Merge branch 'for-2.6.36' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK0 NEIGH_PRINTK
45 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
46 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47
48 #if NEIGH_DEBUG >= 1
49 #undef NEIGH_PRINTK1
50 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #endif
52 #if NEIGH_DEBUG >= 2
53 #undef NEIGH_PRINTK2
54 #define NEIGH_PRINTK2 NEIGH_PRINTK
55 #endif
56
57 #define PNEIGH_HASHMASK 0xF
58
59 static void neigh_timer_handler(unsigned long arg);
60 static void __neigh_notify(struct neighbour *n, int type, int flags);
61 static void neigh_update_notify(struct neighbour *neigh);
62 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
79
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
83
84 Reference count prevents destruction.
85
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
90
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
95
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
98 */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104 kfree_skb(skb);
105 return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
112
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
115 }
116
117 /*
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
121 */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125 return (base ? (net_random() % base) + (base >> 1) : 0);
126 }
127 EXPORT_SYMBOL(neigh_rand_reach_time);
128
129
130 static int neigh_forced_gc(struct neigh_table *tbl)
131 {
132 int shrunk = 0;
133 int i;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 for (i = 0; i <= tbl->hash_mask; i++) {
139 struct neighbour *n, **np;
140
141 np = &tbl->hash_buckets[i];
142 while ((n = *np) != NULL) {
143 /* Neighbour record may be discarded if:
144 * - nobody refers to it.
145 * - it is not permanent
146 */
147 write_lock(&n->lock);
148 if (atomic_read(&n->refcnt) == 1 &&
149 !(n->nud_state & NUD_PERMANENT)) {
150 *np = n->next;
151 n->dead = 1;
152 shrunk = 1;
153 write_unlock(&n->lock);
154 neigh_cleanup_and_release(n);
155 continue;
156 }
157 write_unlock(&n->lock);
158 np = &n->next;
159 }
160 }
161
162 tbl->last_flush = jiffies;
163
164 write_unlock_bh(&tbl->lock);
165
166 return shrunk;
167 }
168
169 static void neigh_add_timer(struct neighbour *n, unsigned long when)
170 {
171 neigh_hold(n);
172 if (unlikely(mod_timer(&n->timer, when))) {
173 printk("NEIGH: BUG, double timer add, state is %x\n",
174 n->nud_state);
175 dump_stack();
176 }
177 }
178
179 static int neigh_del_timer(struct neighbour *n)
180 {
181 if ((n->nud_state & NUD_IN_TIMER) &&
182 del_timer(&n->timer)) {
183 neigh_release(n);
184 return 1;
185 }
186 return 0;
187 }
188
189 static void pneigh_queue_purge(struct sk_buff_head *list)
190 {
191 struct sk_buff *skb;
192
193 while ((skb = skb_dequeue(list)) != NULL) {
194 dev_put(skb->dev);
195 kfree_skb(skb);
196 }
197 }
198
199 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
200 {
201 int i;
202
203 for (i = 0; i <= tbl->hash_mask; i++) {
204 struct neighbour *n, **np = &tbl->hash_buckets[i];
205
206 while ((n = *np) != NULL) {
207 if (dev && n->dev != dev) {
208 np = &n->next;
209 continue;
210 }
211 *np = n->next;
212 write_lock(&n->lock);
213 neigh_del_timer(n);
214 n->dead = 1;
215
216 if (atomic_read(&n->refcnt) != 1) {
217 /* The most unpleasant situation.
218 We must destroy neighbour entry,
219 but someone still uses it.
220
221 The destroy will be delayed until
222 the last user releases us, but
223 we must kill timers etc. and move
224 it to safe state.
225 */
226 skb_queue_purge(&n->arp_queue);
227 n->output = neigh_blackhole;
228 if (n->nud_state & NUD_VALID)
229 n->nud_state = NUD_NOARP;
230 else
231 n->nud_state = NUD_NONE;
232 NEIGH_PRINTK2("neigh %p is stray.\n", n);
233 }
234 write_unlock(&n->lock);
235 neigh_cleanup_and_release(n);
236 }
237 }
238 }
239
240 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
241 {
242 write_lock_bh(&tbl->lock);
243 neigh_flush_dev(tbl, dev);
244 write_unlock_bh(&tbl->lock);
245 }
246 EXPORT_SYMBOL(neigh_changeaddr);
247
248 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
249 {
250 write_lock_bh(&tbl->lock);
251 neigh_flush_dev(tbl, dev);
252 pneigh_ifdown(tbl, dev);
253 write_unlock_bh(&tbl->lock);
254
255 del_timer_sync(&tbl->proxy_timer);
256 pneigh_queue_purge(&tbl->proxy_queue);
257 return 0;
258 }
259 EXPORT_SYMBOL(neigh_ifdown);
260
261 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
262 {
263 struct neighbour *n = NULL;
264 unsigned long now = jiffies;
265 int entries;
266
267 entries = atomic_inc_return(&tbl->entries) - 1;
268 if (entries >= tbl->gc_thresh3 ||
269 (entries >= tbl->gc_thresh2 &&
270 time_after(now, tbl->last_flush + 5 * HZ))) {
271 if (!neigh_forced_gc(tbl) &&
272 entries >= tbl->gc_thresh3)
273 goto out_entries;
274 }
275
276 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
277 if (!n)
278 goto out_entries;
279
280 skb_queue_head_init(&n->arp_queue);
281 rwlock_init(&n->lock);
282 n->updated = n->used = now;
283 n->nud_state = NUD_NONE;
284 n->output = neigh_blackhole;
285 n->parms = neigh_parms_clone(&tbl->parms);
286 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
287
288 NEIGH_CACHE_STAT_INC(tbl, allocs);
289 n->tbl = tbl;
290 atomic_set(&n->refcnt, 1);
291 n->dead = 1;
292 out:
293 return n;
294
295 out_entries:
296 atomic_dec(&tbl->entries);
297 goto out;
298 }
299
300 static struct neighbour **neigh_hash_alloc(unsigned int entries)
301 {
302 unsigned long size = entries * sizeof(struct neighbour *);
303 struct neighbour **ret;
304
305 if (size <= PAGE_SIZE) {
306 ret = kzalloc(size, GFP_ATOMIC);
307 } else {
308 ret = (struct neighbour **)
309 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
310 }
311 return ret;
312 }
313
314 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
315 {
316 unsigned long size = entries * sizeof(struct neighbour *);
317
318 if (size <= PAGE_SIZE)
319 kfree(hash);
320 else
321 free_pages((unsigned long)hash, get_order(size));
322 }
323
324 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
325 {
326 struct neighbour **new_hash, **old_hash;
327 unsigned int i, new_hash_mask, old_entries;
328
329 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
330
331 BUG_ON(!is_power_of_2(new_entries));
332 new_hash = neigh_hash_alloc(new_entries);
333 if (!new_hash)
334 return;
335
336 old_entries = tbl->hash_mask + 1;
337 new_hash_mask = new_entries - 1;
338 old_hash = tbl->hash_buckets;
339
340 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
341 for (i = 0; i < old_entries; i++) {
342 struct neighbour *n, *next;
343
344 for (n = old_hash[i]; n; n = next) {
345 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
346
347 hash_val &= new_hash_mask;
348 next = n->next;
349
350 n->next = new_hash[hash_val];
351 new_hash[hash_val] = n;
352 }
353 }
354 tbl->hash_buckets = new_hash;
355 tbl->hash_mask = new_hash_mask;
356
357 neigh_hash_free(old_hash, old_entries);
358 }
359
360 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
361 struct net_device *dev)
362 {
363 struct neighbour *n;
364 int key_len = tbl->key_len;
365 u32 hash_val;
366
367 NEIGH_CACHE_STAT_INC(tbl, lookups);
368
369 read_lock_bh(&tbl->lock);
370 hash_val = tbl->hash(pkey, dev);
371 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
372 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
373 neigh_hold(n);
374 NEIGH_CACHE_STAT_INC(tbl, hits);
375 break;
376 }
377 }
378 read_unlock_bh(&tbl->lock);
379 return n;
380 }
381 EXPORT_SYMBOL(neigh_lookup);
382
383 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
384 const void *pkey)
385 {
386 struct neighbour *n;
387 int key_len = tbl->key_len;
388 u32 hash_val;
389
390 NEIGH_CACHE_STAT_INC(tbl, lookups);
391
392 read_lock_bh(&tbl->lock);
393 hash_val = tbl->hash(pkey, NULL);
394 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
395 if (!memcmp(n->primary_key, pkey, key_len) &&
396 net_eq(dev_net(n->dev), net)) {
397 neigh_hold(n);
398 NEIGH_CACHE_STAT_INC(tbl, hits);
399 break;
400 }
401 }
402 read_unlock_bh(&tbl->lock);
403 return n;
404 }
405 EXPORT_SYMBOL(neigh_lookup_nodev);
406
407 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
408 struct net_device *dev)
409 {
410 u32 hash_val;
411 int key_len = tbl->key_len;
412 int error;
413 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
414
415 if (!n) {
416 rc = ERR_PTR(-ENOBUFS);
417 goto out;
418 }
419
420 memcpy(n->primary_key, pkey, key_len);
421 n->dev = dev;
422 dev_hold(dev);
423
424 /* Protocol specific setup. */
425 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
426 rc = ERR_PTR(error);
427 goto out_neigh_release;
428 }
429
430 /* Device specific setup. */
431 if (n->parms->neigh_setup &&
432 (error = n->parms->neigh_setup(n)) < 0) {
433 rc = ERR_PTR(error);
434 goto out_neigh_release;
435 }
436
437 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
438
439 write_lock_bh(&tbl->lock);
440
441 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
442 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
443
444 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
445
446 if (n->parms->dead) {
447 rc = ERR_PTR(-EINVAL);
448 goto out_tbl_unlock;
449 }
450
451 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
452 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
453 neigh_hold(n1);
454 rc = n1;
455 goto out_tbl_unlock;
456 }
457 }
458
459 n->next = tbl->hash_buckets[hash_val];
460 tbl->hash_buckets[hash_val] = n;
461 n->dead = 0;
462 neigh_hold(n);
463 write_unlock_bh(&tbl->lock);
464 NEIGH_PRINTK2("neigh %p is created.\n", n);
465 rc = n;
466 out:
467 return rc;
468 out_tbl_unlock:
469 write_unlock_bh(&tbl->lock);
470 out_neigh_release:
471 neigh_release(n);
472 goto out;
473 }
474 EXPORT_SYMBOL(neigh_create);
475
476 static u32 pneigh_hash(const void *pkey, int key_len)
477 {
478 u32 hash_val = *(u32 *)(pkey + key_len - 4);
479 hash_val ^= (hash_val >> 16);
480 hash_val ^= hash_val >> 8;
481 hash_val ^= hash_val >> 4;
482 hash_val &= PNEIGH_HASHMASK;
483 return hash_val;
484 }
485
486 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
487 struct net *net,
488 const void *pkey,
489 int key_len,
490 struct net_device *dev)
491 {
492 while (n) {
493 if (!memcmp(n->key, pkey, key_len) &&
494 net_eq(pneigh_net(n), net) &&
495 (n->dev == dev || !n->dev))
496 return n;
497 n = n->next;
498 }
499 return NULL;
500 }
501
502 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
503 struct net *net, const void *pkey, struct net_device *dev)
504 {
505 int key_len = tbl->key_len;
506 u32 hash_val = pneigh_hash(pkey, key_len);
507
508 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
509 net, pkey, key_len, dev);
510 }
511 EXPORT_SYMBOL_GPL(__pneigh_lookup);
512
513 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
514 struct net *net, const void *pkey,
515 struct net_device *dev, int creat)
516 {
517 struct pneigh_entry *n;
518 int key_len = tbl->key_len;
519 u32 hash_val = pneigh_hash(pkey, key_len);
520
521 read_lock_bh(&tbl->lock);
522 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
523 net, pkey, key_len, dev);
524 read_unlock_bh(&tbl->lock);
525
526 if (n || !creat)
527 goto out;
528
529 ASSERT_RTNL();
530
531 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
532 if (!n)
533 goto out;
534
535 write_pnet(&n->net, hold_net(net));
536 memcpy(n->key, pkey, key_len);
537 n->dev = dev;
538 if (dev)
539 dev_hold(dev);
540
541 if (tbl->pconstructor && tbl->pconstructor(n)) {
542 if (dev)
543 dev_put(dev);
544 release_net(net);
545 kfree(n);
546 n = NULL;
547 goto out;
548 }
549
550 write_lock_bh(&tbl->lock);
551 n->next = tbl->phash_buckets[hash_val];
552 tbl->phash_buckets[hash_val] = n;
553 write_unlock_bh(&tbl->lock);
554 out:
555 return n;
556 }
557 EXPORT_SYMBOL(pneigh_lookup);
558
559
560 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
561 struct net_device *dev)
562 {
563 struct pneigh_entry *n, **np;
564 int key_len = tbl->key_len;
565 u32 hash_val = pneigh_hash(pkey, key_len);
566
567 write_lock_bh(&tbl->lock);
568 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
569 np = &n->next) {
570 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
571 net_eq(pneigh_net(n), net)) {
572 *np = n->next;
573 write_unlock_bh(&tbl->lock);
574 if (tbl->pdestructor)
575 tbl->pdestructor(n);
576 if (n->dev)
577 dev_put(n->dev);
578 release_net(pneigh_net(n));
579 kfree(n);
580 return 0;
581 }
582 }
583 write_unlock_bh(&tbl->lock);
584 return -ENOENT;
585 }
586
587 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
588 {
589 struct pneigh_entry *n, **np;
590 u32 h;
591
592 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
593 np = &tbl->phash_buckets[h];
594 while ((n = *np) != NULL) {
595 if (!dev || n->dev == dev) {
596 *np = n->next;
597 if (tbl->pdestructor)
598 tbl->pdestructor(n);
599 if (n->dev)
600 dev_put(n->dev);
601 release_net(pneigh_net(n));
602 kfree(n);
603 continue;
604 }
605 np = &n->next;
606 }
607 }
608 return -ENOENT;
609 }
610
611 static void neigh_parms_destroy(struct neigh_parms *parms);
612
613 static inline void neigh_parms_put(struct neigh_parms *parms)
614 {
615 if (atomic_dec_and_test(&parms->refcnt))
616 neigh_parms_destroy(parms);
617 }
618
619 /*
620 * neighbour must already be out of the table;
621 *
622 */
623 void neigh_destroy(struct neighbour *neigh)
624 {
625 struct hh_cache *hh;
626
627 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
628
629 if (!neigh->dead) {
630 printk(KERN_WARNING
631 "Destroying alive neighbour %p\n", neigh);
632 dump_stack();
633 return;
634 }
635
636 if (neigh_del_timer(neigh))
637 printk(KERN_WARNING "Impossible event.\n");
638
639 while ((hh = neigh->hh) != NULL) {
640 neigh->hh = hh->hh_next;
641 hh->hh_next = NULL;
642
643 write_seqlock_bh(&hh->hh_lock);
644 hh->hh_output = neigh_blackhole;
645 write_sequnlock_bh(&hh->hh_lock);
646 if (atomic_dec_and_test(&hh->hh_refcnt))
647 kfree(hh);
648 }
649
650 skb_queue_purge(&neigh->arp_queue);
651
652 dev_put(neigh->dev);
653 neigh_parms_put(neigh->parms);
654
655 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
656
657 atomic_dec(&neigh->tbl->entries);
658 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
659 }
660 EXPORT_SYMBOL(neigh_destroy);
661
662 /* Neighbour state is suspicious;
663 disable fast path.
664
665 Called with write_locked neigh.
666 */
667 static void neigh_suspect(struct neighbour *neigh)
668 {
669 struct hh_cache *hh;
670
671 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
672
673 neigh->output = neigh->ops->output;
674
675 for (hh = neigh->hh; hh; hh = hh->hh_next)
676 hh->hh_output = neigh->ops->output;
677 }
678
679 /* Neighbour state is OK;
680 enable fast path.
681
682 Called with write_locked neigh.
683 */
684 static void neigh_connect(struct neighbour *neigh)
685 {
686 struct hh_cache *hh;
687
688 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
689
690 neigh->output = neigh->ops->connected_output;
691
692 for (hh = neigh->hh; hh; hh = hh->hh_next)
693 hh->hh_output = neigh->ops->hh_output;
694 }
695
696 static void neigh_periodic_work(struct work_struct *work)
697 {
698 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
699 struct neighbour *n, **np;
700 unsigned int i;
701
702 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
703
704 write_lock_bh(&tbl->lock);
705
706 /*
707 * periodically recompute ReachableTime from random function
708 */
709
710 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
711 struct neigh_parms *p;
712 tbl->last_rand = jiffies;
713 for (p = &tbl->parms; p; p = p->next)
714 p->reachable_time =
715 neigh_rand_reach_time(p->base_reachable_time);
716 }
717
718 for (i = 0 ; i <= tbl->hash_mask; i++) {
719 np = &tbl->hash_buckets[i];
720
721 while ((n = *np) != NULL) {
722 unsigned int state;
723
724 write_lock(&n->lock);
725
726 state = n->nud_state;
727 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
728 write_unlock(&n->lock);
729 goto next_elt;
730 }
731
732 if (time_before(n->used, n->confirmed))
733 n->used = n->confirmed;
734
735 if (atomic_read(&n->refcnt) == 1 &&
736 (state == NUD_FAILED ||
737 time_after(jiffies, n->used + n->parms->gc_staletime))) {
738 *np = n->next;
739 n->dead = 1;
740 write_unlock(&n->lock);
741 neigh_cleanup_and_release(n);
742 continue;
743 }
744 write_unlock(&n->lock);
745
746 next_elt:
747 np = &n->next;
748 }
749 /*
750 * It's fine to release lock here, even if hash table
751 * grows while we are preempted.
752 */
753 write_unlock_bh(&tbl->lock);
754 cond_resched();
755 write_lock_bh(&tbl->lock);
756 }
757 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
758 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
759 * base_reachable_time.
760 */
761 schedule_delayed_work(&tbl->gc_work,
762 tbl->parms.base_reachable_time >> 1);
763 write_unlock_bh(&tbl->lock);
764 }
765
766 static __inline__ int neigh_max_probes(struct neighbour *n)
767 {
768 struct neigh_parms *p = n->parms;
769 return (n->nud_state & NUD_PROBE ?
770 p->ucast_probes :
771 p->ucast_probes + p->app_probes + p->mcast_probes);
772 }
773
774 static void neigh_invalidate(struct neighbour *neigh)
775 __releases(neigh->lock)
776 __acquires(neigh->lock)
777 {
778 struct sk_buff *skb;
779
780 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
781 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
782 neigh->updated = jiffies;
783
784 /* It is very thin place. report_unreachable is very complicated
785 routine. Particularly, it can hit the same neighbour entry!
786
787 So that, we try to be accurate and avoid dead loop. --ANK
788 */
789 while (neigh->nud_state == NUD_FAILED &&
790 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
791 write_unlock(&neigh->lock);
792 neigh->ops->error_report(neigh, skb);
793 write_lock(&neigh->lock);
794 }
795 skb_queue_purge(&neigh->arp_queue);
796 }
797
798 /* Called when a timer expires for a neighbour entry. */
799
800 static void neigh_timer_handler(unsigned long arg)
801 {
802 unsigned long now, next;
803 struct neighbour *neigh = (struct neighbour *)arg;
804 unsigned state;
805 int notify = 0;
806
807 write_lock(&neigh->lock);
808
809 state = neigh->nud_state;
810 now = jiffies;
811 next = now + HZ;
812
813 if (!(state & NUD_IN_TIMER)) {
814 #ifndef CONFIG_SMP
815 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
816 #endif
817 goto out;
818 }
819
820 if (state & NUD_REACHABLE) {
821 if (time_before_eq(now,
822 neigh->confirmed + neigh->parms->reachable_time)) {
823 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
824 next = neigh->confirmed + neigh->parms->reachable_time;
825 } else if (time_before_eq(now,
826 neigh->used + neigh->parms->delay_probe_time)) {
827 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
828 neigh->nud_state = NUD_DELAY;
829 neigh->updated = jiffies;
830 neigh_suspect(neigh);
831 next = now + neigh->parms->delay_probe_time;
832 } else {
833 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
834 neigh->nud_state = NUD_STALE;
835 neigh->updated = jiffies;
836 neigh_suspect(neigh);
837 notify = 1;
838 }
839 } else if (state & NUD_DELAY) {
840 if (time_before_eq(now,
841 neigh->confirmed + neigh->parms->delay_probe_time)) {
842 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
843 neigh->nud_state = NUD_REACHABLE;
844 neigh->updated = jiffies;
845 neigh_connect(neigh);
846 notify = 1;
847 next = neigh->confirmed + neigh->parms->reachable_time;
848 } else {
849 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
850 neigh->nud_state = NUD_PROBE;
851 neigh->updated = jiffies;
852 atomic_set(&neigh->probes, 0);
853 next = now + neigh->parms->retrans_time;
854 }
855 } else {
856 /* NUD_PROBE|NUD_INCOMPLETE */
857 next = now + neigh->parms->retrans_time;
858 }
859
860 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
861 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
862 neigh->nud_state = NUD_FAILED;
863 notify = 1;
864 neigh_invalidate(neigh);
865 }
866
867 if (neigh->nud_state & NUD_IN_TIMER) {
868 if (time_before(next, jiffies + HZ/2))
869 next = jiffies + HZ/2;
870 if (!mod_timer(&neigh->timer, next))
871 neigh_hold(neigh);
872 }
873 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
874 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
875 /* keep skb alive even if arp_queue overflows */
876 if (skb)
877 skb = skb_copy(skb, GFP_ATOMIC);
878 write_unlock(&neigh->lock);
879 neigh->ops->solicit(neigh, skb);
880 atomic_inc(&neigh->probes);
881 kfree_skb(skb);
882 } else {
883 out:
884 write_unlock(&neigh->lock);
885 }
886
887 if (notify)
888 neigh_update_notify(neigh);
889
890 neigh_release(neigh);
891 }
892
893 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
894 {
895 int rc;
896 unsigned long now;
897
898 write_lock_bh(&neigh->lock);
899
900 rc = 0;
901 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
902 goto out_unlock_bh;
903
904 now = jiffies;
905
906 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
907 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
908 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
909 neigh->nud_state = NUD_INCOMPLETE;
910 neigh->updated = jiffies;
911 neigh_add_timer(neigh, now + 1);
912 } else {
913 neigh->nud_state = NUD_FAILED;
914 neigh->updated = jiffies;
915 write_unlock_bh(&neigh->lock);
916
917 kfree_skb(skb);
918 return 1;
919 }
920 } else if (neigh->nud_state & NUD_STALE) {
921 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
922 neigh->nud_state = NUD_DELAY;
923 neigh->updated = jiffies;
924 neigh_add_timer(neigh,
925 jiffies + neigh->parms->delay_probe_time);
926 }
927
928 if (neigh->nud_state == NUD_INCOMPLETE) {
929 if (skb) {
930 if (skb_queue_len(&neigh->arp_queue) >=
931 neigh->parms->queue_len) {
932 struct sk_buff *buff;
933 buff = __skb_dequeue(&neigh->arp_queue);
934 kfree_skb(buff);
935 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
936 }
937 skb_dst_force(skb);
938 __skb_queue_tail(&neigh->arp_queue, skb);
939 }
940 rc = 1;
941 }
942 out_unlock_bh:
943 write_unlock_bh(&neigh->lock);
944 return rc;
945 }
946 EXPORT_SYMBOL(__neigh_event_send);
947
948 static void neigh_update_hhs(struct neighbour *neigh)
949 {
950 struct hh_cache *hh;
951 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
952 = NULL;
953
954 if (neigh->dev->header_ops)
955 update = neigh->dev->header_ops->cache_update;
956
957 if (update) {
958 for (hh = neigh->hh; hh; hh = hh->hh_next) {
959 write_seqlock_bh(&hh->hh_lock);
960 update(hh, neigh->dev, neigh->ha);
961 write_sequnlock_bh(&hh->hh_lock);
962 }
963 }
964 }
965
966
967
968 /* Generic update routine.
969 -- lladdr is new lladdr or NULL, if it is not supplied.
970 -- new is new state.
971 -- flags
972 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
973 if it is different.
974 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
975 lladdr instead of overriding it
976 if it is different.
977 It also allows to retain current state
978 if lladdr is unchanged.
979 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
980
981 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
982 NTF_ROUTER flag.
983 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
984 a router.
985
986 Caller MUST hold reference count on the entry.
987 */
988
989 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
990 u32 flags)
991 {
992 u8 old;
993 int err;
994 int notify = 0;
995 struct net_device *dev;
996 int update_isrouter = 0;
997
998 write_lock_bh(&neigh->lock);
999
1000 dev = neigh->dev;
1001 old = neigh->nud_state;
1002 err = -EPERM;
1003
1004 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1005 (old & (NUD_NOARP | NUD_PERMANENT)))
1006 goto out;
1007
1008 if (!(new & NUD_VALID)) {
1009 neigh_del_timer(neigh);
1010 if (old & NUD_CONNECTED)
1011 neigh_suspect(neigh);
1012 neigh->nud_state = new;
1013 err = 0;
1014 notify = old & NUD_VALID;
1015 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1016 (new & NUD_FAILED)) {
1017 neigh_invalidate(neigh);
1018 notify = 1;
1019 }
1020 goto out;
1021 }
1022
1023 /* Compare new lladdr with cached one */
1024 if (!dev->addr_len) {
1025 /* First case: device needs no address. */
1026 lladdr = neigh->ha;
1027 } else if (lladdr) {
1028 /* The second case: if something is already cached
1029 and a new address is proposed:
1030 - compare new & old
1031 - if they are different, check override flag
1032 */
1033 if ((old & NUD_VALID) &&
1034 !memcmp(lladdr, neigh->ha, dev->addr_len))
1035 lladdr = neigh->ha;
1036 } else {
1037 /* No address is supplied; if we know something,
1038 use it, otherwise discard the request.
1039 */
1040 err = -EINVAL;
1041 if (!(old & NUD_VALID))
1042 goto out;
1043 lladdr = neigh->ha;
1044 }
1045
1046 if (new & NUD_CONNECTED)
1047 neigh->confirmed = jiffies;
1048 neigh->updated = jiffies;
1049
1050 /* If entry was valid and address is not changed,
1051 do not change entry state, if new one is STALE.
1052 */
1053 err = 0;
1054 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1055 if (old & NUD_VALID) {
1056 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1057 update_isrouter = 0;
1058 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1059 (old & NUD_CONNECTED)) {
1060 lladdr = neigh->ha;
1061 new = NUD_STALE;
1062 } else
1063 goto out;
1064 } else {
1065 if (lladdr == neigh->ha && new == NUD_STALE &&
1066 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1067 (old & NUD_CONNECTED))
1068 )
1069 new = old;
1070 }
1071 }
1072
1073 if (new != old) {
1074 neigh_del_timer(neigh);
1075 if (new & NUD_IN_TIMER)
1076 neigh_add_timer(neigh, (jiffies +
1077 ((new & NUD_REACHABLE) ?
1078 neigh->parms->reachable_time :
1079 0)));
1080 neigh->nud_state = new;
1081 }
1082
1083 if (lladdr != neigh->ha) {
1084 memcpy(&neigh->ha, lladdr, dev->addr_len);
1085 neigh_update_hhs(neigh);
1086 if (!(new & NUD_CONNECTED))
1087 neigh->confirmed = jiffies -
1088 (neigh->parms->base_reachable_time << 1);
1089 notify = 1;
1090 }
1091 if (new == old)
1092 goto out;
1093 if (new & NUD_CONNECTED)
1094 neigh_connect(neigh);
1095 else
1096 neigh_suspect(neigh);
1097 if (!(old & NUD_VALID)) {
1098 struct sk_buff *skb;
1099
1100 /* Again: avoid dead loop if something went wrong */
1101
1102 while (neigh->nud_state & NUD_VALID &&
1103 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1104 struct neighbour *n1 = neigh;
1105 write_unlock_bh(&neigh->lock);
1106 /* On shaper/eql skb->dst->neighbour != neigh :( */
1107 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1108 n1 = skb_dst(skb)->neighbour;
1109 n1->output(skb);
1110 write_lock_bh(&neigh->lock);
1111 }
1112 skb_queue_purge(&neigh->arp_queue);
1113 }
1114 out:
1115 if (update_isrouter) {
1116 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1117 (neigh->flags | NTF_ROUTER) :
1118 (neigh->flags & ~NTF_ROUTER);
1119 }
1120 write_unlock_bh(&neigh->lock);
1121
1122 if (notify)
1123 neigh_update_notify(neigh);
1124
1125 return err;
1126 }
1127 EXPORT_SYMBOL(neigh_update);
1128
1129 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1130 u8 *lladdr, void *saddr,
1131 struct net_device *dev)
1132 {
1133 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1134 lladdr || !dev->addr_len);
1135 if (neigh)
1136 neigh_update(neigh, lladdr, NUD_STALE,
1137 NEIGH_UPDATE_F_OVERRIDE);
1138 return neigh;
1139 }
1140 EXPORT_SYMBOL(neigh_event_ns);
1141
1142 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1143 __be16 protocol)
1144 {
1145 struct hh_cache *hh;
1146 struct net_device *dev = dst->dev;
1147
1148 for (hh = n->hh; hh; hh = hh->hh_next)
1149 if (hh->hh_type == protocol)
1150 break;
1151
1152 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1153 seqlock_init(&hh->hh_lock);
1154 hh->hh_type = protocol;
1155 atomic_set(&hh->hh_refcnt, 0);
1156 hh->hh_next = NULL;
1157
1158 if (dev->header_ops->cache(n, hh)) {
1159 kfree(hh);
1160 hh = NULL;
1161 } else {
1162 atomic_inc(&hh->hh_refcnt);
1163 hh->hh_next = n->hh;
1164 n->hh = hh;
1165 if (n->nud_state & NUD_CONNECTED)
1166 hh->hh_output = n->ops->hh_output;
1167 else
1168 hh->hh_output = n->ops->output;
1169 }
1170 }
1171 if (hh) {
1172 atomic_inc(&hh->hh_refcnt);
1173 dst->hh = hh;
1174 }
1175 }
1176
1177 /* This function can be used in contexts, where only old dev_queue_xmit
1178 worked, f.e. if you want to override normal output path (eql, shaper),
1179 but resolution is not made yet.
1180 */
1181
1182 int neigh_compat_output(struct sk_buff *skb)
1183 {
1184 struct net_device *dev = skb->dev;
1185
1186 __skb_pull(skb, skb_network_offset(skb));
1187
1188 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1189 skb->len) < 0 &&
1190 dev->header_ops->rebuild(skb))
1191 return 0;
1192
1193 return dev_queue_xmit(skb);
1194 }
1195 EXPORT_SYMBOL(neigh_compat_output);
1196
1197 /* Slow and careful. */
1198
1199 int neigh_resolve_output(struct sk_buff *skb)
1200 {
1201 struct dst_entry *dst = skb_dst(skb);
1202 struct neighbour *neigh;
1203 int rc = 0;
1204
1205 if (!dst || !(neigh = dst->neighbour))
1206 goto discard;
1207
1208 __skb_pull(skb, skb_network_offset(skb));
1209
1210 if (!neigh_event_send(neigh, skb)) {
1211 int err;
1212 struct net_device *dev = neigh->dev;
1213 if (dev->header_ops->cache && !dst->hh) {
1214 write_lock_bh(&neigh->lock);
1215 if (!dst->hh)
1216 neigh_hh_init(neigh, dst, dst->ops->protocol);
1217 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1218 neigh->ha, NULL, skb->len);
1219 write_unlock_bh(&neigh->lock);
1220 } else {
1221 read_lock_bh(&neigh->lock);
1222 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1223 neigh->ha, NULL, skb->len);
1224 read_unlock_bh(&neigh->lock);
1225 }
1226 if (err >= 0)
1227 rc = neigh->ops->queue_xmit(skb);
1228 else
1229 goto out_kfree_skb;
1230 }
1231 out:
1232 return rc;
1233 discard:
1234 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1235 dst, dst ? dst->neighbour : NULL);
1236 out_kfree_skb:
1237 rc = -EINVAL;
1238 kfree_skb(skb);
1239 goto out;
1240 }
1241 EXPORT_SYMBOL(neigh_resolve_output);
1242
1243 /* As fast as possible without hh cache */
1244
1245 int neigh_connected_output(struct sk_buff *skb)
1246 {
1247 int err;
1248 struct dst_entry *dst = skb_dst(skb);
1249 struct neighbour *neigh = dst->neighbour;
1250 struct net_device *dev = neigh->dev;
1251
1252 __skb_pull(skb, skb_network_offset(skb));
1253
1254 read_lock_bh(&neigh->lock);
1255 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256 neigh->ha, NULL, skb->len);
1257 read_unlock_bh(&neigh->lock);
1258 if (err >= 0)
1259 err = neigh->ops->queue_xmit(skb);
1260 else {
1261 err = -EINVAL;
1262 kfree_skb(skb);
1263 }
1264 return err;
1265 }
1266 EXPORT_SYMBOL(neigh_connected_output);
1267
1268 static void neigh_proxy_process(unsigned long arg)
1269 {
1270 struct neigh_table *tbl = (struct neigh_table *)arg;
1271 long sched_next = 0;
1272 unsigned long now = jiffies;
1273 struct sk_buff *skb, *n;
1274
1275 spin_lock(&tbl->proxy_queue.lock);
1276
1277 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1278 long tdif = NEIGH_CB(skb)->sched_next - now;
1279
1280 if (tdif <= 0) {
1281 struct net_device *dev = skb->dev;
1282 __skb_unlink(skb, &tbl->proxy_queue);
1283 if (tbl->proxy_redo && netif_running(dev))
1284 tbl->proxy_redo(skb);
1285 else
1286 kfree_skb(skb);
1287
1288 dev_put(dev);
1289 } else if (!sched_next || tdif < sched_next)
1290 sched_next = tdif;
1291 }
1292 del_timer(&tbl->proxy_timer);
1293 if (sched_next)
1294 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1295 spin_unlock(&tbl->proxy_queue.lock);
1296 }
1297
1298 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1299 struct sk_buff *skb)
1300 {
1301 unsigned long now = jiffies;
1302 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1303
1304 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1305 kfree_skb(skb);
1306 return;
1307 }
1308
1309 NEIGH_CB(skb)->sched_next = sched_next;
1310 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1311
1312 spin_lock(&tbl->proxy_queue.lock);
1313 if (del_timer(&tbl->proxy_timer)) {
1314 if (time_before(tbl->proxy_timer.expires, sched_next))
1315 sched_next = tbl->proxy_timer.expires;
1316 }
1317 skb_dst_drop(skb);
1318 dev_hold(skb->dev);
1319 __skb_queue_tail(&tbl->proxy_queue, skb);
1320 mod_timer(&tbl->proxy_timer, sched_next);
1321 spin_unlock(&tbl->proxy_queue.lock);
1322 }
1323 EXPORT_SYMBOL(pneigh_enqueue);
1324
1325 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1326 struct net *net, int ifindex)
1327 {
1328 struct neigh_parms *p;
1329
1330 for (p = &tbl->parms; p; p = p->next) {
1331 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1332 (!p->dev && !ifindex))
1333 return p;
1334 }
1335
1336 return NULL;
1337 }
1338
1339 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1340 struct neigh_table *tbl)
1341 {
1342 struct neigh_parms *p, *ref;
1343 struct net *net = dev_net(dev);
1344 const struct net_device_ops *ops = dev->netdev_ops;
1345
1346 ref = lookup_neigh_parms(tbl, net, 0);
1347 if (!ref)
1348 return NULL;
1349
1350 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1351 if (p) {
1352 p->tbl = tbl;
1353 atomic_set(&p->refcnt, 1);
1354 p->reachable_time =
1355 neigh_rand_reach_time(p->base_reachable_time);
1356
1357 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1358 kfree(p);
1359 return NULL;
1360 }
1361
1362 dev_hold(dev);
1363 p->dev = dev;
1364 write_pnet(&p->net, hold_net(net));
1365 p->sysctl_table = NULL;
1366 write_lock_bh(&tbl->lock);
1367 p->next = tbl->parms.next;
1368 tbl->parms.next = p;
1369 write_unlock_bh(&tbl->lock);
1370 }
1371 return p;
1372 }
1373 EXPORT_SYMBOL(neigh_parms_alloc);
1374
1375 static void neigh_rcu_free_parms(struct rcu_head *head)
1376 {
1377 struct neigh_parms *parms =
1378 container_of(head, struct neigh_parms, rcu_head);
1379
1380 neigh_parms_put(parms);
1381 }
1382
1383 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1384 {
1385 struct neigh_parms **p;
1386
1387 if (!parms || parms == &tbl->parms)
1388 return;
1389 write_lock_bh(&tbl->lock);
1390 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1391 if (*p == parms) {
1392 *p = parms->next;
1393 parms->dead = 1;
1394 write_unlock_bh(&tbl->lock);
1395 if (parms->dev)
1396 dev_put(parms->dev);
1397 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1398 return;
1399 }
1400 }
1401 write_unlock_bh(&tbl->lock);
1402 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1403 }
1404 EXPORT_SYMBOL(neigh_parms_release);
1405
1406 static void neigh_parms_destroy(struct neigh_parms *parms)
1407 {
1408 release_net(neigh_parms_net(parms));
1409 kfree(parms);
1410 }
1411
1412 static struct lock_class_key neigh_table_proxy_queue_class;
1413
1414 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1415 {
1416 unsigned long now = jiffies;
1417 unsigned long phsize;
1418
1419 write_pnet(&tbl->parms.net, &init_net);
1420 atomic_set(&tbl->parms.refcnt, 1);
1421 tbl->parms.reachable_time =
1422 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1423
1424 if (!tbl->kmem_cachep)
1425 tbl->kmem_cachep =
1426 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1427 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1428 NULL);
1429 tbl->stats = alloc_percpu(struct neigh_statistics);
1430 if (!tbl->stats)
1431 panic("cannot create neighbour cache statistics");
1432
1433 #ifdef CONFIG_PROC_FS
1434 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1435 &neigh_stat_seq_fops, tbl))
1436 panic("cannot create neighbour proc dir entry");
1437 #endif
1438
1439 tbl->hash_mask = 1;
1440 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1441
1442 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1443 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1444
1445 if (!tbl->hash_buckets || !tbl->phash_buckets)
1446 panic("cannot allocate neighbour cache hashes");
1447
1448 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1449
1450 rwlock_init(&tbl->lock);
1451 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1452 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1453 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1454 skb_queue_head_init_class(&tbl->proxy_queue,
1455 &neigh_table_proxy_queue_class);
1456
1457 tbl->last_flush = now;
1458 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1459 }
1460 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1461
1462 void neigh_table_init(struct neigh_table *tbl)
1463 {
1464 struct neigh_table *tmp;
1465
1466 neigh_table_init_no_netlink(tbl);
1467 write_lock(&neigh_tbl_lock);
1468 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1469 if (tmp->family == tbl->family)
1470 break;
1471 }
1472 tbl->next = neigh_tables;
1473 neigh_tables = tbl;
1474 write_unlock(&neigh_tbl_lock);
1475
1476 if (unlikely(tmp)) {
1477 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1478 "family %d\n", tbl->family);
1479 dump_stack();
1480 }
1481 }
1482 EXPORT_SYMBOL(neigh_table_init);
1483
1484 int neigh_table_clear(struct neigh_table *tbl)
1485 {
1486 struct neigh_table **tp;
1487
1488 /* It is not clean... Fix it to unload IPv6 module safely */
1489 cancel_delayed_work(&tbl->gc_work);
1490 flush_scheduled_work();
1491 del_timer_sync(&tbl->proxy_timer);
1492 pneigh_queue_purge(&tbl->proxy_queue);
1493 neigh_ifdown(tbl, NULL);
1494 if (atomic_read(&tbl->entries))
1495 printk(KERN_CRIT "neighbour leakage\n");
1496 write_lock(&neigh_tbl_lock);
1497 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1498 if (*tp == tbl) {
1499 *tp = tbl->next;
1500 break;
1501 }
1502 }
1503 write_unlock(&neigh_tbl_lock);
1504
1505 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1506 tbl->hash_buckets = NULL;
1507
1508 kfree(tbl->phash_buckets);
1509 tbl->phash_buckets = NULL;
1510
1511 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1512
1513 free_percpu(tbl->stats);
1514 tbl->stats = NULL;
1515
1516 kmem_cache_destroy(tbl->kmem_cachep);
1517 tbl->kmem_cachep = NULL;
1518
1519 return 0;
1520 }
1521 EXPORT_SYMBOL(neigh_table_clear);
1522
1523 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1524 {
1525 struct net *net = sock_net(skb->sk);
1526 struct ndmsg *ndm;
1527 struct nlattr *dst_attr;
1528 struct neigh_table *tbl;
1529 struct net_device *dev = NULL;
1530 int err = -EINVAL;
1531
1532 if (nlmsg_len(nlh) < sizeof(*ndm))
1533 goto out;
1534
1535 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1536 if (dst_attr == NULL)
1537 goto out;
1538
1539 ndm = nlmsg_data(nlh);
1540 if (ndm->ndm_ifindex) {
1541 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1542 if (dev == NULL) {
1543 err = -ENODEV;
1544 goto out;
1545 }
1546 }
1547
1548 read_lock(&neigh_tbl_lock);
1549 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1550 struct neighbour *neigh;
1551
1552 if (tbl->family != ndm->ndm_family)
1553 continue;
1554 read_unlock(&neigh_tbl_lock);
1555
1556 if (nla_len(dst_attr) < tbl->key_len)
1557 goto out_dev_put;
1558
1559 if (ndm->ndm_flags & NTF_PROXY) {
1560 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1561 goto out_dev_put;
1562 }
1563
1564 if (dev == NULL)
1565 goto out_dev_put;
1566
1567 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1568 if (neigh == NULL) {
1569 err = -ENOENT;
1570 goto out_dev_put;
1571 }
1572
1573 err = neigh_update(neigh, NULL, NUD_FAILED,
1574 NEIGH_UPDATE_F_OVERRIDE |
1575 NEIGH_UPDATE_F_ADMIN);
1576 neigh_release(neigh);
1577 goto out_dev_put;
1578 }
1579 read_unlock(&neigh_tbl_lock);
1580 err = -EAFNOSUPPORT;
1581
1582 out_dev_put:
1583 if (dev)
1584 dev_put(dev);
1585 out:
1586 return err;
1587 }
1588
1589 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1590 {
1591 struct net *net = sock_net(skb->sk);
1592 struct ndmsg *ndm;
1593 struct nlattr *tb[NDA_MAX+1];
1594 struct neigh_table *tbl;
1595 struct net_device *dev = NULL;
1596 int err;
1597
1598 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1599 if (err < 0)
1600 goto out;
1601
1602 err = -EINVAL;
1603 if (tb[NDA_DST] == NULL)
1604 goto out;
1605
1606 ndm = nlmsg_data(nlh);
1607 if (ndm->ndm_ifindex) {
1608 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1609 if (dev == NULL) {
1610 err = -ENODEV;
1611 goto out;
1612 }
1613
1614 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1615 goto out_dev_put;
1616 }
1617
1618 read_lock(&neigh_tbl_lock);
1619 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1620 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1621 struct neighbour *neigh;
1622 void *dst, *lladdr;
1623
1624 if (tbl->family != ndm->ndm_family)
1625 continue;
1626 read_unlock(&neigh_tbl_lock);
1627
1628 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1629 goto out_dev_put;
1630 dst = nla_data(tb[NDA_DST]);
1631 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1632
1633 if (ndm->ndm_flags & NTF_PROXY) {
1634 struct pneigh_entry *pn;
1635
1636 err = -ENOBUFS;
1637 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1638 if (pn) {
1639 pn->flags = ndm->ndm_flags;
1640 err = 0;
1641 }
1642 goto out_dev_put;
1643 }
1644
1645 if (dev == NULL)
1646 goto out_dev_put;
1647
1648 neigh = neigh_lookup(tbl, dst, dev);
1649 if (neigh == NULL) {
1650 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1651 err = -ENOENT;
1652 goto out_dev_put;
1653 }
1654
1655 neigh = __neigh_lookup_errno(tbl, dst, dev);
1656 if (IS_ERR(neigh)) {
1657 err = PTR_ERR(neigh);
1658 goto out_dev_put;
1659 }
1660 } else {
1661 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1662 err = -EEXIST;
1663 neigh_release(neigh);
1664 goto out_dev_put;
1665 }
1666
1667 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1668 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1669 }
1670
1671 if (ndm->ndm_flags & NTF_USE) {
1672 neigh_event_send(neigh, NULL);
1673 err = 0;
1674 } else
1675 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1676 neigh_release(neigh);
1677 goto out_dev_put;
1678 }
1679
1680 read_unlock(&neigh_tbl_lock);
1681 err = -EAFNOSUPPORT;
1682
1683 out_dev_put:
1684 if (dev)
1685 dev_put(dev);
1686 out:
1687 return err;
1688 }
1689
1690 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1691 {
1692 struct nlattr *nest;
1693
1694 nest = nla_nest_start(skb, NDTA_PARMS);
1695 if (nest == NULL)
1696 return -ENOBUFS;
1697
1698 if (parms->dev)
1699 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1700
1701 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1702 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1703 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1704 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1705 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1706 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1707 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1708 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1709 parms->base_reachable_time);
1710 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1711 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1712 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1713 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1714 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1715 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1716
1717 return nla_nest_end(skb, nest);
1718
1719 nla_put_failure:
1720 nla_nest_cancel(skb, nest);
1721 return -EMSGSIZE;
1722 }
1723
1724 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1725 u32 pid, u32 seq, int type, int flags)
1726 {
1727 struct nlmsghdr *nlh;
1728 struct ndtmsg *ndtmsg;
1729
1730 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1731 if (nlh == NULL)
1732 return -EMSGSIZE;
1733
1734 ndtmsg = nlmsg_data(nlh);
1735
1736 read_lock_bh(&tbl->lock);
1737 ndtmsg->ndtm_family = tbl->family;
1738 ndtmsg->ndtm_pad1 = 0;
1739 ndtmsg->ndtm_pad2 = 0;
1740
1741 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1742 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1743 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1744 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1745 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1746
1747 {
1748 unsigned long now = jiffies;
1749 unsigned int flush_delta = now - tbl->last_flush;
1750 unsigned int rand_delta = now - tbl->last_rand;
1751
1752 struct ndt_config ndc = {
1753 .ndtc_key_len = tbl->key_len,
1754 .ndtc_entry_size = tbl->entry_size,
1755 .ndtc_entries = atomic_read(&tbl->entries),
1756 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1757 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1758 .ndtc_hash_rnd = tbl->hash_rnd,
1759 .ndtc_hash_mask = tbl->hash_mask,
1760 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1761 };
1762
1763 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1764 }
1765
1766 {
1767 int cpu;
1768 struct ndt_stats ndst;
1769
1770 memset(&ndst, 0, sizeof(ndst));
1771
1772 for_each_possible_cpu(cpu) {
1773 struct neigh_statistics *st;
1774
1775 st = per_cpu_ptr(tbl->stats, cpu);
1776 ndst.ndts_allocs += st->allocs;
1777 ndst.ndts_destroys += st->destroys;
1778 ndst.ndts_hash_grows += st->hash_grows;
1779 ndst.ndts_res_failed += st->res_failed;
1780 ndst.ndts_lookups += st->lookups;
1781 ndst.ndts_hits += st->hits;
1782 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1783 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1784 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1785 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1786 }
1787
1788 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1789 }
1790
1791 BUG_ON(tbl->parms.dev);
1792 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1793 goto nla_put_failure;
1794
1795 read_unlock_bh(&tbl->lock);
1796 return nlmsg_end(skb, nlh);
1797
1798 nla_put_failure:
1799 read_unlock_bh(&tbl->lock);
1800 nlmsg_cancel(skb, nlh);
1801 return -EMSGSIZE;
1802 }
1803
1804 static int neightbl_fill_param_info(struct sk_buff *skb,
1805 struct neigh_table *tbl,
1806 struct neigh_parms *parms,
1807 u32 pid, u32 seq, int type,
1808 unsigned int flags)
1809 {
1810 struct ndtmsg *ndtmsg;
1811 struct nlmsghdr *nlh;
1812
1813 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1814 if (nlh == NULL)
1815 return -EMSGSIZE;
1816
1817 ndtmsg = nlmsg_data(nlh);
1818
1819 read_lock_bh(&tbl->lock);
1820 ndtmsg->ndtm_family = tbl->family;
1821 ndtmsg->ndtm_pad1 = 0;
1822 ndtmsg->ndtm_pad2 = 0;
1823
1824 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1825 neightbl_fill_parms(skb, parms) < 0)
1826 goto errout;
1827
1828 read_unlock_bh(&tbl->lock);
1829 return nlmsg_end(skb, nlh);
1830 errout:
1831 read_unlock_bh(&tbl->lock);
1832 nlmsg_cancel(skb, nlh);
1833 return -EMSGSIZE;
1834 }
1835
1836 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1837 [NDTA_NAME] = { .type = NLA_STRING },
1838 [NDTA_THRESH1] = { .type = NLA_U32 },
1839 [NDTA_THRESH2] = { .type = NLA_U32 },
1840 [NDTA_THRESH3] = { .type = NLA_U32 },
1841 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1842 [NDTA_PARMS] = { .type = NLA_NESTED },
1843 };
1844
1845 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1846 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1847 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1848 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1849 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1850 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1851 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1852 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1853 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1854 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1855 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1856 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1857 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1858 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1859 };
1860
1861 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1862 {
1863 struct net *net = sock_net(skb->sk);
1864 struct neigh_table *tbl;
1865 struct ndtmsg *ndtmsg;
1866 struct nlattr *tb[NDTA_MAX+1];
1867 int err;
1868
1869 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1870 nl_neightbl_policy);
1871 if (err < 0)
1872 goto errout;
1873
1874 if (tb[NDTA_NAME] == NULL) {
1875 err = -EINVAL;
1876 goto errout;
1877 }
1878
1879 ndtmsg = nlmsg_data(nlh);
1880 read_lock(&neigh_tbl_lock);
1881 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1882 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1883 continue;
1884
1885 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1886 break;
1887 }
1888
1889 if (tbl == NULL) {
1890 err = -ENOENT;
1891 goto errout_locked;
1892 }
1893
1894 /*
1895 * We acquire tbl->lock to be nice to the periodic timers and
1896 * make sure they always see a consistent set of values.
1897 */
1898 write_lock_bh(&tbl->lock);
1899
1900 if (tb[NDTA_PARMS]) {
1901 struct nlattr *tbp[NDTPA_MAX+1];
1902 struct neigh_parms *p;
1903 int i, ifindex = 0;
1904
1905 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1906 nl_ntbl_parm_policy);
1907 if (err < 0)
1908 goto errout_tbl_lock;
1909
1910 if (tbp[NDTPA_IFINDEX])
1911 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1912
1913 p = lookup_neigh_parms(tbl, net, ifindex);
1914 if (p == NULL) {
1915 err = -ENOENT;
1916 goto errout_tbl_lock;
1917 }
1918
1919 for (i = 1; i <= NDTPA_MAX; i++) {
1920 if (tbp[i] == NULL)
1921 continue;
1922
1923 switch (i) {
1924 case NDTPA_QUEUE_LEN:
1925 p->queue_len = nla_get_u32(tbp[i]);
1926 break;
1927 case NDTPA_PROXY_QLEN:
1928 p->proxy_qlen = nla_get_u32(tbp[i]);
1929 break;
1930 case NDTPA_APP_PROBES:
1931 p->app_probes = nla_get_u32(tbp[i]);
1932 break;
1933 case NDTPA_UCAST_PROBES:
1934 p->ucast_probes = nla_get_u32(tbp[i]);
1935 break;
1936 case NDTPA_MCAST_PROBES:
1937 p->mcast_probes = nla_get_u32(tbp[i]);
1938 break;
1939 case NDTPA_BASE_REACHABLE_TIME:
1940 p->base_reachable_time = nla_get_msecs(tbp[i]);
1941 break;
1942 case NDTPA_GC_STALETIME:
1943 p->gc_staletime = nla_get_msecs(tbp[i]);
1944 break;
1945 case NDTPA_DELAY_PROBE_TIME:
1946 p->delay_probe_time = nla_get_msecs(tbp[i]);
1947 break;
1948 case NDTPA_RETRANS_TIME:
1949 p->retrans_time = nla_get_msecs(tbp[i]);
1950 break;
1951 case NDTPA_ANYCAST_DELAY:
1952 p->anycast_delay = nla_get_msecs(tbp[i]);
1953 break;
1954 case NDTPA_PROXY_DELAY:
1955 p->proxy_delay = nla_get_msecs(tbp[i]);
1956 break;
1957 case NDTPA_LOCKTIME:
1958 p->locktime = nla_get_msecs(tbp[i]);
1959 break;
1960 }
1961 }
1962 }
1963
1964 if (tb[NDTA_THRESH1])
1965 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1966
1967 if (tb[NDTA_THRESH2])
1968 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1969
1970 if (tb[NDTA_THRESH3])
1971 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1972
1973 if (tb[NDTA_GC_INTERVAL])
1974 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1975
1976 err = 0;
1977
1978 errout_tbl_lock:
1979 write_unlock_bh(&tbl->lock);
1980 errout_locked:
1981 read_unlock(&neigh_tbl_lock);
1982 errout:
1983 return err;
1984 }
1985
1986 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1987 {
1988 struct net *net = sock_net(skb->sk);
1989 int family, tidx, nidx = 0;
1990 int tbl_skip = cb->args[0];
1991 int neigh_skip = cb->args[1];
1992 struct neigh_table *tbl;
1993
1994 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1995
1996 read_lock(&neigh_tbl_lock);
1997 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1998 struct neigh_parms *p;
1999
2000 if (tidx < tbl_skip || (family && tbl->family != family))
2001 continue;
2002
2003 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2004 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2005 NLM_F_MULTI) <= 0)
2006 break;
2007
2008 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2009 if (!net_eq(neigh_parms_net(p), net))
2010 continue;
2011
2012 if (nidx < neigh_skip)
2013 goto next;
2014
2015 if (neightbl_fill_param_info(skb, tbl, p,
2016 NETLINK_CB(cb->skb).pid,
2017 cb->nlh->nlmsg_seq,
2018 RTM_NEWNEIGHTBL,
2019 NLM_F_MULTI) <= 0)
2020 goto out;
2021 next:
2022 nidx++;
2023 }
2024
2025 neigh_skip = 0;
2026 }
2027 out:
2028 read_unlock(&neigh_tbl_lock);
2029 cb->args[0] = tidx;
2030 cb->args[1] = nidx;
2031
2032 return skb->len;
2033 }
2034
2035 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2036 u32 pid, u32 seq, int type, unsigned int flags)
2037 {
2038 unsigned long now = jiffies;
2039 struct nda_cacheinfo ci;
2040 struct nlmsghdr *nlh;
2041 struct ndmsg *ndm;
2042
2043 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2044 if (nlh == NULL)
2045 return -EMSGSIZE;
2046
2047 ndm = nlmsg_data(nlh);
2048 ndm->ndm_family = neigh->ops->family;
2049 ndm->ndm_pad1 = 0;
2050 ndm->ndm_pad2 = 0;
2051 ndm->ndm_flags = neigh->flags;
2052 ndm->ndm_type = neigh->type;
2053 ndm->ndm_ifindex = neigh->dev->ifindex;
2054
2055 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2056
2057 read_lock_bh(&neigh->lock);
2058 ndm->ndm_state = neigh->nud_state;
2059 if ((neigh->nud_state & NUD_VALID) &&
2060 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2061 read_unlock_bh(&neigh->lock);
2062 goto nla_put_failure;
2063 }
2064
2065 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2066 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2067 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2068 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2069 read_unlock_bh(&neigh->lock);
2070
2071 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2072 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2073
2074 return nlmsg_end(skb, nlh);
2075
2076 nla_put_failure:
2077 nlmsg_cancel(skb, nlh);
2078 return -EMSGSIZE;
2079 }
2080
2081 static void neigh_update_notify(struct neighbour *neigh)
2082 {
2083 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2084 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2085 }
2086
2087 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2088 struct netlink_callback *cb)
2089 {
2090 struct net * net = sock_net(skb->sk);
2091 struct neighbour *n;
2092 int rc, h, s_h = cb->args[1];
2093 int idx, s_idx = idx = cb->args[2];
2094
2095 read_lock_bh(&tbl->lock);
2096 for (h = 0; h <= tbl->hash_mask; h++) {
2097 if (h < s_h)
2098 continue;
2099 if (h > s_h)
2100 s_idx = 0;
2101 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2102 if (!net_eq(dev_net(n->dev), net))
2103 continue;
2104 if (idx < s_idx)
2105 goto next;
2106 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2107 cb->nlh->nlmsg_seq,
2108 RTM_NEWNEIGH,
2109 NLM_F_MULTI) <= 0) {
2110 read_unlock_bh(&tbl->lock);
2111 rc = -1;
2112 goto out;
2113 }
2114 next:
2115 idx++;
2116 }
2117 }
2118 read_unlock_bh(&tbl->lock);
2119 rc = skb->len;
2120 out:
2121 cb->args[1] = h;
2122 cb->args[2] = idx;
2123 return rc;
2124 }
2125
2126 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2127 {
2128 struct neigh_table *tbl;
2129 int t, family, s_t;
2130
2131 read_lock(&neigh_tbl_lock);
2132 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2133 s_t = cb->args[0];
2134
2135 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2136 if (t < s_t || (family && tbl->family != family))
2137 continue;
2138 if (t > s_t)
2139 memset(&cb->args[1], 0, sizeof(cb->args) -
2140 sizeof(cb->args[0]));
2141 if (neigh_dump_table(tbl, skb, cb) < 0)
2142 break;
2143 }
2144 read_unlock(&neigh_tbl_lock);
2145
2146 cb->args[0] = t;
2147 return skb->len;
2148 }
2149
2150 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2151 {
2152 int chain;
2153
2154 read_lock_bh(&tbl->lock);
2155 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2156 struct neighbour *n;
2157
2158 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2159 cb(n, cookie);
2160 }
2161 read_unlock_bh(&tbl->lock);
2162 }
2163 EXPORT_SYMBOL(neigh_for_each);
2164
2165 /* The tbl->lock must be held as a writer and BH disabled. */
2166 void __neigh_for_each_release(struct neigh_table *tbl,
2167 int (*cb)(struct neighbour *))
2168 {
2169 int chain;
2170
2171 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2172 struct neighbour *n, **np;
2173
2174 np = &tbl->hash_buckets[chain];
2175 while ((n = *np) != NULL) {
2176 int release;
2177
2178 write_lock(&n->lock);
2179 release = cb(n);
2180 if (release) {
2181 *np = n->next;
2182 n->dead = 1;
2183 } else
2184 np = &n->next;
2185 write_unlock(&n->lock);
2186 if (release)
2187 neigh_cleanup_and_release(n);
2188 }
2189 }
2190 }
2191 EXPORT_SYMBOL(__neigh_for_each_release);
2192
2193 #ifdef CONFIG_PROC_FS
2194
2195 static struct neighbour *neigh_get_first(struct seq_file *seq)
2196 {
2197 struct neigh_seq_state *state = seq->private;
2198 struct net *net = seq_file_net(seq);
2199 struct neigh_table *tbl = state->tbl;
2200 struct neighbour *n = NULL;
2201 int bucket = state->bucket;
2202
2203 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2204 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2205 n = tbl->hash_buckets[bucket];
2206
2207 while (n) {
2208 if (!net_eq(dev_net(n->dev), net))
2209 goto next;
2210 if (state->neigh_sub_iter) {
2211 loff_t fakep = 0;
2212 void *v;
2213
2214 v = state->neigh_sub_iter(state, n, &fakep);
2215 if (!v)
2216 goto next;
2217 }
2218 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2219 break;
2220 if (n->nud_state & ~NUD_NOARP)
2221 break;
2222 next:
2223 n = n->next;
2224 }
2225
2226 if (n)
2227 break;
2228 }
2229 state->bucket = bucket;
2230
2231 return n;
2232 }
2233
2234 static struct neighbour *neigh_get_next(struct seq_file *seq,
2235 struct neighbour *n,
2236 loff_t *pos)
2237 {
2238 struct neigh_seq_state *state = seq->private;
2239 struct net *net = seq_file_net(seq);
2240 struct neigh_table *tbl = state->tbl;
2241
2242 if (state->neigh_sub_iter) {
2243 void *v = state->neigh_sub_iter(state, n, pos);
2244 if (v)
2245 return n;
2246 }
2247 n = n->next;
2248
2249 while (1) {
2250 while (n) {
2251 if (!net_eq(dev_net(n->dev), net))
2252 goto next;
2253 if (state->neigh_sub_iter) {
2254 void *v = state->neigh_sub_iter(state, n, pos);
2255 if (v)
2256 return n;
2257 goto next;
2258 }
2259 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2260 break;
2261
2262 if (n->nud_state & ~NUD_NOARP)
2263 break;
2264 next:
2265 n = n->next;
2266 }
2267
2268 if (n)
2269 break;
2270
2271 if (++state->bucket > tbl->hash_mask)
2272 break;
2273
2274 n = tbl->hash_buckets[state->bucket];
2275 }
2276
2277 if (n && pos)
2278 --(*pos);
2279 return n;
2280 }
2281
2282 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2283 {
2284 struct neighbour *n = neigh_get_first(seq);
2285
2286 if (n) {
2287 --(*pos);
2288 while (*pos) {
2289 n = neigh_get_next(seq, n, pos);
2290 if (!n)
2291 break;
2292 }
2293 }
2294 return *pos ? NULL : n;
2295 }
2296
2297 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2298 {
2299 struct neigh_seq_state *state = seq->private;
2300 struct net *net = seq_file_net(seq);
2301 struct neigh_table *tbl = state->tbl;
2302 struct pneigh_entry *pn = NULL;
2303 int bucket = state->bucket;
2304
2305 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2306 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2307 pn = tbl->phash_buckets[bucket];
2308 while (pn && !net_eq(pneigh_net(pn), net))
2309 pn = pn->next;
2310 if (pn)
2311 break;
2312 }
2313 state->bucket = bucket;
2314
2315 return pn;
2316 }
2317
2318 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2319 struct pneigh_entry *pn,
2320 loff_t *pos)
2321 {
2322 struct neigh_seq_state *state = seq->private;
2323 struct net *net = seq_file_net(seq);
2324 struct neigh_table *tbl = state->tbl;
2325
2326 pn = pn->next;
2327 while (!pn) {
2328 if (++state->bucket > PNEIGH_HASHMASK)
2329 break;
2330 pn = tbl->phash_buckets[state->bucket];
2331 while (pn && !net_eq(pneigh_net(pn), net))
2332 pn = pn->next;
2333 if (pn)
2334 break;
2335 }
2336
2337 if (pn && pos)
2338 --(*pos);
2339
2340 return pn;
2341 }
2342
2343 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2344 {
2345 struct pneigh_entry *pn = pneigh_get_first(seq);
2346
2347 if (pn) {
2348 --(*pos);
2349 while (*pos) {
2350 pn = pneigh_get_next(seq, pn, pos);
2351 if (!pn)
2352 break;
2353 }
2354 }
2355 return *pos ? NULL : pn;
2356 }
2357
2358 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2359 {
2360 struct neigh_seq_state *state = seq->private;
2361 void *rc;
2362 loff_t idxpos = *pos;
2363
2364 rc = neigh_get_idx(seq, &idxpos);
2365 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2366 rc = pneigh_get_idx(seq, &idxpos);
2367
2368 return rc;
2369 }
2370
2371 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2372 __acquires(tbl->lock)
2373 {
2374 struct neigh_seq_state *state = seq->private;
2375
2376 state->tbl = tbl;
2377 state->bucket = 0;
2378 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2379
2380 read_lock_bh(&tbl->lock);
2381
2382 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2383 }
2384 EXPORT_SYMBOL(neigh_seq_start);
2385
2386 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2387 {
2388 struct neigh_seq_state *state;
2389 void *rc;
2390
2391 if (v == SEQ_START_TOKEN) {
2392 rc = neigh_get_first(seq);
2393 goto out;
2394 }
2395
2396 state = seq->private;
2397 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2398 rc = neigh_get_next(seq, v, NULL);
2399 if (rc)
2400 goto out;
2401 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2402 rc = pneigh_get_first(seq);
2403 } else {
2404 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2405 rc = pneigh_get_next(seq, v, NULL);
2406 }
2407 out:
2408 ++(*pos);
2409 return rc;
2410 }
2411 EXPORT_SYMBOL(neigh_seq_next);
2412
2413 void neigh_seq_stop(struct seq_file *seq, void *v)
2414 __releases(tbl->lock)
2415 {
2416 struct neigh_seq_state *state = seq->private;
2417 struct neigh_table *tbl = state->tbl;
2418
2419 read_unlock_bh(&tbl->lock);
2420 }
2421 EXPORT_SYMBOL(neigh_seq_stop);
2422
2423 /* statistics via seq_file */
2424
2425 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2426 {
2427 struct neigh_table *tbl = seq->private;
2428 int cpu;
2429
2430 if (*pos == 0)
2431 return SEQ_START_TOKEN;
2432
2433 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2434 if (!cpu_possible(cpu))
2435 continue;
2436 *pos = cpu+1;
2437 return per_cpu_ptr(tbl->stats, cpu);
2438 }
2439 return NULL;
2440 }
2441
2442 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2443 {
2444 struct neigh_table *tbl = seq->private;
2445 int cpu;
2446
2447 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2448 if (!cpu_possible(cpu))
2449 continue;
2450 *pos = cpu+1;
2451 return per_cpu_ptr(tbl->stats, cpu);
2452 }
2453 return NULL;
2454 }
2455
2456 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2457 {
2458
2459 }
2460
2461 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2462 {
2463 struct neigh_table *tbl = seq->private;
2464 struct neigh_statistics *st = v;
2465
2466 if (v == SEQ_START_TOKEN) {
2467 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2468 return 0;
2469 }
2470
2471 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2472 "%08lx %08lx %08lx %08lx %08lx\n",
2473 atomic_read(&tbl->entries),
2474
2475 st->allocs,
2476 st->destroys,
2477 st->hash_grows,
2478
2479 st->lookups,
2480 st->hits,
2481
2482 st->res_failed,
2483
2484 st->rcv_probes_mcast,
2485 st->rcv_probes_ucast,
2486
2487 st->periodic_gc_runs,
2488 st->forced_gc_runs,
2489 st->unres_discards
2490 );
2491
2492 return 0;
2493 }
2494
2495 static const struct seq_operations neigh_stat_seq_ops = {
2496 .start = neigh_stat_seq_start,
2497 .next = neigh_stat_seq_next,
2498 .stop = neigh_stat_seq_stop,
2499 .show = neigh_stat_seq_show,
2500 };
2501
2502 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2503 {
2504 int ret = seq_open(file, &neigh_stat_seq_ops);
2505
2506 if (!ret) {
2507 struct seq_file *sf = file->private_data;
2508 sf->private = PDE(inode)->data;
2509 }
2510 return ret;
2511 };
2512
2513 static const struct file_operations neigh_stat_seq_fops = {
2514 .owner = THIS_MODULE,
2515 .open = neigh_stat_seq_open,
2516 .read = seq_read,
2517 .llseek = seq_lseek,
2518 .release = seq_release,
2519 };
2520
2521 #endif /* CONFIG_PROC_FS */
2522
2523 static inline size_t neigh_nlmsg_size(void)
2524 {
2525 return NLMSG_ALIGN(sizeof(struct ndmsg))
2526 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2527 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2528 + nla_total_size(sizeof(struct nda_cacheinfo))
2529 + nla_total_size(4); /* NDA_PROBES */
2530 }
2531
2532 static void __neigh_notify(struct neighbour *n, int type, int flags)
2533 {
2534 struct net *net = dev_net(n->dev);
2535 struct sk_buff *skb;
2536 int err = -ENOBUFS;
2537
2538 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2539 if (skb == NULL)
2540 goto errout;
2541
2542 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2543 if (err < 0) {
2544 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2545 WARN_ON(err == -EMSGSIZE);
2546 kfree_skb(skb);
2547 goto errout;
2548 }
2549 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2550 return;
2551 errout:
2552 if (err < 0)
2553 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2554 }
2555
2556 #ifdef CONFIG_ARPD
2557 void neigh_app_ns(struct neighbour *n)
2558 {
2559 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2560 }
2561 EXPORT_SYMBOL(neigh_app_ns);
2562 #endif /* CONFIG_ARPD */
2563
2564 #ifdef CONFIG_SYSCTL
2565
2566 #define NEIGH_VARS_MAX 19
2567
2568 static struct neigh_sysctl_table {
2569 struct ctl_table_header *sysctl_header;
2570 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2571 char *dev_name;
2572 } neigh_sysctl_template __read_mostly = {
2573 .neigh_vars = {
2574 {
2575 .procname = "mcast_solicit",
2576 .maxlen = sizeof(int),
2577 .mode = 0644,
2578 .proc_handler = proc_dointvec,
2579 },
2580 {
2581 .procname = "ucast_solicit",
2582 .maxlen = sizeof(int),
2583 .mode = 0644,
2584 .proc_handler = proc_dointvec,
2585 },
2586 {
2587 .procname = "app_solicit",
2588 .maxlen = sizeof(int),
2589 .mode = 0644,
2590 .proc_handler = proc_dointvec,
2591 },
2592 {
2593 .procname = "retrans_time",
2594 .maxlen = sizeof(int),
2595 .mode = 0644,
2596 .proc_handler = proc_dointvec_userhz_jiffies,
2597 },
2598 {
2599 .procname = "base_reachable_time",
2600 .maxlen = sizeof(int),
2601 .mode = 0644,
2602 .proc_handler = proc_dointvec_jiffies,
2603 },
2604 {
2605 .procname = "delay_first_probe_time",
2606 .maxlen = sizeof(int),
2607 .mode = 0644,
2608 .proc_handler = proc_dointvec_jiffies,
2609 },
2610 {
2611 .procname = "gc_stale_time",
2612 .maxlen = sizeof(int),
2613 .mode = 0644,
2614 .proc_handler = proc_dointvec_jiffies,
2615 },
2616 {
2617 .procname = "unres_qlen",
2618 .maxlen = sizeof(int),
2619 .mode = 0644,
2620 .proc_handler = proc_dointvec,
2621 },
2622 {
2623 .procname = "proxy_qlen",
2624 .maxlen = sizeof(int),
2625 .mode = 0644,
2626 .proc_handler = proc_dointvec,
2627 },
2628 {
2629 .procname = "anycast_delay",
2630 .maxlen = sizeof(int),
2631 .mode = 0644,
2632 .proc_handler = proc_dointvec_userhz_jiffies,
2633 },
2634 {
2635 .procname = "proxy_delay",
2636 .maxlen = sizeof(int),
2637 .mode = 0644,
2638 .proc_handler = proc_dointvec_userhz_jiffies,
2639 },
2640 {
2641 .procname = "locktime",
2642 .maxlen = sizeof(int),
2643 .mode = 0644,
2644 .proc_handler = proc_dointvec_userhz_jiffies,
2645 },
2646 {
2647 .procname = "retrans_time_ms",
2648 .maxlen = sizeof(int),
2649 .mode = 0644,
2650 .proc_handler = proc_dointvec_ms_jiffies,
2651 },
2652 {
2653 .procname = "base_reachable_time_ms",
2654 .maxlen = sizeof(int),
2655 .mode = 0644,
2656 .proc_handler = proc_dointvec_ms_jiffies,
2657 },
2658 {
2659 .procname = "gc_interval",
2660 .maxlen = sizeof(int),
2661 .mode = 0644,
2662 .proc_handler = proc_dointvec_jiffies,
2663 },
2664 {
2665 .procname = "gc_thresh1",
2666 .maxlen = sizeof(int),
2667 .mode = 0644,
2668 .proc_handler = proc_dointvec,
2669 },
2670 {
2671 .procname = "gc_thresh2",
2672 .maxlen = sizeof(int),
2673 .mode = 0644,
2674 .proc_handler = proc_dointvec,
2675 },
2676 {
2677 .procname = "gc_thresh3",
2678 .maxlen = sizeof(int),
2679 .mode = 0644,
2680 .proc_handler = proc_dointvec,
2681 },
2682 {},
2683 },
2684 };
2685
2686 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2687 char *p_name, proc_handler *handler)
2688 {
2689 struct neigh_sysctl_table *t;
2690 const char *dev_name_source = NULL;
2691
2692 #define NEIGH_CTL_PATH_ROOT 0
2693 #define NEIGH_CTL_PATH_PROTO 1
2694 #define NEIGH_CTL_PATH_NEIGH 2
2695 #define NEIGH_CTL_PATH_DEV 3
2696
2697 struct ctl_path neigh_path[] = {
2698 { .procname = "net", },
2699 { .procname = "proto", },
2700 { .procname = "neigh", },
2701 { .procname = "default", },
2702 { },
2703 };
2704
2705 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2706 if (!t)
2707 goto err;
2708
2709 t->neigh_vars[0].data = &p->mcast_probes;
2710 t->neigh_vars[1].data = &p->ucast_probes;
2711 t->neigh_vars[2].data = &p->app_probes;
2712 t->neigh_vars[3].data = &p->retrans_time;
2713 t->neigh_vars[4].data = &p->base_reachable_time;
2714 t->neigh_vars[5].data = &p->delay_probe_time;
2715 t->neigh_vars[6].data = &p->gc_staletime;
2716 t->neigh_vars[7].data = &p->queue_len;
2717 t->neigh_vars[8].data = &p->proxy_qlen;
2718 t->neigh_vars[9].data = &p->anycast_delay;
2719 t->neigh_vars[10].data = &p->proxy_delay;
2720 t->neigh_vars[11].data = &p->locktime;
2721 t->neigh_vars[12].data = &p->retrans_time;
2722 t->neigh_vars[13].data = &p->base_reachable_time;
2723
2724 if (dev) {
2725 dev_name_source = dev->name;
2726 /* Terminate the table early */
2727 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2728 } else {
2729 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2730 t->neigh_vars[14].data = (int *)(p + 1);
2731 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2732 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2733 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2734 }
2735
2736
2737 if (handler) {
2738 /* RetransTime */
2739 t->neigh_vars[3].proc_handler = handler;
2740 t->neigh_vars[3].extra1 = dev;
2741 /* ReachableTime */
2742 t->neigh_vars[4].proc_handler = handler;
2743 t->neigh_vars[4].extra1 = dev;
2744 /* RetransTime (in milliseconds)*/
2745 t->neigh_vars[12].proc_handler = handler;
2746 t->neigh_vars[12].extra1 = dev;
2747 /* ReachableTime (in milliseconds) */
2748 t->neigh_vars[13].proc_handler = handler;
2749 t->neigh_vars[13].extra1 = dev;
2750 }
2751
2752 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2753 if (!t->dev_name)
2754 goto free;
2755
2756 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2757 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2758
2759 t->sysctl_header =
2760 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2761 if (!t->sysctl_header)
2762 goto free_procname;
2763
2764 p->sysctl_table = t;
2765 return 0;
2766
2767 free_procname:
2768 kfree(t->dev_name);
2769 free:
2770 kfree(t);
2771 err:
2772 return -ENOBUFS;
2773 }
2774 EXPORT_SYMBOL(neigh_sysctl_register);
2775
2776 void neigh_sysctl_unregister(struct neigh_parms *p)
2777 {
2778 if (p->sysctl_table) {
2779 struct neigh_sysctl_table *t = p->sysctl_table;
2780 p->sysctl_table = NULL;
2781 unregister_sysctl_table(t->sysctl_header);
2782 kfree(t->dev_name);
2783 kfree(t);
2784 }
2785 }
2786 EXPORT_SYMBOL(neigh_sysctl_unregister);
2787
2788 #endif /* CONFIG_SYSCTL */
2789
2790 static int __init neigh_init(void)
2791 {
2792 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2793 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2794 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2795
2796 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2797 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2798
2799 return 0;
2800 }
2801
2802 subsys_initcall(neigh_init);
2803
This page took 0.099982 seconds and 6 git commands to generate.