sysctl net: Remove unused binary sysctl code
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126 EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 int shrunk = 0;
132 int i;
133
134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
135
136 write_lock_bh(&tbl->lock);
137 for (i = 0; i <= tbl->hash_mask; i++) {
138 struct neighbour *n, **np;
139
140 np = &tbl->hash_buckets[i];
141 while ((n = *np) != NULL) {
142 /* Neighbour record may be discarded if:
143 * - nobody refers to it.
144 * - it is not permanent
145 */
146 write_lock(&n->lock);
147 if (atomic_read(&n->refcnt) == 1 &&
148 !(n->nud_state & NUD_PERMANENT)) {
149 *np = n->next;
150 n->dead = 1;
151 shrunk = 1;
152 write_unlock(&n->lock);
153 neigh_cleanup_and_release(n);
154 continue;
155 }
156 write_unlock(&n->lock);
157 np = &n->next;
158 }
159 }
160
161 tbl->last_flush = jiffies;
162
163 write_unlock_bh(&tbl->lock);
164
165 return shrunk;
166 }
167
168 static void neigh_add_timer(struct neighbour *n, unsigned long when)
169 {
170 neigh_hold(n);
171 if (unlikely(mod_timer(&n->timer, when))) {
172 printk("NEIGH: BUG, double timer add, state is %x\n",
173 n->nud_state);
174 dump_stack();
175 }
176 }
177
178 static int neigh_del_timer(struct neighbour *n)
179 {
180 if ((n->nud_state & NUD_IN_TIMER) &&
181 del_timer(&n->timer)) {
182 neigh_release(n);
183 return 1;
184 }
185 return 0;
186 }
187
188 static void pneigh_queue_purge(struct sk_buff_head *list)
189 {
190 struct sk_buff *skb;
191
192 while ((skb = skb_dequeue(list)) != NULL) {
193 dev_put(skb->dev);
194 kfree_skb(skb);
195 }
196 }
197
198 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
199 {
200 int i;
201
202 for (i = 0; i <= tbl->hash_mask; i++) {
203 struct neighbour *n, **np = &tbl->hash_buckets[i];
204
205 while ((n = *np) != NULL) {
206 if (dev && n->dev != dev) {
207 np = &n->next;
208 continue;
209 }
210 *np = n->next;
211 write_lock(&n->lock);
212 neigh_del_timer(n);
213 n->dead = 1;
214
215 if (atomic_read(&n->refcnt) != 1) {
216 /* The most unpleasant situation.
217 We must destroy neighbour entry,
218 but someone still uses it.
219
220 The destroy will be delayed until
221 the last user releases us, but
222 we must kill timers etc. and move
223 it to safe state.
224 */
225 skb_queue_purge(&n->arp_queue);
226 n->output = neigh_blackhole;
227 if (n->nud_state & NUD_VALID)
228 n->nud_state = NUD_NOARP;
229 else
230 n->nud_state = NUD_NONE;
231 NEIGH_PRINTK2("neigh %p is stray.\n", n);
232 }
233 write_unlock(&n->lock);
234 neigh_cleanup_and_release(n);
235 }
236 }
237 }
238
239 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
240 {
241 write_lock_bh(&tbl->lock);
242 neigh_flush_dev(tbl, dev);
243 write_unlock_bh(&tbl->lock);
244 }
245 EXPORT_SYMBOL(neigh_changeaddr);
246
247 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
248 {
249 write_lock_bh(&tbl->lock);
250 neigh_flush_dev(tbl, dev);
251 pneigh_ifdown(tbl, dev);
252 write_unlock_bh(&tbl->lock);
253
254 del_timer_sync(&tbl->proxy_timer);
255 pneigh_queue_purge(&tbl->proxy_queue);
256 return 0;
257 }
258 EXPORT_SYMBOL(neigh_ifdown);
259
260 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
261 {
262 struct neighbour *n = NULL;
263 unsigned long now = jiffies;
264 int entries;
265
266 entries = atomic_inc_return(&tbl->entries) - 1;
267 if (entries >= tbl->gc_thresh3 ||
268 (entries >= tbl->gc_thresh2 &&
269 time_after(now, tbl->last_flush + 5 * HZ))) {
270 if (!neigh_forced_gc(tbl) &&
271 entries >= tbl->gc_thresh3)
272 goto out_entries;
273 }
274
275 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
276 if (!n)
277 goto out_entries;
278
279 skb_queue_head_init(&n->arp_queue);
280 rwlock_init(&n->lock);
281 n->updated = n->used = now;
282 n->nud_state = NUD_NONE;
283 n->output = neigh_blackhole;
284 n->parms = neigh_parms_clone(&tbl->parms);
285 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
286
287 NEIGH_CACHE_STAT_INC(tbl, allocs);
288 n->tbl = tbl;
289 atomic_set(&n->refcnt, 1);
290 n->dead = 1;
291 out:
292 return n;
293
294 out_entries:
295 atomic_dec(&tbl->entries);
296 goto out;
297 }
298
299 static struct neighbour **neigh_hash_alloc(unsigned int entries)
300 {
301 unsigned long size = entries * sizeof(struct neighbour *);
302 struct neighbour **ret;
303
304 if (size <= PAGE_SIZE) {
305 ret = kzalloc(size, GFP_ATOMIC);
306 } else {
307 ret = (struct neighbour **)
308 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
309 }
310 return ret;
311 }
312
313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
314 {
315 unsigned long size = entries * sizeof(struct neighbour *);
316
317 if (size <= PAGE_SIZE)
318 kfree(hash);
319 else
320 free_pages((unsigned long)hash, get_order(size));
321 }
322
323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
324 {
325 struct neighbour **new_hash, **old_hash;
326 unsigned int i, new_hash_mask, old_entries;
327
328 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
329
330 BUG_ON(!is_power_of_2(new_entries));
331 new_hash = neigh_hash_alloc(new_entries);
332 if (!new_hash)
333 return;
334
335 old_entries = tbl->hash_mask + 1;
336 new_hash_mask = new_entries - 1;
337 old_hash = tbl->hash_buckets;
338
339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
340 for (i = 0; i < old_entries; i++) {
341 struct neighbour *n, *next;
342
343 for (n = old_hash[i]; n; n = next) {
344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
345
346 hash_val &= new_hash_mask;
347 next = n->next;
348
349 n->next = new_hash[hash_val];
350 new_hash[hash_val] = n;
351 }
352 }
353 tbl->hash_buckets = new_hash;
354 tbl->hash_mask = new_hash_mask;
355
356 neigh_hash_free(old_hash, old_entries);
357 }
358
359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
360 struct net_device *dev)
361 {
362 struct neighbour *n;
363 int key_len = tbl->key_len;
364 u32 hash_val;
365
366 NEIGH_CACHE_STAT_INC(tbl, lookups);
367
368 read_lock_bh(&tbl->lock);
369 hash_val = tbl->hash(pkey, dev);
370 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
371 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
372 neigh_hold(n);
373 NEIGH_CACHE_STAT_INC(tbl, hits);
374 break;
375 }
376 }
377 read_unlock_bh(&tbl->lock);
378 return n;
379 }
380 EXPORT_SYMBOL(neigh_lookup);
381
382 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
383 const void *pkey)
384 {
385 struct neighbour *n;
386 int key_len = tbl->key_len;
387 u32 hash_val;
388
389 NEIGH_CACHE_STAT_INC(tbl, lookups);
390
391 read_lock_bh(&tbl->lock);
392 hash_val = tbl->hash(pkey, NULL);
393 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
394 if (!memcmp(n->primary_key, pkey, key_len) &&
395 net_eq(dev_net(n->dev), net)) {
396 neigh_hold(n);
397 NEIGH_CACHE_STAT_INC(tbl, hits);
398 break;
399 }
400 }
401 read_unlock_bh(&tbl->lock);
402 return n;
403 }
404 EXPORT_SYMBOL(neigh_lookup_nodev);
405
406 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
407 struct net_device *dev)
408 {
409 u32 hash_val;
410 int key_len = tbl->key_len;
411 int error;
412 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
413
414 if (!n) {
415 rc = ERR_PTR(-ENOBUFS);
416 goto out;
417 }
418
419 memcpy(n->primary_key, pkey, key_len);
420 n->dev = dev;
421 dev_hold(dev);
422
423 /* Protocol specific setup. */
424 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
425 rc = ERR_PTR(error);
426 goto out_neigh_release;
427 }
428
429 /* Device specific setup. */
430 if (n->parms->neigh_setup &&
431 (error = n->parms->neigh_setup(n)) < 0) {
432 rc = ERR_PTR(error);
433 goto out_neigh_release;
434 }
435
436 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
437
438 write_lock_bh(&tbl->lock);
439
440 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
441 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
442
443 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
444
445 if (n->parms->dead) {
446 rc = ERR_PTR(-EINVAL);
447 goto out_tbl_unlock;
448 }
449
450 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
451 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
452 neigh_hold(n1);
453 rc = n1;
454 goto out_tbl_unlock;
455 }
456 }
457
458 n->next = tbl->hash_buckets[hash_val];
459 tbl->hash_buckets[hash_val] = n;
460 n->dead = 0;
461 neigh_hold(n);
462 write_unlock_bh(&tbl->lock);
463 NEIGH_PRINTK2("neigh %p is created.\n", n);
464 rc = n;
465 out:
466 return rc;
467 out_tbl_unlock:
468 write_unlock_bh(&tbl->lock);
469 out_neigh_release:
470 neigh_release(n);
471 goto out;
472 }
473 EXPORT_SYMBOL(neigh_create);
474
475 static u32 pneigh_hash(const void *pkey, int key_len)
476 {
477 u32 hash_val = *(u32 *)(pkey + key_len - 4);
478 hash_val ^= (hash_val >> 16);
479 hash_val ^= hash_val >> 8;
480 hash_val ^= hash_val >> 4;
481 hash_val &= PNEIGH_HASHMASK;
482 return hash_val;
483 }
484
485 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
486 struct net *net,
487 const void *pkey,
488 int key_len,
489 struct net_device *dev)
490 {
491 while (n) {
492 if (!memcmp(n->key, pkey, key_len) &&
493 net_eq(pneigh_net(n), net) &&
494 (n->dev == dev || !n->dev))
495 return n;
496 n = n->next;
497 }
498 return NULL;
499 }
500
501 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
502 struct net *net, const void *pkey, struct net_device *dev)
503 {
504 int key_len = tbl->key_len;
505 u32 hash_val = pneigh_hash(pkey, key_len);
506
507 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
508 net, pkey, key_len, dev);
509 }
510 EXPORT_SYMBOL_GPL(__pneigh_lookup);
511
512 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
513 struct net *net, const void *pkey,
514 struct net_device *dev, int creat)
515 {
516 struct pneigh_entry *n;
517 int key_len = tbl->key_len;
518 u32 hash_val = pneigh_hash(pkey, key_len);
519
520 read_lock_bh(&tbl->lock);
521 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
522 net, pkey, key_len, dev);
523 read_unlock_bh(&tbl->lock);
524
525 if (n || !creat)
526 goto out;
527
528 ASSERT_RTNL();
529
530 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
531 if (!n)
532 goto out;
533
534 write_pnet(&n->net, hold_net(net));
535 memcpy(n->key, pkey, key_len);
536 n->dev = dev;
537 if (dev)
538 dev_hold(dev);
539
540 if (tbl->pconstructor && tbl->pconstructor(n)) {
541 if (dev)
542 dev_put(dev);
543 release_net(net);
544 kfree(n);
545 n = NULL;
546 goto out;
547 }
548
549 write_lock_bh(&tbl->lock);
550 n->next = tbl->phash_buckets[hash_val];
551 tbl->phash_buckets[hash_val] = n;
552 write_unlock_bh(&tbl->lock);
553 out:
554 return n;
555 }
556 EXPORT_SYMBOL(pneigh_lookup);
557
558
559 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
560 struct net_device *dev)
561 {
562 struct pneigh_entry *n, **np;
563 int key_len = tbl->key_len;
564 u32 hash_val = pneigh_hash(pkey, key_len);
565
566 write_lock_bh(&tbl->lock);
567 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
568 np = &n->next) {
569 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
570 net_eq(pneigh_net(n), net)) {
571 *np = n->next;
572 write_unlock_bh(&tbl->lock);
573 if (tbl->pdestructor)
574 tbl->pdestructor(n);
575 if (n->dev)
576 dev_put(n->dev);
577 release_net(pneigh_net(n));
578 kfree(n);
579 return 0;
580 }
581 }
582 write_unlock_bh(&tbl->lock);
583 return -ENOENT;
584 }
585
586 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
587 {
588 struct pneigh_entry *n, **np;
589 u32 h;
590
591 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
592 np = &tbl->phash_buckets[h];
593 while ((n = *np) != NULL) {
594 if (!dev || n->dev == dev) {
595 *np = n->next;
596 if (tbl->pdestructor)
597 tbl->pdestructor(n);
598 if (n->dev)
599 dev_put(n->dev);
600 release_net(pneigh_net(n));
601 kfree(n);
602 continue;
603 }
604 np = &n->next;
605 }
606 }
607 return -ENOENT;
608 }
609
610 static void neigh_parms_destroy(struct neigh_parms *parms);
611
612 static inline void neigh_parms_put(struct neigh_parms *parms)
613 {
614 if (atomic_dec_and_test(&parms->refcnt))
615 neigh_parms_destroy(parms);
616 }
617
618 /*
619 * neighbour must already be out of the table;
620 *
621 */
622 void neigh_destroy(struct neighbour *neigh)
623 {
624 struct hh_cache *hh;
625
626 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
627
628 if (!neigh->dead) {
629 printk(KERN_WARNING
630 "Destroying alive neighbour %p\n", neigh);
631 dump_stack();
632 return;
633 }
634
635 if (neigh_del_timer(neigh))
636 printk(KERN_WARNING "Impossible event.\n");
637
638 while ((hh = neigh->hh) != NULL) {
639 neigh->hh = hh->hh_next;
640 hh->hh_next = NULL;
641
642 write_seqlock_bh(&hh->hh_lock);
643 hh->hh_output = neigh_blackhole;
644 write_sequnlock_bh(&hh->hh_lock);
645 if (atomic_dec_and_test(&hh->hh_refcnt))
646 kfree(hh);
647 }
648
649 skb_queue_purge(&neigh->arp_queue);
650
651 dev_put(neigh->dev);
652 neigh_parms_put(neigh->parms);
653
654 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
655
656 atomic_dec(&neigh->tbl->entries);
657 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
658 }
659 EXPORT_SYMBOL(neigh_destroy);
660
661 /* Neighbour state is suspicious;
662 disable fast path.
663
664 Called with write_locked neigh.
665 */
666 static void neigh_suspect(struct neighbour *neigh)
667 {
668 struct hh_cache *hh;
669
670 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
671
672 neigh->output = neigh->ops->output;
673
674 for (hh = neigh->hh; hh; hh = hh->hh_next)
675 hh->hh_output = neigh->ops->output;
676 }
677
678 /* Neighbour state is OK;
679 enable fast path.
680
681 Called with write_locked neigh.
682 */
683 static void neigh_connect(struct neighbour *neigh)
684 {
685 struct hh_cache *hh;
686
687 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
688
689 neigh->output = neigh->ops->connected_output;
690
691 for (hh = neigh->hh; hh; hh = hh->hh_next)
692 hh->hh_output = neigh->ops->hh_output;
693 }
694
695 static void neigh_periodic_work(struct work_struct *work)
696 {
697 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
698 struct neighbour *n, **np;
699 unsigned int i;
700
701 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
702
703 write_lock_bh(&tbl->lock);
704
705 /*
706 * periodically recompute ReachableTime from random function
707 */
708
709 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
710 struct neigh_parms *p;
711 tbl->last_rand = jiffies;
712 for (p = &tbl->parms; p; p = p->next)
713 p->reachable_time =
714 neigh_rand_reach_time(p->base_reachable_time);
715 }
716
717 for (i = 0 ; i <= tbl->hash_mask; i++) {
718 np = &tbl->hash_buckets[i];
719
720 while ((n = *np) != NULL) {
721 unsigned int state;
722
723 write_lock(&n->lock);
724
725 state = n->nud_state;
726 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
727 write_unlock(&n->lock);
728 goto next_elt;
729 }
730
731 if (time_before(n->used, n->confirmed))
732 n->used = n->confirmed;
733
734 if (atomic_read(&n->refcnt) == 1 &&
735 (state == NUD_FAILED ||
736 time_after(jiffies, n->used + n->parms->gc_staletime))) {
737 *np = n->next;
738 n->dead = 1;
739 write_unlock(&n->lock);
740 neigh_cleanup_and_release(n);
741 continue;
742 }
743 write_unlock(&n->lock);
744
745 next_elt:
746 np = &n->next;
747 }
748 /*
749 * It's fine to release lock here, even if hash table
750 * grows while we are preempted.
751 */
752 write_unlock_bh(&tbl->lock);
753 cond_resched();
754 write_lock_bh(&tbl->lock);
755 }
756 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
757 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
758 * base_reachable_time.
759 */
760 schedule_delayed_work(&tbl->gc_work,
761 tbl->parms.base_reachable_time >> 1);
762 write_unlock_bh(&tbl->lock);
763 }
764
765 static __inline__ int neigh_max_probes(struct neighbour *n)
766 {
767 struct neigh_parms *p = n->parms;
768 return (n->nud_state & NUD_PROBE ?
769 p->ucast_probes :
770 p->ucast_probes + p->app_probes + p->mcast_probes);
771 }
772
773 static void neigh_invalidate(struct neighbour *neigh)
774 {
775 struct sk_buff *skb;
776
777 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
778 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
779 neigh->updated = jiffies;
780
781 /* It is very thin place. report_unreachable is very complicated
782 routine. Particularly, it can hit the same neighbour entry!
783
784 So that, we try to be accurate and avoid dead loop. --ANK
785 */
786 while (neigh->nud_state == NUD_FAILED &&
787 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
788 write_unlock(&neigh->lock);
789 neigh->ops->error_report(neigh, skb);
790 write_lock(&neigh->lock);
791 }
792 skb_queue_purge(&neigh->arp_queue);
793 }
794
795 /* Called when a timer expires for a neighbour entry. */
796
797 static void neigh_timer_handler(unsigned long arg)
798 {
799 unsigned long now, next;
800 struct neighbour *neigh = (struct neighbour *)arg;
801 unsigned state;
802 int notify = 0;
803
804 write_lock(&neigh->lock);
805
806 state = neigh->nud_state;
807 now = jiffies;
808 next = now + HZ;
809
810 if (!(state & NUD_IN_TIMER)) {
811 #ifndef CONFIG_SMP
812 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
813 #endif
814 goto out;
815 }
816
817 if (state & NUD_REACHABLE) {
818 if (time_before_eq(now,
819 neigh->confirmed + neigh->parms->reachable_time)) {
820 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
821 next = neigh->confirmed + neigh->parms->reachable_time;
822 } else if (time_before_eq(now,
823 neigh->used + neigh->parms->delay_probe_time)) {
824 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
825 neigh->nud_state = NUD_DELAY;
826 neigh->updated = jiffies;
827 neigh_suspect(neigh);
828 next = now + neigh->parms->delay_probe_time;
829 } else {
830 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
831 neigh->nud_state = NUD_STALE;
832 neigh->updated = jiffies;
833 neigh_suspect(neigh);
834 notify = 1;
835 }
836 } else if (state & NUD_DELAY) {
837 if (time_before_eq(now,
838 neigh->confirmed + neigh->parms->delay_probe_time)) {
839 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
840 neigh->nud_state = NUD_REACHABLE;
841 neigh->updated = jiffies;
842 neigh_connect(neigh);
843 notify = 1;
844 next = neigh->confirmed + neigh->parms->reachable_time;
845 } else {
846 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
847 neigh->nud_state = NUD_PROBE;
848 neigh->updated = jiffies;
849 atomic_set(&neigh->probes, 0);
850 next = now + neigh->parms->retrans_time;
851 }
852 } else {
853 /* NUD_PROBE|NUD_INCOMPLETE */
854 next = now + neigh->parms->retrans_time;
855 }
856
857 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
858 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
859 neigh->nud_state = NUD_FAILED;
860 notify = 1;
861 neigh_invalidate(neigh);
862 }
863
864 if (neigh->nud_state & NUD_IN_TIMER) {
865 if (time_before(next, jiffies + HZ/2))
866 next = jiffies + HZ/2;
867 if (!mod_timer(&neigh->timer, next))
868 neigh_hold(neigh);
869 }
870 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
871 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
872 /* keep skb alive even if arp_queue overflows */
873 if (skb)
874 skb = skb_copy(skb, GFP_ATOMIC);
875 write_unlock(&neigh->lock);
876 neigh->ops->solicit(neigh, skb);
877 atomic_inc(&neigh->probes);
878 kfree_skb(skb);
879 } else {
880 out:
881 write_unlock(&neigh->lock);
882 }
883
884 if (notify)
885 neigh_update_notify(neigh);
886
887 neigh_release(neigh);
888 }
889
890 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
891 {
892 int rc;
893 unsigned long now;
894
895 write_lock_bh(&neigh->lock);
896
897 rc = 0;
898 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
899 goto out_unlock_bh;
900
901 now = jiffies;
902
903 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
904 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
905 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
906 neigh->nud_state = NUD_INCOMPLETE;
907 neigh->updated = jiffies;
908 neigh_add_timer(neigh, now + 1);
909 } else {
910 neigh->nud_state = NUD_FAILED;
911 neigh->updated = jiffies;
912 write_unlock_bh(&neigh->lock);
913
914 kfree_skb(skb);
915 return 1;
916 }
917 } else if (neigh->nud_state & NUD_STALE) {
918 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
919 neigh->nud_state = NUD_DELAY;
920 neigh->updated = jiffies;
921 neigh_add_timer(neigh,
922 jiffies + neigh->parms->delay_probe_time);
923 }
924
925 if (neigh->nud_state == NUD_INCOMPLETE) {
926 if (skb) {
927 if (skb_queue_len(&neigh->arp_queue) >=
928 neigh->parms->queue_len) {
929 struct sk_buff *buff;
930 buff = __skb_dequeue(&neigh->arp_queue);
931 kfree_skb(buff);
932 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
933 }
934 __skb_queue_tail(&neigh->arp_queue, skb);
935 }
936 rc = 1;
937 }
938 out_unlock_bh:
939 write_unlock_bh(&neigh->lock);
940 return rc;
941 }
942 EXPORT_SYMBOL(__neigh_event_send);
943
944 static void neigh_update_hhs(struct neighbour *neigh)
945 {
946 struct hh_cache *hh;
947 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
948 = neigh->dev->header_ops->cache_update;
949
950 if (update) {
951 for (hh = neigh->hh; hh; hh = hh->hh_next) {
952 write_seqlock_bh(&hh->hh_lock);
953 update(hh, neigh->dev, neigh->ha);
954 write_sequnlock_bh(&hh->hh_lock);
955 }
956 }
957 }
958
959
960
961 /* Generic update routine.
962 -- lladdr is new lladdr or NULL, if it is not supplied.
963 -- new is new state.
964 -- flags
965 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
966 if it is different.
967 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
968 lladdr instead of overriding it
969 if it is different.
970 It also allows to retain current state
971 if lladdr is unchanged.
972 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
973
974 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
975 NTF_ROUTER flag.
976 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
977 a router.
978
979 Caller MUST hold reference count on the entry.
980 */
981
982 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
983 u32 flags)
984 {
985 u8 old;
986 int err;
987 int notify = 0;
988 struct net_device *dev;
989 int update_isrouter = 0;
990
991 write_lock_bh(&neigh->lock);
992
993 dev = neigh->dev;
994 old = neigh->nud_state;
995 err = -EPERM;
996
997 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
998 (old & (NUD_NOARP | NUD_PERMANENT)))
999 goto out;
1000
1001 if (!(new & NUD_VALID)) {
1002 neigh_del_timer(neigh);
1003 if (old & NUD_CONNECTED)
1004 neigh_suspect(neigh);
1005 neigh->nud_state = new;
1006 err = 0;
1007 notify = old & NUD_VALID;
1008 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1009 (new & NUD_FAILED)) {
1010 neigh_invalidate(neigh);
1011 notify = 1;
1012 }
1013 goto out;
1014 }
1015
1016 /* Compare new lladdr with cached one */
1017 if (!dev->addr_len) {
1018 /* First case: device needs no address. */
1019 lladdr = neigh->ha;
1020 } else if (lladdr) {
1021 /* The second case: if something is already cached
1022 and a new address is proposed:
1023 - compare new & old
1024 - if they are different, check override flag
1025 */
1026 if ((old & NUD_VALID) &&
1027 !memcmp(lladdr, neigh->ha, dev->addr_len))
1028 lladdr = neigh->ha;
1029 } else {
1030 /* No address is supplied; if we know something,
1031 use it, otherwise discard the request.
1032 */
1033 err = -EINVAL;
1034 if (!(old & NUD_VALID))
1035 goto out;
1036 lladdr = neigh->ha;
1037 }
1038
1039 if (new & NUD_CONNECTED)
1040 neigh->confirmed = jiffies;
1041 neigh->updated = jiffies;
1042
1043 /* If entry was valid and address is not changed,
1044 do not change entry state, if new one is STALE.
1045 */
1046 err = 0;
1047 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1048 if (old & NUD_VALID) {
1049 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1050 update_isrouter = 0;
1051 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1052 (old & NUD_CONNECTED)) {
1053 lladdr = neigh->ha;
1054 new = NUD_STALE;
1055 } else
1056 goto out;
1057 } else {
1058 if (lladdr == neigh->ha && new == NUD_STALE &&
1059 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1060 (old & NUD_CONNECTED))
1061 )
1062 new = old;
1063 }
1064 }
1065
1066 if (new != old) {
1067 neigh_del_timer(neigh);
1068 if (new & NUD_IN_TIMER)
1069 neigh_add_timer(neigh, (jiffies +
1070 ((new & NUD_REACHABLE) ?
1071 neigh->parms->reachable_time :
1072 0)));
1073 neigh->nud_state = new;
1074 }
1075
1076 if (lladdr != neigh->ha) {
1077 memcpy(&neigh->ha, lladdr, dev->addr_len);
1078 neigh_update_hhs(neigh);
1079 if (!(new & NUD_CONNECTED))
1080 neigh->confirmed = jiffies -
1081 (neigh->parms->base_reachable_time << 1);
1082 notify = 1;
1083 }
1084 if (new == old)
1085 goto out;
1086 if (new & NUD_CONNECTED)
1087 neigh_connect(neigh);
1088 else
1089 neigh_suspect(neigh);
1090 if (!(old & NUD_VALID)) {
1091 struct sk_buff *skb;
1092
1093 /* Again: avoid dead loop if something went wrong */
1094
1095 while (neigh->nud_state & NUD_VALID &&
1096 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1097 struct neighbour *n1 = neigh;
1098 write_unlock_bh(&neigh->lock);
1099 /* On shaper/eql skb->dst->neighbour != neigh :( */
1100 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1101 n1 = skb_dst(skb)->neighbour;
1102 n1->output(skb);
1103 write_lock_bh(&neigh->lock);
1104 }
1105 skb_queue_purge(&neigh->arp_queue);
1106 }
1107 out:
1108 if (update_isrouter) {
1109 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1110 (neigh->flags | NTF_ROUTER) :
1111 (neigh->flags & ~NTF_ROUTER);
1112 }
1113 write_unlock_bh(&neigh->lock);
1114
1115 if (notify)
1116 neigh_update_notify(neigh);
1117
1118 return err;
1119 }
1120 EXPORT_SYMBOL(neigh_update);
1121
1122 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1123 u8 *lladdr, void *saddr,
1124 struct net_device *dev)
1125 {
1126 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1127 lladdr || !dev->addr_len);
1128 if (neigh)
1129 neigh_update(neigh, lladdr, NUD_STALE,
1130 NEIGH_UPDATE_F_OVERRIDE);
1131 return neigh;
1132 }
1133 EXPORT_SYMBOL(neigh_event_ns);
1134
1135 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1136 __be16 protocol)
1137 {
1138 struct hh_cache *hh;
1139 struct net_device *dev = dst->dev;
1140
1141 for (hh = n->hh; hh; hh = hh->hh_next)
1142 if (hh->hh_type == protocol)
1143 break;
1144
1145 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1146 seqlock_init(&hh->hh_lock);
1147 hh->hh_type = protocol;
1148 atomic_set(&hh->hh_refcnt, 0);
1149 hh->hh_next = NULL;
1150
1151 if (dev->header_ops->cache(n, hh)) {
1152 kfree(hh);
1153 hh = NULL;
1154 } else {
1155 atomic_inc(&hh->hh_refcnt);
1156 hh->hh_next = n->hh;
1157 n->hh = hh;
1158 if (n->nud_state & NUD_CONNECTED)
1159 hh->hh_output = n->ops->hh_output;
1160 else
1161 hh->hh_output = n->ops->output;
1162 }
1163 }
1164 if (hh) {
1165 atomic_inc(&hh->hh_refcnt);
1166 dst->hh = hh;
1167 }
1168 }
1169
1170 /* This function can be used in contexts, where only old dev_queue_xmit
1171 worked, f.e. if you want to override normal output path (eql, shaper),
1172 but resolution is not made yet.
1173 */
1174
1175 int neigh_compat_output(struct sk_buff *skb)
1176 {
1177 struct net_device *dev = skb->dev;
1178
1179 __skb_pull(skb, skb_network_offset(skb));
1180
1181 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1182 skb->len) < 0 &&
1183 dev->header_ops->rebuild(skb))
1184 return 0;
1185
1186 return dev_queue_xmit(skb);
1187 }
1188 EXPORT_SYMBOL(neigh_compat_output);
1189
1190 /* Slow and careful. */
1191
1192 int neigh_resolve_output(struct sk_buff *skb)
1193 {
1194 struct dst_entry *dst = skb_dst(skb);
1195 struct neighbour *neigh;
1196 int rc = 0;
1197
1198 if (!dst || !(neigh = dst->neighbour))
1199 goto discard;
1200
1201 __skb_pull(skb, skb_network_offset(skb));
1202
1203 if (!neigh_event_send(neigh, skb)) {
1204 int err;
1205 struct net_device *dev = neigh->dev;
1206 if (dev->header_ops->cache && !dst->hh) {
1207 write_lock_bh(&neigh->lock);
1208 if (!dst->hh)
1209 neigh_hh_init(neigh, dst, dst->ops->protocol);
1210 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1211 neigh->ha, NULL, skb->len);
1212 write_unlock_bh(&neigh->lock);
1213 } else {
1214 read_lock_bh(&neigh->lock);
1215 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1216 neigh->ha, NULL, skb->len);
1217 read_unlock_bh(&neigh->lock);
1218 }
1219 if (err >= 0)
1220 rc = neigh->ops->queue_xmit(skb);
1221 else
1222 goto out_kfree_skb;
1223 }
1224 out:
1225 return rc;
1226 discard:
1227 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1228 dst, dst ? dst->neighbour : NULL);
1229 out_kfree_skb:
1230 rc = -EINVAL;
1231 kfree_skb(skb);
1232 goto out;
1233 }
1234 EXPORT_SYMBOL(neigh_resolve_output);
1235
1236 /* As fast as possible without hh cache */
1237
1238 int neigh_connected_output(struct sk_buff *skb)
1239 {
1240 int err;
1241 struct dst_entry *dst = skb_dst(skb);
1242 struct neighbour *neigh = dst->neighbour;
1243 struct net_device *dev = neigh->dev;
1244
1245 __skb_pull(skb, skb_network_offset(skb));
1246
1247 read_lock_bh(&neigh->lock);
1248 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1249 neigh->ha, NULL, skb->len);
1250 read_unlock_bh(&neigh->lock);
1251 if (err >= 0)
1252 err = neigh->ops->queue_xmit(skb);
1253 else {
1254 err = -EINVAL;
1255 kfree_skb(skb);
1256 }
1257 return err;
1258 }
1259 EXPORT_SYMBOL(neigh_connected_output);
1260
1261 static void neigh_proxy_process(unsigned long arg)
1262 {
1263 struct neigh_table *tbl = (struct neigh_table *)arg;
1264 long sched_next = 0;
1265 unsigned long now = jiffies;
1266 struct sk_buff *skb, *n;
1267
1268 spin_lock(&tbl->proxy_queue.lock);
1269
1270 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1271 long tdif = NEIGH_CB(skb)->sched_next - now;
1272
1273 if (tdif <= 0) {
1274 struct net_device *dev = skb->dev;
1275 __skb_unlink(skb, &tbl->proxy_queue);
1276 if (tbl->proxy_redo && netif_running(dev))
1277 tbl->proxy_redo(skb);
1278 else
1279 kfree_skb(skb);
1280
1281 dev_put(dev);
1282 } else if (!sched_next || tdif < sched_next)
1283 sched_next = tdif;
1284 }
1285 del_timer(&tbl->proxy_timer);
1286 if (sched_next)
1287 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1288 spin_unlock(&tbl->proxy_queue.lock);
1289 }
1290
1291 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1292 struct sk_buff *skb)
1293 {
1294 unsigned long now = jiffies;
1295 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1296
1297 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1298 kfree_skb(skb);
1299 return;
1300 }
1301
1302 NEIGH_CB(skb)->sched_next = sched_next;
1303 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1304
1305 spin_lock(&tbl->proxy_queue.lock);
1306 if (del_timer(&tbl->proxy_timer)) {
1307 if (time_before(tbl->proxy_timer.expires, sched_next))
1308 sched_next = tbl->proxy_timer.expires;
1309 }
1310 skb_dst_drop(skb);
1311 dev_hold(skb->dev);
1312 __skb_queue_tail(&tbl->proxy_queue, skb);
1313 mod_timer(&tbl->proxy_timer, sched_next);
1314 spin_unlock(&tbl->proxy_queue.lock);
1315 }
1316 EXPORT_SYMBOL(pneigh_enqueue);
1317
1318 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1319 struct net *net, int ifindex)
1320 {
1321 struct neigh_parms *p;
1322
1323 for (p = &tbl->parms; p; p = p->next) {
1324 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1325 (!p->dev && !ifindex))
1326 return p;
1327 }
1328
1329 return NULL;
1330 }
1331
1332 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1333 struct neigh_table *tbl)
1334 {
1335 struct neigh_parms *p, *ref;
1336 struct net *net = dev_net(dev);
1337 const struct net_device_ops *ops = dev->netdev_ops;
1338
1339 ref = lookup_neigh_parms(tbl, net, 0);
1340 if (!ref)
1341 return NULL;
1342
1343 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1344 if (p) {
1345 p->tbl = tbl;
1346 atomic_set(&p->refcnt, 1);
1347 p->reachable_time =
1348 neigh_rand_reach_time(p->base_reachable_time);
1349
1350 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1351 kfree(p);
1352 return NULL;
1353 }
1354
1355 dev_hold(dev);
1356 p->dev = dev;
1357 write_pnet(&p->net, hold_net(net));
1358 p->sysctl_table = NULL;
1359 write_lock_bh(&tbl->lock);
1360 p->next = tbl->parms.next;
1361 tbl->parms.next = p;
1362 write_unlock_bh(&tbl->lock);
1363 }
1364 return p;
1365 }
1366 EXPORT_SYMBOL(neigh_parms_alloc);
1367
1368 static void neigh_rcu_free_parms(struct rcu_head *head)
1369 {
1370 struct neigh_parms *parms =
1371 container_of(head, struct neigh_parms, rcu_head);
1372
1373 neigh_parms_put(parms);
1374 }
1375
1376 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1377 {
1378 struct neigh_parms **p;
1379
1380 if (!parms || parms == &tbl->parms)
1381 return;
1382 write_lock_bh(&tbl->lock);
1383 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1384 if (*p == parms) {
1385 *p = parms->next;
1386 parms->dead = 1;
1387 write_unlock_bh(&tbl->lock);
1388 if (parms->dev)
1389 dev_put(parms->dev);
1390 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1391 return;
1392 }
1393 }
1394 write_unlock_bh(&tbl->lock);
1395 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1396 }
1397 EXPORT_SYMBOL(neigh_parms_release);
1398
1399 static void neigh_parms_destroy(struct neigh_parms *parms)
1400 {
1401 release_net(neigh_parms_net(parms));
1402 kfree(parms);
1403 }
1404
1405 static struct lock_class_key neigh_table_proxy_queue_class;
1406
1407 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1408 {
1409 unsigned long now = jiffies;
1410 unsigned long phsize;
1411
1412 write_pnet(&tbl->parms.net, &init_net);
1413 atomic_set(&tbl->parms.refcnt, 1);
1414 tbl->parms.reachable_time =
1415 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1416
1417 if (!tbl->kmem_cachep)
1418 tbl->kmem_cachep =
1419 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1420 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1421 NULL);
1422 tbl->stats = alloc_percpu(struct neigh_statistics);
1423 if (!tbl->stats)
1424 panic("cannot create neighbour cache statistics");
1425
1426 #ifdef CONFIG_PROC_FS
1427 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1428 &neigh_stat_seq_fops, tbl))
1429 panic("cannot create neighbour proc dir entry");
1430 #endif
1431
1432 tbl->hash_mask = 1;
1433 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1434
1435 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1436 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1437
1438 if (!tbl->hash_buckets || !tbl->phash_buckets)
1439 panic("cannot allocate neighbour cache hashes");
1440
1441 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1442
1443 rwlock_init(&tbl->lock);
1444 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1445 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1446 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1447 skb_queue_head_init_class(&tbl->proxy_queue,
1448 &neigh_table_proxy_queue_class);
1449
1450 tbl->last_flush = now;
1451 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1452 }
1453 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1454
1455 void neigh_table_init(struct neigh_table *tbl)
1456 {
1457 struct neigh_table *tmp;
1458
1459 neigh_table_init_no_netlink(tbl);
1460 write_lock(&neigh_tbl_lock);
1461 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1462 if (tmp->family == tbl->family)
1463 break;
1464 }
1465 tbl->next = neigh_tables;
1466 neigh_tables = tbl;
1467 write_unlock(&neigh_tbl_lock);
1468
1469 if (unlikely(tmp)) {
1470 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1471 "family %d\n", tbl->family);
1472 dump_stack();
1473 }
1474 }
1475 EXPORT_SYMBOL(neigh_table_init);
1476
1477 int neigh_table_clear(struct neigh_table *tbl)
1478 {
1479 struct neigh_table **tp;
1480
1481 /* It is not clean... Fix it to unload IPv6 module safely */
1482 cancel_delayed_work(&tbl->gc_work);
1483 flush_scheduled_work();
1484 del_timer_sync(&tbl->proxy_timer);
1485 pneigh_queue_purge(&tbl->proxy_queue);
1486 neigh_ifdown(tbl, NULL);
1487 if (atomic_read(&tbl->entries))
1488 printk(KERN_CRIT "neighbour leakage\n");
1489 write_lock(&neigh_tbl_lock);
1490 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1491 if (*tp == tbl) {
1492 *tp = tbl->next;
1493 break;
1494 }
1495 }
1496 write_unlock(&neigh_tbl_lock);
1497
1498 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1499 tbl->hash_buckets = NULL;
1500
1501 kfree(tbl->phash_buckets);
1502 tbl->phash_buckets = NULL;
1503
1504 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1505
1506 free_percpu(tbl->stats);
1507 tbl->stats = NULL;
1508
1509 kmem_cache_destroy(tbl->kmem_cachep);
1510 tbl->kmem_cachep = NULL;
1511
1512 return 0;
1513 }
1514 EXPORT_SYMBOL(neigh_table_clear);
1515
1516 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1517 {
1518 struct net *net = sock_net(skb->sk);
1519 struct ndmsg *ndm;
1520 struct nlattr *dst_attr;
1521 struct neigh_table *tbl;
1522 struct net_device *dev = NULL;
1523 int err = -EINVAL;
1524
1525 if (nlmsg_len(nlh) < sizeof(*ndm))
1526 goto out;
1527
1528 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1529 if (dst_attr == NULL)
1530 goto out;
1531
1532 ndm = nlmsg_data(nlh);
1533 if (ndm->ndm_ifindex) {
1534 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1535 if (dev == NULL) {
1536 err = -ENODEV;
1537 goto out;
1538 }
1539 }
1540
1541 read_lock(&neigh_tbl_lock);
1542 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1543 struct neighbour *neigh;
1544
1545 if (tbl->family != ndm->ndm_family)
1546 continue;
1547 read_unlock(&neigh_tbl_lock);
1548
1549 if (nla_len(dst_attr) < tbl->key_len)
1550 goto out_dev_put;
1551
1552 if (ndm->ndm_flags & NTF_PROXY) {
1553 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1554 goto out_dev_put;
1555 }
1556
1557 if (dev == NULL)
1558 goto out_dev_put;
1559
1560 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1561 if (neigh == NULL) {
1562 err = -ENOENT;
1563 goto out_dev_put;
1564 }
1565
1566 err = neigh_update(neigh, NULL, NUD_FAILED,
1567 NEIGH_UPDATE_F_OVERRIDE |
1568 NEIGH_UPDATE_F_ADMIN);
1569 neigh_release(neigh);
1570 goto out_dev_put;
1571 }
1572 read_unlock(&neigh_tbl_lock);
1573 err = -EAFNOSUPPORT;
1574
1575 out_dev_put:
1576 if (dev)
1577 dev_put(dev);
1578 out:
1579 return err;
1580 }
1581
1582 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1583 {
1584 struct net *net = sock_net(skb->sk);
1585 struct ndmsg *ndm;
1586 struct nlattr *tb[NDA_MAX+1];
1587 struct neigh_table *tbl;
1588 struct net_device *dev = NULL;
1589 int err;
1590
1591 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1592 if (err < 0)
1593 goto out;
1594
1595 err = -EINVAL;
1596 if (tb[NDA_DST] == NULL)
1597 goto out;
1598
1599 ndm = nlmsg_data(nlh);
1600 if (ndm->ndm_ifindex) {
1601 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1602 if (dev == NULL) {
1603 err = -ENODEV;
1604 goto out;
1605 }
1606
1607 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1608 goto out_dev_put;
1609 }
1610
1611 read_lock(&neigh_tbl_lock);
1612 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1613 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1614 struct neighbour *neigh;
1615 void *dst, *lladdr;
1616
1617 if (tbl->family != ndm->ndm_family)
1618 continue;
1619 read_unlock(&neigh_tbl_lock);
1620
1621 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1622 goto out_dev_put;
1623 dst = nla_data(tb[NDA_DST]);
1624 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1625
1626 if (ndm->ndm_flags & NTF_PROXY) {
1627 struct pneigh_entry *pn;
1628
1629 err = -ENOBUFS;
1630 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1631 if (pn) {
1632 pn->flags = ndm->ndm_flags;
1633 err = 0;
1634 }
1635 goto out_dev_put;
1636 }
1637
1638 if (dev == NULL)
1639 goto out_dev_put;
1640
1641 neigh = neigh_lookup(tbl, dst, dev);
1642 if (neigh == NULL) {
1643 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1644 err = -ENOENT;
1645 goto out_dev_put;
1646 }
1647
1648 neigh = __neigh_lookup_errno(tbl, dst, dev);
1649 if (IS_ERR(neigh)) {
1650 err = PTR_ERR(neigh);
1651 goto out_dev_put;
1652 }
1653 } else {
1654 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1655 err = -EEXIST;
1656 neigh_release(neigh);
1657 goto out_dev_put;
1658 }
1659
1660 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1661 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1662 }
1663
1664 if (ndm->ndm_flags & NTF_USE) {
1665 neigh_event_send(neigh, NULL);
1666 err = 0;
1667 } else
1668 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1669 neigh_release(neigh);
1670 goto out_dev_put;
1671 }
1672
1673 read_unlock(&neigh_tbl_lock);
1674 err = -EAFNOSUPPORT;
1675
1676 out_dev_put:
1677 if (dev)
1678 dev_put(dev);
1679 out:
1680 return err;
1681 }
1682
1683 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1684 {
1685 struct nlattr *nest;
1686
1687 nest = nla_nest_start(skb, NDTA_PARMS);
1688 if (nest == NULL)
1689 return -ENOBUFS;
1690
1691 if (parms->dev)
1692 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1693
1694 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1695 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1696 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1697 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1698 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1699 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1700 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1701 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1702 parms->base_reachable_time);
1703 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1704 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1705 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1706 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1707 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1708 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1709
1710 return nla_nest_end(skb, nest);
1711
1712 nla_put_failure:
1713 nla_nest_cancel(skb, nest);
1714 return -EMSGSIZE;
1715 }
1716
1717 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1718 u32 pid, u32 seq, int type, int flags)
1719 {
1720 struct nlmsghdr *nlh;
1721 struct ndtmsg *ndtmsg;
1722
1723 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1724 if (nlh == NULL)
1725 return -EMSGSIZE;
1726
1727 ndtmsg = nlmsg_data(nlh);
1728
1729 read_lock_bh(&tbl->lock);
1730 ndtmsg->ndtm_family = tbl->family;
1731 ndtmsg->ndtm_pad1 = 0;
1732 ndtmsg->ndtm_pad2 = 0;
1733
1734 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1735 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1736 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1737 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1738 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1739
1740 {
1741 unsigned long now = jiffies;
1742 unsigned int flush_delta = now - tbl->last_flush;
1743 unsigned int rand_delta = now - tbl->last_rand;
1744
1745 struct ndt_config ndc = {
1746 .ndtc_key_len = tbl->key_len,
1747 .ndtc_entry_size = tbl->entry_size,
1748 .ndtc_entries = atomic_read(&tbl->entries),
1749 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1750 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1751 .ndtc_hash_rnd = tbl->hash_rnd,
1752 .ndtc_hash_mask = tbl->hash_mask,
1753 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1754 };
1755
1756 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1757 }
1758
1759 {
1760 int cpu;
1761 struct ndt_stats ndst;
1762
1763 memset(&ndst, 0, sizeof(ndst));
1764
1765 for_each_possible_cpu(cpu) {
1766 struct neigh_statistics *st;
1767
1768 st = per_cpu_ptr(tbl->stats, cpu);
1769 ndst.ndts_allocs += st->allocs;
1770 ndst.ndts_destroys += st->destroys;
1771 ndst.ndts_hash_grows += st->hash_grows;
1772 ndst.ndts_res_failed += st->res_failed;
1773 ndst.ndts_lookups += st->lookups;
1774 ndst.ndts_hits += st->hits;
1775 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1776 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1777 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1778 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1779 }
1780
1781 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1782 }
1783
1784 BUG_ON(tbl->parms.dev);
1785 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1786 goto nla_put_failure;
1787
1788 read_unlock_bh(&tbl->lock);
1789 return nlmsg_end(skb, nlh);
1790
1791 nla_put_failure:
1792 read_unlock_bh(&tbl->lock);
1793 nlmsg_cancel(skb, nlh);
1794 return -EMSGSIZE;
1795 }
1796
1797 static int neightbl_fill_param_info(struct sk_buff *skb,
1798 struct neigh_table *tbl,
1799 struct neigh_parms *parms,
1800 u32 pid, u32 seq, int type,
1801 unsigned int flags)
1802 {
1803 struct ndtmsg *ndtmsg;
1804 struct nlmsghdr *nlh;
1805
1806 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1807 if (nlh == NULL)
1808 return -EMSGSIZE;
1809
1810 ndtmsg = nlmsg_data(nlh);
1811
1812 read_lock_bh(&tbl->lock);
1813 ndtmsg->ndtm_family = tbl->family;
1814 ndtmsg->ndtm_pad1 = 0;
1815 ndtmsg->ndtm_pad2 = 0;
1816
1817 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1818 neightbl_fill_parms(skb, parms) < 0)
1819 goto errout;
1820
1821 read_unlock_bh(&tbl->lock);
1822 return nlmsg_end(skb, nlh);
1823 errout:
1824 read_unlock_bh(&tbl->lock);
1825 nlmsg_cancel(skb, nlh);
1826 return -EMSGSIZE;
1827 }
1828
1829 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1830 [NDTA_NAME] = { .type = NLA_STRING },
1831 [NDTA_THRESH1] = { .type = NLA_U32 },
1832 [NDTA_THRESH2] = { .type = NLA_U32 },
1833 [NDTA_THRESH3] = { .type = NLA_U32 },
1834 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1835 [NDTA_PARMS] = { .type = NLA_NESTED },
1836 };
1837
1838 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1839 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1840 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1841 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1842 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1843 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1844 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1845 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1846 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1847 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1848 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1849 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1850 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1851 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1852 };
1853
1854 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1855 {
1856 struct net *net = sock_net(skb->sk);
1857 struct neigh_table *tbl;
1858 struct ndtmsg *ndtmsg;
1859 struct nlattr *tb[NDTA_MAX+1];
1860 int err;
1861
1862 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1863 nl_neightbl_policy);
1864 if (err < 0)
1865 goto errout;
1866
1867 if (tb[NDTA_NAME] == NULL) {
1868 err = -EINVAL;
1869 goto errout;
1870 }
1871
1872 ndtmsg = nlmsg_data(nlh);
1873 read_lock(&neigh_tbl_lock);
1874 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1875 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1876 continue;
1877
1878 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1879 break;
1880 }
1881
1882 if (tbl == NULL) {
1883 err = -ENOENT;
1884 goto errout_locked;
1885 }
1886
1887 /*
1888 * We acquire tbl->lock to be nice to the periodic timers and
1889 * make sure they always see a consistent set of values.
1890 */
1891 write_lock_bh(&tbl->lock);
1892
1893 if (tb[NDTA_PARMS]) {
1894 struct nlattr *tbp[NDTPA_MAX+1];
1895 struct neigh_parms *p;
1896 int i, ifindex = 0;
1897
1898 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1899 nl_ntbl_parm_policy);
1900 if (err < 0)
1901 goto errout_tbl_lock;
1902
1903 if (tbp[NDTPA_IFINDEX])
1904 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1905
1906 p = lookup_neigh_parms(tbl, net, ifindex);
1907 if (p == NULL) {
1908 err = -ENOENT;
1909 goto errout_tbl_lock;
1910 }
1911
1912 for (i = 1; i <= NDTPA_MAX; i++) {
1913 if (tbp[i] == NULL)
1914 continue;
1915
1916 switch (i) {
1917 case NDTPA_QUEUE_LEN:
1918 p->queue_len = nla_get_u32(tbp[i]);
1919 break;
1920 case NDTPA_PROXY_QLEN:
1921 p->proxy_qlen = nla_get_u32(tbp[i]);
1922 break;
1923 case NDTPA_APP_PROBES:
1924 p->app_probes = nla_get_u32(tbp[i]);
1925 break;
1926 case NDTPA_UCAST_PROBES:
1927 p->ucast_probes = nla_get_u32(tbp[i]);
1928 break;
1929 case NDTPA_MCAST_PROBES:
1930 p->mcast_probes = nla_get_u32(tbp[i]);
1931 break;
1932 case NDTPA_BASE_REACHABLE_TIME:
1933 p->base_reachable_time = nla_get_msecs(tbp[i]);
1934 break;
1935 case NDTPA_GC_STALETIME:
1936 p->gc_staletime = nla_get_msecs(tbp[i]);
1937 break;
1938 case NDTPA_DELAY_PROBE_TIME:
1939 p->delay_probe_time = nla_get_msecs(tbp[i]);
1940 break;
1941 case NDTPA_RETRANS_TIME:
1942 p->retrans_time = nla_get_msecs(tbp[i]);
1943 break;
1944 case NDTPA_ANYCAST_DELAY:
1945 p->anycast_delay = nla_get_msecs(tbp[i]);
1946 break;
1947 case NDTPA_PROXY_DELAY:
1948 p->proxy_delay = nla_get_msecs(tbp[i]);
1949 break;
1950 case NDTPA_LOCKTIME:
1951 p->locktime = nla_get_msecs(tbp[i]);
1952 break;
1953 }
1954 }
1955 }
1956
1957 if (tb[NDTA_THRESH1])
1958 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1959
1960 if (tb[NDTA_THRESH2])
1961 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1962
1963 if (tb[NDTA_THRESH3])
1964 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1965
1966 if (tb[NDTA_GC_INTERVAL])
1967 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1968
1969 err = 0;
1970
1971 errout_tbl_lock:
1972 write_unlock_bh(&tbl->lock);
1973 errout_locked:
1974 read_unlock(&neigh_tbl_lock);
1975 errout:
1976 return err;
1977 }
1978
1979 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1980 {
1981 struct net *net = sock_net(skb->sk);
1982 int family, tidx, nidx = 0;
1983 int tbl_skip = cb->args[0];
1984 int neigh_skip = cb->args[1];
1985 struct neigh_table *tbl;
1986
1987 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1988
1989 read_lock(&neigh_tbl_lock);
1990 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1991 struct neigh_parms *p;
1992
1993 if (tidx < tbl_skip || (family && tbl->family != family))
1994 continue;
1995
1996 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1997 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1998 NLM_F_MULTI) <= 0)
1999 break;
2000
2001 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2002 if (!net_eq(neigh_parms_net(p), net))
2003 continue;
2004
2005 if (nidx < neigh_skip)
2006 goto next;
2007
2008 if (neightbl_fill_param_info(skb, tbl, p,
2009 NETLINK_CB(cb->skb).pid,
2010 cb->nlh->nlmsg_seq,
2011 RTM_NEWNEIGHTBL,
2012 NLM_F_MULTI) <= 0)
2013 goto out;
2014 next:
2015 nidx++;
2016 }
2017
2018 neigh_skip = 0;
2019 }
2020 out:
2021 read_unlock(&neigh_tbl_lock);
2022 cb->args[0] = tidx;
2023 cb->args[1] = nidx;
2024
2025 return skb->len;
2026 }
2027
2028 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2029 u32 pid, u32 seq, int type, unsigned int flags)
2030 {
2031 unsigned long now = jiffies;
2032 struct nda_cacheinfo ci;
2033 struct nlmsghdr *nlh;
2034 struct ndmsg *ndm;
2035
2036 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2037 if (nlh == NULL)
2038 return -EMSGSIZE;
2039
2040 ndm = nlmsg_data(nlh);
2041 ndm->ndm_family = neigh->ops->family;
2042 ndm->ndm_pad1 = 0;
2043 ndm->ndm_pad2 = 0;
2044 ndm->ndm_flags = neigh->flags;
2045 ndm->ndm_type = neigh->type;
2046 ndm->ndm_ifindex = neigh->dev->ifindex;
2047
2048 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2049
2050 read_lock_bh(&neigh->lock);
2051 ndm->ndm_state = neigh->nud_state;
2052 if ((neigh->nud_state & NUD_VALID) &&
2053 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2054 read_unlock_bh(&neigh->lock);
2055 goto nla_put_failure;
2056 }
2057
2058 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2059 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2060 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2061 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2062 read_unlock_bh(&neigh->lock);
2063
2064 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2065 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2066
2067 return nlmsg_end(skb, nlh);
2068
2069 nla_put_failure:
2070 nlmsg_cancel(skb, nlh);
2071 return -EMSGSIZE;
2072 }
2073
2074 static void neigh_update_notify(struct neighbour *neigh)
2075 {
2076 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2077 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2078 }
2079
2080 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2081 struct netlink_callback *cb)
2082 {
2083 struct net * net = sock_net(skb->sk);
2084 struct neighbour *n;
2085 int rc, h, s_h = cb->args[1];
2086 int idx, s_idx = idx = cb->args[2];
2087
2088 read_lock_bh(&tbl->lock);
2089 for (h = 0; h <= tbl->hash_mask; h++) {
2090 if (h < s_h)
2091 continue;
2092 if (h > s_h)
2093 s_idx = 0;
2094 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2095 if (dev_net(n->dev) != net)
2096 continue;
2097 if (idx < s_idx)
2098 goto next;
2099 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2100 cb->nlh->nlmsg_seq,
2101 RTM_NEWNEIGH,
2102 NLM_F_MULTI) <= 0) {
2103 read_unlock_bh(&tbl->lock);
2104 rc = -1;
2105 goto out;
2106 }
2107 next:
2108 idx++;
2109 }
2110 }
2111 read_unlock_bh(&tbl->lock);
2112 rc = skb->len;
2113 out:
2114 cb->args[1] = h;
2115 cb->args[2] = idx;
2116 return rc;
2117 }
2118
2119 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2120 {
2121 struct neigh_table *tbl;
2122 int t, family, s_t;
2123
2124 read_lock(&neigh_tbl_lock);
2125 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2126 s_t = cb->args[0];
2127
2128 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2129 if (t < s_t || (family && tbl->family != family))
2130 continue;
2131 if (t > s_t)
2132 memset(&cb->args[1], 0, sizeof(cb->args) -
2133 sizeof(cb->args[0]));
2134 if (neigh_dump_table(tbl, skb, cb) < 0)
2135 break;
2136 }
2137 read_unlock(&neigh_tbl_lock);
2138
2139 cb->args[0] = t;
2140 return skb->len;
2141 }
2142
2143 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2144 {
2145 int chain;
2146
2147 read_lock_bh(&tbl->lock);
2148 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2149 struct neighbour *n;
2150
2151 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2152 cb(n, cookie);
2153 }
2154 read_unlock_bh(&tbl->lock);
2155 }
2156 EXPORT_SYMBOL(neigh_for_each);
2157
2158 /* The tbl->lock must be held as a writer and BH disabled. */
2159 void __neigh_for_each_release(struct neigh_table *tbl,
2160 int (*cb)(struct neighbour *))
2161 {
2162 int chain;
2163
2164 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2165 struct neighbour *n, **np;
2166
2167 np = &tbl->hash_buckets[chain];
2168 while ((n = *np) != NULL) {
2169 int release;
2170
2171 write_lock(&n->lock);
2172 release = cb(n);
2173 if (release) {
2174 *np = n->next;
2175 n->dead = 1;
2176 } else
2177 np = &n->next;
2178 write_unlock(&n->lock);
2179 if (release)
2180 neigh_cleanup_and_release(n);
2181 }
2182 }
2183 }
2184 EXPORT_SYMBOL(__neigh_for_each_release);
2185
2186 #ifdef CONFIG_PROC_FS
2187
2188 static struct neighbour *neigh_get_first(struct seq_file *seq)
2189 {
2190 struct neigh_seq_state *state = seq->private;
2191 struct net *net = seq_file_net(seq);
2192 struct neigh_table *tbl = state->tbl;
2193 struct neighbour *n = NULL;
2194 int bucket = state->bucket;
2195
2196 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2197 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2198 n = tbl->hash_buckets[bucket];
2199
2200 while (n) {
2201 if (!net_eq(dev_net(n->dev), net))
2202 goto next;
2203 if (state->neigh_sub_iter) {
2204 loff_t fakep = 0;
2205 void *v;
2206
2207 v = state->neigh_sub_iter(state, n, &fakep);
2208 if (!v)
2209 goto next;
2210 }
2211 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2212 break;
2213 if (n->nud_state & ~NUD_NOARP)
2214 break;
2215 next:
2216 n = n->next;
2217 }
2218
2219 if (n)
2220 break;
2221 }
2222 state->bucket = bucket;
2223
2224 return n;
2225 }
2226
2227 static struct neighbour *neigh_get_next(struct seq_file *seq,
2228 struct neighbour *n,
2229 loff_t *pos)
2230 {
2231 struct neigh_seq_state *state = seq->private;
2232 struct net *net = seq_file_net(seq);
2233 struct neigh_table *tbl = state->tbl;
2234
2235 if (state->neigh_sub_iter) {
2236 void *v = state->neigh_sub_iter(state, n, pos);
2237 if (v)
2238 return n;
2239 }
2240 n = n->next;
2241
2242 while (1) {
2243 while (n) {
2244 if (!net_eq(dev_net(n->dev), net))
2245 goto next;
2246 if (state->neigh_sub_iter) {
2247 void *v = state->neigh_sub_iter(state, n, pos);
2248 if (v)
2249 return n;
2250 goto next;
2251 }
2252 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2253 break;
2254
2255 if (n->nud_state & ~NUD_NOARP)
2256 break;
2257 next:
2258 n = n->next;
2259 }
2260
2261 if (n)
2262 break;
2263
2264 if (++state->bucket > tbl->hash_mask)
2265 break;
2266
2267 n = tbl->hash_buckets[state->bucket];
2268 }
2269
2270 if (n && pos)
2271 --(*pos);
2272 return n;
2273 }
2274
2275 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2276 {
2277 struct neighbour *n = neigh_get_first(seq);
2278
2279 if (n) {
2280 --(*pos);
2281 while (*pos) {
2282 n = neigh_get_next(seq, n, pos);
2283 if (!n)
2284 break;
2285 }
2286 }
2287 return *pos ? NULL : n;
2288 }
2289
2290 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2291 {
2292 struct neigh_seq_state *state = seq->private;
2293 struct net *net = seq_file_net(seq);
2294 struct neigh_table *tbl = state->tbl;
2295 struct pneigh_entry *pn = NULL;
2296 int bucket = state->bucket;
2297
2298 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2299 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2300 pn = tbl->phash_buckets[bucket];
2301 while (pn && !net_eq(pneigh_net(pn), net))
2302 pn = pn->next;
2303 if (pn)
2304 break;
2305 }
2306 state->bucket = bucket;
2307
2308 return pn;
2309 }
2310
2311 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2312 struct pneigh_entry *pn,
2313 loff_t *pos)
2314 {
2315 struct neigh_seq_state *state = seq->private;
2316 struct net *net = seq_file_net(seq);
2317 struct neigh_table *tbl = state->tbl;
2318
2319 pn = pn->next;
2320 while (!pn) {
2321 if (++state->bucket > PNEIGH_HASHMASK)
2322 break;
2323 pn = tbl->phash_buckets[state->bucket];
2324 while (pn && !net_eq(pneigh_net(pn), net))
2325 pn = pn->next;
2326 if (pn)
2327 break;
2328 }
2329
2330 if (pn && pos)
2331 --(*pos);
2332
2333 return pn;
2334 }
2335
2336 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2337 {
2338 struct pneigh_entry *pn = pneigh_get_first(seq);
2339
2340 if (pn) {
2341 --(*pos);
2342 while (*pos) {
2343 pn = pneigh_get_next(seq, pn, pos);
2344 if (!pn)
2345 break;
2346 }
2347 }
2348 return *pos ? NULL : pn;
2349 }
2350
2351 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2352 {
2353 struct neigh_seq_state *state = seq->private;
2354 void *rc;
2355 loff_t idxpos = *pos;
2356
2357 rc = neigh_get_idx(seq, &idxpos);
2358 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2359 rc = pneigh_get_idx(seq, &idxpos);
2360
2361 return rc;
2362 }
2363
2364 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2365 __acquires(tbl->lock)
2366 {
2367 struct neigh_seq_state *state = seq->private;
2368
2369 state->tbl = tbl;
2370 state->bucket = 0;
2371 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2372
2373 read_lock_bh(&tbl->lock);
2374
2375 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2376 }
2377 EXPORT_SYMBOL(neigh_seq_start);
2378
2379 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2380 {
2381 struct neigh_seq_state *state;
2382 void *rc;
2383
2384 if (v == SEQ_START_TOKEN) {
2385 rc = neigh_get_first(seq);
2386 goto out;
2387 }
2388
2389 state = seq->private;
2390 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2391 rc = neigh_get_next(seq, v, NULL);
2392 if (rc)
2393 goto out;
2394 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2395 rc = pneigh_get_first(seq);
2396 } else {
2397 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2398 rc = pneigh_get_next(seq, v, NULL);
2399 }
2400 out:
2401 ++(*pos);
2402 return rc;
2403 }
2404 EXPORT_SYMBOL(neigh_seq_next);
2405
2406 void neigh_seq_stop(struct seq_file *seq, void *v)
2407 __releases(tbl->lock)
2408 {
2409 struct neigh_seq_state *state = seq->private;
2410 struct neigh_table *tbl = state->tbl;
2411
2412 read_unlock_bh(&tbl->lock);
2413 }
2414 EXPORT_SYMBOL(neigh_seq_stop);
2415
2416 /* statistics via seq_file */
2417
2418 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2419 {
2420 struct proc_dir_entry *pde = seq->private;
2421 struct neigh_table *tbl = pde->data;
2422 int cpu;
2423
2424 if (*pos == 0)
2425 return SEQ_START_TOKEN;
2426
2427 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2428 if (!cpu_possible(cpu))
2429 continue;
2430 *pos = cpu+1;
2431 return per_cpu_ptr(tbl->stats, cpu);
2432 }
2433 return NULL;
2434 }
2435
2436 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2437 {
2438 struct proc_dir_entry *pde = seq->private;
2439 struct neigh_table *tbl = pde->data;
2440 int cpu;
2441
2442 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2443 if (!cpu_possible(cpu))
2444 continue;
2445 *pos = cpu+1;
2446 return per_cpu_ptr(tbl->stats, cpu);
2447 }
2448 return NULL;
2449 }
2450
2451 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2452 {
2453
2454 }
2455
2456 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2457 {
2458 struct proc_dir_entry *pde = seq->private;
2459 struct neigh_table *tbl = pde->data;
2460 struct neigh_statistics *st = v;
2461
2462 if (v == SEQ_START_TOKEN) {
2463 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2464 return 0;
2465 }
2466
2467 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2468 "%08lx %08lx %08lx %08lx %08lx\n",
2469 atomic_read(&tbl->entries),
2470
2471 st->allocs,
2472 st->destroys,
2473 st->hash_grows,
2474
2475 st->lookups,
2476 st->hits,
2477
2478 st->res_failed,
2479
2480 st->rcv_probes_mcast,
2481 st->rcv_probes_ucast,
2482
2483 st->periodic_gc_runs,
2484 st->forced_gc_runs,
2485 st->unres_discards
2486 );
2487
2488 return 0;
2489 }
2490
2491 static const struct seq_operations neigh_stat_seq_ops = {
2492 .start = neigh_stat_seq_start,
2493 .next = neigh_stat_seq_next,
2494 .stop = neigh_stat_seq_stop,
2495 .show = neigh_stat_seq_show,
2496 };
2497
2498 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2499 {
2500 int ret = seq_open(file, &neigh_stat_seq_ops);
2501
2502 if (!ret) {
2503 struct seq_file *sf = file->private_data;
2504 sf->private = PDE(inode);
2505 }
2506 return ret;
2507 };
2508
2509 static const struct file_operations neigh_stat_seq_fops = {
2510 .owner = THIS_MODULE,
2511 .open = neigh_stat_seq_open,
2512 .read = seq_read,
2513 .llseek = seq_lseek,
2514 .release = seq_release,
2515 };
2516
2517 #endif /* CONFIG_PROC_FS */
2518
2519 static inline size_t neigh_nlmsg_size(void)
2520 {
2521 return NLMSG_ALIGN(sizeof(struct ndmsg))
2522 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2523 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2524 + nla_total_size(sizeof(struct nda_cacheinfo))
2525 + nla_total_size(4); /* NDA_PROBES */
2526 }
2527
2528 static void __neigh_notify(struct neighbour *n, int type, int flags)
2529 {
2530 struct net *net = dev_net(n->dev);
2531 struct sk_buff *skb;
2532 int err = -ENOBUFS;
2533
2534 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2535 if (skb == NULL)
2536 goto errout;
2537
2538 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2539 if (err < 0) {
2540 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2541 WARN_ON(err == -EMSGSIZE);
2542 kfree_skb(skb);
2543 goto errout;
2544 }
2545 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2546 return;
2547 errout:
2548 if (err < 0)
2549 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2550 }
2551
2552 #ifdef CONFIG_ARPD
2553 void neigh_app_ns(struct neighbour *n)
2554 {
2555 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2556 }
2557 EXPORT_SYMBOL(neigh_app_ns);
2558 #endif /* CONFIG_ARPD */
2559
2560 #ifdef CONFIG_SYSCTL
2561
2562 static struct neigh_sysctl_table {
2563 struct ctl_table_header *sysctl_header;
2564 struct ctl_table neigh_vars[__NET_NEIGH_MAX];
2565 char *dev_name;
2566 } neigh_sysctl_template __read_mostly = {
2567 .neigh_vars = {
2568 {
2569 .procname = "mcast_solicit",
2570 .maxlen = sizeof(int),
2571 .mode = 0644,
2572 .proc_handler = proc_dointvec,
2573 },
2574 {
2575 .procname = "ucast_solicit",
2576 .maxlen = sizeof(int),
2577 .mode = 0644,
2578 .proc_handler = proc_dointvec,
2579 },
2580 {
2581 .procname = "app_solicit",
2582 .maxlen = sizeof(int),
2583 .mode = 0644,
2584 .proc_handler = proc_dointvec,
2585 },
2586 {
2587 .procname = "retrans_time",
2588 .maxlen = sizeof(int),
2589 .mode = 0644,
2590 .proc_handler = proc_dointvec_userhz_jiffies,
2591 },
2592 {
2593 .procname = "base_reachable_time",
2594 .maxlen = sizeof(int),
2595 .mode = 0644,
2596 .proc_handler = proc_dointvec_jiffies,
2597 },
2598 {
2599 .procname = "delay_first_probe_time",
2600 .maxlen = sizeof(int),
2601 .mode = 0644,
2602 .proc_handler = proc_dointvec_jiffies,
2603 },
2604 {
2605 .procname = "gc_stale_time",
2606 .maxlen = sizeof(int),
2607 .mode = 0644,
2608 .proc_handler = proc_dointvec_jiffies,
2609 },
2610 {
2611 .procname = "unres_qlen",
2612 .maxlen = sizeof(int),
2613 .mode = 0644,
2614 .proc_handler = proc_dointvec,
2615 },
2616 {
2617 .procname = "proxy_qlen",
2618 .maxlen = sizeof(int),
2619 .mode = 0644,
2620 .proc_handler = proc_dointvec,
2621 },
2622 {
2623 .procname = "anycast_delay",
2624 .maxlen = sizeof(int),
2625 .mode = 0644,
2626 .proc_handler = proc_dointvec_userhz_jiffies,
2627 },
2628 {
2629 .procname = "proxy_delay",
2630 .maxlen = sizeof(int),
2631 .mode = 0644,
2632 .proc_handler = proc_dointvec_userhz_jiffies,
2633 },
2634 {
2635 .procname = "locktime",
2636 .maxlen = sizeof(int),
2637 .mode = 0644,
2638 .proc_handler = proc_dointvec_userhz_jiffies,
2639 },
2640 {
2641 .procname = "retrans_time_ms",
2642 .maxlen = sizeof(int),
2643 .mode = 0644,
2644 .proc_handler = proc_dointvec_ms_jiffies,
2645 },
2646 {
2647 .procname = "base_reachable_time_ms",
2648 .maxlen = sizeof(int),
2649 .mode = 0644,
2650 .proc_handler = proc_dointvec_ms_jiffies,
2651 },
2652 {
2653 .procname = "gc_interval",
2654 .maxlen = sizeof(int),
2655 .mode = 0644,
2656 .proc_handler = proc_dointvec_jiffies,
2657 },
2658 {
2659 .procname = "gc_thresh1",
2660 .maxlen = sizeof(int),
2661 .mode = 0644,
2662 .proc_handler = proc_dointvec,
2663 },
2664 {
2665 .procname = "gc_thresh2",
2666 .maxlen = sizeof(int),
2667 .mode = 0644,
2668 .proc_handler = proc_dointvec,
2669 },
2670 {
2671 .procname = "gc_thresh3",
2672 .maxlen = sizeof(int),
2673 .mode = 0644,
2674 .proc_handler = proc_dointvec,
2675 },
2676 {},
2677 },
2678 };
2679
2680 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2681 int p_id, int pdev_id, char *p_name,
2682 proc_handler *handler)
2683 {
2684 struct neigh_sysctl_table *t;
2685 const char *dev_name_source = NULL;
2686
2687 #define NEIGH_CTL_PATH_ROOT 0
2688 #define NEIGH_CTL_PATH_PROTO 1
2689 #define NEIGH_CTL_PATH_NEIGH 2
2690 #define NEIGH_CTL_PATH_DEV 3
2691
2692 struct ctl_path neigh_path[] = {
2693 { .procname = "net", },
2694 { .procname = "proto", },
2695 { .procname = "neigh", },
2696 { .procname = "default", },
2697 { },
2698 };
2699
2700 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2701 if (!t)
2702 goto err;
2703
2704 t->neigh_vars[0].data = &p->mcast_probes;
2705 t->neigh_vars[1].data = &p->ucast_probes;
2706 t->neigh_vars[2].data = &p->app_probes;
2707 t->neigh_vars[3].data = &p->retrans_time;
2708 t->neigh_vars[4].data = &p->base_reachable_time;
2709 t->neigh_vars[5].data = &p->delay_probe_time;
2710 t->neigh_vars[6].data = &p->gc_staletime;
2711 t->neigh_vars[7].data = &p->queue_len;
2712 t->neigh_vars[8].data = &p->proxy_qlen;
2713 t->neigh_vars[9].data = &p->anycast_delay;
2714 t->neigh_vars[10].data = &p->proxy_delay;
2715 t->neigh_vars[11].data = &p->locktime;
2716 t->neigh_vars[12].data = &p->retrans_time;
2717 t->neigh_vars[13].data = &p->base_reachable_time;
2718
2719 if (dev) {
2720 dev_name_source = dev->name;
2721 /* Terminate the table early */
2722 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2723 } else {
2724 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2725 t->neigh_vars[14].data = (int *)(p + 1);
2726 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2727 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2728 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2729 }
2730
2731
2732 if (handler) {
2733 /* RetransTime */
2734 t->neigh_vars[3].proc_handler = handler;
2735 t->neigh_vars[3].extra1 = dev;
2736 /* ReachableTime */
2737 t->neigh_vars[4].proc_handler = handler;
2738 t->neigh_vars[4].extra1 = dev;
2739 /* RetransTime (in milliseconds)*/
2740 t->neigh_vars[12].proc_handler = handler;
2741 t->neigh_vars[12].extra1 = dev;
2742 /* ReachableTime (in milliseconds) */
2743 t->neigh_vars[13].proc_handler = handler;
2744 t->neigh_vars[13].extra1 = dev;
2745 }
2746
2747 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2748 if (!t->dev_name)
2749 goto free;
2750
2751 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2752 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2753
2754 t->sysctl_header =
2755 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2756 if (!t->sysctl_header)
2757 goto free_procname;
2758
2759 p->sysctl_table = t;
2760 return 0;
2761
2762 free_procname:
2763 kfree(t->dev_name);
2764 free:
2765 kfree(t);
2766 err:
2767 return -ENOBUFS;
2768 }
2769 EXPORT_SYMBOL(neigh_sysctl_register);
2770
2771 void neigh_sysctl_unregister(struct neigh_parms *p)
2772 {
2773 if (p->sysctl_table) {
2774 struct neigh_sysctl_table *t = p->sysctl_table;
2775 p->sysctl_table = NULL;
2776 unregister_sysctl_table(t->sysctl_header);
2777 kfree(t->dev_name);
2778 kfree(t);
2779 }
2780 }
2781 EXPORT_SYMBOL(neigh_sysctl_unregister);
2782
2783 #endif /* CONFIG_SYSCTL */
2784
2785 static int __init neigh_init(void)
2786 {
2787 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2788 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2789 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2790
2791 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2792 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2793
2794 return 0;
2795 }
2796
2797 subsys_initcall(neigh_init);
2798
This page took 0.088346 seconds and 5 git commands to generate.