Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for-linus
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126
127
128 static int neigh_forced_gc(struct neigh_table *tbl)
129 {
130 int shrunk = 0;
131 int i;
132
133 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
134
135 write_lock_bh(&tbl->lock);
136 for (i = 0; i <= tbl->hash_mask; i++) {
137 struct neighbour *n, **np;
138
139 np = &tbl->hash_buckets[i];
140 while ((n = *np) != NULL) {
141 /* Neighbour record may be discarded if:
142 * - nobody refers to it.
143 * - it is not permanent
144 */
145 write_lock(&n->lock);
146 if (atomic_read(&n->refcnt) == 1 &&
147 !(n->nud_state & NUD_PERMANENT)) {
148 *np = n->next;
149 n->dead = 1;
150 shrunk = 1;
151 write_unlock(&n->lock);
152 neigh_cleanup_and_release(n);
153 continue;
154 }
155 write_unlock(&n->lock);
156 np = &n->next;
157 }
158 }
159
160 tbl->last_flush = jiffies;
161
162 write_unlock_bh(&tbl->lock);
163
164 return shrunk;
165 }
166
167 static void neigh_add_timer(struct neighbour *n, unsigned long when)
168 {
169 neigh_hold(n);
170 if (unlikely(mod_timer(&n->timer, when))) {
171 printk("NEIGH: BUG, double timer add, state is %x\n",
172 n->nud_state);
173 dump_stack();
174 }
175 }
176
177 static int neigh_del_timer(struct neighbour *n)
178 {
179 if ((n->nud_state & NUD_IN_TIMER) &&
180 del_timer(&n->timer)) {
181 neigh_release(n);
182 return 1;
183 }
184 return 0;
185 }
186
187 static void pneigh_queue_purge(struct sk_buff_head *list)
188 {
189 struct sk_buff *skb;
190
191 while ((skb = skb_dequeue(list)) != NULL) {
192 dev_put(skb->dev);
193 kfree_skb(skb);
194 }
195 }
196
197 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
198 {
199 int i;
200
201 for (i = 0; i <= tbl->hash_mask; i++) {
202 struct neighbour *n, **np = &tbl->hash_buckets[i];
203
204 while ((n = *np) != NULL) {
205 if (dev && n->dev != dev) {
206 np = &n->next;
207 continue;
208 }
209 *np = n->next;
210 write_lock(&n->lock);
211 neigh_del_timer(n);
212 n->dead = 1;
213
214 if (atomic_read(&n->refcnt) != 1) {
215 /* The most unpleasant situation.
216 We must destroy neighbour entry,
217 but someone still uses it.
218
219 The destroy will be delayed until
220 the last user releases us, but
221 we must kill timers etc. and move
222 it to safe state.
223 */
224 skb_queue_purge(&n->arp_queue);
225 n->output = neigh_blackhole;
226 if (n->nud_state & NUD_VALID)
227 n->nud_state = NUD_NOARP;
228 else
229 n->nud_state = NUD_NONE;
230 NEIGH_PRINTK2("neigh %p is stray.\n", n);
231 }
232 write_unlock(&n->lock);
233 neigh_cleanup_and_release(n);
234 }
235 }
236 }
237
238 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
239 {
240 write_lock_bh(&tbl->lock);
241 neigh_flush_dev(tbl, dev);
242 write_unlock_bh(&tbl->lock);
243 }
244
245 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 pneigh_ifdown(tbl, dev);
250 write_unlock_bh(&tbl->lock);
251
252 del_timer_sync(&tbl->proxy_timer);
253 pneigh_queue_purge(&tbl->proxy_queue);
254 return 0;
255 }
256
257 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
258 {
259 struct neighbour *n = NULL;
260 unsigned long now = jiffies;
261 int entries;
262
263 entries = atomic_inc_return(&tbl->entries) - 1;
264 if (entries >= tbl->gc_thresh3 ||
265 (entries >= tbl->gc_thresh2 &&
266 time_after(now, tbl->last_flush + 5 * HZ))) {
267 if (!neigh_forced_gc(tbl) &&
268 entries >= tbl->gc_thresh3)
269 goto out_entries;
270 }
271
272 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
273 if (!n)
274 goto out_entries;
275
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
283
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288 out:
289 return n;
290
291 out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
294 }
295
296 static struct neighbour **neigh_hash_alloc(unsigned int entries)
297 {
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
300
301 if (size <= PAGE_SIZE) {
302 ret = kzalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
306 }
307 return ret;
308 }
309
310 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
311 {
312 unsigned long size = entries * sizeof(struct neighbour *);
313
314 if (size <= PAGE_SIZE)
315 kfree(hash);
316 else
317 free_pages((unsigned long)hash, get_order(size));
318 }
319
320 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
321 {
322 struct neighbour **new_hash, **old_hash;
323 unsigned int i, new_hash_mask, old_entries;
324
325 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
326
327 BUG_ON(!is_power_of_2(new_entries));
328 new_hash = neigh_hash_alloc(new_entries);
329 if (!new_hash)
330 return;
331
332 old_entries = tbl->hash_mask + 1;
333 new_hash_mask = new_entries - 1;
334 old_hash = tbl->hash_buckets;
335
336 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
337 for (i = 0; i < old_entries; i++) {
338 struct neighbour *n, *next;
339
340 for (n = old_hash[i]; n; n = next) {
341 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
342
343 hash_val &= new_hash_mask;
344 next = n->next;
345
346 n->next = new_hash[hash_val];
347 new_hash[hash_val] = n;
348 }
349 }
350 tbl->hash_buckets = new_hash;
351 tbl->hash_mask = new_hash_mask;
352
353 neigh_hash_free(old_hash, old_entries);
354 }
355
356 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
357 struct net_device *dev)
358 {
359 struct neighbour *n;
360 int key_len = tbl->key_len;
361 u32 hash_val = tbl->hash(pkey, dev);
362
363 NEIGH_CACHE_STAT_INC(tbl, lookups);
364
365 read_lock_bh(&tbl->lock);
366 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
367 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
368 neigh_hold(n);
369 NEIGH_CACHE_STAT_INC(tbl, hits);
370 break;
371 }
372 }
373 read_unlock_bh(&tbl->lock);
374 return n;
375 }
376
377 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
378 const void *pkey)
379 {
380 struct neighbour *n;
381 int key_len = tbl->key_len;
382 u32 hash_val = tbl->hash(pkey, NULL);
383
384 NEIGH_CACHE_STAT_INC(tbl, lookups);
385
386 read_lock_bh(&tbl->lock);
387 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
388 if (!memcmp(n->primary_key, pkey, key_len) &&
389 (net == n->dev->nd_net)) {
390 neigh_hold(n);
391 NEIGH_CACHE_STAT_INC(tbl, hits);
392 break;
393 }
394 }
395 read_unlock_bh(&tbl->lock);
396 return n;
397 }
398
399 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
400 struct net_device *dev)
401 {
402 u32 hash_val;
403 int key_len = tbl->key_len;
404 int error;
405 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
406
407 if (!n) {
408 rc = ERR_PTR(-ENOBUFS);
409 goto out;
410 }
411
412 memcpy(n->primary_key, pkey, key_len);
413 n->dev = dev;
414 dev_hold(dev);
415
416 /* Protocol specific setup. */
417 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
418 rc = ERR_PTR(error);
419 goto out_neigh_release;
420 }
421
422 /* Device specific setup. */
423 if (n->parms->neigh_setup &&
424 (error = n->parms->neigh_setup(n)) < 0) {
425 rc = ERR_PTR(error);
426 goto out_neigh_release;
427 }
428
429 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
430
431 write_lock_bh(&tbl->lock);
432
433 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
434 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
435
436 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
437
438 if (n->parms->dead) {
439 rc = ERR_PTR(-EINVAL);
440 goto out_tbl_unlock;
441 }
442
443 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
444 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
445 neigh_hold(n1);
446 rc = n1;
447 goto out_tbl_unlock;
448 }
449 }
450
451 n->next = tbl->hash_buckets[hash_val];
452 tbl->hash_buckets[hash_val] = n;
453 n->dead = 0;
454 neigh_hold(n);
455 write_unlock_bh(&tbl->lock);
456 NEIGH_PRINTK2("neigh %p is created.\n", n);
457 rc = n;
458 out:
459 return rc;
460 out_tbl_unlock:
461 write_unlock_bh(&tbl->lock);
462 out_neigh_release:
463 neigh_release(n);
464 goto out;
465 }
466
467 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
468 struct net *net, const void *pkey,
469 struct net_device *dev, int creat)
470 {
471 struct pneigh_entry *n;
472 int key_len = tbl->key_len;
473 u32 hash_val = *(u32 *)(pkey + key_len - 4);
474
475 hash_val ^= (hash_val >> 16);
476 hash_val ^= hash_val >> 8;
477 hash_val ^= hash_val >> 4;
478 hash_val &= PNEIGH_HASHMASK;
479
480 read_lock_bh(&tbl->lock);
481
482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
483 if (!memcmp(n->key, pkey, key_len) &&
484 (n->net == net) &&
485 (n->dev == dev || !n->dev)) {
486 read_unlock_bh(&tbl->lock);
487 goto out;
488 }
489 }
490 read_unlock_bh(&tbl->lock);
491 n = NULL;
492 if (!creat)
493 goto out;
494
495 ASSERT_RTNL();
496
497 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
498 if (!n)
499 goto out;
500
501 n->net = hold_net(net);
502 memcpy(n->key, pkey, key_len);
503 n->dev = dev;
504 if (dev)
505 dev_hold(dev);
506
507 if (tbl->pconstructor && tbl->pconstructor(n)) {
508 if (dev)
509 dev_put(dev);
510 kfree(n);
511 n = NULL;
512 goto out;
513 }
514
515 write_lock_bh(&tbl->lock);
516 n->next = tbl->phash_buckets[hash_val];
517 tbl->phash_buckets[hash_val] = n;
518 write_unlock_bh(&tbl->lock);
519 out:
520 return n;
521 }
522
523
524 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
525 struct net_device *dev)
526 {
527 struct pneigh_entry *n, **np;
528 int key_len = tbl->key_len;
529 u32 hash_val = *(u32 *)(pkey + key_len - 4);
530
531 hash_val ^= (hash_val >> 16);
532 hash_val ^= hash_val >> 8;
533 hash_val ^= hash_val >> 4;
534 hash_val &= PNEIGH_HASHMASK;
535
536 write_lock_bh(&tbl->lock);
537 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
538 np = &n->next) {
539 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
540 (n->net == net)) {
541 *np = n->next;
542 write_unlock_bh(&tbl->lock);
543 if (tbl->pdestructor)
544 tbl->pdestructor(n);
545 if (n->dev)
546 dev_put(n->dev);
547 release_net(n->net);
548 kfree(n);
549 return 0;
550 }
551 }
552 write_unlock_bh(&tbl->lock);
553 return -ENOENT;
554 }
555
556 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
557 {
558 struct pneigh_entry *n, **np;
559 u32 h;
560
561 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
562 np = &tbl->phash_buckets[h];
563 while ((n = *np) != NULL) {
564 if (!dev || n->dev == dev) {
565 *np = n->next;
566 if (tbl->pdestructor)
567 tbl->pdestructor(n);
568 if (n->dev)
569 dev_put(n->dev);
570 release_net(n->net);
571 kfree(n);
572 continue;
573 }
574 np = &n->next;
575 }
576 }
577 return -ENOENT;
578 }
579
580 static void neigh_parms_destroy(struct neigh_parms *parms);
581
582 static inline void neigh_parms_put(struct neigh_parms *parms)
583 {
584 if (atomic_dec_and_test(&parms->refcnt))
585 neigh_parms_destroy(parms);
586 }
587
588 /*
589 * neighbour must already be out of the table;
590 *
591 */
592 void neigh_destroy(struct neighbour *neigh)
593 {
594 struct hh_cache *hh;
595
596 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
597
598 if (!neigh->dead) {
599 printk(KERN_WARNING
600 "Destroying alive neighbour %p\n", neigh);
601 dump_stack();
602 return;
603 }
604
605 if (neigh_del_timer(neigh))
606 printk(KERN_WARNING "Impossible event.\n");
607
608 while ((hh = neigh->hh) != NULL) {
609 neigh->hh = hh->hh_next;
610 hh->hh_next = NULL;
611
612 write_seqlock_bh(&hh->hh_lock);
613 hh->hh_output = neigh_blackhole;
614 write_sequnlock_bh(&hh->hh_lock);
615 if (atomic_dec_and_test(&hh->hh_refcnt))
616 kfree(hh);
617 }
618
619 skb_queue_purge(&neigh->arp_queue);
620
621 dev_put(neigh->dev);
622 neigh_parms_put(neigh->parms);
623
624 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
625
626 atomic_dec(&neigh->tbl->entries);
627 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
628 }
629
630 /* Neighbour state is suspicious;
631 disable fast path.
632
633 Called with write_locked neigh.
634 */
635 static void neigh_suspect(struct neighbour *neigh)
636 {
637 struct hh_cache *hh;
638
639 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
640
641 neigh->output = neigh->ops->output;
642
643 for (hh = neigh->hh; hh; hh = hh->hh_next)
644 hh->hh_output = neigh->ops->output;
645 }
646
647 /* Neighbour state is OK;
648 enable fast path.
649
650 Called with write_locked neigh.
651 */
652 static void neigh_connect(struct neighbour *neigh)
653 {
654 struct hh_cache *hh;
655
656 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
657
658 neigh->output = neigh->ops->connected_output;
659
660 for (hh = neigh->hh; hh; hh = hh->hh_next)
661 hh->hh_output = neigh->ops->hh_output;
662 }
663
664 static void neigh_periodic_timer(unsigned long arg)
665 {
666 struct neigh_table *tbl = (struct neigh_table *)arg;
667 struct neighbour *n, **np;
668 unsigned long expire, now = jiffies;
669
670 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
671
672 write_lock(&tbl->lock);
673
674 /*
675 * periodically recompute ReachableTime from random function
676 */
677
678 if (time_after(now, tbl->last_rand + 300 * HZ)) {
679 struct neigh_parms *p;
680 tbl->last_rand = now;
681 for (p = &tbl->parms; p; p = p->next)
682 p->reachable_time =
683 neigh_rand_reach_time(p->base_reachable_time);
684 }
685
686 np = &tbl->hash_buckets[tbl->hash_chain_gc];
687 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
688
689 while ((n = *np) != NULL) {
690 unsigned int state;
691
692 write_lock(&n->lock);
693
694 state = n->nud_state;
695 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
696 write_unlock(&n->lock);
697 goto next_elt;
698 }
699
700 if (time_before(n->used, n->confirmed))
701 n->used = n->confirmed;
702
703 if (atomic_read(&n->refcnt) == 1 &&
704 (state == NUD_FAILED ||
705 time_after(now, n->used + n->parms->gc_staletime))) {
706 *np = n->next;
707 n->dead = 1;
708 write_unlock(&n->lock);
709 neigh_cleanup_and_release(n);
710 continue;
711 }
712 write_unlock(&n->lock);
713
714 next_elt:
715 np = &n->next;
716 }
717
718 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
719 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
720 * base_reachable_time.
721 */
722 expire = tbl->parms.base_reachable_time >> 1;
723 expire /= (tbl->hash_mask + 1);
724 if (!expire)
725 expire = 1;
726
727 if (expire>HZ)
728 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
729 else
730 mod_timer(&tbl->gc_timer, now + expire);
731
732 write_unlock(&tbl->lock);
733 }
734
735 static __inline__ int neigh_max_probes(struct neighbour *n)
736 {
737 struct neigh_parms *p = n->parms;
738 return (n->nud_state & NUD_PROBE ?
739 p->ucast_probes :
740 p->ucast_probes + p->app_probes + p->mcast_probes);
741 }
742
743 /* Called when a timer expires for a neighbour entry. */
744
745 static void neigh_timer_handler(unsigned long arg)
746 {
747 unsigned long now, next;
748 struct neighbour *neigh = (struct neighbour *)arg;
749 unsigned state;
750 int notify = 0;
751
752 write_lock(&neigh->lock);
753
754 state = neigh->nud_state;
755 now = jiffies;
756 next = now + HZ;
757
758 if (!(state & NUD_IN_TIMER)) {
759 #ifndef CONFIG_SMP
760 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
761 #endif
762 goto out;
763 }
764
765 if (state & NUD_REACHABLE) {
766 if (time_before_eq(now,
767 neigh->confirmed + neigh->parms->reachable_time)) {
768 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
769 next = neigh->confirmed + neigh->parms->reachable_time;
770 } else if (time_before_eq(now,
771 neigh->used + neigh->parms->delay_probe_time)) {
772 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
773 neigh->nud_state = NUD_DELAY;
774 neigh->updated = jiffies;
775 neigh_suspect(neigh);
776 next = now + neigh->parms->delay_probe_time;
777 } else {
778 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
779 neigh->nud_state = NUD_STALE;
780 neigh->updated = jiffies;
781 neigh_suspect(neigh);
782 notify = 1;
783 }
784 } else if (state & NUD_DELAY) {
785 if (time_before_eq(now,
786 neigh->confirmed + neigh->parms->delay_probe_time)) {
787 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
788 neigh->nud_state = NUD_REACHABLE;
789 neigh->updated = jiffies;
790 neigh_connect(neigh);
791 notify = 1;
792 next = neigh->confirmed + neigh->parms->reachable_time;
793 } else {
794 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
795 neigh->nud_state = NUD_PROBE;
796 neigh->updated = jiffies;
797 atomic_set(&neigh->probes, 0);
798 next = now + neigh->parms->retrans_time;
799 }
800 } else {
801 /* NUD_PROBE|NUD_INCOMPLETE */
802 next = now + neigh->parms->retrans_time;
803 }
804
805 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
806 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
807 struct sk_buff *skb;
808
809 neigh->nud_state = NUD_FAILED;
810 neigh->updated = jiffies;
811 notify = 1;
812 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
813 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
814
815 /* It is very thin place. report_unreachable is very complicated
816 routine. Particularly, it can hit the same neighbour entry!
817
818 So that, we try to be accurate and avoid dead loop. --ANK
819 */
820 while (neigh->nud_state == NUD_FAILED &&
821 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
822 write_unlock(&neigh->lock);
823 neigh->ops->error_report(neigh, skb);
824 write_lock(&neigh->lock);
825 }
826 skb_queue_purge(&neigh->arp_queue);
827 }
828
829 if (neigh->nud_state & NUD_IN_TIMER) {
830 if (time_before(next, jiffies + HZ/2))
831 next = jiffies + HZ/2;
832 if (!mod_timer(&neigh->timer, next))
833 neigh_hold(neigh);
834 }
835 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
836 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
837
838 neigh->ops->solicit(neigh, skb);
839 atomic_inc(&neigh->probes);
840 }
841 out:
842 write_unlock(&neigh->lock);
843
844 if (notify)
845 neigh_update_notify(neigh);
846
847 neigh_release(neigh);
848 }
849
850 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
851 {
852 int rc;
853 unsigned long now;
854
855 write_lock_bh(&neigh->lock);
856
857 rc = 0;
858 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
859 goto out_unlock_bh;
860
861 now = jiffies;
862
863 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
864 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
865 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
866 neigh->nud_state = NUD_INCOMPLETE;
867 neigh->updated = jiffies;
868 neigh_add_timer(neigh, now + 1);
869 } else {
870 neigh->nud_state = NUD_FAILED;
871 neigh->updated = jiffies;
872 write_unlock_bh(&neigh->lock);
873
874 if (skb)
875 kfree_skb(skb);
876 return 1;
877 }
878 } else if (neigh->nud_state & NUD_STALE) {
879 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
880 neigh->nud_state = NUD_DELAY;
881 neigh->updated = jiffies;
882 neigh_add_timer(neigh,
883 jiffies + neigh->parms->delay_probe_time);
884 }
885
886 if (neigh->nud_state == NUD_INCOMPLETE) {
887 if (skb) {
888 if (skb_queue_len(&neigh->arp_queue) >=
889 neigh->parms->queue_len) {
890 struct sk_buff *buff;
891 buff = neigh->arp_queue.next;
892 __skb_unlink(buff, &neigh->arp_queue);
893 kfree_skb(buff);
894 }
895 __skb_queue_tail(&neigh->arp_queue, skb);
896 }
897 rc = 1;
898 }
899 out_unlock_bh:
900 write_unlock_bh(&neigh->lock);
901 return rc;
902 }
903
904 static void neigh_update_hhs(struct neighbour *neigh)
905 {
906 struct hh_cache *hh;
907 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
908 = neigh->dev->header_ops->cache_update;
909
910 if (update) {
911 for (hh = neigh->hh; hh; hh = hh->hh_next) {
912 write_seqlock_bh(&hh->hh_lock);
913 update(hh, neigh->dev, neigh->ha);
914 write_sequnlock_bh(&hh->hh_lock);
915 }
916 }
917 }
918
919
920
921 /* Generic update routine.
922 -- lladdr is new lladdr or NULL, if it is not supplied.
923 -- new is new state.
924 -- flags
925 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
926 if it is different.
927 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
928 lladdr instead of overriding it
929 if it is different.
930 It also allows to retain current state
931 if lladdr is unchanged.
932 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
933
934 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
935 NTF_ROUTER flag.
936 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
937 a router.
938
939 Caller MUST hold reference count on the entry.
940 */
941
942 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
943 u32 flags)
944 {
945 u8 old;
946 int err;
947 int notify = 0;
948 struct net_device *dev;
949 int update_isrouter = 0;
950
951 write_lock_bh(&neigh->lock);
952
953 dev = neigh->dev;
954 old = neigh->nud_state;
955 err = -EPERM;
956
957 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
958 (old & (NUD_NOARP | NUD_PERMANENT)))
959 goto out;
960
961 if (!(new & NUD_VALID)) {
962 neigh_del_timer(neigh);
963 if (old & NUD_CONNECTED)
964 neigh_suspect(neigh);
965 neigh->nud_state = new;
966 err = 0;
967 notify = old & NUD_VALID;
968 goto out;
969 }
970
971 /* Compare new lladdr with cached one */
972 if (!dev->addr_len) {
973 /* First case: device needs no address. */
974 lladdr = neigh->ha;
975 } else if (lladdr) {
976 /* The second case: if something is already cached
977 and a new address is proposed:
978 - compare new & old
979 - if they are different, check override flag
980 */
981 if ((old & NUD_VALID) &&
982 !memcmp(lladdr, neigh->ha, dev->addr_len))
983 lladdr = neigh->ha;
984 } else {
985 /* No address is supplied; if we know something,
986 use it, otherwise discard the request.
987 */
988 err = -EINVAL;
989 if (!(old & NUD_VALID))
990 goto out;
991 lladdr = neigh->ha;
992 }
993
994 if (new & NUD_CONNECTED)
995 neigh->confirmed = jiffies;
996 neigh->updated = jiffies;
997
998 /* If entry was valid and address is not changed,
999 do not change entry state, if new one is STALE.
1000 */
1001 err = 0;
1002 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1003 if (old & NUD_VALID) {
1004 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1005 update_isrouter = 0;
1006 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1007 (old & NUD_CONNECTED)) {
1008 lladdr = neigh->ha;
1009 new = NUD_STALE;
1010 } else
1011 goto out;
1012 } else {
1013 if (lladdr == neigh->ha && new == NUD_STALE &&
1014 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1015 (old & NUD_CONNECTED))
1016 )
1017 new = old;
1018 }
1019 }
1020
1021 if (new != old) {
1022 neigh_del_timer(neigh);
1023 if (new & NUD_IN_TIMER)
1024 neigh_add_timer(neigh, (jiffies +
1025 ((new & NUD_REACHABLE) ?
1026 neigh->parms->reachable_time :
1027 0)));
1028 neigh->nud_state = new;
1029 }
1030
1031 if (lladdr != neigh->ha) {
1032 memcpy(&neigh->ha, lladdr, dev->addr_len);
1033 neigh_update_hhs(neigh);
1034 if (!(new & NUD_CONNECTED))
1035 neigh->confirmed = jiffies -
1036 (neigh->parms->base_reachable_time << 1);
1037 notify = 1;
1038 }
1039 if (new == old)
1040 goto out;
1041 if (new & NUD_CONNECTED)
1042 neigh_connect(neigh);
1043 else
1044 neigh_suspect(neigh);
1045 if (!(old & NUD_VALID)) {
1046 struct sk_buff *skb;
1047
1048 /* Again: avoid dead loop if something went wrong */
1049
1050 while (neigh->nud_state & NUD_VALID &&
1051 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1052 struct neighbour *n1 = neigh;
1053 write_unlock_bh(&neigh->lock);
1054 /* On shaper/eql skb->dst->neighbour != neigh :( */
1055 if (skb->dst && skb->dst->neighbour)
1056 n1 = skb->dst->neighbour;
1057 n1->output(skb);
1058 write_lock_bh(&neigh->lock);
1059 }
1060 skb_queue_purge(&neigh->arp_queue);
1061 }
1062 out:
1063 if (update_isrouter) {
1064 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1065 (neigh->flags | NTF_ROUTER) :
1066 (neigh->flags & ~NTF_ROUTER);
1067 }
1068 write_unlock_bh(&neigh->lock);
1069
1070 if (notify)
1071 neigh_update_notify(neigh);
1072
1073 return err;
1074 }
1075
1076 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1077 u8 *lladdr, void *saddr,
1078 struct net_device *dev)
1079 {
1080 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1081 lladdr || !dev->addr_len);
1082 if (neigh)
1083 neigh_update(neigh, lladdr, NUD_STALE,
1084 NEIGH_UPDATE_F_OVERRIDE);
1085 return neigh;
1086 }
1087
1088 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1089 __be16 protocol)
1090 {
1091 struct hh_cache *hh;
1092 struct net_device *dev = dst->dev;
1093
1094 for (hh = n->hh; hh; hh = hh->hh_next)
1095 if (hh->hh_type == protocol)
1096 break;
1097
1098 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1099 seqlock_init(&hh->hh_lock);
1100 hh->hh_type = protocol;
1101 atomic_set(&hh->hh_refcnt, 0);
1102 hh->hh_next = NULL;
1103
1104 if (dev->header_ops->cache(n, hh)) {
1105 kfree(hh);
1106 hh = NULL;
1107 } else {
1108 atomic_inc(&hh->hh_refcnt);
1109 hh->hh_next = n->hh;
1110 n->hh = hh;
1111 if (n->nud_state & NUD_CONNECTED)
1112 hh->hh_output = n->ops->hh_output;
1113 else
1114 hh->hh_output = n->ops->output;
1115 }
1116 }
1117 if (hh) {
1118 atomic_inc(&hh->hh_refcnt);
1119 dst->hh = hh;
1120 }
1121 }
1122
1123 /* This function can be used in contexts, where only old dev_queue_xmit
1124 worked, f.e. if you want to override normal output path (eql, shaper),
1125 but resolution is not made yet.
1126 */
1127
1128 int neigh_compat_output(struct sk_buff *skb)
1129 {
1130 struct net_device *dev = skb->dev;
1131
1132 __skb_pull(skb, skb_network_offset(skb));
1133
1134 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1135 skb->len) < 0 &&
1136 dev->header_ops->rebuild(skb))
1137 return 0;
1138
1139 return dev_queue_xmit(skb);
1140 }
1141
1142 /* Slow and careful. */
1143
1144 int neigh_resolve_output(struct sk_buff *skb)
1145 {
1146 struct dst_entry *dst = skb->dst;
1147 struct neighbour *neigh;
1148 int rc = 0;
1149
1150 if (!dst || !(neigh = dst->neighbour))
1151 goto discard;
1152
1153 __skb_pull(skb, skb_network_offset(skb));
1154
1155 if (!neigh_event_send(neigh, skb)) {
1156 int err;
1157 struct net_device *dev = neigh->dev;
1158 if (dev->header_ops->cache && !dst->hh) {
1159 write_lock_bh(&neigh->lock);
1160 if (!dst->hh)
1161 neigh_hh_init(neigh, dst, dst->ops->protocol);
1162 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1163 neigh->ha, NULL, skb->len);
1164 write_unlock_bh(&neigh->lock);
1165 } else {
1166 read_lock_bh(&neigh->lock);
1167 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1168 neigh->ha, NULL, skb->len);
1169 read_unlock_bh(&neigh->lock);
1170 }
1171 if (err >= 0)
1172 rc = neigh->ops->queue_xmit(skb);
1173 else
1174 goto out_kfree_skb;
1175 }
1176 out:
1177 return rc;
1178 discard:
1179 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1180 dst, dst ? dst->neighbour : NULL);
1181 out_kfree_skb:
1182 rc = -EINVAL;
1183 kfree_skb(skb);
1184 goto out;
1185 }
1186
1187 /* As fast as possible without hh cache */
1188
1189 int neigh_connected_output(struct sk_buff *skb)
1190 {
1191 int err;
1192 struct dst_entry *dst = skb->dst;
1193 struct neighbour *neigh = dst->neighbour;
1194 struct net_device *dev = neigh->dev;
1195
1196 __skb_pull(skb, skb_network_offset(skb));
1197
1198 read_lock_bh(&neigh->lock);
1199 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1200 neigh->ha, NULL, skb->len);
1201 read_unlock_bh(&neigh->lock);
1202 if (err >= 0)
1203 err = neigh->ops->queue_xmit(skb);
1204 else {
1205 err = -EINVAL;
1206 kfree_skb(skb);
1207 }
1208 return err;
1209 }
1210
1211 static void neigh_proxy_process(unsigned long arg)
1212 {
1213 struct neigh_table *tbl = (struct neigh_table *)arg;
1214 long sched_next = 0;
1215 unsigned long now = jiffies;
1216 struct sk_buff *skb;
1217
1218 spin_lock(&tbl->proxy_queue.lock);
1219
1220 skb = tbl->proxy_queue.next;
1221
1222 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1223 struct sk_buff *back = skb;
1224 long tdif = NEIGH_CB(back)->sched_next - now;
1225
1226 skb = skb->next;
1227 if (tdif <= 0) {
1228 struct net_device *dev = back->dev;
1229 __skb_unlink(back, &tbl->proxy_queue);
1230 if (tbl->proxy_redo && netif_running(dev))
1231 tbl->proxy_redo(back);
1232 else
1233 kfree_skb(back);
1234
1235 dev_put(dev);
1236 } else if (!sched_next || tdif < sched_next)
1237 sched_next = tdif;
1238 }
1239 del_timer(&tbl->proxy_timer);
1240 if (sched_next)
1241 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1242 spin_unlock(&tbl->proxy_queue.lock);
1243 }
1244
1245 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1246 struct sk_buff *skb)
1247 {
1248 unsigned long now = jiffies;
1249 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1250
1251 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1252 kfree_skb(skb);
1253 return;
1254 }
1255
1256 NEIGH_CB(skb)->sched_next = sched_next;
1257 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1258
1259 spin_lock(&tbl->proxy_queue.lock);
1260 if (del_timer(&tbl->proxy_timer)) {
1261 if (time_before(tbl->proxy_timer.expires, sched_next))
1262 sched_next = tbl->proxy_timer.expires;
1263 }
1264 dst_release(skb->dst);
1265 skb->dst = NULL;
1266 dev_hold(skb->dev);
1267 __skb_queue_tail(&tbl->proxy_queue, skb);
1268 mod_timer(&tbl->proxy_timer, sched_next);
1269 spin_unlock(&tbl->proxy_queue.lock);
1270 }
1271
1272 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1273 struct net *net, int ifindex)
1274 {
1275 struct neigh_parms *p;
1276
1277 for (p = &tbl->parms; p; p = p->next) {
1278 if (p->net != net)
1279 continue;
1280 if ((p->dev && p->dev->ifindex == ifindex) ||
1281 (!p->dev && !ifindex))
1282 return p;
1283 }
1284
1285 return NULL;
1286 }
1287
1288 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1289 struct neigh_table *tbl)
1290 {
1291 struct neigh_parms *p, *ref;
1292 struct net *net;
1293
1294 net = dev->nd_net;
1295 ref = lookup_neigh_params(tbl, net, 0);
1296 if (!ref)
1297 return NULL;
1298
1299 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1300 if (p) {
1301 p->tbl = tbl;
1302 atomic_set(&p->refcnt, 1);
1303 INIT_RCU_HEAD(&p->rcu_head);
1304 p->reachable_time =
1305 neigh_rand_reach_time(p->base_reachable_time);
1306
1307 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1308 kfree(p);
1309 return NULL;
1310 }
1311
1312 dev_hold(dev);
1313 p->dev = dev;
1314 p->net = hold_net(net);
1315 p->sysctl_table = NULL;
1316 write_lock_bh(&tbl->lock);
1317 p->next = tbl->parms.next;
1318 tbl->parms.next = p;
1319 write_unlock_bh(&tbl->lock);
1320 }
1321 return p;
1322 }
1323
1324 static void neigh_rcu_free_parms(struct rcu_head *head)
1325 {
1326 struct neigh_parms *parms =
1327 container_of(head, struct neigh_parms, rcu_head);
1328
1329 neigh_parms_put(parms);
1330 }
1331
1332 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1333 {
1334 struct neigh_parms **p;
1335
1336 if (!parms || parms == &tbl->parms)
1337 return;
1338 write_lock_bh(&tbl->lock);
1339 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1340 if (*p == parms) {
1341 *p = parms->next;
1342 parms->dead = 1;
1343 write_unlock_bh(&tbl->lock);
1344 if (parms->dev)
1345 dev_put(parms->dev);
1346 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1347 return;
1348 }
1349 }
1350 write_unlock_bh(&tbl->lock);
1351 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1352 }
1353
1354 static void neigh_parms_destroy(struct neigh_parms *parms)
1355 {
1356 release_net(parms->net);
1357 kfree(parms);
1358 }
1359
1360 static struct lock_class_key neigh_table_proxy_queue_class;
1361
1362 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1363 {
1364 unsigned long now = jiffies;
1365 unsigned long phsize;
1366
1367 tbl->parms.net = &init_net;
1368 atomic_set(&tbl->parms.refcnt, 1);
1369 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1370 tbl->parms.reachable_time =
1371 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1372
1373 if (!tbl->kmem_cachep)
1374 tbl->kmem_cachep =
1375 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1376 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1377 NULL);
1378 tbl->stats = alloc_percpu(struct neigh_statistics);
1379 if (!tbl->stats)
1380 panic("cannot create neighbour cache statistics");
1381
1382 #ifdef CONFIG_PROC_FS
1383 tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
1384 if (!tbl->pde)
1385 panic("cannot create neighbour proc dir entry");
1386 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1387 tbl->pde->data = tbl;
1388 #endif
1389
1390 tbl->hash_mask = 1;
1391 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1392
1393 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1394 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1395
1396 if (!tbl->hash_buckets || !tbl->phash_buckets)
1397 panic("cannot allocate neighbour cache hashes");
1398
1399 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1400
1401 rwlock_init(&tbl->lock);
1402 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl);
1403 tbl->gc_timer.expires = now + 1;
1404 add_timer(&tbl->gc_timer);
1405
1406 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1407 skb_queue_head_init_class(&tbl->proxy_queue,
1408 &neigh_table_proxy_queue_class);
1409
1410 tbl->last_flush = now;
1411 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1412 }
1413
1414 void neigh_table_init(struct neigh_table *tbl)
1415 {
1416 struct neigh_table *tmp;
1417
1418 neigh_table_init_no_netlink(tbl);
1419 write_lock(&neigh_tbl_lock);
1420 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1421 if (tmp->family == tbl->family)
1422 break;
1423 }
1424 tbl->next = neigh_tables;
1425 neigh_tables = tbl;
1426 write_unlock(&neigh_tbl_lock);
1427
1428 if (unlikely(tmp)) {
1429 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1430 "family %d\n", tbl->family);
1431 dump_stack();
1432 }
1433 }
1434
1435 int neigh_table_clear(struct neigh_table *tbl)
1436 {
1437 struct neigh_table **tp;
1438
1439 /* It is not clean... Fix it to unload IPv6 module safely */
1440 del_timer_sync(&tbl->gc_timer);
1441 del_timer_sync(&tbl->proxy_timer);
1442 pneigh_queue_purge(&tbl->proxy_queue);
1443 neigh_ifdown(tbl, NULL);
1444 if (atomic_read(&tbl->entries))
1445 printk(KERN_CRIT "neighbour leakage\n");
1446 write_lock(&neigh_tbl_lock);
1447 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1448 if (*tp == tbl) {
1449 *tp = tbl->next;
1450 break;
1451 }
1452 }
1453 write_unlock(&neigh_tbl_lock);
1454
1455 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1456 tbl->hash_buckets = NULL;
1457
1458 kfree(tbl->phash_buckets);
1459 tbl->phash_buckets = NULL;
1460
1461 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1462
1463 free_percpu(tbl->stats);
1464 tbl->stats = NULL;
1465
1466 kmem_cache_destroy(tbl->kmem_cachep);
1467 tbl->kmem_cachep = NULL;
1468
1469 return 0;
1470 }
1471
1472 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1473 {
1474 struct net *net = skb->sk->sk_net;
1475 struct ndmsg *ndm;
1476 struct nlattr *dst_attr;
1477 struct neigh_table *tbl;
1478 struct net_device *dev = NULL;
1479 int err = -EINVAL;
1480
1481 if (nlmsg_len(nlh) < sizeof(*ndm))
1482 goto out;
1483
1484 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1485 if (dst_attr == NULL)
1486 goto out;
1487
1488 ndm = nlmsg_data(nlh);
1489 if (ndm->ndm_ifindex) {
1490 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1491 if (dev == NULL) {
1492 err = -ENODEV;
1493 goto out;
1494 }
1495 }
1496
1497 read_lock(&neigh_tbl_lock);
1498 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1499 struct neighbour *neigh;
1500
1501 if (tbl->family != ndm->ndm_family)
1502 continue;
1503 read_unlock(&neigh_tbl_lock);
1504
1505 if (nla_len(dst_attr) < tbl->key_len)
1506 goto out_dev_put;
1507
1508 if (ndm->ndm_flags & NTF_PROXY) {
1509 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1510 goto out_dev_put;
1511 }
1512
1513 if (dev == NULL)
1514 goto out_dev_put;
1515
1516 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1517 if (neigh == NULL) {
1518 err = -ENOENT;
1519 goto out_dev_put;
1520 }
1521
1522 err = neigh_update(neigh, NULL, NUD_FAILED,
1523 NEIGH_UPDATE_F_OVERRIDE |
1524 NEIGH_UPDATE_F_ADMIN);
1525 neigh_release(neigh);
1526 goto out_dev_put;
1527 }
1528 read_unlock(&neigh_tbl_lock);
1529 err = -EAFNOSUPPORT;
1530
1531 out_dev_put:
1532 if (dev)
1533 dev_put(dev);
1534 out:
1535 return err;
1536 }
1537
1538 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1539 {
1540 struct net *net = skb->sk->sk_net;
1541 struct ndmsg *ndm;
1542 struct nlattr *tb[NDA_MAX+1];
1543 struct neigh_table *tbl;
1544 struct net_device *dev = NULL;
1545 int err;
1546
1547 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1548 if (err < 0)
1549 goto out;
1550
1551 err = -EINVAL;
1552 if (tb[NDA_DST] == NULL)
1553 goto out;
1554
1555 ndm = nlmsg_data(nlh);
1556 if (ndm->ndm_ifindex) {
1557 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1558 if (dev == NULL) {
1559 err = -ENODEV;
1560 goto out;
1561 }
1562
1563 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1564 goto out_dev_put;
1565 }
1566
1567 read_lock(&neigh_tbl_lock);
1568 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1569 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1570 struct neighbour *neigh;
1571 void *dst, *lladdr;
1572
1573 if (tbl->family != ndm->ndm_family)
1574 continue;
1575 read_unlock(&neigh_tbl_lock);
1576
1577 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1578 goto out_dev_put;
1579 dst = nla_data(tb[NDA_DST]);
1580 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1581
1582 if (ndm->ndm_flags & NTF_PROXY) {
1583 struct pneigh_entry *pn;
1584
1585 err = -ENOBUFS;
1586 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1587 if (pn) {
1588 pn->flags = ndm->ndm_flags;
1589 err = 0;
1590 }
1591 goto out_dev_put;
1592 }
1593
1594 if (dev == NULL)
1595 goto out_dev_put;
1596
1597 neigh = neigh_lookup(tbl, dst, dev);
1598 if (neigh == NULL) {
1599 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1600 err = -ENOENT;
1601 goto out_dev_put;
1602 }
1603
1604 neigh = __neigh_lookup_errno(tbl, dst, dev);
1605 if (IS_ERR(neigh)) {
1606 err = PTR_ERR(neigh);
1607 goto out_dev_put;
1608 }
1609 } else {
1610 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1611 err = -EEXIST;
1612 neigh_release(neigh);
1613 goto out_dev_put;
1614 }
1615
1616 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1617 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1618 }
1619
1620 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1621 neigh_release(neigh);
1622 goto out_dev_put;
1623 }
1624
1625 read_unlock(&neigh_tbl_lock);
1626 err = -EAFNOSUPPORT;
1627
1628 out_dev_put:
1629 if (dev)
1630 dev_put(dev);
1631 out:
1632 return err;
1633 }
1634
1635 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1636 {
1637 struct nlattr *nest;
1638
1639 nest = nla_nest_start(skb, NDTA_PARMS);
1640 if (nest == NULL)
1641 return -ENOBUFS;
1642
1643 if (parms->dev)
1644 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1645
1646 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1647 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1648 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1649 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1650 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1651 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1652 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1653 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1654 parms->base_reachable_time);
1655 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1656 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1657 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1658 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1659 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1660 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1661
1662 return nla_nest_end(skb, nest);
1663
1664 nla_put_failure:
1665 return nla_nest_cancel(skb, nest);
1666 }
1667
1668 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1669 u32 pid, u32 seq, int type, int flags)
1670 {
1671 struct nlmsghdr *nlh;
1672 struct ndtmsg *ndtmsg;
1673
1674 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1675 if (nlh == NULL)
1676 return -EMSGSIZE;
1677
1678 ndtmsg = nlmsg_data(nlh);
1679
1680 read_lock_bh(&tbl->lock);
1681 ndtmsg->ndtm_family = tbl->family;
1682 ndtmsg->ndtm_pad1 = 0;
1683 ndtmsg->ndtm_pad2 = 0;
1684
1685 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1686 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1687 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1688 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1689 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1690
1691 {
1692 unsigned long now = jiffies;
1693 unsigned int flush_delta = now - tbl->last_flush;
1694 unsigned int rand_delta = now - tbl->last_rand;
1695
1696 struct ndt_config ndc = {
1697 .ndtc_key_len = tbl->key_len,
1698 .ndtc_entry_size = tbl->entry_size,
1699 .ndtc_entries = atomic_read(&tbl->entries),
1700 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1701 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1702 .ndtc_hash_rnd = tbl->hash_rnd,
1703 .ndtc_hash_mask = tbl->hash_mask,
1704 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1705 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1706 };
1707
1708 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1709 }
1710
1711 {
1712 int cpu;
1713 struct ndt_stats ndst;
1714
1715 memset(&ndst, 0, sizeof(ndst));
1716
1717 for_each_possible_cpu(cpu) {
1718 struct neigh_statistics *st;
1719
1720 st = per_cpu_ptr(tbl->stats, cpu);
1721 ndst.ndts_allocs += st->allocs;
1722 ndst.ndts_destroys += st->destroys;
1723 ndst.ndts_hash_grows += st->hash_grows;
1724 ndst.ndts_res_failed += st->res_failed;
1725 ndst.ndts_lookups += st->lookups;
1726 ndst.ndts_hits += st->hits;
1727 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1728 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1729 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1730 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1731 }
1732
1733 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1734 }
1735
1736 BUG_ON(tbl->parms.dev);
1737 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1738 goto nla_put_failure;
1739
1740 read_unlock_bh(&tbl->lock);
1741 return nlmsg_end(skb, nlh);
1742
1743 nla_put_failure:
1744 read_unlock_bh(&tbl->lock);
1745 nlmsg_cancel(skb, nlh);
1746 return -EMSGSIZE;
1747 }
1748
1749 static int neightbl_fill_param_info(struct sk_buff *skb,
1750 struct neigh_table *tbl,
1751 struct neigh_parms *parms,
1752 u32 pid, u32 seq, int type,
1753 unsigned int flags)
1754 {
1755 struct ndtmsg *ndtmsg;
1756 struct nlmsghdr *nlh;
1757
1758 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1759 if (nlh == NULL)
1760 return -EMSGSIZE;
1761
1762 ndtmsg = nlmsg_data(nlh);
1763
1764 read_lock_bh(&tbl->lock);
1765 ndtmsg->ndtm_family = tbl->family;
1766 ndtmsg->ndtm_pad1 = 0;
1767 ndtmsg->ndtm_pad2 = 0;
1768
1769 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1770 neightbl_fill_parms(skb, parms) < 0)
1771 goto errout;
1772
1773 read_unlock_bh(&tbl->lock);
1774 return nlmsg_end(skb, nlh);
1775 errout:
1776 read_unlock_bh(&tbl->lock);
1777 nlmsg_cancel(skb, nlh);
1778 return -EMSGSIZE;
1779 }
1780
1781 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1782 [NDTA_NAME] = { .type = NLA_STRING },
1783 [NDTA_THRESH1] = { .type = NLA_U32 },
1784 [NDTA_THRESH2] = { .type = NLA_U32 },
1785 [NDTA_THRESH3] = { .type = NLA_U32 },
1786 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1787 [NDTA_PARMS] = { .type = NLA_NESTED },
1788 };
1789
1790 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1791 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1792 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1793 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1794 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1795 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1796 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1797 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1798 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1799 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1800 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1801 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1802 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1803 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1804 };
1805
1806 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1807 {
1808 struct net *net = skb->sk->sk_net;
1809 struct neigh_table *tbl;
1810 struct ndtmsg *ndtmsg;
1811 struct nlattr *tb[NDTA_MAX+1];
1812 int err;
1813
1814 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1815 nl_neightbl_policy);
1816 if (err < 0)
1817 goto errout;
1818
1819 if (tb[NDTA_NAME] == NULL) {
1820 err = -EINVAL;
1821 goto errout;
1822 }
1823
1824 ndtmsg = nlmsg_data(nlh);
1825 read_lock(&neigh_tbl_lock);
1826 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1827 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1828 continue;
1829
1830 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1831 break;
1832 }
1833
1834 if (tbl == NULL) {
1835 err = -ENOENT;
1836 goto errout_locked;
1837 }
1838
1839 /*
1840 * We acquire tbl->lock to be nice to the periodic timers and
1841 * make sure they always see a consistent set of values.
1842 */
1843 write_lock_bh(&tbl->lock);
1844
1845 if (tb[NDTA_PARMS]) {
1846 struct nlattr *tbp[NDTPA_MAX+1];
1847 struct neigh_parms *p;
1848 int i, ifindex = 0;
1849
1850 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1851 nl_ntbl_parm_policy);
1852 if (err < 0)
1853 goto errout_tbl_lock;
1854
1855 if (tbp[NDTPA_IFINDEX])
1856 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1857
1858 p = lookup_neigh_params(tbl, net, ifindex);
1859 if (p == NULL) {
1860 err = -ENOENT;
1861 goto errout_tbl_lock;
1862 }
1863
1864 for (i = 1; i <= NDTPA_MAX; i++) {
1865 if (tbp[i] == NULL)
1866 continue;
1867
1868 switch (i) {
1869 case NDTPA_QUEUE_LEN:
1870 p->queue_len = nla_get_u32(tbp[i]);
1871 break;
1872 case NDTPA_PROXY_QLEN:
1873 p->proxy_qlen = nla_get_u32(tbp[i]);
1874 break;
1875 case NDTPA_APP_PROBES:
1876 p->app_probes = nla_get_u32(tbp[i]);
1877 break;
1878 case NDTPA_UCAST_PROBES:
1879 p->ucast_probes = nla_get_u32(tbp[i]);
1880 break;
1881 case NDTPA_MCAST_PROBES:
1882 p->mcast_probes = nla_get_u32(tbp[i]);
1883 break;
1884 case NDTPA_BASE_REACHABLE_TIME:
1885 p->base_reachable_time = nla_get_msecs(tbp[i]);
1886 break;
1887 case NDTPA_GC_STALETIME:
1888 p->gc_staletime = nla_get_msecs(tbp[i]);
1889 break;
1890 case NDTPA_DELAY_PROBE_TIME:
1891 p->delay_probe_time = nla_get_msecs(tbp[i]);
1892 break;
1893 case NDTPA_RETRANS_TIME:
1894 p->retrans_time = nla_get_msecs(tbp[i]);
1895 break;
1896 case NDTPA_ANYCAST_DELAY:
1897 p->anycast_delay = nla_get_msecs(tbp[i]);
1898 break;
1899 case NDTPA_PROXY_DELAY:
1900 p->proxy_delay = nla_get_msecs(tbp[i]);
1901 break;
1902 case NDTPA_LOCKTIME:
1903 p->locktime = nla_get_msecs(tbp[i]);
1904 break;
1905 }
1906 }
1907 }
1908
1909 if (tb[NDTA_THRESH1])
1910 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1911
1912 if (tb[NDTA_THRESH2])
1913 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1914
1915 if (tb[NDTA_THRESH3])
1916 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1917
1918 if (tb[NDTA_GC_INTERVAL])
1919 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1920
1921 err = 0;
1922
1923 errout_tbl_lock:
1924 write_unlock_bh(&tbl->lock);
1925 errout_locked:
1926 read_unlock(&neigh_tbl_lock);
1927 errout:
1928 return err;
1929 }
1930
1931 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1932 {
1933 struct net *net = skb->sk->sk_net;
1934 int family, tidx, nidx = 0;
1935 int tbl_skip = cb->args[0];
1936 int neigh_skip = cb->args[1];
1937 struct neigh_table *tbl;
1938
1939 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1940
1941 read_lock(&neigh_tbl_lock);
1942 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1943 struct neigh_parms *p;
1944
1945 if (tidx < tbl_skip || (family && tbl->family != family))
1946 continue;
1947
1948 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1949 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1950 NLM_F_MULTI) <= 0)
1951 break;
1952
1953 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
1954 if (net != p->net)
1955 continue;
1956
1957 if (nidx++ < neigh_skip)
1958 continue;
1959
1960 if (neightbl_fill_param_info(skb, tbl, p,
1961 NETLINK_CB(cb->skb).pid,
1962 cb->nlh->nlmsg_seq,
1963 RTM_NEWNEIGHTBL,
1964 NLM_F_MULTI) <= 0)
1965 goto out;
1966 }
1967
1968 neigh_skip = 0;
1969 }
1970 out:
1971 read_unlock(&neigh_tbl_lock);
1972 cb->args[0] = tidx;
1973 cb->args[1] = nidx;
1974
1975 return skb->len;
1976 }
1977
1978 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1979 u32 pid, u32 seq, int type, unsigned int flags)
1980 {
1981 unsigned long now = jiffies;
1982 struct nda_cacheinfo ci;
1983 struct nlmsghdr *nlh;
1984 struct ndmsg *ndm;
1985
1986 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1987 if (nlh == NULL)
1988 return -EMSGSIZE;
1989
1990 ndm = nlmsg_data(nlh);
1991 ndm->ndm_family = neigh->ops->family;
1992 ndm->ndm_pad1 = 0;
1993 ndm->ndm_pad2 = 0;
1994 ndm->ndm_flags = neigh->flags;
1995 ndm->ndm_type = neigh->type;
1996 ndm->ndm_ifindex = neigh->dev->ifindex;
1997
1998 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
1999
2000 read_lock_bh(&neigh->lock);
2001 ndm->ndm_state = neigh->nud_state;
2002 if ((neigh->nud_state & NUD_VALID) &&
2003 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2004 read_unlock_bh(&neigh->lock);
2005 goto nla_put_failure;
2006 }
2007
2008 ci.ndm_used = now - neigh->used;
2009 ci.ndm_confirmed = now - neigh->confirmed;
2010 ci.ndm_updated = now - neigh->updated;
2011 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2012 read_unlock_bh(&neigh->lock);
2013
2014 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2015 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2016
2017 return nlmsg_end(skb, nlh);
2018
2019 nla_put_failure:
2020 nlmsg_cancel(skb, nlh);
2021 return -EMSGSIZE;
2022 }
2023
2024 static void neigh_update_notify(struct neighbour *neigh)
2025 {
2026 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2027 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2028 }
2029
2030 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2031 struct netlink_callback *cb)
2032 {
2033 struct net * net = skb->sk->sk_net;
2034 struct neighbour *n;
2035 int rc, h, s_h = cb->args[1];
2036 int idx, s_idx = idx = cb->args[2];
2037
2038 read_lock_bh(&tbl->lock);
2039 for (h = 0; h <= tbl->hash_mask; h++) {
2040 if (h < s_h)
2041 continue;
2042 if (h > s_h)
2043 s_idx = 0;
2044 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2045 int lidx;
2046 if (n->dev->nd_net != net)
2047 continue;
2048 lidx = idx++;
2049 if (lidx < s_idx)
2050 continue;
2051 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2052 cb->nlh->nlmsg_seq,
2053 RTM_NEWNEIGH,
2054 NLM_F_MULTI) <= 0) {
2055 read_unlock_bh(&tbl->lock);
2056 rc = -1;
2057 goto out;
2058 }
2059 }
2060 }
2061 read_unlock_bh(&tbl->lock);
2062 rc = skb->len;
2063 out:
2064 cb->args[1] = h;
2065 cb->args[2] = idx;
2066 return rc;
2067 }
2068
2069 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2070 {
2071 struct neigh_table *tbl;
2072 int t, family, s_t;
2073
2074 read_lock(&neigh_tbl_lock);
2075 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2076 s_t = cb->args[0];
2077
2078 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2079 if (t < s_t || (family && tbl->family != family))
2080 continue;
2081 if (t > s_t)
2082 memset(&cb->args[1], 0, sizeof(cb->args) -
2083 sizeof(cb->args[0]));
2084 if (neigh_dump_table(tbl, skb, cb) < 0)
2085 break;
2086 }
2087 read_unlock(&neigh_tbl_lock);
2088
2089 cb->args[0] = t;
2090 return skb->len;
2091 }
2092
2093 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2094 {
2095 int chain;
2096
2097 read_lock_bh(&tbl->lock);
2098 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2099 struct neighbour *n;
2100
2101 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2102 cb(n, cookie);
2103 }
2104 read_unlock_bh(&tbl->lock);
2105 }
2106 EXPORT_SYMBOL(neigh_for_each);
2107
2108 /* The tbl->lock must be held as a writer and BH disabled. */
2109 void __neigh_for_each_release(struct neigh_table *tbl,
2110 int (*cb)(struct neighbour *))
2111 {
2112 int chain;
2113
2114 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2115 struct neighbour *n, **np;
2116
2117 np = &tbl->hash_buckets[chain];
2118 while ((n = *np) != NULL) {
2119 int release;
2120
2121 write_lock(&n->lock);
2122 release = cb(n);
2123 if (release) {
2124 *np = n->next;
2125 n->dead = 1;
2126 } else
2127 np = &n->next;
2128 write_unlock(&n->lock);
2129 if (release)
2130 neigh_cleanup_and_release(n);
2131 }
2132 }
2133 }
2134 EXPORT_SYMBOL(__neigh_for_each_release);
2135
2136 #ifdef CONFIG_PROC_FS
2137
2138 static struct neighbour *neigh_get_first(struct seq_file *seq)
2139 {
2140 struct neigh_seq_state *state = seq->private;
2141 struct net *net = state->p.net;
2142 struct neigh_table *tbl = state->tbl;
2143 struct neighbour *n = NULL;
2144 int bucket = state->bucket;
2145
2146 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2147 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2148 n = tbl->hash_buckets[bucket];
2149
2150 while (n) {
2151 if (n->dev->nd_net != net)
2152 goto next;
2153 if (state->neigh_sub_iter) {
2154 loff_t fakep = 0;
2155 void *v;
2156
2157 v = state->neigh_sub_iter(state, n, &fakep);
2158 if (!v)
2159 goto next;
2160 }
2161 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2162 break;
2163 if (n->nud_state & ~NUD_NOARP)
2164 break;
2165 next:
2166 n = n->next;
2167 }
2168
2169 if (n)
2170 break;
2171 }
2172 state->bucket = bucket;
2173
2174 return n;
2175 }
2176
2177 static struct neighbour *neigh_get_next(struct seq_file *seq,
2178 struct neighbour *n,
2179 loff_t *pos)
2180 {
2181 struct neigh_seq_state *state = seq->private;
2182 struct net *net = state->p.net;
2183 struct neigh_table *tbl = state->tbl;
2184
2185 if (state->neigh_sub_iter) {
2186 void *v = state->neigh_sub_iter(state, n, pos);
2187 if (v)
2188 return n;
2189 }
2190 n = n->next;
2191
2192 while (1) {
2193 while (n) {
2194 if (n->dev->nd_net != net)
2195 goto next;
2196 if (state->neigh_sub_iter) {
2197 void *v = state->neigh_sub_iter(state, n, pos);
2198 if (v)
2199 return n;
2200 goto next;
2201 }
2202 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2203 break;
2204
2205 if (n->nud_state & ~NUD_NOARP)
2206 break;
2207 next:
2208 n = n->next;
2209 }
2210
2211 if (n)
2212 break;
2213
2214 if (++state->bucket > tbl->hash_mask)
2215 break;
2216
2217 n = tbl->hash_buckets[state->bucket];
2218 }
2219
2220 if (n && pos)
2221 --(*pos);
2222 return n;
2223 }
2224
2225 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2226 {
2227 struct neighbour *n = neigh_get_first(seq);
2228
2229 if (n) {
2230 while (*pos) {
2231 n = neigh_get_next(seq, n, pos);
2232 if (!n)
2233 break;
2234 }
2235 }
2236 return *pos ? NULL : n;
2237 }
2238
2239 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2240 {
2241 struct neigh_seq_state *state = seq->private;
2242 struct net * net = state->p.net;
2243 struct neigh_table *tbl = state->tbl;
2244 struct pneigh_entry *pn = NULL;
2245 int bucket = state->bucket;
2246
2247 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2248 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2249 pn = tbl->phash_buckets[bucket];
2250 while (pn && (pn->net != net))
2251 pn = pn->next;
2252 if (pn)
2253 break;
2254 }
2255 state->bucket = bucket;
2256
2257 return pn;
2258 }
2259
2260 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2261 struct pneigh_entry *pn,
2262 loff_t *pos)
2263 {
2264 struct neigh_seq_state *state = seq->private;
2265 struct net * net = state->p.net;
2266 struct neigh_table *tbl = state->tbl;
2267
2268 pn = pn->next;
2269 while (!pn) {
2270 if (++state->bucket > PNEIGH_HASHMASK)
2271 break;
2272 pn = tbl->phash_buckets[state->bucket];
2273 while (pn && (pn->net != net))
2274 pn = pn->next;
2275 if (pn)
2276 break;
2277 }
2278
2279 if (pn && pos)
2280 --(*pos);
2281
2282 return pn;
2283 }
2284
2285 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2286 {
2287 struct pneigh_entry *pn = pneigh_get_first(seq);
2288
2289 if (pn) {
2290 while (*pos) {
2291 pn = pneigh_get_next(seq, pn, pos);
2292 if (!pn)
2293 break;
2294 }
2295 }
2296 return *pos ? NULL : pn;
2297 }
2298
2299 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2300 {
2301 struct neigh_seq_state *state = seq->private;
2302 void *rc;
2303
2304 rc = neigh_get_idx(seq, pos);
2305 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2306 rc = pneigh_get_idx(seq, pos);
2307
2308 return rc;
2309 }
2310
2311 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2312 __acquires(tbl->lock)
2313 {
2314 struct neigh_seq_state *state = seq->private;
2315 loff_t pos_minus_one;
2316
2317 state->tbl = tbl;
2318 state->bucket = 0;
2319 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2320
2321 read_lock_bh(&tbl->lock);
2322
2323 pos_minus_one = *pos - 1;
2324 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2325 }
2326 EXPORT_SYMBOL(neigh_seq_start);
2327
2328 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2329 {
2330 struct neigh_seq_state *state;
2331 void *rc;
2332
2333 if (v == SEQ_START_TOKEN) {
2334 rc = neigh_get_idx(seq, pos);
2335 goto out;
2336 }
2337
2338 state = seq->private;
2339 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2340 rc = neigh_get_next(seq, v, NULL);
2341 if (rc)
2342 goto out;
2343 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2344 rc = pneigh_get_first(seq);
2345 } else {
2346 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2347 rc = pneigh_get_next(seq, v, NULL);
2348 }
2349 out:
2350 ++(*pos);
2351 return rc;
2352 }
2353 EXPORT_SYMBOL(neigh_seq_next);
2354
2355 void neigh_seq_stop(struct seq_file *seq, void *v)
2356 __releases(tbl->lock)
2357 {
2358 struct neigh_seq_state *state = seq->private;
2359 struct neigh_table *tbl = state->tbl;
2360
2361 read_unlock_bh(&tbl->lock);
2362 }
2363 EXPORT_SYMBOL(neigh_seq_stop);
2364
2365 /* statistics via seq_file */
2366
2367 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2368 {
2369 struct proc_dir_entry *pde = seq->private;
2370 struct neigh_table *tbl = pde->data;
2371 int cpu;
2372
2373 if (*pos == 0)
2374 return SEQ_START_TOKEN;
2375
2376 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2377 if (!cpu_possible(cpu))
2378 continue;
2379 *pos = cpu+1;
2380 return per_cpu_ptr(tbl->stats, cpu);
2381 }
2382 return NULL;
2383 }
2384
2385 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2386 {
2387 struct proc_dir_entry *pde = seq->private;
2388 struct neigh_table *tbl = pde->data;
2389 int cpu;
2390
2391 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2392 if (!cpu_possible(cpu))
2393 continue;
2394 *pos = cpu+1;
2395 return per_cpu_ptr(tbl->stats, cpu);
2396 }
2397 return NULL;
2398 }
2399
2400 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2401 {
2402
2403 }
2404
2405 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2406 {
2407 struct proc_dir_entry *pde = seq->private;
2408 struct neigh_table *tbl = pde->data;
2409 struct neigh_statistics *st = v;
2410
2411 if (v == SEQ_START_TOKEN) {
2412 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2413 return 0;
2414 }
2415
2416 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2417 "%08lx %08lx %08lx %08lx\n",
2418 atomic_read(&tbl->entries),
2419
2420 st->allocs,
2421 st->destroys,
2422 st->hash_grows,
2423
2424 st->lookups,
2425 st->hits,
2426
2427 st->res_failed,
2428
2429 st->rcv_probes_mcast,
2430 st->rcv_probes_ucast,
2431
2432 st->periodic_gc_runs,
2433 st->forced_gc_runs
2434 );
2435
2436 return 0;
2437 }
2438
2439 static const struct seq_operations neigh_stat_seq_ops = {
2440 .start = neigh_stat_seq_start,
2441 .next = neigh_stat_seq_next,
2442 .stop = neigh_stat_seq_stop,
2443 .show = neigh_stat_seq_show,
2444 };
2445
2446 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2447 {
2448 int ret = seq_open(file, &neigh_stat_seq_ops);
2449
2450 if (!ret) {
2451 struct seq_file *sf = file->private_data;
2452 sf->private = PDE(inode);
2453 }
2454 return ret;
2455 };
2456
2457 static const struct file_operations neigh_stat_seq_fops = {
2458 .owner = THIS_MODULE,
2459 .open = neigh_stat_seq_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
2462 .release = seq_release,
2463 };
2464
2465 #endif /* CONFIG_PROC_FS */
2466
2467 static inline size_t neigh_nlmsg_size(void)
2468 {
2469 return NLMSG_ALIGN(sizeof(struct ndmsg))
2470 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2471 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2472 + nla_total_size(sizeof(struct nda_cacheinfo))
2473 + nla_total_size(4); /* NDA_PROBES */
2474 }
2475
2476 static void __neigh_notify(struct neighbour *n, int type, int flags)
2477 {
2478 struct net *net = n->dev->nd_net;
2479 struct sk_buff *skb;
2480 int err = -ENOBUFS;
2481
2482 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2483 if (skb == NULL)
2484 goto errout;
2485
2486 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2487 if (err < 0) {
2488 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2489 WARN_ON(err == -EMSGSIZE);
2490 kfree_skb(skb);
2491 goto errout;
2492 }
2493 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2494 errout:
2495 if (err < 0)
2496 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2497 }
2498
2499 #ifdef CONFIG_ARPD
2500 void neigh_app_ns(struct neighbour *n)
2501 {
2502 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2503 }
2504 #endif /* CONFIG_ARPD */
2505
2506 #ifdef CONFIG_SYSCTL
2507
2508 static struct neigh_sysctl_table {
2509 struct ctl_table_header *sysctl_header;
2510 struct ctl_table neigh_vars[__NET_NEIGH_MAX];
2511 char *dev_name;
2512 } neigh_sysctl_template __read_mostly = {
2513 .neigh_vars = {
2514 {
2515 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2516 .procname = "mcast_solicit",
2517 .maxlen = sizeof(int),
2518 .mode = 0644,
2519 .proc_handler = &proc_dointvec,
2520 },
2521 {
2522 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2523 .procname = "ucast_solicit",
2524 .maxlen = sizeof(int),
2525 .mode = 0644,
2526 .proc_handler = &proc_dointvec,
2527 },
2528 {
2529 .ctl_name = NET_NEIGH_APP_SOLICIT,
2530 .procname = "app_solicit",
2531 .maxlen = sizeof(int),
2532 .mode = 0644,
2533 .proc_handler = &proc_dointvec,
2534 },
2535 {
2536 .procname = "retrans_time",
2537 .maxlen = sizeof(int),
2538 .mode = 0644,
2539 .proc_handler = &proc_dointvec_userhz_jiffies,
2540 },
2541 {
2542 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2543 .procname = "base_reachable_time",
2544 .maxlen = sizeof(int),
2545 .mode = 0644,
2546 .proc_handler = &proc_dointvec_jiffies,
2547 .strategy = &sysctl_jiffies,
2548 },
2549 {
2550 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2551 .procname = "delay_first_probe_time",
2552 .maxlen = sizeof(int),
2553 .mode = 0644,
2554 .proc_handler = &proc_dointvec_jiffies,
2555 .strategy = &sysctl_jiffies,
2556 },
2557 {
2558 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2559 .procname = "gc_stale_time",
2560 .maxlen = sizeof(int),
2561 .mode = 0644,
2562 .proc_handler = &proc_dointvec_jiffies,
2563 .strategy = &sysctl_jiffies,
2564 },
2565 {
2566 .ctl_name = NET_NEIGH_UNRES_QLEN,
2567 .procname = "unres_qlen",
2568 .maxlen = sizeof(int),
2569 .mode = 0644,
2570 .proc_handler = &proc_dointvec,
2571 },
2572 {
2573 .ctl_name = NET_NEIGH_PROXY_QLEN,
2574 .procname = "proxy_qlen",
2575 .maxlen = sizeof(int),
2576 .mode = 0644,
2577 .proc_handler = &proc_dointvec,
2578 },
2579 {
2580 .procname = "anycast_delay",
2581 .maxlen = sizeof(int),
2582 .mode = 0644,
2583 .proc_handler = &proc_dointvec_userhz_jiffies,
2584 },
2585 {
2586 .procname = "proxy_delay",
2587 .maxlen = sizeof(int),
2588 .mode = 0644,
2589 .proc_handler = &proc_dointvec_userhz_jiffies,
2590 },
2591 {
2592 .procname = "locktime",
2593 .maxlen = sizeof(int),
2594 .mode = 0644,
2595 .proc_handler = &proc_dointvec_userhz_jiffies,
2596 },
2597 {
2598 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2599 .procname = "retrans_time_ms",
2600 .maxlen = sizeof(int),
2601 .mode = 0644,
2602 .proc_handler = &proc_dointvec_ms_jiffies,
2603 .strategy = &sysctl_ms_jiffies,
2604 },
2605 {
2606 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2607 .procname = "base_reachable_time_ms",
2608 .maxlen = sizeof(int),
2609 .mode = 0644,
2610 .proc_handler = &proc_dointvec_ms_jiffies,
2611 .strategy = &sysctl_ms_jiffies,
2612 },
2613 {
2614 .ctl_name = NET_NEIGH_GC_INTERVAL,
2615 .procname = "gc_interval",
2616 .maxlen = sizeof(int),
2617 .mode = 0644,
2618 .proc_handler = &proc_dointvec_jiffies,
2619 .strategy = &sysctl_jiffies,
2620 },
2621 {
2622 .ctl_name = NET_NEIGH_GC_THRESH1,
2623 .procname = "gc_thresh1",
2624 .maxlen = sizeof(int),
2625 .mode = 0644,
2626 .proc_handler = &proc_dointvec,
2627 },
2628 {
2629 .ctl_name = NET_NEIGH_GC_THRESH2,
2630 .procname = "gc_thresh2",
2631 .maxlen = sizeof(int),
2632 .mode = 0644,
2633 .proc_handler = &proc_dointvec,
2634 },
2635 {
2636 .ctl_name = NET_NEIGH_GC_THRESH3,
2637 .procname = "gc_thresh3",
2638 .maxlen = sizeof(int),
2639 .mode = 0644,
2640 .proc_handler = &proc_dointvec,
2641 },
2642 {},
2643 },
2644 };
2645
2646 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2647 int p_id, int pdev_id, char *p_name,
2648 proc_handler *handler, ctl_handler *strategy)
2649 {
2650 struct neigh_sysctl_table *t;
2651 const char *dev_name_source = NULL;
2652
2653 #define NEIGH_CTL_PATH_ROOT 0
2654 #define NEIGH_CTL_PATH_PROTO 1
2655 #define NEIGH_CTL_PATH_NEIGH 2
2656 #define NEIGH_CTL_PATH_DEV 3
2657
2658 struct ctl_path neigh_path[] = {
2659 { .procname = "net", .ctl_name = CTL_NET, },
2660 { .procname = "proto", .ctl_name = 0, },
2661 { .procname = "neigh", .ctl_name = 0, },
2662 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, },
2663 { },
2664 };
2665
2666 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2667 if (!t)
2668 goto err;
2669
2670 t->neigh_vars[0].data = &p->mcast_probes;
2671 t->neigh_vars[1].data = &p->ucast_probes;
2672 t->neigh_vars[2].data = &p->app_probes;
2673 t->neigh_vars[3].data = &p->retrans_time;
2674 t->neigh_vars[4].data = &p->base_reachable_time;
2675 t->neigh_vars[5].data = &p->delay_probe_time;
2676 t->neigh_vars[6].data = &p->gc_staletime;
2677 t->neigh_vars[7].data = &p->queue_len;
2678 t->neigh_vars[8].data = &p->proxy_qlen;
2679 t->neigh_vars[9].data = &p->anycast_delay;
2680 t->neigh_vars[10].data = &p->proxy_delay;
2681 t->neigh_vars[11].data = &p->locktime;
2682 t->neigh_vars[12].data = &p->retrans_time;
2683 t->neigh_vars[13].data = &p->base_reachable_time;
2684
2685 if (dev) {
2686 dev_name_source = dev->name;
2687 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex;
2688 /* Terminate the table early */
2689 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2690 } else {
2691 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2692 t->neigh_vars[14].data = (int *)(p + 1);
2693 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2694 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2695 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2696 }
2697
2698
2699 if (handler || strategy) {
2700 /* RetransTime */
2701 t->neigh_vars[3].proc_handler = handler;
2702 t->neigh_vars[3].strategy = strategy;
2703 t->neigh_vars[3].extra1 = dev;
2704 if (!strategy)
2705 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
2706 /* ReachableTime */
2707 t->neigh_vars[4].proc_handler = handler;
2708 t->neigh_vars[4].strategy = strategy;
2709 t->neigh_vars[4].extra1 = dev;
2710 if (!strategy)
2711 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
2712 /* RetransTime (in milliseconds)*/
2713 t->neigh_vars[12].proc_handler = handler;
2714 t->neigh_vars[12].strategy = strategy;
2715 t->neigh_vars[12].extra1 = dev;
2716 if (!strategy)
2717 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
2718 /* ReachableTime (in milliseconds) */
2719 t->neigh_vars[13].proc_handler = handler;
2720 t->neigh_vars[13].strategy = strategy;
2721 t->neigh_vars[13].extra1 = dev;
2722 if (!strategy)
2723 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
2724 }
2725
2726 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2727 if (!t->dev_name)
2728 goto free;
2729
2730 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2731 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id;
2732 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2733 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id;
2734
2735 t->sysctl_header = register_sysctl_paths(neigh_path, t->neigh_vars);
2736 if (!t->sysctl_header)
2737 goto free_procname;
2738
2739 p->sysctl_table = t;
2740 return 0;
2741
2742 free_procname:
2743 kfree(t->dev_name);
2744 free:
2745 kfree(t);
2746 err:
2747 return -ENOBUFS;
2748 }
2749
2750 void neigh_sysctl_unregister(struct neigh_parms *p)
2751 {
2752 if (p->sysctl_table) {
2753 struct neigh_sysctl_table *t = p->sysctl_table;
2754 p->sysctl_table = NULL;
2755 unregister_sysctl_table(t->sysctl_header);
2756 kfree(t->dev_name);
2757 kfree(t);
2758 }
2759 }
2760
2761 #endif /* CONFIG_SYSCTL */
2762
2763 static int __init neigh_init(void)
2764 {
2765 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2766 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2767 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2768
2769 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2770 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2771
2772 return 0;
2773 }
2774
2775 subsys_initcall(neigh_init);
2776
2777 EXPORT_SYMBOL(__neigh_event_send);
2778 EXPORT_SYMBOL(neigh_changeaddr);
2779 EXPORT_SYMBOL(neigh_compat_output);
2780 EXPORT_SYMBOL(neigh_connected_output);
2781 EXPORT_SYMBOL(neigh_create);
2782 EXPORT_SYMBOL(neigh_destroy);
2783 EXPORT_SYMBOL(neigh_event_ns);
2784 EXPORT_SYMBOL(neigh_ifdown);
2785 EXPORT_SYMBOL(neigh_lookup);
2786 EXPORT_SYMBOL(neigh_lookup_nodev);
2787 EXPORT_SYMBOL(neigh_parms_alloc);
2788 EXPORT_SYMBOL(neigh_parms_release);
2789 EXPORT_SYMBOL(neigh_rand_reach_time);
2790 EXPORT_SYMBOL(neigh_resolve_output);
2791 EXPORT_SYMBOL(neigh_table_clear);
2792 EXPORT_SYMBOL(neigh_table_init);
2793 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2794 EXPORT_SYMBOL(neigh_update);
2795 EXPORT_SYMBOL(pneigh_enqueue);
2796 EXPORT_SYMBOL(pneigh_lookup);
2797
2798 #ifdef CONFIG_ARPD
2799 EXPORT_SYMBOL(neigh_app_ns);
2800 #endif
2801 #ifdef CONFIG_SYSCTL
2802 EXPORT_SYMBOL(neigh_sysctl_register);
2803 EXPORT_SYMBOL(neigh_sysctl_unregister);
2804 #endif
This page took 0.119539 seconds and 6 git commands to generate.