Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126
127
128 static int neigh_forced_gc(struct neigh_table *tbl)
129 {
130 int shrunk = 0;
131 int i;
132
133 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
134
135 write_lock_bh(&tbl->lock);
136 for (i = 0; i <= tbl->hash_mask; i++) {
137 struct neighbour *n, **np;
138
139 np = &tbl->hash_buckets[i];
140 while ((n = *np) != NULL) {
141 /* Neighbour record may be discarded if:
142 * - nobody refers to it.
143 * - it is not permanent
144 */
145 write_lock(&n->lock);
146 if (atomic_read(&n->refcnt) == 1 &&
147 !(n->nud_state & NUD_PERMANENT)) {
148 *np = n->next;
149 n->dead = 1;
150 shrunk = 1;
151 write_unlock(&n->lock);
152 neigh_cleanup_and_release(n);
153 continue;
154 }
155 write_unlock(&n->lock);
156 np = &n->next;
157 }
158 }
159
160 tbl->last_flush = jiffies;
161
162 write_unlock_bh(&tbl->lock);
163
164 return shrunk;
165 }
166
167 static void neigh_add_timer(struct neighbour *n, unsigned long when)
168 {
169 neigh_hold(n);
170 if (unlikely(mod_timer(&n->timer, when))) {
171 printk("NEIGH: BUG, double timer add, state is %x\n",
172 n->nud_state);
173 dump_stack();
174 }
175 }
176
177 static int neigh_del_timer(struct neighbour *n)
178 {
179 if ((n->nud_state & NUD_IN_TIMER) &&
180 del_timer(&n->timer)) {
181 neigh_release(n);
182 return 1;
183 }
184 return 0;
185 }
186
187 static void pneigh_queue_purge(struct sk_buff_head *list)
188 {
189 struct sk_buff *skb;
190
191 while ((skb = skb_dequeue(list)) != NULL) {
192 dev_put(skb->dev);
193 kfree_skb(skb);
194 }
195 }
196
197 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
198 {
199 int i;
200
201 for (i = 0; i <= tbl->hash_mask; i++) {
202 struct neighbour *n, **np = &tbl->hash_buckets[i];
203
204 while ((n = *np) != NULL) {
205 if (dev && n->dev != dev) {
206 np = &n->next;
207 continue;
208 }
209 *np = n->next;
210 write_lock(&n->lock);
211 neigh_del_timer(n);
212 n->dead = 1;
213
214 if (atomic_read(&n->refcnt) != 1) {
215 /* The most unpleasant situation.
216 We must destroy neighbour entry,
217 but someone still uses it.
218
219 The destroy will be delayed until
220 the last user releases us, but
221 we must kill timers etc. and move
222 it to safe state.
223 */
224 skb_queue_purge(&n->arp_queue);
225 n->output = neigh_blackhole;
226 if (n->nud_state & NUD_VALID)
227 n->nud_state = NUD_NOARP;
228 else
229 n->nud_state = NUD_NONE;
230 NEIGH_PRINTK2("neigh %p is stray.\n", n);
231 }
232 write_unlock(&n->lock);
233 neigh_cleanup_and_release(n);
234 }
235 }
236 }
237
238 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
239 {
240 write_lock_bh(&tbl->lock);
241 neigh_flush_dev(tbl, dev);
242 write_unlock_bh(&tbl->lock);
243 }
244
245 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 pneigh_ifdown(tbl, dev);
250 write_unlock_bh(&tbl->lock);
251
252 del_timer_sync(&tbl->proxy_timer);
253 pneigh_queue_purge(&tbl->proxy_queue);
254 return 0;
255 }
256
257 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
258 {
259 struct neighbour *n = NULL;
260 unsigned long now = jiffies;
261 int entries;
262
263 entries = atomic_inc_return(&tbl->entries) - 1;
264 if (entries >= tbl->gc_thresh3 ||
265 (entries >= tbl->gc_thresh2 &&
266 time_after(now, tbl->last_flush + 5 * HZ))) {
267 if (!neigh_forced_gc(tbl) &&
268 entries >= tbl->gc_thresh3)
269 goto out_entries;
270 }
271
272 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
273 if (!n)
274 goto out_entries;
275
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
283
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288 out:
289 return n;
290
291 out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
294 }
295
296 static struct neighbour **neigh_hash_alloc(unsigned int entries)
297 {
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
300
301 if (size <= PAGE_SIZE) {
302 ret = kzalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
306 }
307 return ret;
308 }
309
310 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
311 {
312 unsigned long size = entries * sizeof(struct neighbour *);
313
314 if (size <= PAGE_SIZE)
315 kfree(hash);
316 else
317 free_pages((unsigned long)hash, get_order(size));
318 }
319
320 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
321 {
322 struct neighbour **new_hash, **old_hash;
323 unsigned int i, new_hash_mask, old_entries;
324
325 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
326
327 BUG_ON(!is_power_of_2(new_entries));
328 new_hash = neigh_hash_alloc(new_entries);
329 if (!new_hash)
330 return;
331
332 old_entries = tbl->hash_mask + 1;
333 new_hash_mask = new_entries - 1;
334 old_hash = tbl->hash_buckets;
335
336 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
337 for (i = 0; i < old_entries; i++) {
338 struct neighbour *n, *next;
339
340 for (n = old_hash[i]; n; n = next) {
341 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
342
343 hash_val &= new_hash_mask;
344 next = n->next;
345
346 n->next = new_hash[hash_val];
347 new_hash[hash_val] = n;
348 }
349 }
350 tbl->hash_buckets = new_hash;
351 tbl->hash_mask = new_hash_mask;
352
353 neigh_hash_free(old_hash, old_entries);
354 }
355
356 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
357 struct net_device *dev)
358 {
359 struct neighbour *n;
360 int key_len = tbl->key_len;
361 u32 hash_val;
362
363 NEIGH_CACHE_STAT_INC(tbl, lookups);
364
365 read_lock_bh(&tbl->lock);
366 hash_val = tbl->hash(pkey, dev);
367 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
368 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
369 neigh_hold(n);
370 NEIGH_CACHE_STAT_INC(tbl, hits);
371 break;
372 }
373 }
374 read_unlock_bh(&tbl->lock);
375 return n;
376 }
377
378 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
379 const void *pkey)
380 {
381 struct neighbour *n;
382 int key_len = tbl->key_len;
383 u32 hash_val;
384
385 NEIGH_CACHE_STAT_INC(tbl, lookups);
386
387 read_lock_bh(&tbl->lock);
388 hash_val = tbl->hash(pkey, NULL);
389 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
390 if (!memcmp(n->primary_key, pkey, key_len) &&
391 (net == n->dev->nd_net)) {
392 neigh_hold(n);
393 NEIGH_CACHE_STAT_INC(tbl, hits);
394 break;
395 }
396 }
397 read_unlock_bh(&tbl->lock);
398 return n;
399 }
400
401 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
402 struct net_device *dev)
403 {
404 u32 hash_val;
405 int key_len = tbl->key_len;
406 int error;
407 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
408
409 if (!n) {
410 rc = ERR_PTR(-ENOBUFS);
411 goto out;
412 }
413
414 memcpy(n->primary_key, pkey, key_len);
415 n->dev = dev;
416 dev_hold(dev);
417
418 /* Protocol specific setup. */
419 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
420 rc = ERR_PTR(error);
421 goto out_neigh_release;
422 }
423
424 /* Device specific setup. */
425 if (n->parms->neigh_setup &&
426 (error = n->parms->neigh_setup(n)) < 0) {
427 rc = ERR_PTR(error);
428 goto out_neigh_release;
429 }
430
431 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
432
433 write_lock_bh(&tbl->lock);
434
435 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
436 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
437
438 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
439
440 if (n->parms->dead) {
441 rc = ERR_PTR(-EINVAL);
442 goto out_tbl_unlock;
443 }
444
445 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
446 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
447 neigh_hold(n1);
448 rc = n1;
449 goto out_tbl_unlock;
450 }
451 }
452
453 n->next = tbl->hash_buckets[hash_val];
454 tbl->hash_buckets[hash_val] = n;
455 n->dead = 0;
456 neigh_hold(n);
457 write_unlock_bh(&tbl->lock);
458 NEIGH_PRINTK2("neigh %p is created.\n", n);
459 rc = n;
460 out:
461 return rc;
462 out_tbl_unlock:
463 write_unlock_bh(&tbl->lock);
464 out_neigh_release:
465 neigh_release(n);
466 goto out;
467 }
468
469 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
470 struct net *net, const void *pkey,
471 struct net_device *dev, int creat)
472 {
473 struct pneigh_entry *n;
474 int key_len = tbl->key_len;
475 u32 hash_val = *(u32 *)(pkey + key_len - 4);
476
477 hash_val ^= (hash_val >> 16);
478 hash_val ^= hash_val >> 8;
479 hash_val ^= hash_val >> 4;
480 hash_val &= PNEIGH_HASHMASK;
481
482 read_lock_bh(&tbl->lock);
483
484 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
485 if (!memcmp(n->key, pkey, key_len) &&
486 (n->net == net) &&
487 (n->dev == dev || !n->dev)) {
488 read_unlock_bh(&tbl->lock);
489 goto out;
490 }
491 }
492 read_unlock_bh(&tbl->lock);
493 n = NULL;
494 if (!creat)
495 goto out;
496
497 ASSERT_RTNL();
498
499 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
500 if (!n)
501 goto out;
502
503 n->net = hold_net(net);
504 memcpy(n->key, pkey, key_len);
505 n->dev = dev;
506 if (dev)
507 dev_hold(dev);
508
509 if (tbl->pconstructor && tbl->pconstructor(n)) {
510 if (dev)
511 dev_put(dev);
512 release_net(net);
513 kfree(n);
514 n = NULL;
515 goto out;
516 }
517
518 write_lock_bh(&tbl->lock);
519 n->next = tbl->phash_buckets[hash_val];
520 tbl->phash_buckets[hash_val] = n;
521 write_unlock_bh(&tbl->lock);
522 out:
523 return n;
524 }
525
526
527 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
528 struct net_device *dev)
529 {
530 struct pneigh_entry *n, **np;
531 int key_len = tbl->key_len;
532 u32 hash_val = *(u32 *)(pkey + key_len - 4);
533
534 hash_val ^= (hash_val >> 16);
535 hash_val ^= hash_val >> 8;
536 hash_val ^= hash_val >> 4;
537 hash_val &= PNEIGH_HASHMASK;
538
539 write_lock_bh(&tbl->lock);
540 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
541 np = &n->next) {
542 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
543 (n->net == net)) {
544 *np = n->next;
545 write_unlock_bh(&tbl->lock);
546 if (tbl->pdestructor)
547 tbl->pdestructor(n);
548 if (n->dev)
549 dev_put(n->dev);
550 release_net(n->net);
551 kfree(n);
552 return 0;
553 }
554 }
555 write_unlock_bh(&tbl->lock);
556 return -ENOENT;
557 }
558
559 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
560 {
561 struct pneigh_entry *n, **np;
562 u32 h;
563
564 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
565 np = &tbl->phash_buckets[h];
566 while ((n = *np) != NULL) {
567 if (!dev || n->dev == dev) {
568 *np = n->next;
569 if (tbl->pdestructor)
570 tbl->pdestructor(n);
571 if (n->dev)
572 dev_put(n->dev);
573 release_net(n->net);
574 kfree(n);
575 continue;
576 }
577 np = &n->next;
578 }
579 }
580 return -ENOENT;
581 }
582
583 static void neigh_parms_destroy(struct neigh_parms *parms);
584
585 static inline void neigh_parms_put(struct neigh_parms *parms)
586 {
587 if (atomic_dec_and_test(&parms->refcnt))
588 neigh_parms_destroy(parms);
589 }
590
591 /*
592 * neighbour must already be out of the table;
593 *
594 */
595 void neigh_destroy(struct neighbour *neigh)
596 {
597 struct hh_cache *hh;
598
599 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
600
601 if (!neigh->dead) {
602 printk(KERN_WARNING
603 "Destroying alive neighbour %p\n", neigh);
604 dump_stack();
605 return;
606 }
607
608 if (neigh_del_timer(neigh))
609 printk(KERN_WARNING "Impossible event.\n");
610
611 while ((hh = neigh->hh) != NULL) {
612 neigh->hh = hh->hh_next;
613 hh->hh_next = NULL;
614
615 write_seqlock_bh(&hh->hh_lock);
616 hh->hh_output = neigh_blackhole;
617 write_sequnlock_bh(&hh->hh_lock);
618 if (atomic_dec_and_test(&hh->hh_refcnt))
619 kfree(hh);
620 }
621
622 skb_queue_purge(&neigh->arp_queue);
623
624 dev_put(neigh->dev);
625 neigh_parms_put(neigh->parms);
626
627 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
628
629 atomic_dec(&neigh->tbl->entries);
630 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
631 }
632
633 /* Neighbour state is suspicious;
634 disable fast path.
635
636 Called with write_locked neigh.
637 */
638 static void neigh_suspect(struct neighbour *neigh)
639 {
640 struct hh_cache *hh;
641
642 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
643
644 neigh->output = neigh->ops->output;
645
646 for (hh = neigh->hh; hh; hh = hh->hh_next)
647 hh->hh_output = neigh->ops->output;
648 }
649
650 /* Neighbour state is OK;
651 enable fast path.
652
653 Called with write_locked neigh.
654 */
655 static void neigh_connect(struct neighbour *neigh)
656 {
657 struct hh_cache *hh;
658
659 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
660
661 neigh->output = neigh->ops->connected_output;
662
663 for (hh = neigh->hh; hh; hh = hh->hh_next)
664 hh->hh_output = neigh->ops->hh_output;
665 }
666
667 static void neigh_periodic_timer(unsigned long arg)
668 {
669 struct neigh_table *tbl = (struct neigh_table *)arg;
670 struct neighbour *n, **np;
671 unsigned long expire, now = jiffies;
672
673 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
674
675 write_lock(&tbl->lock);
676
677 /*
678 * periodically recompute ReachableTime from random function
679 */
680
681 if (time_after(now, tbl->last_rand + 300 * HZ)) {
682 struct neigh_parms *p;
683 tbl->last_rand = now;
684 for (p = &tbl->parms; p; p = p->next)
685 p->reachable_time =
686 neigh_rand_reach_time(p->base_reachable_time);
687 }
688
689 np = &tbl->hash_buckets[tbl->hash_chain_gc];
690 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
691
692 while ((n = *np) != NULL) {
693 unsigned int state;
694
695 write_lock(&n->lock);
696
697 state = n->nud_state;
698 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
699 write_unlock(&n->lock);
700 goto next_elt;
701 }
702
703 if (time_before(n->used, n->confirmed))
704 n->used = n->confirmed;
705
706 if (atomic_read(&n->refcnt) == 1 &&
707 (state == NUD_FAILED ||
708 time_after(now, n->used + n->parms->gc_staletime))) {
709 *np = n->next;
710 n->dead = 1;
711 write_unlock(&n->lock);
712 neigh_cleanup_and_release(n);
713 continue;
714 }
715 write_unlock(&n->lock);
716
717 next_elt:
718 np = &n->next;
719 }
720
721 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
722 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
723 * base_reachable_time.
724 */
725 expire = tbl->parms.base_reachable_time >> 1;
726 expire /= (tbl->hash_mask + 1);
727 if (!expire)
728 expire = 1;
729
730 if (expire>HZ)
731 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
732 else
733 mod_timer(&tbl->gc_timer, now + expire);
734
735 write_unlock(&tbl->lock);
736 }
737
738 static __inline__ int neigh_max_probes(struct neighbour *n)
739 {
740 struct neigh_parms *p = n->parms;
741 return (n->nud_state & NUD_PROBE ?
742 p->ucast_probes :
743 p->ucast_probes + p->app_probes + p->mcast_probes);
744 }
745
746 /* Called when a timer expires for a neighbour entry. */
747
748 static void neigh_timer_handler(unsigned long arg)
749 {
750 unsigned long now, next;
751 struct neighbour *neigh = (struct neighbour *)arg;
752 unsigned state;
753 int notify = 0;
754
755 write_lock(&neigh->lock);
756
757 state = neigh->nud_state;
758 now = jiffies;
759 next = now + HZ;
760
761 if (!(state & NUD_IN_TIMER)) {
762 #ifndef CONFIG_SMP
763 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
764 #endif
765 goto out;
766 }
767
768 if (state & NUD_REACHABLE) {
769 if (time_before_eq(now,
770 neigh->confirmed + neigh->parms->reachable_time)) {
771 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
772 next = neigh->confirmed + neigh->parms->reachable_time;
773 } else if (time_before_eq(now,
774 neigh->used + neigh->parms->delay_probe_time)) {
775 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
776 neigh->nud_state = NUD_DELAY;
777 neigh->updated = jiffies;
778 neigh_suspect(neigh);
779 next = now + neigh->parms->delay_probe_time;
780 } else {
781 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
782 neigh->nud_state = NUD_STALE;
783 neigh->updated = jiffies;
784 neigh_suspect(neigh);
785 notify = 1;
786 }
787 } else if (state & NUD_DELAY) {
788 if (time_before_eq(now,
789 neigh->confirmed + neigh->parms->delay_probe_time)) {
790 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
791 neigh->nud_state = NUD_REACHABLE;
792 neigh->updated = jiffies;
793 neigh_connect(neigh);
794 notify = 1;
795 next = neigh->confirmed + neigh->parms->reachable_time;
796 } else {
797 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
798 neigh->nud_state = NUD_PROBE;
799 neigh->updated = jiffies;
800 atomic_set(&neigh->probes, 0);
801 next = now + neigh->parms->retrans_time;
802 }
803 } else {
804 /* NUD_PROBE|NUD_INCOMPLETE */
805 next = now + neigh->parms->retrans_time;
806 }
807
808 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
809 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
810 struct sk_buff *skb;
811
812 neigh->nud_state = NUD_FAILED;
813 neigh->updated = jiffies;
814 notify = 1;
815 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
816 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
817
818 /* It is very thin place. report_unreachable is very complicated
819 routine. Particularly, it can hit the same neighbour entry!
820
821 So that, we try to be accurate and avoid dead loop. --ANK
822 */
823 while (neigh->nud_state == NUD_FAILED &&
824 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
825 write_unlock(&neigh->lock);
826 neigh->ops->error_report(neigh, skb);
827 write_lock(&neigh->lock);
828 }
829 skb_queue_purge(&neigh->arp_queue);
830 }
831
832 if (neigh->nud_state & NUD_IN_TIMER) {
833 if (time_before(next, jiffies + HZ/2))
834 next = jiffies + HZ/2;
835 if (!mod_timer(&neigh->timer, next))
836 neigh_hold(neigh);
837 }
838 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
839 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
840 /* keep skb alive even if arp_queue overflows */
841 if (skb)
842 skb_get(skb);
843 write_unlock(&neigh->lock);
844 neigh->ops->solicit(neigh, skb);
845 atomic_inc(&neigh->probes);
846 if (skb)
847 kfree_skb(skb);
848 } else {
849 out:
850 write_unlock(&neigh->lock);
851 }
852
853 if (notify)
854 neigh_update_notify(neigh);
855
856 neigh_release(neigh);
857 }
858
859 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
860 {
861 int rc;
862 unsigned long now;
863
864 write_lock_bh(&neigh->lock);
865
866 rc = 0;
867 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
868 goto out_unlock_bh;
869
870 now = jiffies;
871
872 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
873 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
874 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
875 neigh->nud_state = NUD_INCOMPLETE;
876 neigh->updated = jiffies;
877 neigh_add_timer(neigh, now + 1);
878 } else {
879 neigh->nud_state = NUD_FAILED;
880 neigh->updated = jiffies;
881 write_unlock_bh(&neigh->lock);
882
883 if (skb)
884 kfree_skb(skb);
885 return 1;
886 }
887 } else if (neigh->nud_state & NUD_STALE) {
888 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
889 neigh->nud_state = NUD_DELAY;
890 neigh->updated = jiffies;
891 neigh_add_timer(neigh,
892 jiffies + neigh->parms->delay_probe_time);
893 }
894
895 if (neigh->nud_state == NUD_INCOMPLETE) {
896 if (skb) {
897 if (skb_queue_len(&neigh->arp_queue) >=
898 neigh->parms->queue_len) {
899 struct sk_buff *buff;
900 buff = neigh->arp_queue.next;
901 __skb_unlink(buff, &neigh->arp_queue);
902 kfree_skb(buff);
903 }
904 __skb_queue_tail(&neigh->arp_queue, skb);
905 }
906 rc = 1;
907 }
908 out_unlock_bh:
909 write_unlock_bh(&neigh->lock);
910 return rc;
911 }
912
913 static void neigh_update_hhs(struct neighbour *neigh)
914 {
915 struct hh_cache *hh;
916 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
917 = neigh->dev->header_ops->cache_update;
918
919 if (update) {
920 for (hh = neigh->hh; hh; hh = hh->hh_next) {
921 write_seqlock_bh(&hh->hh_lock);
922 update(hh, neigh->dev, neigh->ha);
923 write_sequnlock_bh(&hh->hh_lock);
924 }
925 }
926 }
927
928
929
930 /* Generic update routine.
931 -- lladdr is new lladdr or NULL, if it is not supplied.
932 -- new is new state.
933 -- flags
934 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
935 if it is different.
936 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
937 lladdr instead of overriding it
938 if it is different.
939 It also allows to retain current state
940 if lladdr is unchanged.
941 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
942
943 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
944 NTF_ROUTER flag.
945 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
946 a router.
947
948 Caller MUST hold reference count on the entry.
949 */
950
951 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
952 u32 flags)
953 {
954 u8 old;
955 int err;
956 int notify = 0;
957 struct net_device *dev;
958 int update_isrouter = 0;
959
960 write_lock_bh(&neigh->lock);
961
962 dev = neigh->dev;
963 old = neigh->nud_state;
964 err = -EPERM;
965
966 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
967 (old & (NUD_NOARP | NUD_PERMANENT)))
968 goto out;
969
970 if (!(new & NUD_VALID)) {
971 neigh_del_timer(neigh);
972 if (old & NUD_CONNECTED)
973 neigh_suspect(neigh);
974 neigh->nud_state = new;
975 err = 0;
976 notify = old & NUD_VALID;
977 goto out;
978 }
979
980 /* Compare new lladdr with cached one */
981 if (!dev->addr_len) {
982 /* First case: device needs no address. */
983 lladdr = neigh->ha;
984 } else if (lladdr) {
985 /* The second case: if something is already cached
986 and a new address is proposed:
987 - compare new & old
988 - if they are different, check override flag
989 */
990 if ((old & NUD_VALID) &&
991 !memcmp(lladdr, neigh->ha, dev->addr_len))
992 lladdr = neigh->ha;
993 } else {
994 /* No address is supplied; if we know something,
995 use it, otherwise discard the request.
996 */
997 err = -EINVAL;
998 if (!(old & NUD_VALID))
999 goto out;
1000 lladdr = neigh->ha;
1001 }
1002
1003 if (new & NUD_CONNECTED)
1004 neigh->confirmed = jiffies;
1005 neigh->updated = jiffies;
1006
1007 /* If entry was valid and address is not changed,
1008 do not change entry state, if new one is STALE.
1009 */
1010 err = 0;
1011 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1012 if (old & NUD_VALID) {
1013 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1014 update_isrouter = 0;
1015 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1016 (old & NUD_CONNECTED)) {
1017 lladdr = neigh->ha;
1018 new = NUD_STALE;
1019 } else
1020 goto out;
1021 } else {
1022 if (lladdr == neigh->ha && new == NUD_STALE &&
1023 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1024 (old & NUD_CONNECTED))
1025 )
1026 new = old;
1027 }
1028 }
1029
1030 if (new != old) {
1031 neigh_del_timer(neigh);
1032 if (new & NUD_IN_TIMER)
1033 neigh_add_timer(neigh, (jiffies +
1034 ((new & NUD_REACHABLE) ?
1035 neigh->parms->reachable_time :
1036 0)));
1037 neigh->nud_state = new;
1038 }
1039
1040 if (lladdr != neigh->ha) {
1041 memcpy(&neigh->ha, lladdr, dev->addr_len);
1042 neigh_update_hhs(neigh);
1043 if (!(new & NUD_CONNECTED))
1044 neigh->confirmed = jiffies -
1045 (neigh->parms->base_reachable_time << 1);
1046 notify = 1;
1047 }
1048 if (new == old)
1049 goto out;
1050 if (new & NUD_CONNECTED)
1051 neigh_connect(neigh);
1052 else
1053 neigh_suspect(neigh);
1054 if (!(old & NUD_VALID)) {
1055 struct sk_buff *skb;
1056
1057 /* Again: avoid dead loop if something went wrong */
1058
1059 while (neigh->nud_state & NUD_VALID &&
1060 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1061 struct neighbour *n1 = neigh;
1062 write_unlock_bh(&neigh->lock);
1063 /* On shaper/eql skb->dst->neighbour != neigh :( */
1064 if (skb->dst && skb->dst->neighbour)
1065 n1 = skb->dst->neighbour;
1066 n1->output(skb);
1067 write_lock_bh(&neigh->lock);
1068 }
1069 skb_queue_purge(&neigh->arp_queue);
1070 }
1071 out:
1072 if (update_isrouter) {
1073 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1074 (neigh->flags | NTF_ROUTER) :
1075 (neigh->flags & ~NTF_ROUTER);
1076 }
1077 write_unlock_bh(&neigh->lock);
1078
1079 if (notify)
1080 neigh_update_notify(neigh);
1081
1082 return err;
1083 }
1084
1085 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1086 u8 *lladdr, void *saddr,
1087 struct net_device *dev)
1088 {
1089 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1090 lladdr || !dev->addr_len);
1091 if (neigh)
1092 neigh_update(neigh, lladdr, NUD_STALE,
1093 NEIGH_UPDATE_F_OVERRIDE);
1094 return neigh;
1095 }
1096
1097 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1098 __be16 protocol)
1099 {
1100 struct hh_cache *hh;
1101 struct net_device *dev = dst->dev;
1102
1103 for (hh = n->hh; hh; hh = hh->hh_next)
1104 if (hh->hh_type == protocol)
1105 break;
1106
1107 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1108 seqlock_init(&hh->hh_lock);
1109 hh->hh_type = protocol;
1110 atomic_set(&hh->hh_refcnt, 0);
1111 hh->hh_next = NULL;
1112
1113 if (dev->header_ops->cache(n, hh)) {
1114 kfree(hh);
1115 hh = NULL;
1116 } else {
1117 atomic_inc(&hh->hh_refcnt);
1118 hh->hh_next = n->hh;
1119 n->hh = hh;
1120 if (n->nud_state & NUD_CONNECTED)
1121 hh->hh_output = n->ops->hh_output;
1122 else
1123 hh->hh_output = n->ops->output;
1124 }
1125 }
1126 if (hh) {
1127 atomic_inc(&hh->hh_refcnt);
1128 dst->hh = hh;
1129 }
1130 }
1131
1132 /* This function can be used in contexts, where only old dev_queue_xmit
1133 worked, f.e. if you want to override normal output path (eql, shaper),
1134 but resolution is not made yet.
1135 */
1136
1137 int neigh_compat_output(struct sk_buff *skb)
1138 {
1139 struct net_device *dev = skb->dev;
1140
1141 __skb_pull(skb, skb_network_offset(skb));
1142
1143 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1144 skb->len) < 0 &&
1145 dev->header_ops->rebuild(skb))
1146 return 0;
1147
1148 return dev_queue_xmit(skb);
1149 }
1150
1151 /* Slow and careful. */
1152
1153 int neigh_resolve_output(struct sk_buff *skb)
1154 {
1155 struct dst_entry *dst = skb->dst;
1156 struct neighbour *neigh;
1157 int rc = 0;
1158
1159 if (!dst || !(neigh = dst->neighbour))
1160 goto discard;
1161
1162 __skb_pull(skb, skb_network_offset(skb));
1163
1164 if (!neigh_event_send(neigh, skb)) {
1165 int err;
1166 struct net_device *dev = neigh->dev;
1167 if (dev->header_ops->cache && !dst->hh) {
1168 write_lock_bh(&neigh->lock);
1169 if (!dst->hh)
1170 neigh_hh_init(neigh, dst, dst->ops->protocol);
1171 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1172 neigh->ha, NULL, skb->len);
1173 write_unlock_bh(&neigh->lock);
1174 } else {
1175 read_lock_bh(&neigh->lock);
1176 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1177 neigh->ha, NULL, skb->len);
1178 read_unlock_bh(&neigh->lock);
1179 }
1180 if (err >= 0)
1181 rc = neigh->ops->queue_xmit(skb);
1182 else
1183 goto out_kfree_skb;
1184 }
1185 out:
1186 return rc;
1187 discard:
1188 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1189 dst, dst ? dst->neighbour : NULL);
1190 out_kfree_skb:
1191 rc = -EINVAL;
1192 kfree_skb(skb);
1193 goto out;
1194 }
1195
1196 /* As fast as possible without hh cache */
1197
1198 int neigh_connected_output(struct sk_buff *skb)
1199 {
1200 int err;
1201 struct dst_entry *dst = skb->dst;
1202 struct neighbour *neigh = dst->neighbour;
1203 struct net_device *dev = neigh->dev;
1204
1205 __skb_pull(skb, skb_network_offset(skb));
1206
1207 read_lock_bh(&neigh->lock);
1208 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1209 neigh->ha, NULL, skb->len);
1210 read_unlock_bh(&neigh->lock);
1211 if (err >= 0)
1212 err = neigh->ops->queue_xmit(skb);
1213 else {
1214 err = -EINVAL;
1215 kfree_skb(skb);
1216 }
1217 return err;
1218 }
1219
1220 static void neigh_proxy_process(unsigned long arg)
1221 {
1222 struct neigh_table *tbl = (struct neigh_table *)arg;
1223 long sched_next = 0;
1224 unsigned long now = jiffies;
1225 struct sk_buff *skb;
1226
1227 spin_lock(&tbl->proxy_queue.lock);
1228
1229 skb = tbl->proxy_queue.next;
1230
1231 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1232 struct sk_buff *back = skb;
1233 long tdif = NEIGH_CB(back)->sched_next - now;
1234
1235 skb = skb->next;
1236 if (tdif <= 0) {
1237 struct net_device *dev = back->dev;
1238 __skb_unlink(back, &tbl->proxy_queue);
1239 if (tbl->proxy_redo && netif_running(dev))
1240 tbl->proxy_redo(back);
1241 else
1242 kfree_skb(back);
1243
1244 dev_put(dev);
1245 } else if (!sched_next || tdif < sched_next)
1246 sched_next = tdif;
1247 }
1248 del_timer(&tbl->proxy_timer);
1249 if (sched_next)
1250 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1251 spin_unlock(&tbl->proxy_queue.lock);
1252 }
1253
1254 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1255 struct sk_buff *skb)
1256 {
1257 unsigned long now = jiffies;
1258 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1259
1260 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1261 kfree_skb(skb);
1262 return;
1263 }
1264
1265 NEIGH_CB(skb)->sched_next = sched_next;
1266 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1267
1268 spin_lock(&tbl->proxy_queue.lock);
1269 if (del_timer(&tbl->proxy_timer)) {
1270 if (time_before(tbl->proxy_timer.expires, sched_next))
1271 sched_next = tbl->proxy_timer.expires;
1272 }
1273 dst_release(skb->dst);
1274 skb->dst = NULL;
1275 dev_hold(skb->dev);
1276 __skb_queue_tail(&tbl->proxy_queue, skb);
1277 mod_timer(&tbl->proxy_timer, sched_next);
1278 spin_unlock(&tbl->proxy_queue.lock);
1279 }
1280
1281 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1282 struct net *net, int ifindex)
1283 {
1284 struct neigh_parms *p;
1285
1286 for (p = &tbl->parms; p; p = p->next) {
1287 if (p->net != net)
1288 continue;
1289 if ((p->dev && p->dev->ifindex == ifindex) ||
1290 (!p->dev && !ifindex))
1291 return p;
1292 }
1293
1294 return NULL;
1295 }
1296
1297 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1298 struct neigh_table *tbl)
1299 {
1300 struct neigh_parms *p, *ref;
1301 struct net *net;
1302
1303 net = dev->nd_net;
1304 ref = lookup_neigh_params(tbl, net, 0);
1305 if (!ref)
1306 return NULL;
1307
1308 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1309 if (p) {
1310 p->tbl = tbl;
1311 atomic_set(&p->refcnt, 1);
1312 INIT_RCU_HEAD(&p->rcu_head);
1313 p->reachable_time =
1314 neigh_rand_reach_time(p->base_reachable_time);
1315
1316 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1317 kfree(p);
1318 return NULL;
1319 }
1320
1321 dev_hold(dev);
1322 p->dev = dev;
1323 p->net = hold_net(net);
1324 p->sysctl_table = NULL;
1325 write_lock_bh(&tbl->lock);
1326 p->next = tbl->parms.next;
1327 tbl->parms.next = p;
1328 write_unlock_bh(&tbl->lock);
1329 }
1330 return p;
1331 }
1332
1333 static void neigh_rcu_free_parms(struct rcu_head *head)
1334 {
1335 struct neigh_parms *parms =
1336 container_of(head, struct neigh_parms, rcu_head);
1337
1338 neigh_parms_put(parms);
1339 }
1340
1341 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1342 {
1343 struct neigh_parms **p;
1344
1345 if (!parms || parms == &tbl->parms)
1346 return;
1347 write_lock_bh(&tbl->lock);
1348 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1349 if (*p == parms) {
1350 *p = parms->next;
1351 parms->dead = 1;
1352 write_unlock_bh(&tbl->lock);
1353 if (parms->dev)
1354 dev_put(parms->dev);
1355 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1356 return;
1357 }
1358 }
1359 write_unlock_bh(&tbl->lock);
1360 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1361 }
1362
1363 static void neigh_parms_destroy(struct neigh_parms *parms)
1364 {
1365 release_net(parms->net);
1366 kfree(parms);
1367 }
1368
1369 static struct lock_class_key neigh_table_proxy_queue_class;
1370
1371 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1372 {
1373 unsigned long now = jiffies;
1374 unsigned long phsize;
1375
1376 tbl->parms.net = &init_net;
1377 atomic_set(&tbl->parms.refcnt, 1);
1378 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1379 tbl->parms.reachable_time =
1380 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1381
1382 if (!tbl->kmem_cachep)
1383 tbl->kmem_cachep =
1384 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1385 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1386 NULL);
1387 tbl->stats = alloc_percpu(struct neigh_statistics);
1388 if (!tbl->stats)
1389 panic("cannot create neighbour cache statistics");
1390
1391 #ifdef CONFIG_PROC_FS
1392 tbl->pde = proc_create(tbl->id, 0, init_net.proc_net_stat,
1393 &neigh_stat_seq_fops);
1394 if (!tbl->pde)
1395 panic("cannot create neighbour proc dir entry");
1396 tbl->pde->data = tbl;
1397 #endif
1398
1399 tbl->hash_mask = 1;
1400 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1401
1402 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1403 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1404
1405 if (!tbl->hash_buckets || !tbl->phash_buckets)
1406 panic("cannot allocate neighbour cache hashes");
1407
1408 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1409
1410 rwlock_init(&tbl->lock);
1411 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl);
1412 tbl->gc_timer.expires = now + 1;
1413 add_timer(&tbl->gc_timer);
1414
1415 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1416 skb_queue_head_init_class(&tbl->proxy_queue,
1417 &neigh_table_proxy_queue_class);
1418
1419 tbl->last_flush = now;
1420 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1421 }
1422
1423 void neigh_table_init(struct neigh_table *tbl)
1424 {
1425 struct neigh_table *tmp;
1426
1427 neigh_table_init_no_netlink(tbl);
1428 write_lock(&neigh_tbl_lock);
1429 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1430 if (tmp->family == tbl->family)
1431 break;
1432 }
1433 tbl->next = neigh_tables;
1434 neigh_tables = tbl;
1435 write_unlock(&neigh_tbl_lock);
1436
1437 if (unlikely(tmp)) {
1438 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1439 "family %d\n", tbl->family);
1440 dump_stack();
1441 }
1442 }
1443
1444 int neigh_table_clear(struct neigh_table *tbl)
1445 {
1446 struct neigh_table **tp;
1447
1448 /* It is not clean... Fix it to unload IPv6 module safely */
1449 del_timer_sync(&tbl->gc_timer);
1450 del_timer_sync(&tbl->proxy_timer);
1451 pneigh_queue_purge(&tbl->proxy_queue);
1452 neigh_ifdown(tbl, NULL);
1453 if (atomic_read(&tbl->entries))
1454 printk(KERN_CRIT "neighbour leakage\n");
1455 write_lock(&neigh_tbl_lock);
1456 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1457 if (*tp == tbl) {
1458 *tp = tbl->next;
1459 break;
1460 }
1461 }
1462 write_unlock(&neigh_tbl_lock);
1463
1464 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1465 tbl->hash_buckets = NULL;
1466
1467 kfree(tbl->phash_buckets);
1468 tbl->phash_buckets = NULL;
1469
1470 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1471
1472 free_percpu(tbl->stats);
1473 tbl->stats = NULL;
1474
1475 kmem_cache_destroy(tbl->kmem_cachep);
1476 tbl->kmem_cachep = NULL;
1477
1478 return 0;
1479 }
1480
1481 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1482 {
1483 struct net *net = skb->sk->sk_net;
1484 struct ndmsg *ndm;
1485 struct nlattr *dst_attr;
1486 struct neigh_table *tbl;
1487 struct net_device *dev = NULL;
1488 int err = -EINVAL;
1489
1490 if (nlmsg_len(nlh) < sizeof(*ndm))
1491 goto out;
1492
1493 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1494 if (dst_attr == NULL)
1495 goto out;
1496
1497 ndm = nlmsg_data(nlh);
1498 if (ndm->ndm_ifindex) {
1499 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1500 if (dev == NULL) {
1501 err = -ENODEV;
1502 goto out;
1503 }
1504 }
1505
1506 read_lock(&neigh_tbl_lock);
1507 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1508 struct neighbour *neigh;
1509
1510 if (tbl->family != ndm->ndm_family)
1511 continue;
1512 read_unlock(&neigh_tbl_lock);
1513
1514 if (nla_len(dst_attr) < tbl->key_len)
1515 goto out_dev_put;
1516
1517 if (ndm->ndm_flags & NTF_PROXY) {
1518 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1519 goto out_dev_put;
1520 }
1521
1522 if (dev == NULL)
1523 goto out_dev_put;
1524
1525 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1526 if (neigh == NULL) {
1527 err = -ENOENT;
1528 goto out_dev_put;
1529 }
1530
1531 err = neigh_update(neigh, NULL, NUD_FAILED,
1532 NEIGH_UPDATE_F_OVERRIDE |
1533 NEIGH_UPDATE_F_ADMIN);
1534 neigh_release(neigh);
1535 goto out_dev_put;
1536 }
1537 read_unlock(&neigh_tbl_lock);
1538 err = -EAFNOSUPPORT;
1539
1540 out_dev_put:
1541 if (dev)
1542 dev_put(dev);
1543 out:
1544 return err;
1545 }
1546
1547 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1548 {
1549 struct net *net = skb->sk->sk_net;
1550 struct ndmsg *ndm;
1551 struct nlattr *tb[NDA_MAX+1];
1552 struct neigh_table *tbl;
1553 struct net_device *dev = NULL;
1554 int err;
1555
1556 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1557 if (err < 0)
1558 goto out;
1559
1560 err = -EINVAL;
1561 if (tb[NDA_DST] == NULL)
1562 goto out;
1563
1564 ndm = nlmsg_data(nlh);
1565 if (ndm->ndm_ifindex) {
1566 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1567 if (dev == NULL) {
1568 err = -ENODEV;
1569 goto out;
1570 }
1571
1572 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1573 goto out_dev_put;
1574 }
1575
1576 read_lock(&neigh_tbl_lock);
1577 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1578 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1579 struct neighbour *neigh;
1580 void *dst, *lladdr;
1581
1582 if (tbl->family != ndm->ndm_family)
1583 continue;
1584 read_unlock(&neigh_tbl_lock);
1585
1586 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1587 goto out_dev_put;
1588 dst = nla_data(tb[NDA_DST]);
1589 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1590
1591 if (ndm->ndm_flags & NTF_PROXY) {
1592 struct pneigh_entry *pn;
1593
1594 err = -ENOBUFS;
1595 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1596 if (pn) {
1597 pn->flags = ndm->ndm_flags;
1598 err = 0;
1599 }
1600 goto out_dev_put;
1601 }
1602
1603 if (dev == NULL)
1604 goto out_dev_put;
1605
1606 neigh = neigh_lookup(tbl, dst, dev);
1607 if (neigh == NULL) {
1608 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1609 err = -ENOENT;
1610 goto out_dev_put;
1611 }
1612
1613 neigh = __neigh_lookup_errno(tbl, dst, dev);
1614 if (IS_ERR(neigh)) {
1615 err = PTR_ERR(neigh);
1616 goto out_dev_put;
1617 }
1618 } else {
1619 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1620 err = -EEXIST;
1621 neigh_release(neigh);
1622 goto out_dev_put;
1623 }
1624
1625 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1626 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1627 }
1628
1629 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1630 neigh_release(neigh);
1631 goto out_dev_put;
1632 }
1633
1634 read_unlock(&neigh_tbl_lock);
1635 err = -EAFNOSUPPORT;
1636
1637 out_dev_put:
1638 if (dev)
1639 dev_put(dev);
1640 out:
1641 return err;
1642 }
1643
1644 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1645 {
1646 struct nlattr *nest;
1647
1648 nest = nla_nest_start(skb, NDTA_PARMS);
1649 if (nest == NULL)
1650 return -ENOBUFS;
1651
1652 if (parms->dev)
1653 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1654
1655 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1656 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1657 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1658 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1659 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1660 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1661 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1662 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1663 parms->base_reachable_time);
1664 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1665 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1666 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1667 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1668 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1669 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1670
1671 return nla_nest_end(skb, nest);
1672
1673 nla_put_failure:
1674 return nla_nest_cancel(skb, nest);
1675 }
1676
1677 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1678 u32 pid, u32 seq, int type, int flags)
1679 {
1680 struct nlmsghdr *nlh;
1681 struct ndtmsg *ndtmsg;
1682
1683 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1684 if (nlh == NULL)
1685 return -EMSGSIZE;
1686
1687 ndtmsg = nlmsg_data(nlh);
1688
1689 read_lock_bh(&tbl->lock);
1690 ndtmsg->ndtm_family = tbl->family;
1691 ndtmsg->ndtm_pad1 = 0;
1692 ndtmsg->ndtm_pad2 = 0;
1693
1694 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1695 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1696 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1697 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1698 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1699
1700 {
1701 unsigned long now = jiffies;
1702 unsigned int flush_delta = now - tbl->last_flush;
1703 unsigned int rand_delta = now - tbl->last_rand;
1704
1705 struct ndt_config ndc = {
1706 .ndtc_key_len = tbl->key_len,
1707 .ndtc_entry_size = tbl->entry_size,
1708 .ndtc_entries = atomic_read(&tbl->entries),
1709 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1710 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1711 .ndtc_hash_rnd = tbl->hash_rnd,
1712 .ndtc_hash_mask = tbl->hash_mask,
1713 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1714 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1715 };
1716
1717 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1718 }
1719
1720 {
1721 int cpu;
1722 struct ndt_stats ndst;
1723
1724 memset(&ndst, 0, sizeof(ndst));
1725
1726 for_each_possible_cpu(cpu) {
1727 struct neigh_statistics *st;
1728
1729 st = per_cpu_ptr(tbl->stats, cpu);
1730 ndst.ndts_allocs += st->allocs;
1731 ndst.ndts_destroys += st->destroys;
1732 ndst.ndts_hash_grows += st->hash_grows;
1733 ndst.ndts_res_failed += st->res_failed;
1734 ndst.ndts_lookups += st->lookups;
1735 ndst.ndts_hits += st->hits;
1736 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1737 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1738 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1739 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1740 }
1741
1742 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1743 }
1744
1745 BUG_ON(tbl->parms.dev);
1746 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1747 goto nla_put_failure;
1748
1749 read_unlock_bh(&tbl->lock);
1750 return nlmsg_end(skb, nlh);
1751
1752 nla_put_failure:
1753 read_unlock_bh(&tbl->lock);
1754 nlmsg_cancel(skb, nlh);
1755 return -EMSGSIZE;
1756 }
1757
1758 static int neightbl_fill_param_info(struct sk_buff *skb,
1759 struct neigh_table *tbl,
1760 struct neigh_parms *parms,
1761 u32 pid, u32 seq, int type,
1762 unsigned int flags)
1763 {
1764 struct ndtmsg *ndtmsg;
1765 struct nlmsghdr *nlh;
1766
1767 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1768 if (nlh == NULL)
1769 return -EMSGSIZE;
1770
1771 ndtmsg = nlmsg_data(nlh);
1772
1773 read_lock_bh(&tbl->lock);
1774 ndtmsg->ndtm_family = tbl->family;
1775 ndtmsg->ndtm_pad1 = 0;
1776 ndtmsg->ndtm_pad2 = 0;
1777
1778 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1779 neightbl_fill_parms(skb, parms) < 0)
1780 goto errout;
1781
1782 read_unlock_bh(&tbl->lock);
1783 return nlmsg_end(skb, nlh);
1784 errout:
1785 read_unlock_bh(&tbl->lock);
1786 nlmsg_cancel(skb, nlh);
1787 return -EMSGSIZE;
1788 }
1789
1790 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1791 [NDTA_NAME] = { .type = NLA_STRING },
1792 [NDTA_THRESH1] = { .type = NLA_U32 },
1793 [NDTA_THRESH2] = { .type = NLA_U32 },
1794 [NDTA_THRESH3] = { .type = NLA_U32 },
1795 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1796 [NDTA_PARMS] = { .type = NLA_NESTED },
1797 };
1798
1799 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1800 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1801 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1802 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1803 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1804 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1805 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1806 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1807 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1808 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1809 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1810 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1811 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1812 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1813 };
1814
1815 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1816 {
1817 struct net *net = skb->sk->sk_net;
1818 struct neigh_table *tbl;
1819 struct ndtmsg *ndtmsg;
1820 struct nlattr *tb[NDTA_MAX+1];
1821 int err;
1822
1823 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1824 nl_neightbl_policy);
1825 if (err < 0)
1826 goto errout;
1827
1828 if (tb[NDTA_NAME] == NULL) {
1829 err = -EINVAL;
1830 goto errout;
1831 }
1832
1833 ndtmsg = nlmsg_data(nlh);
1834 read_lock(&neigh_tbl_lock);
1835 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1836 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1837 continue;
1838
1839 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1840 break;
1841 }
1842
1843 if (tbl == NULL) {
1844 err = -ENOENT;
1845 goto errout_locked;
1846 }
1847
1848 /*
1849 * We acquire tbl->lock to be nice to the periodic timers and
1850 * make sure they always see a consistent set of values.
1851 */
1852 write_lock_bh(&tbl->lock);
1853
1854 if (tb[NDTA_PARMS]) {
1855 struct nlattr *tbp[NDTPA_MAX+1];
1856 struct neigh_parms *p;
1857 int i, ifindex = 0;
1858
1859 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1860 nl_ntbl_parm_policy);
1861 if (err < 0)
1862 goto errout_tbl_lock;
1863
1864 if (tbp[NDTPA_IFINDEX])
1865 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1866
1867 p = lookup_neigh_params(tbl, net, ifindex);
1868 if (p == NULL) {
1869 err = -ENOENT;
1870 goto errout_tbl_lock;
1871 }
1872
1873 for (i = 1; i <= NDTPA_MAX; i++) {
1874 if (tbp[i] == NULL)
1875 continue;
1876
1877 switch (i) {
1878 case NDTPA_QUEUE_LEN:
1879 p->queue_len = nla_get_u32(tbp[i]);
1880 break;
1881 case NDTPA_PROXY_QLEN:
1882 p->proxy_qlen = nla_get_u32(tbp[i]);
1883 break;
1884 case NDTPA_APP_PROBES:
1885 p->app_probes = nla_get_u32(tbp[i]);
1886 break;
1887 case NDTPA_UCAST_PROBES:
1888 p->ucast_probes = nla_get_u32(tbp[i]);
1889 break;
1890 case NDTPA_MCAST_PROBES:
1891 p->mcast_probes = nla_get_u32(tbp[i]);
1892 break;
1893 case NDTPA_BASE_REACHABLE_TIME:
1894 p->base_reachable_time = nla_get_msecs(tbp[i]);
1895 break;
1896 case NDTPA_GC_STALETIME:
1897 p->gc_staletime = nla_get_msecs(tbp[i]);
1898 break;
1899 case NDTPA_DELAY_PROBE_TIME:
1900 p->delay_probe_time = nla_get_msecs(tbp[i]);
1901 break;
1902 case NDTPA_RETRANS_TIME:
1903 p->retrans_time = nla_get_msecs(tbp[i]);
1904 break;
1905 case NDTPA_ANYCAST_DELAY:
1906 p->anycast_delay = nla_get_msecs(tbp[i]);
1907 break;
1908 case NDTPA_PROXY_DELAY:
1909 p->proxy_delay = nla_get_msecs(tbp[i]);
1910 break;
1911 case NDTPA_LOCKTIME:
1912 p->locktime = nla_get_msecs(tbp[i]);
1913 break;
1914 }
1915 }
1916 }
1917
1918 if (tb[NDTA_THRESH1])
1919 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1920
1921 if (tb[NDTA_THRESH2])
1922 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1923
1924 if (tb[NDTA_THRESH3])
1925 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1926
1927 if (tb[NDTA_GC_INTERVAL])
1928 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1929
1930 err = 0;
1931
1932 errout_tbl_lock:
1933 write_unlock_bh(&tbl->lock);
1934 errout_locked:
1935 read_unlock(&neigh_tbl_lock);
1936 errout:
1937 return err;
1938 }
1939
1940 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1941 {
1942 struct net *net = skb->sk->sk_net;
1943 int family, tidx, nidx = 0;
1944 int tbl_skip = cb->args[0];
1945 int neigh_skip = cb->args[1];
1946 struct neigh_table *tbl;
1947
1948 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1949
1950 read_lock(&neigh_tbl_lock);
1951 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1952 struct neigh_parms *p;
1953
1954 if (tidx < tbl_skip || (family && tbl->family != family))
1955 continue;
1956
1957 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1958 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1959 NLM_F_MULTI) <= 0)
1960 break;
1961
1962 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
1963 if (net != p->net)
1964 continue;
1965
1966 if (nidx++ < neigh_skip)
1967 continue;
1968
1969 if (neightbl_fill_param_info(skb, tbl, p,
1970 NETLINK_CB(cb->skb).pid,
1971 cb->nlh->nlmsg_seq,
1972 RTM_NEWNEIGHTBL,
1973 NLM_F_MULTI) <= 0)
1974 goto out;
1975 }
1976
1977 neigh_skip = 0;
1978 }
1979 out:
1980 read_unlock(&neigh_tbl_lock);
1981 cb->args[0] = tidx;
1982 cb->args[1] = nidx;
1983
1984 return skb->len;
1985 }
1986
1987 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1988 u32 pid, u32 seq, int type, unsigned int flags)
1989 {
1990 unsigned long now = jiffies;
1991 struct nda_cacheinfo ci;
1992 struct nlmsghdr *nlh;
1993 struct ndmsg *ndm;
1994
1995 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1996 if (nlh == NULL)
1997 return -EMSGSIZE;
1998
1999 ndm = nlmsg_data(nlh);
2000 ndm->ndm_family = neigh->ops->family;
2001 ndm->ndm_pad1 = 0;
2002 ndm->ndm_pad2 = 0;
2003 ndm->ndm_flags = neigh->flags;
2004 ndm->ndm_type = neigh->type;
2005 ndm->ndm_ifindex = neigh->dev->ifindex;
2006
2007 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2008
2009 read_lock_bh(&neigh->lock);
2010 ndm->ndm_state = neigh->nud_state;
2011 if ((neigh->nud_state & NUD_VALID) &&
2012 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2013 read_unlock_bh(&neigh->lock);
2014 goto nla_put_failure;
2015 }
2016
2017 ci.ndm_used = now - neigh->used;
2018 ci.ndm_confirmed = now - neigh->confirmed;
2019 ci.ndm_updated = now - neigh->updated;
2020 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2021 read_unlock_bh(&neigh->lock);
2022
2023 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2024 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2025
2026 return nlmsg_end(skb, nlh);
2027
2028 nla_put_failure:
2029 nlmsg_cancel(skb, nlh);
2030 return -EMSGSIZE;
2031 }
2032
2033 static void neigh_update_notify(struct neighbour *neigh)
2034 {
2035 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2036 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2037 }
2038
2039 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2040 struct netlink_callback *cb)
2041 {
2042 struct net * net = skb->sk->sk_net;
2043 struct neighbour *n;
2044 int rc, h, s_h = cb->args[1];
2045 int idx, s_idx = idx = cb->args[2];
2046
2047 read_lock_bh(&tbl->lock);
2048 for (h = 0; h <= tbl->hash_mask; h++) {
2049 if (h < s_h)
2050 continue;
2051 if (h > s_h)
2052 s_idx = 0;
2053 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2054 int lidx;
2055 if (n->dev->nd_net != net)
2056 continue;
2057 lidx = idx++;
2058 if (lidx < s_idx)
2059 continue;
2060 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2061 cb->nlh->nlmsg_seq,
2062 RTM_NEWNEIGH,
2063 NLM_F_MULTI) <= 0) {
2064 read_unlock_bh(&tbl->lock);
2065 rc = -1;
2066 goto out;
2067 }
2068 }
2069 }
2070 read_unlock_bh(&tbl->lock);
2071 rc = skb->len;
2072 out:
2073 cb->args[1] = h;
2074 cb->args[2] = idx;
2075 return rc;
2076 }
2077
2078 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2079 {
2080 struct neigh_table *tbl;
2081 int t, family, s_t;
2082
2083 read_lock(&neigh_tbl_lock);
2084 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2085 s_t = cb->args[0];
2086
2087 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2088 if (t < s_t || (family && tbl->family != family))
2089 continue;
2090 if (t > s_t)
2091 memset(&cb->args[1], 0, sizeof(cb->args) -
2092 sizeof(cb->args[0]));
2093 if (neigh_dump_table(tbl, skb, cb) < 0)
2094 break;
2095 }
2096 read_unlock(&neigh_tbl_lock);
2097
2098 cb->args[0] = t;
2099 return skb->len;
2100 }
2101
2102 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2103 {
2104 int chain;
2105
2106 read_lock_bh(&tbl->lock);
2107 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2108 struct neighbour *n;
2109
2110 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2111 cb(n, cookie);
2112 }
2113 read_unlock_bh(&tbl->lock);
2114 }
2115 EXPORT_SYMBOL(neigh_for_each);
2116
2117 /* The tbl->lock must be held as a writer and BH disabled. */
2118 void __neigh_for_each_release(struct neigh_table *tbl,
2119 int (*cb)(struct neighbour *))
2120 {
2121 int chain;
2122
2123 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2124 struct neighbour *n, **np;
2125
2126 np = &tbl->hash_buckets[chain];
2127 while ((n = *np) != NULL) {
2128 int release;
2129
2130 write_lock(&n->lock);
2131 release = cb(n);
2132 if (release) {
2133 *np = n->next;
2134 n->dead = 1;
2135 } else
2136 np = &n->next;
2137 write_unlock(&n->lock);
2138 if (release)
2139 neigh_cleanup_and_release(n);
2140 }
2141 }
2142 }
2143 EXPORT_SYMBOL(__neigh_for_each_release);
2144
2145 #ifdef CONFIG_PROC_FS
2146
2147 static struct neighbour *neigh_get_first(struct seq_file *seq)
2148 {
2149 struct neigh_seq_state *state = seq->private;
2150 struct net *net = state->p.net;
2151 struct neigh_table *tbl = state->tbl;
2152 struct neighbour *n = NULL;
2153 int bucket = state->bucket;
2154
2155 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2156 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2157 n = tbl->hash_buckets[bucket];
2158
2159 while (n) {
2160 if (n->dev->nd_net != net)
2161 goto next;
2162 if (state->neigh_sub_iter) {
2163 loff_t fakep = 0;
2164 void *v;
2165
2166 v = state->neigh_sub_iter(state, n, &fakep);
2167 if (!v)
2168 goto next;
2169 }
2170 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2171 break;
2172 if (n->nud_state & ~NUD_NOARP)
2173 break;
2174 next:
2175 n = n->next;
2176 }
2177
2178 if (n)
2179 break;
2180 }
2181 state->bucket = bucket;
2182
2183 return n;
2184 }
2185
2186 static struct neighbour *neigh_get_next(struct seq_file *seq,
2187 struct neighbour *n,
2188 loff_t *pos)
2189 {
2190 struct neigh_seq_state *state = seq->private;
2191 struct net *net = state->p.net;
2192 struct neigh_table *tbl = state->tbl;
2193
2194 if (state->neigh_sub_iter) {
2195 void *v = state->neigh_sub_iter(state, n, pos);
2196 if (v)
2197 return n;
2198 }
2199 n = n->next;
2200
2201 while (1) {
2202 while (n) {
2203 if (n->dev->nd_net != net)
2204 goto next;
2205 if (state->neigh_sub_iter) {
2206 void *v = state->neigh_sub_iter(state, n, pos);
2207 if (v)
2208 return n;
2209 goto next;
2210 }
2211 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2212 break;
2213
2214 if (n->nud_state & ~NUD_NOARP)
2215 break;
2216 next:
2217 n = n->next;
2218 }
2219
2220 if (n)
2221 break;
2222
2223 if (++state->bucket > tbl->hash_mask)
2224 break;
2225
2226 n = tbl->hash_buckets[state->bucket];
2227 }
2228
2229 if (n && pos)
2230 --(*pos);
2231 return n;
2232 }
2233
2234 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2235 {
2236 struct neighbour *n = neigh_get_first(seq);
2237
2238 if (n) {
2239 while (*pos) {
2240 n = neigh_get_next(seq, n, pos);
2241 if (!n)
2242 break;
2243 }
2244 }
2245 return *pos ? NULL : n;
2246 }
2247
2248 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2249 {
2250 struct neigh_seq_state *state = seq->private;
2251 struct net * net = state->p.net;
2252 struct neigh_table *tbl = state->tbl;
2253 struct pneigh_entry *pn = NULL;
2254 int bucket = state->bucket;
2255
2256 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2257 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2258 pn = tbl->phash_buckets[bucket];
2259 while (pn && (pn->net != net))
2260 pn = pn->next;
2261 if (pn)
2262 break;
2263 }
2264 state->bucket = bucket;
2265
2266 return pn;
2267 }
2268
2269 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2270 struct pneigh_entry *pn,
2271 loff_t *pos)
2272 {
2273 struct neigh_seq_state *state = seq->private;
2274 struct net * net = state->p.net;
2275 struct neigh_table *tbl = state->tbl;
2276
2277 pn = pn->next;
2278 while (!pn) {
2279 if (++state->bucket > PNEIGH_HASHMASK)
2280 break;
2281 pn = tbl->phash_buckets[state->bucket];
2282 while (pn && (pn->net != net))
2283 pn = pn->next;
2284 if (pn)
2285 break;
2286 }
2287
2288 if (pn && pos)
2289 --(*pos);
2290
2291 return pn;
2292 }
2293
2294 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2295 {
2296 struct pneigh_entry *pn = pneigh_get_first(seq);
2297
2298 if (pn) {
2299 while (*pos) {
2300 pn = pneigh_get_next(seq, pn, pos);
2301 if (!pn)
2302 break;
2303 }
2304 }
2305 return *pos ? NULL : pn;
2306 }
2307
2308 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2309 {
2310 struct neigh_seq_state *state = seq->private;
2311 void *rc;
2312
2313 rc = neigh_get_idx(seq, pos);
2314 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2315 rc = pneigh_get_idx(seq, pos);
2316
2317 return rc;
2318 }
2319
2320 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2321 __acquires(tbl->lock)
2322 {
2323 struct neigh_seq_state *state = seq->private;
2324 loff_t pos_minus_one;
2325
2326 state->tbl = tbl;
2327 state->bucket = 0;
2328 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2329
2330 read_lock_bh(&tbl->lock);
2331
2332 pos_minus_one = *pos - 1;
2333 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2334 }
2335 EXPORT_SYMBOL(neigh_seq_start);
2336
2337 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2338 {
2339 struct neigh_seq_state *state;
2340 void *rc;
2341
2342 if (v == SEQ_START_TOKEN) {
2343 rc = neigh_get_idx(seq, pos);
2344 goto out;
2345 }
2346
2347 state = seq->private;
2348 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2349 rc = neigh_get_next(seq, v, NULL);
2350 if (rc)
2351 goto out;
2352 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2353 rc = pneigh_get_first(seq);
2354 } else {
2355 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2356 rc = pneigh_get_next(seq, v, NULL);
2357 }
2358 out:
2359 ++(*pos);
2360 return rc;
2361 }
2362 EXPORT_SYMBOL(neigh_seq_next);
2363
2364 void neigh_seq_stop(struct seq_file *seq, void *v)
2365 __releases(tbl->lock)
2366 {
2367 struct neigh_seq_state *state = seq->private;
2368 struct neigh_table *tbl = state->tbl;
2369
2370 read_unlock_bh(&tbl->lock);
2371 }
2372 EXPORT_SYMBOL(neigh_seq_stop);
2373
2374 /* statistics via seq_file */
2375
2376 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2377 {
2378 struct proc_dir_entry *pde = seq->private;
2379 struct neigh_table *tbl = pde->data;
2380 int cpu;
2381
2382 if (*pos == 0)
2383 return SEQ_START_TOKEN;
2384
2385 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2386 if (!cpu_possible(cpu))
2387 continue;
2388 *pos = cpu+1;
2389 return per_cpu_ptr(tbl->stats, cpu);
2390 }
2391 return NULL;
2392 }
2393
2394 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2395 {
2396 struct proc_dir_entry *pde = seq->private;
2397 struct neigh_table *tbl = pde->data;
2398 int cpu;
2399
2400 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2401 if (!cpu_possible(cpu))
2402 continue;
2403 *pos = cpu+1;
2404 return per_cpu_ptr(tbl->stats, cpu);
2405 }
2406 return NULL;
2407 }
2408
2409 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2410 {
2411
2412 }
2413
2414 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2415 {
2416 struct proc_dir_entry *pde = seq->private;
2417 struct neigh_table *tbl = pde->data;
2418 struct neigh_statistics *st = v;
2419
2420 if (v == SEQ_START_TOKEN) {
2421 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2422 return 0;
2423 }
2424
2425 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2426 "%08lx %08lx %08lx %08lx\n",
2427 atomic_read(&tbl->entries),
2428
2429 st->allocs,
2430 st->destroys,
2431 st->hash_grows,
2432
2433 st->lookups,
2434 st->hits,
2435
2436 st->res_failed,
2437
2438 st->rcv_probes_mcast,
2439 st->rcv_probes_ucast,
2440
2441 st->periodic_gc_runs,
2442 st->forced_gc_runs
2443 );
2444
2445 return 0;
2446 }
2447
2448 static const struct seq_operations neigh_stat_seq_ops = {
2449 .start = neigh_stat_seq_start,
2450 .next = neigh_stat_seq_next,
2451 .stop = neigh_stat_seq_stop,
2452 .show = neigh_stat_seq_show,
2453 };
2454
2455 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2456 {
2457 int ret = seq_open(file, &neigh_stat_seq_ops);
2458
2459 if (!ret) {
2460 struct seq_file *sf = file->private_data;
2461 sf->private = PDE(inode);
2462 }
2463 return ret;
2464 };
2465
2466 static const struct file_operations neigh_stat_seq_fops = {
2467 .owner = THIS_MODULE,
2468 .open = neigh_stat_seq_open,
2469 .read = seq_read,
2470 .llseek = seq_lseek,
2471 .release = seq_release,
2472 };
2473
2474 #endif /* CONFIG_PROC_FS */
2475
2476 static inline size_t neigh_nlmsg_size(void)
2477 {
2478 return NLMSG_ALIGN(sizeof(struct ndmsg))
2479 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2480 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2481 + nla_total_size(sizeof(struct nda_cacheinfo))
2482 + nla_total_size(4); /* NDA_PROBES */
2483 }
2484
2485 static void __neigh_notify(struct neighbour *n, int type, int flags)
2486 {
2487 struct net *net = n->dev->nd_net;
2488 struct sk_buff *skb;
2489 int err = -ENOBUFS;
2490
2491 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2492 if (skb == NULL)
2493 goto errout;
2494
2495 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2496 if (err < 0) {
2497 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2498 WARN_ON(err == -EMSGSIZE);
2499 kfree_skb(skb);
2500 goto errout;
2501 }
2502 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2503 errout:
2504 if (err < 0)
2505 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2506 }
2507
2508 #ifdef CONFIG_ARPD
2509 void neigh_app_ns(struct neighbour *n)
2510 {
2511 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2512 }
2513 #endif /* CONFIG_ARPD */
2514
2515 #ifdef CONFIG_SYSCTL
2516
2517 static struct neigh_sysctl_table {
2518 struct ctl_table_header *sysctl_header;
2519 struct ctl_table neigh_vars[__NET_NEIGH_MAX];
2520 char *dev_name;
2521 } neigh_sysctl_template __read_mostly = {
2522 .neigh_vars = {
2523 {
2524 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2525 .procname = "mcast_solicit",
2526 .maxlen = sizeof(int),
2527 .mode = 0644,
2528 .proc_handler = &proc_dointvec,
2529 },
2530 {
2531 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2532 .procname = "ucast_solicit",
2533 .maxlen = sizeof(int),
2534 .mode = 0644,
2535 .proc_handler = &proc_dointvec,
2536 },
2537 {
2538 .ctl_name = NET_NEIGH_APP_SOLICIT,
2539 .procname = "app_solicit",
2540 .maxlen = sizeof(int),
2541 .mode = 0644,
2542 .proc_handler = &proc_dointvec,
2543 },
2544 {
2545 .procname = "retrans_time",
2546 .maxlen = sizeof(int),
2547 .mode = 0644,
2548 .proc_handler = &proc_dointvec_userhz_jiffies,
2549 },
2550 {
2551 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2552 .procname = "base_reachable_time",
2553 .maxlen = sizeof(int),
2554 .mode = 0644,
2555 .proc_handler = &proc_dointvec_jiffies,
2556 .strategy = &sysctl_jiffies,
2557 },
2558 {
2559 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2560 .procname = "delay_first_probe_time",
2561 .maxlen = sizeof(int),
2562 .mode = 0644,
2563 .proc_handler = &proc_dointvec_jiffies,
2564 .strategy = &sysctl_jiffies,
2565 },
2566 {
2567 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2568 .procname = "gc_stale_time",
2569 .maxlen = sizeof(int),
2570 .mode = 0644,
2571 .proc_handler = &proc_dointvec_jiffies,
2572 .strategy = &sysctl_jiffies,
2573 },
2574 {
2575 .ctl_name = NET_NEIGH_UNRES_QLEN,
2576 .procname = "unres_qlen",
2577 .maxlen = sizeof(int),
2578 .mode = 0644,
2579 .proc_handler = &proc_dointvec,
2580 },
2581 {
2582 .ctl_name = NET_NEIGH_PROXY_QLEN,
2583 .procname = "proxy_qlen",
2584 .maxlen = sizeof(int),
2585 .mode = 0644,
2586 .proc_handler = &proc_dointvec,
2587 },
2588 {
2589 .procname = "anycast_delay",
2590 .maxlen = sizeof(int),
2591 .mode = 0644,
2592 .proc_handler = &proc_dointvec_userhz_jiffies,
2593 },
2594 {
2595 .procname = "proxy_delay",
2596 .maxlen = sizeof(int),
2597 .mode = 0644,
2598 .proc_handler = &proc_dointvec_userhz_jiffies,
2599 },
2600 {
2601 .procname = "locktime",
2602 .maxlen = sizeof(int),
2603 .mode = 0644,
2604 .proc_handler = &proc_dointvec_userhz_jiffies,
2605 },
2606 {
2607 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2608 .procname = "retrans_time_ms",
2609 .maxlen = sizeof(int),
2610 .mode = 0644,
2611 .proc_handler = &proc_dointvec_ms_jiffies,
2612 .strategy = &sysctl_ms_jiffies,
2613 },
2614 {
2615 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2616 .procname = "base_reachable_time_ms",
2617 .maxlen = sizeof(int),
2618 .mode = 0644,
2619 .proc_handler = &proc_dointvec_ms_jiffies,
2620 .strategy = &sysctl_ms_jiffies,
2621 },
2622 {
2623 .ctl_name = NET_NEIGH_GC_INTERVAL,
2624 .procname = "gc_interval",
2625 .maxlen = sizeof(int),
2626 .mode = 0644,
2627 .proc_handler = &proc_dointvec_jiffies,
2628 .strategy = &sysctl_jiffies,
2629 },
2630 {
2631 .ctl_name = NET_NEIGH_GC_THRESH1,
2632 .procname = "gc_thresh1",
2633 .maxlen = sizeof(int),
2634 .mode = 0644,
2635 .proc_handler = &proc_dointvec,
2636 },
2637 {
2638 .ctl_name = NET_NEIGH_GC_THRESH2,
2639 .procname = "gc_thresh2",
2640 .maxlen = sizeof(int),
2641 .mode = 0644,
2642 .proc_handler = &proc_dointvec,
2643 },
2644 {
2645 .ctl_name = NET_NEIGH_GC_THRESH3,
2646 .procname = "gc_thresh3",
2647 .maxlen = sizeof(int),
2648 .mode = 0644,
2649 .proc_handler = &proc_dointvec,
2650 },
2651 {},
2652 },
2653 };
2654
2655 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2656 int p_id, int pdev_id, char *p_name,
2657 proc_handler *handler, ctl_handler *strategy)
2658 {
2659 struct neigh_sysctl_table *t;
2660 const char *dev_name_source = NULL;
2661
2662 #define NEIGH_CTL_PATH_ROOT 0
2663 #define NEIGH_CTL_PATH_PROTO 1
2664 #define NEIGH_CTL_PATH_NEIGH 2
2665 #define NEIGH_CTL_PATH_DEV 3
2666
2667 struct ctl_path neigh_path[] = {
2668 { .procname = "net", .ctl_name = CTL_NET, },
2669 { .procname = "proto", .ctl_name = 0, },
2670 { .procname = "neigh", .ctl_name = 0, },
2671 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, },
2672 { },
2673 };
2674
2675 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2676 if (!t)
2677 goto err;
2678
2679 t->neigh_vars[0].data = &p->mcast_probes;
2680 t->neigh_vars[1].data = &p->ucast_probes;
2681 t->neigh_vars[2].data = &p->app_probes;
2682 t->neigh_vars[3].data = &p->retrans_time;
2683 t->neigh_vars[4].data = &p->base_reachable_time;
2684 t->neigh_vars[5].data = &p->delay_probe_time;
2685 t->neigh_vars[6].data = &p->gc_staletime;
2686 t->neigh_vars[7].data = &p->queue_len;
2687 t->neigh_vars[8].data = &p->proxy_qlen;
2688 t->neigh_vars[9].data = &p->anycast_delay;
2689 t->neigh_vars[10].data = &p->proxy_delay;
2690 t->neigh_vars[11].data = &p->locktime;
2691 t->neigh_vars[12].data = &p->retrans_time;
2692 t->neigh_vars[13].data = &p->base_reachable_time;
2693
2694 if (dev) {
2695 dev_name_source = dev->name;
2696 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex;
2697 /* Terminate the table early */
2698 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2699 } else {
2700 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2701 t->neigh_vars[14].data = (int *)(p + 1);
2702 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2703 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2704 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2705 }
2706
2707
2708 if (handler || strategy) {
2709 /* RetransTime */
2710 t->neigh_vars[3].proc_handler = handler;
2711 t->neigh_vars[3].strategy = strategy;
2712 t->neigh_vars[3].extra1 = dev;
2713 if (!strategy)
2714 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
2715 /* ReachableTime */
2716 t->neigh_vars[4].proc_handler = handler;
2717 t->neigh_vars[4].strategy = strategy;
2718 t->neigh_vars[4].extra1 = dev;
2719 if (!strategy)
2720 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
2721 /* RetransTime (in milliseconds)*/
2722 t->neigh_vars[12].proc_handler = handler;
2723 t->neigh_vars[12].strategy = strategy;
2724 t->neigh_vars[12].extra1 = dev;
2725 if (!strategy)
2726 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
2727 /* ReachableTime (in milliseconds) */
2728 t->neigh_vars[13].proc_handler = handler;
2729 t->neigh_vars[13].strategy = strategy;
2730 t->neigh_vars[13].extra1 = dev;
2731 if (!strategy)
2732 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
2733 }
2734
2735 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2736 if (!t->dev_name)
2737 goto free;
2738
2739 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2740 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id;
2741 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2742 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id;
2743
2744 t->sysctl_header = register_sysctl_paths(neigh_path, t->neigh_vars);
2745 if (!t->sysctl_header)
2746 goto free_procname;
2747
2748 p->sysctl_table = t;
2749 return 0;
2750
2751 free_procname:
2752 kfree(t->dev_name);
2753 free:
2754 kfree(t);
2755 err:
2756 return -ENOBUFS;
2757 }
2758
2759 void neigh_sysctl_unregister(struct neigh_parms *p)
2760 {
2761 if (p->sysctl_table) {
2762 struct neigh_sysctl_table *t = p->sysctl_table;
2763 p->sysctl_table = NULL;
2764 unregister_sysctl_table(t->sysctl_header);
2765 kfree(t->dev_name);
2766 kfree(t);
2767 }
2768 }
2769
2770 #endif /* CONFIG_SYSCTL */
2771
2772 static int __init neigh_init(void)
2773 {
2774 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2775 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2776 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2777
2778 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2779 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2780
2781 return 0;
2782 }
2783
2784 subsys_initcall(neigh_init);
2785
2786 EXPORT_SYMBOL(__neigh_event_send);
2787 EXPORT_SYMBOL(neigh_changeaddr);
2788 EXPORT_SYMBOL(neigh_compat_output);
2789 EXPORT_SYMBOL(neigh_connected_output);
2790 EXPORT_SYMBOL(neigh_create);
2791 EXPORT_SYMBOL(neigh_destroy);
2792 EXPORT_SYMBOL(neigh_event_ns);
2793 EXPORT_SYMBOL(neigh_ifdown);
2794 EXPORT_SYMBOL(neigh_lookup);
2795 EXPORT_SYMBOL(neigh_lookup_nodev);
2796 EXPORT_SYMBOL(neigh_parms_alloc);
2797 EXPORT_SYMBOL(neigh_parms_release);
2798 EXPORT_SYMBOL(neigh_rand_reach_time);
2799 EXPORT_SYMBOL(neigh_resolve_output);
2800 EXPORT_SYMBOL(neigh_table_clear);
2801 EXPORT_SYMBOL(neigh_table_init);
2802 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2803 EXPORT_SYMBOL(neigh_update);
2804 EXPORT_SYMBOL(pneigh_enqueue);
2805 EXPORT_SYMBOL(pneigh_lookup);
2806
2807 #ifdef CONFIG_ARPD
2808 EXPORT_SYMBOL(neigh_app_ns);
2809 #endif
2810 #ifdef CONFIG_SYSCTL
2811 EXPORT_SYMBOL(neigh_sysctl_register);
2812 EXPORT_SYMBOL(neigh_sysctl_unregister);
2813 #endif
This page took 0.157617 seconds and 6 git commands to generate.