[NET]: Convert init_timer into setup_timer
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
79
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
83
84 Reference count prevents destruction.
85
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
90
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
95
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
98 */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104 kfree_skb(skb);
105 return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
112
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
115 }
116
117 /*
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
121 */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125 return (base ? (net_random() % base) + (base >> 1) : 0);
126 }
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 int shrunk = 0;
132 int i;
133
134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
135
136 write_lock_bh(&tbl->lock);
137 for (i = 0; i <= tbl->hash_mask; i++) {
138 struct neighbour *n, **np;
139
140 np = &tbl->hash_buckets[i];
141 while ((n = *np) != NULL) {
142 /* Neighbour record may be discarded if:
143 * - nobody refers to it.
144 * - it is not permanent
145 */
146 write_lock(&n->lock);
147 if (atomic_read(&n->refcnt) == 1 &&
148 !(n->nud_state & NUD_PERMANENT)) {
149 *np = n->next;
150 n->dead = 1;
151 shrunk = 1;
152 write_unlock(&n->lock);
153 neigh_cleanup_and_release(n);
154 continue;
155 }
156 write_unlock(&n->lock);
157 np = &n->next;
158 }
159 }
160
161 tbl->last_flush = jiffies;
162
163 write_unlock_bh(&tbl->lock);
164
165 return shrunk;
166 }
167
168 static int neigh_del_timer(struct neighbour *n)
169 {
170 if ((n->nud_state & NUD_IN_TIMER) &&
171 del_timer(&n->timer)) {
172 neigh_release(n);
173 return 1;
174 }
175 return 0;
176 }
177
178 static void pneigh_queue_purge(struct sk_buff_head *list)
179 {
180 struct sk_buff *skb;
181
182 while ((skb = skb_dequeue(list)) != NULL) {
183 dev_put(skb->dev);
184 kfree_skb(skb);
185 }
186 }
187
188 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
189 {
190 int i;
191
192 for (i = 0; i <= tbl->hash_mask; i++) {
193 struct neighbour *n, **np = &tbl->hash_buckets[i];
194
195 while ((n = *np) != NULL) {
196 if (dev && n->dev != dev) {
197 np = &n->next;
198 continue;
199 }
200 *np = n->next;
201 write_lock(&n->lock);
202 neigh_del_timer(n);
203 n->dead = 1;
204
205 if (atomic_read(&n->refcnt) != 1) {
206 /* The most unpleasant situation.
207 We must destroy neighbour entry,
208 but someone still uses it.
209
210 The destroy will be delayed until
211 the last user releases us, but
212 we must kill timers etc. and move
213 it to safe state.
214 */
215 skb_queue_purge(&n->arp_queue);
216 n->output = neigh_blackhole;
217 if (n->nud_state & NUD_VALID)
218 n->nud_state = NUD_NOARP;
219 else
220 n->nud_state = NUD_NONE;
221 NEIGH_PRINTK2("neigh %p is stray.\n", n);
222 }
223 write_unlock(&n->lock);
224 neigh_cleanup_and_release(n);
225 }
226 }
227 }
228
229 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
230 {
231 write_lock_bh(&tbl->lock);
232 neigh_flush_dev(tbl, dev);
233 write_unlock_bh(&tbl->lock);
234 }
235
236 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
237 {
238 write_lock_bh(&tbl->lock);
239 neigh_flush_dev(tbl, dev);
240 pneigh_ifdown(tbl, dev);
241 write_unlock_bh(&tbl->lock);
242
243 del_timer_sync(&tbl->proxy_timer);
244 pneigh_queue_purge(&tbl->proxy_queue);
245 return 0;
246 }
247
248 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
249 {
250 struct neighbour *n = NULL;
251 unsigned long now = jiffies;
252 int entries;
253
254 entries = atomic_inc_return(&tbl->entries) - 1;
255 if (entries >= tbl->gc_thresh3 ||
256 (entries >= tbl->gc_thresh2 &&
257 time_after(now, tbl->last_flush + 5 * HZ))) {
258 if (!neigh_forced_gc(tbl) &&
259 entries >= tbl->gc_thresh3)
260 goto out_entries;
261 }
262
263 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
264 if (!n)
265 goto out_entries;
266
267 skb_queue_head_init(&n->arp_queue);
268 rwlock_init(&n->lock);
269 n->updated = n->used = now;
270 n->nud_state = NUD_NONE;
271 n->output = neigh_blackhole;
272 n->parms = neigh_parms_clone(&tbl->parms);
273 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
274
275 NEIGH_CACHE_STAT_INC(tbl, allocs);
276 n->tbl = tbl;
277 atomic_set(&n->refcnt, 1);
278 n->dead = 1;
279 out:
280 return n;
281
282 out_entries:
283 atomic_dec(&tbl->entries);
284 goto out;
285 }
286
287 static struct neighbour **neigh_hash_alloc(unsigned int entries)
288 {
289 unsigned long size = entries * sizeof(struct neighbour *);
290 struct neighbour **ret;
291
292 if (size <= PAGE_SIZE) {
293 ret = kzalloc(size, GFP_ATOMIC);
294 } else {
295 ret = (struct neighbour **)
296 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
297 }
298 return ret;
299 }
300
301 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
302 {
303 unsigned long size = entries * sizeof(struct neighbour *);
304
305 if (size <= PAGE_SIZE)
306 kfree(hash);
307 else
308 free_pages((unsigned long)hash, get_order(size));
309 }
310
311 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
312 {
313 struct neighbour **new_hash, **old_hash;
314 unsigned int i, new_hash_mask, old_entries;
315
316 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
317
318 BUG_ON(!is_power_of_2(new_entries));
319 new_hash = neigh_hash_alloc(new_entries);
320 if (!new_hash)
321 return;
322
323 old_entries = tbl->hash_mask + 1;
324 new_hash_mask = new_entries - 1;
325 old_hash = tbl->hash_buckets;
326
327 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
328 for (i = 0; i < old_entries; i++) {
329 struct neighbour *n, *next;
330
331 for (n = old_hash[i]; n; n = next) {
332 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
333
334 hash_val &= new_hash_mask;
335 next = n->next;
336
337 n->next = new_hash[hash_val];
338 new_hash[hash_val] = n;
339 }
340 }
341 tbl->hash_buckets = new_hash;
342 tbl->hash_mask = new_hash_mask;
343
344 neigh_hash_free(old_hash, old_entries);
345 }
346
347 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
348 struct net_device *dev)
349 {
350 struct neighbour *n;
351 int key_len = tbl->key_len;
352 u32 hash_val = tbl->hash(pkey, dev);
353
354 NEIGH_CACHE_STAT_INC(tbl, lookups);
355
356 read_lock_bh(&tbl->lock);
357 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
358 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
359 neigh_hold(n);
360 NEIGH_CACHE_STAT_INC(tbl, hits);
361 break;
362 }
363 }
364 read_unlock_bh(&tbl->lock);
365 return n;
366 }
367
368 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
369 {
370 struct neighbour *n;
371 int key_len = tbl->key_len;
372 u32 hash_val = tbl->hash(pkey, NULL);
373
374 NEIGH_CACHE_STAT_INC(tbl, lookups);
375
376 read_lock_bh(&tbl->lock);
377 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
378 if (!memcmp(n->primary_key, pkey, key_len)) {
379 neigh_hold(n);
380 NEIGH_CACHE_STAT_INC(tbl, hits);
381 break;
382 }
383 }
384 read_unlock_bh(&tbl->lock);
385 return n;
386 }
387
388 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
389 struct net_device *dev)
390 {
391 u32 hash_val;
392 int key_len = tbl->key_len;
393 int error;
394 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
395
396 if (!n) {
397 rc = ERR_PTR(-ENOBUFS);
398 goto out;
399 }
400
401 memcpy(n->primary_key, pkey, key_len);
402 n->dev = dev;
403 dev_hold(dev);
404
405 /* Protocol specific setup. */
406 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
407 rc = ERR_PTR(error);
408 goto out_neigh_release;
409 }
410
411 /* Device specific setup. */
412 if (n->parms->neigh_setup &&
413 (error = n->parms->neigh_setup(n)) < 0) {
414 rc = ERR_PTR(error);
415 goto out_neigh_release;
416 }
417
418 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
419
420 write_lock_bh(&tbl->lock);
421
422 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
423 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
424
425 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
426
427 if (n->parms->dead) {
428 rc = ERR_PTR(-EINVAL);
429 goto out_tbl_unlock;
430 }
431
432 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
433 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
434 neigh_hold(n1);
435 rc = n1;
436 goto out_tbl_unlock;
437 }
438 }
439
440 n->next = tbl->hash_buckets[hash_val];
441 tbl->hash_buckets[hash_val] = n;
442 n->dead = 0;
443 neigh_hold(n);
444 write_unlock_bh(&tbl->lock);
445 NEIGH_PRINTK2("neigh %p is created.\n", n);
446 rc = n;
447 out:
448 return rc;
449 out_tbl_unlock:
450 write_unlock_bh(&tbl->lock);
451 out_neigh_release:
452 neigh_release(n);
453 goto out;
454 }
455
456 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
457 struct net_device *dev, int creat)
458 {
459 struct pneigh_entry *n;
460 int key_len = tbl->key_len;
461 u32 hash_val = *(u32 *)(pkey + key_len - 4);
462
463 hash_val ^= (hash_val >> 16);
464 hash_val ^= hash_val >> 8;
465 hash_val ^= hash_val >> 4;
466 hash_val &= PNEIGH_HASHMASK;
467
468 read_lock_bh(&tbl->lock);
469
470 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
471 if (!memcmp(n->key, pkey, key_len) &&
472 (n->dev == dev || !n->dev)) {
473 read_unlock_bh(&tbl->lock);
474 goto out;
475 }
476 }
477 read_unlock_bh(&tbl->lock);
478 n = NULL;
479 if (!creat)
480 goto out;
481
482 ASSERT_RTNL();
483
484 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
485 if (!n)
486 goto out;
487
488 memcpy(n->key, pkey, key_len);
489 n->dev = dev;
490 if (dev)
491 dev_hold(dev);
492
493 if (tbl->pconstructor && tbl->pconstructor(n)) {
494 if (dev)
495 dev_put(dev);
496 kfree(n);
497 n = NULL;
498 goto out;
499 }
500
501 write_lock_bh(&tbl->lock);
502 n->next = tbl->phash_buckets[hash_val];
503 tbl->phash_buckets[hash_val] = n;
504 write_unlock_bh(&tbl->lock);
505 out:
506 return n;
507 }
508
509
510 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
511 struct net_device *dev)
512 {
513 struct pneigh_entry *n, **np;
514 int key_len = tbl->key_len;
515 u32 hash_val = *(u32 *)(pkey + key_len - 4);
516
517 hash_val ^= (hash_val >> 16);
518 hash_val ^= hash_val >> 8;
519 hash_val ^= hash_val >> 4;
520 hash_val &= PNEIGH_HASHMASK;
521
522 write_lock_bh(&tbl->lock);
523 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
524 np = &n->next) {
525 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
526 *np = n->next;
527 write_unlock_bh(&tbl->lock);
528 if (tbl->pdestructor)
529 tbl->pdestructor(n);
530 if (n->dev)
531 dev_put(n->dev);
532 kfree(n);
533 return 0;
534 }
535 }
536 write_unlock_bh(&tbl->lock);
537 return -ENOENT;
538 }
539
540 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
541 {
542 struct pneigh_entry *n, **np;
543 u32 h;
544
545 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
546 np = &tbl->phash_buckets[h];
547 while ((n = *np) != NULL) {
548 if (!dev || n->dev == dev) {
549 *np = n->next;
550 if (tbl->pdestructor)
551 tbl->pdestructor(n);
552 if (n->dev)
553 dev_put(n->dev);
554 kfree(n);
555 continue;
556 }
557 np = &n->next;
558 }
559 }
560 return -ENOENT;
561 }
562
563
564 /*
565 * neighbour must already be out of the table;
566 *
567 */
568 void neigh_destroy(struct neighbour *neigh)
569 {
570 struct hh_cache *hh;
571
572 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
573
574 if (!neigh->dead) {
575 printk(KERN_WARNING
576 "Destroying alive neighbour %p\n", neigh);
577 dump_stack();
578 return;
579 }
580
581 if (neigh_del_timer(neigh))
582 printk(KERN_WARNING "Impossible event.\n");
583
584 while ((hh = neigh->hh) != NULL) {
585 neigh->hh = hh->hh_next;
586 hh->hh_next = NULL;
587
588 write_seqlock_bh(&hh->hh_lock);
589 hh->hh_output = neigh_blackhole;
590 write_sequnlock_bh(&hh->hh_lock);
591 if (atomic_dec_and_test(&hh->hh_refcnt))
592 kfree(hh);
593 }
594
595 skb_queue_purge(&neigh->arp_queue);
596
597 dev_put(neigh->dev);
598 neigh_parms_put(neigh->parms);
599
600 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
601
602 atomic_dec(&neigh->tbl->entries);
603 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
604 }
605
606 /* Neighbour state is suspicious;
607 disable fast path.
608
609 Called with write_locked neigh.
610 */
611 static void neigh_suspect(struct neighbour *neigh)
612 {
613 struct hh_cache *hh;
614
615 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
616
617 neigh->output = neigh->ops->output;
618
619 for (hh = neigh->hh; hh; hh = hh->hh_next)
620 hh->hh_output = neigh->ops->output;
621 }
622
623 /* Neighbour state is OK;
624 enable fast path.
625
626 Called with write_locked neigh.
627 */
628 static void neigh_connect(struct neighbour *neigh)
629 {
630 struct hh_cache *hh;
631
632 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
633
634 neigh->output = neigh->ops->connected_output;
635
636 for (hh = neigh->hh; hh; hh = hh->hh_next)
637 hh->hh_output = neigh->ops->hh_output;
638 }
639
640 static void neigh_periodic_timer(unsigned long arg)
641 {
642 struct neigh_table *tbl = (struct neigh_table *)arg;
643 struct neighbour *n, **np;
644 unsigned long expire, now = jiffies;
645
646 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
647
648 write_lock(&tbl->lock);
649
650 /*
651 * periodically recompute ReachableTime from random function
652 */
653
654 if (time_after(now, tbl->last_rand + 300 * HZ)) {
655 struct neigh_parms *p;
656 tbl->last_rand = now;
657 for (p = &tbl->parms; p; p = p->next)
658 p->reachable_time =
659 neigh_rand_reach_time(p->base_reachable_time);
660 }
661
662 np = &tbl->hash_buckets[tbl->hash_chain_gc];
663 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
664
665 while ((n = *np) != NULL) {
666 unsigned int state;
667
668 write_lock(&n->lock);
669
670 state = n->nud_state;
671 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
672 write_unlock(&n->lock);
673 goto next_elt;
674 }
675
676 if (time_before(n->used, n->confirmed))
677 n->used = n->confirmed;
678
679 if (atomic_read(&n->refcnt) == 1 &&
680 (state == NUD_FAILED ||
681 time_after(now, n->used + n->parms->gc_staletime))) {
682 *np = n->next;
683 n->dead = 1;
684 write_unlock(&n->lock);
685 neigh_cleanup_and_release(n);
686 continue;
687 }
688 write_unlock(&n->lock);
689
690 next_elt:
691 np = &n->next;
692 }
693
694 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
695 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
696 * base_reachable_time.
697 */
698 expire = tbl->parms.base_reachable_time >> 1;
699 expire /= (tbl->hash_mask + 1);
700 if (!expire)
701 expire = 1;
702
703 if (expire>HZ)
704 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
705 else
706 mod_timer(&tbl->gc_timer, now + expire);
707
708 write_unlock(&tbl->lock);
709 }
710
711 static __inline__ int neigh_max_probes(struct neighbour *n)
712 {
713 struct neigh_parms *p = n->parms;
714 return (n->nud_state & NUD_PROBE ?
715 p->ucast_probes :
716 p->ucast_probes + p->app_probes + p->mcast_probes);
717 }
718
719 static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
720 {
721 if (unlikely(mod_timer(&n->timer, when))) {
722 printk("NEIGH: BUG, double timer add, state is %x\n",
723 n->nud_state);
724 dump_stack();
725 }
726 }
727
728 /* Called when a timer expires for a neighbour entry. */
729
730 static void neigh_timer_handler(unsigned long arg)
731 {
732 unsigned long now, next;
733 struct neighbour *neigh = (struct neighbour *)arg;
734 unsigned state;
735 int notify = 0;
736
737 write_lock(&neigh->lock);
738
739 state = neigh->nud_state;
740 now = jiffies;
741 next = now + HZ;
742
743 if (!(state & NUD_IN_TIMER)) {
744 #ifndef CONFIG_SMP
745 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
746 #endif
747 goto out;
748 }
749
750 if (state & NUD_REACHABLE) {
751 if (time_before_eq(now,
752 neigh->confirmed + neigh->parms->reachable_time)) {
753 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
754 next = neigh->confirmed + neigh->parms->reachable_time;
755 } else if (time_before_eq(now,
756 neigh->used + neigh->parms->delay_probe_time)) {
757 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
758 neigh->nud_state = NUD_DELAY;
759 neigh->updated = jiffies;
760 neigh_suspect(neigh);
761 next = now + neigh->parms->delay_probe_time;
762 } else {
763 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
764 neigh->nud_state = NUD_STALE;
765 neigh->updated = jiffies;
766 neigh_suspect(neigh);
767 notify = 1;
768 }
769 } else if (state & NUD_DELAY) {
770 if (time_before_eq(now,
771 neigh->confirmed + neigh->parms->delay_probe_time)) {
772 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
773 neigh->nud_state = NUD_REACHABLE;
774 neigh->updated = jiffies;
775 neigh_connect(neigh);
776 notify = 1;
777 next = neigh->confirmed + neigh->parms->reachable_time;
778 } else {
779 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
780 neigh->nud_state = NUD_PROBE;
781 neigh->updated = jiffies;
782 atomic_set(&neigh->probes, 0);
783 next = now + neigh->parms->retrans_time;
784 }
785 } else {
786 /* NUD_PROBE|NUD_INCOMPLETE */
787 next = now + neigh->parms->retrans_time;
788 }
789
790 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
791 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
792 struct sk_buff *skb;
793
794 neigh->nud_state = NUD_FAILED;
795 neigh->updated = jiffies;
796 notify = 1;
797 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
798 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
799
800 /* It is very thin place. report_unreachable is very complicated
801 routine. Particularly, it can hit the same neighbour entry!
802
803 So that, we try to be accurate and avoid dead loop. --ANK
804 */
805 while (neigh->nud_state == NUD_FAILED &&
806 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
807 write_unlock(&neigh->lock);
808 neigh->ops->error_report(neigh, skb);
809 write_lock(&neigh->lock);
810 }
811 skb_queue_purge(&neigh->arp_queue);
812 }
813
814 if (neigh->nud_state & NUD_IN_TIMER) {
815 if (time_before(next, jiffies + HZ/2))
816 next = jiffies + HZ/2;
817 if (!mod_timer(&neigh->timer, next))
818 neigh_hold(neigh);
819 }
820 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
821 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
822 /* keep skb alive even if arp_queue overflows */
823 if (skb)
824 skb_get(skb);
825 write_unlock(&neigh->lock);
826 neigh->ops->solicit(neigh, skb);
827 atomic_inc(&neigh->probes);
828 if (skb)
829 kfree_skb(skb);
830 } else {
831 out:
832 write_unlock(&neigh->lock);
833 }
834
835 if (notify)
836 neigh_update_notify(neigh);
837
838 neigh_release(neigh);
839 }
840
841 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
842 {
843 int rc;
844 unsigned long now;
845
846 write_lock_bh(&neigh->lock);
847
848 rc = 0;
849 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
850 goto out_unlock_bh;
851
852 now = jiffies;
853
854 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
855 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
856 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
857 neigh->nud_state = NUD_INCOMPLETE;
858 neigh->updated = jiffies;
859 neigh_hold(neigh);
860 neigh_add_timer(neigh, now + 1);
861 } else {
862 neigh->nud_state = NUD_FAILED;
863 neigh->updated = jiffies;
864 write_unlock_bh(&neigh->lock);
865
866 if (skb)
867 kfree_skb(skb);
868 return 1;
869 }
870 } else if (neigh->nud_state & NUD_STALE) {
871 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
872 neigh_hold(neigh);
873 neigh->nud_state = NUD_DELAY;
874 neigh->updated = jiffies;
875 neigh_add_timer(neigh,
876 jiffies + neigh->parms->delay_probe_time);
877 }
878
879 if (neigh->nud_state == NUD_INCOMPLETE) {
880 if (skb) {
881 if (skb_queue_len(&neigh->arp_queue) >=
882 neigh->parms->queue_len) {
883 struct sk_buff *buff;
884 buff = neigh->arp_queue.next;
885 __skb_unlink(buff, &neigh->arp_queue);
886 kfree_skb(buff);
887 }
888 __skb_queue_tail(&neigh->arp_queue, skb);
889 }
890 rc = 1;
891 }
892 out_unlock_bh:
893 write_unlock_bh(&neigh->lock);
894 return rc;
895 }
896
897 static void neigh_update_hhs(struct neighbour *neigh)
898 {
899 struct hh_cache *hh;
900 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
901 = neigh->dev->header_ops->cache_update;
902
903 if (update) {
904 for (hh = neigh->hh; hh; hh = hh->hh_next) {
905 write_seqlock_bh(&hh->hh_lock);
906 update(hh, neigh->dev, neigh->ha);
907 write_sequnlock_bh(&hh->hh_lock);
908 }
909 }
910 }
911
912
913
914 /* Generic update routine.
915 -- lladdr is new lladdr or NULL, if it is not supplied.
916 -- new is new state.
917 -- flags
918 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
919 if it is different.
920 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
921 lladdr instead of overriding it
922 if it is different.
923 It also allows to retain current state
924 if lladdr is unchanged.
925 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
926
927 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
928 NTF_ROUTER flag.
929 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
930 a router.
931
932 Caller MUST hold reference count on the entry.
933 */
934
935 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
936 u32 flags)
937 {
938 u8 old;
939 int err;
940 int notify = 0;
941 struct net_device *dev;
942 int update_isrouter = 0;
943
944 write_lock_bh(&neigh->lock);
945
946 dev = neigh->dev;
947 old = neigh->nud_state;
948 err = -EPERM;
949
950 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
951 (old & (NUD_NOARP | NUD_PERMANENT)))
952 goto out;
953
954 if (!(new & NUD_VALID)) {
955 neigh_del_timer(neigh);
956 if (old & NUD_CONNECTED)
957 neigh_suspect(neigh);
958 neigh->nud_state = new;
959 err = 0;
960 notify = old & NUD_VALID;
961 goto out;
962 }
963
964 /* Compare new lladdr with cached one */
965 if (!dev->addr_len) {
966 /* First case: device needs no address. */
967 lladdr = neigh->ha;
968 } else if (lladdr) {
969 /* The second case: if something is already cached
970 and a new address is proposed:
971 - compare new & old
972 - if they are different, check override flag
973 */
974 if ((old & NUD_VALID) &&
975 !memcmp(lladdr, neigh->ha, dev->addr_len))
976 lladdr = neigh->ha;
977 } else {
978 /* No address is supplied; if we know something,
979 use it, otherwise discard the request.
980 */
981 err = -EINVAL;
982 if (!(old & NUD_VALID))
983 goto out;
984 lladdr = neigh->ha;
985 }
986
987 if (new & NUD_CONNECTED)
988 neigh->confirmed = jiffies;
989 neigh->updated = jiffies;
990
991 /* If entry was valid and address is not changed,
992 do not change entry state, if new one is STALE.
993 */
994 err = 0;
995 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
996 if (old & NUD_VALID) {
997 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
998 update_isrouter = 0;
999 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1000 (old & NUD_CONNECTED)) {
1001 lladdr = neigh->ha;
1002 new = NUD_STALE;
1003 } else
1004 goto out;
1005 } else {
1006 if (lladdr == neigh->ha && new == NUD_STALE &&
1007 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1008 (old & NUD_CONNECTED))
1009 )
1010 new = old;
1011 }
1012 }
1013
1014 if (new != old) {
1015 neigh_del_timer(neigh);
1016 if (new & NUD_IN_TIMER) {
1017 neigh_hold(neigh);
1018 neigh_add_timer(neigh, (jiffies +
1019 ((new & NUD_REACHABLE) ?
1020 neigh->parms->reachable_time :
1021 0)));
1022 }
1023 neigh->nud_state = new;
1024 }
1025
1026 if (lladdr != neigh->ha) {
1027 memcpy(&neigh->ha, lladdr, dev->addr_len);
1028 neigh_update_hhs(neigh);
1029 if (!(new & NUD_CONNECTED))
1030 neigh->confirmed = jiffies -
1031 (neigh->parms->base_reachable_time << 1);
1032 notify = 1;
1033 }
1034 if (new == old)
1035 goto out;
1036 if (new & NUD_CONNECTED)
1037 neigh_connect(neigh);
1038 else
1039 neigh_suspect(neigh);
1040 if (!(old & NUD_VALID)) {
1041 struct sk_buff *skb;
1042
1043 /* Again: avoid dead loop if something went wrong */
1044
1045 while (neigh->nud_state & NUD_VALID &&
1046 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1047 struct neighbour *n1 = neigh;
1048 write_unlock_bh(&neigh->lock);
1049 /* On shaper/eql skb->dst->neighbour != neigh :( */
1050 if (skb->dst && skb->dst->neighbour)
1051 n1 = skb->dst->neighbour;
1052 n1->output(skb);
1053 write_lock_bh(&neigh->lock);
1054 }
1055 skb_queue_purge(&neigh->arp_queue);
1056 }
1057 out:
1058 if (update_isrouter) {
1059 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1060 (neigh->flags | NTF_ROUTER) :
1061 (neigh->flags & ~NTF_ROUTER);
1062 }
1063 write_unlock_bh(&neigh->lock);
1064
1065 if (notify)
1066 neigh_update_notify(neigh);
1067
1068 return err;
1069 }
1070
1071 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1072 u8 *lladdr, void *saddr,
1073 struct net_device *dev)
1074 {
1075 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1076 lladdr || !dev->addr_len);
1077 if (neigh)
1078 neigh_update(neigh, lladdr, NUD_STALE,
1079 NEIGH_UPDATE_F_OVERRIDE);
1080 return neigh;
1081 }
1082
1083 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1084 __be16 protocol)
1085 {
1086 struct hh_cache *hh;
1087 struct net_device *dev = dst->dev;
1088
1089 for (hh = n->hh; hh; hh = hh->hh_next)
1090 if (hh->hh_type == protocol)
1091 break;
1092
1093 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1094 seqlock_init(&hh->hh_lock);
1095 hh->hh_type = protocol;
1096 atomic_set(&hh->hh_refcnt, 0);
1097 hh->hh_next = NULL;
1098
1099 if (dev->header_ops->cache(n, hh)) {
1100 kfree(hh);
1101 hh = NULL;
1102 } else {
1103 atomic_inc(&hh->hh_refcnt);
1104 hh->hh_next = n->hh;
1105 n->hh = hh;
1106 if (n->nud_state & NUD_CONNECTED)
1107 hh->hh_output = n->ops->hh_output;
1108 else
1109 hh->hh_output = n->ops->output;
1110 }
1111 }
1112 if (hh) {
1113 atomic_inc(&hh->hh_refcnt);
1114 dst->hh = hh;
1115 }
1116 }
1117
1118 /* This function can be used in contexts, where only old dev_queue_xmit
1119 worked, f.e. if you want to override normal output path (eql, shaper),
1120 but resolution is not made yet.
1121 */
1122
1123 int neigh_compat_output(struct sk_buff *skb)
1124 {
1125 struct net_device *dev = skb->dev;
1126
1127 __skb_pull(skb, skb_network_offset(skb));
1128
1129 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1130 skb->len) < 0 &&
1131 dev->header_ops->rebuild(skb))
1132 return 0;
1133
1134 return dev_queue_xmit(skb);
1135 }
1136
1137 /* Slow and careful. */
1138
1139 int neigh_resolve_output(struct sk_buff *skb)
1140 {
1141 struct dst_entry *dst = skb->dst;
1142 struct neighbour *neigh;
1143 int rc = 0;
1144
1145 if (!dst || !(neigh = dst->neighbour))
1146 goto discard;
1147
1148 __skb_pull(skb, skb_network_offset(skb));
1149
1150 if (!neigh_event_send(neigh, skb)) {
1151 int err;
1152 struct net_device *dev = neigh->dev;
1153 if (dev->header_ops->cache && !dst->hh) {
1154 write_lock_bh(&neigh->lock);
1155 if (!dst->hh)
1156 neigh_hh_init(neigh, dst, dst->ops->protocol);
1157 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1158 neigh->ha, NULL, skb->len);
1159 write_unlock_bh(&neigh->lock);
1160 } else {
1161 read_lock_bh(&neigh->lock);
1162 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1163 neigh->ha, NULL, skb->len);
1164 read_unlock_bh(&neigh->lock);
1165 }
1166 if (err >= 0)
1167 rc = neigh->ops->queue_xmit(skb);
1168 else
1169 goto out_kfree_skb;
1170 }
1171 out:
1172 return rc;
1173 discard:
1174 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1175 dst, dst ? dst->neighbour : NULL);
1176 out_kfree_skb:
1177 rc = -EINVAL;
1178 kfree_skb(skb);
1179 goto out;
1180 }
1181
1182 /* As fast as possible without hh cache */
1183
1184 int neigh_connected_output(struct sk_buff *skb)
1185 {
1186 int err;
1187 struct dst_entry *dst = skb->dst;
1188 struct neighbour *neigh = dst->neighbour;
1189 struct net_device *dev = neigh->dev;
1190
1191 __skb_pull(skb, skb_network_offset(skb));
1192
1193 read_lock_bh(&neigh->lock);
1194 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1195 neigh->ha, NULL, skb->len);
1196 read_unlock_bh(&neigh->lock);
1197 if (err >= 0)
1198 err = neigh->ops->queue_xmit(skb);
1199 else {
1200 err = -EINVAL;
1201 kfree_skb(skb);
1202 }
1203 return err;
1204 }
1205
1206 static void neigh_proxy_process(unsigned long arg)
1207 {
1208 struct neigh_table *tbl = (struct neigh_table *)arg;
1209 long sched_next = 0;
1210 unsigned long now = jiffies;
1211 struct sk_buff *skb;
1212
1213 spin_lock(&tbl->proxy_queue.lock);
1214
1215 skb = tbl->proxy_queue.next;
1216
1217 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1218 struct sk_buff *back = skb;
1219 long tdif = NEIGH_CB(back)->sched_next - now;
1220
1221 skb = skb->next;
1222 if (tdif <= 0) {
1223 struct net_device *dev = back->dev;
1224 __skb_unlink(back, &tbl->proxy_queue);
1225 if (tbl->proxy_redo && netif_running(dev))
1226 tbl->proxy_redo(back);
1227 else
1228 kfree_skb(back);
1229
1230 dev_put(dev);
1231 } else if (!sched_next || tdif < sched_next)
1232 sched_next = tdif;
1233 }
1234 del_timer(&tbl->proxy_timer);
1235 if (sched_next)
1236 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1237 spin_unlock(&tbl->proxy_queue.lock);
1238 }
1239
1240 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1241 struct sk_buff *skb)
1242 {
1243 unsigned long now = jiffies;
1244 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1245
1246 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1247 kfree_skb(skb);
1248 return;
1249 }
1250
1251 NEIGH_CB(skb)->sched_next = sched_next;
1252 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1253
1254 spin_lock(&tbl->proxy_queue.lock);
1255 if (del_timer(&tbl->proxy_timer)) {
1256 if (time_before(tbl->proxy_timer.expires, sched_next))
1257 sched_next = tbl->proxy_timer.expires;
1258 }
1259 dst_release(skb->dst);
1260 skb->dst = NULL;
1261 dev_hold(skb->dev);
1262 __skb_queue_tail(&tbl->proxy_queue, skb);
1263 mod_timer(&tbl->proxy_timer, sched_next);
1264 spin_unlock(&tbl->proxy_queue.lock);
1265 }
1266
1267
1268 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1269 struct neigh_table *tbl)
1270 {
1271 struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1272
1273 if (p) {
1274 p->tbl = tbl;
1275 atomic_set(&p->refcnt, 1);
1276 INIT_RCU_HEAD(&p->rcu_head);
1277 p->reachable_time =
1278 neigh_rand_reach_time(p->base_reachable_time);
1279 if (dev) {
1280 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1281 kfree(p);
1282 return NULL;
1283 }
1284
1285 dev_hold(dev);
1286 p->dev = dev;
1287 }
1288 p->sysctl_table = NULL;
1289 write_lock_bh(&tbl->lock);
1290 p->next = tbl->parms.next;
1291 tbl->parms.next = p;
1292 write_unlock_bh(&tbl->lock);
1293 }
1294 return p;
1295 }
1296
1297 static void neigh_rcu_free_parms(struct rcu_head *head)
1298 {
1299 struct neigh_parms *parms =
1300 container_of(head, struct neigh_parms, rcu_head);
1301
1302 neigh_parms_put(parms);
1303 }
1304
1305 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1306 {
1307 struct neigh_parms **p;
1308
1309 if (!parms || parms == &tbl->parms)
1310 return;
1311 write_lock_bh(&tbl->lock);
1312 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1313 if (*p == parms) {
1314 *p = parms->next;
1315 parms->dead = 1;
1316 write_unlock_bh(&tbl->lock);
1317 if (parms->dev)
1318 dev_put(parms->dev);
1319 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1320 return;
1321 }
1322 }
1323 write_unlock_bh(&tbl->lock);
1324 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1325 }
1326
1327 void neigh_parms_destroy(struct neigh_parms *parms)
1328 {
1329 kfree(parms);
1330 }
1331
1332 static struct lock_class_key neigh_table_proxy_queue_class;
1333
1334 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1335 {
1336 unsigned long now = jiffies;
1337 unsigned long phsize;
1338
1339 atomic_set(&tbl->parms.refcnt, 1);
1340 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1341 tbl->parms.reachable_time =
1342 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1343
1344 if (!tbl->kmem_cachep)
1345 tbl->kmem_cachep =
1346 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1347 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1348 NULL);
1349 tbl->stats = alloc_percpu(struct neigh_statistics);
1350 if (!tbl->stats)
1351 panic("cannot create neighbour cache statistics");
1352
1353 #ifdef CONFIG_PROC_FS
1354 tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
1355 if (!tbl->pde)
1356 panic("cannot create neighbour proc dir entry");
1357 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1358 tbl->pde->data = tbl;
1359 #endif
1360
1361 tbl->hash_mask = 1;
1362 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1363
1364 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1365 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1366
1367 if (!tbl->hash_buckets || !tbl->phash_buckets)
1368 panic("cannot allocate neighbour cache hashes");
1369
1370 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1371
1372 rwlock_init(&tbl->lock);
1373 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl);
1374 tbl->gc_timer.expires = now + 1;
1375 add_timer(&tbl->gc_timer);
1376
1377 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1378 skb_queue_head_init_class(&tbl->proxy_queue,
1379 &neigh_table_proxy_queue_class);
1380
1381 tbl->last_flush = now;
1382 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1383 }
1384
1385 void neigh_table_init(struct neigh_table *tbl)
1386 {
1387 struct neigh_table *tmp;
1388
1389 neigh_table_init_no_netlink(tbl);
1390 write_lock(&neigh_tbl_lock);
1391 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1392 if (tmp->family == tbl->family)
1393 break;
1394 }
1395 tbl->next = neigh_tables;
1396 neigh_tables = tbl;
1397 write_unlock(&neigh_tbl_lock);
1398
1399 if (unlikely(tmp)) {
1400 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1401 "family %d\n", tbl->family);
1402 dump_stack();
1403 }
1404 }
1405
1406 int neigh_table_clear(struct neigh_table *tbl)
1407 {
1408 struct neigh_table **tp;
1409
1410 /* It is not clean... Fix it to unload IPv6 module safely */
1411 del_timer_sync(&tbl->gc_timer);
1412 del_timer_sync(&tbl->proxy_timer);
1413 pneigh_queue_purge(&tbl->proxy_queue);
1414 neigh_ifdown(tbl, NULL);
1415 if (atomic_read(&tbl->entries))
1416 printk(KERN_CRIT "neighbour leakage\n");
1417 write_lock(&neigh_tbl_lock);
1418 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1419 if (*tp == tbl) {
1420 *tp = tbl->next;
1421 break;
1422 }
1423 }
1424 write_unlock(&neigh_tbl_lock);
1425
1426 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1427 tbl->hash_buckets = NULL;
1428
1429 kfree(tbl->phash_buckets);
1430 tbl->phash_buckets = NULL;
1431
1432 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1433
1434 free_percpu(tbl->stats);
1435 tbl->stats = NULL;
1436
1437 kmem_cache_destroy(tbl->kmem_cachep);
1438 tbl->kmem_cachep = NULL;
1439
1440 return 0;
1441 }
1442
1443 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1444 {
1445 struct net *net = skb->sk->sk_net;
1446 struct ndmsg *ndm;
1447 struct nlattr *dst_attr;
1448 struct neigh_table *tbl;
1449 struct net_device *dev = NULL;
1450 int err = -EINVAL;
1451
1452 if (nlmsg_len(nlh) < sizeof(*ndm))
1453 goto out;
1454
1455 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1456 if (dst_attr == NULL)
1457 goto out;
1458
1459 ndm = nlmsg_data(nlh);
1460 if (ndm->ndm_ifindex) {
1461 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1462 if (dev == NULL) {
1463 err = -ENODEV;
1464 goto out;
1465 }
1466 }
1467
1468 read_lock(&neigh_tbl_lock);
1469 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1470 struct neighbour *neigh;
1471
1472 if (tbl->family != ndm->ndm_family)
1473 continue;
1474 read_unlock(&neigh_tbl_lock);
1475
1476 if (nla_len(dst_attr) < tbl->key_len)
1477 goto out_dev_put;
1478
1479 if (ndm->ndm_flags & NTF_PROXY) {
1480 err = pneigh_delete(tbl, nla_data(dst_attr), dev);
1481 goto out_dev_put;
1482 }
1483
1484 if (dev == NULL)
1485 goto out_dev_put;
1486
1487 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1488 if (neigh == NULL) {
1489 err = -ENOENT;
1490 goto out_dev_put;
1491 }
1492
1493 err = neigh_update(neigh, NULL, NUD_FAILED,
1494 NEIGH_UPDATE_F_OVERRIDE |
1495 NEIGH_UPDATE_F_ADMIN);
1496 neigh_release(neigh);
1497 goto out_dev_put;
1498 }
1499 read_unlock(&neigh_tbl_lock);
1500 err = -EAFNOSUPPORT;
1501
1502 out_dev_put:
1503 if (dev)
1504 dev_put(dev);
1505 out:
1506 return err;
1507 }
1508
1509 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1510 {
1511 struct net *net = skb->sk->sk_net;
1512 struct ndmsg *ndm;
1513 struct nlattr *tb[NDA_MAX+1];
1514 struct neigh_table *tbl;
1515 struct net_device *dev = NULL;
1516 int err;
1517
1518 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1519 if (err < 0)
1520 goto out;
1521
1522 err = -EINVAL;
1523 if (tb[NDA_DST] == NULL)
1524 goto out;
1525
1526 ndm = nlmsg_data(nlh);
1527 if (ndm->ndm_ifindex) {
1528 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1529 if (dev == NULL) {
1530 err = -ENODEV;
1531 goto out;
1532 }
1533
1534 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1535 goto out_dev_put;
1536 }
1537
1538 read_lock(&neigh_tbl_lock);
1539 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1540 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1541 struct neighbour *neigh;
1542 void *dst, *lladdr;
1543
1544 if (tbl->family != ndm->ndm_family)
1545 continue;
1546 read_unlock(&neigh_tbl_lock);
1547
1548 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1549 goto out_dev_put;
1550 dst = nla_data(tb[NDA_DST]);
1551 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1552
1553 if (ndm->ndm_flags & NTF_PROXY) {
1554 struct pneigh_entry *pn;
1555
1556 err = -ENOBUFS;
1557 pn = pneigh_lookup(tbl, dst, dev, 1);
1558 if (pn) {
1559 pn->flags = ndm->ndm_flags;
1560 err = 0;
1561 }
1562 goto out_dev_put;
1563 }
1564
1565 if (dev == NULL)
1566 goto out_dev_put;
1567
1568 neigh = neigh_lookup(tbl, dst, dev);
1569 if (neigh == NULL) {
1570 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1571 err = -ENOENT;
1572 goto out_dev_put;
1573 }
1574
1575 neigh = __neigh_lookup_errno(tbl, dst, dev);
1576 if (IS_ERR(neigh)) {
1577 err = PTR_ERR(neigh);
1578 goto out_dev_put;
1579 }
1580 } else {
1581 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1582 err = -EEXIST;
1583 neigh_release(neigh);
1584 goto out_dev_put;
1585 }
1586
1587 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1588 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1589 }
1590
1591 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1592 neigh_release(neigh);
1593 goto out_dev_put;
1594 }
1595
1596 read_unlock(&neigh_tbl_lock);
1597 err = -EAFNOSUPPORT;
1598
1599 out_dev_put:
1600 if (dev)
1601 dev_put(dev);
1602 out:
1603 return err;
1604 }
1605
1606 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1607 {
1608 struct nlattr *nest;
1609
1610 nest = nla_nest_start(skb, NDTA_PARMS);
1611 if (nest == NULL)
1612 return -ENOBUFS;
1613
1614 if (parms->dev)
1615 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1616
1617 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1618 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1619 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1620 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1621 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1622 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1623 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1624 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1625 parms->base_reachable_time);
1626 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1627 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1628 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1629 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1630 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1631 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1632
1633 return nla_nest_end(skb, nest);
1634
1635 nla_put_failure:
1636 return nla_nest_cancel(skb, nest);
1637 }
1638
1639 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1640 u32 pid, u32 seq, int type, int flags)
1641 {
1642 struct nlmsghdr *nlh;
1643 struct ndtmsg *ndtmsg;
1644
1645 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1646 if (nlh == NULL)
1647 return -EMSGSIZE;
1648
1649 ndtmsg = nlmsg_data(nlh);
1650
1651 read_lock_bh(&tbl->lock);
1652 ndtmsg->ndtm_family = tbl->family;
1653 ndtmsg->ndtm_pad1 = 0;
1654 ndtmsg->ndtm_pad2 = 0;
1655
1656 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1657 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1658 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1659 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1660 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1661
1662 {
1663 unsigned long now = jiffies;
1664 unsigned int flush_delta = now - tbl->last_flush;
1665 unsigned int rand_delta = now - tbl->last_rand;
1666
1667 struct ndt_config ndc = {
1668 .ndtc_key_len = tbl->key_len,
1669 .ndtc_entry_size = tbl->entry_size,
1670 .ndtc_entries = atomic_read(&tbl->entries),
1671 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1672 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1673 .ndtc_hash_rnd = tbl->hash_rnd,
1674 .ndtc_hash_mask = tbl->hash_mask,
1675 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1676 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1677 };
1678
1679 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1680 }
1681
1682 {
1683 int cpu;
1684 struct ndt_stats ndst;
1685
1686 memset(&ndst, 0, sizeof(ndst));
1687
1688 for_each_possible_cpu(cpu) {
1689 struct neigh_statistics *st;
1690
1691 st = per_cpu_ptr(tbl->stats, cpu);
1692 ndst.ndts_allocs += st->allocs;
1693 ndst.ndts_destroys += st->destroys;
1694 ndst.ndts_hash_grows += st->hash_grows;
1695 ndst.ndts_res_failed += st->res_failed;
1696 ndst.ndts_lookups += st->lookups;
1697 ndst.ndts_hits += st->hits;
1698 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1699 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1700 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1701 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1702 }
1703
1704 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1705 }
1706
1707 BUG_ON(tbl->parms.dev);
1708 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1709 goto nla_put_failure;
1710
1711 read_unlock_bh(&tbl->lock);
1712 return nlmsg_end(skb, nlh);
1713
1714 nla_put_failure:
1715 read_unlock_bh(&tbl->lock);
1716 nlmsg_cancel(skb, nlh);
1717 return -EMSGSIZE;
1718 }
1719
1720 static int neightbl_fill_param_info(struct sk_buff *skb,
1721 struct neigh_table *tbl,
1722 struct neigh_parms *parms,
1723 u32 pid, u32 seq, int type,
1724 unsigned int flags)
1725 {
1726 struct ndtmsg *ndtmsg;
1727 struct nlmsghdr *nlh;
1728
1729 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1730 if (nlh == NULL)
1731 return -EMSGSIZE;
1732
1733 ndtmsg = nlmsg_data(nlh);
1734
1735 read_lock_bh(&tbl->lock);
1736 ndtmsg->ndtm_family = tbl->family;
1737 ndtmsg->ndtm_pad1 = 0;
1738 ndtmsg->ndtm_pad2 = 0;
1739
1740 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1741 neightbl_fill_parms(skb, parms) < 0)
1742 goto errout;
1743
1744 read_unlock_bh(&tbl->lock);
1745 return nlmsg_end(skb, nlh);
1746 errout:
1747 read_unlock_bh(&tbl->lock);
1748 nlmsg_cancel(skb, nlh);
1749 return -EMSGSIZE;
1750 }
1751
1752 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1753 int ifindex)
1754 {
1755 struct neigh_parms *p;
1756
1757 for (p = &tbl->parms; p; p = p->next)
1758 if ((p->dev && p->dev->ifindex == ifindex) ||
1759 (!p->dev && !ifindex))
1760 return p;
1761
1762 return NULL;
1763 }
1764
1765 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1766 [NDTA_NAME] = { .type = NLA_STRING },
1767 [NDTA_THRESH1] = { .type = NLA_U32 },
1768 [NDTA_THRESH2] = { .type = NLA_U32 },
1769 [NDTA_THRESH3] = { .type = NLA_U32 },
1770 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1771 [NDTA_PARMS] = { .type = NLA_NESTED },
1772 };
1773
1774 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1775 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1776 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1777 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1778 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1779 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1780 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1781 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1782 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1783 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1784 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1785 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1786 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1787 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1788 };
1789
1790 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1791 {
1792 struct neigh_table *tbl;
1793 struct ndtmsg *ndtmsg;
1794 struct nlattr *tb[NDTA_MAX+1];
1795 int err;
1796
1797 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1798 nl_neightbl_policy);
1799 if (err < 0)
1800 goto errout;
1801
1802 if (tb[NDTA_NAME] == NULL) {
1803 err = -EINVAL;
1804 goto errout;
1805 }
1806
1807 ndtmsg = nlmsg_data(nlh);
1808 read_lock(&neigh_tbl_lock);
1809 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1810 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1811 continue;
1812
1813 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1814 break;
1815 }
1816
1817 if (tbl == NULL) {
1818 err = -ENOENT;
1819 goto errout_locked;
1820 }
1821
1822 /*
1823 * We acquire tbl->lock to be nice to the periodic timers and
1824 * make sure they always see a consistent set of values.
1825 */
1826 write_lock_bh(&tbl->lock);
1827
1828 if (tb[NDTA_PARMS]) {
1829 struct nlattr *tbp[NDTPA_MAX+1];
1830 struct neigh_parms *p;
1831 int i, ifindex = 0;
1832
1833 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1834 nl_ntbl_parm_policy);
1835 if (err < 0)
1836 goto errout_tbl_lock;
1837
1838 if (tbp[NDTPA_IFINDEX])
1839 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1840
1841 p = lookup_neigh_params(tbl, ifindex);
1842 if (p == NULL) {
1843 err = -ENOENT;
1844 goto errout_tbl_lock;
1845 }
1846
1847 for (i = 1; i <= NDTPA_MAX; i++) {
1848 if (tbp[i] == NULL)
1849 continue;
1850
1851 switch (i) {
1852 case NDTPA_QUEUE_LEN:
1853 p->queue_len = nla_get_u32(tbp[i]);
1854 break;
1855 case NDTPA_PROXY_QLEN:
1856 p->proxy_qlen = nla_get_u32(tbp[i]);
1857 break;
1858 case NDTPA_APP_PROBES:
1859 p->app_probes = nla_get_u32(tbp[i]);
1860 break;
1861 case NDTPA_UCAST_PROBES:
1862 p->ucast_probes = nla_get_u32(tbp[i]);
1863 break;
1864 case NDTPA_MCAST_PROBES:
1865 p->mcast_probes = nla_get_u32(tbp[i]);
1866 break;
1867 case NDTPA_BASE_REACHABLE_TIME:
1868 p->base_reachable_time = nla_get_msecs(tbp[i]);
1869 break;
1870 case NDTPA_GC_STALETIME:
1871 p->gc_staletime = nla_get_msecs(tbp[i]);
1872 break;
1873 case NDTPA_DELAY_PROBE_TIME:
1874 p->delay_probe_time = nla_get_msecs(tbp[i]);
1875 break;
1876 case NDTPA_RETRANS_TIME:
1877 p->retrans_time = nla_get_msecs(tbp[i]);
1878 break;
1879 case NDTPA_ANYCAST_DELAY:
1880 p->anycast_delay = nla_get_msecs(tbp[i]);
1881 break;
1882 case NDTPA_PROXY_DELAY:
1883 p->proxy_delay = nla_get_msecs(tbp[i]);
1884 break;
1885 case NDTPA_LOCKTIME:
1886 p->locktime = nla_get_msecs(tbp[i]);
1887 break;
1888 }
1889 }
1890 }
1891
1892 if (tb[NDTA_THRESH1])
1893 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1894
1895 if (tb[NDTA_THRESH2])
1896 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1897
1898 if (tb[NDTA_THRESH3])
1899 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1900
1901 if (tb[NDTA_GC_INTERVAL])
1902 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1903
1904 err = 0;
1905
1906 errout_tbl_lock:
1907 write_unlock_bh(&tbl->lock);
1908 errout_locked:
1909 read_unlock(&neigh_tbl_lock);
1910 errout:
1911 return err;
1912 }
1913
1914 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1915 {
1916 int family, tidx, nidx = 0;
1917 int tbl_skip = cb->args[0];
1918 int neigh_skip = cb->args[1];
1919 struct neigh_table *tbl;
1920
1921 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1922
1923 read_lock(&neigh_tbl_lock);
1924 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1925 struct neigh_parms *p;
1926
1927 if (tidx < tbl_skip || (family && tbl->family != family))
1928 continue;
1929
1930 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1931 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1932 NLM_F_MULTI) <= 0)
1933 break;
1934
1935 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) {
1936 if (nidx < neigh_skip)
1937 continue;
1938
1939 if (neightbl_fill_param_info(skb, tbl, p,
1940 NETLINK_CB(cb->skb).pid,
1941 cb->nlh->nlmsg_seq,
1942 RTM_NEWNEIGHTBL,
1943 NLM_F_MULTI) <= 0)
1944 goto out;
1945 }
1946
1947 neigh_skip = 0;
1948 }
1949 out:
1950 read_unlock(&neigh_tbl_lock);
1951 cb->args[0] = tidx;
1952 cb->args[1] = nidx;
1953
1954 return skb->len;
1955 }
1956
1957 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1958 u32 pid, u32 seq, int type, unsigned int flags)
1959 {
1960 unsigned long now = jiffies;
1961 struct nda_cacheinfo ci;
1962 struct nlmsghdr *nlh;
1963 struct ndmsg *ndm;
1964
1965 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1966 if (nlh == NULL)
1967 return -EMSGSIZE;
1968
1969 ndm = nlmsg_data(nlh);
1970 ndm->ndm_family = neigh->ops->family;
1971 ndm->ndm_pad1 = 0;
1972 ndm->ndm_pad2 = 0;
1973 ndm->ndm_flags = neigh->flags;
1974 ndm->ndm_type = neigh->type;
1975 ndm->ndm_ifindex = neigh->dev->ifindex;
1976
1977 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
1978
1979 read_lock_bh(&neigh->lock);
1980 ndm->ndm_state = neigh->nud_state;
1981 if ((neigh->nud_state & NUD_VALID) &&
1982 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
1983 read_unlock_bh(&neigh->lock);
1984 goto nla_put_failure;
1985 }
1986
1987 ci.ndm_used = now - neigh->used;
1988 ci.ndm_confirmed = now - neigh->confirmed;
1989 ci.ndm_updated = now - neigh->updated;
1990 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
1991 read_unlock_bh(&neigh->lock);
1992
1993 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
1994 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1995
1996 return nlmsg_end(skb, nlh);
1997
1998 nla_put_failure:
1999 nlmsg_cancel(skb, nlh);
2000 return -EMSGSIZE;
2001 }
2002
2003 static void neigh_update_notify(struct neighbour *neigh)
2004 {
2005 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2006 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2007 }
2008
2009 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2010 struct netlink_callback *cb)
2011 {
2012 struct neighbour *n;
2013 int rc, h, s_h = cb->args[1];
2014 int idx, s_idx = idx = cb->args[2];
2015
2016 read_lock_bh(&tbl->lock);
2017 for (h = 0; h <= tbl->hash_mask; h++) {
2018 if (h < s_h)
2019 continue;
2020 if (h > s_h)
2021 s_idx = 0;
2022 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
2023 if (idx < s_idx)
2024 continue;
2025 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2026 cb->nlh->nlmsg_seq,
2027 RTM_NEWNEIGH,
2028 NLM_F_MULTI) <= 0) {
2029 read_unlock_bh(&tbl->lock);
2030 rc = -1;
2031 goto out;
2032 }
2033 }
2034 }
2035 read_unlock_bh(&tbl->lock);
2036 rc = skb->len;
2037 out:
2038 cb->args[1] = h;
2039 cb->args[2] = idx;
2040 return rc;
2041 }
2042
2043 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2044 {
2045 struct neigh_table *tbl;
2046 int t, family, s_t;
2047
2048 read_lock(&neigh_tbl_lock);
2049 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2050 s_t = cb->args[0];
2051
2052 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2053 if (t < s_t || (family && tbl->family != family))
2054 continue;
2055 if (t > s_t)
2056 memset(&cb->args[1], 0, sizeof(cb->args) -
2057 sizeof(cb->args[0]));
2058 if (neigh_dump_table(tbl, skb, cb) < 0)
2059 break;
2060 }
2061 read_unlock(&neigh_tbl_lock);
2062
2063 cb->args[0] = t;
2064 return skb->len;
2065 }
2066
2067 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2068 {
2069 int chain;
2070
2071 read_lock_bh(&tbl->lock);
2072 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2073 struct neighbour *n;
2074
2075 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2076 cb(n, cookie);
2077 }
2078 read_unlock_bh(&tbl->lock);
2079 }
2080 EXPORT_SYMBOL(neigh_for_each);
2081
2082 /* The tbl->lock must be held as a writer and BH disabled. */
2083 void __neigh_for_each_release(struct neigh_table *tbl,
2084 int (*cb)(struct neighbour *))
2085 {
2086 int chain;
2087
2088 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2089 struct neighbour *n, **np;
2090
2091 np = &tbl->hash_buckets[chain];
2092 while ((n = *np) != NULL) {
2093 int release;
2094
2095 write_lock(&n->lock);
2096 release = cb(n);
2097 if (release) {
2098 *np = n->next;
2099 n->dead = 1;
2100 } else
2101 np = &n->next;
2102 write_unlock(&n->lock);
2103 if (release)
2104 neigh_cleanup_and_release(n);
2105 }
2106 }
2107 }
2108 EXPORT_SYMBOL(__neigh_for_each_release);
2109
2110 #ifdef CONFIG_PROC_FS
2111
2112 static struct neighbour *neigh_get_first(struct seq_file *seq)
2113 {
2114 struct neigh_seq_state *state = seq->private;
2115 struct neigh_table *tbl = state->tbl;
2116 struct neighbour *n = NULL;
2117 int bucket = state->bucket;
2118
2119 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2120 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2121 n = tbl->hash_buckets[bucket];
2122
2123 while (n) {
2124 if (state->neigh_sub_iter) {
2125 loff_t fakep = 0;
2126 void *v;
2127
2128 v = state->neigh_sub_iter(state, n, &fakep);
2129 if (!v)
2130 goto next;
2131 }
2132 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2133 break;
2134 if (n->nud_state & ~NUD_NOARP)
2135 break;
2136 next:
2137 n = n->next;
2138 }
2139
2140 if (n)
2141 break;
2142 }
2143 state->bucket = bucket;
2144
2145 return n;
2146 }
2147
2148 static struct neighbour *neigh_get_next(struct seq_file *seq,
2149 struct neighbour *n,
2150 loff_t *pos)
2151 {
2152 struct neigh_seq_state *state = seq->private;
2153 struct neigh_table *tbl = state->tbl;
2154
2155 if (state->neigh_sub_iter) {
2156 void *v = state->neigh_sub_iter(state, n, pos);
2157 if (v)
2158 return n;
2159 }
2160 n = n->next;
2161
2162 while (1) {
2163 while (n) {
2164 if (state->neigh_sub_iter) {
2165 void *v = state->neigh_sub_iter(state, n, pos);
2166 if (v)
2167 return n;
2168 goto next;
2169 }
2170 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2171 break;
2172
2173 if (n->nud_state & ~NUD_NOARP)
2174 break;
2175 next:
2176 n = n->next;
2177 }
2178
2179 if (n)
2180 break;
2181
2182 if (++state->bucket > tbl->hash_mask)
2183 break;
2184
2185 n = tbl->hash_buckets[state->bucket];
2186 }
2187
2188 if (n && pos)
2189 --(*pos);
2190 return n;
2191 }
2192
2193 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2194 {
2195 struct neighbour *n = neigh_get_first(seq);
2196
2197 if (n) {
2198 while (*pos) {
2199 n = neigh_get_next(seq, n, pos);
2200 if (!n)
2201 break;
2202 }
2203 }
2204 return *pos ? NULL : n;
2205 }
2206
2207 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2208 {
2209 struct neigh_seq_state *state = seq->private;
2210 struct neigh_table *tbl = state->tbl;
2211 struct pneigh_entry *pn = NULL;
2212 int bucket = state->bucket;
2213
2214 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2215 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2216 pn = tbl->phash_buckets[bucket];
2217 if (pn)
2218 break;
2219 }
2220 state->bucket = bucket;
2221
2222 return pn;
2223 }
2224
2225 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2226 struct pneigh_entry *pn,
2227 loff_t *pos)
2228 {
2229 struct neigh_seq_state *state = seq->private;
2230 struct neigh_table *tbl = state->tbl;
2231
2232 pn = pn->next;
2233 while (!pn) {
2234 if (++state->bucket > PNEIGH_HASHMASK)
2235 break;
2236 pn = tbl->phash_buckets[state->bucket];
2237 if (pn)
2238 break;
2239 }
2240
2241 if (pn && pos)
2242 --(*pos);
2243
2244 return pn;
2245 }
2246
2247 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2248 {
2249 struct pneigh_entry *pn = pneigh_get_first(seq);
2250
2251 if (pn) {
2252 while (*pos) {
2253 pn = pneigh_get_next(seq, pn, pos);
2254 if (!pn)
2255 break;
2256 }
2257 }
2258 return *pos ? NULL : pn;
2259 }
2260
2261 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2262 {
2263 struct neigh_seq_state *state = seq->private;
2264 void *rc;
2265
2266 rc = neigh_get_idx(seq, pos);
2267 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2268 rc = pneigh_get_idx(seq, pos);
2269
2270 return rc;
2271 }
2272
2273 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2274 {
2275 struct neigh_seq_state *state = seq->private;
2276 loff_t pos_minus_one;
2277
2278 state->tbl = tbl;
2279 state->bucket = 0;
2280 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2281
2282 read_lock_bh(&tbl->lock);
2283
2284 pos_minus_one = *pos - 1;
2285 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2286 }
2287 EXPORT_SYMBOL(neigh_seq_start);
2288
2289 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2290 {
2291 struct neigh_seq_state *state;
2292 void *rc;
2293
2294 if (v == SEQ_START_TOKEN) {
2295 rc = neigh_get_idx(seq, pos);
2296 goto out;
2297 }
2298
2299 state = seq->private;
2300 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2301 rc = neigh_get_next(seq, v, NULL);
2302 if (rc)
2303 goto out;
2304 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2305 rc = pneigh_get_first(seq);
2306 } else {
2307 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2308 rc = pneigh_get_next(seq, v, NULL);
2309 }
2310 out:
2311 ++(*pos);
2312 return rc;
2313 }
2314 EXPORT_SYMBOL(neigh_seq_next);
2315
2316 void neigh_seq_stop(struct seq_file *seq, void *v)
2317 {
2318 struct neigh_seq_state *state = seq->private;
2319 struct neigh_table *tbl = state->tbl;
2320
2321 read_unlock_bh(&tbl->lock);
2322 }
2323 EXPORT_SYMBOL(neigh_seq_stop);
2324
2325 /* statistics via seq_file */
2326
2327 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2328 {
2329 struct proc_dir_entry *pde = seq->private;
2330 struct neigh_table *tbl = pde->data;
2331 int cpu;
2332
2333 if (*pos == 0)
2334 return SEQ_START_TOKEN;
2335
2336 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2337 if (!cpu_possible(cpu))
2338 continue;
2339 *pos = cpu+1;
2340 return per_cpu_ptr(tbl->stats, cpu);
2341 }
2342 return NULL;
2343 }
2344
2345 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2346 {
2347 struct proc_dir_entry *pde = seq->private;
2348 struct neigh_table *tbl = pde->data;
2349 int cpu;
2350
2351 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2352 if (!cpu_possible(cpu))
2353 continue;
2354 *pos = cpu+1;
2355 return per_cpu_ptr(tbl->stats, cpu);
2356 }
2357 return NULL;
2358 }
2359
2360 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2361 {
2362
2363 }
2364
2365 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2366 {
2367 struct proc_dir_entry *pde = seq->private;
2368 struct neigh_table *tbl = pde->data;
2369 struct neigh_statistics *st = v;
2370
2371 if (v == SEQ_START_TOKEN) {
2372 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2373 return 0;
2374 }
2375
2376 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2377 "%08lx %08lx %08lx %08lx\n",
2378 atomic_read(&tbl->entries),
2379
2380 st->allocs,
2381 st->destroys,
2382 st->hash_grows,
2383
2384 st->lookups,
2385 st->hits,
2386
2387 st->res_failed,
2388
2389 st->rcv_probes_mcast,
2390 st->rcv_probes_ucast,
2391
2392 st->periodic_gc_runs,
2393 st->forced_gc_runs
2394 );
2395
2396 return 0;
2397 }
2398
2399 static const struct seq_operations neigh_stat_seq_ops = {
2400 .start = neigh_stat_seq_start,
2401 .next = neigh_stat_seq_next,
2402 .stop = neigh_stat_seq_stop,
2403 .show = neigh_stat_seq_show,
2404 };
2405
2406 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2407 {
2408 int ret = seq_open(file, &neigh_stat_seq_ops);
2409
2410 if (!ret) {
2411 struct seq_file *sf = file->private_data;
2412 sf->private = PDE(inode);
2413 }
2414 return ret;
2415 };
2416
2417 static const struct file_operations neigh_stat_seq_fops = {
2418 .owner = THIS_MODULE,
2419 .open = neigh_stat_seq_open,
2420 .read = seq_read,
2421 .llseek = seq_lseek,
2422 .release = seq_release,
2423 };
2424
2425 #endif /* CONFIG_PROC_FS */
2426
2427 static inline size_t neigh_nlmsg_size(void)
2428 {
2429 return NLMSG_ALIGN(sizeof(struct ndmsg))
2430 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2431 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2432 + nla_total_size(sizeof(struct nda_cacheinfo))
2433 + nla_total_size(4); /* NDA_PROBES */
2434 }
2435
2436 static void __neigh_notify(struct neighbour *n, int type, int flags)
2437 {
2438 struct sk_buff *skb;
2439 int err = -ENOBUFS;
2440
2441 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2442 if (skb == NULL)
2443 goto errout;
2444
2445 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2446 if (err < 0) {
2447 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2448 WARN_ON(err == -EMSGSIZE);
2449 kfree_skb(skb);
2450 goto errout;
2451 }
2452 err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2453 errout:
2454 if (err < 0)
2455 rtnl_set_sk_err(RTNLGRP_NEIGH, err);
2456 }
2457
2458 #ifdef CONFIG_ARPD
2459 void neigh_app_ns(struct neighbour *n)
2460 {
2461 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2462 }
2463 #endif /* CONFIG_ARPD */
2464
2465 #ifdef CONFIG_SYSCTL
2466
2467 static struct neigh_sysctl_table {
2468 struct ctl_table_header *sysctl_header;
2469 ctl_table neigh_vars[__NET_NEIGH_MAX];
2470 ctl_table neigh_dev[2];
2471 ctl_table neigh_neigh_dir[2];
2472 ctl_table neigh_proto_dir[2];
2473 ctl_table neigh_root_dir[2];
2474 } neigh_sysctl_template __read_mostly = {
2475 .neigh_vars = {
2476 {
2477 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2478 .procname = "mcast_solicit",
2479 .maxlen = sizeof(int),
2480 .mode = 0644,
2481 .proc_handler = &proc_dointvec,
2482 },
2483 {
2484 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2485 .procname = "ucast_solicit",
2486 .maxlen = sizeof(int),
2487 .mode = 0644,
2488 .proc_handler = &proc_dointvec,
2489 },
2490 {
2491 .ctl_name = NET_NEIGH_APP_SOLICIT,
2492 .procname = "app_solicit",
2493 .maxlen = sizeof(int),
2494 .mode = 0644,
2495 .proc_handler = &proc_dointvec,
2496 },
2497 {
2498 .procname = "retrans_time",
2499 .maxlen = sizeof(int),
2500 .mode = 0644,
2501 .proc_handler = &proc_dointvec_userhz_jiffies,
2502 },
2503 {
2504 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2505 .procname = "base_reachable_time",
2506 .maxlen = sizeof(int),
2507 .mode = 0644,
2508 .proc_handler = &proc_dointvec_jiffies,
2509 .strategy = &sysctl_jiffies,
2510 },
2511 {
2512 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2513 .procname = "delay_first_probe_time",
2514 .maxlen = sizeof(int),
2515 .mode = 0644,
2516 .proc_handler = &proc_dointvec_jiffies,
2517 .strategy = &sysctl_jiffies,
2518 },
2519 {
2520 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2521 .procname = "gc_stale_time",
2522 .maxlen = sizeof(int),
2523 .mode = 0644,
2524 .proc_handler = &proc_dointvec_jiffies,
2525 .strategy = &sysctl_jiffies,
2526 },
2527 {
2528 .ctl_name = NET_NEIGH_UNRES_QLEN,
2529 .procname = "unres_qlen",
2530 .maxlen = sizeof(int),
2531 .mode = 0644,
2532 .proc_handler = &proc_dointvec,
2533 },
2534 {
2535 .ctl_name = NET_NEIGH_PROXY_QLEN,
2536 .procname = "proxy_qlen",
2537 .maxlen = sizeof(int),
2538 .mode = 0644,
2539 .proc_handler = &proc_dointvec,
2540 },
2541 {
2542 .procname = "anycast_delay",
2543 .maxlen = sizeof(int),
2544 .mode = 0644,
2545 .proc_handler = &proc_dointvec_userhz_jiffies,
2546 },
2547 {
2548 .procname = "proxy_delay",
2549 .maxlen = sizeof(int),
2550 .mode = 0644,
2551 .proc_handler = &proc_dointvec_userhz_jiffies,
2552 },
2553 {
2554 .procname = "locktime",
2555 .maxlen = sizeof(int),
2556 .mode = 0644,
2557 .proc_handler = &proc_dointvec_userhz_jiffies,
2558 },
2559 {
2560 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2561 .procname = "retrans_time_ms",
2562 .maxlen = sizeof(int),
2563 .mode = 0644,
2564 .proc_handler = &proc_dointvec_ms_jiffies,
2565 .strategy = &sysctl_ms_jiffies,
2566 },
2567 {
2568 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2569 .procname = "base_reachable_time_ms",
2570 .maxlen = sizeof(int),
2571 .mode = 0644,
2572 .proc_handler = &proc_dointvec_ms_jiffies,
2573 .strategy = &sysctl_ms_jiffies,
2574 },
2575 {
2576 .ctl_name = NET_NEIGH_GC_INTERVAL,
2577 .procname = "gc_interval",
2578 .maxlen = sizeof(int),
2579 .mode = 0644,
2580 .proc_handler = &proc_dointvec_jiffies,
2581 .strategy = &sysctl_jiffies,
2582 },
2583 {
2584 .ctl_name = NET_NEIGH_GC_THRESH1,
2585 .procname = "gc_thresh1",
2586 .maxlen = sizeof(int),
2587 .mode = 0644,
2588 .proc_handler = &proc_dointvec,
2589 },
2590 {
2591 .ctl_name = NET_NEIGH_GC_THRESH2,
2592 .procname = "gc_thresh2",
2593 .maxlen = sizeof(int),
2594 .mode = 0644,
2595 .proc_handler = &proc_dointvec,
2596 },
2597 {
2598 .ctl_name = NET_NEIGH_GC_THRESH3,
2599 .procname = "gc_thresh3",
2600 .maxlen = sizeof(int),
2601 .mode = 0644,
2602 .proc_handler = &proc_dointvec,
2603 },
2604 {}
2605 },
2606 .neigh_dev = {
2607 {
2608 .ctl_name = NET_PROTO_CONF_DEFAULT,
2609 .procname = "default",
2610 .mode = 0555,
2611 },
2612 },
2613 .neigh_neigh_dir = {
2614 {
2615 .procname = "neigh",
2616 .mode = 0555,
2617 },
2618 },
2619 .neigh_proto_dir = {
2620 {
2621 .mode = 0555,
2622 },
2623 },
2624 .neigh_root_dir = {
2625 {
2626 .ctl_name = CTL_NET,
2627 .procname = "net",
2628 .mode = 0555,
2629 },
2630 },
2631 };
2632
2633 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2634 int p_id, int pdev_id, char *p_name,
2635 proc_handler *handler, ctl_handler *strategy)
2636 {
2637 struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template,
2638 sizeof(*t), GFP_KERNEL);
2639 const char *dev_name_source = NULL;
2640 char *dev_name = NULL;
2641 int err = 0;
2642
2643 if (!t)
2644 return -ENOBUFS;
2645 t->neigh_vars[0].data = &p->mcast_probes;
2646 t->neigh_vars[1].data = &p->ucast_probes;
2647 t->neigh_vars[2].data = &p->app_probes;
2648 t->neigh_vars[3].data = &p->retrans_time;
2649 t->neigh_vars[4].data = &p->base_reachable_time;
2650 t->neigh_vars[5].data = &p->delay_probe_time;
2651 t->neigh_vars[6].data = &p->gc_staletime;
2652 t->neigh_vars[7].data = &p->queue_len;
2653 t->neigh_vars[8].data = &p->proxy_qlen;
2654 t->neigh_vars[9].data = &p->anycast_delay;
2655 t->neigh_vars[10].data = &p->proxy_delay;
2656 t->neigh_vars[11].data = &p->locktime;
2657 t->neigh_vars[12].data = &p->retrans_time;
2658 t->neigh_vars[13].data = &p->base_reachable_time;
2659
2660 if (dev) {
2661 dev_name_source = dev->name;
2662 t->neigh_dev[0].ctl_name = dev->ifindex;
2663 /* Terminate the table early */
2664 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2665 } else {
2666 dev_name_source = t->neigh_dev[0].procname;
2667 t->neigh_vars[14].data = (int *)(p + 1);
2668 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2669 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2670 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2671 }
2672
2673
2674 if (handler || strategy) {
2675 /* RetransTime */
2676 t->neigh_vars[3].proc_handler = handler;
2677 t->neigh_vars[3].strategy = strategy;
2678 t->neigh_vars[3].extra1 = dev;
2679 if (!strategy)
2680 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
2681 /* ReachableTime */
2682 t->neigh_vars[4].proc_handler = handler;
2683 t->neigh_vars[4].strategy = strategy;
2684 t->neigh_vars[4].extra1 = dev;
2685 if (!strategy)
2686 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
2687 /* RetransTime (in milliseconds)*/
2688 t->neigh_vars[12].proc_handler = handler;
2689 t->neigh_vars[12].strategy = strategy;
2690 t->neigh_vars[12].extra1 = dev;
2691 if (!strategy)
2692 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
2693 /* ReachableTime (in milliseconds) */
2694 t->neigh_vars[13].proc_handler = handler;
2695 t->neigh_vars[13].strategy = strategy;
2696 t->neigh_vars[13].extra1 = dev;
2697 if (!strategy)
2698 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
2699 }
2700
2701 dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2702 if (!dev_name) {
2703 err = -ENOBUFS;
2704 goto free;
2705 }
2706
2707 t->neigh_dev[0].procname = dev_name;
2708
2709 t->neigh_neigh_dir[0].ctl_name = pdev_id;
2710
2711 t->neigh_proto_dir[0].procname = p_name;
2712 t->neigh_proto_dir[0].ctl_name = p_id;
2713
2714 t->neigh_dev[0].child = t->neigh_vars;
2715 t->neigh_neigh_dir[0].child = t->neigh_dev;
2716 t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
2717 t->neigh_root_dir[0].child = t->neigh_proto_dir;
2718
2719 t->sysctl_header = register_sysctl_table(t->neigh_root_dir);
2720 if (!t->sysctl_header) {
2721 err = -ENOBUFS;
2722 goto free_procname;
2723 }
2724 p->sysctl_table = t;
2725 return 0;
2726
2727 /* error path */
2728 free_procname:
2729 kfree(dev_name);
2730 free:
2731 kfree(t);
2732
2733 return err;
2734 }
2735
2736 void neigh_sysctl_unregister(struct neigh_parms *p)
2737 {
2738 if (p->sysctl_table) {
2739 struct neigh_sysctl_table *t = p->sysctl_table;
2740 p->sysctl_table = NULL;
2741 unregister_sysctl_table(t->sysctl_header);
2742 kfree(t->neigh_dev[0].procname);
2743 kfree(t);
2744 }
2745 }
2746
2747 #endif /* CONFIG_SYSCTL */
2748
2749 static int __init neigh_init(void)
2750 {
2751 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2752 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2753 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2754
2755 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2756 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2757
2758 return 0;
2759 }
2760
2761 subsys_initcall(neigh_init);
2762
2763 EXPORT_SYMBOL(__neigh_event_send);
2764 EXPORT_SYMBOL(neigh_changeaddr);
2765 EXPORT_SYMBOL(neigh_compat_output);
2766 EXPORT_SYMBOL(neigh_connected_output);
2767 EXPORT_SYMBOL(neigh_create);
2768 EXPORT_SYMBOL(neigh_destroy);
2769 EXPORT_SYMBOL(neigh_event_ns);
2770 EXPORT_SYMBOL(neigh_ifdown);
2771 EXPORT_SYMBOL(neigh_lookup);
2772 EXPORT_SYMBOL(neigh_lookup_nodev);
2773 EXPORT_SYMBOL(neigh_parms_alloc);
2774 EXPORT_SYMBOL(neigh_parms_release);
2775 EXPORT_SYMBOL(neigh_rand_reach_time);
2776 EXPORT_SYMBOL(neigh_resolve_output);
2777 EXPORT_SYMBOL(neigh_table_clear);
2778 EXPORT_SYMBOL(neigh_table_init);
2779 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2780 EXPORT_SYMBOL(neigh_update);
2781 EXPORT_SYMBOL(pneigh_enqueue);
2782 EXPORT_SYMBOL(pneigh_lookup);
2783
2784 #ifdef CONFIG_ARPD
2785 EXPORT_SYMBOL(neigh_app_ns);
2786 #endif
2787 #ifdef CONFIG_SYSCTL
2788 EXPORT_SYMBOL(neigh_sysctl_register);
2789 EXPORT_SYMBOL(neigh_sysctl_unregister);
2790 #endif
This page took 0.084461 seconds and 6 git commands to generate.