Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 #include <linux/inetdevice.h>
42 #include <net/addrconf.h>
43
44 #define DEBUG
45 #define NEIGH_DEBUG 1
46 #define neigh_dbg(level, fmt, ...) \
47 do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50 } while (0)
51
52 #define PNEIGH_HASHMASK 0xF
53
54 static void neigh_timer_handler(unsigned long arg);
55 static void __neigh_notify(struct neighbour *n, int type, int flags);
56 static void neigh_update_notify(struct neighbour *neigh);
57 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59 #ifdef CONFIG_PROC_FS
60 static const struct file_operations neigh_stat_seq_fops;
61 #endif
62
63 /*
64 Neighbour hash table buckets are protected with rwlock tbl->lock.
65
66 - All the scans/updates to hash buckets MUST be made under this lock.
67 - NOTHING clever should be made under this lock: no callbacks
68 to protocol backends, no attempts to send something to network.
69 It will result in deadlocks, if backend/driver wants to use neighbour
70 cache.
71 - If the entry requires some non-trivial actions, increase
72 its reference count and release table lock.
73
74 Neighbour entries are protected:
75 - with reference count.
76 - with rwlock neigh->lock
77
78 Reference count prevents destruction.
79
80 neigh->lock mainly serializes ll address data and its validity state.
81 However, the same lock is used to protect another entry fields:
82 - timer
83 - resolution queue
84
85 Again, nothing clever shall be made under neigh->lock,
86 the most complicated procedure, which we allow is dev->hard_header.
87 It is supposed, that dev->hard_header is simplistic and does
88 not make callbacks to neighbour tables.
89 */
90
91 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
92 {
93 kfree_skb(skb);
94 return -ENETDOWN;
95 }
96
97 static void neigh_cleanup_and_release(struct neighbour *neigh)
98 {
99 if (neigh->parms->neigh_cleanup)
100 neigh->parms->neigh_cleanup(neigh);
101
102 __neigh_notify(neigh, RTM_DELNEIGH, 0);
103 neigh_release(neigh);
104 }
105
106 /*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 return base ? (prandom_u32() % base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117
118
119 static int neigh_forced_gc(struct neigh_table *tbl)
120 {
121 int shrunk = 0;
122 int i;
123 struct neigh_hash_table *nht;
124
125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
126
127 write_lock_bh(&tbl->lock);
128 nht = rcu_dereference_protected(tbl->nht,
129 lockdep_is_held(&tbl->lock));
130 for (i = 0; i < (1 << nht->hash_shift); i++) {
131 struct neighbour *n;
132 struct neighbour __rcu **np;
133
134 np = &nht->hash_buckets[i];
135 while ((n = rcu_dereference_protected(*np,
136 lockdep_is_held(&tbl->lock))) != NULL) {
137 /* Neighbour record may be discarded if:
138 * - nobody refers to it.
139 * - it is not permanent
140 */
141 write_lock(&n->lock);
142 if (atomic_read(&n->refcnt) == 1 &&
143 !(n->nud_state & NUD_PERMANENT)) {
144 rcu_assign_pointer(*np,
145 rcu_dereference_protected(n->next,
146 lockdep_is_held(&tbl->lock)));
147 n->dead = 1;
148 shrunk = 1;
149 write_unlock(&n->lock);
150 neigh_cleanup_and_release(n);
151 continue;
152 }
153 write_unlock(&n->lock);
154 np = &n->next;
155 }
156 }
157
158 tbl->last_flush = jiffies;
159
160 write_unlock_bh(&tbl->lock);
161
162 return shrunk;
163 }
164
165 static void neigh_add_timer(struct neighbour *n, unsigned long when)
166 {
167 neigh_hold(n);
168 if (unlikely(mod_timer(&n->timer, when))) {
169 printk("NEIGH: BUG, double timer add, state is %x\n",
170 n->nud_state);
171 dump_stack();
172 }
173 }
174
175 static int neigh_del_timer(struct neighbour *n)
176 {
177 if ((n->nud_state & NUD_IN_TIMER) &&
178 del_timer(&n->timer)) {
179 neigh_release(n);
180 return 1;
181 }
182 return 0;
183 }
184
185 static void pneigh_queue_purge(struct sk_buff_head *list)
186 {
187 struct sk_buff *skb;
188
189 while ((skb = skb_dequeue(list)) != NULL) {
190 dev_put(skb->dev);
191 kfree_skb(skb);
192 }
193 }
194
195 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
196 {
197 int i;
198 struct neigh_hash_table *nht;
199
200 nht = rcu_dereference_protected(tbl->nht,
201 lockdep_is_held(&tbl->lock));
202
203 for (i = 0; i < (1 << nht->hash_shift); i++) {
204 struct neighbour *n;
205 struct neighbour __rcu **np = &nht->hash_buckets[i];
206
207 while ((n = rcu_dereference_protected(*np,
208 lockdep_is_held(&tbl->lock))) != NULL) {
209 if (dev && n->dev != dev) {
210 np = &n->next;
211 continue;
212 }
213 rcu_assign_pointer(*np,
214 rcu_dereference_protected(n->next,
215 lockdep_is_held(&tbl->lock)));
216 write_lock(&n->lock);
217 neigh_del_timer(n);
218 n->dead = 1;
219
220 if (atomic_read(&n->refcnt) != 1) {
221 /* The most unpleasant situation.
222 We must destroy neighbour entry,
223 but someone still uses it.
224
225 The destroy will be delayed until
226 the last user releases us, but
227 we must kill timers etc. and move
228 it to safe state.
229 */
230 __skb_queue_purge(&n->arp_queue);
231 n->arp_queue_len_bytes = 0;
232 n->output = neigh_blackhole;
233 if (n->nud_state & NUD_VALID)
234 n->nud_state = NUD_NOARP;
235 else
236 n->nud_state = NUD_NONE;
237 neigh_dbg(2, "neigh %p is stray\n", n);
238 }
239 write_unlock(&n->lock);
240 neigh_cleanup_and_release(n);
241 }
242 }
243 }
244
245 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 write_unlock_bh(&tbl->lock);
250 }
251 EXPORT_SYMBOL(neigh_changeaddr);
252
253 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
254 {
255 write_lock_bh(&tbl->lock);
256 neigh_flush_dev(tbl, dev);
257 pneigh_ifdown(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259
260 del_timer_sync(&tbl->proxy_timer);
261 pneigh_queue_purge(&tbl->proxy_queue);
262 return 0;
263 }
264 EXPORT_SYMBOL(neigh_ifdown);
265
266 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
267 {
268 struct neighbour *n = NULL;
269 unsigned long now = jiffies;
270 int entries;
271
272 entries = atomic_inc_return(&tbl->entries) - 1;
273 if (entries >= tbl->gc_thresh3 ||
274 (entries >= tbl->gc_thresh2 &&
275 time_after(now, tbl->last_flush + 5 * HZ))) {
276 if (!neigh_forced_gc(tbl) &&
277 entries >= tbl->gc_thresh3) {
278 net_info_ratelimited("%s: neighbor table overflow!\n",
279 tbl->id);
280 NEIGH_CACHE_STAT_INC(tbl, table_fulls);
281 goto out_entries;
282 }
283 }
284
285 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
286 if (!n)
287 goto out_entries;
288
289 __skb_queue_head_init(&n->arp_queue);
290 rwlock_init(&n->lock);
291 seqlock_init(&n->ha_lock);
292 n->updated = n->used = now;
293 n->nud_state = NUD_NONE;
294 n->output = neigh_blackhole;
295 seqlock_init(&n->hh.hh_lock);
296 n->parms = neigh_parms_clone(&tbl->parms);
297 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
298
299 NEIGH_CACHE_STAT_INC(tbl, allocs);
300 n->tbl = tbl;
301 atomic_set(&n->refcnt, 1);
302 n->dead = 1;
303 out:
304 return n;
305
306 out_entries:
307 atomic_dec(&tbl->entries);
308 goto out;
309 }
310
311 static void neigh_get_hash_rnd(u32 *x)
312 {
313 get_random_bytes(x, sizeof(*x));
314 *x |= 1;
315 }
316
317 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
318 {
319 size_t size = (1 << shift) * sizeof(struct neighbour *);
320 struct neigh_hash_table *ret;
321 struct neighbour __rcu **buckets;
322 int i;
323
324 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
325 if (!ret)
326 return NULL;
327 if (size <= PAGE_SIZE)
328 buckets = kzalloc(size, GFP_ATOMIC);
329 else
330 buckets = (struct neighbour __rcu **)
331 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
332 get_order(size));
333 if (!buckets) {
334 kfree(ret);
335 return NULL;
336 }
337 ret->hash_buckets = buckets;
338 ret->hash_shift = shift;
339 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
340 neigh_get_hash_rnd(&ret->hash_rnd[i]);
341 return ret;
342 }
343
344 static void neigh_hash_free_rcu(struct rcu_head *head)
345 {
346 struct neigh_hash_table *nht = container_of(head,
347 struct neigh_hash_table,
348 rcu);
349 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
350 struct neighbour __rcu **buckets = nht->hash_buckets;
351
352 if (size <= PAGE_SIZE)
353 kfree(buckets);
354 else
355 free_pages((unsigned long)buckets, get_order(size));
356 kfree(nht);
357 }
358
359 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
360 unsigned long new_shift)
361 {
362 unsigned int i, hash;
363 struct neigh_hash_table *new_nht, *old_nht;
364
365 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
366
367 old_nht = rcu_dereference_protected(tbl->nht,
368 lockdep_is_held(&tbl->lock));
369 new_nht = neigh_hash_alloc(new_shift);
370 if (!new_nht)
371 return old_nht;
372
373 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
374 struct neighbour *n, *next;
375
376 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
377 lockdep_is_held(&tbl->lock));
378 n != NULL;
379 n = next) {
380 hash = tbl->hash(n->primary_key, n->dev,
381 new_nht->hash_rnd);
382
383 hash >>= (32 - new_nht->hash_shift);
384 next = rcu_dereference_protected(n->next,
385 lockdep_is_held(&tbl->lock));
386
387 rcu_assign_pointer(n->next,
388 rcu_dereference_protected(
389 new_nht->hash_buckets[hash],
390 lockdep_is_held(&tbl->lock)));
391 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
392 }
393 }
394
395 rcu_assign_pointer(tbl->nht, new_nht);
396 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
397 return new_nht;
398 }
399
400 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
401 struct net_device *dev)
402 {
403 struct neighbour *n;
404
405 NEIGH_CACHE_STAT_INC(tbl, lookups);
406
407 rcu_read_lock_bh();
408 n = __neigh_lookup_noref(tbl, pkey, dev);
409 if (n) {
410 if (!atomic_inc_not_zero(&n->refcnt))
411 n = NULL;
412 NEIGH_CACHE_STAT_INC(tbl, hits);
413 }
414
415 rcu_read_unlock_bh();
416 return n;
417 }
418 EXPORT_SYMBOL(neigh_lookup);
419
420 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
421 const void *pkey)
422 {
423 struct neighbour *n;
424 int key_len = tbl->key_len;
425 u32 hash_val;
426 struct neigh_hash_table *nht;
427
428 NEIGH_CACHE_STAT_INC(tbl, lookups);
429
430 rcu_read_lock_bh();
431 nht = rcu_dereference_bh(tbl->nht);
432 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
433
434 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
435 n != NULL;
436 n = rcu_dereference_bh(n->next)) {
437 if (!memcmp(n->primary_key, pkey, key_len) &&
438 net_eq(dev_net(n->dev), net)) {
439 if (!atomic_inc_not_zero(&n->refcnt))
440 n = NULL;
441 NEIGH_CACHE_STAT_INC(tbl, hits);
442 break;
443 }
444 }
445
446 rcu_read_unlock_bh();
447 return n;
448 }
449 EXPORT_SYMBOL(neigh_lookup_nodev);
450
451 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
452 struct net_device *dev, bool want_ref)
453 {
454 u32 hash_val;
455 int key_len = tbl->key_len;
456 int error;
457 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
458 struct neigh_hash_table *nht;
459
460 if (!n) {
461 rc = ERR_PTR(-ENOBUFS);
462 goto out;
463 }
464
465 memcpy(n->primary_key, pkey, key_len);
466 n->dev = dev;
467 dev_hold(dev);
468
469 /* Protocol specific setup. */
470 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
471 rc = ERR_PTR(error);
472 goto out_neigh_release;
473 }
474
475 if (dev->netdev_ops->ndo_neigh_construct) {
476 error = dev->netdev_ops->ndo_neigh_construct(n);
477 if (error < 0) {
478 rc = ERR_PTR(error);
479 goto out_neigh_release;
480 }
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 if (want_ref)
513 neigh_hold(n1);
514 rc = n1;
515 goto out_tbl_unlock;
516 }
517 }
518
519 n->dead = 0;
520 if (want_ref)
521 neigh_hold(n);
522 rcu_assign_pointer(n->next,
523 rcu_dereference_protected(nht->hash_buckets[hash_val],
524 lockdep_is_held(&tbl->lock)));
525 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
526 write_unlock_bh(&tbl->lock);
527 neigh_dbg(2, "neigh %p is created\n", n);
528 rc = n;
529 out:
530 return rc;
531 out_tbl_unlock:
532 write_unlock_bh(&tbl->lock);
533 out_neigh_release:
534 neigh_release(n);
535 goto out;
536 }
537 EXPORT_SYMBOL(__neigh_create);
538
539 static u32 pneigh_hash(const void *pkey, int key_len)
540 {
541 u32 hash_val = *(u32 *)(pkey + key_len - 4);
542 hash_val ^= (hash_val >> 16);
543 hash_val ^= hash_val >> 8;
544 hash_val ^= hash_val >> 4;
545 hash_val &= PNEIGH_HASHMASK;
546 return hash_val;
547 }
548
549 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
550 struct net *net,
551 const void *pkey,
552 int key_len,
553 struct net_device *dev)
554 {
555 while (n) {
556 if (!memcmp(n->key, pkey, key_len) &&
557 net_eq(pneigh_net(n), net) &&
558 (n->dev == dev || !n->dev))
559 return n;
560 n = n->next;
561 }
562 return NULL;
563 }
564
565 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
566 struct net *net, const void *pkey, struct net_device *dev)
567 {
568 int key_len = tbl->key_len;
569 u32 hash_val = pneigh_hash(pkey, key_len);
570
571 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
572 net, pkey, key_len, dev);
573 }
574 EXPORT_SYMBOL_GPL(__pneigh_lookup);
575
576 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
577 struct net *net, const void *pkey,
578 struct net_device *dev, int creat)
579 {
580 struct pneigh_entry *n;
581 int key_len = tbl->key_len;
582 u32 hash_val = pneigh_hash(pkey, key_len);
583
584 read_lock_bh(&tbl->lock);
585 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
586 net, pkey, key_len, dev);
587 read_unlock_bh(&tbl->lock);
588
589 if (n || !creat)
590 goto out;
591
592 ASSERT_RTNL();
593
594 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
595 if (!n)
596 goto out;
597
598 write_pnet(&n->net, net);
599 memcpy(n->key, pkey, key_len);
600 n->dev = dev;
601 if (dev)
602 dev_hold(dev);
603
604 if (tbl->pconstructor && tbl->pconstructor(n)) {
605 if (dev)
606 dev_put(dev);
607 kfree(n);
608 n = NULL;
609 goto out;
610 }
611
612 write_lock_bh(&tbl->lock);
613 n->next = tbl->phash_buckets[hash_val];
614 tbl->phash_buckets[hash_val] = n;
615 write_unlock_bh(&tbl->lock);
616 out:
617 return n;
618 }
619 EXPORT_SYMBOL(pneigh_lookup);
620
621
622 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
623 struct net_device *dev)
624 {
625 struct pneigh_entry *n, **np;
626 int key_len = tbl->key_len;
627 u32 hash_val = pneigh_hash(pkey, key_len);
628
629 write_lock_bh(&tbl->lock);
630 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
631 np = &n->next) {
632 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
633 net_eq(pneigh_net(n), net)) {
634 *np = n->next;
635 write_unlock_bh(&tbl->lock);
636 if (tbl->pdestructor)
637 tbl->pdestructor(n);
638 if (n->dev)
639 dev_put(n->dev);
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646 }
647
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649 {
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 kfree(n);
663 continue;
664 }
665 np = &n->next;
666 }
667 }
668 return -ENOENT;
669 }
670
671 static void neigh_parms_destroy(struct neigh_parms *parms);
672
673 static inline void neigh_parms_put(struct neigh_parms *parms)
674 {
675 if (atomic_dec_and_test(&parms->refcnt))
676 neigh_parms_destroy(parms);
677 }
678
679 /*
680 * neighbour must already be out of the table;
681 *
682 */
683 void neigh_destroy(struct neighbour *neigh)
684 {
685 struct net_device *dev = neigh->dev;
686
687 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
688
689 if (!neigh->dead) {
690 pr_warn("Destroying alive neighbour %p\n", neigh);
691 dump_stack();
692 return;
693 }
694
695 if (neigh_del_timer(neigh))
696 pr_warn("Impossible event\n");
697
698 write_lock_bh(&neigh->lock);
699 __skb_queue_purge(&neigh->arp_queue);
700 write_unlock_bh(&neigh->lock);
701 neigh->arp_queue_len_bytes = 0;
702
703 if (dev->netdev_ops->ndo_neigh_destroy)
704 dev->netdev_ops->ndo_neigh_destroy(neigh);
705
706 dev_put(dev);
707 neigh_parms_put(neigh->parms);
708
709 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
710
711 atomic_dec(&neigh->tbl->entries);
712 kfree_rcu(neigh, rcu);
713 }
714 EXPORT_SYMBOL(neigh_destroy);
715
716 /* Neighbour state is suspicious;
717 disable fast path.
718
719 Called with write_locked neigh.
720 */
721 static void neigh_suspect(struct neighbour *neigh)
722 {
723 neigh_dbg(2, "neigh %p is suspected\n", neigh);
724
725 neigh->output = neigh->ops->output;
726 }
727
728 /* Neighbour state is OK;
729 enable fast path.
730
731 Called with write_locked neigh.
732 */
733 static void neigh_connect(struct neighbour *neigh)
734 {
735 neigh_dbg(2, "neigh %p is connected\n", neigh);
736
737 neigh->output = neigh->ops->connected_output;
738 }
739
740 static void neigh_periodic_work(struct work_struct *work)
741 {
742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
743 struct neighbour *n;
744 struct neighbour __rcu **np;
745 unsigned int i;
746 struct neigh_hash_table *nht;
747
748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
749
750 write_lock_bh(&tbl->lock);
751 nht = rcu_dereference_protected(tbl->nht,
752 lockdep_is_held(&tbl->lock));
753
754 /*
755 * periodically recompute ReachableTime from random function
756 */
757
758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
759 struct neigh_parms *p;
760 tbl->last_rand = jiffies;
761 list_for_each_entry(p, &tbl->parms_list, list)
762 p->reachable_time =
763 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
764 }
765
766 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
767 goto out;
768
769 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
770 np = &nht->hash_buckets[i];
771
772 while ((n = rcu_dereference_protected(*np,
773 lockdep_is_held(&tbl->lock))) != NULL) {
774 unsigned int state;
775
776 write_lock(&n->lock);
777
778 state = n->nud_state;
779 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
780 write_unlock(&n->lock);
781 goto next_elt;
782 }
783
784 if (time_before(n->used, n->confirmed))
785 n->used = n->confirmed;
786
787 if (atomic_read(&n->refcnt) == 1 &&
788 (state == NUD_FAILED ||
789 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
790 *np = n->next;
791 n->dead = 1;
792 write_unlock(&n->lock);
793 neigh_cleanup_and_release(n);
794 continue;
795 }
796 write_unlock(&n->lock);
797
798 next_elt:
799 np = &n->next;
800 }
801 /*
802 * It's fine to release lock here, even if hash table
803 * grows while we are preempted.
804 */
805 write_unlock_bh(&tbl->lock);
806 cond_resched();
807 write_lock_bh(&tbl->lock);
808 nht = rcu_dereference_protected(tbl->nht,
809 lockdep_is_held(&tbl->lock));
810 }
811 out:
812 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
813 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
814 * BASE_REACHABLE_TIME.
815 */
816 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
817 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
818 write_unlock_bh(&tbl->lock);
819 }
820
821 static __inline__ int neigh_max_probes(struct neighbour *n)
822 {
823 struct neigh_parms *p = n->parms;
824 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
825 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
826 NEIGH_VAR(p, MCAST_PROBES));
827 }
828
829 static void neigh_invalidate(struct neighbour *neigh)
830 __releases(neigh->lock)
831 __acquires(neigh->lock)
832 {
833 struct sk_buff *skb;
834
835 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
836 neigh_dbg(2, "neigh %p is failed\n", neigh);
837 neigh->updated = jiffies;
838
839 /* It is very thin place. report_unreachable is very complicated
840 routine. Particularly, it can hit the same neighbour entry!
841
842 So that, we try to be accurate and avoid dead loop. --ANK
843 */
844 while (neigh->nud_state == NUD_FAILED &&
845 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
846 write_unlock(&neigh->lock);
847 neigh->ops->error_report(neigh, skb);
848 write_lock(&neigh->lock);
849 }
850 __skb_queue_purge(&neigh->arp_queue);
851 neigh->arp_queue_len_bytes = 0;
852 }
853
854 static void neigh_probe(struct neighbour *neigh)
855 __releases(neigh->lock)
856 {
857 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
858 /* keep skb alive even if arp_queue overflows */
859 if (skb)
860 skb = skb_clone(skb, GFP_ATOMIC);
861 write_unlock(&neigh->lock);
862 neigh->ops->solicit(neigh, skb);
863 atomic_inc(&neigh->probes);
864 kfree_skb(skb);
865 }
866
867 /* Called when a timer expires for a neighbour entry. */
868
869 static void neigh_timer_handler(unsigned long arg)
870 {
871 unsigned long now, next;
872 struct neighbour *neigh = (struct neighbour *)arg;
873 unsigned int state;
874 int notify = 0;
875
876 write_lock(&neigh->lock);
877
878 state = neigh->nud_state;
879 now = jiffies;
880 next = now + HZ;
881
882 if (!(state & NUD_IN_TIMER))
883 goto out;
884
885 if (state & NUD_REACHABLE) {
886 if (time_before_eq(now,
887 neigh->confirmed + neigh->parms->reachable_time)) {
888 neigh_dbg(2, "neigh %p is still alive\n", neigh);
889 next = neigh->confirmed + neigh->parms->reachable_time;
890 } else if (time_before_eq(now,
891 neigh->used +
892 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
893 neigh_dbg(2, "neigh %p is delayed\n", neigh);
894 neigh->nud_state = NUD_DELAY;
895 neigh->updated = jiffies;
896 neigh_suspect(neigh);
897 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
898 } else {
899 neigh_dbg(2, "neigh %p is suspected\n", neigh);
900 neigh->nud_state = NUD_STALE;
901 neigh->updated = jiffies;
902 neigh_suspect(neigh);
903 notify = 1;
904 }
905 } else if (state & NUD_DELAY) {
906 if (time_before_eq(now,
907 neigh->confirmed +
908 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
909 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
910 neigh->nud_state = NUD_REACHABLE;
911 neigh->updated = jiffies;
912 neigh_connect(neigh);
913 notify = 1;
914 next = neigh->confirmed + neigh->parms->reachable_time;
915 } else {
916 neigh_dbg(2, "neigh %p is probed\n", neigh);
917 neigh->nud_state = NUD_PROBE;
918 neigh->updated = jiffies;
919 atomic_set(&neigh->probes, 0);
920 notify = 1;
921 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
922 }
923 } else {
924 /* NUD_PROBE|NUD_INCOMPLETE */
925 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
926 }
927
928 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
929 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
930 neigh->nud_state = NUD_FAILED;
931 notify = 1;
932 neigh_invalidate(neigh);
933 goto out;
934 }
935
936 if (neigh->nud_state & NUD_IN_TIMER) {
937 if (time_before(next, jiffies + HZ/2))
938 next = jiffies + HZ/2;
939 if (!mod_timer(&neigh->timer, next))
940 neigh_hold(neigh);
941 }
942 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
943 neigh_probe(neigh);
944 } else {
945 out:
946 write_unlock(&neigh->lock);
947 }
948
949 if (notify)
950 neigh_update_notify(neigh);
951
952 neigh_release(neigh);
953 }
954
955 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
956 {
957 int rc;
958 bool immediate_probe = false;
959
960 write_lock_bh(&neigh->lock);
961
962 rc = 0;
963 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
964 goto out_unlock_bh;
965 if (neigh->dead)
966 goto out_dead;
967
968 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
969 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
970 NEIGH_VAR(neigh->parms, APP_PROBES)) {
971 unsigned long next, now = jiffies;
972
973 atomic_set(&neigh->probes,
974 NEIGH_VAR(neigh->parms, UCAST_PROBES));
975 neigh->nud_state = NUD_INCOMPLETE;
976 neigh->updated = now;
977 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
978 HZ/2);
979 neigh_add_timer(neigh, next);
980 immediate_probe = true;
981 } else {
982 neigh->nud_state = NUD_FAILED;
983 neigh->updated = jiffies;
984 write_unlock_bh(&neigh->lock);
985
986 kfree_skb(skb);
987 return 1;
988 }
989 } else if (neigh->nud_state & NUD_STALE) {
990 neigh_dbg(2, "neigh %p is delayed\n", neigh);
991 neigh->nud_state = NUD_DELAY;
992 neigh->updated = jiffies;
993 neigh_add_timer(neigh, jiffies +
994 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
995 }
996
997 if (neigh->nud_state == NUD_INCOMPLETE) {
998 if (skb) {
999 while (neigh->arp_queue_len_bytes + skb->truesize >
1000 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1001 struct sk_buff *buff;
1002
1003 buff = __skb_dequeue(&neigh->arp_queue);
1004 if (!buff)
1005 break;
1006 neigh->arp_queue_len_bytes -= buff->truesize;
1007 kfree_skb(buff);
1008 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1009 }
1010 skb_dst_force(skb);
1011 __skb_queue_tail(&neigh->arp_queue, skb);
1012 neigh->arp_queue_len_bytes += skb->truesize;
1013 }
1014 rc = 1;
1015 }
1016 out_unlock_bh:
1017 if (immediate_probe)
1018 neigh_probe(neigh);
1019 else
1020 write_unlock(&neigh->lock);
1021 local_bh_enable();
1022 return rc;
1023
1024 out_dead:
1025 if (neigh->nud_state & NUD_STALE)
1026 goto out_unlock_bh;
1027 write_unlock_bh(&neigh->lock);
1028 kfree_skb(skb);
1029 return 1;
1030 }
1031 EXPORT_SYMBOL(__neigh_event_send);
1032
1033 static void neigh_update_hhs(struct neighbour *neigh)
1034 {
1035 struct hh_cache *hh;
1036 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1037 = NULL;
1038
1039 if (neigh->dev->header_ops)
1040 update = neigh->dev->header_ops->cache_update;
1041
1042 if (update) {
1043 hh = &neigh->hh;
1044 if (hh->hh_len) {
1045 write_seqlock_bh(&hh->hh_lock);
1046 update(hh, neigh->dev, neigh->ha);
1047 write_sequnlock_bh(&hh->hh_lock);
1048 }
1049 }
1050 }
1051
1052
1053
1054 /* Generic update routine.
1055 -- lladdr is new lladdr or NULL, if it is not supplied.
1056 -- new is new state.
1057 -- flags
1058 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1059 if it is different.
1060 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1061 lladdr instead of overriding it
1062 if it is different.
1063 It also allows to retain current state
1064 if lladdr is unchanged.
1065 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1066
1067 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1068 NTF_ROUTER flag.
1069 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1070 a router.
1071
1072 Caller MUST hold reference count on the entry.
1073 */
1074
1075 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1076 u32 flags)
1077 {
1078 u8 old;
1079 int err;
1080 int notify = 0;
1081 struct net_device *dev;
1082 int update_isrouter = 0;
1083
1084 write_lock_bh(&neigh->lock);
1085
1086 dev = neigh->dev;
1087 old = neigh->nud_state;
1088 err = -EPERM;
1089
1090 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1091 (old & (NUD_NOARP | NUD_PERMANENT)))
1092 goto out;
1093 if (neigh->dead)
1094 goto out;
1095
1096 if (!(new & NUD_VALID)) {
1097 neigh_del_timer(neigh);
1098 if (old & NUD_CONNECTED)
1099 neigh_suspect(neigh);
1100 neigh->nud_state = new;
1101 err = 0;
1102 notify = old & NUD_VALID;
1103 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1104 (new & NUD_FAILED)) {
1105 neigh_invalidate(neigh);
1106 notify = 1;
1107 }
1108 goto out;
1109 }
1110
1111 /* Compare new lladdr with cached one */
1112 if (!dev->addr_len) {
1113 /* First case: device needs no address. */
1114 lladdr = neigh->ha;
1115 } else if (lladdr) {
1116 /* The second case: if something is already cached
1117 and a new address is proposed:
1118 - compare new & old
1119 - if they are different, check override flag
1120 */
1121 if ((old & NUD_VALID) &&
1122 !memcmp(lladdr, neigh->ha, dev->addr_len))
1123 lladdr = neigh->ha;
1124 } else {
1125 /* No address is supplied; if we know something,
1126 use it, otherwise discard the request.
1127 */
1128 err = -EINVAL;
1129 if (!(old & NUD_VALID))
1130 goto out;
1131 lladdr = neigh->ha;
1132 }
1133
1134 if (new & NUD_CONNECTED)
1135 neigh->confirmed = jiffies;
1136 neigh->updated = jiffies;
1137
1138 /* If entry was valid and address is not changed,
1139 do not change entry state, if new one is STALE.
1140 */
1141 err = 0;
1142 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1143 if (old & NUD_VALID) {
1144 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1145 update_isrouter = 0;
1146 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1147 (old & NUD_CONNECTED)) {
1148 lladdr = neigh->ha;
1149 new = NUD_STALE;
1150 } else
1151 goto out;
1152 } else {
1153 if (lladdr == neigh->ha && new == NUD_STALE &&
1154 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1155 (old & NUD_CONNECTED))
1156 )
1157 new = old;
1158 }
1159 }
1160
1161 if (new != old) {
1162 neigh_del_timer(neigh);
1163 if (new & NUD_PROBE)
1164 atomic_set(&neigh->probes, 0);
1165 if (new & NUD_IN_TIMER)
1166 neigh_add_timer(neigh, (jiffies +
1167 ((new & NUD_REACHABLE) ?
1168 neigh->parms->reachable_time :
1169 0)));
1170 neigh->nud_state = new;
1171 notify = 1;
1172 }
1173
1174 if (lladdr != neigh->ha) {
1175 write_seqlock(&neigh->ha_lock);
1176 memcpy(&neigh->ha, lladdr, dev->addr_len);
1177 write_sequnlock(&neigh->ha_lock);
1178 neigh_update_hhs(neigh);
1179 if (!(new & NUD_CONNECTED))
1180 neigh->confirmed = jiffies -
1181 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1182 notify = 1;
1183 }
1184 if (new == old)
1185 goto out;
1186 if (new & NUD_CONNECTED)
1187 neigh_connect(neigh);
1188 else
1189 neigh_suspect(neigh);
1190 if (!(old & NUD_VALID)) {
1191 struct sk_buff *skb;
1192
1193 /* Again: avoid dead loop if something went wrong */
1194
1195 while (neigh->nud_state & NUD_VALID &&
1196 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1197 struct dst_entry *dst = skb_dst(skb);
1198 struct neighbour *n2, *n1 = neigh;
1199 write_unlock_bh(&neigh->lock);
1200
1201 rcu_read_lock();
1202
1203 /* Why not just use 'neigh' as-is? The problem is that
1204 * things such as shaper, eql, and sch_teql can end up
1205 * using alternative, different, neigh objects to output
1206 * the packet in the output path. So what we need to do
1207 * here is re-lookup the top-level neigh in the path so
1208 * we can reinject the packet there.
1209 */
1210 n2 = NULL;
1211 if (dst) {
1212 n2 = dst_neigh_lookup_skb(dst, skb);
1213 if (n2)
1214 n1 = n2;
1215 }
1216 n1->output(n1, skb);
1217 if (n2)
1218 neigh_release(n2);
1219 rcu_read_unlock();
1220
1221 write_lock_bh(&neigh->lock);
1222 }
1223 __skb_queue_purge(&neigh->arp_queue);
1224 neigh->arp_queue_len_bytes = 0;
1225 }
1226 out:
1227 if (update_isrouter) {
1228 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1229 (neigh->flags | NTF_ROUTER) :
1230 (neigh->flags & ~NTF_ROUTER);
1231 }
1232 write_unlock_bh(&neigh->lock);
1233
1234 if (notify)
1235 neigh_update_notify(neigh);
1236
1237 return err;
1238 }
1239 EXPORT_SYMBOL(neigh_update);
1240
1241 /* Update the neigh to listen temporarily for probe responses, even if it is
1242 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1243 */
1244 void __neigh_set_probe_once(struct neighbour *neigh)
1245 {
1246 if (neigh->dead)
1247 return;
1248 neigh->updated = jiffies;
1249 if (!(neigh->nud_state & NUD_FAILED))
1250 return;
1251 neigh->nud_state = NUD_INCOMPLETE;
1252 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1253 neigh_add_timer(neigh,
1254 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1255 }
1256 EXPORT_SYMBOL(__neigh_set_probe_once);
1257
1258 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1259 u8 *lladdr, void *saddr,
1260 struct net_device *dev)
1261 {
1262 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1263 lladdr || !dev->addr_len);
1264 if (neigh)
1265 neigh_update(neigh, lladdr, NUD_STALE,
1266 NEIGH_UPDATE_F_OVERRIDE);
1267 return neigh;
1268 }
1269 EXPORT_SYMBOL(neigh_event_ns);
1270
1271 /* called with read_lock_bh(&n->lock); */
1272 static void neigh_hh_init(struct neighbour *n)
1273 {
1274 struct net_device *dev = n->dev;
1275 __be16 prot = n->tbl->protocol;
1276 struct hh_cache *hh = &n->hh;
1277
1278 write_lock_bh(&n->lock);
1279
1280 /* Only one thread can come in here and initialize the
1281 * hh_cache entry.
1282 */
1283 if (!hh->hh_len)
1284 dev->header_ops->cache(n, hh, prot);
1285
1286 write_unlock_bh(&n->lock);
1287 }
1288
1289 /* Slow and careful. */
1290
1291 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1292 {
1293 int rc = 0;
1294
1295 if (!neigh_event_send(neigh, skb)) {
1296 int err;
1297 struct net_device *dev = neigh->dev;
1298 unsigned int seq;
1299
1300 if (dev->header_ops->cache && !neigh->hh.hh_len)
1301 neigh_hh_init(neigh);
1302
1303 do {
1304 __skb_pull(skb, skb_network_offset(skb));
1305 seq = read_seqbegin(&neigh->ha_lock);
1306 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1307 neigh->ha, NULL, skb->len);
1308 } while (read_seqretry(&neigh->ha_lock, seq));
1309
1310 if (err >= 0)
1311 rc = dev_queue_xmit(skb);
1312 else
1313 goto out_kfree_skb;
1314 }
1315 out:
1316 return rc;
1317 out_kfree_skb:
1318 rc = -EINVAL;
1319 kfree_skb(skb);
1320 goto out;
1321 }
1322 EXPORT_SYMBOL(neigh_resolve_output);
1323
1324 /* As fast as possible without hh cache */
1325
1326 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1327 {
1328 struct net_device *dev = neigh->dev;
1329 unsigned int seq;
1330 int err;
1331
1332 do {
1333 __skb_pull(skb, skb_network_offset(skb));
1334 seq = read_seqbegin(&neigh->ha_lock);
1335 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1336 neigh->ha, NULL, skb->len);
1337 } while (read_seqretry(&neigh->ha_lock, seq));
1338
1339 if (err >= 0)
1340 err = dev_queue_xmit(skb);
1341 else {
1342 err = -EINVAL;
1343 kfree_skb(skb);
1344 }
1345 return err;
1346 }
1347 EXPORT_SYMBOL(neigh_connected_output);
1348
1349 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1350 {
1351 return dev_queue_xmit(skb);
1352 }
1353 EXPORT_SYMBOL(neigh_direct_output);
1354
1355 static void neigh_proxy_process(unsigned long arg)
1356 {
1357 struct neigh_table *tbl = (struct neigh_table *)arg;
1358 long sched_next = 0;
1359 unsigned long now = jiffies;
1360 struct sk_buff *skb, *n;
1361
1362 spin_lock(&tbl->proxy_queue.lock);
1363
1364 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1365 long tdif = NEIGH_CB(skb)->sched_next - now;
1366
1367 if (tdif <= 0) {
1368 struct net_device *dev = skb->dev;
1369
1370 __skb_unlink(skb, &tbl->proxy_queue);
1371 if (tbl->proxy_redo && netif_running(dev)) {
1372 rcu_read_lock();
1373 tbl->proxy_redo(skb);
1374 rcu_read_unlock();
1375 } else {
1376 kfree_skb(skb);
1377 }
1378
1379 dev_put(dev);
1380 } else if (!sched_next || tdif < sched_next)
1381 sched_next = tdif;
1382 }
1383 del_timer(&tbl->proxy_timer);
1384 if (sched_next)
1385 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1386 spin_unlock(&tbl->proxy_queue.lock);
1387 }
1388
1389 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1390 struct sk_buff *skb)
1391 {
1392 unsigned long now = jiffies;
1393
1394 unsigned long sched_next = now + (prandom_u32() %
1395 NEIGH_VAR(p, PROXY_DELAY));
1396
1397 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1398 kfree_skb(skb);
1399 return;
1400 }
1401
1402 NEIGH_CB(skb)->sched_next = sched_next;
1403 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1404
1405 spin_lock(&tbl->proxy_queue.lock);
1406 if (del_timer(&tbl->proxy_timer)) {
1407 if (time_before(tbl->proxy_timer.expires, sched_next))
1408 sched_next = tbl->proxy_timer.expires;
1409 }
1410 skb_dst_drop(skb);
1411 dev_hold(skb->dev);
1412 __skb_queue_tail(&tbl->proxy_queue, skb);
1413 mod_timer(&tbl->proxy_timer, sched_next);
1414 spin_unlock(&tbl->proxy_queue.lock);
1415 }
1416 EXPORT_SYMBOL(pneigh_enqueue);
1417
1418 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1419 struct net *net, int ifindex)
1420 {
1421 struct neigh_parms *p;
1422
1423 list_for_each_entry(p, &tbl->parms_list, list) {
1424 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1425 (!p->dev && !ifindex && net_eq(net, &init_net)))
1426 return p;
1427 }
1428
1429 return NULL;
1430 }
1431
1432 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1433 struct neigh_table *tbl)
1434 {
1435 struct neigh_parms *p;
1436 struct net *net = dev_net(dev);
1437 const struct net_device_ops *ops = dev->netdev_ops;
1438
1439 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1440 if (p) {
1441 p->tbl = tbl;
1442 atomic_set(&p->refcnt, 1);
1443 p->reachable_time =
1444 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1445 dev_hold(dev);
1446 p->dev = dev;
1447 write_pnet(&p->net, net);
1448 p->sysctl_table = NULL;
1449
1450 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1451 dev_put(dev);
1452 kfree(p);
1453 return NULL;
1454 }
1455
1456 write_lock_bh(&tbl->lock);
1457 list_add(&p->list, &tbl->parms.list);
1458 write_unlock_bh(&tbl->lock);
1459
1460 neigh_parms_data_state_cleanall(p);
1461 }
1462 return p;
1463 }
1464 EXPORT_SYMBOL(neigh_parms_alloc);
1465
1466 static void neigh_rcu_free_parms(struct rcu_head *head)
1467 {
1468 struct neigh_parms *parms =
1469 container_of(head, struct neigh_parms, rcu_head);
1470
1471 neigh_parms_put(parms);
1472 }
1473
1474 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1475 {
1476 if (!parms || parms == &tbl->parms)
1477 return;
1478 write_lock_bh(&tbl->lock);
1479 list_del(&parms->list);
1480 parms->dead = 1;
1481 write_unlock_bh(&tbl->lock);
1482 if (parms->dev)
1483 dev_put(parms->dev);
1484 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1485 }
1486 EXPORT_SYMBOL(neigh_parms_release);
1487
1488 static void neigh_parms_destroy(struct neigh_parms *parms)
1489 {
1490 kfree(parms);
1491 }
1492
1493 static struct lock_class_key neigh_table_proxy_queue_class;
1494
1495 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1496
1497 void neigh_table_init(int index, struct neigh_table *tbl)
1498 {
1499 unsigned long now = jiffies;
1500 unsigned long phsize;
1501
1502 INIT_LIST_HEAD(&tbl->parms_list);
1503 list_add(&tbl->parms.list, &tbl->parms_list);
1504 write_pnet(&tbl->parms.net, &init_net);
1505 atomic_set(&tbl->parms.refcnt, 1);
1506 tbl->parms.reachable_time =
1507 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1508
1509 tbl->stats = alloc_percpu(struct neigh_statistics);
1510 if (!tbl->stats)
1511 panic("cannot create neighbour cache statistics");
1512
1513 #ifdef CONFIG_PROC_FS
1514 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1515 &neigh_stat_seq_fops, tbl))
1516 panic("cannot create neighbour proc dir entry");
1517 #endif
1518
1519 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1520
1521 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1522 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1523
1524 if (!tbl->nht || !tbl->phash_buckets)
1525 panic("cannot allocate neighbour cache hashes");
1526
1527 if (!tbl->entry_size)
1528 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1529 tbl->key_len, NEIGH_PRIV_ALIGN);
1530 else
1531 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1532
1533 rwlock_init(&tbl->lock);
1534 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1535 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1536 tbl->parms.reachable_time);
1537 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1538 skb_queue_head_init_class(&tbl->proxy_queue,
1539 &neigh_table_proxy_queue_class);
1540
1541 tbl->last_flush = now;
1542 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1543
1544 neigh_tables[index] = tbl;
1545 }
1546 EXPORT_SYMBOL(neigh_table_init);
1547
1548 int neigh_table_clear(int index, struct neigh_table *tbl)
1549 {
1550 neigh_tables[index] = NULL;
1551 /* It is not clean... Fix it to unload IPv6 module safely */
1552 cancel_delayed_work_sync(&tbl->gc_work);
1553 del_timer_sync(&tbl->proxy_timer);
1554 pneigh_queue_purge(&tbl->proxy_queue);
1555 neigh_ifdown(tbl, NULL);
1556 if (atomic_read(&tbl->entries))
1557 pr_crit("neighbour leakage\n");
1558
1559 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1560 neigh_hash_free_rcu);
1561 tbl->nht = NULL;
1562
1563 kfree(tbl->phash_buckets);
1564 tbl->phash_buckets = NULL;
1565
1566 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1567
1568 free_percpu(tbl->stats);
1569 tbl->stats = NULL;
1570
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(neigh_table_clear);
1574
1575 static struct neigh_table *neigh_find_table(int family)
1576 {
1577 struct neigh_table *tbl = NULL;
1578
1579 switch (family) {
1580 case AF_INET:
1581 tbl = neigh_tables[NEIGH_ARP_TABLE];
1582 break;
1583 case AF_INET6:
1584 tbl = neigh_tables[NEIGH_ND_TABLE];
1585 break;
1586 case AF_DECnet:
1587 tbl = neigh_tables[NEIGH_DN_TABLE];
1588 break;
1589 }
1590
1591 return tbl;
1592 }
1593
1594 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1595 {
1596 struct net *net = sock_net(skb->sk);
1597 struct ndmsg *ndm;
1598 struct nlattr *dst_attr;
1599 struct neigh_table *tbl;
1600 struct neighbour *neigh;
1601 struct net_device *dev = NULL;
1602 int err = -EINVAL;
1603
1604 ASSERT_RTNL();
1605 if (nlmsg_len(nlh) < sizeof(*ndm))
1606 goto out;
1607
1608 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1609 if (dst_attr == NULL)
1610 goto out;
1611
1612 ndm = nlmsg_data(nlh);
1613 if (ndm->ndm_ifindex) {
1614 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1615 if (dev == NULL) {
1616 err = -ENODEV;
1617 goto out;
1618 }
1619 }
1620
1621 tbl = neigh_find_table(ndm->ndm_family);
1622 if (tbl == NULL)
1623 return -EAFNOSUPPORT;
1624
1625 if (nla_len(dst_attr) < tbl->key_len)
1626 goto out;
1627
1628 if (ndm->ndm_flags & NTF_PROXY) {
1629 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1630 goto out;
1631 }
1632
1633 if (dev == NULL)
1634 goto out;
1635
1636 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1637 if (neigh == NULL) {
1638 err = -ENOENT;
1639 goto out;
1640 }
1641
1642 err = neigh_update(neigh, NULL, NUD_FAILED,
1643 NEIGH_UPDATE_F_OVERRIDE |
1644 NEIGH_UPDATE_F_ADMIN);
1645 neigh_release(neigh);
1646
1647 out:
1648 return err;
1649 }
1650
1651 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1652 {
1653 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1654 struct net *net = sock_net(skb->sk);
1655 struct ndmsg *ndm;
1656 struct nlattr *tb[NDA_MAX+1];
1657 struct neigh_table *tbl;
1658 struct net_device *dev = NULL;
1659 struct neighbour *neigh;
1660 void *dst, *lladdr;
1661 int err;
1662
1663 ASSERT_RTNL();
1664 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1665 if (err < 0)
1666 goto out;
1667
1668 err = -EINVAL;
1669 if (tb[NDA_DST] == NULL)
1670 goto out;
1671
1672 ndm = nlmsg_data(nlh);
1673 if (ndm->ndm_ifindex) {
1674 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1675 if (dev == NULL) {
1676 err = -ENODEV;
1677 goto out;
1678 }
1679
1680 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1681 goto out;
1682 }
1683
1684 tbl = neigh_find_table(ndm->ndm_family);
1685 if (tbl == NULL)
1686 return -EAFNOSUPPORT;
1687
1688 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1689 goto out;
1690 dst = nla_data(tb[NDA_DST]);
1691 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1692
1693 if (ndm->ndm_flags & NTF_PROXY) {
1694 struct pneigh_entry *pn;
1695
1696 err = -ENOBUFS;
1697 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1698 if (pn) {
1699 pn->flags = ndm->ndm_flags;
1700 err = 0;
1701 }
1702 goto out;
1703 }
1704
1705 if (dev == NULL)
1706 goto out;
1707
1708 neigh = neigh_lookup(tbl, dst, dev);
1709 if (neigh == NULL) {
1710 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1711 err = -ENOENT;
1712 goto out;
1713 }
1714
1715 neigh = __neigh_lookup_errno(tbl, dst, dev);
1716 if (IS_ERR(neigh)) {
1717 err = PTR_ERR(neigh);
1718 goto out;
1719 }
1720 } else {
1721 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1722 err = -EEXIST;
1723 neigh_release(neigh);
1724 goto out;
1725 }
1726
1727 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1728 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1729 }
1730
1731 if (ndm->ndm_flags & NTF_USE) {
1732 neigh_event_send(neigh, NULL);
1733 err = 0;
1734 } else
1735 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1736 neigh_release(neigh);
1737
1738 out:
1739 return err;
1740 }
1741
1742 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1743 {
1744 struct nlattr *nest;
1745
1746 nest = nla_nest_start(skb, NDTA_PARMS);
1747 if (nest == NULL)
1748 return -ENOBUFS;
1749
1750 if ((parms->dev &&
1751 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1752 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1753 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1754 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1755 /* approximative value for deprecated QUEUE_LEN (in packets) */
1756 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1757 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1758 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1759 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1760 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1761 NEIGH_VAR(parms, UCAST_PROBES)) ||
1762 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1763 NEIGH_VAR(parms, MCAST_PROBES)) ||
1764 nla_put_u32(skb, NDTPA_MCAST_REPROBES,
1765 NEIGH_VAR(parms, MCAST_REPROBES)) ||
1766 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
1767 NDTPA_PAD) ||
1768 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1769 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
1770 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1771 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
1772 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1773 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
1774 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1775 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
1776 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1777 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
1778 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1779 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
1780 nla_put_msecs(skb, NDTPA_LOCKTIME,
1781 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD))
1782 goto nla_put_failure;
1783 return nla_nest_end(skb, nest);
1784
1785 nla_put_failure:
1786 nla_nest_cancel(skb, nest);
1787 return -EMSGSIZE;
1788 }
1789
1790 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1791 u32 pid, u32 seq, int type, int flags)
1792 {
1793 struct nlmsghdr *nlh;
1794 struct ndtmsg *ndtmsg;
1795
1796 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1797 if (nlh == NULL)
1798 return -EMSGSIZE;
1799
1800 ndtmsg = nlmsg_data(nlh);
1801
1802 read_lock_bh(&tbl->lock);
1803 ndtmsg->ndtm_family = tbl->family;
1804 ndtmsg->ndtm_pad1 = 0;
1805 ndtmsg->ndtm_pad2 = 0;
1806
1807 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1808 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) ||
1809 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1810 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1811 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1812 goto nla_put_failure;
1813 {
1814 unsigned long now = jiffies;
1815 unsigned int flush_delta = now - tbl->last_flush;
1816 unsigned int rand_delta = now - tbl->last_rand;
1817 struct neigh_hash_table *nht;
1818 struct ndt_config ndc = {
1819 .ndtc_key_len = tbl->key_len,
1820 .ndtc_entry_size = tbl->entry_size,
1821 .ndtc_entries = atomic_read(&tbl->entries),
1822 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1823 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1824 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1825 };
1826
1827 rcu_read_lock_bh();
1828 nht = rcu_dereference_bh(tbl->nht);
1829 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1830 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1831 rcu_read_unlock_bh();
1832
1833 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1834 goto nla_put_failure;
1835 }
1836
1837 {
1838 int cpu;
1839 struct ndt_stats ndst;
1840
1841 memset(&ndst, 0, sizeof(ndst));
1842
1843 for_each_possible_cpu(cpu) {
1844 struct neigh_statistics *st;
1845
1846 st = per_cpu_ptr(tbl->stats, cpu);
1847 ndst.ndts_allocs += st->allocs;
1848 ndst.ndts_destroys += st->destroys;
1849 ndst.ndts_hash_grows += st->hash_grows;
1850 ndst.ndts_res_failed += st->res_failed;
1851 ndst.ndts_lookups += st->lookups;
1852 ndst.ndts_hits += st->hits;
1853 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1854 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1855 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1856 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1857 ndst.ndts_table_fulls += st->table_fulls;
1858 }
1859
1860 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1861 goto nla_put_failure;
1862 }
1863
1864 BUG_ON(tbl->parms.dev);
1865 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1866 goto nla_put_failure;
1867
1868 read_unlock_bh(&tbl->lock);
1869 nlmsg_end(skb, nlh);
1870 return 0;
1871
1872 nla_put_failure:
1873 read_unlock_bh(&tbl->lock);
1874 nlmsg_cancel(skb, nlh);
1875 return -EMSGSIZE;
1876 }
1877
1878 static int neightbl_fill_param_info(struct sk_buff *skb,
1879 struct neigh_table *tbl,
1880 struct neigh_parms *parms,
1881 u32 pid, u32 seq, int type,
1882 unsigned int flags)
1883 {
1884 struct ndtmsg *ndtmsg;
1885 struct nlmsghdr *nlh;
1886
1887 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1888 if (nlh == NULL)
1889 return -EMSGSIZE;
1890
1891 ndtmsg = nlmsg_data(nlh);
1892
1893 read_lock_bh(&tbl->lock);
1894 ndtmsg->ndtm_family = tbl->family;
1895 ndtmsg->ndtm_pad1 = 0;
1896 ndtmsg->ndtm_pad2 = 0;
1897
1898 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1899 neightbl_fill_parms(skb, parms) < 0)
1900 goto errout;
1901
1902 read_unlock_bh(&tbl->lock);
1903 nlmsg_end(skb, nlh);
1904 return 0;
1905 errout:
1906 read_unlock_bh(&tbl->lock);
1907 nlmsg_cancel(skb, nlh);
1908 return -EMSGSIZE;
1909 }
1910
1911 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1912 [NDTA_NAME] = { .type = NLA_STRING },
1913 [NDTA_THRESH1] = { .type = NLA_U32 },
1914 [NDTA_THRESH2] = { .type = NLA_U32 },
1915 [NDTA_THRESH3] = { .type = NLA_U32 },
1916 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1917 [NDTA_PARMS] = { .type = NLA_NESTED },
1918 };
1919
1920 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1921 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1922 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1923 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1924 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1925 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1926 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1927 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
1928 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1929 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1930 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1931 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1932 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1933 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1934 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1935 };
1936
1937 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1938 {
1939 struct net *net = sock_net(skb->sk);
1940 struct neigh_table *tbl;
1941 struct ndtmsg *ndtmsg;
1942 struct nlattr *tb[NDTA_MAX+1];
1943 bool found = false;
1944 int err, tidx;
1945
1946 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1947 nl_neightbl_policy);
1948 if (err < 0)
1949 goto errout;
1950
1951 if (tb[NDTA_NAME] == NULL) {
1952 err = -EINVAL;
1953 goto errout;
1954 }
1955
1956 ndtmsg = nlmsg_data(nlh);
1957
1958 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
1959 tbl = neigh_tables[tidx];
1960 if (!tbl)
1961 continue;
1962 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1963 continue;
1964 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
1965 found = true;
1966 break;
1967 }
1968 }
1969
1970 if (!found)
1971 return -ENOENT;
1972
1973 /*
1974 * We acquire tbl->lock to be nice to the periodic timers and
1975 * make sure they always see a consistent set of values.
1976 */
1977 write_lock_bh(&tbl->lock);
1978
1979 if (tb[NDTA_PARMS]) {
1980 struct nlattr *tbp[NDTPA_MAX+1];
1981 struct neigh_parms *p;
1982 int i, ifindex = 0;
1983
1984 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1985 nl_ntbl_parm_policy);
1986 if (err < 0)
1987 goto errout_tbl_lock;
1988
1989 if (tbp[NDTPA_IFINDEX])
1990 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1991
1992 p = lookup_neigh_parms(tbl, net, ifindex);
1993 if (p == NULL) {
1994 err = -ENOENT;
1995 goto errout_tbl_lock;
1996 }
1997
1998 for (i = 1; i <= NDTPA_MAX; i++) {
1999 if (tbp[i] == NULL)
2000 continue;
2001
2002 switch (i) {
2003 case NDTPA_QUEUE_LEN:
2004 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2005 nla_get_u32(tbp[i]) *
2006 SKB_TRUESIZE(ETH_FRAME_LEN));
2007 break;
2008 case NDTPA_QUEUE_LENBYTES:
2009 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2010 nla_get_u32(tbp[i]));
2011 break;
2012 case NDTPA_PROXY_QLEN:
2013 NEIGH_VAR_SET(p, PROXY_QLEN,
2014 nla_get_u32(tbp[i]));
2015 break;
2016 case NDTPA_APP_PROBES:
2017 NEIGH_VAR_SET(p, APP_PROBES,
2018 nla_get_u32(tbp[i]));
2019 break;
2020 case NDTPA_UCAST_PROBES:
2021 NEIGH_VAR_SET(p, UCAST_PROBES,
2022 nla_get_u32(tbp[i]));
2023 break;
2024 case NDTPA_MCAST_PROBES:
2025 NEIGH_VAR_SET(p, MCAST_PROBES,
2026 nla_get_u32(tbp[i]));
2027 break;
2028 case NDTPA_MCAST_REPROBES:
2029 NEIGH_VAR_SET(p, MCAST_REPROBES,
2030 nla_get_u32(tbp[i]));
2031 break;
2032 case NDTPA_BASE_REACHABLE_TIME:
2033 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2034 nla_get_msecs(tbp[i]));
2035 /* update reachable_time as well, otherwise, the change will
2036 * only be effective after the next time neigh_periodic_work
2037 * decides to recompute it (can be multiple minutes)
2038 */
2039 p->reachable_time =
2040 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2041 break;
2042 case NDTPA_GC_STALETIME:
2043 NEIGH_VAR_SET(p, GC_STALETIME,
2044 nla_get_msecs(tbp[i]));
2045 break;
2046 case NDTPA_DELAY_PROBE_TIME:
2047 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2048 nla_get_msecs(tbp[i]));
2049 break;
2050 case NDTPA_RETRANS_TIME:
2051 NEIGH_VAR_SET(p, RETRANS_TIME,
2052 nla_get_msecs(tbp[i]));
2053 break;
2054 case NDTPA_ANYCAST_DELAY:
2055 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2056 nla_get_msecs(tbp[i]));
2057 break;
2058 case NDTPA_PROXY_DELAY:
2059 NEIGH_VAR_SET(p, PROXY_DELAY,
2060 nla_get_msecs(tbp[i]));
2061 break;
2062 case NDTPA_LOCKTIME:
2063 NEIGH_VAR_SET(p, LOCKTIME,
2064 nla_get_msecs(tbp[i]));
2065 break;
2066 }
2067 }
2068 }
2069
2070 err = -ENOENT;
2071 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2072 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2073 !net_eq(net, &init_net))
2074 goto errout_tbl_lock;
2075
2076 if (tb[NDTA_THRESH1])
2077 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2078
2079 if (tb[NDTA_THRESH2])
2080 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2081
2082 if (tb[NDTA_THRESH3])
2083 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2084
2085 if (tb[NDTA_GC_INTERVAL])
2086 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2087
2088 err = 0;
2089
2090 errout_tbl_lock:
2091 write_unlock_bh(&tbl->lock);
2092 errout:
2093 return err;
2094 }
2095
2096 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2097 {
2098 struct net *net = sock_net(skb->sk);
2099 int family, tidx, nidx = 0;
2100 int tbl_skip = cb->args[0];
2101 int neigh_skip = cb->args[1];
2102 struct neigh_table *tbl;
2103
2104 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2105
2106 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2107 struct neigh_parms *p;
2108
2109 tbl = neigh_tables[tidx];
2110 if (!tbl)
2111 continue;
2112
2113 if (tidx < tbl_skip || (family && tbl->family != family))
2114 continue;
2115
2116 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2117 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2118 NLM_F_MULTI) < 0)
2119 break;
2120
2121 nidx = 0;
2122 p = list_next_entry(&tbl->parms, list);
2123 list_for_each_entry_from(p, &tbl->parms_list, list) {
2124 if (!net_eq(neigh_parms_net(p), net))
2125 continue;
2126
2127 if (nidx < neigh_skip)
2128 goto next;
2129
2130 if (neightbl_fill_param_info(skb, tbl, p,
2131 NETLINK_CB(cb->skb).portid,
2132 cb->nlh->nlmsg_seq,
2133 RTM_NEWNEIGHTBL,
2134 NLM_F_MULTI) < 0)
2135 goto out;
2136 next:
2137 nidx++;
2138 }
2139
2140 neigh_skip = 0;
2141 }
2142 out:
2143 cb->args[0] = tidx;
2144 cb->args[1] = nidx;
2145
2146 return skb->len;
2147 }
2148
2149 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2150 u32 pid, u32 seq, int type, unsigned int flags)
2151 {
2152 unsigned long now = jiffies;
2153 struct nda_cacheinfo ci;
2154 struct nlmsghdr *nlh;
2155 struct ndmsg *ndm;
2156
2157 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2158 if (nlh == NULL)
2159 return -EMSGSIZE;
2160
2161 ndm = nlmsg_data(nlh);
2162 ndm->ndm_family = neigh->ops->family;
2163 ndm->ndm_pad1 = 0;
2164 ndm->ndm_pad2 = 0;
2165 ndm->ndm_flags = neigh->flags;
2166 ndm->ndm_type = neigh->type;
2167 ndm->ndm_ifindex = neigh->dev->ifindex;
2168
2169 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2170 goto nla_put_failure;
2171
2172 read_lock_bh(&neigh->lock);
2173 ndm->ndm_state = neigh->nud_state;
2174 if (neigh->nud_state & NUD_VALID) {
2175 char haddr[MAX_ADDR_LEN];
2176
2177 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2178 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2179 read_unlock_bh(&neigh->lock);
2180 goto nla_put_failure;
2181 }
2182 }
2183
2184 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2185 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2186 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2187 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2188 read_unlock_bh(&neigh->lock);
2189
2190 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2191 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2192 goto nla_put_failure;
2193
2194 nlmsg_end(skb, nlh);
2195 return 0;
2196
2197 nla_put_failure:
2198 nlmsg_cancel(skb, nlh);
2199 return -EMSGSIZE;
2200 }
2201
2202 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2203 u32 pid, u32 seq, int type, unsigned int flags,
2204 struct neigh_table *tbl)
2205 {
2206 struct nlmsghdr *nlh;
2207 struct ndmsg *ndm;
2208
2209 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2210 if (nlh == NULL)
2211 return -EMSGSIZE;
2212
2213 ndm = nlmsg_data(nlh);
2214 ndm->ndm_family = tbl->family;
2215 ndm->ndm_pad1 = 0;
2216 ndm->ndm_pad2 = 0;
2217 ndm->ndm_flags = pn->flags | NTF_PROXY;
2218 ndm->ndm_type = RTN_UNICAST;
2219 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2220 ndm->ndm_state = NUD_NONE;
2221
2222 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2223 goto nla_put_failure;
2224
2225 nlmsg_end(skb, nlh);
2226 return 0;
2227
2228 nla_put_failure:
2229 nlmsg_cancel(skb, nlh);
2230 return -EMSGSIZE;
2231 }
2232
2233 static void neigh_update_notify(struct neighbour *neigh)
2234 {
2235 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2236 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2237 }
2238
2239 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2240 {
2241 struct net_device *master;
2242
2243 if (!master_idx)
2244 return false;
2245
2246 master = netdev_master_upper_dev_get(dev);
2247 if (!master || master->ifindex != master_idx)
2248 return true;
2249
2250 return false;
2251 }
2252
2253 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2254 {
2255 if (filter_idx && dev->ifindex != filter_idx)
2256 return true;
2257
2258 return false;
2259 }
2260
2261 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2262 struct netlink_callback *cb)
2263 {
2264 struct net *net = sock_net(skb->sk);
2265 const struct nlmsghdr *nlh = cb->nlh;
2266 struct nlattr *tb[NDA_MAX + 1];
2267 struct neighbour *n;
2268 int rc, h, s_h = cb->args[1];
2269 int idx, s_idx = idx = cb->args[2];
2270 struct neigh_hash_table *nht;
2271 int filter_master_idx = 0, filter_idx = 0;
2272 unsigned int flags = NLM_F_MULTI;
2273 int err;
2274
2275 err = nlmsg_parse(nlh, sizeof(struct ndmsg), tb, NDA_MAX, NULL);
2276 if (!err) {
2277 if (tb[NDA_IFINDEX])
2278 filter_idx = nla_get_u32(tb[NDA_IFINDEX]);
2279
2280 if (tb[NDA_MASTER])
2281 filter_master_idx = nla_get_u32(tb[NDA_MASTER]);
2282
2283 if (filter_idx || filter_master_idx)
2284 flags |= NLM_F_DUMP_FILTERED;
2285 }
2286
2287 rcu_read_lock_bh();
2288 nht = rcu_dereference_bh(tbl->nht);
2289
2290 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2291 if (h > s_h)
2292 s_idx = 0;
2293 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2294 n != NULL;
2295 n = rcu_dereference_bh(n->next)) {
2296 if (!net_eq(dev_net(n->dev), net))
2297 continue;
2298 if (neigh_ifindex_filtered(n->dev, filter_idx))
2299 continue;
2300 if (neigh_master_filtered(n->dev, filter_master_idx))
2301 continue;
2302 if (idx < s_idx)
2303 goto next;
2304 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2305 cb->nlh->nlmsg_seq,
2306 RTM_NEWNEIGH,
2307 flags) < 0) {
2308 rc = -1;
2309 goto out;
2310 }
2311 next:
2312 idx++;
2313 }
2314 }
2315 rc = skb->len;
2316 out:
2317 rcu_read_unlock_bh();
2318 cb->args[1] = h;
2319 cb->args[2] = idx;
2320 return rc;
2321 }
2322
2323 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2324 struct netlink_callback *cb)
2325 {
2326 struct pneigh_entry *n;
2327 struct net *net = sock_net(skb->sk);
2328 int rc, h, s_h = cb->args[3];
2329 int idx, s_idx = idx = cb->args[4];
2330
2331 read_lock_bh(&tbl->lock);
2332
2333 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2334 if (h > s_h)
2335 s_idx = 0;
2336 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2337 if (pneigh_net(n) != net)
2338 continue;
2339 if (idx < s_idx)
2340 goto next;
2341 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2342 cb->nlh->nlmsg_seq,
2343 RTM_NEWNEIGH,
2344 NLM_F_MULTI, tbl) < 0) {
2345 read_unlock_bh(&tbl->lock);
2346 rc = -1;
2347 goto out;
2348 }
2349 next:
2350 idx++;
2351 }
2352 }
2353
2354 read_unlock_bh(&tbl->lock);
2355 rc = skb->len;
2356 out:
2357 cb->args[3] = h;
2358 cb->args[4] = idx;
2359 return rc;
2360
2361 }
2362
2363 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2364 {
2365 struct neigh_table *tbl;
2366 int t, family, s_t;
2367 int proxy = 0;
2368 int err;
2369
2370 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2371
2372 /* check for full ndmsg structure presence, family member is
2373 * the same for both structures
2374 */
2375 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2376 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2377 proxy = 1;
2378
2379 s_t = cb->args[0];
2380
2381 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2382 tbl = neigh_tables[t];
2383
2384 if (!tbl)
2385 continue;
2386 if (t < s_t || (family && tbl->family != family))
2387 continue;
2388 if (t > s_t)
2389 memset(&cb->args[1], 0, sizeof(cb->args) -
2390 sizeof(cb->args[0]));
2391 if (proxy)
2392 err = pneigh_dump_table(tbl, skb, cb);
2393 else
2394 err = neigh_dump_table(tbl, skb, cb);
2395 if (err < 0)
2396 break;
2397 }
2398
2399 cb->args[0] = t;
2400 return skb->len;
2401 }
2402
2403 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2404 {
2405 int chain;
2406 struct neigh_hash_table *nht;
2407
2408 rcu_read_lock_bh();
2409 nht = rcu_dereference_bh(tbl->nht);
2410
2411 read_lock(&tbl->lock); /* avoid resizes */
2412 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2413 struct neighbour *n;
2414
2415 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2416 n != NULL;
2417 n = rcu_dereference_bh(n->next))
2418 cb(n, cookie);
2419 }
2420 read_unlock(&tbl->lock);
2421 rcu_read_unlock_bh();
2422 }
2423 EXPORT_SYMBOL(neigh_for_each);
2424
2425 /* The tbl->lock must be held as a writer and BH disabled. */
2426 void __neigh_for_each_release(struct neigh_table *tbl,
2427 int (*cb)(struct neighbour *))
2428 {
2429 int chain;
2430 struct neigh_hash_table *nht;
2431
2432 nht = rcu_dereference_protected(tbl->nht,
2433 lockdep_is_held(&tbl->lock));
2434 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2435 struct neighbour *n;
2436 struct neighbour __rcu **np;
2437
2438 np = &nht->hash_buckets[chain];
2439 while ((n = rcu_dereference_protected(*np,
2440 lockdep_is_held(&tbl->lock))) != NULL) {
2441 int release;
2442
2443 write_lock(&n->lock);
2444 release = cb(n);
2445 if (release) {
2446 rcu_assign_pointer(*np,
2447 rcu_dereference_protected(n->next,
2448 lockdep_is_held(&tbl->lock)));
2449 n->dead = 1;
2450 } else
2451 np = &n->next;
2452 write_unlock(&n->lock);
2453 if (release)
2454 neigh_cleanup_and_release(n);
2455 }
2456 }
2457 }
2458 EXPORT_SYMBOL(__neigh_for_each_release);
2459
2460 int neigh_xmit(int index, struct net_device *dev,
2461 const void *addr, struct sk_buff *skb)
2462 {
2463 int err = -EAFNOSUPPORT;
2464 if (likely(index < NEIGH_NR_TABLES)) {
2465 struct neigh_table *tbl;
2466 struct neighbour *neigh;
2467
2468 tbl = neigh_tables[index];
2469 if (!tbl)
2470 goto out;
2471 neigh = __neigh_lookup_noref(tbl, addr, dev);
2472 if (!neigh)
2473 neigh = __neigh_create(tbl, addr, dev, false);
2474 err = PTR_ERR(neigh);
2475 if (IS_ERR(neigh))
2476 goto out_kfree_skb;
2477 err = neigh->output(neigh, skb);
2478 }
2479 else if (index == NEIGH_LINK_TABLE) {
2480 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
2481 addr, NULL, skb->len);
2482 if (err < 0)
2483 goto out_kfree_skb;
2484 err = dev_queue_xmit(skb);
2485 }
2486 out:
2487 return err;
2488 out_kfree_skb:
2489 kfree_skb(skb);
2490 goto out;
2491 }
2492 EXPORT_SYMBOL(neigh_xmit);
2493
2494 #ifdef CONFIG_PROC_FS
2495
2496 static struct neighbour *neigh_get_first(struct seq_file *seq)
2497 {
2498 struct neigh_seq_state *state = seq->private;
2499 struct net *net = seq_file_net(seq);
2500 struct neigh_hash_table *nht = state->nht;
2501 struct neighbour *n = NULL;
2502 int bucket = state->bucket;
2503
2504 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2505 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2506 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2507
2508 while (n) {
2509 if (!net_eq(dev_net(n->dev), net))
2510 goto next;
2511 if (state->neigh_sub_iter) {
2512 loff_t fakep = 0;
2513 void *v;
2514
2515 v = state->neigh_sub_iter(state, n, &fakep);
2516 if (!v)
2517 goto next;
2518 }
2519 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2520 break;
2521 if (n->nud_state & ~NUD_NOARP)
2522 break;
2523 next:
2524 n = rcu_dereference_bh(n->next);
2525 }
2526
2527 if (n)
2528 break;
2529 }
2530 state->bucket = bucket;
2531
2532 return n;
2533 }
2534
2535 static struct neighbour *neigh_get_next(struct seq_file *seq,
2536 struct neighbour *n,
2537 loff_t *pos)
2538 {
2539 struct neigh_seq_state *state = seq->private;
2540 struct net *net = seq_file_net(seq);
2541 struct neigh_hash_table *nht = state->nht;
2542
2543 if (state->neigh_sub_iter) {
2544 void *v = state->neigh_sub_iter(state, n, pos);
2545 if (v)
2546 return n;
2547 }
2548 n = rcu_dereference_bh(n->next);
2549
2550 while (1) {
2551 while (n) {
2552 if (!net_eq(dev_net(n->dev), net))
2553 goto next;
2554 if (state->neigh_sub_iter) {
2555 void *v = state->neigh_sub_iter(state, n, pos);
2556 if (v)
2557 return n;
2558 goto next;
2559 }
2560 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2561 break;
2562
2563 if (n->nud_state & ~NUD_NOARP)
2564 break;
2565 next:
2566 n = rcu_dereference_bh(n->next);
2567 }
2568
2569 if (n)
2570 break;
2571
2572 if (++state->bucket >= (1 << nht->hash_shift))
2573 break;
2574
2575 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2576 }
2577
2578 if (n && pos)
2579 --(*pos);
2580 return n;
2581 }
2582
2583 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2584 {
2585 struct neighbour *n = neigh_get_first(seq);
2586
2587 if (n) {
2588 --(*pos);
2589 while (*pos) {
2590 n = neigh_get_next(seq, n, pos);
2591 if (!n)
2592 break;
2593 }
2594 }
2595 return *pos ? NULL : n;
2596 }
2597
2598 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2599 {
2600 struct neigh_seq_state *state = seq->private;
2601 struct net *net = seq_file_net(seq);
2602 struct neigh_table *tbl = state->tbl;
2603 struct pneigh_entry *pn = NULL;
2604 int bucket = state->bucket;
2605
2606 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2607 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2608 pn = tbl->phash_buckets[bucket];
2609 while (pn && !net_eq(pneigh_net(pn), net))
2610 pn = pn->next;
2611 if (pn)
2612 break;
2613 }
2614 state->bucket = bucket;
2615
2616 return pn;
2617 }
2618
2619 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2620 struct pneigh_entry *pn,
2621 loff_t *pos)
2622 {
2623 struct neigh_seq_state *state = seq->private;
2624 struct net *net = seq_file_net(seq);
2625 struct neigh_table *tbl = state->tbl;
2626
2627 do {
2628 pn = pn->next;
2629 } while (pn && !net_eq(pneigh_net(pn), net));
2630
2631 while (!pn) {
2632 if (++state->bucket > PNEIGH_HASHMASK)
2633 break;
2634 pn = tbl->phash_buckets[state->bucket];
2635 while (pn && !net_eq(pneigh_net(pn), net))
2636 pn = pn->next;
2637 if (pn)
2638 break;
2639 }
2640
2641 if (pn && pos)
2642 --(*pos);
2643
2644 return pn;
2645 }
2646
2647 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2648 {
2649 struct pneigh_entry *pn = pneigh_get_first(seq);
2650
2651 if (pn) {
2652 --(*pos);
2653 while (*pos) {
2654 pn = pneigh_get_next(seq, pn, pos);
2655 if (!pn)
2656 break;
2657 }
2658 }
2659 return *pos ? NULL : pn;
2660 }
2661
2662 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2663 {
2664 struct neigh_seq_state *state = seq->private;
2665 void *rc;
2666 loff_t idxpos = *pos;
2667
2668 rc = neigh_get_idx(seq, &idxpos);
2669 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2670 rc = pneigh_get_idx(seq, &idxpos);
2671
2672 return rc;
2673 }
2674
2675 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2676 __acquires(rcu_bh)
2677 {
2678 struct neigh_seq_state *state = seq->private;
2679
2680 state->tbl = tbl;
2681 state->bucket = 0;
2682 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2683
2684 rcu_read_lock_bh();
2685 state->nht = rcu_dereference_bh(tbl->nht);
2686
2687 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2688 }
2689 EXPORT_SYMBOL(neigh_seq_start);
2690
2691 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2692 {
2693 struct neigh_seq_state *state;
2694 void *rc;
2695
2696 if (v == SEQ_START_TOKEN) {
2697 rc = neigh_get_first(seq);
2698 goto out;
2699 }
2700
2701 state = seq->private;
2702 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2703 rc = neigh_get_next(seq, v, NULL);
2704 if (rc)
2705 goto out;
2706 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2707 rc = pneigh_get_first(seq);
2708 } else {
2709 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2710 rc = pneigh_get_next(seq, v, NULL);
2711 }
2712 out:
2713 ++(*pos);
2714 return rc;
2715 }
2716 EXPORT_SYMBOL(neigh_seq_next);
2717
2718 void neigh_seq_stop(struct seq_file *seq, void *v)
2719 __releases(rcu_bh)
2720 {
2721 rcu_read_unlock_bh();
2722 }
2723 EXPORT_SYMBOL(neigh_seq_stop);
2724
2725 /* statistics via seq_file */
2726
2727 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2728 {
2729 struct neigh_table *tbl = seq->private;
2730 int cpu;
2731
2732 if (*pos == 0)
2733 return SEQ_START_TOKEN;
2734
2735 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2736 if (!cpu_possible(cpu))
2737 continue;
2738 *pos = cpu+1;
2739 return per_cpu_ptr(tbl->stats, cpu);
2740 }
2741 return NULL;
2742 }
2743
2744 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2745 {
2746 struct neigh_table *tbl = seq->private;
2747 int cpu;
2748
2749 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2750 if (!cpu_possible(cpu))
2751 continue;
2752 *pos = cpu+1;
2753 return per_cpu_ptr(tbl->stats, cpu);
2754 }
2755 return NULL;
2756 }
2757
2758 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2759 {
2760
2761 }
2762
2763 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2764 {
2765 struct neigh_table *tbl = seq->private;
2766 struct neigh_statistics *st = v;
2767
2768 if (v == SEQ_START_TOKEN) {
2769 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
2770 return 0;
2771 }
2772
2773 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2774 "%08lx %08lx %08lx %08lx %08lx %08lx\n",
2775 atomic_read(&tbl->entries),
2776
2777 st->allocs,
2778 st->destroys,
2779 st->hash_grows,
2780
2781 st->lookups,
2782 st->hits,
2783
2784 st->res_failed,
2785
2786 st->rcv_probes_mcast,
2787 st->rcv_probes_ucast,
2788
2789 st->periodic_gc_runs,
2790 st->forced_gc_runs,
2791 st->unres_discards,
2792 st->table_fulls
2793 );
2794
2795 return 0;
2796 }
2797
2798 static const struct seq_operations neigh_stat_seq_ops = {
2799 .start = neigh_stat_seq_start,
2800 .next = neigh_stat_seq_next,
2801 .stop = neigh_stat_seq_stop,
2802 .show = neigh_stat_seq_show,
2803 };
2804
2805 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2806 {
2807 int ret = seq_open(file, &neigh_stat_seq_ops);
2808
2809 if (!ret) {
2810 struct seq_file *sf = file->private_data;
2811 sf->private = PDE_DATA(inode);
2812 }
2813 return ret;
2814 };
2815
2816 static const struct file_operations neigh_stat_seq_fops = {
2817 .owner = THIS_MODULE,
2818 .open = neigh_stat_seq_open,
2819 .read = seq_read,
2820 .llseek = seq_lseek,
2821 .release = seq_release,
2822 };
2823
2824 #endif /* CONFIG_PROC_FS */
2825
2826 static inline size_t neigh_nlmsg_size(void)
2827 {
2828 return NLMSG_ALIGN(sizeof(struct ndmsg))
2829 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2830 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2831 + nla_total_size(sizeof(struct nda_cacheinfo))
2832 + nla_total_size(4); /* NDA_PROBES */
2833 }
2834
2835 static void __neigh_notify(struct neighbour *n, int type, int flags)
2836 {
2837 struct net *net = dev_net(n->dev);
2838 struct sk_buff *skb;
2839 int err = -ENOBUFS;
2840
2841 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2842 if (skb == NULL)
2843 goto errout;
2844
2845 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2846 if (err < 0) {
2847 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2848 WARN_ON(err == -EMSGSIZE);
2849 kfree_skb(skb);
2850 goto errout;
2851 }
2852 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2853 return;
2854 errout:
2855 if (err < 0)
2856 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2857 }
2858
2859 void neigh_app_ns(struct neighbour *n)
2860 {
2861 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2862 }
2863 EXPORT_SYMBOL(neigh_app_ns);
2864
2865 #ifdef CONFIG_SYSCTL
2866 static int zero;
2867 static int int_max = INT_MAX;
2868 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2869
2870 static int proc_unres_qlen(struct ctl_table *ctl, int write,
2871 void __user *buffer, size_t *lenp, loff_t *ppos)
2872 {
2873 int size, ret;
2874 struct ctl_table tmp = *ctl;
2875
2876 tmp.extra1 = &zero;
2877 tmp.extra2 = &unres_qlen_max;
2878 tmp.data = &size;
2879
2880 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2881 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2882
2883 if (write && !ret)
2884 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2885 return ret;
2886 }
2887
2888 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2889 int family)
2890 {
2891 switch (family) {
2892 case AF_INET:
2893 return __in_dev_arp_parms_get_rcu(dev);
2894 case AF_INET6:
2895 return __in6_dev_nd_parms_get_rcu(dev);
2896 }
2897 return NULL;
2898 }
2899
2900 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2901 int index)
2902 {
2903 struct net_device *dev;
2904 int family = neigh_parms_family(p);
2905
2906 rcu_read_lock();
2907 for_each_netdev_rcu(net, dev) {
2908 struct neigh_parms *dst_p =
2909 neigh_get_dev_parms_rcu(dev, family);
2910
2911 if (dst_p && !test_bit(index, dst_p->data_state))
2912 dst_p->data[index] = p->data[index];
2913 }
2914 rcu_read_unlock();
2915 }
2916
2917 static void neigh_proc_update(struct ctl_table *ctl, int write)
2918 {
2919 struct net_device *dev = ctl->extra1;
2920 struct neigh_parms *p = ctl->extra2;
2921 struct net *net = neigh_parms_net(p);
2922 int index = (int *) ctl->data - p->data;
2923
2924 if (!write)
2925 return;
2926
2927 set_bit(index, p->data_state);
2928 if (!dev) /* NULL dev means this is default value */
2929 neigh_copy_dflt_parms(net, p, index);
2930 }
2931
2932 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2933 void __user *buffer,
2934 size_t *lenp, loff_t *ppos)
2935 {
2936 struct ctl_table tmp = *ctl;
2937 int ret;
2938
2939 tmp.extra1 = &zero;
2940 tmp.extra2 = &int_max;
2941
2942 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2943 neigh_proc_update(ctl, write);
2944 return ret;
2945 }
2946
2947 int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2948 void __user *buffer, size_t *lenp, loff_t *ppos)
2949 {
2950 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2951
2952 neigh_proc_update(ctl, write);
2953 return ret;
2954 }
2955 EXPORT_SYMBOL(neigh_proc_dointvec);
2956
2957 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2958 void __user *buffer,
2959 size_t *lenp, loff_t *ppos)
2960 {
2961 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2962
2963 neigh_proc_update(ctl, write);
2964 return ret;
2965 }
2966 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2967
2968 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2969 void __user *buffer,
2970 size_t *lenp, loff_t *ppos)
2971 {
2972 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2973
2974 neigh_proc_update(ctl, write);
2975 return ret;
2976 }
2977
2978 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2979 void __user *buffer,
2980 size_t *lenp, loff_t *ppos)
2981 {
2982 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2983
2984 neigh_proc_update(ctl, write);
2985 return ret;
2986 }
2987 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2988
2989 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2990 void __user *buffer,
2991 size_t *lenp, loff_t *ppos)
2992 {
2993 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2994
2995 neigh_proc_update(ctl, write);
2996 return ret;
2997 }
2998
2999 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3000 void __user *buffer,
3001 size_t *lenp, loff_t *ppos)
3002 {
3003 struct neigh_parms *p = ctl->extra2;
3004 int ret;
3005
3006 if (strcmp(ctl->procname, "base_reachable_time") == 0)
3007 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3008 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3009 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3010 else
3011 ret = -1;
3012
3013 if (write && ret == 0) {
3014 /* update reachable_time as well, otherwise, the change will
3015 * only be effective after the next time neigh_periodic_work
3016 * decides to recompute it
3017 */
3018 p->reachable_time =
3019 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3020 }
3021 return ret;
3022 }
3023
3024 #define NEIGH_PARMS_DATA_OFFSET(index) \
3025 (&((struct neigh_parms *) 0)->data[index])
3026
3027 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3028 [NEIGH_VAR_ ## attr] = { \
3029 .procname = name, \
3030 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3031 .maxlen = sizeof(int), \
3032 .mode = mval, \
3033 .proc_handler = proc, \
3034 }
3035
3036 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3037 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3038
3039 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3040 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3041
3042 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3043 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3044
3045 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
3046 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3047
3048 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3049 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3050
3051 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3052 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3053
3054 static struct neigh_sysctl_table {
3055 struct ctl_table_header *sysctl_header;
3056 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
3057 } neigh_sysctl_template __read_mostly = {
3058 .neigh_vars = {
3059 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3060 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3061 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3062 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3063 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3064 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3065 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3066 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3067 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3068 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3069 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3070 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3071 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3072 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3073 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3074 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3075 [NEIGH_VAR_GC_INTERVAL] = {
3076 .procname = "gc_interval",
3077 .maxlen = sizeof(int),
3078 .mode = 0644,
3079 .proc_handler = proc_dointvec_jiffies,
3080 },
3081 [NEIGH_VAR_GC_THRESH1] = {
3082 .procname = "gc_thresh1",
3083 .maxlen = sizeof(int),
3084 .mode = 0644,
3085 .extra1 = &zero,
3086 .extra2 = &int_max,
3087 .proc_handler = proc_dointvec_minmax,
3088 },
3089 [NEIGH_VAR_GC_THRESH2] = {
3090 .procname = "gc_thresh2",
3091 .maxlen = sizeof(int),
3092 .mode = 0644,
3093 .extra1 = &zero,
3094 .extra2 = &int_max,
3095 .proc_handler = proc_dointvec_minmax,
3096 },
3097 [NEIGH_VAR_GC_THRESH3] = {
3098 .procname = "gc_thresh3",
3099 .maxlen = sizeof(int),
3100 .mode = 0644,
3101 .extra1 = &zero,
3102 .extra2 = &int_max,
3103 .proc_handler = proc_dointvec_minmax,
3104 },
3105 {},
3106 },
3107 };
3108
3109 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3110 proc_handler *handler)
3111 {
3112 int i;
3113 struct neigh_sysctl_table *t;
3114 const char *dev_name_source;
3115 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3116 char *p_name;
3117
3118 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3119 if (!t)
3120 goto err;
3121
3122 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3123 t->neigh_vars[i].data += (long) p;
3124 t->neigh_vars[i].extra1 = dev;
3125 t->neigh_vars[i].extra2 = p;
3126 }
3127
3128 if (dev) {
3129 dev_name_source = dev->name;
3130 /* Terminate the table early */
3131 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3132 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3133 } else {
3134 struct neigh_table *tbl = p->tbl;
3135 dev_name_source = "default";
3136 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3137 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3138 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3139 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3140 }
3141
3142 if (handler) {
3143 /* RetransTime */
3144 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3145 /* ReachableTime */
3146 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3147 /* RetransTime (in milliseconds)*/
3148 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3149 /* ReachableTime (in milliseconds) */
3150 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3151 } else {
3152 /* Those handlers will update p->reachable_time after
3153 * base_reachable_time(_ms) is set to ensure the new timer starts being
3154 * applied after the next neighbour update instead of waiting for
3155 * neigh_periodic_work to update its value (can be multiple minutes)
3156 * So any handler that replaces them should do this as well
3157 */
3158 /* ReachableTime */
3159 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3160 neigh_proc_base_reachable_time;
3161 /* ReachableTime (in milliseconds) */
3162 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3163 neigh_proc_base_reachable_time;
3164 }
3165
3166 /* Don't export sysctls to unprivileged users */
3167 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3168 t->neigh_vars[0].procname = NULL;
3169
3170 switch (neigh_parms_family(p)) {
3171 case AF_INET:
3172 p_name = "ipv4";
3173 break;
3174 case AF_INET6:
3175 p_name = "ipv6";
3176 break;
3177 default:
3178 BUG();
3179 }
3180
3181 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3182 p_name, dev_name_source);
3183 t->sysctl_header =
3184 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3185 if (!t->sysctl_header)
3186 goto free;
3187
3188 p->sysctl_table = t;
3189 return 0;
3190
3191 free:
3192 kfree(t);
3193 err:
3194 return -ENOBUFS;
3195 }
3196 EXPORT_SYMBOL(neigh_sysctl_register);
3197
3198 void neigh_sysctl_unregister(struct neigh_parms *p)
3199 {
3200 if (p->sysctl_table) {
3201 struct neigh_sysctl_table *t = p->sysctl_table;
3202 p->sysctl_table = NULL;
3203 unregister_net_sysctl_table(t->sysctl_header);
3204 kfree(t);
3205 }
3206 }
3207 EXPORT_SYMBOL(neigh_sysctl_unregister);
3208
3209 #endif /* CONFIG_SYSCTL */
3210
3211 static int __init neigh_init(void)
3212 {
3213 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3214 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3215 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3216
3217 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3218 NULL);
3219 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3220
3221 return 0;
3222 }
3223
3224 subsys_initcall(neigh_init);
3225
This page took 0.091734 seconds and 6 git commands to generate.