(struct sk_buff *skb,
1880 struct neigh_table *tbl,
1881 struct neigh_parms *parms,
1882 u32 pid, u32 seq, int type,
1883 unsigned int flags)
1884 {
1885 struct ndtmsg *ndtmsg;
1886 struct nlmsghdr *nlh;
1887
1888 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1889 if (nlh == NULL)
1890 return -EMSGSIZE;
1891
1892 ndtmsg = nlmsg_data(nlh);
1893
1894 read_lock_bh(&tbl->lock);
1895 ndtmsg->ndtm_family = tbl->family;
1896 ndtmsg->ndtm_pad1 = 0;
1897 ndtmsg->ndtm_pad2 = 0;
1898
1899 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1900 neightbl_fill_parms(skb, parms) < 0)
1901 goto errout;
1902
1903 read_unlock_bh(&tbl->lock);
1904 nlmsg_end(skb, nlh);
1905 return 0;
1906 errout:
1907 read_unlock_bh(&tbl->lock);
1908 nlmsg_cancel(skb, nlh);
1909 return -EMSGSIZE;
1910 }
1911
1912 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1913 [NDTA_NAME] = { .type = NLA_STRING },
1914 [NDTA_THRESH1] = { .type = NLA_U32 },
1915 [NDTA_THRESH2] = { .type = NLA_U32 },
1916 [NDTA_THRESH3] = { .type = NLA_U32 },
1917 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1918 [NDTA_PARMS] = { .type = NLA_NESTED },
1919 };
1920
1921 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1922 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1923 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1924 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1925 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1926 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1927 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1928 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
1929 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1930 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1931 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1932 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1933 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1934 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1935 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1936 };
1937
1938 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1939 {
1940 struct net *net = sock_net(skb->sk);
1941 struct neigh_table *tbl;
1942 struct ndtmsg *ndtmsg;
1943 struct nlattr *tb[NDTA_MAX+1];
1944 bool found = false;
1945 int err, tidx;
1946
1947 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1948 nl_neightbl_policy);
1949 if (err < 0)
1950 goto errout;
1951
1952 if (tb[NDTA_NAME] == NULL) {
1953 err = -EINVAL;
1954 goto errout;
1955 }
1956
1957 ndtmsg = nlmsg_data(nlh);
1958
1959 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
1960 tbl = neigh_tables[tidx];
1961 if (!tbl)
1962 continue;
1963 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1964 continue;
1965 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
1966 found = true;
1967 break;
1968 }
1969 }
1970
1971 if (!found)
1972 return -ENOENT;
1973
1974 /*
1975 * We acquire tbl->lock to be nice to the periodic timers and
1976 * make sure they always see a consistent set of values.
1977 */
1978 write_lock_bh(&tbl->lock);
1979
1980 if (tb[NDTA_PARMS]) {
1981 struct nlattr *tbp[NDTPA_MAX+1];
1982 struct neigh_parms *p;
1983 int i, ifindex = 0;
1984
1985 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1986 nl_ntbl_parm_policy);
1987 if (err < 0)
1988 goto errout_tbl_lock;
1989
1990 if (tbp[NDTPA_IFINDEX])
1991 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1992
1993 p = lookup_neigh_parms(tbl, net, ifindex);
1994 if (p == NULL) {
1995 err = -ENOENT;
1996 goto errout_tbl_lock;
1997 }
1998
1999 for (i = 1; i <= NDTPA_MAX; i++) {
2000 if (tbp[i] == NULL)
2001 continue;
2002
2003 switch (i) {
2004 case NDTPA_QUEUE_LEN:
2005 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2006 nla_get_u32(tbp[i]) *
2007 SKB_TRUESIZE(ETH_FRAME_LEN));
2008 break;
2009 case NDTPA_QUEUE_LENBYTES:
2010 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2011 nla_get_u32(tbp[i]));
2012 break;
2013 case NDTPA_PROXY_QLEN:
2014 NEIGH_VAR_SET(p, PROXY_QLEN,
2015 nla_get_u32(tbp[i]));
2016 break;
2017 case NDTPA_APP_PROBES:
2018 NEIGH_VAR_SET(p, APP_PROBES,
2019 nla_get_u32(tbp[i]));
2020 break;
2021 case NDTPA_UCAST_PROBES:
2022 NEIGH_VAR_SET(p, UCAST_PROBES,
2023 nla_get_u32(tbp[i]));
2024 break;
2025 case NDTPA_MCAST_PROBES:
2026 NEIGH_VAR_SET(p, MCAST_PROBES,
2027 nla_get_u32(tbp[i]));
2028 break;
2029 case NDTPA_MCAST_REPROBES:
2030 NEIGH_VAR_SET(p, MCAST_REPROBES,
2031 nla_get_u32(tbp[i]));
2032 break;
2033 case NDTPA_BASE_REACHABLE_TIME:
2034 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2035 nla_get_msecs(tbp[i]));
2036 /* update reachable_time as well, otherwise, the change will
2037 * only be effective after the next time neigh_periodic_work
2038 * decides to recompute it (can be multiple minutes)
2039 */
2040 p->reachable_time =
2041 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2042 break;
2043 case NDTPA_GC_STALETIME:
2044 NEIGH_VAR_SET(p, GC_STALETIME,
2045 nla_get_msecs(tbp[i]));
2046 break;
2047 case NDTPA_DELAY_PROBE_TIME:
2048 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2049 nla_get_msecs(tbp[i]));
2050 break;
2051 case NDTPA_RETRANS_TIME:
2052 NEIGH_VAR_SET(p, RETRANS_TIME,
2053 nla_get_msecs(tbp[i]));
2054 break;
2055 case NDTPA_ANYCAST_DELAY:
2056 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2057 nla_get_msecs(tbp[i]));
2058 break;
2059 case NDTPA_PROXY_DELAY:
2060 NEIGH_VAR_SET(p, PROXY_DELAY,
2061 nla_get_msecs(tbp[i]));
2062 break;
2063 case NDTPA_LOCKTIME:
2064 NEIGH_VAR_SET(p, LOCKTIME,
2065 nla_get_msecs(tbp[i]));
2066 break;
2067 }
2068 }
2069 }
2070
2071 err = -ENOENT;
2072 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2073 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2074 !net_eq(net, &init_net))
2075 goto errout_tbl_lock;
2076
2077 if (tb[NDTA_THRESH1])
2078 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2079
2080 if (tb[NDTA_THRESH2])
2081 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2082
2083 if (tb[NDTA_THRESH3])
2084 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2085
2086 if (tb[NDTA_GC_INTERVAL])
2087 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2088
2089 err = 0;
2090
2091 errout_tbl_lock:
2092 write_unlock_bh(&tbl->lock);
2093 errout:
2094 return err;
2095 }
2096
2097 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2098 {
2099 struct net *net = sock_net(skb->sk);
2100 int family, tidx, nidx = 0;
2101 int tbl_skip = cb->args[0];
2102 int neigh_skip = cb->args[1];
2103 struct neigh_table *tbl;
2104
2105 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2106
2107 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2108 struct neigh_parms *p;
2109
2110 tbl = neigh_tables[tidx];
2111 if (!tbl)
2112 continue;
2113
2114 if (tidx < tbl_skip || (family && tbl->family != family))
2115 continue;
2116
2117 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2118 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2119 NLM_F_MULTI) < 0)
2120 break;
2121
2122 nidx = 0;
2123 p = list_next_entry(&tbl->parms, list);
2124 list_for_each_entry_from(p, &tbl->parms_list, list) {
2125 if (!net_eq(neigh_parms_net(p), net))
2126 continue;
2127
2128 if (nidx < neigh_skip)
2129 goto next;
2130
2131 if (neightbl_fill_param_info(skb, tbl, p,
2132 NETLINK_CB(cb->skb).portid,
2133 cb->nlh->nlmsg_seq,
2134 RTM_NEWNEIGHTBL,
2135 NLM_F_MULTI) < 0)
2136 goto out;
2137 next:
2138 nidx++;
2139 }
2140
2141 neigh_skip = 0;
2142 }
2143 out:
2144 cb->args[0] = tidx;
2145 cb->args[1] = nidx;
2146
2147 return skb->len;
2148 }
2149
2150 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2151 u32 pid, u32 seq, int type, unsigned int flags)
2152 {
2153 unsigned long now = jiffies;
2154 struct nda_cacheinfo ci;
2155 struct nlmsghdr *nlh;
2156 struct ndmsg *ndm;
2157
2158 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2159 if (nlh == NULL)
2160 return -EMSGSIZE;
2161
2162 ndm = nlmsg_data(nlh);
2163 ndm->ndm_family = neigh->ops->family;
2164 ndm->ndm_pad1 = 0;
2165 ndm->ndm_pad2 = 0;
2166 ndm->ndm_flags = neigh->flags;
2167 ndm->ndm_type = neigh->type;
2168 ndm->ndm_ifindex = neigh->dev->ifindex;
2169
2170 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2171 goto nla_put_failure;
2172
2173 read_lock_bh(&neigh->lock);
2174 ndm->ndm_state = neigh->nud_state;
2175 if (neigh->nud_state & NUD_VALID) {
2176 char haddr[MAX_ADDR_LEN];
2177
2178 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2179 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2180 read_unlock_bh(&neigh->lock);
2181 goto nla_put_failure;
2182 }
2183 }
2184
2185 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2186 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2187 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2188 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2189 read_unlock_bh(&neigh->lock);
2190
2191 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2192 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2193 goto nla_put_failure;
2194
2195 nlmsg_end(skb, nlh);
2196 return 0;
2197
2198 nla_put_failure:
2199 nlmsg_cancel(skb, nlh);
2200 return -EMSGSIZE;
2201 }
2202
2203 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2204 u32 pid, u32 seq, int type, unsigned int flags,
2205 struct neigh_table *tbl)
2206 {
2207 struct nlmsghdr *nlh;
2208 struct ndmsg *ndm;
2209
2210 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2211 if (nlh == NULL)
2212 return -EMSGSIZE;
2213
2214 ndm = nlmsg_data(nlh);
2215 ndm->ndm_family = tbl->family;
2216 ndm->ndm_pad1 = 0;
2217 ndm->ndm_pad2 = 0;
2218 ndm->ndm_flags = pn->flags | NTF_PROXY;
2219 ndm->ndm_type = RTN_UNICAST;
2220 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2221 ndm->ndm_state = NUD_NONE;
2222
2223 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2224 goto nla_put_failure;
2225
2226 nlmsg_end(skb, nlh);
2227 return 0;
2228
2229 nla_put_failure:
2230 nlmsg_cancel(skb, nlh);
2231 return -EMSGSIZE;
2232 }
2233
2234 static void neigh_update_notify(struct neighbour *neigh)
2235 {
2236 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2237 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2238 }
2239
2240 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2241 {
2242 struct net_device *master;
2243
2244 if (!master_idx)
2245 return false;
2246
2247 master = netdev_master_upper_dev_get(dev);
2248 if (!master || master->ifindex != master_idx)
2249 return true;
2250
2251 return false;
2252 }
2253
2254 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2255 {
2256 if (filter_idx && dev->ifindex != filter_idx)
2257 return true;
2258
2259 return false;
2260 }
2261
2262 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2263 struct netlink_callback *cb)
2264 {
2265 struct net *net = sock_net(skb->sk);
2266 const struct nlmsghdr *nlh = cb->nlh;
2267 struct nlattr *tb[NDA_MAX + 1];
2268 struct neighbour *n;
2269 int rc, h, s_h = cb->args[1];
2270 int idx, s_idx = idx = cb->args[2];
2271 struct neigh_hash_table *nht;
2272 int filter_master_idx = 0, filter_idx = 0;
2273 unsigned int flags = NLM_F_MULTI;
2274 int err;
2275
2276 err = nlmsg_parse(nlh, sizeof(struct ndmsg), tb, NDA_MAX, NULL);
2277 if (!err) {
2278 if (tb[NDA_IFINDEX])
2279 filter_idx = nla_get_u32(tb[NDA_IFINDEX]);
2280
2281 if (tb[NDA_MASTER])
2282 filter_master_idx = nla_get_u32(tb[NDA_MASTER]);
2283
2284 if (filter_idx || filter_master_idx)
2285 flags |= NLM_F_DUMP_FILTERED;
2286 }
2287
2288 rcu_read_lock_bh();
2289 nht = rcu_dereference_bh(tbl->nht);
2290
2291 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2292 if (h > s_h)
2293 s_idx = 0;
2294 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2295 n != NULL;
2296 n = rcu_dereference_bh(n->next)) {
2297 if (!net_eq(dev_net(n->dev), net))
2298 continue;
2299 if (neigh_ifindex_filtered(n->dev, filter_idx))
2300 continue;
2301 if (neigh_master_filtered(n->dev, filter_master_idx))
2302 continue;
2303 if (idx < s_idx)
2304 goto next;
2305 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2306 cb->nlh->nlmsg_seq,
2307 RTM_NEWNEIGH,
2308 flags) < 0) {
2309 rc = -1;
2310 goto out;
2311 }
2312 next:
2313 idx++;
2314 }
2315 }
2316 rc = skb->len;
2317 out:
2318 rcu_read_unlock_bh();
2319 cb->args[1] = h;
2320 cb->args[2] = idx;
2321 return rc;
2322 }
2323
2324 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2325 struct netlink_callback *cb)
2326 {
2327 struct pneigh_entry *n;
2328 struct net *net = sock_net(skb->sk);
2329 int rc, h, s_h = cb->args[3];
2330 int idx, s_idx = idx = cb->args[4];
2331
2332 read_lock_bh(&tbl->lock);
2333
2334 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2335 if (h > s_h)
2336 s_idx = 0;
2337 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2338 if (pneigh_net(n) != net)
2339 continue;
2340 if (idx < s_idx)
2341 goto next;
2342 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2343 cb->nlh->nlmsg_seq,
2344 RTM_NEWNEIGH,
2345 NLM_F_MULTI, tbl) < 0) {
2346 read_unlock_bh(&tbl->lock);
2347 rc = -1;
2348 goto out;
2349 }
2350 next:
2351 idx++;
2352 }
2353 }
2354
2355 read_unlock_bh(&tbl->lock);
2356 rc = skb->len;
2357 out:
2358 cb->args[3] = h;
2359 cb->args[4] = idx;
2360 return rc;
2361
2362 }
2363
2364 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2365 {
2366 struct neigh_table *tbl;
2367 int t, family, s_t;
2368 int proxy = 0;
2369 int err;
2370
2371 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2372
2373 /* check for full ndmsg structure presence, family member is
2374 * the same for both structures
2375 */
2376 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2377 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2378 proxy = 1;
2379
2380 s_t = cb->args[0];
2381
2382 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2383 tbl = neigh_tables[t];
2384
2385 if (!tbl)
2386 continue;
2387 if (t < s_t || (family && tbl->family != family))
2388 continue;
2389 if (t > s_t)
2390 memset(&cb->args[1], 0, sizeof(cb->args) -
2391 sizeof(cb->args[0]));
2392 if (proxy)
2393 err = pneigh_dump_table(tbl, skb, cb);
2394 else
2395 err = neigh_dump_table(tbl, skb, cb);
2396 if (err < 0)
2397 break;
2398 }
2399
2400 cb->args[0] = t;
2401 return skb->len;
2402 }
2403
2404 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2405 {
2406 int chain;
2407 struct neigh_hash_table *nht;
2408
2409 rcu_read_lock_bh();
2410 nht = rcu_dereference_bh(tbl->nht);
2411
2412 read_lock(&tbl->lock); /* avoid resizes */
2413 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2414 struct neighbour *n;
2415
2416 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2417 n != NULL;
2418 n = rcu_dereference_bh(n->next))
2419 cb(n, cookie);
2420 }
2421 read_unlock(&tbl->lock);
2422 rcu_read_unlock_bh();
2423 }
2424 EXPORT_SYMBOL(neigh_for_each);
2425
2426 /* The tbl->lock must be held as a writer and BH disabled. */
2427 void __neigh_for_each_release(struct neigh_table *tbl,
2428 int (*cb)(struct neighbour *))
2429 {
2430 int chain;
2431 struct neigh_hash_table *nht;
2432
2433 nht = rcu_dereference_protected(tbl->nht,
2434 lockdep_is_held(&tbl->lock));
2435 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2436 struct neighbour *n;
2437 struct neighbour __rcu **np;
2438
2439 np = &nht->hash_buckets[chain];
2440 while ((n = rcu_dereference_protected(*np,
2441 lockdep_is_held(&tbl->lock))) != NULL) {
2442 int release;
2443
2444 write_lock(&n->lock);
2445 release = cb(n);
2446 if (release) {
2447 rcu_assign_pointer(*np,
2448 rcu_dereference_protected(n->next,
2449 lockdep_is_held(&tbl->lock)));
2450 n->dead = 1;
2451 } else
2452 np = &n->next;
2453 write_unlock(&n->lock);
2454 if (release)
2455 neigh_cleanup_and_release(n);
2456 }
2457 }
2458 }
2459 EXPORT_SYMBOL(__neigh_for_each_release);
2460
2461 int neigh_xmit(int index, struct net_device *dev,
2462 const void *addr, struct sk_buff *skb)
2463 {
2464 int err = -EAFNOSUPPORT;
2465 if (likely(index < NEIGH_NR_TABLES)) {
2466 struct neigh_table *tbl;
2467 struct neighbour *neigh;
2468
2469 tbl = neigh_tables[index];
2470 if (!tbl)
2471 goto out;
2472 neigh = __neigh_lookup_noref(tbl, addr, dev);
2473 if (!neigh)
2474 neigh = __neigh_create(tbl, addr, dev, false);
2475 err = PTR_ERR(neigh);
2476 if (IS_ERR(neigh))
2477 goto out_kfree_skb;
2478 err = neigh->output(neigh, skb);
2479 }
2480 else if (index == NEIGH_LINK_TABLE) {
2481 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
2482 addr, NULL, skb->len);
2483 if (err < 0)
2484 goto out_kfree_skb;
2485 err = dev_queue_xmit(skb);
2486 }
2487 out:
2488 return err;
2489 out_kfree_skb:
2490 kfree_skb(skb);
2491 goto out;
2492 }
2493 EXPORT_SYMBOL(neigh_xmit);
2494
2495 #ifdef CONFIG_PROC_FS
2496
2497 static struct neighbour *neigh_get_first(struct seq_file *seq)
2498 {
2499 struct neigh_seq_state *state = seq->private;
2500 struct net *net = seq_file_net(seq);
2501 struct neigh_hash_table *nht = state->nht;
2502 struct neighbour *n = NULL;
2503 int bucket = state->bucket;
2504
2505 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2506 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2507 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2508
2509 while (n) {
2510 if (!net_eq(dev_net(n->dev), net))
2511 goto next;
2512 if (state->neigh_sub_iter) {
2513 loff_t fakep = 0;
2514 void *v;
2515
2516 v = state->neigh_sub_iter(state, n, &fakep);
2517 if (!v)
2518 goto next;
2519 }
2520 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2521 break;
2522 if (n->nud_state & ~NUD_NOARP)
2523 break;
2524 next:
2525 n = rcu_dereference_bh(n->next);
2526 }
2527
2528 if (n)
2529 break;
2530 }
2531 state->bucket = bucket;
2532
2533 return n;
2534 }
2535
2536 static struct neighbour *neigh_get_next(struct seq_file *seq,
2537 struct neighbour *n,
2538 loff_t *pos)
2539 {
2540 struct neigh_seq_state *state = seq->private;
2541 struct net *net = seq_file_net(seq);
2542 struct neigh_hash_table *nht = state->nht;
2543
2544 if (state->neigh_sub_iter) {
2545 void *v = state->neigh_sub_iter(state, n, pos);
2546 if (v)
2547 return n;
2548 }
2549 n = rcu_dereference_bh(n->next);
2550
2551 while (1) {
2552 while (n) {
2553 if (!net_eq(dev_net(n->dev), net))
2554 goto next;
2555 if (state->neigh_sub_iter) {
2556 void *v = state->neigh_sub_iter(state, n, pos);
2557 if (v)
2558 return n;
2559 goto next;
2560 }
2561 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2562 break;
2563
2564 if (n->nud_state & ~NUD_NOARP)
2565 break;
2566 next:
2567 n = rcu_dereference_bh(n->next);
2568 }
2569
2570 if (n)
2571 break;
2572
2573 if (++state->bucket >= (1 << nht->hash_shift))
2574 break;
2575
2576 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2577 }
2578
2579 if (n && pos)
2580 --(*pos);
2581 return n;
2582 }
2583
2584 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2585 {
2586 struct neighbour *n = neigh_get_first(seq);
2587
2588 if (n) {
2589 --(*pos);
2590 while (*pos) {
2591 n = neigh_get_next(seq, n, pos);
2592 if (!n)
2593 break;
2594 }
2595 }
2596 return *pos ? NULL : n;
2597 }
2598
2599 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2600 {
2601 struct neigh_seq_state *state = seq->private;
2602 struct net *net = seq_file_net(seq);
2603 struct neigh_table *tbl = state->tbl;
2604 struct pneigh_entry *pn = NULL;
2605 int bucket = state->bucket;
2606
2607 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2608 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2609 pn = tbl->phash_buckets[bucket];
2610 while (pn && !net_eq(pneigh_net(pn), net))
2611 pn = pn->next;
2612 if (pn)
2613 break;
2614 }
2615 state->bucket = bucket;
2616
2617 return pn;
2618 }
2619
2620 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2621 struct pneigh_entry *pn,
2622 loff_t *pos)
2623 {
2624 struct neigh_seq_state *state = seq->private;
2625 struct net *net = seq_file_net(seq);
2626 struct neigh_table *tbl = state->tbl;
2627
2628 do {
2629 pn = pn->next;
2630 } while (pn && !net_eq(pneigh_net(pn), net));
2631
2632 while (!pn) {
2633 if (++state->bucket > PNEIGH_HASHMASK)
2634 break;
2635 pn = tbl->phash_buckets[state->bucket];
2636 while (pn && !net_eq(pneigh_net(pn), net))
2637 pn = pn->next;
2638 if (pn)
2639 break;
2640 }
2641
2642 if (pn && pos)
2643 --(*pos);
2644
2645 return pn;
2646 }
2647
2648 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2649 {
2650 struct pneigh_entry *pn = pneigh_get_first(seq);
2651
2652 if (pn) {
2653 --(*pos);
2654 while (*pos) {
2655 pn = pneigh_get_next(seq, pn, pos);
2656 if (!pn)
2657 break;
2658 }
2659 }
2660 return *pos ? NULL : pn;
2661 }
2662
2663 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2664 {
2665 struct neigh_seq_state *state = seq->private;
2666 void *rc;
2667 loff_t idxpos = *pos;
2668
2669 rc = neigh_get_idx(seq, &idxpos);
2670 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2671 rc = pneigh_get_idx(seq, &idxpos);
2672
2673 return rc;
2674 }
2675
2676 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2677 __acquires(rcu_bh)
2678 {
2679 struct neigh_seq_state *state = seq->private;
2680
2681 state->tbl = tbl;
2682 state->bucket = 0;
2683 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2684
2685 rcu_read_lock_bh();
2686 state->nht = rcu_dereference_bh(tbl->nht);
2687
2688 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2689 }
2690 EXPORT_SYMBOL(neigh_seq_start);
2691
2692 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2693 {
2694 struct neigh_seq_state *state;
2695 void *rc;
2696
2697 if (v == SEQ_START_TOKEN) {
2698 rc = neigh_get_first(seq);
2699 goto out;
2700 }
2701
2702 state = seq->private;
2703 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2704 rc = neigh_get_next(seq, v, NULL);
2705 if (rc)
2706 goto out;
2707 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2708 rc = pneigh_get_first(seq);
2709 } else {
2710 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2711 rc = pneigh_get_next(seq, v, NULL);
2712 }
2713 out:
2714 ++(*pos);
2715 return rc;
2716 }
2717 EXPORT_SYMBOL(neigh_seq_next);
2718
2719 void neigh_seq_stop(struct seq_file *seq, void *v)
2720 __releases(rcu_bh)
2721 {
2722 rcu_read_unlock_bh();
2723 }
2724 EXPORT_SYMBOL(neigh_seq_stop);
2725
2726 /* statistics via seq_file */
2727
2728 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2729 {
2730 struct neigh_table *tbl = seq->private;
2731 int cpu;
2732
2733 if (*pos == 0)
2734 return SEQ_START_TOKEN;
2735
2736 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2737 if (!cpu_possible(cpu))
2738 continue;
2739 *pos = cpu+1;
2740 return per_cpu_ptr(tbl->stats, cpu);
2741 }
2742 return NULL;
2743 }
2744
2745 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2746 {
2747 struct neigh_table *tbl = seq->private;
2748 int cpu;
2749
2750 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2751 if (!cpu_possible(cpu))
2752 continue;
2753 *pos = cpu+1;
2754 return per_cpu_ptr(tbl->stats, cpu);
2755 }
2756 return NULL;
2757 }
2758
2759 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2760 {
2761
2762 }
2763
2764 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2765 {
2766 struct neigh_table *tbl = seq->private;
2767 struct neigh_statistics *st = v;
2768
2769 if (v == SEQ_START_TOKEN) {
2770 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
2771 return 0;
2772 }
2773
2774 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2775 "%08lx %08lx %08lx %08lx %08lx %08lx\n",
2776 atomic_read(&tbl->entries),
2777
2778 st->allocs,
2779 st->destroys,
2780 st->hash_grows,
2781
2782 st->lookups,
2783 st->hits,
2784
2785 st->res_failed,
2786
2787 st->rcv_probes_mcast,
2788 st->rcv_probes_ucast,
2789
2790 st->periodic_gc_runs,
2791 st->forced_gc_runs,
2792 st->unres_discards,
2793 st->table_fulls
2794 );
2795
2796 return 0;
2797 }
2798
2799 static const struct seq_operations neigh_stat_seq_ops = {
2800 .start = neigh_stat_seq_start,
2801 .next = neigh_stat_seq_next,
2802 .stop = neigh_stat_seq_stop,
2803 .show = neigh_stat_seq_show,
2804 };
2805
2806 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2807 {
2808 int ret = seq_open(file, &neigh_stat_seq_ops);
2809
2810 if (!ret) {
2811 struct seq_file *sf = file->private_data;
2812 sf->private = PDE_DATA(inode);
2813 }
2814 return ret;
2815 };
2816
2817 static const struct file_operations neigh_stat_seq_fops = {
2818 .owner = THIS_MODULE,
2819 .open = neigh_stat_seq_open,
2820 .read = seq_read,
2821 .llseek = seq_lseek,
2822 .release = seq_release,
2823 };
2824
2825 #endif /* CONFIG_PROC_FS */
2826
2827 static inline size_t neigh_nlmsg_size(void)
2828 {
2829 return NLMSG_ALIGN(sizeof(struct ndmsg))
2830 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2831 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2832 + nla_total_size(sizeof(struct nda_cacheinfo))
2833 + nla_total_size(4); /* NDA_PROBES */
2834 }
2835
2836 static void __neigh_notify(struct neighbour *n, int type, int flags)
2837 {
2838 struct net *net = dev_net(n->dev);
2839 struct sk_buff *skb;
2840 int err = -ENOBUFS;
2841
2842 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2843 if (skb == NULL)
2844 goto errout;
2845
2846 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2847 if (err < 0) {
2848 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2849 WARN_ON(err == -EMSGSIZE);
2850 kfree_skb(skb);
2851 goto errout;
2852 }
2853 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2854 return;
2855 errout:
2856 if (err < 0)
2857 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2858 }
2859
2860 void neigh_app_ns(struct neighbour *n)
2861 {
2862 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2863 }
2864 EXPORT_SYMBOL(neigh_app_ns);
2865
2866 #ifdef CONFIG_SYSCTL
2867 static int zero;
2868 static int int_max = INT_MAX;
2869 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2870
2871 static int proc_unres_qlen(struct ctl_table *ctl, int write,
2872 void __user *buffer, size_t *lenp, loff_t *ppos)
2873 {
2874 int size, ret;
2875 struct ctl_table tmp = *ctl;
2876
2877 tmp.extra1 = &zero;
2878 tmp.extra2 = &unres_qlen_max;
2879 tmp.data = &size;
2880
2881 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2882 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2883
2884 if (write && !ret)
2885 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2886 return ret;
2887 }
2888
2889 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2890 int family)
2891 {
2892 switch (family) {
2893 case AF_INET:
2894 return __in_dev_arp_parms_get_rcu(dev);
2895 case AF_INET6:
2896 return __in6_dev_nd_parms_get_rcu(dev);
2897 }
2898 return NULL;
2899 }
2900
2901 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2902 int index)
2903 {
2904 struct net_device *dev;
2905 int family = neigh_parms_family(p);
2906
2907 rcu_read_lock();
2908 for_each_netdev_rcu(net, dev) {
2909 struct neigh_parms *dst_p =
2910 neigh_get_dev_parms_rcu(dev, family);
2911
2912 if (dst_p && !test_bit(index, dst_p->data_state))
2913 dst_p->data[index] = p->data[index];
2914 }
2915 rcu_read_unlock();
2916 }
2917
2918 static void neigh_proc_update(struct ctl_table *ctl, int write)
2919 {
2920 struct net_device *dev = ctl->extra1;
2921 struct neigh_parms *p = ctl->extra2;
2922 struct net *net = neigh_parms_net(p);
2923 int index = (int *) ctl->data - p->data;
2924
2925 if (!write)
2926 return;
2927
2928 set_bit(index, p->data_state);
2929 if (!dev) /* NULL dev means this is default value */
2930 neigh_copy_dflt_parms(net, p, index);
2931 }
2932
2933 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2934 void __user *buffer,
2935 size_t *lenp, loff_t *ppos)
2936 {
2937 struct ctl_table tmp = *ctl;
2938 int ret;
2939
2940 tmp.extra1 = &zero;
2941 tmp.extra2 = &int_max;
2942
2943 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2944 neigh_proc_update(ctl, write);
2945 return ret;
2946 }
2947
2948 int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2949 void __user *buffer, size_t *lenp, loff_t *ppos)
2950 {
2951 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2952
2953 neigh_proc_update(ctl, write);
2954 return ret;
2955 }
2956 EXPORT_SYMBOL(neigh_proc_dointvec);
2957
2958 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2959 void __user *buffer,
2960 size_t *lenp, loff_t *ppos)
2961 {
2962 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2963
2964 neigh_proc_update(ctl, write);
2965 return ret;
2966 }
2967 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2968
2969 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2970 void __user *buffer,
2971 size_t *lenp, loff_t *ppos)
2972 {
2973 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2974
2975 neigh_proc_update(ctl, write);
2976 return ret;
2977 }
2978
2979 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2980 void __user *buffer,
2981 size_t *lenp, loff_t *ppos)
2982 {
2983 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2984
2985 neigh_proc_update(ctl, write);
2986 return ret;
2987 }
2988 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2989
2990 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2991 void __user *buffer,
2992 size_t *lenp, loff_t *ppos)
2993 {
2994 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2995
2996 neigh_proc_update(ctl, write);
2997 return ret;
2998 }
2999
3000 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3001 void __user *buffer,
3002 size_t *lenp, loff_t *ppos)
3003 {
3004 struct neigh_parms *p = ctl->extra2;
3005 int ret;
3006
3007 if (strcmp(ctl->procname, "base_reachable_time") == 0)
3008 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3009 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3010 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3011 else
3012 ret = -1;
3013
3014 if (write && ret == 0) {
3015 /* update reachable_time as well, otherwise, the change will
3016 * only be effective after the next time neigh_periodic_work
3017 * decides to recompute it
3018 */
3019 p->reachable_time =
3020 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3021 }
3022 return ret;
3023 }
3024
3025 #define NEIGH_PARMS_DATA_OFFSET(index) \
3026 (&((struct neigh_parms *) 0)->data[index])
3027
3028 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3029 [NEIGH_VAR_ ## attr] = { \
3030 .procname = name, \
3031 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3032 .maxlen = sizeof(int), \
3033 .mode = mval, \
3034 .proc_handler = proc, \
3035 }
3036
3037 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3038 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3039
3040 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3041 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3042
3043 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3044 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3045
3046 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
3047 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3048
3049 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3050 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3051
3052 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3053 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3054
3055 static struct neigh_sysctl_table {
3056 struct ctl_table_header *sysctl_header;
3057 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
3058 } neigh_sysctl_template __read_mostly = {
3059 .neigh_vars = {
3060 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3061 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3062 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3063 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3064 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3065 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3066 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3067 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3068 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3069 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3070 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3071 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3072 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3073 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3074 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3075 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3076 [NEIGH_VAR_GC_INTERVAL] = {
3077 .procname = "gc_interval",
3078 .maxlen = sizeof(int),
3079 .mode = 0644,
3080 .proc_handler = proc_dointvec_jiffies,
3081 },
3082 [NEIGH_VAR_GC_THRESH1] = {
3083 .procname = "gc_thresh1",
3084 .maxlen = sizeof(int),
3085 .mode = 0644,
3086 .extra1 = &zero,
3087 .extra2 = &int_max,
3088 .proc_handler = proc_dointvec_minmax,
3089 },
3090 [NEIGH_VAR_GC_THRESH2] = {
3091 .procname = "gc_thresh2",
3092 .maxlen = sizeof(int),
3093 .mode = 0644,
3094 .extra1 = &zero,
3095 .extra2 = &int_max,
3096 .proc_handler = proc_dointvec_minmax,
3097 },
3098 [NEIGH_VAR_GC_THRESH3] = {
3099 .procname = "gc_thresh3",
3100 .maxlen = sizeof(int),
3101 .mode = 0644,
3102 .extra1 = &zero,
3103 .extra2 = &int_max,
3104 .proc_handler = proc_dointvec_minmax,
3105 },
3106 {},
3107 },
3108 };
3109
3110 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3111 proc_handler *handler)
3112 {
3113 int i;
3114 struct neigh_sysctl_table *t;
3115 const char *dev_name_source;
3116 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3117 char *p_name;
3118
3119 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3120 if (!t)
3121 goto err;
3122
3123 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3124 t->neigh_vars[i].data += (long) p;
3125 t->neigh_vars[i].extra1 = dev;
3126 t->neigh_vars[i].extra2 = p;
3127 }
3128
3129 if (dev) {
3130 dev_name_source = dev->name;
3131 /* Terminate the table early */
3132 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3133 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3134 } else {
3135 struct neigh_table *tbl = p->tbl;
3136 dev_name_source = "default";
3137 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3138 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3139 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3140 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3141 }
3142
3143 if (handler) {
3144 /* RetransTime */
3145 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3146 /* ReachableTime */
3147 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3148 /* RetransTime (in milliseconds)*/
3149 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3150 /* ReachableTime (in milliseconds) */
3151 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3152 } else {
3153 /* Those handlers will update p->reachable_time after
3154 * base_reachable_time(_ms) is set to ensure the new timer starts being
3155 * applied after the next neighbour update instead of waiting for
3156 * neigh_periodic_work to update its value (can be multiple minutes)
3157 * So any handler that replaces them should do this as well
3158 */
3159 /* ReachableTime */
3160 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3161 neigh_proc_base_reachable_time;
3162 /* ReachableTime (in milliseconds) */
3163 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3164 neigh_proc_base_reachable_time;
3165 }
3166
3167 /* Don't export sysctls to unprivileged users */
3168 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3169 t->neigh_vars[0].procname = NULL;
3170
3171 switch (neigh_parms_family(p)) {
3172 case AF_INET:
3173 p_name = "ipv4";
3174 break;
3175 case AF_INET6:
3176 p_name = "ipv6";
3177 break;
3178 default:
3179 BUG();
3180 }
3181
3182 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3183 p_name, dev_name_source);
3184 t->sysctl_header =
3185 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3186 if (!t->sysctl_header)
3187 goto free;
3188
3189 p->sysctl_table = t;
3190 return 0;
3191
3192 free:
3193 kfree(t);
3194 err:
3195 return -ENOBUFS;
3196 }
3197 EXPORT_SYMBOL(neigh_sysctl_register);
3198
3199 void neigh_sysctl_unregister(struct neigh_parms *p)
3200 {
3201 if (p->sysctl_table) {
3202 struct neigh_sysctl_table *t = p->sysctl_table;
3203 p->sysctl_table = NULL;
3204 unregister_net_sysctl_table(t->sysctl_header);
3205 kfree(t);
3206 }
3207 }
3208 EXPORT_SYMBOL(neigh_sysctl_unregister);
3209
3210 #endif /* CONFIG_SYSCTL */
3211
3212 static int __init neigh_init(void)
3213 {
3214 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3215 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3216 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3217
3218 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3219 NULL);
3220 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3221
3222 return 0;
3223 }
3224
3225 subsys_initcall(neigh_init);
3226
This page took 0.112963 seconds and 5 git commands to generate.