net neigh: RCU conversion of neigh hash table
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK0 NEIGH_PRINTK
45 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
46 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47
48 #if NEIGH_DEBUG >= 1
49 #undef NEIGH_PRINTK1
50 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #endif
52 #if NEIGH_DEBUG >= 2
53 #undef NEIGH_PRINTK2
54 #define NEIGH_PRINTK2 NEIGH_PRINTK
55 #endif
56
57 #define PNEIGH_HASHMASK 0xF
58
59 static void neigh_timer_handler(unsigned long arg);
60 static void __neigh_notify(struct neighbour *n, int type, int flags);
61 static void neigh_update_notify(struct neighbour *neigh);
62 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
79
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
83
84 Reference count prevents destruction.
85
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
90
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
95
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
98 */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104 kfree_skb(skb);
105 return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
112
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
115 }
116
117 /*
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
121 */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125 return base ? (net_random() % base) + (base >> 1) : 0;
126 }
127 EXPORT_SYMBOL(neigh_rand_reach_time);
128
129
130 static int neigh_forced_gc(struct neigh_table *tbl)
131 {
132 int shrunk = 0;
133 int i;
134 struct neigh_hash_table *nht;
135
136 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
137
138 write_lock_bh(&tbl->lock);
139 nht = rcu_dereference_protected(tbl->nht,
140 lockdep_is_held(&tbl->lock));
141 for (i = 0; i <= nht->hash_mask; i++) {
142 struct neighbour *n, **np;
143
144 np = &nht->hash_buckets[i];
145 while ((n = *np) != NULL) {
146 /* Neighbour record may be discarded if:
147 * - nobody refers to it.
148 * - it is not permanent
149 */
150 write_lock(&n->lock);
151 if (atomic_read(&n->refcnt) == 1 &&
152 !(n->nud_state & NUD_PERMANENT)) {
153 *np = n->next;
154 n->dead = 1;
155 shrunk = 1;
156 write_unlock(&n->lock);
157 neigh_cleanup_and_release(n);
158 continue;
159 }
160 write_unlock(&n->lock);
161 np = &n->next;
162 }
163 }
164
165 tbl->last_flush = jiffies;
166
167 write_unlock_bh(&tbl->lock);
168
169 return shrunk;
170 }
171
172 static void neigh_add_timer(struct neighbour *n, unsigned long when)
173 {
174 neigh_hold(n);
175 if (unlikely(mod_timer(&n->timer, when))) {
176 printk("NEIGH: BUG, double timer add, state is %x\n",
177 n->nud_state);
178 dump_stack();
179 }
180 }
181
182 static int neigh_del_timer(struct neighbour *n)
183 {
184 if ((n->nud_state & NUD_IN_TIMER) &&
185 del_timer(&n->timer)) {
186 neigh_release(n);
187 return 1;
188 }
189 return 0;
190 }
191
192 static void pneigh_queue_purge(struct sk_buff_head *list)
193 {
194 struct sk_buff *skb;
195
196 while ((skb = skb_dequeue(list)) != NULL) {
197 dev_put(skb->dev);
198 kfree_skb(skb);
199 }
200 }
201
202 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
203 {
204 int i;
205 struct neigh_hash_table *nht;
206
207 nht = rcu_dereference_protected(tbl->nht,
208 lockdep_is_held(&tbl->lock));
209
210 for (i = 0; i <= nht->hash_mask; i++) {
211 struct neighbour *n, **np = &nht->hash_buckets[i];
212
213 while ((n = *np) != NULL) {
214 if (dev && n->dev != dev) {
215 np = &n->next;
216 continue;
217 }
218 *np = n->next;
219 write_lock(&n->lock);
220 neigh_del_timer(n);
221 n->dead = 1;
222
223 if (atomic_read(&n->refcnt) != 1) {
224 /* The most unpleasant situation.
225 We must destroy neighbour entry,
226 but someone still uses it.
227
228 The destroy will be delayed until
229 the last user releases us, but
230 we must kill timers etc. and move
231 it to safe state.
232 */
233 skb_queue_purge(&n->arp_queue);
234 n->output = neigh_blackhole;
235 if (n->nud_state & NUD_VALID)
236 n->nud_state = NUD_NOARP;
237 else
238 n->nud_state = NUD_NONE;
239 NEIGH_PRINTK2("neigh %p is stray.\n", n);
240 }
241 write_unlock(&n->lock);
242 neigh_cleanup_and_release(n);
243 }
244 }
245 }
246
247 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
248 {
249 write_lock_bh(&tbl->lock);
250 neigh_flush_dev(tbl, dev);
251 write_unlock_bh(&tbl->lock);
252 }
253 EXPORT_SYMBOL(neigh_changeaddr);
254
255 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
256 {
257 write_lock_bh(&tbl->lock);
258 neigh_flush_dev(tbl, dev);
259 pneigh_ifdown(tbl, dev);
260 write_unlock_bh(&tbl->lock);
261
262 del_timer_sync(&tbl->proxy_timer);
263 pneigh_queue_purge(&tbl->proxy_queue);
264 return 0;
265 }
266 EXPORT_SYMBOL(neigh_ifdown);
267
268 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
269 {
270 struct neighbour *n = NULL;
271 unsigned long now = jiffies;
272 int entries;
273
274 entries = atomic_inc_return(&tbl->entries) - 1;
275 if (entries >= tbl->gc_thresh3 ||
276 (entries >= tbl->gc_thresh2 &&
277 time_after(now, tbl->last_flush + 5 * HZ))) {
278 if (!neigh_forced_gc(tbl) &&
279 entries >= tbl->gc_thresh3)
280 goto out_entries;
281 }
282
283 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
284 if (!n)
285 goto out_entries;
286
287 skb_queue_head_init(&n->arp_queue);
288 rwlock_init(&n->lock);
289 n->updated = n->used = now;
290 n->nud_state = NUD_NONE;
291 n->output = neigh_blackhole;
292 n->parms = neigh_parms_clone(&tbl->parms);
293 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
294
295 NEIGH_CACHE_STAT_INC(tbl, allocs);
296 n->tbl = tbl;
297 atomic_set(&n->refcnt, 1);
298 n->dead = 1;
299 out:
300 return n;
301
302 out_entries:
303 atomic_dec(&tbl->entries);
304 goto out;
305 }
306
307 static struct neigh_hash_table *neigh_hash_alloc(unsigned int entries)
308 {
309 size_t size = entries * sizeof(struct neighbour *);
310 struct neigh_hash_table *ret;
311 struct neighbour **buckets;
312
313 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
314 if (!ret)
315 return NULL;
316 if (size <= PAGE_SIZE)
317 buckets = kzalloc(size, GFP_ATOMIC);
318 else
319 buckets = (struct neighbour **)
320 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
321 get_order(size));
322 if (!buckets) {
323 kfree(ret);
324 return NULL;
325 }
326 ret->hash_buckets = buckets;
327 ret->hash_mask = entries - 1;
328 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
329 return ret;
330 }
331
332 static void neigh_hash_free_rcu(struct rcu_head *head)
333 {
334 struct neigh_hash_table *nht = container_of(head,
335 struct neigh_hash_table,
336 rcu);
337 size_t size = (nht->hash_mask + 1) * sizeof(struct neighbour *);
338 struct neighbour **buckets = nht->hash_buckets;
339
340 if (size <= PAGE_SIZE)
341 kfree(buckets);
342 else
343 free_pages((unsigned long)buckets, get_order(size));
344 kfree(nht);
345 }
346
347 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
348 unsigned long new_entries)
349 {
350 unsigned int i, hash;
351 struct neigh_hash_table *new_nht, *old_nht;
352
353 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
354
355 BUG_ON(!is_power_of_2(new_entries));
356 old_nht = rcu_dereference_protected(tbl->nht,
357 lockdep_is_held(&tbl->lock));
358 new_nht = neigh_hash_alloc(new_entries);
359 if (!new_nht)
360 return old_nht;
361
362 for (i = 0; i <= old_nht->hash_mask; i++) {
363 struct neighbour *n, *next;
364
365 for (n = old_nht->hash_buckets[i];
366 n != NULL;
367 n = next) {
368 hash = tbl->hash(n->primary_key, n->dev,
369 new_nht->hash_rnd);
370
371 hash &= new_nht->hash_mask;
372 next = n->next;
373
374 n->next = new_nht->hash_buckets[hash];
375 new_nht->hash_buckets[hash] = n;
376 }
377 }
378
379 rcu_assign_pointer(tbl->nht, new_nht);
380 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
381 return new_nht;
382 }
383
384 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
385 struct net_device *dev)
386 {
387 struct neighbour *n;
388 int key_len = tbl->key_len;
389 u32 hash_val;
390 struct neigh_hash_table *nht;
391
392 NEIGH_CACHE_STAT_INC(tbl, lookups);
393
394 rcu_read_lock_bh();
395 nht = rcu_dereference_bh(tbl->nht);
396 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
397 read_lock(&tbl->lock);
398 for (n = nht->hash_buckets[hash_val]; n; n = n->next) {
399 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
400 neigh_hold(n);
401 NEIGH_CACHE_STAT_INC(tbl, hits);
402 break;
403 }
404 }
405 read_unlock(&tbl->lock);
406 rcu_read_unlock_bh();
407 return n;
408 }
409 EXPORT_SYMBOL(neigh_lookup);
410
411 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
412 const void *pkey)
413 {
414 struct neighbour *n;
415 int key_len = tbl->key_len;
416 u32 hash_val;
417 struct neigh_hash_table *nht;
418
419 NEIGH_CACHE_STAT_INC(tbl, lookups);
420
421 rcu_read_lock_bh();
422 nht = rcu_dereference_bh(tbl->nht);
423 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) & nht->hash_mask;
424 read_lock(&tbl->lock);
425 for (n = nht->hash_buckets[hash_val]; n; n = n->next) {
426 if (!memcmp(n->primary_key, pkey, key_len) &&
427 net_eq(dev_net(n->dev), net)) {
428 neigh_hold(n);
429 NEIGH_CACHE_STAT_INC(tbl, hits);
430 break;
431 }
432 }
433 read_unlock(&tbl->lock);
434 rcu_read_unlock_bh();
435 return n;
436 }
437 EXPORT_SYMBOL(neigh_lookup_nodev);
438
439 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
440 struct net_device *dev)
441 {
442 u32 hash_val;
443 int key_len = tbl->key_len;
444 int error;
445 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
446 struct neigh_hash_table *nht;
447
448 if (!n) {
449 rc = ERR_PTR(-ENOBUFS);
450 goto out;
451 }
452
453 memcpy(n->primary_key, pkey, key_len);
454 n->dev = dev;
455 dev_hold(dev);
456
457 /* Protocol specific setup. */
458 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
459 rc = ERR_PTR(error);
460 goto out_neigh_release;
461 }
462
463 /* Device specific setup. */
464 if (n->parms->neigh_setup &&
465 (error = n->parms->neigh_setup(n)) < 0) {
466 rc = ERR_PTR(error);
467 goto out_neigh_release;
468 }
469
470 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
471
472 write_lock_bh(&tbl->lock);
473 nht = rcu_dereference_protected(tbl->nht,
474 lockdep_is_held(&tbl->lock));
475
476 if (atomic_read(&tbl->entries) > (nht->hash_mask + 1))
477 nht = neigh_hash_grow(tbl, (nht->hash_mask + 1) << 1);
478
479 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
480
481 if (n->parms->dead) {
482 rc = ERR_PTR(-EINVAL);
483 goto out_tbl_unlock;
484 }
485
486 for (n1 = nht->hash_buckets[hash_val]; n1; n1 = n1->next) {
487 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
488 neigh_hold(n1);
489 rc = n1;
490 goto out_tbl_unlock;
491 }
492 }
493
494 n->next = nht->hash_buckets[hash_val];
495 nht->hash_buckets[hash_val] = n;
496 n->dead = 0;
497 neigh_hold(n);
498 write_unlock_bh(&tbl->lock);
499 NEIGH_PRINTK2("neigh %p is created.\n", n);
500 rc = n;
501 out:
502 return rc;
503 out_tbl_unlock:
504 write_unlock_bh(&tbl->lock);
505 out_neigh_release:
506 neigh_release(n);
507 goto out;
508 }
509 EXPORT_SYMBOL(neigh_create);
510
511 static u32 pneigh_hash(const void *pkey, int key_len)
512 {
513 u32 hash_val = *(u32 *)(pkey + key_len - 4);
514 hash_val ^= (hash_val >> 16);
515 hash_val ^= hash_val >> 8;
516 hash_val ^= hash_val >> 4;
517 hash_val &= PNEIGH_HASHMASK;
518 return hash_val;
519 }
520
521 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
522 struct net *net,
523 const void *pkey,
524 int key_len,
525 struct net_device *dev)
526 {
527 while (n) {
528 if (!memcmp(n->key, pkey, key_len) &&
529 net_eq(pneigh_net(n), net) &&
530 (n->dev == dev || !n->dev))
531 return n;
532 n = n->next;
533 }
534 return NULL;
535 }
536
537 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
538 struct net *net, const void *pkey, struct net_device *dev)
539 {
540 int key_len = tbl->key_len;
541 u32 hash_val = pneigh_hash(pkey, key_len);
542
543 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
544 net, pkey, key_len, dev);
545 }
546 EXPORT_SYMBOL_GPL(__pneigh_lookup);
547
548 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
549 struct net *net, const void *pkey,
550 struct net_device *dev, int creat)
551 {
552 struct pneigh_entry *n;
553 int key_len = tbl->key_len;
554 u32 hash_val = pneigh_hash(pkey, key_len);
555
556 read_lock_bh(&tbl->lock);
557 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
558 net, pkey, key_len, dev);
559 read_unlock_bh(&tbl->lock);
560
561 if (n || !creat)
562 goto out;
563
564 ASSERT_RTNL();
565
566 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
567 if (!n)
568 goto out;
569
570 write_pnet(&n->net, hold_net(net));
571 memcpy(n->key, pkey, key_len);
572 n->dev = dev;
573 if (dev)
574 dev_hold(dev);
575
576 if (tbl->pconstructor && tbl->pconstructor(n)) {
577 if (dev)
578 dev_put(dev);
579 release_net(net);
580 kfree(n);
581 n = NULL;
582 goto out;
583 }
584
585 write_lock_bh(&tbl->lock);
586 n->next = tbl->phash_buckets[hash_val];
587 tbl->phash_buckets[hash_val] = n;
588 write_unlock_bh(&tbl->lock);
589 out:
590 return n;
591 }
592 EXPORT_SYMBOL(pneigh_lookup);
593
594
595 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
596 struct net_device *dev)
597 {
598 struct pneigh_entry *n, **np;
599 int key_len = tbl->key_len;
600 u32 hash_val = pneigh_hash(pkey, key_len);
601
602 write_lock_bh(&tbl->lock);
603 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
604 np = &n->next) {
605 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
606 net_eq(pneigh_net(n), net)) {
607 *np = n->next;
608 write_unlock_bh(&tbl->lock);
609 if (tbl->pdestructor)
610 tbl->pdestructor(n);
611 if (n->dev)
612 dev_put(n->dev);
613 release_net(pneigh_net(n));
614 kfree(n);
615 return 0;
616 }
617 }
618 write_unlock_bh(&tbl->lock);
619 return -ENOENT;
620 }
621
622 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
623 {
624 struct pneigh_entry *n, **np;
625 u32 h;
626
627 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
628 np = &tbl->phash_buckets[h];
629 while ((n = *np) != NULL) {
630 if (!dev || n->dev == dev) {
631 *np = n->next;
632 if (tbl->pdestructor)
633 tbl->pdestructor(n);
634 if (n->dev)
635 dev_put(n->dev);
636 release_net(pneigh_net(n));
637 kfree(n);
638 continue;
639 }
640 np = &n->next;
641 }
642 }
643 return -ENOENT;
644 }
645
646 static void neigh_parms_destroy(struct neigh_parms *parms);
647
648 static inline void neigh_parms_put(struct neigh_parms *parms)
649 {
650 if (atomic_dec_and_test(&parms->refcnt))
651 neigh_parms_destroy(parms);
652 }
653
654 /*
655 * neighbour must already be out of the table;
656 *
657 */
658 void neigh_destroy(struct neighbour *neigh)
659 {
660 struct hh_cache *hh;
661
662 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
663
664 if (!neigh->dead) {
665 printk(KERN_WARNING
666 "Destroying alive neighbour %p\n", neigh);
667 dump_stack();
668 return;
669 }
670
671 if (neigh_del_timer(neigh))
672 printk(KERN_WARNING "Impossible event.\n");
673
674 while ((hh = neigh->hh) != NULL) {
675 neigh->hh = hh->hh_next;
676 hh->hh_next = NULL;
677
678 write_seqlock_bh(&hh->hh_lock);
679 hh->hh_output = neigh_blackhole;
680 write_sequnlock_bh(&hh->hh_lock);
681 if (atomic_dec_and_test(&hh->hh_refcnt))
682 kfree(hh);
683 }
684
685 skb_queue_purge(&neigh->arp_queue);
686
687 dev_put(neigh->dev);
688 neigh_parms_put(neigh->parms);
689
690 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
691
692 atomic_dec(&neigh->tbl->entries);
693 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
694 }
695 EXPORT_SYMBOL(neigh_destroy);
696
697 /* Neighbour state is suspicious;
698 disable fast path.
699
700 Called with write_locked neigh.
701 */
702 static void neigh_suspect(struct neighbour *neigh)
703 {
704 struct hh_cache *hh;
705
706 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
707
708 neigh->output = neigh->ops->output;
709
710 for (hh = neigh->hh; hh; hh = hh->hh_next)
711 hh->hh_output = neigh->ops->output;
712 }
713
714 /* Neighbour state is OK;
715 enable fast path.
716
717 Called with write_locked neigh.
718 */
719 static void neigh_connect(struct neighbour *neigh)
720 {
721 struct hh_cache *hh;
722
723 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
724
725 neigh->output = neigh->ops->connected_output;
726
727 for (hh = neigh->hh; hh; hh = hh->hh_next)
728 hh->hh_output = neigh->ops->hh_output;
729 }
730
731 static void neigh_periodic_work(struct work_struct *work)
732 {
733 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
734 struct neighbour *n, **np;
735 unsigned int i;
736 struct neigh_hash_table *nht;
737
738 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
739
740 write_lock_bh(&tbl->lock);
741 nht = rcu_dereference_protected(tbl->nht,
742 lockdep_is_held(&tbl->lock));
743
744 /*
745 * periodically recompute ReachableTime from random function
746 */
747
748 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
749 struct neigh_parms *p;
750 tbl->last_rand = jiffies;
751 for (p = &tbl->parms; p; p = p->next)
752 p->reachable_time =
753 neigh_rand_reach_time(p->base_reachable_time);
754 }
755
756 for (i = 0 ; i <= nht->hash_mask; i++) {
757 np = &nht->hash_buckets[i];
758
759 while ((n = *np) != NULL) {
760 unsigned int state;
761
762 write_lock(&n->lock);
763
764 state = n->nud_state;
765 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
766 write_unlock(&n->lock);
767 goto next_elt;
768 }
769
770 if (time_before(n->used, n->confirmed))
771 n->used = n->confirmed;
772
773 if (atomic_read(&n->refcnt) == 1 &&
774 (state == NUD_FAILED ||
775 time_after(jiffies, n->used + n->parms->gc_staletime))) {
776 *np = n->next;
777 n->dead = 1;
778 write_unlock(&n->lock);
779 neigh_cleanup_and_release(n);
780 continue;
781 }
782 write_unlock(&n->lock);
783
784 next_elt:
785 np = &n->next;
786 }
787 /*
788 * It's fine to release lock here, even if hash table
789 * grows while we are preempted.
790 */
791 write_unlock_bh(&tbl->lock);
792 cond_resched();
793 write_lock_bh(&tbl->lock);
794 }
795 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
796 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
797 * base_reachable_time.
798 */
799 schedule_delayed_work(&tbl->gc_work,
800 tbl->parms.base_reachable_time >> 1);
801 write_unlock_bh(&tbl->lock);
802 }
803
804 static __inline__ int neigh_max_probes(struct neighbour *n)
805 {
806 struct neigh_parms *p = n->parms;
807 return (n->nud_state & NUD_PROBE) ?
808 p->ucast_probes :
809 p->ucast_probes + p->app_probes + p->mcast_probes;
810 }
811
812 static void neigh_invalidate(struct neighbour *neigh)
813 __releases(neigh->lock)
814 __acquires(neigh->lock)
815 {
816 struct sk_buff *skb;
817
818 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
819 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
820 neigh->updated = jiffies;
821
822 /* It is very thin place. report_unreachable is very complicated
823 routine. Particularly, it can hit the same neighbour entry!
824
825 So that, we try to be accurate and avoid dead loop. --ANK
826 */
827 while (neigh->nud_state == NUD_FAILED &&
828 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
829 write_unlock(&neigh->lock);
830 neigh->ops->error_report(neigh, skb);
831 write_lock(&neigh->lock);
832 }
833 skb_queue_purge(&neigh->arp_queue);
834 }
835
836 /* Called when a timer expires for a neighbour entry. */
837
838 static void neigh_timer_handler(unsigned long arg)
839 {
840 unsigned long now, next;
841 struct neighbour *neigh = (struct neighbour *)arg;
842 unsigned state;
843 int notify = 0;
844
845 write_lock(&neigh->lock);
846
847 state = neigh->nud_state;
848 now = jiffies;
849 next = now + HZ;
850
851 if (!(state & NUD_IN_TIMER)) {
852 #ifndef CONFIG_SMP
853 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
854 #endif
855 goto out;
856 }
857
858 if (state & NUD_REACHABLE) {
859 if (time_before_eq(now,
860 neigh->confirmed + neigh->parms->reachable_time)) {
861 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
862 next = neigh->confirmed + neigh->parms->reachable_time;
863 } else if (time_before_eq(now,
864 neigh->used + neigh->parms->delay_probe_time)) {
865 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
866 neigh->nud_state = NUD_DELAY;
867 neigh->updated = jiffies;
868 neigh_suspect(neigh);
869 next = now + neigh->parms->delay_probe_time;
870 } else {
871 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
872 neigh->nud_state = NUD_STALE;
873 neigh->updated = jiffies;
874 neigh_suspect(neigh);
875 notify = 1;
876 }
877 } else if (state & NUD_DELAY) {
878 if (time_before_eq(now,
879 neigh->confirmed + neigh->parms->delay_probe_time)) {
880 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
881 neigh->nud_state = NUD_REACHABLE;
882 neigh->updated = jiffies;
883 neigh_connect(neigh);
884 notify = 1;
885 next = neigh->confirmed + neigh->parms->reachable_time;
886 } else {
887 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
888 neigh->nud_state = NUD_PROBE;
889 neigh->updated = jiffies;
890 atomic_set(&neigh->probes, 0);
891 next = now + neigh->parms->retrans_time;
892 }
893 } else {
894 /* NUD_PROBE|NUD_INCOMPLETE */
895 next = now + neigh->parms->retrans_time;
896 }
897
898 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
899 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
900 neigh->nud_state = NUD_FAILED;
901 notify = 1;
902 neigh_invalidate(neigh);
903 }
904
905 if (neigh->nud_state & NUD_IN_TIMER) {
906 if (time_before(next, jiffies + HZ/2))
907 next = jiffies + HZ/2;
908 if (!mod_timer(&neigh->timer, next))
909 neigh_hold(neigh);
910 }
911 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
912 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
913 /* keep skb alive even if arp_queue overflows */
914 if (skb)
915 skb = skb_copy(skb, GFP_ATOMIC);
916 write_unlock(&neigh->lock);
917 neigh->ops->solicit(neigh, skb);
918 atomic_inc(&neigh->probes);
919 kfree_skb(skb);
920 } else {
921 out:
922 write_unlock(&neigh->lock);
923 }
924
925 if (notify)
926 neigh_update_notify(neigh);
927
928 neigh_release(neigh);
929 }
930
931 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
932 {
933 int rc;
934 unsigned long now;
935
936 write_lock_bh(&neigh->lock);
937
938 rc = 0;
939 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
940 goto out_unlock_bh;
941
942 now = jiffies;
943
944 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
945 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
946 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
947 neigh->nud_state = NUD_INCOMPLETE;
948 neigh->updated = jiffies;
949 neigh_add_timer(neigh, now + 1);
950 } else {
951 neigh->nud_state = NUD_FAILED;
952 neigh->updated = jiffies;
953 write_unlock_bh(&neigh->lock);
954
955 kfree_skb(skb);
956 return 1;
957 }
958 } else if (neigh->nud_state & NUD_STALE) {
959 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
960 neigh->nud_state = NUD_DELAY;
961 neigh->updated = jiffies;
962 neigh_add_timer(neigh,
963 jiffies + neigh->parms->delay_probe_time);
964 }
965
966 if (neigh->nud_state == NUD_INCOMPLETE) {
967 if (skb) {
968 if (skb_queue_len(&neigh->arp_queue) >=
969 neigh->parms->queue_len) {
970 struct sk_buff *buff;
971 buff = __skb_dequeue(&neigh->arp_queue);
972 kfree_skb(buff);
973 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
974 }
975 skb_dst_force(skb);
976 __skb_queue_tail(&neigh->arp_queue, skb);
977 }
978 rc = 1;
979 }
980 out_unlock_bh:
981 write_unlock_bh(&neigh->lock);
982 return rc;
983 }
984 EXPORT_SYMBOL(__neigh_event_send);
985
986 static void neigh_update_hhs(struct neighbour *neigh)
987 {
988 struct hh_cache *hh;
989 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
990 = NULL;
991
992 if (neigh->dev->header_ops)
993 update = neigh->dev->header_ops->cache_update;
994
995 if (update) {
996 for (hh = neigh->hh; hh; hh = hh->hh_next) {
997 write_seqlock_bh(&hh->hh_lock);
998 update(hh, neigh->dev, neigh->ha);
999 write_sequnlock_bh(&hh->hh_lock);
1000 }
1001 }
1002 }
1003
1004
1005
1006 /* Generic update routine.
1007 -- lladdr is new lladdr or NULL, if it is not supplied.
1008 -- new is new state.
1009 -- flags
1010 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1011 if it is different.
1012 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1013 lladdr instead of overriding it
1014 if it is different.
1015 It also allows to retain current state
1016 if lladdr is unchanged.
1017 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1018
1019 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1020 NTF_ROUTER flag.
1021 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1022 a router.
1023
1024 Caller MUST hold reference count on the entry.
1025 */
1026
1027 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1028 u32 flags)
1029 {
1030 u8 old;
1031 int err;
1032 int notify = 0;
1033 struct net_device *dev;
1034 int update_isrouter = 0;
1035
1036 write_lock_bh(&neigh->lock);
1037
1038 dev = neigh->dev;
1039 old = neigh->nud_state;
1040 err = -EPERM;
1041
1042 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1043 (old & (NUD_NOARP | NUD_PERMANENT)))
1044 goto out;
1045
1046 if (!(new & NUD_VALID)) {
1047 neigh_del_timer(neigh);
1048 if (old & NUD_CONNECTED)
1049 neigh_suspect(neigh);
1050 neigh->nud_state = new;
1051 err = 0;
1052 notify = old & NUD_VALID;
1053 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1054 (new & NUD_FAILED)) {
1055 neigh_invalidate(neigh);
1056 notify = 1;
1057 }
1058 goto out;
1059 }
1060
1061 /* Compare new lladdr with cached one */
1062 if (!dev->addr_len) {
1063 /* First case: device needs no address. */
1064 lladdr = neigh->ha;
1065 } else if (lladdr) {
1066 /* The second case: if something is already cached
1067 and a new address is proposed:
1068 - compare new & old
1069 - if they are different, check override flag
1070 */
1071 if ((old & NUD_VALID) &&
1072 !memcmp(lladdr, neigh->ha, dev->addr_len))
1073 lladdr = neigh->ha;
1074 } else {
1075 /* No address is supplied; if we know something,
1076 use it, otherwise discard the request.
1077 */
1078 err = -EINVAL;
1079 if (!(old & NUD_VALID))
1080 goto out;
1081 lladdr = neigh->ha;
1082 }
1083
1084 if (new & NUD_CONNECTED)
1085 neigh->confirmed = jiffies;
1086 neigh->updated = jiffies;
1087
1088 /* If entry was valid and address is not changed,
1089 do not change entry state, if new one is STALE.
1090 */
1091 err = 0;
1092 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1093 if (old & NUD_VALID) {
1094 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1095 update_isrouter = 0;
1096 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1097 (old & NUD_CONNECTED)) {
1098 lladdr = neigh->ha;
1099 new = NUD_STALE;
1100 } else
1101 goto out;
1102 } else {
1103 if (lladdr == neigh->ha && new == NUD_STALE &&
1104 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1105 (old & NUD_CONNECTED))
1106 )
1107 new = old;
1108 }
1109 }
1110
1111 if (new != old) {
1112 neigh_del_timer(neigh);
1113 if (new & NUD_IN_TIMER)
1114 neigh_add_timer(neigh, (jiffies +
1115 ((new & NUD_REACHABLE) ?
1116 neigh->parms->reachable_time :
1117 0)));
1118 neigh->nud_state = new;
1119 }
1120
1121 if (lladdr != neigh->ha) {
1122 memcpy(&neigh->ha, lladdr, dev->addr_len);
1123 neigh_update_hhs(neigh);
1124 if (!(new & NUD_CONNECTED))
1125 neigh->confirmed = jiffies -
1126 (neigh->parms->base_reachable_time << 1);
1127 notify = 1;
1128 }
1129 if (new == old)
1130 goto out;
1131 if (new & NUD_CONNECTED)
1132 neigh_connect(neigh);
1133 else
1134 neigh_suspect(neigh);
1135 if (!(old & NUD_VALID)) {
1136 struct sk_buff *skb;
1137
1138 /* Again: avoid dead loop if something went wrong */
1139
1140 while (neigh->nud_state & NUD_VALID &&
1141 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1142 struct neighbour *n1 = neigh;
1143 write_unlock_bh(&neigh->lock);
1144 /* On shaper/eql skb->dst->neighbour != neigh :( */
1145 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1146 n1 = skb_dst(skb)->neighbour;
1147 n1->output(skb);
1148 write_lock_bh(&neigh->lock);
1149 }
1150 skb_queue_purge(&neigh->arp_queue);
1151 }
1152 out:
1153 if (update_isrouter) {
1154 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1155 (neigh->flags | NTF_ROUTER) :
1156 (neigh->flags & ~NTF_ROUTER);
1157 }
1158 write_unlock_bh(&neigh->lock);
1159
1160 if (notify)
1161 neigh_update_notify(neigh);
1162
1163 return err;
1164 }
1165 EXPORT_SYMBOL(neigh_update);
1166
1167 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1168 u8 *lladdr, void *saddr,
1169 struct net_device *dev)
1170 {
1171 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1172 lladdr || !dev->addr_len);
1173 if (neigh)
1174 neigh_update(neigh, lladdr, NUD_STALE,
1175 NEIGH_UPDATE_F_OVERRIDE);
1176 return neigh;
1177 }
1178 EXPORT_SYMBOL(neigh_event_ns);
1179
1180 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1181 __be16 protocol)
1182 {
1183 struct hh_cache *hh;
1184 struct net_device *dev = dst->dev;
1185
1186 for (hh = n->hh; hh; hh = hh->hh_next)
1187 if (hh->hh_type == protocol)
1188 break;
1189
1190 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1191 seqlock_init(&hh->hh_lock);
1192 hh->hh_type = protocol;
1193 atomic_set(&hh->hh_refcnt, 0);
1194 hh->hh_next = NULL;
1195
1196 if (dev->header_ops->cache(n, hh)) {
1197 kfree(hh);
1198 hh = NULL;
1199 } else {
1200 atomic_inc(&hh->hh_refcnt);
1201 hh->hh_next = n->hh;
1202 n->hh = hh;
1203 if (n->nud_state & NUD_CONNECTED)
1204 hh->hh_output = n->ops->hh_output;
1205 else
1206 hh->hh_output = n->ops->output;
1207 }
1208 }
1209 if (hh) {
1210 atomic_inc(&hh->hh_refcnt);
1211 dst->hh = hh;
1212 }
1213 }
1214
1215 /* This function can be used in contexts, where only old dev_queue_xmit
1216 worked, f.e. if you want to override normal output path (eql, shaper),
1217 but resolution is not made yet.
1218 */
1219
1220 int neigh_compat_output(struct sk_buff *skb)
1221 {
1222 struct net_device *dev = skb->dev;
1223
1224 __skb_pull(skb, skb_network_offset(skb));
1225
1226 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1227 skb->len) < 0 &&
1228 dev->header_ops->rebuild(skb))
1229 return 0;
1230
1231 return dev_queue_xmit(skb);
1232 }
1233 EXPORT_SYMBOL(neigh_compat_output);
1234
1235 /* Slow and careful. */
1236
1237 int neigh_resolve_output(struct sk_buff *skb)
1238 {
1239 struct dst_entry *dst = skb_dst(skb);
1240 struct neighbour *neigh;
1241 int rc = 0;
1242
1243 if (!dst || !(neigh = dst->neighbour))
1244 goto discard;
1245
1246 __skb_pull(skb, skb_network_offset(skb));
1247
1248 if (!neigh_event_send(neigh, skb)) {
1249 int err;
1250 struct net_device *dev = neigh->dev;
1251 if (dev->header_ops->cache &&
1252 !dst->hh &&
1253 !(dst->flags & DST_NOCACHE)) {
1254 write_lock_bh(&neigh->lock);
1255 if (!dst->hh)
1256 neigh_hh_init(neigh, dst, dst->ops->protocol);
1257 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1258 neigh->ha, NULL, skb->len);
1259 write_unlock_bh(&neigh->lock);
1260 } else {
1261 read_lock_bh(&neigh->lock);
1262 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1263 neigh->ha, NULL, skb->len);
1264 read_unlock_bh(&neigh->lock);
1265 }
1266 if (err >= 0)
1267 rc = neigh->ops->queue_xmit(skb);
1268 else
1269 goto out_kfree_skb;
1270 }
1271 out:
1272 return rc;
1273 discard:
1274 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1275 dst, dst ? dst->neighbour : NULL);
1276 out_kfree_skb:
1277 rc = -EINVAL;
1278 kfree_skb(skb);
1279 goto out;
1280 }
1281 EXPORT_SYMBOL(neigh_resolve_output);
1282
1283 /* As fast as possible without hh cache */
1284
1285 int neigh_connected_output(struct sk_buff *skb)
1286 {
1287 int err;
1288 struct dst_entry *dst = skb_dst(skb);
1289 struct neighbour *neigh = dst->neighbour;
1290 struct net_device *dev = neigh->dev;
1291
1292 __skb_pull(skb, skb_network_offset(skb));
1293
1294 read_lock_bh(&neigh->lock);
1295 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1296 neigh->ha, NULL, skb->len);
1297 read_unlock_bh(&neigh->lock);
1298 if (err >= 0)
1299 err = neigh->ops->queue_xmit(skb);
1300 else {
1301 err = -EINVAL;
1302 kfree_skb(skb);
1303 }
1304 return err;
1305 }
1306 EXPORT_SYMBOL(neigh_connected_output);
1307
1308 static void neigh_proxy_process(unsigned long arg)
1309 {
1310 struct neigh_table *tbl = (struct neigh_table *)arg;
1311 long sched_next = 0;
1312 unsigned long now = jiffies;
1313 struct sk_buff *skb, *n;
1314
1315 spin_lock(&tbl->proxy_queue.lock);
1316
1317 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318 long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320 if (tdif <= 0) {
1321 struct net_device *dev = skb->dev;
1322 __skb_unlink(skb, &tbl->proxy_queue);
1323 if (tbl->proxy_redo && netif_running(dev))
1324 tbl->proxy_redo(skb);
1325 else
1326 kfree_skb(skb);
1327
1328 dev_put(dev);
1329 } else if (!sched_next || tdif < sched_next)
1330 sched_next = tdif;
1331 }
1332 del_timer(&tbl->proxy_timer);
1333 if (sched_next)
1334 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1335 spin_unlock(&tbl->proxy_queue.lock);
1336 }
1337
1338 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1339 struct sk_buff *skb)
1340 {
1341 unsigned long now = jiffies;
1342 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1343
1344 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1345 kfree_skb(skb);
1346 return;
1347 }
1348
1349 NEIGH_CB(skb)->sched_next = sched_next;
1350 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1351
1352 spin_lock(&tbl->proxy_queue.lock);
1353 if (del_timer(&tbl->proxy_timer)) {
1354 if (time_before(tbl->proxy_timer.expires, sched_next))
1355 sched_next = tbl->proxy_timer.expires;
1356 }
1357 skb_dst_drop(skb);
1358 dev_hold(skb->dev);
1359 __skb_queue_tail(&tbl->proxy_queue, skb);
1360 mod_timer(&tbl->proxy_timer, sched_next);
1361 spin_unlock(&tbl->proxy_queue.lock);
1362 }
1363 EXPORT_SYMBOL(pneigh_enqueue);
1364
1365 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1366 struct net *net, int ifindex)
1367 {
1368 struct neigh_parms *p;
1369
1370 for (p = &tbl->parms; p; p = p->next) {
1371 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1372 (!p->dev && !ifindex))
1373 return p;
1374 }
1375
1376 return NULL;
1377 }
1378
1379 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1380 struct neigh_table *tbl)
1381 {
1382 struct neigh_parms *p, *ref;
1383 struct net *net = dev_net(dev);
1384 const struct net_device_ops *ops = dev->netdev_ops;
1385
1386 ref = lookup_neigh_parms(tbl, net, 0);
1387 if (!ref)
1388 return NULL;
1389
1390 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1391 if (p) {
1392 p->tbl = tbl;
1393 atomic_set(&p->refcnt, 1);
1394 p->reachable_time =
1395 neigh_rand_reach_time(p->base_reachable_time);
1396
1397 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1398 kfree(p);
1399 return NULL;
1400 }
1401
1402 dev_hold(dev);
1403 p->dev = dev;
1404 write_pnet(&p->net, hold_net(net));
1405 p->sysctl_table = NULL;
1406 write_lock_bh(&tbl->lock);
1407 p->next = tbl->parms.next;
1408 tbl->parms.next = p;
1409 write_unlock_bh(&tbl->lock);
1410 }
1411 return p;
1412 }
1413 EXPORT_SYMBOL(neigh_parms_alloc);
1414
1415 static void neigh_rcu_free_parms(struct rcu_head *head)
1416 {
1417 struct neigh_parms *parms =
1418 container_of(head, struct neigh_parms, rcu_head);
1419
1420 neigh_parms_put(parms);
1421 }
1422
1423 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1424 {
1425 struct neigh_parms **p;
1426
1427 if (!parms || parms == &tbl->parms)
1428 return;
1429 write_lock_bh(&tbl->lock);
1430 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1431 if (*p == parms) {
1432 *p = parms->next;
1433 parms->dead = 1;
1434 write_unlock_bh(&tbl->lock);
1435 if (parms->dev)
1436 dev_put(parms->dev);
1437 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1438 return;
1439 }
1440 }
1441 write_unlock_bh(&tbl->lock);
1442 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1443 }
1444 EXPORT_SYMBOL(neigh_parms_release);
1445
1446 static void neigh_parms_destroy(struct neigh_parms *parms)
1447 {
1448 release_net(neigh_parms_net(parms));
1449 kfree(parms);
1450 }
1451
1452 static struct lock_class_key neigh_table_proxy_queue_class;
1453
1454 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1455 {
1456 unsigned long now = jiffies;
1457 unsigned long phsize;
1458
1459 write_pnet(&tbl->parms.net, &init_net);
1460 atomic_set(&tbl->parms.refcnt, 1);
1461 tbl->parms.reachable_time =
1462 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1463
1464 if (!tbl->kmem_cachep)
1465 tbl->kmem_cachep =
1466 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1468 NULL);
1469 tbl->stats = alloc_percpu(struct neigh_statistics);
1470 if (!tbl->stats)
1471 panic("cannot create neighbour cache statistics");
1472
1473 #ifdef CONFIG_PROC_FS
1474 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1475 &neigh_stat_seq_fops, tbl))
1476 panic("cannot create neighbour proc dir entry");
1477 #endif
1478
1479 tbl->nht = neigh_hash_alloc(8);
1480
1481 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1482 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1483
1484 if (!tbl->nht || !tbl->phash_buckets)
1485 panic("cannot allocate neighbour cache hashes");
1486
1487 rwlock_init(&tbl->lock);
1488 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1489 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1490 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1491 skb_queue_head_init_class(&tbl->proxy_queue,
1492 &neigh_table_proxy_queue_class);
1493
1494 tbl->last_flush = now;
1495 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1496 }
1497 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1498
1499 void neigh_table_init(struct neigh_table *tbl)
1500 {
1501 struct neigh_table *tmp;
1502
1503 neigh_table_init_no_netlink(tbl);
1504 write_lock(&neigh_tbl_lock);
1505 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1506 if (tmp->family == tbl->family)
1507 break;
1508 }
1509 tbl->next = neigh_tables;
1510 neigh_tables = tbl;
1511 write_unlock(&neigh_tbl_lock);
1512
1513 if (unlikely(tmp)) {
1514 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1515 "family %d\n", tbl->family);
1516 dump_stack();
1517 }
1518 }
1519 EXPORT_SYMBOL(neigh_table_init);
1520
1521 int neigh_table_clear(struct neigh_table *tbl)
1522 {
1523 struct neigh_table **tp;
1524
1525 /* It is not clean... Fix it to unload IPv6 module safely */
1526 cancel_delayed_work(&tbl->gc_work);
1527 flush_scheduled_work();
1528 del_timer_sync(&tbl->proxy_timer);
1529 pneigh_queue_purge(&tbl->proxy_queue);
1530 neigh_ifdown(tbl, NULL);
1531 if (atomic_read(&tbl->entries))
1532 printk(KERN_CRIT "neighbour leakage\n");
1533 write_lock(&neigh_tbl_lock);
1534 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1535 if (*tp == tbl) {
1536 *tp = tbl->next;
1537 break;
1538 }
1539 }
1540 write_unlock(&neigh_tbl_lock);
1541
1542 call_rcu(&tbl->nht->rcu, neigh_hash_free_rcu);
1543 tbl->nht = NULL;
1544
1545 kfree(tbl->phash_buckets);
1546 tbl->phash_buckets = NULL;
1547
1548 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1549
1550 free_percpu(tbl->stats);
1551 tbl->stats = NULL;
1552
1553 kmem_cache_destroy(tbl->kmem_cachep);
1554 tbl->kmem_cachep = NULL;
1555
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(neigh_table_clear);
1559
1560 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1561 {
1562 struct net *net = sock_net(skb->sk);
1563 struct ndmsg *ndm;
1564 struct nlattr *dst_attr;
1565 struct neigh_table *tbl;
1566 struct net_device *dev = NULL;
1567 int err = -EINVAL;
1568
1569 ASSERT_RTNL();
1570 if (nlmsg_len(nlh) < sizeof(*ndm))
1571 goto out;
1572
1573 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1574 if (dst_attr == NULL)
1575 goto out;
1576
1577 ndm = nlmsg_data(nlh);
1578 if (ndm->ndm_ifindex) {
1579 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1580 if (dev == NULL) {
1581 err = -ENODEV;
1582 goto out;
1583 }
1584 }
1585
1586 read_lock(&neigh_tbl_lock);
1587 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1588 struct neighbour *neigh;
1589
1590 if (tbl->family != ndm->ndm_family)
1591 continue;
1592 read_unlock(&neigh_tbl_lock);
1593
1594 if (nla_len(dst_attr) < tbl->key_len)
1595 goto out;
1596
1597 if (ndm->ndm_flags & NTF_PROXY) {
1598 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1599 goto out;
1600 }
1601
1602 if (dev == NULL)
1603 goto out;
1604
1605 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1606 if (neigh == NULL) {
1607 err = -ENOENT;
1608 goto out;
1609 }
1610
1611 err = neigh_update(neigh, NULL, NUD_FAILED,
1612 NEIGH_UPDATE_F_OVERRIDE |
1613 NEIGH_UPDATE_F_ADMIN);
1614 neigh_release(neigh);
1615 goto out;
1616 }
1617 read_unlock(&neigh_tbl_lock);
1618 err = -EAFNOSUPPORT;
1619
1620 out:
1621 return err;
1622 }
1623
1624 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1625 {
1626 struct net *net = sock_net(skb->sk);
1627 struct ndmsg *ndm;
1628 struct nlattr *tb[NDA_MAX+1];
1629 struct neigh_table *tbl;
1630 struct net_device *dev = NULL;
1631 int err;
1632
1633 ASSERT_RTNL();
1634 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1635 if (err < 0)
1636 goto out;
1637
1638 err = -EINVAL;
1639 if (tb[NDA_DST] == NULL)
1640 goto out;
1641
1642 ndm = nlmsg_data(nlh);
1643 if (ndm->ndm_ifindex) {
1644 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1645 if (dev == NULL) {
1646 err = -ENODEV;
1647 goto out;
1648 }
1649
1650 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1651 goto out;
1652 }
1653
1654 read_lock(&neigh_tbl_lock);
1655 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1656 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1657 struct neighbour *neigh;
1658 void *dst, *lladdr;
1659
1660 if (tbl->family != ndm->ndm_family)
1661 continue;
1662 read_unlock(&neigh_tbl_lock);
1663
1664 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1665 goto out;
1666 dst = nla_data(tb[NDA_DST]);
1667 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1668
1669 if (ndm->ndm_flags & NTF_PROXY) {
1670 struct pneigh_entry *pn;
1671
1672 err = -ENOBUFS;
1673 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1674 if (pn) {
1675 pn->flags = ndm->ndm_flags;
1676 err = 0;
1677 }
1678 goto out;
1679 }
1680
1681 if (dev == NULL)
1682 goto out;
1683
1684 neigh = neigh_lookup(tbl, dst, dev);
1685 if (neigh == NULL) {
1686 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1687 err = -ENOENT;
1688 goto out;
1689 }
1690
1691 neigh = __neigh_lookup_errno(tbl, dst, dev);
1692 if (IS_ERR(neigh)) {
1693 err = PTR_ERR(neigh);
1694 goto out;
1695 }
1696 } else {
1697 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1698 err = -EEXIST;
1699 neigh_release(neigh);
1700 goto out;
1701 }
1702
1703 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1704 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1705 }
1706
1707 if (ndm->ndm_flags & NTF_USE) {
1708 neigh_event_send(neigh, NULL);
1709 err = 0;
1710 } else
1711 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1712 neigh_release(neigh);
1713 goto out;
1714 }
1715
1716 read_unlock(&neigh_tbl_lock);
1717 err = -EAFNOSUPPORT;
1718 out:
1719 return err;
1720 }
1721
1722 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1723 {
1724 struct nlattr *nest;
1725
1726 nest = nla_nest_start(skb, NDTA_PARMS);
1727 if (nest == NULL)
1728 return -ENOBUFS;
1729
1730 if (parms->dev)
1731 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1732
1733 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1734 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1735 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1736 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1737 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1738 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1739 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1740 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1741 parms->base_reachable_time);
1742 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1743 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1744 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1745 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1746 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1747 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1748
1749 return nla_nest_end(skb, nest);
1750
1751 nla_put_failure:
1752 nla_nest_cancel(skb, nest);
1753 return -EMSGSIZE;
1754 }
1755
1756 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1757 u32 pid, u32 seq, int type, int flags)
1758 {
1759 struct nlmsghdr *nlh;
1760 struct ndtmsg *ndtmsg;
1761
1762 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1763 if (nlh == NULL)
1764 return -EMSGSIZE;
1765
1766 ndtmsg = nlmsg_data(nlh);
1767
1768 read_lock_bh(&tbl->lock);
1769 ndtmsg->ndtm_family = tbl->family;
1770 ndtmsg->ndtm_pad1 = 0;
1771 ndtmsg->ndtm_pad2 = 0;
1772
1773 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1774 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1775 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1776 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1777 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1778
1779 {
1780 unsigned long now = jiffies;
1781 unsigned int flush_delta = now - tbl->last_flush;
1782 unsigned int rand_delta = now - tbl->last_rand;
1783 struct neigh_hash_table *nht;
1784 struct ndt_config ndc = {
1785 .ndtc_key_len = tbl->key_len,
1786 .ndtc_entry_size = tbl->entry_size,
1787 .ndtc_entries = atomic_read(&tbl->entries),
1788 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1789 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1790 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1791 };
1792
1793 rcu_read_lock_bh();
1794 nht = rcu_dereference_bh(tbl->nht);
1795 ndc.ndtc_hash_rnd = nht->hash_rnd;
1796 ndc.ndtc_hash_mask = nht->hash_mask;
1797 rcu_read_unlock_bh();
1798
1799 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1800 }
1801
1802 {
1803 int cpu;
1804 struct ndt_stats ndst;
1805
1806 memset(&ndst, 0, sizeof(ndst));
1807
1808 for_each_possible_cpu(cpu) {
1809 struct neigh_statistics *st;
1810
1811 st = per_cpu_ptr(tbl->stats, cpu);
1812 ndst.ndts_allocs += st->allocs;
1813 ndst.ndts_destroys += st->destroys;
1814 ndst.ndts_hash_grows += st->hash_grows;
1815 ndst.ndts_res_failed += st->res_failed;
1816 ndst.ndts_lookups += st->lookups;
1817 ndst.ndts_hits += st->hits;
1818 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1819 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1820 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1821 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1822 }
1823
1824 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1825 }
1826
1827 BUG_ON(tbl->parms.dev);
1828 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1829 goto nla_put_failure;
1830
1831 read_unlock_bh(&tbl->lock);
1832 return nlmsg_end(skb, nlh);
1833
1834 nla_put_failure:
1835 read_unlock_bh(&tbl->lock);
1836 nlmsg_cancel(skb, nlh);
1837 return -EMSGSIZE;
1838 }
1839
1840 static int neightbl_fill_param_info(struct sk_buff *skb,
1841 struct neigh_table *tbl,
1842 struct neigh_parms *parms,
1843 u32 pid, u32 seq, int type,
1844 unsigned int flags)
1845 {
1846 struct ndtmsg *ndtmsg;
1847 struct nlmsghdr *nlh;
1848
1849 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1850 if (nlh == NULL)
1851 return -EMSGSIZE;
1852
1853 ndtmsg = nlmsg_data(nlh);
1854
1855 read_lock_bh(&tbl->lock);
1856 ndtmsg->ndtm_family = tbl->family;
1857 ndtmsg->ndtm_pad1 = 0;
1858 ndtmsg->ndtm_pad2 = 0;
1859
1860 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1861 neightbl_fill_parms(skb, parms) < 0)
1862 goto errout;
1863
1864 read_unlock_bh(&tbl->lock);
1865 return nlmsg_end(skb, nlh);
1866 errout:
1867 read_unlock_bh(&tbl->lock);
1868 nlmsg_cancel(skb, nlh);
1869 return -EMSGSIZE;
1870 }
1871
1872 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1873 [NDTA_NAME] = { .type = NLA_STRING },
1874 [NDTA_THRESH1] = { .type = NLA_U32 },
1875 [NDTA_THRESH2] = { .type = NLA_U32 },
1876 [NDTA_THRESH3] = { .type = NLA_U32 },
1877 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1878 [NDTA_PARMS] = { .type = NLA_NESTED },
1879 };
1880
1881 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1882 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1883 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1884 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1885 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1886 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1887 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1888 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1889 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1890 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1891 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1892 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1893 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1894 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1895 };
1896
1897 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1898 {
1899 struct net *net = sock_net(skb->sk);
1900 struct neigh_table *tbl;
1901 struct ndtmsg *ndtmsg;
1902 struct nlattr *tb[NDTA_MAX+1];
1903 int err;
1904
1905 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1906 nl_neightbl_policy);
1907 if (err < 0)
1908 goto errout;
1909
1910 if (tb[NDTA_NAME] == NULL) {
1911 err = -EINVAL;
1912 goto errout;
1913 }
1914
1915 ndtmsg = nlmsg_data(nlh);
1916 read_lock(&neigh_tbl_lock);
1917 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1918 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1919 continue;
1920
1921 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1922 break;
1923 }
1924
1925 if (tbl == NULL) {
1926 err = -ENOENT;
1927 goto errout_locked;
1928 }
1929
1930 /*
1931 * We acquire tbl->lock to be nice to the periodic timers and
1932 * make sure they always see a consistent set of values.
1933 */
1934 write_lock_bh(&tbl->lock);
1935
1936 if (tb[NDTA_PARMS]) {
1937 struct nlattr *tbp[NDTPA_MAX+1];
1938 struct neigh_parms *p;
1939 int i, ifindex = 0;
1940
1941 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1942 nl_ntbl_parm_policy);
1943 if (err < 0)
1944 goto errout_tbl_lock;
1945
1946 if (tbp[NDTPA_IFINDEX])
1947 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1948
1949 p = lookup_neigh_parms(tbl, net, ifindex);
1950 if (p == NULL) {
1951 err = -ENOENT;
1952 goto errout_tbl_lock;
1953 }
1954
1955 for (i = 1; i <= NDTPA_MAX; i++) {
1956 if (tbp[i] == NULL)
1957 continue;
1958
1959 switch (i) {
1960 case NDTPA_QUEUE_LEN:
1961 p->queue_len = nla_get_u32(tbp[i]);
1962 break;
1963 case NDTPA_PROXY_QLEN:
1964 p->proxy_qlen = nla_get_u32(tbp[i]);
1965 break;
1966 case NDTPA_APP_PROBES:
1967 p->app_probes = nla_get_u32(tbp[i]);
1968 break;
1969 case NDTPA_UCAST_PROBES:
1970 p->ucast_probes = nla_get_u32(tbp[i]);
1971 break;
1972 case NDTPA_MCAST_PROBES:
1973 p->mcast_probes = nla_get_u32(tbp[i]);
1974 break;
1975 case NDTPA_BASE_REACHABLE_TIME:
1976 p->base_reachable_time = nla_get_msecs(tbp[i]);
1977 break;
1978 case NDTPA_GC_STALETIME:
1979 p->gc_staletime = nla_get_msecs(tbp[i]);
1980 break;
1981 case NDTPA_DELAY_PROBE_TIME:
1982 p->delay_probe_time = nla_get_msecs(tbp[i]);
1983 break;
1984 case NDTPA_RETRANS_TIME:
1985 p->retrans_time = nla_get_msecs(tbp[i]);
1986 break;
1987 case NDTPA_ANYCAST_DELAY:
1988 p->anycast_delay = nla_get_msecs(tbp[i]);
1989 break;
1990 case NDTPA_PROXY_DELAY:
1991 p->proxy_delay = nla_get_msecs(tbp[i]);
1992 break;
1993 case NDTPA_LOCKTIME:
1994 p->locktime = nla_get_msecs(tbp[i]);
1995 break;
1996 }
1997 }
1998 }
1999
2000 if (tb[NDTA_THRESH1])
2001 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2002
2003 if (tb[NDTA_THRESH2])
2004 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2005
2006 if (tb[NDTA_THRESH3])
2007 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2008
2009 if (tb[NDTA_GC_INTERVAL])
2010 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2011
2012 err = 0;
2013
2014 errout_tbl_lock:
2015 write_unlock_bh(&tbl->lock);
2016 errout_locked:
2017 read_unlock(&neigh_tbl_lock);
2018 errout:
2019 return err;
2020 }
2021
2022 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2023 {
2024 struct net *net = sock_net(skb->sk);
2025 int family, tidx, nidx = 0;
2026 int tbl_skip = cb->args[0];
2027 int neigh_skip = cb->args[1];
2028 struct neigh_table *tbl;
2029
2030 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2031
2032 read_lock(&neigh_tbl_lock);
2033 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2034 struct neigh_parms *p;
2035
2036 if (tidx < tbl_skip || (family && tbl->family != family))
2037 continue;
2038
2039 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2040 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2041 NLM_F_MULTI) <= 0)
2042 break;
2043
2044 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2045 if (!net_eq(neigh_parms_net(p), net))
2046 continue;
2047
2048 if (nidx < neigh_skip)
2049 goto next;
2050
2051 if (neightbl_fill_param_info(skb, tbl, p,
2052 NETLINK_CB(cb->skb).pid,
2053 cb->nlh->nlmsg_seq,
2054 RTM_NEWNEIGHTBL,
2055 NLM_F_MULTI) <= 0)
2056 goto out;
2057 next:
2058 nidx++;
2059 }
2060
2061 neigh_skip = 0;
2062 }
2063 out:
2064 read_unlock(&neigh_tbl_lock);
2065 cb->args[0] = tidx;
2066 cb->args[1] = nidx;
2067
2068 return skb->len;
2069 }
2070
2071 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2072 u32 pid, u32 seq, int type, unsigned int flags)
2073 {
2074 unsigned long now = jiffies;
2075 struct nda_cacheinfo ci;
2076 struct nlmsghdr *nlh;
2077 struct ndmsg *ndm;
2078
2079 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2080 if (nlh == NULL)
2081 return -EMSGSIZE;
2082
2083 ndm = nlmsg_data(nlh);
2084 ndm->ndm_family = neigh->ops->family;
2085 ndm->ndm_pad1 = 0;
2086 ndm->ndm_pad2 = 0;
2087 ndm->ndm_flags = neigh->flags;
2088 ndm->ndm_type = neigh->type;
2089 ndm->ndm_ifindex = neigh->dev->ifindex;
2090
2091 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2092
2093 read_lock_bh(&neigh->lock);
2094 ndm->ndm_state = neigh->nud_state;
2095 if ((neigh->nud_state & NUD_VALID) &&
2096 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2097 read_unlock_bh(&neigh->lock);
2098 goto nla_put_failure;
2099 }
2100
2101 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2102 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2103 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2104 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2105 read_unlock_bh(&neigh->lock);
2106
2107 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2108 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2109
2110 return nlmsg_end(skb, nlh);
2111
2112 nla_put_failure:
2113 nlmsg_cancel(skb, nlh);
2114 return -EMSGSIZE;
2115 }
2116
2117 static void neigh_update_notify(struct neighbour *neigh)
2118 {
2119 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2120 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2121 }
2122
2123 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2124 struct netlink_callback *cb)
2125 {
2126 struct net * net = sock_net(skb->sk);
2127 struct neighbour *n;
2128 int rc, h, s_h = cb->args[1];
2129 int idx, s_idx = idx = cb->args[2];
2130 struct neigh_hash_table *nht;
2131
2132 rcu_read_lock_bh();
2133 nht = rcu_dereference_bh(tbl->nht);
2134
2135 read_lock(&tbl->lock);
2136 for (h = 0; h <= nht->hash_mask; h++) {
2137 if (h < s_h)
2138 continue;
2139 if (h > s_h)
2140 s_idx = 0;
2141 for (n = nht->hash_buckets[h], idx = 0; n; n = n->next) {
2142 if (!net_eq(dev_net(n->dev), net))
2143 continue;
2144 if (idx < s_idx)
2145 goto next;
2146 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2147 cb->nlh->nlmsg_seq,
2148 RTM_NEWNEIGH,
2149 NLM_F_MULTI) <= 0) {
2150 rc = -1;
2151 goto out;
2152 }
2153 next:
2154 idx++;
2155 }
2156 }
2157 rc = skb->len;
2158 out:
2159 read_unlock(&tbl->lock);
2160 rcu_read_unlock_bh();
2161 cb->args[1] = h;
2162 cb->args[2] = idx;
2163 return rc;
2164 }
2165
2166 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2167 {
2168 struct neigh_table *tbl;
2169 int t, family, s_t;
2170
2171 read_lock(&neigh_tbl_lock);
2172 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2173 s_t = cb->args[0];
2174
2175 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2176 if (t < s_t || (family && tbl->family != family))
2177 continue;
2178 if (t > s_t)
2179 memset(&cb->args[1], 0, sizeof(cb->args) -
2180 sizeof(cb->args[0]));
2181 if (neigh_dump_table(tbl, skb, cb) < 0)
2182 break;
2183 }
2184 read_unlock(&neigh_tbl_lock);
2185
2186 cb->args[0] = t;
2187 return skb->len;
2188 }
2189
2190 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2191 {
2192 int chain;
2193 struct neigh_hash_table *nht;
2194
2195 rcu_read_lock_bh();
2196 nht = rcu_dereference_bh(tbl->nht);
2197
2198 read_lock(&tbl->lock);
2199 for (chain = 0; chain <= nht->hash_mask; chain++) {
2200 struct neighbour *n;
2201
2202 for (n = nht->hash_buckets[chain]; n; n = n->next)
2203 cb(n, cookie);
2204 }
2205 read_unlock(&tbl->lock);
2206 rcu_read_unlock_bh();
2207 }
2208 EXPORT_SYMBOL(neigh_for_each);
2209
2210 /* The tbl->lock must be held as a writer and BH disabled. */
2211 void __neigh_for_each_release(struct neigh_table *tbl,
2212 int (*cb)(struct neighbour *))
2213 {
2214 int chain;
2215 struct neigh_hash_table *nht;
2216
2217 nht = rcu_dereference_protected(tbl->nht,
2218 lockdep_is_held(&tbl->lock));
2219 for (chain = 0; chain <= nht->hash_mask; chain++) {
2220 struct neighbour *n, **np;
2221
2222 np = &nht->hash_buckets[chain];
2223 while ((n = *np) != NULL) {
2224 int release;
2225
2226 write_lock(&n->lock);
2227 release = cb(n);
2228 if (release) {
2229 *np = n->next;
2230 n->dead = 1;
2231 } else
2232 np = &n->next;
2233 write_unlock(&n->lock);
2234 if (release)
2235 neigh_cleanup_and_release(n);
2236 }
2237 }
2238 }
2239 EXPORT_SYMBOL(__neigh_for_each_release);
2240
2241 #ifdef CONFIG_PROC_FS
2242
2243 static struct neighbour *neigh_get_first(struct seq_file *seq)
2244 {
2245 struct neigh_seq_state *state = seq->private;
2246 struct net *net = seq_file_net(seq);
2247 struct neigh_hash_table *nht = state->nht;
2248 struct neighbour *n = NULL;
2249 int bucket = state->bucket;
2250
2251 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2252 for (bucket = 0; bucket <= nht->hash_mask; bucket++) {
2253 n = nht->hash_buckets[bucket];
2254
2255 while (n) {
2256 if (!net_eq(dev_net(n->dev), net))
2257 goto next;
2258 if (state->neigh_sub_iter) {
2259 loff_t fakep = 0;
2260 void *v;
2261
2262 v = state->neigh_sub_iter(state, n, &fakep);
2263 if (!v)
2264 goto next;
2265 }
2266 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2267 break;
2268 if (n->nud_state & ~NUD_NOARP)
2269 break;
2270 next:
2271 n = n->next;
2272 }
2273
2274 if (n)
2275 break;
2276 }
2277 state->bucket = bucket;
2278
2279 return n;
2280 }
2281
2282 static struct neighbour *neigh_get_next(struct seq_file *seq,
2283 struct neighbour *n,
2284 loff_t *pos)
2285 {
2286 struct neigh_seq_state *state = seq->private;
2287 struct net *net = seq_file_net(seq);
2288 struct neigh_hash_table *nht = state->nht;
2289
2290 if (state->neigh_sub_iter) {
2291 void *v = state->neigh_sub_iter(state, n, pos);
2292 if (v)
2293 return n;
2294 }
2295 n = n->next;
2296
2297 while (1) {
2298 while (n) {
2299 if (!net_eq(dev_net(n->dev), net))
2300 goto next;
2301 if (state->neigh_sub_iter) {
2302 void *v = state->neigh_sub_iter(state, n, pos);
2303 if (v)
2304 return n;
2305 goto next;
2306 }
2307 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2308 break;
2309
2310 if (n->nud_state & ~NUD_NOARP)
2311 break;
2312 next:
2313 n = n->next;
2314 }
2315
2316 if (n)
2317 break;
2318
2319 if (++state->bucket > nht->hash_mask)
2320 break;
2321
2322 n = nht->hash_buckets[state->bucket];
2323 }
2324
2325 if (n && pos)
2326 --(*pos);
2327 return n;
2328 }
2329
2330 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2331 {
2332 struct neighbour *n = neigh_get_first(seq);
2333
2334 if (n) {
2335 --(*pos);
2336 while (*pos) {
2337 n = neigh_get_next(seq, n, pos);
2338 if (!n)
2339 break;
2340 }
2341 }
2342 return *pos ? NULL : n;
2343 }
2344
2345 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2346 {
2347 struct neigh_seq_state *state = seq->private;
2348 struct net *net = seq_file_net(seq);
2349 struct neigh_table *tbl = state->tbl;
2350 struct pneigh_entry *pn = NULL;
2351 int bucket = state->bucket;
2352
2353 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2354 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2355 pn = tbl->phash_buckets[bucket];
2356 while (pn && !net_eq(pneigh_net(pn), net))
2357 pn = pn->next;
2358 if (pn)
2359 break;
2360 }
2361 state->bucket = bucket;
2362
2363 return pn;
2364 }
2365
2366 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2367 struct pneigh_entry *pn,
2368 loff_t *pos)
2369 {
2370 struct neigh_seq_state *state = seq->private;
2371 struct net *net = seq_file_net(seq);
2372 struct neigh_table *tbl = state->tbl;
2373
2374 pn = pn->next;
2375 while (!pn) {
2376 if (++state->bucket > PNEIGH_HASHMASK)
2377 break;
2378 pn = tbl->phash_buckets[state->bucket];
2379 while (pn && !net_eq(pneigh_net(pn), net))
2380 pn = pn->next;
2381 if (pn)
2382 break;
2383 }
2384
2385 if (pn && pos)
2386 --(*pos);
2387
2388 return pn;
2389 }
2390
2391 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2392 {
2393 struct pneigh_entry *pn = pneigh_get_first(seq);
2394
2395 if (pn) {
2396 --(*pos);
2397 while (*pos) {
2398 pn = pneigh_get_next(seq, pn, pos);
2399 if (!pn)
2400 break;
2401 }
2402 }
2403 return *pos ? NULL : pn;
2404 }
2405
2406 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2407 {
2408 struct neigh_seq_state *state = seq->private;
2409 void *rc;
2410 loff_t idxpos = *pos;
2411
2412 rc = neigh_get_idx(seq, &idxpos);
2413 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2414 rc = pneigh_get_idx(seq, &idxpos);
2415
2416 return rc;
2417 }
2418
2419 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2420 __acquires(tbl->lock)
2421 __acquires(rcu_bh)
2422 {
2423 struct neigh_seq_state *state = seq->private;
2424
2425 state->tbl = tbl;
2426 state->bucket = 0;
2427 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2428
2429 rcu_read_lock_bh();
2430 state->nht = rcu_dereference_bh(tbl->nht);
2431 read_lock(&tbl->lock);
2432 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2433 }
2434 EXPORT_SYMBOL(neigh_seq_start);
2435
2436 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2437 {
2438 struct neigh_seq_state *state;
2439 void *rc;
2440
2441 if (v == SEQ_START_TOKEN) {
2442 rc = neigh_get_first(seq);
2443 goto out;
2444 }
2445
2446 state = seq->private;
2447 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2448 rc = neigh_get_next(seq, v, NULL);
2449 if (rc)
2450 goto out;
2451 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2452 rc = pneigh_get_first(seq);
2453 } else {
2454 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2455 rc = pneigh_get_next(seq, v, NULL);
2456 }
2457 out:
2458 ++(*pos);
2459 return rc;
2460 }
2461 EXPORT_SYMBOL(neigh_seq_next);
2462
2463 void neigh_seq_stop(struct seq_file *seq, void *v)
2464 __releases(tbl->lock)
2465 __releases(rcu_bh)
2466 {
2467 struct neigh_seq_state *state = seq->private;
2468 struct neigh_table *tbl = state->tbl;
2469
2470 read_unlock(&tbl->lock);
2471 rcu_read_unlock_bh();
2472 }
2473 EXPORT_SYMBOL(neigh_seq_stop);
2474
2475 /* statistics via seq_file */
2476
2477 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2478 {
2479 struct neigh_table *tbl = seq->private;
2480 int cpu;
2481
2482 if (*pos == 0)
2483 return SEQ_START_TOKEN;
2484
2485 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2486 if (!cpu_possible(cpu))
2487 continue;
2488 *pos = cpu+1;
2489 return per_cpu_ptr(tbl->stats, cpu);
2490 }
2491 return NULL;
2492 }
2493
2494 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2495 {
2496 struct neigh_table *tbl = seq->private;
2497 int cpu;
2498
2499 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2500 if (!cpu_possible(cpu))
2501 continue;
2502 *pos = cpu+1;
2503 return per_cpu_ptr(tbl->stats, cpu);
2504 }
2505 return NULL;
2506 }
2507
2508 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2509 {
2510
2511 }
2512
2513 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2514 {
2515 struct neigh_table *tbl = seq->private;
2516 struct neigh_statistics *st = v;
2517
2518 if (v == SEQ_START_TOKEN) {
2519 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2520 return 0;
2521 }
2522
2523 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2524 "%08lx %08lx %08lx %08lx %08lx\n",
2525 atomic_read(&tbl->entries),
2526
2527 st->allocs,
2528 st->destroys,
2529 st->hash_grows,
2530
2531 st->lookups,
2532 st->hits,
2533
2534 st->res_failed,
2535
2536 st->rcv_probes_mcast,
2537 st->rcv_probes_ucast,
2538
2539 st->periodic_gc_runs,
2540 st->forced_gc_runs,
2541 st->unres_discards
2542 );
2543
2544 return 0;
2545 }
2546
2547 static const struct seq_operations neigh_stat_seq_ops = {
2548 .start = neigh_stat_seq_start,
2549 .next = neigh_stat_seq_next,
2550 .stop = neigh_stat_seq_stop,
2551 .show = neigh_stat_seq_show,
2552 };
2553
2554 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2555 {
2556 int ret = seq_open(file, &neigh_stat_seq_ops);
2557
2558 if (!ret) {
2559 struct seq_file *sf = file->private_data;
2560 sf->private = PDE(inode)->data;
2561 }
2562 return ret;
2563 };
2564
2565 static const struct file_operations neigh_stat_seq_fops = {
2566 .owner = THIS_MODULE,
2567 .open = neigh_stat_seq_open,
2568 .read = seq_read,
2569 .llseek = seq_lseek,
2570 .release = seq_release,
2571 };
2572
2573 #endif /* CONFIG_PROC_FS */
2574
2575 static inline size_t neigh_nlmsg_size(void)
2576 {
2577 return NLMSG_ALIGN(sizeof(struct ndmsg))
2578 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2579 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2580 + nla_total_size(sizeof(struct nda_cacheinfo))
2581 + nla_total_size(4); /* NDA_PROBES */
2582 }
2583
2584 static void __neigh_notify(struct neighbour *n, int type, int flags)
2585 {
2586 struct net *net = dev_net(n->dev);
2587 struct sk_buff *skb;
2588 int err = -ENOBUFS;
2589
2590 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2591 if (skb == NULL)
2592 goto errout;
2593
2594 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2595 if (err < 0) {
2596 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2597 WARN_ON(err == -EMSGSIZE);
2598 kfree_skb(skb);
2599 goto errout;
2600 }
2601 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2602 return;
2603 errout:
2604 if (err < 0)
2605 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2606 }
2607
2608 #ifdef CONFIG_ARPD
2609 void neigh_app_ns(struct neighbour *n)
2610 {
2611 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2612 }
2613 EXPORT_SYMBOL(neigh_app_ns);
2614 #endif /* CONFIG_ARPD */
2615
2616 #ifdef CONFIG_SYSCTL
2617
2618 #define NEIGH_VARS_MAX 19
2619
2620 static struct neigh_sysctl_table {
2621 struct ctl_table_header *sysctl_header;
2622 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2623 char *dev_name;
2624 } neigh_sysctl_template __read_mostly = {
2625 .neigh_vars = {
2626 {
2627 .procname = "mcast_solicit",
2628 .maxlen = sizeof(int),
2629 .mode = 0644,
2630 .proc_handler = proc_dointvec,
2631 },
2632 {
2633 .procname = "ucast_solicit",
2634 .maxlen = sizeof(int),
2635 .mode = 0644,
2636 .proc_handler = proc_dointvec,
2637 },
2638 {
2639 .procname = "app_solicit",
2640 .maxlen = sizeof(int),
2641 .mode = 0644,
2642 .proc_handler = proc_dointvec,
2643 },
2644 {
2645 .procname = "retrans_time",
2646 .maxlen = sizeof(int),
2647 .mode = 0644,
2648 .proc_handler = proc_dointvec_userhz_jiffies,
2649 },
2650 {
2651 .procname = "base_reachable_time",
2652 .maxlen = sizeof(int),
2653 .mode = 0644,
2654 .proc_handler = proc_dointvec_jiffies,
2655 },
2656 {
2657 .procname = "delay_first_probe_time",
2658 .maxlen = sizeof(int),
2659 .mode = 0644,
2660 .proc_handler = proc_dointvec_jiffies,
2661 },
2662 {
2663 .procname = "gc_stale_time",
2664 .maxlen = sizeof(int),
2665 .mode = 0644,
2666 .proc_handler = proc_dointvec_jiffies,
2667 },
2668 {
2669 .procname = "unres_qlen",
2670 .maxlen = sizeof(int),
2671 .mode = 0644,
2672 .proc_handler = proc_dointvec,
2673 },
2674 {
2675 .procname = "proxy_qlen",
2676 .maxlen = sizeof(int),
2677 .mode = 0644,
2678 .proc_handler = proc_dointvec,
2679 },
2680 {
2681 .procname = "anycast_delay",
2682 .maxlen = sizeof(int),
2683 .mode = 0644,
2684 .proc_handler = proc_dointvec_userhz_jiffies,
2685 },
2686 {
2687 .procname = "proxy_delay",
2688 .maxlen = sizeof(int),
2689 .mode = 0644,
2690 .proc_handler = proc_dointvec_userhz_jiffies,
2691 },
2692 {
2693 .procname = "locktime",
2694 .maxlen = sizeof(int),
2695 .mode = 0644,
2696 .proc_handler = proc_dointvec_userhz_jiffies,
2697 },
2698 {
2699 .procname = "retrans_time_ms",
2700 .maxlen = sizeof(int),
2701 .mode = 0644,
2702 .proc_handler = proc_dointvec_ms_jiffies,
2703 },
2704 {
2705 .procname = "base_reachable_time_ms",
2706 .maxlen = sizeof(int),
2707 .mode = 0644,
2708 .proc_handler = proc_dointvec_ms_jiffies,
2709 },
2710 {
2711 .procname = "gc_interval",
2712 .maxlen = sizeof(int),
2713 .mode = 0644,
2714 .proc_handler = proc_dointvec_jiffies,
2715 },
2716 {
2717 .procname = "gc_thresh1",
2718 .maxlen = sizeof(int),
2719 .mode = 0644,
2720 .proc_handler = proc_dointvec,
2721 },
2722 {
2723 .procname = "gc_thresh2",
2724 .maxlen = sizeof(int),
2725 .mode = 0644,
2726 .proc_handler = proc_dointvec,
2727 },
2728 {
2729 .procname = "gc_thresh3",
2730 .maxlen = sizeof(int),
2731 .mode = 0644,
2732 .proc_handler = proc_dointvec,
2733 },
2734 {},
2735 },
2736 };
2737
2738 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2739 char *p_name, proc_handler *handler)
2740 {
2741 struct neigh_sysctl_table *t;
2742 const char *dev_name_source = NULL;
2743
2744 #define NEIGH_CTL_PATH_ROOT 0
2745 #define NEIGH_CTL_PATH_PROTO 1
2746 #define NEIGH_CTL_PATH_NEIGH 2
2747 #define NEIGH_CTL_PATH_DEV 3
2748
2749 struct ctl_path neigh_path[] = {
2750 { .procname = "net", },
2751 { .procname = "proto", },
2752 { .procname = "neigh", },
2753 { .procname = "default", },
2754 { },
2755 };
2756
2757 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2758 if (!t)
2759 goto err;
2760
2761 t->neigh_vars[0].data = &p->mcast_probes;
2762 t->neigh_vars[1].data = &p->ucast_probes;
2763 t->neigh_vars[2].data = &p->app_probes;
2764 t->neigh_vars[3].data = &p->retrans_time;
2765 t->neigh_vars[4].data = &p->base_reachable_time;
2766 t->neigh_vars[5].data = &p->delay_probe_time;
2767 t->neigh_vars[6].data = &p->gc_staletime;
2768 t->neigh_vars[7].data = &p->queue_len;
2769 t->neigh_vars[8].data = &p->proxy_qlen;
2770 t->neigh_vars[9].data = &p->anycast_delay;
2771 t->neigh_vars[10].data = &p->proxy_delay;
2772 t->neigh_vars[11].data = &p->locktime;
2773 t->neigh_vars[12].data = &p->retrans_time;
2774 t->neigh_vars[13].data = &p->base_reachable_time;
2775
2776 if (dev) {
2777 dev_name_source = dev->name;
2778 /* Terminate the table early */
2779 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2780 } else {
2781 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2782 t->neigh_vars[14].data = (int *)(p + 1);
2783 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2784 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2785 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2786 }
2787
2788
2789 if (handler) {
2790 /* RetransTime */
2791 t->neigh_vars[3].proc_handler = handler;
2792 t->neigh_vars[3].extra1 = dev;
2793 /* ReachableTime */
2794 t->neigh_vars[4].proc_handler = handler;
2795 t->neigh_vars[4].extra1 = dev;
2796 /* RetransTime (in milliseconds)*/
2797 t->neigh_vars[12].proc_handler = handler;
2798 t->neigh_vars[12].extra1 = dev;
2799 /* ReachableTime (in milliseconds) */
2800 t->neigh_vars[13].proc_handler = handler;
2801 t->neigh_vars[13].extra1 = dev;
2802 }
2803
2804 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2805 if (!t->dev_name)
2806 goto free;
2807
2808 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2809 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2810
2811 t->sysctl_header =
2812 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2813 if (!t->sysctl_header)
2814 goto free_procname;
2815
2816 p->sysctl_table = t;
2817 return 0;
2818
2819 free_procname:
2820 kfree(t->dev_name);
2821 free:
2822 kfree(t);
2823 err:
2824 return -ENOBUFS;
2825 }
2826 EXPORT_SYMBOL(neigh_sysctl_register);
2827
2828 void neigh_sysctl_unregister(struct neigh_parms *p)
2829 {
2830 if (p->sysctl_table) {
2831 struct neigh_sysctl_table *t = p->sysctl_table;
2832 p->sysctl_table = NULL;
2833 unregister_sysctl_table(t->sysctl_header);
2834 kfree(t->dev_name);
2835 kfree(t);
2836 }
2837 }
2838 EXPORT_SYMBOL(neigh_sysctl_unregister);
2839
2840 #endif /* CONFIG_SYSCTL */
2841
2842 static int __init neigh_init(void)
2843 {
2844 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2845 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2846 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2847
2848 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2849 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2850
2851 return 0;
2852 }
2853
2854 subsys_initcall(neigh_init);
2855
This page took 0.140318 seconds and 6 git commands to generate.