phy/marvell: fix 88e1121 support
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK0 NEIGH_PRINTK
45 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
46 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47
48 #if NEIGH_DEBUG >= 1
49 #undef NEIGH_PRINTK1
50 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #endif
52 #if NEIGH_DEBUG >= 2
53 #undef NEIGH_PRINTK2
54 #define NEIGH_PRINTK2 NEIGH_PRINTK
55 #endif
56
57 #define PNEIGH_HASHMASK 0xF
58
59 static void neigh_timer_handler(unsigned long arg);
60 static void __neigh_notify(struct neighbour *n, int type, int flags);
61 static void neigh_update_notify(struct neighbour *neigh);
62 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
79
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
83
84 Reference count prevents destruction.
85
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
90
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
95
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
98 */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104 kfree_skb(skb);
105 return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
112
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
115 }
116
117 /*
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
121 */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125 return base ? (net_random() % base) + (base >> 1) : 0;
126 }
127 EXPORT_SYMBOL(neigh_rand_reach_time);
128
129
130 static int neigh_forced_gc(struct neigh_table *tbl)
131 {
132 int shrunk = 0;
133 int i;
134 struct neigh_hash_table *nht;
135
136 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
137
138 write_lock_bh(&tbl->lock);
139 nht = rcu_dereference_protected(tbl->nht,
140 lockdep_is_held(&tbl->lock));
141 for (i = 0; i <= nht->hash_mask; i++) {
142 struct neighbour *n;
143 struct neighbour __rcu **np;
144
145 np = &nht->hash_buckets[i];
146 while ((n = rcu_dereference_protected(*np,
147 lockdep_is_held(&tbl->lock))) != NULL) {
148 /* Neighbour record may be discarded if:
149 * - nobody refers to it.
150 * - it is not permanent
151 */
152 write_lock(&n->lock);
153 if (atomic_read(&n->refcnt) == 1 &&
154 !(n->nud_state & NUD_PERMANENT)) {
155 rcu_assign_pointer(*np,
156 rcu_dereference_protected(n->next,
157 lockdep_is_held(&tbl->lock)));
158 n->dead = 1;
159 shrunk = 1;
160 write_unlock(&n->lock);
161 neigh_cleanup_and_release(n);
162 continue;
163 }
164 write_unlock(&n->lock);
165 np = &n->next;
166 }
167 }
168
169 tbl->last_flush = jiffies;
170
171 write_unlock_bh(&tbl->lock);
172
173 return shrunk;
174 }
175
176 static void neigh_add_timer(struct neighbour *n, unsigned long when)
177 {
178 neigh_hold(n);
179 if (unlikely(mod_timer(&n->timer, when))) {
180 printk("NEIGH: BUG, double timer add, state is %x\n",
181 n->nud_state);
182 dump_stack();
183 }
184 }
185
186 static int neigh_del_timer(struct neighbour *n)
187 {
188 if ((n->nud_state & NUD_IN_TIMER) &&
189 del_timer(&n->timer)) {
190 neigh_release(n);
191 return 1;
192 }
193 return 0;
194 }
195
196 static void pneigh_queue_purge(struct sk_buff_head *list)
197 {
198 struct sk_buff *skb;
199
200 while ((skb = skb_dequeue(list)) != NULL) {
201 dev_put(skb->dev);
202 kfree_skb(skb);
203 }
204 }
205
206 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
207 {
208 int i;
209 struct neigh_hash_table *nht;
210
211 nht = rcu_dereference_protected(tbl->nht,
212 lockdep_is_held(&tbl->lock));
213
214 for (i = 0; i <= nht->hash_mask; i++) {
215 struct neighbour *n;
216 struct neighbour __rcu **np = &nht->hash_buckets[i];
217
218 while ((n = rcu_dereference_protected(*np,
219 lockdep_is_held(&tbl->lock))) != NULL) {
220 if (dev && n->dev != dev) {
221 np = &n->next;
222 continue;
223 }
224 rcu_assign_pointer(*np,
225 rcu_dereference_protected(n->next,
226 lockdep_is_held(&tbl->lock)));
227 write_lock(&n->lock);
228 neigh_del_timer(n);
229 n->dead = 1;
230
231 if (atomic_read(&n->refcnt) != 1) {
232 /* The most unpleasant situation.
233 We must destroy neighbour entry,
234 but someone still uses it.
235
236 The destroy will be delayed until
237 the last user releases us, but
238 we must kill timers etc. and move
239 it to safe state.
240 */
241 skb_queue_purge(&n->arp_queue);
242 n->output = neigh_blackhole;
243 if (n->nud_state & NUD_VALID)
244 n->nud_state = NUD_NOARP;
245 else
246 n->nud_state = NUD_NONE;
247 NEIGH_PRINTK2("neigh %p is stray.\n", n);
248 }
249 write_unlock(&n->lock);
250 neigh_cleanup_and_release(n);
251 }
252 }
253 }
254
255 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
256 {
257 write_lock_bh(&tbl->lock);
258 neigh_flush_dev(tbl, dev);
259 write_unlock_bh(&tbl->lock);
260 }
261 EXPORT_SYMBOL(neigh_changeaddr);
262
263 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
264 {
265 write_lock_bh(&tbl->lock);
266 neigh_flush_dev(tbl, dev);
267 pneigh_ifdown(tbl, dev);
268 write_unlock_bh(&tbl->lock);
269
270 del_timer_sync(&tbl->proxy_timer);
271 pneigh_queue_purge(&tbl->proxy_queue);
272 return 0;
273 }
274 EXPORT_SYMBOL(neigh_ifdown);
275
276 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
277 {
278 struct neighbour *n = NULL;
279 unsigned long now = jiffies;
280 int entries;
281
282 entries = atomic_inc_return(&tbl->entries) - 1;
283 if (entries >= tbl->gc_thresh3 ||
284 (entries >= tbl->gc_thresh2 &&
285 time_after(now, tbl->last_flush + 5 * HZ))) {
286 if (!neigh_forced_gc(tbl) &&
287 entries >= tbl->gc_thresh3)
288 goto out_entries;
289 }
290
291 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
292 if (!n)
293 goto out_entries;
294
295 skb_queue_head_init(&n->arp_queue);
296 rwlock_init(&n->lock);
297 seqlock_init(&n->ha_lock);
298 n->updated = n->used = now;
299 n->nud_state = NUD_NONE;
300 n->output = neigh_blackhole;
301 n->parms = neigh_parms_clone(&tbl->parms);
302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
303
304 NEIGH_CACHE_STAT_INC(tbl, allocs);
305 n->tbl = tbl;
306 atomic_set(&n->refcnt, 1);
307 n->dead = 1;
308 out:
309 return n;
310
311 out_entries:
312 atomic_dec(&tbl->entries);
313 goto out;
314 }
315
316 static struct neigh_hash_table *neigh_hash_alloc(unsigned int entries)
317 {
318 size_t size = entries * sizeof(struct neighbour *);
319 struct neigh_hash_table *ret;
320 struct neighbour **buckets;
321
322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 if (!ret)
324 return NULL;
325 if (size <= PAGE_SIZE)
326 buckets = kzalloc(size, GFP_ATOMIC);
327 else
328 buckets = (struct neighbour **)
329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 get_order(size));
331 if (!buckets) {
332 kfree(ret);
333 return NULL;
334 }
335 rcu_assign_pointer(ret->hash_buckets, buckets);
336 ret->hash_mask = entries - 1;
337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 return ret;
339 }
340
341 static void neigh_hash_free_rcu(struct rcu_head *head)
342 {
343 struct neigh_hash_table *nht = container_of(head,
344 struct neigh_hash_table,
345 rcu);
346 size_t size = (nht->hash_mask + 1) * sizeof(struct neighbour *);
347 struct neighbour **buckets = nht->hash_buckets;
348
349 if (size <= PAGE_SIZE)
350 kfree(buckets);
351 else
352 free_pages((unsigned long)buckets, get_order(size));
353 kfree(nht);
354 }
355
356 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
357 unsigned long new_entries)
358 {
359 unsigned int i, hash;
360 struct neigh_hash_table *new_nht, *old_nht;
361
362 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
363
364 BUG_ON(!is_power_of_2(new_entries));
365 old_nht = rcu_dereference_protected(tbl->nht,
366 lockdep_is_held(&tbl->lock));
367 new_nht = neigh_hash_alloc(new_entries);
368 if (!new_nht)
369 return old_nht;
370
371 for (i = 0; i <= old_nht->hash_mask; i++) {
372 struct neighbour *n, *next;
373
374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 lockdep_is_held(&tbl->lock));
376 n != NULL;
377 n = next) {
378 hash = tbl->hash(n->primary_key, n->dev,
379 new_nht->hash_rnd);
380
381 hash &= new_nht->hash_mask;
382 next = rcu_dereference_protected(n->next,
383 lockdep_is_held(&tbl->lock));
384
385 rcu_assign_pointer(n->next,
386 rcu_dereference_protected(
387 new_nht->hash_buckets[hash],
388 lockdep_is_held(&tbl->lock)));
389 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
390 }
391 }
392
393 rcu_assign_pointer(tbl->nht, new_nht);
394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 return new_nht;
396 }
397
398 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 struct net_device *dev)
400 {
401 struct neighbour *n;
402 int key_len = tbl->key_len;
403 u32 hash_val;
404 struct neigh_hash_table *nht;
405
406 NEIGH_CACHE_STAT_INC(tbl, lookups);
407
408 rcu_read_lock_bh();
409 nht = rcu_dereference_bh(tbl->nht);
410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
411
412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 n != NULL;
414 n = rcu_dereference_bh(n->next)) {
415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 if (!atomic_inc_not_zero(&n->refcnt))
417 n = NULL;
418 NEIGH_CACHE_STAT_INC(tbl, hits);
419 break;
420 }
421 }
422
423 rcu_read_unlock_bh();
424 return n;
425 }
426 EXPORT_SYMBOL(neigh_lookup);
427
428 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 const void *pkey)
430 {
431 struct neighbour *n;
432 int key_len = tbl->key_len;
433 u32 hash_val;
434 struct neigh_hash_table *nht;
435
436 NEIGH_CACHE_STAT_INC(tbl, lookups);
437
438 rcu_read_lock_bh();
439 nht = rcu_dereference_bh(tbl->nht);
440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) & nht->hash_mask;
441
442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 n != NULL;
444 n = rcu_dereference_bh(n->next)) {
445 if (!memcmp(n->primary_key, pkey, key_len) &&
446 net_eq(dev_net(n->dev), net)) {
447 if (!atomic_inc_not_zero(&n->refcnt))
448 n = NULL;
449 NEIGH_CACHE_STAT_INC(tbl, hits);
450 break;
451 }
452 }
453
454 rcu_read_unlock_bh();
455 return n;
456 }
457 EXPORT_SYMBOL(neigh_lookup_nodev);
458
459 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 struct net_device *dev)
461 {
462 u32 hash_val;
463 int key_len = tbl->key_len;
464 int error;
465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 struct neigh_hash_table *nht;
467
468 if (!n) {
469 rc = ERR_PTR(-ENOBUFS);
470 goto out;
471 }
472
473 memcpy(n->primary_key, pkey, key_len);
474 n->dev = dev;
475 dev_hold(dev);
476
477 /* Protocol specific setup. */
478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
479 rc = ERR_PTR(error);
480 goto out_neigh_release;
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (nht->hash_mask + 1))
497 nht = neigh_hash_grow(tbl, (nht->hash_mask + 1) << 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 neigh_hold(n1);
513 rc = n1;
514 goto out_tbl_unlock;
515 }
516 }
517
518 n->dead = 0;
519 neigh_hold(n);
520 rcu_assign_pointer(n->next,
521 rcu_dereference_protected(nht->hash_buckets[hash_val],
522 lockdep_is_held(&tbl->lock)));
523 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 write_unlock_bh(&tbl->lock);
525 NEIGH_PRINTK2("neigh %p is created.\n", n);
526 rc = n;
527 out:
528 return rc;
529 out_tbl_unlock:
530 write_unlock_bh(&tbl->lock);
531 out_neigh_release:
532 neigh_release(n);
533 goto out;
534 }
535 EXPORT_SYMBOL(neigh_create);
536
537 static u32 pneigh_hash(const void *pkey, int key_len)
538 {
539 u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 hash_val ^= (hash_val >> 16);
541 hash_val ^= hash_val >> 8;
542 hash_val ^= hash_val >> 4;
543 hash_val &= PNEIGH_HASHMASK;
544 return hash_val;
545 }
546
547 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 struct net *net,
549 const void *pkey,
550 int key_len,
551 struct net_device *dev)
552 {
553 while (n) {
554 if (!memcmp(n->key, pkey, key_len) &&
555 net_eq(pneigh_net(n), net) &&
556 (n->dev == dev || !n->dev))
557 return n;
558 n = n->next;
559 }
560 return NULL;
561 }
562
563 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 struct net *net, const void *pkey, struct net_device *dev)
565 {
566 int key_len = tbl->key_len;
567 u32 hash_val = pneigh_hash(pkey, key_len);
568
569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 net, pkey, key_len, dev);
571 }
572 EXPORT_SYMBOL_GPL(__pneigh_lookup);
573
574 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 struct net *net, const void *pkey,
576 struct net_device *dev, int creat)
577 {
578 struct pneigh_entry *n;
579 int key_len = tbl->key_len;
580 u32 hash_val = pneigh_hash(pkey, key_len);
581
582 read_lock_bh(&tbl->lock);
583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585 read_unlock_bh(&tbl->lock);
586
587 if (n || !creat)
588 goto out;
589
590 ASSERT_RTNL();
591
592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 if (!n)
594 goto out;
595
596 write_pnet(&n->net, hold_net(net));
597 memcpy(n->key, pkey, key_len);
598 n->dev = dev;
599 if (dev)
600 dev_hold(dev);
601
602 if (tbl->pconstructor && tbl->pconstructor(n)) {
603 if (dev)
604 dev_put(dev);
605 release_net(net);
606 kfree(n);
607 n = NULL;
608 goto out;
609 }
610
611 write_lock_bh(&tbl->lock);
612 n->next = tbl->phash_buckets[hash_val];
613 tbl->phash_buckets[hash_val] = n;
614 write_unlock_bh(&tbl->lock);
615 out:
616 return n;
617 }
618 EXPORT_SYMBOL(pneigh_lookup);
619
620
621 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 struct net_device *dev)
623 {
624 struct pneigh_entry *n, **np;
625 int key_len = tbl->key_len;
626 u32 hash_val = pneigh_hash(pkey, key_len);
627
628 write_lock_bh(&tbl->lock);
629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 np = &n->next) {
631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 net_eq(pneigh_net(n), net)) {
633 *np = n->next;
634 write_unlock_bh(&tbl->lock);
635 if (tbl->pdestructor)
636 tbl->pdestructor(n);
637 if (n->dev)
638 dev_put(n->dev);
639 release_net(pneigh_net(n));
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646 }
647
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649 {
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 release_net(pneigh_net(n));
663 kfree(n);
664 continue;
665 }
666 np = &n->next;
667 }
668 }
669 return -ENOENT;
670 }
671
672 static void neigh_parms_destroy(struct neigh_parms *parms);
673
674 static inline void neigh_parms_put(struct neigh_parms *parms)
675 {
676 if (atomic_dec_and_test(&parms->refcnt))
677 neigh_parms_destroy(parms);
678 }
679
680 static void neigh_destroy_rcu(struct rcu_head *head)
681 {
682 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
683
684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
685 }
686 /*
687 * neighbour must already be out of the table;
688 *
689 */
690 void neigh_destroy(struct neighbour *neigh)
691 {
692 struct hh_cache *hh;
693
694 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
695
696 if (!neigh->dead) {
697 printk(KERN_WARNING
698 "Destroying alive neighbour %p\n", neigh);
699 dump_stack();
700 return;
701 }
702
703 if (neigh_del_timer(neigh))
704 printk(KERN_WARNING "Impossible event.\n");
705
706 while ((hh = neigh->hh) != NULL) {
707 neigh->hh = hh->hh_next;
708 hh->hh_next = NULL;
709
710 write_seqlock_bh(&hh->hh_lock);
711 hh->hh_output = neigh_blackhole;
712 write_sequnlock_bh(&hh->hh_lock);
713 hh_cache_put(hh);
714 }
715
716 skb_queue_purge(&neigh->arp_queue);
717
718 dev_put(neigh->dev);
719 neigh_parms_put(neigh->parms);
720
721 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
722
723 atomic_dec(&neigh->tbl->entries);
724 call_rcu(&neigh->rcu, neigh_destroy_rcu);
725 }
726 EXPORT_SYMBOL(neigh_destroy);
727
728 /* Neighbour state is suspicious;
729 disable fast path.
730
731 Called with write_locked neigh.
732 */
733 static void neigh_suspect(struct neighbour *neigh)
734 {
735 struct hh_cache *hh;
736
737 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
738
739 neigh->output = neigh->ops->output;
740
741 for (hh = neigh->hh; hh; hh = hh->hh_next)
742 hh->hh_output = neigh->ops->output;
743 }
744
745 /* Neighbour state is OK;
746 enable fast path.
747
748 Called with write_locked neigh.
749 */
750 static void neigh_connect(struct neighbour *neigh)
751 {
752 struct hh_cache *hh;
753
754 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
755
756 neigh->output = neigh->ops->connected_output;
757
758 for (hh = neigh->hh; hh; hh = hh->hh_next)
759 hh->hh_output = neigh->ops->hh_output;
760 }
761
762 static void neigh_periodic_work(struct work_struct *work)
763 {
764 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
765 struct neighbour *n;
766 struct neighbour __rcu **np;
767 unsigned int i;
768 struct neigh_hash_table *nht;
769
770 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
771
772 write_lock_bh(&tbl->lock);
773 nht = rcu_dereference_protected(tbl->nht,
774 lockdep_is_held(&tbl->lock));
775
776 /*
777 * periodically recompute ReachableTime from random function
778 */
779
780 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
781 struct neigh_parms *p;
782 tbl->last_rand = jiffies;
783 for (p = &tbl->parms; p; p = p->next)
784 p->reachable_time =
785 neigh_rand_reach_time(p->base_reachable_time);
786 }
787
788 for (i = 0 ; i <= nht->hash_mask; i++) {
789 np = &nht->hash_buckets[i];
790
791 while ((n = rcu_dereference_protected(*np,
792 lockdep_is_held(&tbl->lock))) != NULL) {
793 unsigned int state;
794
795 write_lock(&n->lock);
796
797 state = n->nud_state;
798 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
799 write_unlock(&n->lock);
800 goto next_elt;
801 }
802
803 if (time_before(n->used, n->confirmed))
804 n->used = n->confirmed;
805
806 if (atomic_read(&n->refcnt) == 1 &&
807 (state == NUD_FAILED ||
808 time_after(jiffies, n->used + n->parms->gc_staletime))) {
809 *np = n->next;
810 n->dead = 1;
811 write_unlock(&n->lock);
812 neigh_cleanup_and_release(n);
813 continue;
814 }
815 write_unlock(&n->lock);
816
817 next_elt:
818 np = &n->next;
819 }
820 /*
821 * It's fine to release lock here, even if hash table
822 * grows while we are preempted.
823 */
824 write_unlock_bh(&tbl->lock);
825 cond_resched();
826 write_lock_bh(&tbl->lock);
827 }
828 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
829 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
830 * base_reachable_time.
831 */
832 schedule_delayed_work(&tbl->gc_work,
833 tbl->parms.base_reachable_time >> 1);
834 write_unlock_bh(&tbl->lock);
835 }
836
837 static __inline__ int neigh_max_probes(struct neighbour *n)
838 {
839 struct neigh_parms *p = n->parms;
840 return (n->nud_state & NUD_PROBE) ?
841 p->ucast_probes :
842 p->ucast_probes + p->app_probes + p->mcast_probes;
843 }
844
845 static void neigh_invalidate(struct neighbour *neigh)
846 __releases(neigh->lock)
847 __acquires(neigh->lock)
848 {
849 struct sk_buff *skb;
850
851 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
852 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
853 neigh->updated = jiffies;
854
855 /* It is very thin place. report_unreachable is very complicated
856 routine. Particularly, it can hit the same neighbour entry!
857
858 So that, we try to be accurate and avoid dead loop. --ANK
859 */
860 while (neigh->nud_state == NUD_FAILED &&
861 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
862 write_unlock(&neigh->lock);
863 neigh->ops->error_report(neigh, skb);
864 write_lock(&neigh->lock);
865 }
866 skb_queue_purge(&neigh->arp_queue);
867 }
868
869 /* Called when a timer expires for a neighbour entry. */
870
871 static void neigh_timer_handler(unsigned long arg)
872 {
873 unsigned long now, next;
874 struct neighbour *neigh = (struct neighbour *)arg;
875 unsigned state;
876 int notify = 0;
877
878 write_lock(&neigh->lock);
879
880 state = neigh->nud_state;
881 now = jiffies;
882 next = now + HZ;
883
884 if (!(state & NUD_IN_TIMER)) {
885 #ifndef CONFIG_SMP
886 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
887 #endif
888 goto out;
889 }
890
891 if (state & NUD_REACHABLE) {
892 if (time_before_eq(now,
893 neigh->confirmed + neigh->parms->reachable_time)) {
894 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
895 next = neigh->confirmed + neigh->parms->reachable_time;
896 } else if (time_before_eq(now,
897 neigh->used + neigh->parms->delay_probe_time)) {
898 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
899 neigh->nud_state = NUD_DELAY;
900 neigh->updated = jiffies;
901 neigh_suspect(neigh);
902 next = now + neigh->parms->delay_probe_time;
903 } else {
904 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
905 neigh->nud_state = NUD_STALE;
906 neigh->updated = jiffies;
907 neigh_suspect(neigh);
908 notify = 1;
909 }
910 } else if (state & NUD_DELAY) {
911 if (time_before_eq(now,
912 neigh->confirmed + neigh->parms->delay_probe_time)) {
913 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
914 neigh->nud_state = NUD_REACHABLE;
915 neigh->updated = jiffies;
916 neigh_connect(neigh);
917 notify = 1;
918 next = neigh->confirmed + neigh->parms->reachable_time;
919 } else {
920 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
921 neigh->nud_state = NUD_PROBE;
922 neigh->updated = jiffies;
923 atomic_set(&neigh->probes, 0);
924 next = now + neigh->parms->retrans_time;
925 }
926 } else {
927 /* NUD_PROBE|NUD_INCOMPLETE */
928 next = now + neigh->parms->retrans_time;
929 }
930
931 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
932 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
933 neigh->nud_state = NUD_FAILED;
934 notify = 1;
935 neigh_invalidate(neigh);
936 }
937
938 if (neigh->nud_state & NUD_IN_TIMER) {
939 if (time_before(next, jiffies + HZ/2))
940 next = jiffies + HZ/2;
941 if (!mod_timer(&neigh->timer, next))
942 neigh_hold(neigh);
943 }
944 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
945 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
946 /* keep skb alive even if arp_queue overflows */
947 if (skb)
948 skb = skb_copy(skb, GFP_ATOMIC);
949 write_unlock(&neigh->lock);
950 neigh->ops->solicit(neigh, skb);
951 atomic_inc(&neigh->probes);
952 kfree_skb(skb);
953 } else {
954 out:
955 write_unlock(&neigh->lock);
956 }
957
958 if (notify)
959 neigh_update_notify(neigh);
960
961 neigh_release(neigh);
962 }
963
964 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
965 {
966 int rc;
967 unsigned long now;
968
969 write_lock_bh(&neigh->lock);
970
971 rc = 0;
972 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
973 goto out_unlock_bh;
974
975 now = jiffies;
976
977 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
978 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
979 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
980 neigh->nud_state = NUD_INCOMPLETE;
981 neigh->updated = jiffies;
982 neigh_add_timer(neigh, now + 1);
983 } else {
984 neigh->nud_state = NUD_FAILED;
985 neigh->updated = jiffies;
986 write_unlock_bh(&neigh->lock);
987
988 kfree_skb(skb);
989 return 1;
990 }
991 } else if (neigh->nud_state & NUD_STALE) {
992 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
993 neigh->nud_state = NUD_DELAY;
994 neigh->updated = jiffies;
995 neigh_add_timer(neigh,
996 jiffies + neigh->parms->delay_probe_time);
997 }
998
999 if (neigh->nud_state == NUD_INCOMPLETE) {
1000 if (skb) {
1001 if (skb_queue_len(&neigh->arp_queue) >=
1002 neigh->parms->queue_len) {
1003 struct sk_buff *buff;
1004 buff = __skb_dequeue(&neigh->arp_queue);
1005 kfree_skb(buff);
1006 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1007 }
1008 skb_dst_force(skb);
1009 __skb_queue_tail(&neigh->arp_queue, skb);
1010 }
1011 rc = 1;
1012 }
1013 out_unlock_bh:
1014 write_unlock_bh(&neigh->lock);
1015 return rc;
1016 }
1017 EXPORT_SYMBOL(__neigh_event_send);
1018
1019 static void neigh_update_hhs(const struct neighbour *neigh)
1020 {
1021 struct hh_cache *hh;
1022 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1023 = NULL;
1024
1025 if (neigh->dev->header_ops)
1026 update = neigh->dev->header_ops->cache_update;
1027
1028 if (update) {
1029 for (hh = neigh->hh; hh; hh = hh->hh_next) {
1030 write_seqlock_bh(&hh->hh_lock);
1031 update(hh, neigh->dev, neigh->ha);
1032 write_sequnlock_bh(&hh->hh_lock);
1033 }
1034 }
1035 }
1036
1037
1038
1039 /* Generic update routine.
1040 -- lladdr is new lladdr or NULL, if it is not supplied.
1041 -- new is new state.
1042 -- flags
1043 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1044 if it is different.
1045 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1046 lladdr instead of overriding it
1047 if it is different.
1048 It also allows to retain current state
1049 if lladdr is unchanged.
1050 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1051
1052 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1053 NTF_ROUTER flag.
1054 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1055 a router.
1056
1057 Caller MUST hold reference count on the entry.
1058 */
1059
1060 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1061 u32 flags)
1062 {
1063 u8 old;
1064 int err;
1065 int notify = 0;
1066 struct net_device *dev;
1067 int update_isrouter = 0;
1068
1069 write_lock_bh(&neigh->lock);
1070
1071 dev = neigh->dev;
1072 old = neigh->nud_state;
1073 err = -EPERM;
1074
1075 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1076 (old & (NUD_NOARP | NUD_PERMANENT)))
1077 goto out;
1078
1079 if (!(new & NUD_VALID)) {
1080 neigh_del_timer(neigh);
1081 if (old & NUD_CONNECTED)
1082 neigh_suspect(neigh);
1083 neigh->nud_state = new;
1084 err = 0;
1085 notify = old & NUD_VALID;
1086 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1087 (new & NUD_FAILED)) {
1088 neigh_invalidate(neigh);
1089 notify = 1;
1090 }
1091 goto out;
1092 }
1093
1094 /* Compare new lladdr with cached one */
1095 if (!dev->addr_len) {
1096 /* First case: device needs no address. */
1097 lladdr = neigh->ha;
1098 } else if (lladdr) {
1099 /* The second case: if something is already cached
1100 and a new address is proposed:
1101 - compare new & old
1102 - if they are different, check override flag
1103 */
1104 if ((old & NUD_VALID) &&
1105 !memcmp(lladdr, neigh->ha, dev->addr_len))
1106 lladdr = neigh->ha;
1107 } else {
1108 /* No address is supplied; if we know something,
1109 use it, otherwise discard the request.
1110 */
1111 err = -EINVAL;
1112 if (!(old & NUD_VALID))
1113 goto out;
1114 lladdr = neigh->ha;
1115 }
1116
1117 if (new & NUD_CONNECTED)
1118 neigh->confirmed = jiffies;
1119 neigh->updated = jiffies;
1120
1121 /* If entry was valid and address is not changed,
1122 do not change entry state, if new one is STALE.
1123 */
1124 err = 0;
1125 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1126 if (old & NUD_VALID) {
1127 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1128 update_isrouter = 0;
1129 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1130 (old & NUD_CONNECTED)) {
1131 lladdr = neigh->ha;
1132 new = NUD_STALE;
1133 } else
1134 goto out;
1135 } else {
1136 if (lladdr == neigh->ha && new == NUD_STALE &&
1137 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1138 (old & NUD_CONNECTED))
1139 )
1140 new = old;
1141 }
1142 }
1143
1144 if (new != old) {
1145 neigh_del_timer(neigh);
1146 if (new & NUD_IN_TIMER)
1147 neigh_add_timer(neigh, (jiffies +
1148 ((new & NUD_REACHABLE) ?
1149 neigh->parms->reachable_time :
1150 0)));
1151 neigh->nud_state = new;
1152 }
1153
1154 if (lladdr != neigh->ha) {
1155 write_seqlock(&neigh->ha_lock);
1156 memcpy(&neigh->ha, lladdr, dev->addr_len);
1157 write_sequnlock(&neigh->ha_lock);
1158 neigh_update_hhs(neigh);
1159 if (!(new & NUD_CONNECTED))
1160 neigh->confirmed = jiffies -
1161 (neigh->parms->base_reachable_time << 1);
1162 notify = 1;
1163 }
1164 if (new == old)
1165 goto out;
1166 if (new & NUD_CONNECTED)
1167 neigh_connect(neigh);
1168 else
1169 neigh_suspect(neigh);
1170 if (!(old & NUD_VALID)) {
1171 struct sk_buff *skb;
1172
1173 /* Again: avoid dead loop if something went wrong */
1174
1175 while (neigh->nud_state & NUD_VALID &&
1176 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1177 struct neighbour *n1 = neigh;
1178 write_unlock_bh(&neigh->lock);
1179 /* On shaper/eql skb->dst->neighbour != neigh :( */
1180 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1181 n1 = skb_dst(skb)->neighbour;
1182 n1->output(skb);
1183 write_lock_bh(&neigh->lock);
1184 }
1185 skb_queue_purge(&neigh->arp_queue);
1186 }
1187 out:
1188 if (update_isrouter) {
1189 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1190 (neigh->flags | NTF_ROUTER) :
1191 (neigh->flags & ~NTF_ROUTER);
1192 }
1193 write_unlock_bh(&neigh->lock);
1194
1195 if (notify)
1196 neigh_update_notify(neigh);
1197
1198 return err;
1199 }
1200 EXPORT_SYMBOL(neigh_update);
1201
1202 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1203 u8 *lladdr, void *saddr,
1204 struct net_device *dev)
1205 {
1206 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1207 lladdr || !dev->addr_len);
1208 if (neigh)
1209 neigh_update(neigh, lladdr, NUD_STALE,
1210 NEIGH_UPDATE_F_OVERRIDE);
1211 return neigh;
1212 }
1213 EXPORT_SYMBOL(neigh_event_ns);
1214
1215 static inline bool neigh_hh_lookup(struct neighbour *n, struct dst_entry *dst,
1216 __be16 protocol)
1217 {
1218 struct hh_cache *hh;
1219
1220 smp_rmb(); /* paired with smp_wmb() in neigh_hh_init() */
1221 for (hh = n->hh; hh; hh = hh->hh_next) {
1222 if (hh->hh_type == protocol) {
1223 atomic_inc(&hh->hh_refcnt);
1224 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL))
1225 hh_cache_put(hh);
1226 return true;
1227 }
1228 }
1229 return false;
1230 }
1231
1232 /* called with read_lock_bh(&n->lock); */
1233 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1234 __be16 protocol)
1235 {
1236 struct hh_cache *hh;
1237 struct net_device *dev = dst->dev;
1238
1239 if (likely(neigh_hh_lookup(n, dst, protocol)))
1240 return;
1241
1242 /* slow path */
1243 hh = kzalloc(sizeof(*hh), GFP_ATOMIC);
1244 if (!hh)
1245 return;
1246
1247 seqlock_init(&hh->hh_lock);
1248 hh->hh_type = protocol;
1249 atomic_set(&hh->hh_refcnt, 2);
1250
1251 if (dev->header_ops->cache(n, hh)) {
1252 kfree(hh);
1253 return;
1254 }
1255
1256 write_lock_bh(&n->lock);
1257
1258 /* must check if another thread already did the insert */
1259 if (neigh_hh_lookup(n, dst, protocol)) {
1260 kfree(hh);
1261 goto end;
1262 }
1263
1264 if (n->nud_state & NUD_CONNECTED)
1265 hh->hh_output = n->ops->hh_output;
1266 else
1267 hh->hh_output = n->ops->output;
1268
1269 hh->hh_next = n->hh;
1270 smp_wmb(); /* paired with smp_rmb() in neigh_hh_lookup() */
1271 n->hh = hh;
1272
1273 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL))
1274 hh_cache_put(hh);
1275 end:
1276 write_unlock_bh(&n->lock);
1277 }
1278
1279 /* This function can be used in contexts, where only old dev_queue_xmit
1280 * worked, f.e. if you want to override normal output path (eql, shaper),
1281 * but resolution is not made yet.
1282 */
1283
1284 int neigh_compat_output(struct sk_buff *skb)
1285 {
1286 struct net_device *dev = skb->dev;
1287
1288 __skb_pull(skb, skb_network_offset(skb));
1289
1290 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1291 skb->len) < 0 &&
1292 dev->header_ops->rebuild(skb))
1293 return 0;
1294
1295 return dev_queue_xmit(skb);
1296 }
1297 EXPORT_SYMBOL(neigh_compat_output);
1298
1299 /* Slow and careful. */
1300
1301 int neigh_resolve_output(struct sk_buff *skb)
1302 {
1303 struct dst_entry *dst = skb_dst(skb);
1304 struct neighbour *neigh;
1305 int rc = 0;
1306
1307 if (!dst || !(neigh = dst->neighbour))
1308 goto discard;
1309
1310 __skb_pull(skb, skb_network_offset(skb));
1311
1312 if (!neigh_event_send(neigh, skb)) {
1313 int err;
1314 struct net_device *dev = neigh->dev;
1315 unsigned int seq;
1316
1317 if (dev->header_ops->cache &&
1318 !dst->hh &&
1319 !(dst->flags & DST_NOCACHE))
1320 neigh_hh_init(neigh, dst, dst->ops->protocol);
1321
1322 do {
1323 seq = read_seqbegin(&neigh->ha_lock);
1324 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1325 neigh->ha, NULL, skb->len);
1326 } while (read_seqretry(&neigh->ha_lock, seq));
1327
1328 if (err >= 0)
1329 rc = neigh->ops->queue_xmit(skb);
1330 else
1331 goto out_kfree_skb;
1332 }
1333 out:
1334 return rc;
1335 discard:
1336 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1337 dst, dst ? dst->neighbour : NULL);
1338 out_kfree_skb:
1339 rc = -EINVAL;
1340 kfree_skb(skb);
1341 goto out;
1342 }
1343 EXPORT_SYMBOL(neigh_resolve_output);
1344
1345 /* As fast as possible without hh cache */
1346
1347 int neigh_connected_output(struct sk_buff *skb)
1348 {
1349 int err;
1350 struct dst_entry *dst = skb_dst(skb);
1351 struct neighbour *neigh = dst->neighbour;
1352 struct net_device *dev = neigh->dev;
1353 unsigned int seq;
1354
1355 __skb_pull(skb, skb_network_offset(skb));
1356
1357 do {
1358 seq = read_seqbegin(&neigh->ha_lock);
1359 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1360 neigh->ha, NULL, skb->len);
1361 } while (read_seqretry(&neigh->ha_lock, seq));
1362
1363 if (err >= 0)
1364 err = neigh->ops->queue_xmit(skb);
1365 else {
1366 err = -EINVAL;
1367 kfree_skb(skb);
1368 }
1369 return err;
1370 }
1371 EXPORT_SYMBOL(neigh_connected_output);
1372
1373 static void neigh_proxy_process(unsigned long arg)
1374 {
1375 struct neigh_table *tbl = (struct neigh_table *)arg;
1376 long sched_next = 0;
1377 unsigned long now = jiffies;
1378 struct sk_buff *skb, *n;
1379
1380 spin_lock(&tbl->proxy_queue.lock);
1381
1382 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1383 long tdif = NEIGH_CB(skb)->sched_next - now;
1384
1385 if (tdif <= 0) {
1386 struct net_device *dev = skb->dev;
1387 __skb_unlink(skb, &tbl->proxy_queue);
1388 if (tbl->proxy_redo && netif_running(dev))
1389 tbl->proxy_redo(skb);
1390 else
1391 kfree_skb(skb);
1392
1393 dev_put(dev);
1394 } else if (!sched_next || tdif < sched_next)
1395 sched_next = tdif;
1396 }
1397 del_timer(&tbl->proxy_timer);
1398 if (sched_next)
1399 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1400 spin_unlock(&tbl->proxy_queue.lock);
1401 }
1402
1403 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1404 struct sk_buff *skb)
1405 {
1406 unsigned long now = jiffies;
1407 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1408
1409 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1410 kfree_skb(skb);
1411 return;
1412 }
1413
1414 NEIGH_CB(skb)->sched_next = sched_next;
1415 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1416
1417 spin_lock(&tbl->proxy_queue.lock);
1418 if (del_timer(&tbl->proxy_timer)) {
1419 if (time_before(tbl->proxy_timer.expires, sched_next))
1420 sched_next = tbl->proxy_timer.expires;
1421 }
1422 skb_dst_drop(skb);
1423 dev_hold(skb->dev);
1424 __skb_queue_tail(&tbl->proxy_queue, skb);
1425 mod_timer(&tbl->proxy_timer, sched_next);
1426 spin_unlock(&tbl->proxy_queue.lock);
1427 }
1428 EXPORT_SYMBOL(pneigh_enqueue);
1429
1430 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1431 struct net *net, int ifindex)
1432 {
1433 struct neigh_parms *p;
1434
1435 for (p = &tbl->parms; p; p = p->next) {
1436 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1437 (!p->dev && !ifindex))
1438 return p;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1445 struct neigh_table *tbl)
1446 {
1447 struct neigh_parms *p, *ref;
1448 struct net *net = dev_net(dev);
1449 const struct net_device_ops *ops = dev->netdev_ops;
1450
1451 ref = lookup_neigh_parms(tbl, net, 0);
1452 if (!ref)
1453 return NULL;
1454
1455 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1456 if (p) {
1457 p->tbl = tbl;
1458 atomic_set(&p->refcnt, 1);
1459 p->reachable_time =
1460 neigh_rand_reach_time(p->base_reachable_time);
1461
1462 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1463 kfree(p);
1464 return NULL;
1465 }
1466
1467 dev_hold(dev);
1468 p->dev = dev;
1469 write_pnet(&p->net, hold_net(net));
1470 p->sysctl_table = NULL;
1471 write_lock_bh(&tbl->lock);
1472 p->next = tbl->parms.next;
1473 tbl->parms.next = p;
1474 write_unlock_bh(&tbl->lock);
1475 }
1476 return p;
1477 }
1478 EXPORT_SYMBOL(neigh_parms_alloc);
1479
1480 static void neigh_rcu_free_parms(struct rcu_head *head)
1481 {
1482 struct neigh_parms *parms =
1483 container_of(head, struct neigh_parms, rcu_head);
1484
1485 neigh_parms_put(parms);
1486 }
1487
1488 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1489 {
1490 struct neigh_parms **p;
1491
1492 if (!parms || parms == &tbl->parms)
1493 return;
1494 write_lock_bh(&tbl->lock);
1495 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1496 if (*p == parms) {
1497 *p = parms->next;
1498 parms->dead = 1;
1499 write_unlock_bh(&tbl->lock);
1500 if (parms->dev)
1501 dev_put(parms->dev);
1502 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1503 return;
1504 }
1505 }
1506 write_unlock_bh(&tbl->lock);
1507 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1508 }
1509 EXPORT_SYMBOL(neigh_parms_release);
1510
1511 static void neigh_parms_destroy(struct neigh_parms *parms)
1512 {
1513 release_net(neigh_parms_net(parms));
1514 kfree(parms);
1515 }
1516
1517 static struct lock_class_key neigh_table_proxy_queue_class;
1518
1519 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1520 {
1521 unsigned long now = jiffies;
1522 unsigned long phsize;
1523
1524 write_pnet(&tbl->parms.net, &init_net);
1525 atomic_set(&tbl->parms.refcnt, 1);
1526 tbl->parms.reachable_time =
1527 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1528
1529 if (!tbl->kmem_cachep)
1530 tbl->kmem_cachep =
1531 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1532 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1533 NULL);
1534 tbl->stats = alloc_percpu(struct neigh_statistics);
1535 if (!tbl->stats)
1536 panic("cannot create neighbour cache statistics");
1537
1538 #ifdef CONFIG_PROC_FS
1539 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1540 &neigh_stat_seq_fops, tbl))
1541 panic("cannot create neighbour proc dir entry");
1542 #endif
1543
1544 tbl->nht = neigh_hash_alloc(8);
1545
1546 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1547 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1548
1549 if (!tbl->nht || !tbl->phash_buckets)
1550 panic("cannot allocate neighbour cache hashes");
1551
1552 rwlock_init(&tbl->lock);
1553 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1554 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1555 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1556 skb_queue_head_init_class(&tbl->proxy_queue,
1557 &neigh_table_proxy_queue_class);
1558
1559 tbl->last_flush = now;
1560 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1561 }
1562 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1563
1564 void neigh_table_init(struct neigh_table *tbl)
1565 {
1566 struct neigh_table *tmp;
1567
1568 neigh_table_init_no_netlink(tbl);
1569 write_lock(&neigh_tbl_lock);
1570 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1571 if (tmp->family == tbl->family)
1572 break;
1573 }
1574 tbl->next = neigh_tables;
1575 neigh_tables = tbl;
1576 write_unlock(&neigh_tbl_lock);
1577
1578 if (unlikely(tmp)) {
1579 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1580 "family %d\n", tbl->family);
1581 dump_stack();
1582 }
1583 }
1584 EXPORT_SYMBOL(neigh_table_init);
1585
1586 int neigh_table_clear(struct neigh_table *tbl)
1587 {
1588 struct neigh_table **tp;
1589
1590 /* It is not clean... Fix it to unload IPv6 module safely */
1591 cancel_delayed_work(&tbl->gc_work);
1592 flush_scheduled_work();
1593 del_timer_sync(&tbl->proxy_timer);
1594 pneigh_queue_purge(&tbl->proxy_queue);
1595 neigh_ifdown(tbl, NULL);
1596 if (atomic_read(&tbl->entries))
1597 printk(KERN_CRIT "neighbour leakage\n");
1598 write_lock(&neigh_tbl_lock);
1599 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1600 if (*tp == tbl) {
1601 *tp = tbl->next;
1602 break;
1603 }
1604 }
1605 write_unlock(&neigh_tbl_lock);
1606
1607 call_rcu(&tbl->nht->rcu, neigh_hash_free_rcu);
1608 tbl->nht = NULL;
1609
1610 kfree(tbl->phash_buckets);
1611 tbl->phash_buckets = NULL;
1612
1613 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1614
1615 free_percpu(tbl->stats);
1616 tbl->stats = NULL;
1617
1618 kmem_cache_destroy(tbl->kmem_cachep);
1619 tbl->kmem_cachep = NULL;
1620
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(neigh_table_clear);
1624
1625 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1626 {
1627 struct net *net = sock_net(skb->sk);
1628 struct ndmsg *ndm;
1629 struct nlattr *dst_attr;
1630 struct neigh_table *tbl;
1631 struct net_device *dev = NULL;
1632 int err = -EINVAL;
1633
1634 ASSERT_RTNL();
1635 if (nlmsg_len(nlh) < sizeof(*ndm))
1636 goto out;
1637
1638 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1639 if (dst_attr == NULL)
1640 goto out;
1641
1642 ndm = nlmsg_data(nlh);
1643 if (ndm->ndm_ifindex) {
1644 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1645 if (dev == NULL) {
1646 err = -ENODEV;
1647 goto out;
1648 }
1649 }
1650
1651 read_lock(&neigh_tbl_lock);
1652 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1653 struct neighbour *neigh;
1654
1655 if (tbl->family != ndm->ndm_family)
1656 continue;
1657 read_unlock(&neigh_tbl_lock);
1658
1659 if (nla_len(dst_attr) < tbl->key_len)
1660 goto out;
1661
1662 if (ndm->ndm_flags & NTF_PROXY) {
1663 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1664 goto out;
1665 }
1666
1667 if (dev == NULL)
1668 goto out;
1669
1670 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1671 if (neigh == NULL) {
1672 err = -ENOENT;
1673 goto out;
1674 }
1675
1676 err = neigh_update(neigh, NULL, NUD_FAILED,
1677 NEIGH_UPDATE_F_OVERRIDE |
1678 NEIGH_UPDATE_F_ADMIN);
1679 neigh_release(neigh);
1680 goto out;
1681 }
1682 read_unlock(&neigh_tbl_lock);
1683 err = -EAFNOSUPPORT;
1684
1685 out:
1686 return err;
1687 }
1688
1689 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1690 {
1691 struct net *net = sock_net(skb->sk);
1692 struct ndmsg *ndm;
1693 struct nlattr *tb[NDA_MAX+1];
1694 struct neigh_table *tbl;
1695 struct net_device *dev = NULL;
1696 int err;
1697
1698 ASSERT_RTNL();
1699 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1700 if (err < 0)
1701 goto out;
1702
1703 err = -EINVAL;
1704 if (tb[NDA_DST] == NULL)
1705 goto out;
1706
1707 ndm = nlmsg_data(nlh);
1708 if (ndm->ndm_ifindex) {
1709 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1710 if (dev == NULL) {
1711 err = -ENODEV;
1712 goto out;
1713 }
1714
1715 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1716 goto out;
1717 }
1718
1719 read_lock(&neigh_tbl_lock);
1720 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1721 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1722 struct neighbour *neigh;
1723 void *dst, *lladdr;
1724
1725 if (tbl->family != ndm->ndm_family)
1726 continue;
1727 read_unlock(&neigh_tbl_lock);
1728
1729 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1730 goto out;
1731 dst = nla_data(tb[NDA_DST]);
1732 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1733
1734 if (ndm->ndm_flags & NTF_PROXY) {
1735 struct pneigh_entry *pn;
1736
1737 err = -ENOBUFS;
1738 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1739 if (pn) {
1740 pn->flags = ndm->ndm_flags;
1741 err = 0;
1742 }
1743 goto out;
1744 }
1745
1746 if (dev == NULL)
1747 goto out;
1748
1749 neigh = neigh_lookup(tbl, dst, dev);
1750 if (neigh == NULL) {
1751 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1752 err = -ENOENT;
1753 goto out;
1754 }
1755
1756 neigh = __neigh_lookup_errno(tbl, dst, dev);
1757 if (IS_ERR(neigh)) {
1758 err = PTR_ERR(neigh);
1759 goto out;
1760 }
1761 } else {
1762 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1763 err = -EEXIST;
1764 neigh_release(neigh);
1765 goto out;
1766 }
1767
1768 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1769 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1770 }
1771
1772 if (ndm->ndm_flags & NTF_USE) {
1773 neigh_event_send(neigh, NULL);
1774 err = 0;
1775 } else
1776 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1777 neigh_release(neigh);
1778 goto out;
1779 }
1780
1781 read_unlock(&neigh_tbl_lock);
1782 err = -EAFNOSUPPORT;
1783 out:
1784 return err;
1785 }
1786
1787 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1788 {
1789 struct nlattr *nest;
1790
1791 nest = nla_nest_start(skb, NDTA_PARMS);
1792 if (nest == NULL)
1793 return -ENOBUFS;
1794
1795 if (parms->dev)
1796 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1797
1798 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1799 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1800 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1801 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1802 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1803 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1804 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1805 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1806 parms->base_reachable_time);
1807 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1808 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1809 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1810 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1811 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1812 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1813
1814 return nla_nest_end(skb, nest);
1815
1816 nla_put_failure:
1817 nla_nest_cancel(skb, nest);
1818 return -EMSGSIZE;
1819 }
1820
1821 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1822 u32 pid, u32 seq, int type, int flags)
1823 {
1824 struct nlmsghdr *nlh;
1825 struct ndtmsg *ndtmsg;
1826
1827 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1828 if (nlh == NULL)
1829 return -EMSGSIZE;
1830
1831 ndtmsg = nlmsg_data(nlh);
1832
1833 read_lock_bh(&tbl->lock);
1834 ndtmsg->ndtm_family = tbl->family;
1835 ndtmsg->ndtm_pad1 = 0;
1836 ndtmsg->ndtm_pad2 = 0;
1837
1838 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1839 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1840 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1841 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1842 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1843
1844 {
1845 unsigned long now = jiffies;
1846 unsigned int flush_delta = now - tbl->last_flush;
1847 unsigned int rand_delta = now - tbl->last_rand;
1848 struct neigh_hash_table *nht;
1849 struct ndt_config ndc = {
1850 .ndtc_key_len = tbl->key_len,
1851 .ndtc_entry_size = tbl->entry_size,
1852 .ndtc_entries = atomic_read(&tbl->entries),
1853 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1854 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1855 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1856 };
1857
1858 rcu_read_lock_bh();
1859 nht = rcu_dereference_bh(tbl->nht);
1860 ndc.ndtc_hash_rnd = nht->hash_rnd;
1861 ndc.ndtc_hash_mask = nht->hash_mask;
1862 rcu_read_unlock_bh();
1863
1864 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1865 }
1866
1867 {
1868 int cpu;
1869 struct ndt_stats ndst;
1870
1871 memset(&ndst, 0, sizeof(ndst));
1872
1873 for_each_possible_cpu(cpu) {
1874 struct neigh_statistics *st;
1875
1876 st = per_cpu_ptr(tbl->stats, cpu);
1877 ndst.ndts_allocs += st->allocs;
1878 ndst.ndts_destroys += st->destroys;
1879 ndst.ndts_hash_grows += st->hash_grows;
1880 ndst.ndts_res_failed += st->res_failed;
1881 ndst.ndts_lookups += st->lookups;
1882 ndst.ndts_hits += st->hits;
1883 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1884 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1885 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1886 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1887 }
1888
1889 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1890 }
1891
1892 BUG_ON(tbl->parms.dev);
1893 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1894 goto nla_put_failure;
1895
1896 read_unlock_bh(&tbl->lock);
1897 return nlmsg_end(skb, nlh);
1898
1899 nla_put_failure:
1900 read_unlock_bh(&tbl->lock);
1901 nlmsg_cancel(skb, nlh);
1902 return -EMSGSIZE;
1903 }
1904
1905 static int neightbl_fill_param_info(struct sk_buff *skb,
1906 struct neigh_table *tbl,
1907 struct neigh_parms *parms,
1908 u32 pid, u32 seq, int type,
1909 unsigned int flags)
1910 {
1911 struct ndtmsg *ndtmsg;
1912 struct nlmsghdr *nlh;
1913
1914 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1915 if (nlh == NULL)
1916 return -EMSGSIZE;
1917
1918 ndtmsg = nlmsg_data(nlh);
1919
1920 read_lock_bh(&tbl->lock);
1921 ndtmsg->ndtm_family = tbl->family;
1922 ndtmsg->ndtm_pad1 = 0;
1923 ndtmsg->ndtm_pad2 = 0;
1924
1925 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1926 neightbl_fill_parms(skb, parms) < 0)
1927 goto errout;
1928
1929 read_unlock_bh(&tbl->lock);
1930 return nlmsg_end(skb, nlh);
1931 errout:
1932 read_unlock_bh(&tbl->lock);
1933 nlmsg_cancel(skb, nlh);
1934 return -EMSGSIZE;
1935 }
1936
1937 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1938 [NDTA_NAME] = { .type = NLA_STRING },
1939 [NDTA_THRESH1] = { .type = NLA_U32 },
1940 [NDTA_THRESH2] = { .type = NLA_U32 },
1941 [NDTA_THRESH3] = { .type = NLA_U32 },
1942 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1943 [NDTA_PARMS] = { .type = NLA_NESTED },
1944 };
1945
1946 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1947 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1948 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1949 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1950 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1951 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1952 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1953 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1954 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1955 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1956 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1957 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1958 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1959 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1960 };
1961
1962 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1963 {
1964 struct net *net = sock_net(skb->sk);
1965 struct neigh_table *tbl;
1966 struct ndtmsg *ndtmsg;
1967 struct nlattr *tb[NDTA_MAX+1];
1968 int err;
1969
1970 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1971 nl_neightbl_policy);
1972 if (err < 0)
1973 goto errout;
1974
1975 if (tb[NDTA_NAME] == NULL) {
1976 err = -EINVAL;
1977 goto errout;
1978 }
1979
1980 ndtmsg = nlmsg_data(nlh);
1981 read_lock(&neigh_tbl_lock);
1982 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1983 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1984 continue;
1985
1986 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1987 break;
1988 }
1989
1990 if (tbl == NULL) {
1991 err = -ENOENT;
1992 goto errout_locked;
1993 }
1994
1995 /*
1996 * We acquire tbl->lock to be nice to the periodic timers and
1997 * make sure they always see a consistent set of values.
1998 */
1999 write_lock_bh(&tbl->lock);
2000
2001 if (tb[NDTA_PARMS]) {
2002 struct nlattr *tbp[NDTPA_MAX+1];
2003 struct neigh_parms *p;
2004 int i, ifindex = 0;
2005
2006 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2007 nl_ntbl_parm_policy);
2008 if (err < 0)
2009 goto errout_tbl_lock;
2010
2011 if (tbp[NDTPA_IFINDEX])
2012 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2013
2014 p = lookup_neigh_parms(tbl, net, ifindex);
2015 if (p == NULL) {
2016 err = -ENOENT;
2017 goto errout_tbl_lock;
2018 }
2019
2020 for (i = 1; i <= NDTPA_MAX; i++) {
2021 if (tbp[i] == NULL)
2022 continue;
2023
2024 switch (i) {
2025 case NDTPA_QUEUE_LEN:
2026 p->queue_len = nla_get_u32(tbp[i]);
2027 break;
2028 case NDTPA_PROXY_QLEN:
2029 p->proxy_qlen = nla_get_u32(tbp[i]);
2030 break;
2031 case NDTPA_APP_PROBES:
2032 p->app_probes = nla_get_u32(tbp[i]);
2033 break;
2034 case NDTPA_UCAST_PROBES:
2035 p->ucast_probes = nla_get_u32(tbp[i]);
2036 break;
2037 case NDTPA_MCAST_PROBES:
2038 p->mcast_probes = nla_get_u32(tbp[i]);
2039 break;
2040 case NDTPA_BASE_REACHABLE_TIME:
2041 p->base_reachable_time = nla_get_msecs(tbp[i]);
2042 break;
2043 case NDTPA_GC_STALETIME:
2044 p->gc_staletime = nla_get_msecs(tbp[i]);
2045 break;
2046 case NDTPA_DELAY_PROBE_TIME:
2047 p->delay_probe_time = nla_get_msecs(tbp[i]);
2048 break;
2049 case NDTPA_RETRANS_TIME:
2050 p->retrans_time = nla_get_msecs(tbp[i]);
2051 break;
2052 case NDTPA_ANYCAST_DELAY:
2053 p->anycast_delay = nla_get_msecs(tbp[i]);
2054 break;
2055 case NDTPA_PROXY_DELAY:
2056 p->proxy_delay = nla_get_msecs(tbp[i]);
2057 break;
2058 case NDTPA_LOCKTIME:
2059 p->locktime = nla_get_msecs(tbp[i]);
2060 break;
2061 }
2062 }
2063 }
2064
2065 if (tb[NDTA_THRESH1])
2066 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2067
2068 if (tb[NDTA_THRESH2])
2069 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2070
2071 if (tb[NDTA_THRESH3])
2072 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2073
2074 if (tb[NDTA_GC_INTERVAL])
2075 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2076
2077 err = 0;
2078
2079 errout_tbl_lock:
2080 write_unlock_bh(&tbl->lock);
2081 errout_locked:
2082 read_unlock(&neigh_tbl_lock);
2083 errout:
2084 return err;
2085 }
2086
2087 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2088 {
2089 struct net *net = sock_net(skb->sk);
2090 int family, tidx, nidx = 0;
2091 int tbl_skip = cb->args[0];
2092 int neigh_skip = cb->args[1];
2093 struct neigh_table *tbl;
2094
2095 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2096
2097 read_lock(&neigh_tbl_lock);
2098 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2099 struct neigh_parms *p;
2100
2101 if (tidx < tbl_skip || (family && tbl->family != family))
2102 continue;
2103
2104 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2105 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2106 NLM_F_MULTI) <= 0)
2107 break;
2108
2109 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2110 if (!net_eq(neigh_parms_net(p), net))
2111 continue;
2112
2113 if (nidx < neigh_skip)
2114 goto next;
2115
2116 if (neightbl_fill_param_info(skb, tbl, p,
2117 NETLINK_CB(cb->skb).pid,
2118 cb->nlh->nlmsg_seq,
2119 RTM_NEWNEIGHTBL,
2120 NLM_F_MULTI) <= 0)
2121 goto out;
2122 next:
2123 nidx++;
2124 }
2125
2126 neigh_skip = 0;
2127 }
2128 out:
2129 read_unlock(&neigh_tbl_lock);
2130 cb->args[0] = tidx;
2131 cb->args[1] = nidx;
2132
2133 return skb->len;
2134 }
2135
2136 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2137 u32 pid, u32 seq, int type, unsigned int flags)
2138 {
2139 unsigned long now = jiffies;
2140 struct nda_cacheinfo ci;
2141 struct nlmsghdr *nlh;
2142 struct ndmsg *ndm;
2143
2144 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2145 if (nlh == NULL)
2146 return -EMSGSIZE;
2147
2148 ndm = nlmsg_data(nlh);
2149 ndm->ndm_family = neigh->ops->family;
2150 ndm->ndm_pad1 = 0;
2151 ndm->ndm_pad2 = 0;
2152 ndm->ndm_flags = neigh->flags;
2153 ndm->ndm_type = neigh->type;
2154 ndm->ndm_ifindex = neigh->dev->ifindex;
2155
2156 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2157
2158 read_lock_bh(&neigh->lock);
2159 ndm->ndm_state = neigh->nud_state;
2160 if (neigh->nud_state & NUD_VALID) {
2161 char haddr[MAX_ADDR_LEN];
2162
2163 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2164 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2165 read_unlock_bh(&neigh->lock);
2166 goto nla_put_failure;
2167 }
2168 }
2169
2170 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2171 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2172 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2173 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2174 read_unlock_bh(&neigh->lock);
2175
2176 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2177 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2178
2179 return nlmsg_end(skb, nlh);
2180
2181 nla_put_failure:
2182 nlmsg_cancel(skb, nlh);
2183 return -EMSGSIZE;
2184 }
2185
2186 static void neigh_update_notify(struct neighbour *neigh)
2187 {
2188 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2189 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2190 }
2191
2192 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2193 struct netlink_callback *cb)
2194 {
2195 struct net *net = sock_net(skb->sk);
2196 struct neighbour *n;
2197 int rc, h, s_h = cb->args[1];
2198 int idx, s_idx = idx = cb->args[2];
2199 struct neigh_hash_table *nht;
2200
2201 rcu_read_lock_bh();
2202 nht = rcu_dereference_bh(tbl->nht);
2203
2204 for (h = 0; h <= nht->hash_mask; h++) {
2205 if (h < s_h)
2206 continue;
2207 if (h > s_h)
2208 s_idx = 0;
2209 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2210 n != NULL;
2211 n = rcu_dereference_bh(n->next)) {
2212 if (!net_eq(dev_net(n->dev), net))
2213 continue;
2214 if (idx < s_idx)
2215 goto next;
2216 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2217 cb->nlh->nlmsg_seq,
2218 RTM_NEWNEIGH,
2219 NLM_F_MULTI) <= 0) {
2220 rc = -1;
2221 goto out;
2222 }
2223 next:
2224 idx++;
2225 }
2226 }
2227 rc = skb->len;
2228 out:
2229 rcu_read_unlock_bh();
2230 cb->args[1] = h;
2231 cb->args[2] = idx;
2232 return rc;
2233 }
2234
2235 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2236 {
2237 struct neigh_table *tbl;
2238 int t, family, s_t;
2239
2240 read_lock(&neigh_tbl_lock);
2241 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2242 s_t = cb->args[0];
2243
2244 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2245 if (t < s_t || (family && tbl->family != family))
2246 continue;
2247 if (t > s_t)
2248 memset(&cb->args[1], 0, sizeof(cb->args) -
2249 sizeof(cb->args[0]));
2250 if (neigh_dump_table(tbl, skb, cb) < 0)
2251 break;
2252 }
2253 read_unlock(&neigh_tbl_lock);
2254
2255 cb->args[0] = t;
2256 return skb->len;
2257 }
2258
2259 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2260 {
2261 int chain;
2262 struct neigh_hash_table *nht;
2263
2264 rcu_read_lock_bh();
2265 nht = rcu_dereference_bh(tbl->nht);
2266
2267 read_lock(&tbl->lock); /* avoid resizes */
2268 for (chain = 0; chain <= nht->hash_mask; chain++) {
2269 struct neighbour *n;
2270
2271 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2272 n != NULL;
2273 n = rcu_dereference_bh(n->next))
2274 cb(n, cookie);
2275 }
2276 read_unlock(&tbl->lock);
2277 rcu_read_unlock_bh();
2278 }
2279 EXPORT_SYMBOL(neigh_for_each);
2280
2281 /* The tbl->lock must be held as a writer and BH disabled. */
2282 void __neigh_for_each_release(struct neigh_table *tbl,
2283 int (*cb)(struct neighbour *))
2284 {
2285 int chain;
2286 struct neigh_hash_table *nht;
2287
2288 nht = rcu_dereference_protected(tbl->nht,
2289 lockdep_is_held(&tbl->lock));
2290 for (chain = 0; chain <= nht->hash_mask; chain++) {
2291 struct neighbour *n;
2292 struct neighbour __rcu **np;
2293
2294 np = &nht->hash_buckets[chain];
2295 while ((n = rcu_dereference_protected(*np,
2296 lockdep_is_held(&tbl->lock))) != NULL) {
2297 int release;
2298
2299 write_lock(&n->lock);
2300 release = cb(n);
2301 if (release) {
2302 rcu_assign_pointer(*np,
2303 rcu_dereference_protected(n->next,
2304 lockdep_is_held(&tbl->lock)));
2305 n->dead = 1;
2306 } else
2307 np = &n->next;
2308 write_unlock(&n->lock);
2309 if (release)
2310 neigh_cleanup_and_release(n);
2311 }
2312 }
2313 }
2314 EXPORT_SYMBOL(__neigh_for_each_release);
2315
2316 #ifdef CONFIG_PROC_FS
2317
2318 static struct neighbour *neigh_get_first(struct seq_file *seq)
2319 {
2320 struct neigh_seq_state *state = seq->private;
2321 struct net *net = seq_file_net(seq);
2322 struct neigh_hash_table *nht = state->nht;
2323 struct neighbour *n = NULL;
2324 int bucket = state->bucket;
2325
2326 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2327 for (bucket = 0; bucket <= nht->hash_mask; bucket++) {
2328 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2329
2330 while (n) {
2331 if (!net_eq(dev_net(n->dev), net))
2332 goto next;
2333 if (state->neigh_sub_iter) {
2334 loff_t fakep = 0;
2335 void *v;
2336
2337 v = state->neigh_sub_iter(state, n, &fakep);
2338 if (!v)
2339 goto next;
2340 }
2341 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2342 break;
2343 if (n->nud_state & ~NUD_NOARP)
2344 break;
2345 next:
2346 n = rcu_dereference_bh(n->next);
2347 }
2348
2349 if (n)
2350 break;
2351 }
2352 state->bucket = bucket;
2353
2354 return n;
2355 }
2356
2357 static struct neighbour *neigh_get_next(struct seq_file *seq,
2358 struct neighbour *n,
2359 loff_t *pos)
2360 {
2361 struct neigh_seq_state *state = seq->private;
2362 struct net *net = seq_file_net(seq);
2363 struct neigh_hash_table *nht = state->nht;
2364
2365 if (state->neigh_sub_iter) {
2366 void *v = state->neigh_sub_iter(state, n, pos);
2367 if (v)
2368 return n;
2369 }
2370 n = rcu_dereference_bh(n->next);
2371
2372 while (1) {
2373 while (n) {
2374 if (!net_eq(dev_net(n->dev), net))
2375 goto next;
2376 if (state->neigh_sub_iter) {
2377 void *v = state->neigh_sub_iter(state, n, pos);
2378 if (v)
2379 return n;
2380 goto next;
2381 }
2382 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2383 break;
2384
2385 if (n->nud_state & ~NUD_NOARP)
2386 break;
2387 next:
2388 n = rcu_dereference_bh(n->next);
2389 }
2390
2391 if (n)
2392 break;
2393
2394 if (++state->bucket > nht->hash_mask)
2395 break;
2396
2397 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2398 }
2399
2400 if (n && pos)
2401 --(*pos);
2402 return n;
2403 }
2404
2405 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2406 {
2407 struct neighbour *n = neigh_get_first(seq);
2408
2409 if (n) {
2410 --(*pos);
2411 while (*pos) {
2412 n = neigh_get_next(seq, n, pos);
2413 if (!n)
2414 break;
2415 }
2416 }
2417 return *pos ? NULL : n;
2418 }
2419
2420 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2421 {
2422 struct neigh_seq_state *state = seq->private;
2423 struct net *net = seq_file_net(seq);
2424 struct neigh_table *tbl = state->tbl;
2425 struct pneigh_entry *pn = NULL;
2426 int bucket = state->bucket;
2427
2428 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2429 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2430 pn = tbl->phash_buckets[bucket];
2431 while (pn && !net_eq(pneigh_net(pn), net))
2432 pn = pn->next;
2433 if (pn)
2434 break;
2435 }
2436 state->bucket = bucket;
2437
2438 return pn;
2439 }
2440
2441 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2442 struct pneigh_entry *pn,
2443 loff_t *pos)
2444 {
2445 struct neigh_seq_state *state = seq->private;
2446 struct net *net = seq_file_net(seq);
2447 struct neigh_table *tbl = state->tbl;
2448
2449 pn = pn->next;
2450 while (!pn) {
2451 if (++state->bucket > PNEIGH_HASHMASK)
2452 break;
2453 pn = tbl->phash_buckets[state->bucket];
2454 while (pn && !net_eq(pneigh_net(pn), net))
2455 pn = pn->next;
2456 if (pn)
2457 break;
2458 }
2459
2460 if (pn && pos)
2461 --(*pos);
2462
2463 return pn;
2464 }
2465
2466 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2467 {
2468 struct pneigh_entry *pn = pneigh_get_first(seq);
2469
2470 if (pn) {
2471 --(*pos);
2472 while (*pos) {
2473 pn = pneigh_get_next(seq, pn, pos);
2474 if (!pn)
2475 break;
2476 }
2477 }
2478 return *pos ? NULL : pn;
2479 }
2480
2481 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2482 {
2483 struct neigh_seq_state *state = seq->private;
2484 void *rc;
2485 loff_t idxpos = *pos;
2486
2487 rc = neigh_get_idx(seq, &idxpos);
2488 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2489 rc = pneigh_get_idx(seq, &idxpos);
2490
2491 return rc;
2492 }
2493
2494 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2495 __acquires(rcu_bh)
2496 {
2497 struct neigh_seq_state *state = seq->private;
2498
2499 state->tbl = tbl;
2500 state->bucket = 0;
2501 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2502
2503 rcu_read_lock_bh();
2504 state->nht = rcu_dereference_bh(tbl->nht);
2505
2506 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2507 }
2508 EXPORT_SYMBOL(neigh_seq_start);
2509
2510 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511 {
2512 struct neigh_seq_state *state;
2513 void *rc;
2514
2515 if (v == SEQ_START_TOKEN) {
2516 rc = neigh_get_first(seq);
2517 goto out;
2518 }
2519
2520 state = seq->private;
2521 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2522 rc = neigh_get_next(seq, v, NULL);
2523 if (rc)
2524 goto out;
2525 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2526 rc = pneigh_get_first(seq);
2527 } else {
2528 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2529 rc = pneigh_get_next(seq, v, NULL);
2530 }
2531 out:
2532 ++(*pos);
2533 return rc;
2534 }
2535 EXPORT_SYMBOL(neigh_seq_next);
2536
2537 void neigh_seq_stop(struct seq_file *seq, void *v)
2538 __releases(rcu_bh)
2539 {
2540 rcu_read_unlock_bh();
2541 }
2542 EXPORT_SYMBOL(neigh_seq_stop);
2543
2544 /* statistics via seq_file */
2545
2546 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2547 {
2548 struct neigh_table *tbl = seq->private;
2549 int cpu;
2550
2551 if (*pos == 0)
2552 return SEQ_START_TOKEN;
2553
2554 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2555 if (!cpu_possible(cpu))
2556 continue;
2557 *pos = cpu+1;
2558 return per_cpu_ptr(tbl->stats, cpu);
2559 }
2560 return NULL;
2561 }
2562
2563 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2564 {
2565 struct neigh_table *tbl = seq->private;
2566 int cpu;
2567
2568 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2569 if (!cpu_possible(cpu))
2570 continue;
2571 *pos = cpu+1;
2572 return per_cpu_ptr(tbl->stats, cpu);
2573 }
2574 return NULL;
2575 }
2576
2577 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2578 {
2579
2580 }
2581
2582 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2583 {
2584 struct neigh_table *tbl = seq->private;
2585 struct neigh_statistics *st = v;
2586
2587 if (v == SEQ_START_TOKEN) {
2588 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2589 return 0;
2590 }
2591
2592 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2593 "%08lx %08lx %08lx %08lx %08lx\n",
2594 atomic_read(&tbl->entries),
2595
2596 st->allocs,
2597 st->destroys,
2598 st->hash_grows,
2599
2600 st->lookups,
2601 st->hits,
2602
2603 st->res_failed,
2604
2605 st->rcv_probes_mcast,
2606 st->rcv_probes_ucast,
2607
2608 st->periodic_gc_runs,
2609 st->forced_gc_runs,
2610 st->unres_discards
2611 );
2612
2613 return 0;
2614 }
2615
2616 static const struct seq_operations neigh_stat_seq_ops = {
2617 .start = neigh_stat_seq_start,
2618 .next = neigh_stat_seq_next,
2619 .stop = neigh_stat_seq_stop,
2620 .show = neigh_stat_seq_show,
2621 };
2622
2623 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2624 {
2625 int ret = seq_open(file, &neigh_stat_seq_ops);
2626
2627 if (!ret) {
2628 struct seq_file *sf = file->private_data;
2629 sf->private = PDE(inode)->data;
2630 }
2631 return ret;
2632 };
2633
2634 static const struct file_operations neigh_stat_seq_fops = {
2635 .owner = THIS_MODULE,
2636 .open = neigh_stat_seq_open,
2637 .read = seq_read,
2638 .llseek = seq_lseek,
2639 .release = seq_release,
2640 };
2641
2642 #endif /* CONFIG_PROC_FS */
2643
2644 static inline size_t neigh_nlmsg_size(void)
2645 {
2646 return NLMSG_ALIGN(sizeof(struct ndmsg))
2647 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2648 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2649 + nla_total_size(sizeof(struct nda_cacheinfo))
2650 + nla_total_size(4); /* NDA_PROBES */
2651 }
2652
2653 static void __neigh_notify(struct neighbour *n, int type, int flags)
2654 {
2655 struct net *net = dev_net(n->dev);
2656 struct sk_buff *skb;
2657 int err = -ENOBUFS;
2658
2659 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2660 if (skb == NULL)
2661 goto errout;
2662
2663 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2664 if (err < 0) {
2665 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2666 WARN_ON(err == -EMSGSIZE);
2667 kfree_skb(skb);
2668 goto errout;
2669 }
2670 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2671 return;
2672 errout:
2673 if (err < 0)
2674 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2675 }
2676
2677 #ifdef CONFIG_ARPD
2678 void neigh_app_ns(struct neighbour *n)
2679 {
2680 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2681 }
2682 EXPORT_SYMBOL(neigh_app_ns);
2683 #endif /* CONFIG_ARPD */
2684
2685 #ifdef CONFIG_SYSCTL
2686
2687 #define NEIGH_VARS_MAX 19
2688
2689 static struct neigh_sysctl_table {
2690 struct ctl_table_header *sysctl_header;
2691 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2692 char *dev_name;
2693 } neigh_sysctl_template __read_mostly = {
2694 .neigh_vars = {
2695 {
2696 .procname = "mcast_solicit",
2697 .maxlen = sizeof(int),
2698 .mode = 0644,
2699 .proc_handler = proc_dointvec,
2700 },
2701 {
2702 .procname = "ucast_solicit",
2703 .maxlen = sizeof(int),
2704 .mode = 0644,
2705 .proc_handler = proc_dointvec,
2706 },
2707 {
2708 .procname = "app_solicit",
2709 .maxlen = sizeof(int),
2710 .mode = 0644,
2711 .proc_handler = proc_dointvec,
2712 },
2713 {
2714 .procname = "retrans_time",
2715 .maxlen = sizeof(int),
2716 .mode = 0644,
2717 .proc_handler = proc_dointvec_userhz_jiffies,
2718 },
2719 {
2720 .procname = "base_reachable_time",
2721 .maxlen = sizeof(int),
2722 .mode = 0644,
2723 .proc_handler = proc_dointvec_jiffies,
2724 },
2725 {
2726 .procname = "delay_first_probe_time",
2727 .maxlen = sizeof(int),
2728 .mode = 0644,
2729 .proc_handler = proc_dointvec_jiffies,
2730 },
2731 {
2732 .procname = "gc_stale_time",
2733 .maxlen = sizeof(int),
2734 .mode = 0644,
2735 .proc_handler = proc_dointvec_jiffies,
2736 },
2737 {
2738 .procname = "unres_qlen",
2739 .maxlen = sizeof(int),
2740 .mode = 0644,
2741 .proc_handler = proc_dointvec,
2742 },
2743 {
2744 .procname = "proxy_qlen",
2745 .maxlen = sizeof(int),
2746 .mode = 0644,
2747 .proc_handler = proc_dointvec,
2748 },
2749 {
2750 .procname = "anycast_delay",
2751 .maxlen = sizeof(int),
2752 .mode = 0644,
2753 .proc_handler = proc_dointvec_userhz_jiffies,
2754 },
2755 {
2756 .procname = "proxy_delay",
2757 .maxlen = sizeof(int),
2758 .mode = 0644,
2759 .proc_handler = proc_dointvec_userhz_jiffies,
2760 },
2761 {
2762 .procname = "locktime",
2763 .maxlen = sizeof(int),
2764 .mode = 0644,
2765 .proc_handler = proc_dointvec_userhz_jiffies,
2766 },
2767 {
2768 .procname = "retrans_time_ms",
2769 .maxlen = sizeof(int),
2770 .mode = 0644,
2771 .proc_handler = proc_dointvec_ms_jiffies,
2772 },
2773 {
2774 .procname = "base_reachable_time_ms",
2775 .maxlen = sizeof(int),
2776 .mode = 0644,
2777 .proc_handler = proc_dointvec_ms_jiffies,
2778 },
2779 {
2780 .procname = "gc_interval",
2781 .maxlen = sizeof(int),
2782 .mode = 0644,
2783 .proc_handler = proc_dointvec_jiffies,
2784 },
2785 {
2786 .procname = "gc_thresh1",
2787 .maxlen = sizeof(int),
2788 .mode = 0644,
2789 .proc_handler = proc_dointvec,
2790 },
2791 {
2792 .procname = "gc_thresh2",
2793 .maxlen = sizeof(int),
2794 .mode = 0644,
2795 .proc_handler = proc_dointvec,
2796 },
2797 {
2798 .procname = "gc_thresh3",
2799 .maxlen = sizeof(int),
2800 .mode = 0644,
2801 .proc_handler = proc_dointvec,
2802 },
2803 {},
2804 },
2805 };
2806
2807 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2808 char *p_name, proc_handler *handler)
2809 {
2810 struct neigh_sysctl_table *t;
2811 const char *dev_name_source = NULL;
2812
2813 #define NEIGH_CTL_PATH_ROOT 0
2814 #define NEIGH_CTL_PATH_PROTO 1
2815 #define NEIGH_CTL_PATH_NEIGH 2
2816 #define NEIGH_CTL_PATH_DEV 3
2817
2818 struct ctl_path neigh_path[] = {
2819 { .procname = "net", },
2820 { .procname = "proto", },
2821 { .procname = "neigh", },
2822 { .procname = "default", },
2823 { },
2824 };
2825
2826 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2827 if (!t)
2828 goto err;
2829
2830 t->neigh_vars[0].data = &p->mcast_probes;
2831 t->neigh_vars[1].data = &p->ucast_probes;
2832 t->neigh_vars[2].data = &p->app_probes;
2833 t->neigh_vars[3].data = &p->retrans_time;
2834 t->neigh_vars[4].data = &p->base_reachable_time;
2835 t->neigh_vars[5].data = &p->delay_probe_time;
2836 t->neigh_vars[6].data = &p->gc_staletime;
2837 t->neigh_vars[7].data = &p->queue_len;
2838 t->neigh_vars[8].data = &p->proxy_qlen;
2839 t->neigh_vars[9].data = &p->anycast_delay;
2840 t->neigh_vars[10].data = &p->proxy_delay;
2841 t->neigh_vars[11].data = &p->locktime;
2842 t->neigh_vars[12].data = &p->retrans_time;
2843 t->neigh_vars[13].data = &p->base_reachable_time;
2844
2845 if (dev) {
2846 dev_name_source = dev->name;
2847 /* Terminate the table early */
2848 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2849 } else {
2850 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2851 t->neigh_vars[14].data = (int *)(p + 1);
2852 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2853 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2854 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2855 }
2856
2857
2858 if (handler) {
2859 /* RetransTime */
2860 t->neigh_vars[3].proc_handler = handler;
2861 t->neigh_vars[3].extra1 = dev;
2862 /* ReachableTime */
2863 t->neigh_vars[4].proc_handler = handler;
2864 t->neigh_vars[4].extra1 = dev;
2865 /* RetransTime (in milliseconds)*/
2866 t->neigh_vars[12].proc_handler = handler;
2867 t->neigh_vars[12].extra1 = dev;
2868 /* ReachableTime (in milliseconds) */
2869 t->neigh_vars[13].proc_handler = handler;
2870 t->neigh_vars[13].extra1 = dev;
2871 }
2872
2873 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2874 if (!t->dev_name)
2875 goto free;
2876
2877 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2878 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2879
2880 t->sysctl_header =
2881 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2882 if (!t->sysctl_header)
2883 goto free_procname;
2884
2885 p->sysctl_table = t;
2886 return 0;
2887
2888 free_procname:
2889 kfree(t->dev_name);
2890 free:
2891 kfree(t);
2892 err:
2893 return -ENOBUFS;
2894 }
2895 EXPORT_SYMBOL(neigh_sysctl_register);
2896
2897 void neigh_sysctl_unregister(struct neigh_parms *p)
2898 {
2899 if (p->sysctl_table) {
2900 struct neigh_sysctl_table *t = p->sysctl_table;
2901 p->sysctl_table = NULL;
2902 unregister_sysctl_table(t->sysctl_header);
2903 kfree(t->dev_name);
2904 kfree(t);
2905 }
2906 }
2907 EXPORT_SYMBOL(neigh_sysctl_unregister);
2908
2909 #endif /* CONFIG_SYSCTL */
2910
2911 static int __init neigh_init(void)
2912 {
2913 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2914 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2915 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2916
2917 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2918 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2919
2920 return 0;
2921 }
2922
2923 subsys_initcall(neigh_init);
2924
This page took 0.11694 seconds and 6 git commands to generate.