bnx2x: Change to driver version 1.72.10-0
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return base ? (net_random() % base) + (base >> 1) : 0;
125 }
126 EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 int shrunk = 0;
132 int i;
133 struct neigh_hash_table *nht;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 nht = rcu_dereference_protected(tbl->nht,
139 lockdep_is_held(&tbl->lock));
140 for (i = 0; i < (1 << nht->hash_shift); i++) {
141 struct neighbour *n;
142 struct neighbour __rcu **np;
143
144 np = &nht->hash_buckets[i];
145 while ((n = rcu_dereference_protected(*np,
146 lockdep_is_held(&tbl->lock))) != NULL) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
150 */
151 write_lock(&n->lock);
152 if (atomic_read(&n->refcnt) == 1 &&
153 !(n->nud_state & NUD_PERMANENT)) {
154 rcu_assign_pointer(*np,
155 rcu_dereference_protected(n->next,
156 lockdep_is_held(&tbl->lock)));
157 n->dead = 1;
158 shrunk = 1;
159 write_unlock(&n->lock);
160 neigh_cleanup_and_release(n);
161 continue;
162 }
163 write_unlock(&n->lock);
164 np = &n->next;
165 }
166 }
167
168 tbl->last_flush = jiffies;
169
170 write_unlock_bh(&tbl->lock);
171
172 return shrunk;
173 }
174
175 static void neigh_add_timer(struct neighbour *n, unsigned long when)
176 {
177 neigh_hold(n);
178 if (unlikely(mod_timer(&n->timer, when))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
180 n->nud_state);
181 dump_stack();
182 }
183 }
184
185 static int neigh_del_timer(struct neighbour *n)
186 {
187 if ((n->nud_state & NUD_IN_TIMER) &&
188 del_timer(&n->timer)) {
189 neigh_release(n);
190 return 1;
191 }
192 return 0;
193 }
194
195 static void pneigh_queue_purge(struct sk_buff_head *list)
196 {
197 struct sk_buff *skb;
198
199 while ((skb = skb_dequeue(list)) != NULL) {
200 dev_put(skb->dev);
201 kfree_skb(skb);
202 }
203 }
204
205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206 {
207 int i;
208 struct neigh_hash_table *nht;
209
210 nht = rcu_dereference_protected(tbl->nht,
211 lockdep_is_held(&tbl->lock));
212
213 for (i = 0; i < (1 << nht->hash_shift); i++) {
214 struct neighbour *n;
215 struct neighbour __rcu **np = &nht->hash_buckets[i];
216
217 while ((n = rcu_dereference_protected(*np,
218 lockdep_is_held(&tbl->lock))) != NULL) {
219 if (dev && n->dev != dev) {
220 np = &n->next;
221 continue;
222 }
223 rcu_assign_pointer(*np,
224 rcu_dereference_protected(n->next,
225 lockdep_is_held(&tbl->lock)));
226 write_lock(&n->lock);
227 neigh_del_timer(n);
228 n->dead = 1;
229
230 if (atomic_read(&n->refcnt) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
234
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
238 it to safe state.
239 */
240 skb_queue_purge(&n->arp_queue);
241 n->arp_queue_len_bytes = 0;
242 n->output = neigh_blackhole;
243 if (n->nud_state & NUD_VALID)
244 n->nud_state = NUD_NOARP;
245 else
246 n->nud_state = NUD_NONE;
247 NEIGH_PRINTK2("neigh %p is stray.\n", n);
248 }
249 write_unlock(&n->lock);
250 neigh_cleanup_and_release(n);
251 }
252 }
253 }
254
255 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
256 {
257 write_lock_bh(&tbl->lock);
258 neigh_flush_dev(tbl, dev);
259 write_unlock_bh(&tbl->lock);
260 }
261 EXPORT_SYMBOL(neigh_changeaddr);
262
263 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
264 {
265 write_lock_bh(&tbl->lock);
266 neigh_flush_dev(tbl, dev);
267 pneigh_ifdown(tbl, dev);
268 write_unlock_bh(&tbl->lock);
269
270 del_timer_sync(&tbl->proxy_timer);
271 pneigh_queue_purge(&tbl->proxy_queue);
272 return 0;
273 }
274 EXPORT_SYMBOL(neigh_ifdown);
275
276 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
277 {
278 struct neighbour *n = NULL;
279 unsigned long now = jiffies;
280 int entries;
281
282 entries = atomic_inc_return(&tbl->entries) - 1;
283 if (entries >= tbl->gc_thresh3 ||
284 (entries >= tbl->gc_thresh2 &&
285 time_after(now, tbl->last_flush + 5 * HZ))) {
286 if (!neigh_forced_gc(tbl) &&
287 entries >= tbl->gc_thresh3)
288 goto out_entries;
289 }
290
291 if (tbl->entry_size)
292 n = kzalloc(tbl->entry_size, GFP_ATOMIC);
293 else {
294 int sz = sizeof(*n) + tbl->key_len;
295
296 sz = ALIGN(sz, NEIGH_PRIV_ALIGN);
297 sz += dev->neigh_priv_len;
298 n = kzalloc(sz, GFP_ATOMIC);
299 }
300 if (!n)
301 goto out_entries;
302
303 skb_queue_head_init(&n->arp_queue);
304 rwlock_init(&n->lock);
305 seqlock_init(&n->ha_lock);
306 n->updated = n->used = now;
307 n->nud_state = NUD_NONE;
308 n->output = neigh_blackhole;
309 seqlock_init(&n->hh.hh_lock);
310 n->parms = neigh_parms_clone(&tbl->parms);
311 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
312
313 NEIGH_CACHE_STAT_INC(tbl, allocs);
314 n->tbl = tbl;
315 atomic_set(&n->refcnt, 1);
316 n->dead = 1;
317 out:
318 return n;
319
320 out_entries:
321 atomic_dec(&tbl->entries);
322 goto out;
323 }
324
325 static void neigh_get_hash_rnd(u32 *x)
326 {
327 get_random_bytes(x, sizeof(*x));
328 *x |= 1;
329 }
330
331 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
332 {
333 size_t size = (1 << shift) * sizeof(struct neighbour *);
334 struct neigh_hash_table *ret;
335 struct neighbour __rcu **buckets;
336 int i;
337
338 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
339 if (!ret)
340 return NULL;
341 if (size <= PAGE_SIZE)
342 buckets = kzalloc(size, GFP_ATOMIC);
343 else
344 buckets = (struct neighbour __rcu **)
345 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
346 get_order(size));
347 if (!buckets) {
348 kfree(ret);
349 return NULL;
350 }
351 ret->hash_buckets = buckets;
352 ret->hash_shift = shift;
353 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
354 neigh_get_hash_rnd(&ret->hash_rnd[i]);
355 return ret;
356 }
357
358 static void neigh_hash_free_rcu(struct rcu_head *head)
359 {
360 struct neigh_hash_table *nht = container_of(head,
361 struct neigh_hash_table,
362 rcu);
363 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
364 struct neighbour __rcu **buckets = nht->hash_buckets;
365
366 if (size <= PAGE_SIZE)
367 kfree(buckets);
368 else
369 free_pages((unsigned long)buckets, get_order(size));
370 kfree(nht);
371 }
372
373 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
374 unsigned long new_shift)
375 {
376 unsigned int i, hash;
377 struct neigh_hash_table *new_nht, *old_nht;
378
379 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
380
381 old_nht = rcu_dereference_protected(tbl->nht,
382 lockdep_is_held(&tbl->lock));
383 new_nht = neigh_hash_alloc(new_shift);
384 if (!new_nht)
385 return old_nht;
386
387 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
388 struct neighbour *n, *next;
389
390 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
391 lockdep_is_held(&tbl->lock));
392 n != NULL;
393 n = next) {
394 hash = tbl->hash(n->primary_key, n->dev,
395 new_nht->hash_rnd);
396
397 hash >>= (32 - new_nht->hash_shift);
398 next = rcu_dereference_protected(n->next,
399 lockdep_is_held(&tbl->lock));
400
401 rcu_assign_pointer(n->next,
402 rcu_dereference_protected(
403 new_nht->hash_buckets[hash],
404 lockdep_is_held(&tbl->lock)));
405 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
406 }
407 }
408
409 rcu_assign_pointer(tbl->nht, new_nht);
410 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
411 return new_nht;
412 }
413
414 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
415 struct net_device *dev)
416 {
417 struct neighbour *n;
418 int key_len = tbl->key_len;
419 u32 hash_val;
420 struct neigh_hash_table *nht;
421
422 NEIGH_CACHE_STAT_INC(tbl, lookups);
423
424 rcu_read_lock_bh();
425 nht = rcu_dereference_bh(tbl->nht);
426 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
427
428 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
429 n != NULL;
430 n = rcu_dereference_bh(n->next)) {
431 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
432 if (!atomic_inc_not_zero(&n->refcnt))
433 n = NULL;
434 NEIGH_CACHE_STAT_INC(tbl, hits);
435 break;
436 }
437 }
438
439 rcu_read_unlock_bh();
440 return n;
441 }
442 EXPORT_SYMBOL(neigh_lookup);
443
444 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
445 const void *pkey)
446 {
447 struct neighbour *n;
448 int key_len = tbl->key_len;
449 u32 hash_val;
450 struct neigh_hash_table *nht;
451
452 NEIGH_CACHE_STAT_INC(tbl, lookups);
453
454 rcu_read_lock_bh();
455 nht = rcu_dereference_bh(tbl->nht);
456 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
457
458 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
459 n != NULL;
460 n = rcu_dereference_bh(n->next)) {
461 if (!memcmp(n->primary_key, pkey, key_len) &&
462 net_eq(dev_net(n->dev), net)) {
463 if (!atomic_inc_not_zero(&n->refcnt))
464 n = NULL;
465 NEIGH_CACHE_STAT_INC(tbl, hits);
466 break;
467 }
468 }
469
470 rcu_read_unlock_bh();
471 return n;
472 }
473 EXPORT_SYMBOL(neigh_lookup_nodev);
474
475 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
476 struct net_device *dev)
477 {
478 u32 hash_val;
479 int key_len = tbl->key_len;
480 int error;
481 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
482 struct neigh_hash_table *nht;
483
484 if (!n) {
485 rc = ERR_PTR(-ENOBUFS);
486 goto out;
487 }
488
489 memcpy(n->primary_key, pkey, key_len);
490 n->dev = dev;
491 dev_hold(dev);
492
493 /* Protocol specific setup. */
494 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
495 rc = ERR_PTR(error);
496 goto out_neigh_release;
497 }
498
499 if (dev->netdev_ops->ndo_neigh_construct) {
500 error = dev->netdev_ops->ndo_neigh_construct(n);
501 if (error < 0) {
502 rc = ERR_PTR(error);
503 goto out_neigh_release;
504 }
505 }
506
507 /* Device specific setup. */
508 if (n->parms->neigh_setup &&
509 (error = n->parms->neigh_setup(n)) < 0) {
510 rc = ERR_PTR(error);
511 goto out_neigh_release;
512 }
513
514 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
515
516 write_lock_bh(&tbl->lock);
517 nht = rcu_dereference_protected(tbl->nht,
518 lockdep_is_held(&tbl->lock));
519
520 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
521 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
522
523 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
524
525 if (n->parms->dead) {
526 rc = ERR_PTR(-EINVAL);
527 goto out_tbl_unlock;
528 }
529
530 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
531 lockdep_is_held(&tbl->lock));
532 n1 != NULL;
533 n1 = rcu_dereference_protected(n1->next,
534 lockdep_is_held(&tbl->lock))) {
535 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
536 neigh_hold(n1);
537 rc = n1;
538 goto out_tbl_unlock;
539 }
540 }
541
542 n->dead = 0;
543 neigh_hold(n);
544 rcu_assign_pointer(n->next,
545 rcu_dereference_protected(nht->hash_buckets[hash_val],
546 lockdep_is_held(&tbl->lock)));
547 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
548 write_unlock_bh(&tbl->lock);
549 NEIGH_PRINTK2("neigh %p is created.\n", n);
550 rc = n;
551 out:
552 return rc;
553 out_tbl_unlock:
554 write_unlock_bh(&tbl->lock);
555 out_neigh_release:
556 neigh_release(n);
557 goto out;
558 }
559 EXPORT_SYMBOL(neigh_create);
560
561 static u32 pneigh_hash(const void *pkey, int key_len)
562 {
563 u32 hash_val = *(u32 *)(pkey + key_len - 4);
564 hash_val ^= (hash_val >> 16);
565 hash_val ^= hash_val >> 8;
566 hash_val ^= hash_val >> 4;
567 hash_val &= PNEIGH_HASHMASK;
568 return hash_val;
569 }
570
571 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
572 struct net *net,
573 const void *pkey,
574 int key_len,
575 struct net_device *dev)
576 {
577 while (n) {
578 if (!memcmp(n->key, pkey, key_len) &&
579 net_eq(pneigh_net(n), net) &&
580 (n->dev == dev || !n->dev))
581 return n;
582 n = n->next;
583 }
584 return NULL;
585 }
586
587 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
588 struct net *net, const void *pkey, struct net_device *dev)
589 {
590 int key_len = tbl->key_len;
591 u32 hash_val = pneigh_hash(pkey, key_len);
592
593 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
594 net, pkey, key_len, dev);
595 }
596 EXPORT_SYMBOL_GPL(__pneigh_lookup);
597
598 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
599 struct net *net, const void *pkey,
600 struct net_device *dev, int creat)
601 {
602 struct pneigh_entry *n;
603 int key_len = tbl->key_len;
604 u32 hash_val = pneigh_hash(pkey, key_len);
605
606 read_lock_bh(&tbl->lock);
607 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
608 net, pkey, key_len, dev);
609 read_unlock_bh(&tbl->lock);
610
611 if (n || !creat)
612 goto out;
613
614 ASSERT_RTNL();
615
616 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
617 if (!n)
618 goto out;
619
620 write_pnet(&n->net, hold_net(net));
621 memcpy(n->key, pkey, key_len);
622 n->dev = dev;
623 if (dev)
624 dev_hold(dev);
625
626 if (tbl->pconstructor && tbl->pconstructor(n)) {
627 if (dev)
628 dev_put(dev);
629 release_net(net);
630 kfree(n);
631 n = NULL;
632 goto out;
633 }
634
635 write_lock_bh(&tbl->lock);
636 n->next = tbl->phash_buckets[hash_val];
637 tbl->phash_buckets[hash_val] = n;
638 write_unlock_bh(&tbl->lock);
639 out:
640 return n;
641 }
642 EXPORT_SYMBOL(pneigh_lookup);
643
644
645 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
646 struct net_device *dev)
647 {
648 struct pneigh_entry *n, **np;
649 int key_len = tbl->key_len;
650 u32 hash_val = pneigh_hash(pkey, key_len);
651
652 write_lock_bh(&tbl->lock);
653 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
654 np = &n->next) {
655 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
656 net_eq(pneigh_net(n), net)) {
657 *np = n->next;
658 write_unlock_bh(&tbl->lock);
659 if (tbl->pdestructor)
660 tbl->pdestructor(n);
661 if (n->dev)
662 dev_put(n->dev);
663 release_net(pneigh_net(n));
664 kfree(n);
665 return 0;
666 }
667 }
668 write_unlock_bh(&tbl->lock);
669 return -ENOENT;
670 }
671
672 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
673 {
674 struct pneigh_entry *n, **np;
675 u32 h;
676
677 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
678 np = &tbl->phash_buckets[h];
679 while ((n = *np) != NULL) {
680 if (!dev || n->dev == dev) {
681 *np = n->next;
682 if (tbl->pdestructor)
683 tbl->pdestructor(n);
684 if (n->dev)
685 dev_put(n->dev);
686 release_net(pneigh_net(n));
687 kfree(n);
688 continue;
689 }
690 np = &n->next;
691 }
692 }
693 return -ENOENT;
694 }
695
696 static void neigh_parms_destroy(struct neigh_parms *parms);
697
698 static inline void neigh_parms_put(struct neigh_parms *parms)
699 {
700 if (atomic_dec_and_test(&parms->refcnt))
701 neigh_parms_destroy(parms);
702 }
703
704 /*
705 * neighbour must already be out of the table;
706 *
707 */
708 void neigh_destroy(struct neighbour *neigh)
709 {
710 struct net_device *dev = neigh->dev;
711
712 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
713
714 if (!neigh->dead) {
715 printk(KERN_WARNING
716 "Destroying alive neighbour %p\n", neigh);
717 dump_stack();
718 return;
719 }
720
721 if (neigh_del_timer(neigh))
722 printk(KERN_WARNING "Impossible event.\n");
723
724 skb_queue_purge(&neigh->arp_queue);
725 neigh->arp_queue_len_bytes = 0;
726
727 if (dev->netdev_ops->ndo_neigh_destroy)
728 dev->netdev_ops->ndo_neigh_destroy(neigh);
729
730 dev_put(dev);
731 neigh_parms_put(neigh->parms);
732
733 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
734
735 atomic_dec(&neigh->tbl->entries);
736 kfree_rcu(neigh, rcu);
737 }
738 EXPORT_SYMBOL(neigh_destroy);
739
740 /* Neighbour state is suspicious;
741 disable fast path.
742
743 Called with write_locked neigh.
744 */
745 static void neigh_suspect(struct neighbour *neigh)
746 {
747 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
748
749 neigh->output = neigh->ops->output;
750 }
751
752 /* Neighbour state is OK;
753 enable fast path.
754
755 Called with write_locked neigh.
756 */
757 static void neigh_connect(struct neighbour *neigh)
758 {
759 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
760
761 neigh->output = neigh->ops->connected_output;
762 }
763
764 static void neigh_periodic_work(struct work_struct *work)
765 {
766 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
767 struct neighbour *n;
768 struct neighbour __rcu **np;
769 unsigned int i;
770 struct neigh_hash_table *nht;
771
772 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
773
774 write_lock_bh(&tbl->lock);
775 nht = rcu_dereference_protected(tbl->nht,
776 lockdep_is_held(&tbl->lock));
777
778 /*
779 * periodically recompute ReachableTime from random function
780 */
781
782 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
783 struct neigh_parms *p;
784 tbl->last_rand = jiffies;
785 for (p = &tbl->parms; p; p = p->next)
786 p->reachable_time =
787 neigh_rand_reach_time(p->base_reachable_time);
788 }
789
790 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
791 np = &nht->hash_buckets[i];
792
793 while ((n = rcu_dereference_protected(*np,
794 lockdep_is_held(&tbl->lock))) != NULL) {
795 unsigned int state;
796
797 write_lock(&n->lock);
798
799 state = n->nud_state;
800 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
801 write_unlock(&n->lock);
802 goto next_elt;
803 }
804
805 if (time_before(n->used, n->confirmed))
806 n->used = n->confirmed;
807
808 if (atomic_read(&n->refcnt) == 1 &&
809 (state == NUD_FAILED ||
810 time_after(jiffies, n->used + n->parms->gc_staletime))) {
811 *np = n->next;
812 n->dead = 1;
813 write_unlock(&n->lock);
814 neigh_cleanup_and_release(n);
815 continue;
816 }
817 write_unlock(&n->lock);
818
819 next_elt:
820 np = &n->next;
821 }
822 /*
823 * It's fine to release lock here, even if hash table
824 * grows while we are preempted.
825 */
826 write_unlock_bh(&tbl->lock);
827 cond_resched();
828 write_lock_bh(&tbl->lock);
829 nht = rcu_dereference_protected(tbl->nht,
830 lockdep_is_held(&tbl->lock));
831 }
832 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
833 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
834 * base_reachable_time.
835 */
836 schedule_delayed_work(&tbl->gc_work,
837 tbl->parms.base_reachable_time >> 1);
838 write_unlock_bh(&tbl->lock);
839 }
840
841 static __inline__ int neigh_max_probes(struct neighbour *n)
842 {
843 struct neigh_parms *p = n->parms;
844 return (n->nud_state & NUD_PROBE) ?
845 p->ucast_probes :
846 p->ucast_probes + p->app_probes + p->mcast_probes;
847 }
848
849 static void neigh_invalidate(struct neighbour *neigh)
850 __releases(neigh->lock)
851 __acquires(neigh->lock)
852 {
853 struct sk_buff *skb;
854
855 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
856 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
857 neigh->updated = jiffies;
858
859 /* It is very thin place. report_unreachable is very complicated
860 routine. Particularly, it can hit the same neighbour entry!
861
862 So that, we try to be accurate and avoid dead loop. --ANK
863 */
864 while (neigh->nud_state == NUD_FAILED &&
865 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
866 write_unlock(&neigh->lock);
867 neigh->ops->error_report(neigh, skb);
868 write_lock(&neigh->lock);
869 }
870 skb_queue_purge(&neigh->arp_queue);
871 neigh->arp_queue_len_bytes = 0;
872 }
873
874 static void neigh_probe(struct neighbour *neigh)
875 __releases(neigh->lock)
876 {
877 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
878 /* keep skb alive even if arp_queue overflows */
879 if (skb)
880 skb = skb_copy(skb, GFP_ATOMIC);
881 write_unlock(&neigh->lock);
882 neigh->ops->solicit(neigh, skb);
883 atomic_inc(&neigh->probes);
884 kfree_skb(skb);
885 }
886
887 /* Called when a timer expires for a neighbour entry. */
888
889 static void neigh_timer_handler(unsigned long arg)
890 {
891 unsigned long now, next;
892 struct neighbour *neigh = (struct neighbour *)arg;
893 unsigned state;
894 int notify = 0;
895
896 write_lock(&neigh->lock);
897
898 state = neigh->nud_state;
899 now = jiffies;
900 next = now + HZ;
901
902 if (!(state & NUD_IN_TIMER))
903 goto out;
904
905 if (state & NUD_REACHABLE) {
906 if (time_before_eq(now,
907 neigh->confirmed + neigh->parms->reachable_time)) {
908 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
909 next = neigh->confirmed + neigh->parms->reachable_time;
910 } else if (time_before_eq(now,
911 neigh->used + neigh->parms->delay_probe_time)) {
912 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
913 neigh->nud_state = NUD_DELAY;
914 neigh->updated = jiffies;
915 neigh_suspect(neigh);
916 next = now + neigh->parms->delay_probe_time;
917 } else {
918 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
919 neigh->nud_state = NUD_STALE;
920 neigh->updated = jiffies;
921 neigh_suspect(neigh);
922 notify = 1;
923 }
924 } else if (state & NUD_DELAY) {
925 if (time_before_eq(now,
926 neigh->confirmed + neigh->parms->delay_probe_time)) {
927 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
928 neigh->nud_state = NUD_REACHABLE;
929 neigh->updated = jiffies;
930 neigh_connect(neigh);
931 notify = 1;
932 next = neigh->confirmed + neigh->parms->reachable_time;
933 } else {
934 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
935 neigh->nud_state = NUD_PROBE;
936 neigh->updated = jiffies;
937 atomic_set(&neigh->probes, 0);
938 next = now + neigh->parms->retrans_time;
939 }
940 } else {
941 /* NUD_PROBE|NUD_INCOMPLETE */
942 next = now + neigh->parms->retrans_time;
943 }
944
945 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
946 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
947 neigh->nud_state = NUD_FAILED;
948 notify = 1;
949 neigh_invalidate(neigh);
950 }
951
952 if (neigh->nud_state & NUD_IN_TIMER) {
953 if (time_before(next, jiffies + HZ/2))
954 next = jiffies + HZ/2;
955 if (!mod_timer(&neigh->timer, next))
956 neigh_hold(neigh);
957 }
958 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
959 neigh_probe(neigh);
960 } else {
961 out:
962 write_unlock(&neigh->lock);
963 }
964
965 if (notify)
966 neigh_update_notify(neigh);
967
968 neigh_release(neigh);
969 }
970
971 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
972 {
973 int rc;
974 bool immediate_probe = false;
975
976 write_lock_bh(&neigh->lock);
977
978 rc = 0;
979 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
980 goto out_unlock_bh;
981
982 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
983 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
984 unsigned long next, now = jiffies;
985
986 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
987 neigh->nud_state = NUD_INCOMPLETE;
988 neigh->updated = now;
989 next = now + max(neigh->parms->retrans_time, HZ/2);
990 neigh_add_timer(neigh, next);
991 immediate_probe = true;
992 } else {
993 neigh->nud_state = NUD_FAILED;
994 neigh->updated = jiffies;
995 write_unlock_bh(&neigh->lock);
996
997 kfree_skb(skb);
998 return 1;
999 }
1000 } else if (neigh->nud_state & NUD_STALE) {
1001 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
1002 neigh->nud_state = NUD_DELAY;
1003 neigh->updated = jiffies;
1004 neigh_add_timer(neigh,
1005 jiffies + neigh->parms->delay_probe_time);
1006 }
1007
1008 if (neigh->nud_state == NUD_INCOMPLETE) {
1009 if (skb) {
1010 while (neigh->arp_queue_len_bytes + skb->truesize >
1011 neigh->parms->queue_len_bytes) {
1012 struct sk_buff *buff;
1013
1014 buff = __skb_dequeue(&neigh->arp_queue);
1015 if (!buff)
1016 break;
1017 neigh->arp_queue_len_bytes -= buff->truesize;
1018 kfree_skb(buff);
1019 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1020 }
1021 skb_dst_force(skb);
1022 __skb_queue_tail(&neigh->arp_queue, skb);
1023 neigh->arp_queue_len_bytes += skb->truesize;
1024 }
1025 rc = 1;
1026 }
1027 out_unlock_bh:
1028 if (immediate_probe)
1029 neigh_probe(neigh);
1030 else
1031 write_unlock(&neigh->lock);
1032 local_bh_enable();
1033 return rc;
1034 }
1035 EXPORT_SYMBOL(__neigh_event_send);
1036
1037 static void neigh_update_hhs(struct neighbour *neigh)
1038 {
1039 struct hh_cache *hh;
1040 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1041 = NULL;
1042
1043 if (neigh->dev->header_ops)
1044 update = neigh->dev->header_ops->cache_update;
1045
1046 if (update) {
1047 hh = &neigh->hh;
1048 if (hh->hh_len) {
1049 write_seqlock_bh(&hh->hh_lock);
1050 update(hh, neigh->dev, neigh->ha);
1051 write_sequnlock_bh(&hh->hh_lock);
1052 }
1053 }
1054 }
1055
1056
1057
1058 /* Generic update routine.
1059 -- lladdr is new lladdr or NULL, if it is not supplied.
1060 -- new is new state.
1061 -- flags
1062 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1063 if it is different.
1064 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1065 lladdr instead of overriding it
1066 if it is different.
1067 It also allows to retain current state
1068 if lladdr is unchanged.
1069 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1070
1071 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1072 NTF_ROUTER flag.
1073 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1074 a router.
1075
1076 Caller MUST hold reference count on the entry.
1077 */
1078
1079 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1080 u32 flags)
1081 {
1082 u8 old;
1083 int err;
1084 int notify = 0;
1085 struct net_device *dev;
1086 int update_isrouter = 0;
1087
1088 write_lock_bh(&neigh->lock);
1089
1090 dev = neigh->dev;
1091 old = neigh->nud_state;
1092 err = -EPERM;
1093
1094 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1095 (old & (NUD_NOARP | NUD_PERMANENT)))
1096 goto out;
1097
1098 if (!(new & NUD_VALID)) {
1099 neigh_del_timer(neigh);
1100 if (old & NUD_CONNECTED)
1101 neigh_suspect(neigh);
1102 neigh->nud_state = new;
1103 err = 0;
1104 notify = old & NUD_VALID;
1105 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1106 (new & NUD_FAILED)) {
1107 neigh_invalidate(neigh);
1108 notify = 1;
1109 }
1110 goto out;
1111 }
1112
1113 /* Compare new lladdr with cached one */
1114 if (!dev->addr_len) {
1115 /* First case: device needs no address. */
1116 lladdr = neigh->ha;
1117 } else if (lladdr) {
1118 /* The second case: if something is already cached
1119 and a new address is proposed:
1120 - compare new & old
1121 - if they are different, check override flag
1122 */
1123 if ((old & NUD_VALID) &&
1124 !memcmp(lladdr, neigh->ha, dev->addr_len))
1125 lladdr = neigh->ha;
1126 } else {
1127 /* No address is supplied; if we know something,
1128 use it, otherwise discard the request.
1129 */
1130 err = -EINVAL;
1131 if (!(old & NUD_VALID))
1132 goto out;
1133 lladdr = neigh->ha;
1134 }
1135
1136 if (new & NUD_CONNECTED)
1137 neigh->confirmed = jiffies;
1138 neigh->updated = jiffies;
1139
1140 /* If entry was valid and address is not changed,
1141 do not change entry state, if new one is STALE.
1142 */
1143 err = 0;
1144 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1145 if (old & NUD_VALID) {
1146 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1147 update_isrouter = 0;
1148 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1149 (old & NUD_CONNECTED)) {
1150 lladdr = neigh->ha;
1151 new = NUD_STALE;
1152 } else
1153 goto out;
1154 } else {
1155 if (lladdr == neigh->ha && new == NUD_STALE &&
1156 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1157 (old & NUD_CONNECTED))
1158 )
1159 new = old;
1160 }
1161 }
1162
1163 if (new != old) {
1164 neigh_del_timer(neigh);
1165 if (new & NUD_IN_TIMER)
1166 neigh_add_timer(neigh, (jiffies +
1167 ((new & NUD_REACHABLE) ?
1168 neigh->parms->reachable_time :
1169 0)));
1170 neigh->nud_state = new;
1171 }
1172
1173 if (lladdr != neigh->ha) {
1174 write_seqlock(&neigh->ha_lock);
1175 memcpy(&neigh->ha, lladdr, dev->addr_len);
1176 write_sequnlock(&neigh->ha_lock);
1177 neigh_update_hhs(neigh);
1178 if (!(new & NUD_CONNECTED))
1179 neigh->confirmed = jiffies -
1180 (neigh->parms->base_reachable_time << 1);
1181 notify = 1;
1182 }
1183 if (new == old)
1184 goto out;
1185 if (new & NUD_CONNECTED)
1186 neigh_connect(neigh);
1187 else
1188 neigh_suspect(neigh);
1189 if (!(old & NUD_VALID)) {
1190 struct sk_buff *skb;
1191
1192 /* Again: avoid dead loop if something went wrong */
1193
1194 while (neigh->nud_state & NUD_VALID &&
1195 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1196 struct dst_entry *dst = skb_dst(skb);
1197 struct neighbour *n2, *n1 = neigh;
1198 write_unlock_bh(&neigh->lock);
1199
1200 rcu_read_lock();
1201 /* On shaper/eql skb->dst->neighbour != neigh :( */
1202 if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL)
1203 n1 = n2;
1204 n1->output(n1, skb);
1205 rcu_read_unlock();
1206
1207 write_lock_bh(&neigh->lock);
1208 }
1209 skb_queue_purge(&neigh->arp_queue);
1210 neigh->arp_queue_len_bytes = 0;
1211 }
1212 out:
1213 if (update_isrouter) {
1214 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1215 (neigh->flags | NTF_ROUTER) :
1216 (neigh->flags & ~NTF_ROUTER);
1217 }
1218 write_unlock_bh(&neigh->lock);
1219
1220 if (notify)
1221 neigh_update_notify(neigh);
1222
1223 return err;
1224 }
1225 EXPORT_SYMBOL(neigh_update);
1226
1227 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1228 u8 *lladdr, void *saddr,
1229 struct net_device *dev)
1230 {
1231 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1232 lladdr || !dev->addr_len);
1233 if (neigh)
1234 neigh_update(neigh, lladdr, NUD_STALE,
1235 NEIGH_UPDATE_F_OVERRIDE);
1236 return neigh;
1237 }
1238 EXPORT_SYMBOL(neigh_event_ns);
1239
1240 /* called with read_lock_bh(&n->lock); */
1241 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1242 {
1243 struct net_device *dev = dst->dev;
1244 __be16 prot = dst->ops->protocol;
1245 struct hh_cache *hh = &n->hh;
1246
1247 write_lock_bh(&n->lock);
1248
1249 /* Only one thread can come in here and initialize the
1250 * hh_cache entry.
1251 */
1252 if (!hh->hh_len)
1253 dev->header_ops->cache(n, hh, prot);
1254
1255 write_unlock_bh(&n->lock);
1256 }
1257
1258 /* This function can be used in contexts, where only old dev_queue_xmit
1259 * worked, f.e. if you want to override normal output path (eql, shaper),
1260 * but resolution is not made yet.
1261 */
1262
1263 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1264 {
1265 struct net_device *dev = skb->dev;
1266
1267 __skb_pull(skb, skb_network_offset(skb));
1268
1269 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1270 skb->len) < 0 &&
1271 dev->header_ops->rebuild(skb))
1272 return 0;
1273
1274 return dev_queue_xmit(skb);
1275 }
1276 EXPORT_SYMBOL(neigh_compat_output);
1277
1278 /* Slow and careful. */
1279
1280 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1281 {
1282 struct dst_entry *dst = skb_dst(skb);
1283 int rc = 0;
1284
1285 if (!dst)
1286 goto discard;
1287
1288 __skb_pull(skb, skb_network_offset(skb));
1289
1290 if (!neigh_event_send(neigh, skb)) {
1291 int err;
1292 struct net_device *dev = neigh->dev;
1293 unsigned int seq;
1294
1295 if (dev->header_ops->cache && !neigh->hh.hh_len)
1296 neigh_hh_init(neigh, dst);
1297
1298 do {
1299 seq = read_seqbegin(&neigh->ha_lock);
1300 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1301 neigh->ha, NULL, skb->len);
1302 } while (read_seqretry(&neigh->ha_lock, seq));
1303
1304 if (err >= 0)
1305 rc = dev_queue_xmit(skb);
1306 else
1307 goto out_kfree_skb;
1308 }
1309 out:
1310 return rc;
1311 discard:
1312 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1313 dst, neigh);
1314 out_kfree_skb:
1315 rc = -EINVAL;
1316 kfree_skb(skb);
1317 goto out;
1318 }
1319 EXPORT_SYMBOL(neigh_resolve_output);
1320
1321 /* As fast as possible without hh cache */
1322
1323 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1324 {
1325 struct net_device *dev = neigh->dev;
1326 unsigned int seq;
1327 int err;
1328
1329 __skb_pull(skb, skb_network_offset(skb));
1330
1331 do {
1332 seq = read_seqbegin(&neigh->ha_lock);
1333 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1334 neigh->ha, NULL, skb->len);
1335 } while (read_seqretry(&neigh->ha_lock, seq));
1336
1337 if (err >= 0)
1338 err = dev_queue_xmit(skb);
1339 else {
1340 err = -EINVAL;
1341 kfree_skb(skb);
1342 }
1343 return err;
1344 }
1345 EXPORT_SYMBOL(neigh_connected_output);
1346
1347 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1348 {
1349 return dev_queue_xmit(skb);
1350 }
1351 EXPORT_SYMBOL(neigh_direct_output);
1352
1353 static void neigh_proxy_process(unsigned long arg)
1354 {
1355 struct neigh_table *tbl = (struct neigh_table *)arg;
1356 long sched_next = 0;
1357 unsigned long now = jiffies;
1358 struct sk_buff *skb, *n;
1359
1360 spin_lock(&tbl->proxy_queue.lock);
1361
1362 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1363 long tdif = NEIGH_CB(skb)->sched_next - now;
1364
1365 if (tdif <= 0) {
1366 struct net_device *dev = skb->dev;
1367
1368 __skb_unlink(skb, &tbl->proxy_queue);
1369 if (tbl->proxy_redo && netif_running(dev)) {
1370 rcu_read_lock();
1371 tbl->proxy_redo(skb);
1372 rcu_read_unlock();
1373 } else {
1374 kfree_skb(skb);
1375 }
1376
1377 dev_put(dev);
1378 } else if (!sched_next || tdif < sched_next)
1379 sched_next = tdif;
1380 }
1381 del_timer(&tbl->proxy_timer);
1382 if (sched_next)
1383 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1384 spin_unlock(&tbl->proxy_queue.lock);
1385 }
1386
1387 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1388 struct sk_buff *skb)
1389 {
1390 unsigned long now = jiffies;
1391 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1392
1393 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1394 kfree_skb(skb);
1395 return;
1396 }
1397
1398 NEIGH_CB(skb)->sched_next = sched_next;
1399 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1400
1401 spin_lock(&tbl->proxy_queue.lock);
1402 if (del_timer(&tbl->proxy_timer)) {
1403 if (time_before(tbl->proxy_timer.expires, sched_next))
1404 sched_next = tbl->proxy_timer.expires;
1405 }
1406 skb_dst_drop(skb);
1407 dev_hold(skb->dev);
1408 __skb_queue_tail(&tbl->proxy_queue, skb);
1409 mod_timer(&tbl->proxy_timer, sched_next);
1410 spin_unlock(&tbl->proxy_queue.lock);
1411 }
1412 EXPORT_SYMBOL(pneigh_enqueue);
1413
1414 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1415 struct net *net, int ifindex)
1416 {
1417 struct neigh_parms *p;
1418
1419 for (p = &tbl->parms; p; p = p->next) {
1420 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1421 (!p->dev && !ifindex))
1422 return p;
1423 }
1424
1425 return NULL;
1426 }
1427
1428 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1429 struct neigh_table *tbl)
1430 {
1431 struct neigh_parms *p, *ref;
1432 struct net *net = dev_net(dev);
1433 const struct net_device_ops *ops = dev->netdev_ops;
1434
1435 ref = lookup_neigh_parms(tbl, net, 0);
1436 if (!ref)
1437 return NULL;
1438
1439 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1440 if (p) {
1441 p->tbl = tbl;
1442 atomic_set(&p->refcnt, 1);
1443 p->reachable_time =
1444 neigh_rand_reach_time(p->base_reachable_time);
1445
1446 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1447 kfree(p);
1448 return NULL;
1449 }
1450
1451 dev_hold(dev);
1452 p->dev = dev;
1453 write_pnet(&p->net, hold_net(net));
1454 p->sysctl_table = NULL;
1455 write_lock_bh(&tbl->lock);
1456 p->next = tbl->parms.next;
1457 tbl->parms.next = p;
1458 write_unlock_bh(&tbl->lock);
1459 }
1460 return p;
1461 }
1462 EXPORT_SYMBOL(neigh_parms_alloc);
1463
1464 static void neigh_rcu_free_parms(struct rcu_head *head)
1465 {
1466 struct neigh_parms *parms =
1467 container_of(head, struct neigh_parms, rcu_head);
1468
1469 neigh_parms_put(parms);
1470 }
1471
1472 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1473 {
1474 struct neigh_parms **p;
1475
1476 if (!parms || parms == &tbl->parms)
1477 return;
1478 write_lock_bh(&tbl->lock);
1479 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1480 if (*p == parms) {
1481 *p = parms->next;
1482 parms->dead = 1;
1483 write_unlock_bh(&tbl->lock);
1484 if (parms->dev)
1485 dev_put(parms->dev);
1486 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1487 return;
1488 }
1489 }
1490 write_unlock_bh(&tbl->lock);
1491 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1492 }
1493 EXPORT_SYMBOL(neigh_parms_release);
1494
1495 static void neigh_parms_destroy(struct neigh_parms *parms)
1496 {
1497 release_net(neigh_parms_net(parms));
1498 kfree(parms);
1499 }
1500
1501 static struct lock_class_key neigh_table_proxy_queue_class;
1502
1503 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1504 {
1505 unsigned long now = jiffies;
1506 unsigned long phsize;
1507
1508 write_pnet(&tbl->parms.net, &init_net);
1509 atomic_set(&tbl->parms.refcnt, 1);
1510 tbl->parms.reachable_time =
1511 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1512
1513 tbl->stats = alloc_percpu(struct neigh_statistics);
1514 if (!tbl->stats)
1515 panic("cannot create neighbour cache statistics");
1516
1517 #ifdef CONFIG_PROC_FS
1518 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1519 &neigh_stat_seq_fops, tbl))
1520 panic("cannot create neighbour proc dir entry");
1521 #endif
1522
1523 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1524
1525 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1526 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1527
1528 if (!tbl->nht || !tbl->phash_buckets)
1529 panic("cannot allocate neighbour cache hashes");
1530
1531 rwlock_init(&tbl->lock);
1532 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1533 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1534 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1535 skb_queue_head_init_class(&tbl->proxy_queue,
1536 &neigh_table_proxy_queue_class);
1537
1538 tbl->last_flush = now;
1539 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1540 }
1541 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1542
1543 void neigh_table_init(struct neigh_table *tbl)
1544 {
1545 struct neigh_table *tmp;
1546
1547 neigh_table_init_no_netlink(tbl);
1548 write_lock(&neigh_tbl_lock);
1549 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1550 if (tmp->family == tbl->family)
1551 break;
1552 }
1553 tbl->next = neigh_tables;
1554 neigh_tables = tbl;
1555 write_unlock(&neigh_tbl_lock);
1556
1557 if (unlikely(tmp)) {
1558 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1559 "family %d\n", tbl->family);
1560 dump_stack();
1561 }
1562 }
1563 EXPORT_SYMBOL(neigh_table_init);
1564
1565 int neigh_table_clear(struct neigh_table *tbl)
1566 {
1567 struct neigh_table **tp;
1568
1569 /* It is not clean... Fix it to unload IPv6 module safely */
1570 cancel_delayed_work_sync(&tbl->gc_work);
1571 del_timer_sync(&tbl->proxy_timer);
1572 pneigh_queue_purge(&tbl->proxy_queue);
1573 neigh_ifdown(tbl, NULL);
1574 if (atomic_read(&tbl->entries))
1575 printk(KERN_CRIT "neighbour leakage\n");
1576 write_lock(&neigh_tbl_lock);
1577 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1578 if (*tp == tbl) {
1579 *tp = tbl->next;
1580 break;
1581 }
1582 }
1583 write_unlock(&neigh_tbl_lock);
1584
1585 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1586 neigh_hash_free_rcu);
1587 tbl->nht = NULL;
1588
1589 kfree(tbl->phash_buckets);
1590 tbl->phash_buckets = NULL;
1591
1592 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1593
1594 free_percpu(tbl->stats);
1595 tbl->stats = NULL;
1596
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(neigh_table_clear);
1600
1601 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1602 {
1603 struct net *net = sock_net(skb->sk);
1604 struct ndmsg *ndm;
1605 struct nlattr *dst_attr;
1606 struct neigh_table *tbl;
1607 struct net_device *dev = NULL;
1608 int err = -EINVAL;
1609
1610 ASSERT_RTNL();
1611 if (nlmsg_len(nlh) < sizeof(*ndm))
1612 goto out;
1613
1614 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1615 if (dst_attr == NULL)
1616 goto out;
1617
1618 ndm = nlmsg_data(nlh);
1619 if (ndm->ndm_ifindex) {
1620 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1621 if (dev == NULL) {
1622 err = -ENODEV;
1623 goto out;
1624 }
1625 }
1626
1627 read_lock(&neigh_tbl_lock);
1628 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1629 struct neighbour *neigh;
1630
1631 if (tbl->family != ndm->ndm_family)
1632 continue;
1633 read_unlock(&neigh_tbl_lock);
1634
1635 if (nla_len(dst_attr) < tbl->key_len)
1636 goto out;
1637
1638 if (ndm->ndm_flags & NTF_PROXY) {
1639 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1640 goto out;
1641 }
1642
1643 if (dev == NULL)
1644 goto out;
1645
1646 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1647 if (neigh == NULL) {
1648 err = -ENOENT;
1649 goto out;
1650 }
1651
1652 err = neigh_update(neigh, NULL, NUD_FAILED,
1653 NEIGH_UPDATE_F_OVERRIDE |
1654 NEIGH_UPDATE_F_ADMIN);
1655 neigh_release(neigh);
1656 goto out;
1657 }
1658 read_unlock(&neigh_tbl_lock);
1659 err = -EAFNOSUPPORT;
1660
1661 out:
1662 return err;
1663 }
1664
1665 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1666 {
1667 struct net *net = sock_net(skb->sk);
1668 struct ndmsg *ndm;
1669 struct nlattr *tb[NDA_MAX+1];
1670 struct neigh_table *tbl;
1671 struct net_device *dev = NULL;
1672 int err;
1673
1674 ASSERT_RTNL();
1675 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1676 if (err < 0)
1677 goto out;
1678
1679 err = -EINVAL;
1680 if (tb[NDA_DST] == NULL)
1681 goto out;
1682
1683 ndm = nlmsg_data(nlh);
1684 if (ndm->ndm_ifindex) {
1685 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1686 if (dev == NULL) {
1687 err = -ENODEV;
1688 goto out;
1689 }
1690
1691 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1692 goto out;
1693 }
1694
1695 read_lock(&neigh_tbl_lock);
1696 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1697 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1698 struct neighbour *neigh;
1699 void *dst, *lladdr;
1700
1701 if (tbl->family != ndm->ndm_family)
1702 continue;
1703 read_unlock(&neigh_tbl_lock);
1704
1705 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1706 goto out;
1707 dst = nla_data(tb[NDA_DST]);
1708 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1709
1710 if (ndm->ndm_flags & NTF_PROXY) {
1711 struct pneigh_entry *pn;
1712
1713 err = -ENOBUFS;
1714 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1715 if (pn) {
1716 pn->flags = ndm->ndm_flags;
1717 err = 0;
1718 }
1719 goto out;
1720 }
1721
1722 if (dev == NULL)
1723 goto out;
1724
1725 neigh = neigh_lookup(tbl, dst, dev);
1726 if (neigh == NULL) {
1727 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1728 err = -ENOENT;
1729 goto out;
1730 }
1731
1732 neigh = __neigh_lookup_errno(tbl, dst, dev);
1733 if (IS_ERR(neigh)) {
1734 err = PTR_ERR(neigh);
1735 goto out;
1736 }
1737 } else {
1738 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1739 err = -EEXIST;
1740 neigh_release(neigh);
1741 goto out;
1742 }
1743
1744 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1745 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1746 }
1747
1748 if (ndm->ndm_flags & NTF_USE) {
1749 neigh_event_send(neigh, NULL);
1750 err = 0;
1751 } else
1752 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1753 neigh_release(neigh);
1754 goto out;
1755 }
1756
1757 read_unlock(&neigh_tbl_lock);
1758 err = -EAFNOSUPPORT;
1759 out:
1760 return err;
1761 }
1762
1763 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1764 {
1765 struct nlattr *nest;
1766
1767 nest = nla_nest_start(skb, NDTA_PARMS);
1768 if (nest == NULL)
1769 return -ENOBUFS;
1770
1771 if ((parms->dev &&
1772 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1773 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1774 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) ||
1775 /* approximative value for deprecated QUEUE_LEN (in packets) */
1776 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1777 DIV_ROUND_UP(parms->queue_len_bytes,
1778 SKB_TRUESIZE(ETH_FRAME_LEN))) ||
1779 nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) ||
1780 nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) ||
1781 nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) ||
1782 nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) ||
1783 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1784 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1785 parms->base_reachable_time) ||
1786 nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) ||
1787 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1788 parms->delay_probe_time) ||
1789 nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) ||
1790 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) ||
1791 nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) ||
1792 nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime))
1793 goto nla_put_failure;
1794 return nla_nest_end(skb, nest);
1795
1796 nla_put_failure:
1797 nla_nest_cancel(skb, nest);
1798 return -EMSGSIZE;
1799 }
1800
1801 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1802 u32 pid, u32 seq, int type, int flags)
1803 {
1804 struct nlmsghdr *nlh;
1805 struct ndtmsg *ndtmsg;
1806
1807 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1808 if (nlh == NULL)
1809 return -EMSGSIZE;
1810
1811 ndtmsg = nlmsg_data(nlh);
1812
1813 read_lock_bh(&tbl->lock);
1814 ndtmsg->ndtm_family = tbl->family;
1815 ndtmsg->ndtm_pad1 = 0;
1816 ndtmsg->ndtm_pad2 = 0;
1817
1818 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1819 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1820 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1821 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1822 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1823 goto nla_put_failure;
1824 {
1825 unsigned long now = jiffies;
1826 unsigned int flush_delta = now - tbl->last_flush;
1827 unsigned int rand_delta = now - tbl->last_rand;
1828 struct neigh_hash_table *nht;
1829 struct ndt_config ndc = {
1830 .ndtc_key_len = tbl->key_len,
1831 .ndtc_entry_size = tbl->entry_size,
1832 .ndtc_entries = atomic_read(&tbl->entries),
1833 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1834 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1835 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1836 };
1837
1838 rcu_read_lock_bh();
1839 nht = rcu_dereference_bh(tbl->nht);
1840 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1841 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1842 rcu_read_unlock_bh();
1843
1844 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1845 goto nla_put_failure;
1846 }
1847
1848 {
1849 int cpu;
1850 struct ndt_stats ndst;
1851
1852 memset(&ndst, 0, sizeof(ndst));
1853
1854 for_each_possible_cpu(cpu) {
1855 struct neigh_statistics *st;
1856
1857 st = per_cpu_ptr(tbl->stats, cpu);
1858 ndst.ndts_allocs += st->allocs;
1859 ndst.ndts_destroys += st->destroys;
1860 ndst.ndts_hash_grows += st->hash_grows;
1861 ndst.ndts_res_failed += st->res_failed;
1862 ndst.ndts_lookups += st->lookups;
1863 ndst.ndts_hits += st->hits;
1864 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1865 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1866 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1867 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1868 }
1869
1870 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1871 goto nla_put_failure;
1872 }
1873
1874 BUG_ON(tbl->parms.dev);
1875 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1876 goto nla_put_failure;
1877
1878 read_unlock_bh(&tbl->lock);
1879 return nlmsg_end(skb, nlh);
1880
1881 nla_put_failure:
1882 read_unlock_bh(&tbl->lock);
1883 nlmsg_cancel(skb, nlh);
1884 return -EMSGSIZE;
1885 }
1886
1887 static int neightbl_fill_param_info(struct sk_buff *skb,
1888 struct neigh_table *tbl,
1889 struct neigh_parms *parms,
1890 u32 pid, u32 seq, int type,
1891 unsigned int flags)
1892 {
1893 struct ndtmsg *ndtmsg;
1894 struct nlmsghdr *nlh;
1895
1896 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1897 if (nlh == NULL)
1898 return -EMSGSIZE;
1899
1900 ndtmsg = nlmsg_data(nlh);
1901
1902 read_lock_bh(&tbl->lock);
1903 ndtmsg->ndtm_family = tbl->family;
1904 ndtmsg->ndtm_pad1 = 0;
1905 ndtmsg->ndtm_pad2 = 0;
1906
1907 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1908 neightbl_fill_parms(skb, parms) < 0)
1909 goto errout;
1910
1911 read_unlock_bh(&tbl->lock);
1912 return nlmsg_end(skb, nlh);
1913 errout:
1914 read_unlock_bh(&tbl->lock);
1915 nlmsg_cancel(skb, nlh);
1916 return -EMSGSIZE;
1917 }
1918
1919 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1920 [NDTA_NAME] = { .type = NLA_STRING },
1921 [NDTA_THRESH1] = { .type = NLA_U32 },
1922 [NDTA_THRESH2] = { .type = NLA_U32 },
1923 [NDTA_THRESH3] = { .type = NLA_U32 },
1924 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1925 [NDTA_PARMS] = { .type = NLA_NESTED },
1926 };
1927
1928 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1929 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1930 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1931 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1932 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1933 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1934 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1935 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1936 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1937 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1938 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1939 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1940 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1941 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1942 };
1943
1944 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1945 {
1946 struct net *net = sock_net(skb->sk);
1947 struct neigh_table *tbl;
1948 struct ndtmsg *ndtmsg;
1949 struct nlattr *tb[NDTA_MAX+1];
1950 int err;
1951
1952 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1953 nl_neightbl_policy);
1954 if (err < 0)
1955 goto errout;
1956
1957 if (tb[NDTA_NAME] == NULL) {
1958 err = -EINVAL;
1959 goto errout;
1960 }
1961
1962 ndtmsg = nlmsg_data(nlh);
1963 read_lock(&neigh_tbl_lock);
1964 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1965 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1966 continue;
1967
1968 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1969 break;
1970 }
1971
1972 if (tbl == NULL) {
1973 err = -ENOENT;
1974 goto errout_locked;
1975 }
1976
1977 /*
1978 * We acquire tbl->lock to be nice to the periodic timers and
1979 * make sure they always see a consistent set of values.
1980 */
1981 write_lock_bh(&tbl->lock);
1982
1983 if (tb[NDTA_PARMS]) {
1984 struct nlattr *tbp[NDTPA_MAX+1];
1985 struct neigh_parms *p;
1986 int i, ifindex = 0;
1987
1988 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1989 nl_ntbl_parm_policy);
1990 if (err < 0)
1991 goto errout_tbl_lock;
1992
1993 if (tbp[NDTPA_IFINDEX])
1994 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1995
1996 p = lookup_neigh_parms(tbl, net, ifindex);
1997 if (p == NULL) {
1998 err = -ENOENT;
1999 goto errout_tbl_lock;
2000 }
2001
2002 for (i = 1; i <= NDTPA_MAX; i++) {
2003 if (tbp[i] == NULL)
2004 continue;
2005
2006 switch (i) {
2007 case NDTPA_QUEUE_LEN:
2008 p->queue_len_bytes = nla_get_u32(tbp[i]) *
2009 SKB_TRUESIZE(ETH_FRAME_LEN);
2010 break;
2011 case NDTPA_QUEUE_LENBYTES:
2012 p->queue_len_bytes = nla_get_u32(tbp[i]);
2013 break;
2014 case NDTPA_PROXY_QLEN:
2015 p->proxy_qlen = nla_get_u32(tbp[i]);
2016 break;
2017 case NDTPA_APP_PROBES:
2018 p->app_probes = nla_get_u32(tbp[i]);
2019 break;
2020 case NDTPA_UCAST_PROBES:
2021 p->ucast_probes = nla_get_u32(tbp[i]);
2022 break;
2023 case NDTPA_MCAST_PROBES:
2024 p->mcast_probes = nla_get_u32(tbp[i]);
2025 break;
2026 case NDTPA_BASE_REACHABLE_TIME:
2027 p->base_reachable_time = nla_get_msecs(tbp[i]);
2028 break;
2029 case NDTPA_GC_STALETIME:
2030 p->gc_staletime = nla_get_msecs(tbp[i]);
2031 break;
2032 case NDTPA_DELAY_PROBE_TIME:
2033 p->delay_probe_time = nla_get_msecs(tbp[i]);
2034 break;
2035 case NDTPA_RETRANS_TIME:
2036 p->retrans_time = nla_get_msecs(tbp[i]);
2037 break;
2038 case NDTPA_ANYCAST_DELAY:
2039 p->anycast_delay = nla_get_msecs(tbp[i]);
2040 break;
2041 case NDTPA_PROXY_DELAY:
2042 p->proxy_delay = nla_get_msecs(tbp[i]);
2043 break;
2044 case NDTPA_LOCKTIME:
2045 p->locktime = nla_get_msecs(tbp[i]);
2046 break;
2047 }
2048 }
2049 }
2050
2051 if (tb[NDTA_THRESH1])
2052 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2053
2054 if (tb[NDTA_THRESH2])
2055 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2056
2057 if (tb[NDTA_THRESH3])
2058 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2059
2060 if (tb[NDTA_GC_INTERVAL])
2061 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2062
2063 err = 0;
2064
2065 errout_tbl_lock:
2066 write_unlock_bh(&tbl->lock);
2067 errout_locked:
2068 read_unlock(&neigh_tbl_lock);
2069 errout:
2070 return err;
2071 }
2072
2073 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2074 {
2075 struct net *net = sock_net(skb->sk);
2076 int family, tidx, nidx = 0;
2077 int tbl_skip = cb->args[0];
2078 int neigh_skip = cb->args[1];
2079 struct neigh_table *tbl;
2080
2081 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2082
2083 read_lock(&neigh_tbl_lock);
2084 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2085 struct neigh_parms *p;
2086
2087 if (tidx < tbl_skip || (family && tbl->family != family))
2088 continue;
2089
2090 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2091 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2092 NLM_F_MULTI) <= 0)
2093 break;
2094
2095 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2096 if (!net_eq(neigh_parms_net(p), net))
2097 continue;
2098
2099 if (nidx < neigh_skip)
2100 goto next;
2101
2102 if (neightbl_fill_param_info(skb, tbl, p,
2103 NETLINK_CB(cb->skb).pid,
2104 cb->nlh->nlmsg_seq,
2105 RTM_NEWNEIGHTBL,
2106 NLM_F_MULTI) <= 0)
2107 goto out;
2108 next:
2109 nidx++;
2110 }
2111
2112 neigh_skip = 0;
2113 }
2114 out:
2115 read_unlock(&neigh_tbl_lock);
2116 cb->args[0] = tidx;
2117 cb->args[1] = nidx;
2118
2119 return skb->len;
2120 }
2121
2122 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2123 u32 pid, u32 seq, int type, unsigned int flags)
2124 {
2125 unsigned long now = jiffies;
2126 struct nda_cacheinfo ci;
2127 struct nlmsghdr *nlh;
2128 struct ndmsg *ndm;
2129
2130 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2131 if (nlh == NULL)
2132 return -EMSGSIZE;
2133
2134 ndm = nlmsg_data(nlh);
2135 ndm->ndm_family = neigh->ops->family;
2136 ndm->ndm_pad1 = 0;
2137 ndm->ndm_pad2 = 0;
2138 ndm->ndm_flags = neigh->flags;
2139 ndm->ndm_type = neigh->type;
2140 ndm->ndm_ifindex = neigh->dev->ifindex;
2141
2142 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2143 goto nla_put_failure;
2144
2145 read_lock_bh(&neigh->lock);
2146 ndm->ndm_state = neigh->nud_state;
2147 if (neigh->nud_state & NUD_VALID) {
2148 char haddr[MAX_ADDR_LEN];
2149
2150 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2151 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2152 read_unlock_bh(&neigh->lock);
2153 goto nla_put_failure;
2154 }
2155 }
2156
2157 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2158 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2159 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2160 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2161 read_unlock_bh(&neigh->lock);
2162
2163 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2164 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2165 goto nla_put_failure;
2166
2167 return nlmsg_end(skb, nlh);
2168
2169 nla_put_failure:
2170 nlmsg_cancel(skb, nlh);
2171 return -EMSGSIZE;
2172 }
2173
2174 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2175 u32 pid, u32 seq, int type, unsigned int flags,
2176 struct neigh_table *tbl)
2177 {
2178 struct nlmsghdr *nlh;
2179 struct ndmsg *ndm;
2180
2181 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2182 if (nlh == NULL)
2183 return -EMSGSIZE;
2184
2185 ndm = nlmsg_data(nlh);
2186 ndm->ndm_family = tbl->family;
2187 ndm->ndm_pad1 = 0;
2188 ndm->ndm_pad2 = 0;
2189 ndm->ndm_flags = pn->flags | NTF_PROXY;
2190 ndm->ndm_type = NDA_DST;
2191 ndm->ndm_ifindex = pn->dev->ifindex;
2192 ndm->ndm_state = NUD_NONE;
2193
2194 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2195 goto nla_put_failure;
2196
2197 return nlmsg_end(skb, nlh);
2198
2199 nla_put_failure:
2200 nlmsg_cancel(skb, nlh);
2201 return -EMSGSIZE;
2202 }
2203
2204 static void neigh_update_notify(struct neighbour *neigh)
2205 {
2206 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2207 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2208 }
2209
2210 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2211 struct netlink_callback *cb)
2212 {
2213 struct net *net = sock_net(skb->sk);
2214 struct neighbour *n;
2215 int rc, h, s_h = cb->args[1];
2216 int idx, s_idx = idx = cb->args[2];
2217 struct neigh_hash_table *nht;
2218
2219 rcu_read_lock_bh();
2220 nht = rcu_dereference_bh(tbl->nht);
2221
2222 for (h = 0; h < (1 << nht->hash_shift); h++) {
2223 if (h < s_h)
2224 continue;
2225 if (h > s_h)
2226 s_idx = 0;
2227 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2228 n != NULL;
2229 n = rcu_dereference_bh(n->next)) {
2230 if (!net_eq(dev_net(n->dev), net))
2231 continue;
2232 if (idx < s_idx)
2233 goto next;
2234 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2235 cb->nlh->nlmsg_seq,
2236 RTM_NEWNEIGH,
2237 NLM_F_MULTI) <= 0) {
2238 rc = -1;
2239 goto out;
2240 }
2241 next:
2242 idx++;
2243 }
2244 }
2245 rc = skb->len;
2246 out:
2247 rcu_read_unlock_bh();
2248 cb->args[1] = h;
2249 cb->args[2] = idx;
2250 return rc;
2251 }
2252
2253 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2254 struct netlink_callback *cb)
2255 {
2256 struct pneigh_entry *n;
2257 struct net *net = sock_net(skb->sk);
2258 int rc, h, s_h = cb->args[3];
2259 int idx, s_idx = idx = cb->args[4];
2260
2261 read_lock_bh(&tbl->lock);
2262
2263 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
2264 if (h < s_h)
2265 continue;
2266 if (h > s_h)
2267 s_idx = 0;
2268 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2269 if (dev_net(n->dev) != net)
2270 continue;
2271 if (idx < s_idx)
2272 goto next;
2273 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2274 cb->nlh->nlmsg_seq,
2275 RTM_NEWNEIGH,
2276 NLM_F_MULTI, tbl) <= 0) {
2277 read_unlock_bh(&tbl->lock);
2278 rc = -1;
2279 goto out;
2280 }
2281 next:
2282 idx++;
2283 }
2284 }
2285
2286 read_unlock_bh(&tbl->lock);
2287 rc = skb->len;
2288 out:
2289 cb->args[3] = h;
2290 cb->args[4] = idx;
2291 return rc;
2292
2293 }
2294
2295 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2296 {
2297 struct neigh_table *tbl;
2298 int t, family, s_t;
2299 int proxy = 0;
2300 int err = 0;
2301
2302 read_lock(&neigh_tbl_lock);
2303 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2304
2305 /* check for full ndmsg structure presence, family member is
2306 * the same for both structures
2307 */
2308 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2309 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2310 proxy = 1;
2311
2312 s_t = cb->args[0];
2313
2314 for (tbl = neigh_tables, t = 0; tbl && (err >= 0);
2315 tbl = tbl->next, t++) {
2316 if (t < s_t || (family && tbl->family != family))
2317 continue;
2318 if (t > s_t)
2319 memset(&cb->args[1], 0, sizeof(cb->args) -
2320 sizeof(cb->args[0]));
2321 if (proxy)
2322 err = pneigh_dump_table(tbl, skb, cb);
2323 else
2324 err = neigh_dump_table(tbl, skb, cb);
2325 }
2326 read_unlock(&neigh_tbl_lock);
2327
2328 cb->args[0] = t;
2329 return skb->len;
2330 }
2331
2332 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2333 {
2334 int chain;
2335 struct neigh_hash_table *nht;
2336
2337 rcu_read_lock_bh();
2338 nht = rcu_dereference_bh(tbl->nht);
2339
2340 read_lock(&tbl->lock); /* avoid resizes */
2341 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2342 struct neighbour *n;
2343
2344 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2345 n != NULL;
2346 n = rcu_dereference_bh(n->next))
2347 cb(n, cookie);
2348 }
2349 read_unlock(&tbl->lock);
2350 rcu_read_unlock_bh();
2351 }
2352 EXPORT_SYMBOL(neigh_for_each);
2353
2354 /* The tbl->lock must be held as a writer and BH disabled. */
2355 void __neigh_for_each_release(struct neigh_table *tbl,
2356 int (*cb)(struct neighbour *))
2357 {
2358 int chain;
2359 struct neigh_hash_table *nht;
2360
2361 nht = rcu_dereference_protected(tbl->nht,
2362 lockdep_is_held(&tbl->lock));
2363 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2364 struct neighbour *n;
2365 struct neighbour __rcu **np;
2366
2367 np = &nht->hash_buckets[chain];
2368 while ((n = rcu_dereference_protected(*np,
2369 lockdep_is_held(&tbl->lock))) != NULL) {
2370 int release;
2371
2372 write_lock(&n->lock);
2373 release = cb(n);
2374 if (release) {
2375 rcu_assign_pointer(*np,
2376 rcu_dereference_protected(n->next,
2377 lockdep_is_held(&tbl->lock)));
2378 n->dead = 1;
2379 } else
2380 np = &n->next;
2381 write_unlock(&n->lock);
2382 if (release)
2383 neigh_cleanup_and_release(n);
2384 }
2385 }
2386 }
2387 EXPORT_SYMBOL(__neigh_for_each_release);
2388
2389 #ifdef CONFIG_PROC_FS
2390
2391 static struct neighbour *neigh_get_first(struct seq_file *seq)
2392 {
2393 struct neigh_seq_state *state = seq->private;
2394 struct net *net = seq_file_net(seq);
2395 struct neigh_hash_table *nht = state->nht;
2396 struct neighbour *n = NULL;
2397 int bucket = state->bucket;
2398
2399 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2400 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2401 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2402
2403 while (n) {
2404 if (!net_eq(dev_net(n->dev), net))
2405 goto next;
2406 if (state->neigh_sub_iter) {
2407 loff_t fakep = 0;
2408 void *v;
2409
2410 v = state->neigh_sub_iter(state, n, &fakep);
2411 if (!v)
2412 goto next;
2413 }
2414 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2415 break;
2416 if (n->nud_state & ~NUD_NOARP)
2417 break;
2418 next:
2419 n = rcu_dereference_bh(n->next);
2420 }
2421
2422 if (n)
2423 break;
2424 }
2425 state->bucket = bucket;
2426
2427 return n;
2428 }
2429
2430 static struct neighbour *neigh_get_next(struct seq_file *seq,
2431 struct neighbour *n,
2432 loff_t *pos)
2433 {
2434 struct neigh_seq_state *state = seq->private;
2435 struct net *net = seq_file_net(seq);
2436 struct neigh_hash_table *nht = state->nht;
2437
2438 if (state->neigh_sub_iter) {
2439 void *v = state->neigh_sub_iter(state, n, pos);
2440 if (v)
2441 return n;
2442 }
2443 n = rcu_dereference_bh(n->next);
2444
2445 while (1) {
2446 while (n) {
2447 if (!net_eq(dev_net(n->dev), net))
2448 goto next;
2449 if (state->neigh_sub_iter) {
2450 void *v = state->neigh_sub_iter(state, n, pos);
2451 if (v)
2452 return n;
2453 goto next;
2454 }
2455 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2456 break;
2457
2458 if (n->nud_state & ~NUD_NOARP)
2459 break;
2460 next:
2461 n = rcu_dereference_bh(n->next);
2462 }
2463
2464 if (n)
2465 break;
2466
2467 if (++state->bucket >= (1 << nht->hash_shift))
2468 break;
2469
2470 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2471 }
2472
2473 if (n && pos)
2474 --(*pos);
2475 return n;
2476 }
2477
2478 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2479 {
2480 struct neighbour *n = neigh_get_first(seq);
2481
2482 if (n) {
2483 --(*pos);
2484 while (*pos) {
2485 n = neigh_get_next(seq, n, pos);
2486 if (!n)
2487 break;
2488 }
2489 }
2490 return *pos ? NULL : n;
2491 }
2492
2493 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2494 {
2495 struct neigh_seq_state *state = seq->private;
2496 struct net *net = seq_file_net(seq);
2497 struct neigh_table *tbl = state->tbl;
2498 struct pneigh_entry *pn = NULL;
2499 int bucket = state->bucket;
2500
2501 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2502 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2503 pn = tbl->phash_buckets[bucket];
2504 while (pn && !net_eq(pneigh_net(pn), net))
2505 pn = pn->next;
2506 if (pn)
2507 break;
2508 }
2509 state->bucket = bucket;
2510
2511 return pn;
2512 }
2513
2514 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2515 struct pneigh_entry *pn,
2516 loff_t *pos)
2517 {
2518 struct neigh_seq_state *state = seq->private;
2519 struct net *net = seq_file_net(seq);
2520 struct neigh_table *tbl = state->tbl;
2521
2522 do {
2523 pn = pn->next;
2524 } while (pn && !net_eq(pneigh_net(pn), net));
2525
2526 while (!pn) {
2527 if (++state->bucket > PNEIGH_HASHMASK)
2528 break;
2529 pn = tbl->phash_buckets[state->bucket];
2530 while (pn && !net_eq(pneigh_net(pn), net))
2531 pn = pn->next;
2532 if (pn)
2533 break;
2534 }
2535
2536 if (pn && pos)
2537 --(*pos);
2538
2539 return pn;
2540 }
2541
2542 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2543 {
2544 struct pneigh_entry *pn = pneigh_get_first(seq);
2545
2546 if (pn) {
2547 --(*pos);
2548 while (*pos) {
2549 pn = pneigh_get_next(seq, pn, pos);
2550 if (!pn)
2551 break;
2552 }
2553 }
2554 return *pos ? NULL : pn;
2555 }
2556
2557 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2558 {
2559 struct neigh_seq_state *state = seq->private;
2560 void *rc;
2561 loff_t idxpos = *pos;
2562
2563 rc = neigh_get_idx(seq, &idxpos);
2564 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2565 rc = pneigh_get_idx(seq, &idxpos);
2566
2567 return rc;
2568 }
2569
2570 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2571 __acquires(rcu_bh)
2572 {
2573 struct neigh_seq_state *state = seq->private;
2574
2575 state->tbl = tbl;
2576 state->bucket = 0;
2577 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2578
2579 rcu_read_lock_bh();
2580 state->nht = rcu_dereference_bh(tbl->nht);
2581
2582 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2583 }
2584 EXPORT_SYMBOL(neigh_seq_start);
2585
2586 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2587 {
2588 struct neigh_seq_state *state;
2589 void *rc;
2590
2591 if (v == SEQ_START_TOKEN) {
2592 rc = neigh_get_first(seq);
2593 goto out;
2594 }
2595
2596 state = seq->private;
2597 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2598 rc = neigh_get_next(seq, v, NULL);
2599 if (rc)
2600 goto out;
2601 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2602 rc = pneigh_get_first(seq);
2603 } else {
2604 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2605 rc = pneigh_get_next(seq, v, NULL);
2606 }
2607 out:
2608 ++(*pos);
2609 return rc;
2610 }
2611 EXPORT_SYMBOL(neigh_seq_next);
2612
2613 void neigh_seq_stop(struct seq_file *seq, void *v)
2614 __releases(rcu_bh)
2615 {
2616 rcu_read_unlock_bh();
2617 }
2618 EXPORT_SYMBOL(neigh_seq_stop);
2619
2620 /* statistics via seq_file */
2621
2622 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2623 {
2624 struct neigh_table *tbl = seq->private;
2625 int cpu;
2626
2627 if (*pos == 0)
2628 return SEQ_START_TOKEN;
2629
2630 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2631 if (!cpu_possible(cpu))
2632 continue;
2633 *pos = cpu+1;
2634 return per_cpu_ptr(tbl->stats, cpu);
2635 }
2636 return NULL;
2637 }
2638
2639 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2640 {
2641 struct neigh_table *tbl = seq->private;
2642 int cpu;
2643
2644 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2645 if (!cpu_possible(cpu))
2646 continue;
2647 *pos = cpu+1;
2648 return per_cpu_ptr(tbl->stats, cpu);
2649 }
2650 return NULL;
2651 }
2652
2653 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2654 {
2655
2656 }
2657
2658 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2659 {
2660 struct neigh_table *tbl = seq->private;
2661 struct neigh_statistics *st = v;
2662
2663 if (v == SEQ_START_TOKEN) {
2664 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2665 return 0;
2666 }
2667
2668 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2669 "%08lx %08lx %08lx %08lx %08lx\n",
2670 atomic_read(&tbl->entries),
2671
2672 st->allocs,
2673 st->destroys,
2674 st->hash_grows,
2675
2676 st->lookups,
2677 st->hits,
2678
2679 st->res_failed,
2680
2681 st->rcv_probes_mcast,
2682 st->rcv_probes_ucast,
2683
2684 st->periodic_gc_runs,
2685 st->forced_gc_runs,
2686 st->unres_discards
2687 );
2688
2689 return 0;
2690 }
2691
2692 static const struct seq_operations neigh_stat_seq_ops = {
2693 .start = neigh_stat_seq_start,
2694 .next = neigh_stat_seq_next,
2695 .stop = neigh_stat_seq_stop,
2696 .show = neigh_stat_seq_show,
2697 };
2698
2699 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2700 {
2701 int ret = seq_open(file, &neigh_stat_seq_ops);
2702
2703 if (!ret) {
2704 struct seq_file *sf = file->private_data;
2705 sf->private = PDE(inode)->data;
2706 }
2707 return ret;
2708 };
2709
2710 static const struct file_operations neigh_stat_seq_fops = {
2711 .owner = THIS_MODULE,
2712 .open = neigh_stat_seq_open,
2713 .read = seq_read,
2714 .llseek = seq_lseek,
2715 .release = seq_release,
2716 };
2717
2718 #endif /* CONFIG_PROC_FS */
2719
2720 static inline size_t neigh_nlmsg_size(void)
2721 {
2722 return NLMSG_ALIGN(sizeof(struct ndmsg))
2723 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2724 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2725 + nla_total_size(sizeof(struct nda_cacheinfo))
2726 + nla_total_size(4); /* NDA_PROBES */
2727 }
2728
2729 static void __neigh_notify(struct neighbour *n, int type, int flags)
2730 {
2731 struct net *net = dev_net(n->dev);
2732 struct sk_buff *skb;
2733 int err = -ENOBUFS;
2734
2735 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2736 if (skb == NULL)
2737 goto errout;
2738
2739 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2740 if (err < 0) {
2741 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2742 WARN_ON(err == -EMSGSIZE);
2743 kfree_skb(skb);
2744 goto errout;
2745 }
2746 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2747 return;
2748 errout:
2749 if (err < 0)
2750 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2751 }
2752
2753 #ifdef CONFIG_ARPD
2754 void neigh_app_ns(struct neighbour *n)
2755 {
2756 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2757 }
2758 EXPORT_SYMBOL(neigh_app_ns);
2759 #endif /* CONFIG_ARPD */
2760
2761 #ifdef CONFIG_SYSCTL
2762
2763 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer,
2764 size_t *lenp, loff_t *ppos)
2765 {
2766 int size, ret;
2767 ctl_table tmp = *ctl;
2768
2769 tmp.data = &size;
2770 size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN));
2771 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
2772 if (write && !ret)
2773 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2774 return ret;
2775 }
2776
2777 enum {
2778 NEIGH_VAR_MCAST_PROBE,
2779 NEIGH_VAR_UCAST_PROBE,
2780 NEIGH_VAR_APP_PROBE,
2781 NEIGH_VAR_RETRANS_TIME,
2782 NEIGH_VAR_BASE_REACHABLE_TIME,
2783 NEIGH_VAR_DELAY_PROBE_TIME,
2784 NEIGH_VAR_GC_STALETIME,
2785 NEIGH_VAR_QUEUE_LEN,
2786 NEIGH_VAR_QUEUE_LEN_BYTES,
2787 NEIGH_VAR_PROXY_QLEN,
2788 NEIGH_VAR_ANYCAST_DELAY,
2789 NEIGH_VAR_PROXY_DELAY,
2790 NEIGH_VAR_LOCKTIME,
2791 NEIGH_VAR_RETRANS_TIME_MS,
2792 NEIGH_VAR_BASE_REACHABLE_TIME_MS,
2793 NEIGH_VAR_GC_INTERVAL,
2794 NEIGH_VAR_GC_THRESH1,
2795 NEIGH_VAR_GC_THRESH2,
2796 NEIGH_VAR_GC_THRESH3,
2797 NEIGH_VAR_MAX
2798 };
2799
2800 static struct neigh_sysctl_table {
2801 struct ctl_table_header *sysctl_header;
2802 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2803 char *dev_name;
2804 } neigh_sysctl_template __read_mostly = {
2805 .neigh_vars = {
2806 [NEIGH_VAR_MCAST_PROBE] = {
2807 .procname = "mcast_solicit",
2808 .maxlen = sizeof(int),
2809 .mode = 0644,
2810 .proc_handler = proc_dointvec,
2811 },
2812 [NEIGH_VAR_UCAST_PROBE] = {
2813 .procname = "ucast_solicit",
2814 .maxlen = sizeof(int),
2815 .mode = 0644,
2816 .proc_handler = proc_dointvec,
2817 },
2818 [NEIGH_VAR_APP_PROBE] = {
2819 .procname = "app_solicit",
2820 .maxlen = sizeof(int),
2821 .mode = 0644,
2822 .proc_handler = proc_dointvec,
2823 },
2824 [NEIGH_VAR_RETRANS_TIME] = {
2825 .procname = "retrans_time",
2826 .maxlen = sizeof(int),
2827 .mode = 0644,
2828 .proc_handler = proc_dointvec_userhz_jiffies,
2829 },
2830 [NEIGH_VAR_BASE_REACHABLE_TIME] = {
2831 .procname = "base_reachable_time",
2832 .maxlen = sizeof(int),
2833 .mode = 0644,
2834 .proc_handler = proc_dointvec_jiffies,
2835 },
2836 [NEIGH_VAR_DELAY_PROBE_TIME] = {
2837 .procname = "delay_first_probe_time",
2838 .maxlen = sizeof(int),
2839 .mode = 0644,
2840 .proc_handler = proc_dointvec_jiffies,
2841 },
2842 [NEIGH_VAR_GC_STALETIME] = {
2843 .procname = "gc_stale_time",
2844 .maxlen = sizeof(int),
2845 .mode = 0644,
2846 .proc_handler = proc_dointvec_jiffies,
2847 },
2848 [NEIGH_VAR_QUEUE_LEN] = {
2849 .procname = "unres_qlen",
2850 .maxlen = sizeof(int),
2851 .mode = 0644,
2852 .proc_handler = proc_unres_qlen,
2853 },
2854 [NEIGH_VAR_QUEUE_LEN_BYTES] = {
2855 .procname = "unres_qlen_bytes",
2856 .maxlen = sizeof(int),
2857 .mode = 0644,
2858 .proc_handler = proc_dointvec,
2859 },
2860 [NEIGH_VAR_PROXY_QLEN] = {
2861 .procname = "proxy_qlen",
2862 .maxlen = sizeof(int),
2863 .mode = 0644,
2864 .proc_handler = proc_dointvec,
2865 },
2866 [NEIGH_VAR_ANYCAST_DELAY] = {
2867 .procname = "anycast_delay",
2868 .maxlen = sizeof(int),
2869 .mode = 0644,
2870 .proc_handler = proc_dointvec_userhz_jiffies,
2871 },
2872 [NEIGH_VAR_PROXY_DELAY] = {
2873 .procname = "proxy_delay",
2874 .maxlen = sizeof(int),
2875 .mode = 0644,
2876 .proc_handler = proc_dointvec_userhz_jiffies,
2877 },
2878 [NEIGH_VAR_LOCKTIME] = {
2879 .procname = "locktime",
2880 .maxlen = sizeof(int),
2881 .mode = 0644,
2882 .proc_handler = proc_dointvec_userhz_jiffies,
2883 },
2884 [NEIGH_VAR_RETRANS_TIME_MS] = {
2885 .procname = "retrans_time_ms",
2886 .maxlen = sizeof(int),
2887 .mode = 0644,
2888 .proc_handler = proc_dointvec_ms_jiffies,
2889 },
2890 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = {
2891 .procname = "base_reachable_time_ms",
2892 .maxlen = sizeof(int),
2893 .mode = 0644,
2894 .proc_handler = proc_dointvec_ms_jiffies,
2895 },
2896 [NEIGH_VAR_GC_INTERVAL] = {
2897 .procname = "gc_interval",
2898 .maxlen = sizeof(int),
2899 .mode = 0644,
2900 .proc_handler = proc_dointvec_jiffies,
2901 },
2902 [NEIGH_VAR_GC_THRESH1] = {
2903 .procname = "gc_thresh1",
2904 .maxlen = sizeof(int),
2905 .mode = 0644,
2906 .proc_handler = proc_dointvec,
2907 },
2908 [NEIGH_VAR_GC_THRESH2] = {
2909 .procname = "gc_thresh2",
2910 .maxlen = sizeof(int),
2911 .mode = 0644,
2912 .proc_handler = proc_dointvec,
2913 },
2914 [NEIGH_VAR_GC_THRESH3] = {
2915 .procname = "gc_thresh3",
2916 .maxlen = sizeof(int),
2917 .mode = 0644,
2918 .proc_handler = proc_dointvec,
2919 },
2920 {},
2921 },
2922 };
2923
2924 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2925 char *p_name, proc_handler *handler)
2926 {
2927 struct neigh_sysctl_table *t;
2928 const char *dev_name_source = NULL;
2929
2930 #define NEIGH_CTL_PATH_ROOT 0
2931 #define NEIGH_CTL_PATH_PROTO 1
2932 #define NEIGH_CTL_PATH_NEIGH 2
2933 #define NEIGH_CTL_PATH_DEV 3
2934
2935 struct ctl_path neigh_path[] = {
2936 { .procname = "net", },
2937 { .procname = "proto", },
2938 { .procname = "neigh", },
2939 { .procname = "default", },
2940 { },
2941 };
2942
2943 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2944 if (!t)
2945 goto err;
2946
2947 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes;
2948 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes;
2949 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes;
2950 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time;
2951 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time;
2952 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time;
2953 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime;
2954 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes;
2955 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes;
2956 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen;
2957 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay;
2958 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay;
2959 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime;
2960 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time;
2961 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time;
2962
2963 if (dev) {
2964 dev_name_source = dev->name;
2965 /* Terminate the table early */
2966 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
2967 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
2968 } else {
2969 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2970 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
2971 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
2972 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
2973 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
2974 }
2975
2976
2977 if (handler) {
2978 /* RetransTime */
2979 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
2980 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev;
2981 /* ReachableTime */
2982 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
2983 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev;
2984 /* RetransTime (in milliseconds)*/
2985 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
2986 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev;
2987 /* ReachableTime (in milliseconds) */
2988 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
2989 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev;
2990 }
2991
2992 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2993 if (!t->dev_name)
2994 goto free;
2995
2996 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2997 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2998
2999 t->sysctl_header =
3000 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
3001 if (!t->sysctl_header)
3002 goto free_procname;
3003
3004 p->sysctl_table = t;
3005 return 0;
3006
3007 free_procname:
3008 kfree(t->dev_name);
3009 free:
3010 kfree(t);
3011 err:
3012 return -ENOBUFS;
3013 }
3014 EXPORT_SYMBOL(neigh_sysctl_register);
3015
3016 void neigh_sysctl_unregister(struct neigh_parms *p)
3017 {
3018 if (p->sysctl_table) {
3019 struct neigh_sysctl_table *t = p->sysctl_table;
3020 p->sysctl_table = NULL;
3021 unregister_sysctl_table(t->sysctl_header);
3022 kfree(t->dev_name);
3023 kfree(t);
3024 }
3025 }
3026 EXPORT_SYMBOL(neigh_sysctl_unregister);
3027
3028 #endif /* CONFIG_SYSCTL */
3029
3030 static int __init neigh_init(void)
3031 {
3032 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3033 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3034 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3035
3036 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3037 NULL);
3038 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3039
3040 return 0;
3041 }
3042
3043 subsys_initcall(neigh_init);
3044
This page took 0.131864 seconds and 5 git commands to generate.