Merge branches 'release' and 'hp-cid' into release
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126
127
128 static int neigh_forced_gc(struct neigh_table *tbl)
129 {
130 int shrunk = 0;
131 int i;
132
133 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
134
135 write_lock_bh(&tbl->lock);
136 for (i = 0; i <= tbl->hash_mask; i++) {
137 struct neighbour *n, **np;
138
139 np = &tbl->hash_buckets[i];
140 while ((n = *np) != NULL) {
141 /* Neighbour record may be discarded if:
142 * - nobody refers to it.
143 * - it is not permanent
144 */
145 write_lock(&n->lock);
146 if (atomic_read(&n->refcnt) == 1 &&
147 !(n->nud_state & NUD_PERMANENT)) {
148 *np = n->next;
149 n->dead = 1;
150 shrunk = 1;
151 write_unlock(&n->lock);
152 neigh_cleanup_and_release(n);
153 continue;
154 }
155 write_unlock(&n->lock);
156 np = &n->next;
157 }
158 }
159
160 tbl->last_flush = jiffies;
161
162 write_unlock_bh(&tbl->lock);
163
164 return shrunk;
165 }
166
167 static void neigh_add_timer(struct neighbour *n, unsigned long when)
168 {
169 neigh_hold(n);
170 if (unlikely(mod_timer(&n->timer, when))) {
171 printk("NEIGH: BUG, double timer add, state is %x\n",
172 n->nud_state);
173 dump_stack();
174 }
175 }
176
177 static int neigh_del_timer(struct neighbour *n)
178 {
179 if ((n->nud_state & NUD_IN_TIMER) &&
180 del_timer(&n->timer)) {
181 neigh_release(n);
182 return 1;
183 }
184 return 0;
185 }
186
187 static void pneigh_queue_purge(struct sk_buff_head *list)
188 {
189 struct sk_buff *skb;
190
191 while ((skb = skb_dequeue(list)) != NULL) {
192 dev_put(skb->dev);
193 kfree_skb(skb);
194 }
195 }
196
197 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
198 {
199 int i;
200
201 for (i = 0; i <= tbl->hash_mask; i++) {
202 struct neighbour *n, **np = &tbl->hash_buckets[i];
203
204 while ((n = *np) != NULL) {
205 if (dev && n->dev != dev) {
206 np = &n->next;
207 continue;
208 }
209 *np = n->next;
210 write_lock(&n->lock);
211 neigh_del_timer(n);
212 n->dead = 1;
213
214 if (atomic_read(&n->refcnt) != 1) {
215 /* The most unpleasant situation.
216 We must destroy neighbour entry,
217 but someone still uses it.
218
219 The destroy will be delayed until
220 the last user releases us, but
221 we must kill timers etc. and move
222 it to safe state.
223 */
224 skb_queue_purge(&n->arp_queue);
225 n->output = neigh_blackhole;
226 if (n->nud_state & NUD_VALID)
227 n->nud_state = NUD_NOARP;
228 else
229 n->nud_state = NUD_NONE;
230 NEIGH_PRINTK2("neigh %p is stray.\n", n);
231 }
232 write_unlock(&n->lock);
233 neigh_cleanup_and_release(n);
234 }
235 }
236 }
237
238 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
239 {
240 write_lock_bh(&tbl->lock);
241 neigh_flush_dev(tbl, dev);
242 write_unlock_bh(&tbl->lock);
243 }
244
245 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 pneigh_ifdown(tbl, dev);
250 write_unlock_bh(&tbl->lock);
251
252 del_timer_sync(&tbl->proxy_timer);
253 pneigh_queue_purge(&tbl->proxy_queue);
254 return 0;
255 }
256
257 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
258 {
259 struct neighbour *n = NULL;
260 unsigned long now = jiffies;
261 int entries;
262
263 entries = atomic_inc_return(&tbl->entries) - 1;
264 if (entries >= tbl->gc_thresh3 ||
265 (entries >= tbl->gc_thresh2 &&
266 time_after(now, tbl->last_flush + 5 * HZ))) {
267 if (!neigh_forced_gc(tbl) &&
268 entries >= tbl->gc_thresh3)
269 goto out_entries;
270 }
271
272 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
273 if (!n)
274 goto out_entries;
275
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
283
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288 out:
289 return n;
290
291 out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
294 }
295
296 static struct neighbour **neigh_hash_alloc(unsigned int entries)
297 {
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
300
301 if (size <= PAGE_SIZE) {
302 ret = kzalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
306 }
307 return ret;
308 }
309
310 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
311 {
312 unsigned long size = entries * sizeof(struct neighbour *);
313
314 if (size <= PAGE_SIZE)
315 kfree(hash);
316 else
317 free_pages((unsigned long)hash, get_order(size));
318 }
319
320 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
321 {
322 struct neighbour **new_hash, **old_hash;
323 unsigned int i, new_hash_mask, old_entries;
324
325 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
326
327 BUG_ON(!is_power_of_2(new_entries));
328 new_hash = neigh_hash_alloc(new_entries);
329 if (!new_hash)
330 return;
331
332 old_entries = tbl->hash_mask + 1;
333 new_hash_mask = new_entries - 1;
334 old_hash = tbl->hash_buckets;
335
336 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
337 for (i = 0; i < old_entries; i++) {
338 struct neighbour *n, *next;
339
340 for (n = old_hash[i]; n; n = next) {
341 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
342
343 hash_val &= new_hash_mask;
344 next = n->next;
345
346 n->next = new_hash[hash_val];
347 new_hash[hash_val] = n;
348 }
349 }
350 tbl->hash_buckets = new_hash;
351 tbl->hash_mask = new_hash_mask;
352
353 neigh_hash_free(old_hash, old_entries);
354 }
355
356 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
357 struct net_device *dev)
358 {
359 struct neighbour *n;
360 int key_len = tbl->key_len;
361 u32 hash_val = tbl->hash(pkey, dev);
362
363 NEIGH_CACHE_STAT_INC(tbl, lookups);
364
365 read_lock_bh(&tbl->lock);
366 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
367 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
368 neigh_hold(n);
369 NEIGH_CACHE_STAT_INC(tbl, hits);
370 break;
371 }
372 }
373 read_unlock_bh(&tbl->lock);
374 return n;
375 }
376
377 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
378 const void *pkey)
379 {
380 struct neighbour *n;
381 int key_len = tbl->key_len;
382 u32 hash_val = tbl->hash(pkey, NULL);
383
384 NEIGH_CACHE_STAT_INC(tbl, lookups);
385
386 read_lock_bh(&tbl->lock);
387 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
388 if (!memcmp(n->primary_key, pkey, key_len) &&
389 (net == n->dev->nd_net)) {
390 neigh_hold(n);
391 NEIGH_CACHE_STAT_INC(tbl, hits);
392 break;
393 }
394 }
395 read_unlock_bh(&tbl->lock);
396 return n;
397 }
398
399 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
400 struct net_device *dev)
401 {
402 u32 hash_val;
403 int key_len = tbl->key_len;
404 int error;
405 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
406
407 if (!n) {
408 rc = ERR_PTR(-ENOBUFS);
409 goto out;
410 }
411
412 memcpy(n->primary_key, pkey, key_len);
413 n->dev = dev;
414 dev_hold(dev);
415
416 /* Protocol specific setup. */
417 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
418 rc = ERR_PTR(error);
419 goto out_neigh_release;
420 }
421
422 /* Device specific setup. */
423 if (n->parms->neigh_setup &&
424 (error = n->parms->neigh_setup(n)) < 0) {
425 rc = ERR_PTR(error);
426 goto out_neigh_release;
427 }
428
429 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
430
431 write_lock_bh(&tbl->lock);
432
433 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
434 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
435
436 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
437
438 if (n->parms->dead) {
439 rc = ERR_PTR(-EINVAL);
440 goto out_tbl_unlock;
441 }
442
443 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
444 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
445 neigh_hold(n1);
446 rc = n1;
447 goto out_tbl_unlock;
448 }
449 }
450
451 n->next = tbl->hash_buckets[hash_val];
452 tbl->hash_buckets[hash_val] = n;
453 n->dead = 0;
454 neigh_hold(n);
455 write_unlock_bh(&tbl->lock);
456 NEIGH_PRINTK2("neigh %p is created.\n", n);
457 rc = n;
458 out:
459 return rc;
460 out_tbl_unlock:
461 write_unlock_bh(&tbl->lock);
462 out_neigh_release:
463 neigh_release(n);
464 goto out;
465 }
466
467 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
468 struct net *net, const void *pkey,
469 struct net_device *dev, int creat)
470 {
471 struct pneigh_entry *n;
472 int key_len = tbl->key_len;
473 u32 hash_val = *(u32 *)(pkey + key_len - 4);
474
475 hash_val ^= (hash_val >> 16);
476 hash_val ^= hash_val >> 8;
477 hash_val ^= hash_val >> 4;
478 hash_val &= PNEIGH_HASHMASK;
479
480 read_lock_bh(&tbl->lock);
481
482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
483 if (!memcmp(n->key, pkey, key_len) &&
484 (n->net == net) &&
485 (n->dev == dev || !n->dev)) {
486 read_unlock_bh(&tbl->lock);
487 goto out;
488 }
489 }
490 read_unlock_bh(&tbl->lock);
491 n = NULL;
492 if (!creat)
493 goto out;
494
495 ASSERT_RTNL();
496
497 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
498 if (!n)
499 goto out;
500
501 n->net = hold_net(net);
502 memcpy(n->key, pkey, key_len);
503 n->dev = dev;
504 if (dev)
505 dev_hold(dev);
506
507 if (tbl->pconstructor && tbl->pconstructor(n)) {
508 if (dev)
509 dev_put(dev);
510 kfree(n);
511 n = NULL;
512 goto out;
513 }
514
515 write_lock_bh(&tbl->lock);
516 n->next = tbl->phash_buckets[hash_val];
517 tbl->phash_buckets[hash_val] = n;
518 write_unlock_bh(&tbl->lock);
519 out:
520 return n;
521 }
522
523
524 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
525 struct net_device *dev)
526 {
527 struct pneigh_entry *n, **np;
528 int key_len = tbl->key_len;
529 u32 hash_val = *(u32 *)(pkey + key_len - 4);
530
531 hash_val ^= (hash_val >> 16);
532 hash_val ^= hash_val >> 8;
533 hash_val ^= hash_val >> 4;
534 hash_val &= PNEIGH_HASHMASK;
535
536 write_lock_bh(&tbl->lock);
537 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
538 np = &n->next) {
539 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
540 (n->net == net)) {
541 *np = n->next;
542 write_unlock_bh(&tbl->lock);
543 if (tbl->pdestructor)
544 tbl->pdestructor(n);
545 if (n->dev)
546 dev_put(n->dev);
547 release_net(n->net);
548 kfree(n);
549 return 0;
550 }
551 }
552 write_unlock_bh(&tbl->lock);
553 return -ENOENT;
554 }
555
556 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
557 {
558 struct pneigh_entry *n, **np;
559 u32 h;
560
561 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
562 np = &tbl->phash_buckets[h];
563 while ((n = *np) != NULL) {
564 if (!dev || n->dev == dev) {
565 *np = n->next;
566 if (tbl->pdestructor)
567 tbl->pdestructor(n);
568 if (n->dev)
569 dev_put(n->dev);
570 release_net(n->net);
571 kfree(n);
572 continue;
573 }
574 np = &n->next;
575 }
576 }
577 return -ENOENT;
578 }
579
580 static void neigh_parms_destroy(struct neigh_parms *parms);
581
582 static inline void neigh_parms_put(struct neigh_parms *parms)
583 {
584 if (atomic_dec_and_test(&parms->refcnt))
585 neigh_parms_destroy(parms);
586 }
587
588 /*
589 * neighbour must already be out of the table;
590 *
591 */
592 void neigh_destroy(struct neighbour *neigh)
593 {
594 struct hh_cache *hh;
595
596 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
597
598 if (!neigh->dead) {
599 printk(KERN_WARNING
600 "Destroying alive neighbour %p\n", neigh);
601 dump_stack();
602 return;
603 }
604
605 if (neigh_del_timer(neigh))
606 printk(KERN_WARNING "Impossible event.\n");
607
608 while ((hh = neigh->hh) != NULL) {
609 neigh->hh = hh->hh_next;
610 hh->hh_next = NULL;
611
612 write_seqlock_bh(&hh->hh_lock);
613 hh->hh_output = neigh_blackhole;
614 write_sequnlock_bh(&hh->hh_lock);
615 if (atomic_dec_and_test(&hh->hh_refcnt))
616 kfree(hh);
617 }
618
619 skb_queue_purge(&neigh->arp_queue);
620
621 dev_put(neigh->dev);
622 neigh_parms_put(neigh->parms);
623
624 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
625
626 atomic_dec(&neigh->tbl->entries);
627 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
628 }
629
630 /* Neighbour state is suspicious;
631 disable fast path.
632
633 Called with write_locked neigh.
634 */
635 static void neigh_suspect(struct neighbour *neigh)
636 {
637 struct hh_cache *hh;
638
639 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
640
641 neigh->output = neigh->ops->output;
642
643 for (hh = neigh->hh; hh; hh = hh->hh_next)
644 hh->hh_output = neigh->ops->output;
645 }
646
647 /* Neighbour state is OK;
648 enable fast path.
649
650 Called with write_locked neigh.
651 */
652 static void neigh_connect(struct neighbour *neigh)
653 {
654 struct hh_cache *hh;
655
656 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
657
658 neigh->output = neigh->ops->connected_output;
659
660 for (hh = neigh->hh; hh; hh = hh->hh_next)
661 hh->hh_output = neigh->ops->hh_output;
662 }
663
664 static void neigh_periodic_timer(unsigned long arg)
665 {
666 struct neigh_table *tbl = (struct neigh_table *)arg;
667 struct neighbour *n, **np;
668 unsigned long expire, now = jiffies;
669
670 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
671
672 write_lock(&tbl->lock);
673
674 /*
675 * periodically recompute ReachableTime from random function
676 */
677
678 if (time_after(now, tbl->last_rand + 300 * HZ)) {
679 struct neigh_parms *p;
680 tbl->last_rand = now;
681 for (p = &tbl->parms; p; p = p->next)
682 p->reachable_time =
683 neigh_rand_reach_time(p->base_reachable_time);
684 }
685
686 np = &tbl->hash_buckets[tbl->hash_chain_gc];
687 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
688
689 while ((n = *np) != NULL) {
690 unsigned int state;
691
692 write_lock(&n->lock);
693
694 state = n->nud_state;
695 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
696 write_unlock(&n->lock);
697 goto next_elt;
698 }
699
700 if (time_before(n->used, n->confirmed))
701 n->used = n->confirmed;
702
703 if (atomic_read(&n->refcnt) == 1 &&
704 (state == NUD_FAILED ||
705 time_after(now, n->used + n->parms->gc_staletime))) {
706 *np = n->next;
707 n->dead = 1;
708 write_unlock(&n->lock);
709 neigh_cleanup_and_release(n);
710 continue;
711 }
712 write_unlock(&n->lock);
713
714 next_elt:
715 np = &n->next;
716 }
717
718 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
719 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
720 * base_reachable_time.
721 */
722 expire = tbl->parms.base_reachable_time >> 1;
723 expire /= (tbl->hash_mask + 1);
724 if (!expire)
725 expire = 1;
726
727 if (expire>HZ)
728 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
729 else
730 mod_timer(&tbl->gc_timer, now + expire);
731
732 write_unlock(&tbl->lock);
733 }
734
735 static __inline__ int neigh_max_probes(struct neighbour *n)
736 {
737 struct neigh_parms *p = n->parms;
738 return (n->nud_state & NUD_PROBE ?
739 p->ucast_probes :
740 p->ucast_probes + p->app_probes + p->mcast_probes);
741 }
742
743 /* Called when a timer expires for a neighbour entry. */
744
745 static void neigh_timer_handler(unsigned long arg)
746 {
747 unsigned long now, next;
748 struct neighbour *neigh = (struct neighbour *)arg;
749 unsigned state;
750 int notify = 0;
751
752 write_lock(&neigh->lock);
753
754 state = neigh->nud_state;
755 now = jiffies;
756 next = now + HZ;
757
758 if (!(state & NUD_IN_TIMER)) {
759 #ifndef CONFIG_SMP
760 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
761 #endif
762 goto out;
763 }
764
765 if (state & NUD_REACHABLE) {
766 if (time_before_eq(now,
767 neigh->confirmed + neigh->parms->reachable_time)) {
768 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
769 next = neigh->confirmed + neigh->parms->reachable_time;
770 } else if (time_before_eq(now,
771 neigh->used + neigh->parms->delay_probe_time)) {
772 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
773 neigh->nud_state = NUD_DELAY;
774 neigh->updated = jiffies;
775 neigh_suspect(neigh);
776 next = now + neigh->parms->delay_probe_time;
777 } else {
778 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
779 neigh->nud_state = NUD_STALE;
780 neigh->updated = jiffies;
781 neigh_suspect(neigh);
782 notify = 1;
783 }
784 } else if (state & NUD_DELAY) {
785 if (time_before_eq(now,
786 neigh->confirmed + neigh->parms->delay_probe_time)) {
787 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
788 neigh->nud_state = NUD_REACHABLE;
789 neigh->updated = jiffies;
790 neigh_connect(neigh);
791 notify = 1;
792 next = neigh->confirmed + neigh->parms->reachable_time;
793 } else {
794 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
795 neigh->nud_state = NUD_PROBE;
796 neigh->updated = jiffies;
797 atomic_set(&neigh->probes, 0);
798 next = now + neigh->parms->retrans_time;
799 }
800 } else {
801 /* NUD_PROBE|NUD_INCOMPLETE */
802 next = now + neigh->parms->retrans_time;
803 }
804
805 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
806 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
807 struct sk_buff *skb;
808
809 neigh->nud_state = NUD_FAILED;
810 neigh->updated = jiffies;
811 notify = 1;
812 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
813 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
814
815 /* It is very thin place. report_unreachable is very complicated
816 routine. Particularly, it can hit the same neighbour entry!
817
818 So that, we try to be accurate and avoid dead loop. --ANK
819 */
820 while (neigh->nud_state == NUD_FAILED &&
821 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
822 write_unlock(&neigh->lock);
823 neigh->ops->error_report(neigh, skb);
824 write_lock(&neigh->lock);
825 }
826 skb_queue_purge(&neigh->arp_queue);
827 }
828
829 if (neigh->nud_state & NUD_IN_TIMER) {
830 if (time_before(next, jiffies + HZ/2))
831 next = jiffies + HZ/2;
832 if (!mod_timer(&neigh->timer, next))
833 neigh_hold(neigh);
834 }
835 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
836 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
837 /* keep skb alive even if arp_queue overflows */
838 if (skb)
839 skb_get(skb);
840 write_unlock(&neigh->lock);
841 neigh->ops->solicit(neigh, skb);
842 atomic_inc(&neigh->probes);
843 if (skb)
844 kfree_skb(skb);
845 } else {
846 out:
847 write_unlock(&neigh->lock);
848 }
849
850 if (notify)
851 neigh_update_notify(neigh);
852
853 neigh_release(neigh);
854 }
855
856 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
857 {
858 int rc;
859 unsigned long now;
860
861 write_lock_bh(&neigh->lock);
862
863 rc = 0;
864 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
865 goto out_unlock_bh;
866
867 now = jiffies;
868
869 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
870 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
871 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
872 neigh->nud_state = NUD_INCOMPLETE;
873 neigh->updated = jiffies;
874 neigh_add_timer(neigh, now + 1);
875 } else {
876 neigh->nud_state = NUD_FAILED;
877 neigh->updated = jiffies;
878 write_unlock_bh(&neigh->lock);
879
880 if (skb)
881 kfree_skb(skb);
882 return 1;
883 }
884 } else if (neigh->nud_state & NUD_STALE) {
885 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
886 neigh->nud_state = NUD_DELAY;
887 neigh->updated = jiffies;
888 neigh_add_timer(neigh,
889 jiffies + neigh->parms->delay_probe_time);
890 }
891
892 if (neigh->nud_state == NUD_INCOMPLETE) {
893 if (skb) {
894 if (skb_queue_len(&neigh->arp_queue) >=
895 neigh->parms->queue_len) {
896 struct sk_buff *buff;
897 buff = neigh->arp_queue.next;
898 __skb_unlink(buff, &neigh->arp_queue);
899 kfree_skb(buff);
900 }
901 __skb_queue_tail(&neigh->arp_queue, skb);
902 }
903 rc = 1;
904 }
905 out_unlock_bh:
906 write_unlock_bh(&neigh->lock);
907 return rc;
908 }
909
910 static void neigh_update_hhs(struct neighbour *neigh)
911 {
912 struct hh_cache *hh;
913 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
914 = neigh->dev->header_ops->cache_update;
915
916 if (update) {
917 for (hh = neigh->hh; hh; hh = hh->hh_next) {
918 write_seqlock_bh(&hh->hh_lock);
919 update(hh, neigh->dev, neigh->ha);
920 write_sequnlock_bh(&hh->hh_lock);
921 }
922 }
923 }
924
925
926
927 /* Generic update routine.
928 -- lladdr is new lladdr or NULL, if it is not supplied.
929 -- new is new state.
930 -- flags
931 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
932 if it is different.
933 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
934 lladdr instead of overriding it
935 if it is different.
936 It also allows to retain current state
937 if lladdr is unchanged.
938 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
939
940 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
941 NTF_ROUTER flag.
942 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
943 a router.
944
945 Caller MUST hold reference count on the entry.
946 */
947
948 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
949 u32 flags)
950 {
951 u8 old;
952 int err;
953 int notify = 0;
954 struct net_device *dev;
955 int update_isrouter = 0;
956
957 write_lock_bh(&neigh->lock);
958
959 dev = neigh->dev;
960 old = neigh->nud_state;
961 err = -EPERM;
962
963 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
964 (old & (NUD_NOARP | NUD_PERMANENT)))
965 goto out;
966
967 if (!(new & NUD_VALID)) {
968 neigh_del_timer(neigh);
969 if (old & NUD_CONNECTED)
970 neigh_suspect(neigh);
971 neigh->nud_state = new;
972 err = 0;
973 notify = old & NUD_VALID;
974 goto out;
975 }
976
977 /* Compare new lladdr with cached one */
978 if (!dev->addr_len) {
979 /* First case: device needs no address. */
980 lladdr = neigh->ha;
981 } else if (lladdr) {
982 /* The second case: if something is already cached
983 and a new address is proposed:
984 - compare new & old
985 - if they are different, check override flag
986 */
987 if ((old & NUD_VALID) &&
988 !memcmp(lladdr, neigh->ha, dev->addr_len))
989 lladdr = neigh->ha;
990 } else {
991 /* No address is supplied; if we know something,
992 use it, otherwise discard the request.
993 */
994 err = -EINVAL;
995 if (!(old & NUD_VALID))
996 goto out;
997 lladdr = neigh->ha;
998 }
999
1000 if (new & NUD_CONNECTED)
1001 neigh->confirmed = jiffies;
1002 neigh->updated = jiffies;
1003
1004 /* If entry was valid and address is not changed,
1005 do not change entry state, if new one is STALE.
1006 */
1007 err = 0;
1008 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1009 if (old & NUD_VALID) {
1010 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1011 update_isrouter = 0;
1012 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1013 (old & NUD_CONNECTED)) {
1014 lladdr = neigh->ha;
1015 new = NUD_STALE;
1016 } else
1017 goto out;
1018 } else {
1019 if (lladdr == neigh->ha && new == NUD_STALE &&
1020 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1021 (old & NUD_CONNECTED))
1022 )
1023 new = old;
1024 }
1025 }
1026
1027 if (new != old) {
1028 neigh_del_timer(neigh);
1029 if (new & NUD_IN_TIMER)
1030 neigh_add_timer(neigh, (jiffies +
1031 ((new & NUD_REACHABLE) ?
1032 neigh->parms->reachable_time :
1033 0)));
1034 neigh->nud_state = new;
1035 }
1036
1037 if (lladdr != neigh->ha) {
1038 memcpy(&neigh->ha, lladdr, dev->addr_len);
1039 neigh_update_hhs(neigh);
1040 if (!(new & NUD_CONNECTED))
1041 neigh->confirmed = jiffies -
1042 (neigh->parms->base_reachable_time << 1);
1043 notify = 1;
1044 }
1045 if (new == old)
1046 goto out;
1047 if (new & NUD_CONNECTED)
1048 neigh_connect(neigh);
1049 else
1050 neigh_suspect(neigh);
1051 if (!(old & NUD_VALID)) {
1052 struct sk_buff *skb;
1053
1054 /* Again: avoid dead loop if something went wrong */
1055
1056 while (neigh->nud_state & NUD_VALID &&
1057 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1058 struct neighbour *n1 = neigh;
1059 write_unlock_bh(&neigh->lock);
1060 /* On shaper/eql skb->dst->neighbour != neigh :( */
1061 if (skb->dst && skb->dst->neighbour)
1062 n1 = skb->dst->neighbour;
1063 n1->output(skb);
1064 write_lock_bh(&neigh->lock);
1065 }
1066 skb_queue_purge(&neigh->arp_queue);
1067 }
1068 out:
1069 if (update_isrouter) {
1070 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1071 (neigh->flags | NTF_ROUTER) :
1072 (neigh->flags & ~NTF_ROUTER);
1073 }
1074 write_unlock_bh(&neigh->lock);
1075
1076 if (notify)
1077 neigh_update_notify(neigh);
1078
1079 return err;
1080 }
1081
1082 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1083 u8 *lladdr, void *saddr,
1084 struct net_device *dev)
1085 {
1086 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1087 lladdr || !dev->addr_len);
1088 if (neigh)
1089 neigh_update(neigh, lladdr, NUD_STALE,
1090 NEIGH_UPDATE_F_OVERRIDE);
1091 return neigh;
1092 }
1093
1094 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1095 __be16 protocol)
1096 {
1097 struct hh_cache *hh;
1098 struct net_device *dev = dst->dev;
1099
1100 for (hh = n->hh; hh; hh = hh->hh_next)
1101 if (hh->hh_type == protocol)
1102 break;
1103
1104 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1105 seqlock_init(&hh->hh_lock);
1106 hh->hh_type = protocol;
1107 atomic_set(&hh->hh_refcnt, 0);
1108 hh->hh_next = NULL;
1109
1110 if (dev->header_ops->cache(n, hh)) {
1111 kfree(hh);
1112 hh = NULL;
1113 } else {
1114 atomic_inc(&hh->hh_refcnt);
1115 hh->hh_next = n->hh;
1116 n->hh = hh;
1117 if (n->nud_state & NUD_CONNECTED)
1118 hh->hh_output = n->ops->hh_output;
1119 else
1120 hh->hh_output = n->ops->output;
1121 }
1122 }
1123 if (hh) {
1124 atomic_inc(&hh->hh_refcnt);
1125 dst->hh = hh;
1126 }
1127 }
1128
1129 /* This function can be used in contexts, where only old dev_queue_xmit
1130 worked, f.e. if you want to override normal output path (eql, shaper),
1131 but resolution is not made yet.
1132 */
1133
1134 int neigh_compat_output(struct sk_buff *skb)
1135 {
1136 struct net_device *dev = skb->dev;
1137
1138 __skb_pull(skb, skb_network_offset(skb));
1139
1140 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1141 skb->len) < 0 &&
1142 dev->header_ops->rebuild(skb))
1143 return 0;
1144
1145 return dev_queue_xmit(skb);
1146 }
1147
1148 /* Slow and careful. */
1149
1150 int neigh_resolve_output(struct sk_buff *skb)
1151 {
1152 struct dst_entry *dst = skb->dst;
1153 struct neighbour *neigh;
1154 int rc = 0;
1155
1156 if (!dst || !(neigh = dst->neighbour))
1157 goto discard;
1158
1159 __skb_pull(skb, skb_network_offset(skb));
1160
1161 if (!neigh_event_send(neigh, skb)) {
1162 int err;
1163 struct net_device *dev = neigh->dev;
1164 if (dev->header_ops->cache && !dst->hh) {
1165 write_lock_bh(&neigh->lock);
1166 if (!dst->hh)
1167 neigh_hh_init(neigh, dst, dst->ops->protocol);
1168 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1169 neigh->ha, NULL, skb->len);
1170 write_unlock_bh(&neigh->lock);
1171 } else {
1172 read_lock_bh(&neigh->lock);
1173 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1174 neigh->ha, NULL, skb->len);
1175 read_unlock_bh(&neigh->lock);
1176 }
1177 if (err >= 0)
1178 rc = neigh->ops->queue_xmit(skb);
1179 else
1180 goto out_kfree_skb;
1181 }
1182 out:
1183 return rc;
1184 discard:
1185 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1186 dst, dst ? dst->neighbour : NULL);
1187 out_kfree_skb:
1188 rc = -EINVAL;
1189 kfree_skb(skb);
1190 goto out;
1191 }
1192
1193 /* As fast as possible without hh cache */
1194
1195 int neigh_connected_output(struct sk_buff *skb)
1196 {
1197 int err;
1198 struct dst_entry *dst = skb->dst;
1199 struct neighbour *neigh = dst->neighbour;
1200 struct net_device *dev = neigh->dev;
1201
1202 __skb_pull(skb, skb_network_offset(skb));
1203
1204 read_lock_bh(&neigh->lock);
1205 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1206 neigh->ha, NULL, skb->len);
1207 read_unlock_bh(&neigh->lock);
1208 if (err >= 0)
1209 err = neigh->ops->queue_xmit(skb);
1210 else {
1211 err = -EINVAL;
1212 kfree_skb(skb);
1213 }
1214 return err;
1215 }
1216
1217 static void neigh_proxy_process(unsigned long arg)
1218 {
1219 struct neigh_table *tbl = (struct neigh_table *)arg;
1220 long sched_next = 0;
1221 unsigned long now = jiffies;
1222 struct sk_buff *skb;
1223
1224 spin_lock(&tbl->proxy_queue.lock);
1225
1226 skb = tbl->proxy_queue.next;
1227
1228 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1229 struct sk_buff *back = skb;
1230 long tdif = NEIGH_CB(back)->sched_next - now;
1231
1232 skb = skb->next;
1233 if (tdif <= 0) {
1234 struct net_device *dev = back->dev;
1235 __skb_unlink(back, &tbl->proxy_queue);
1236 if (tbl->proxy_redo && netif_running(dev))
1237 tbl->proxy_redo(back);
1238 else
1239 kfree_skb(back);
1240
1241 dev_put(dev);
1242 } else if (!sched_next || tdif < sched_next)
1243 sched_next = tdif;
1244 }
1245 del_timer(&tbl->proxy_timer);
1246 if (sched_next)
1247 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1248 spin_unlock(&tbl->proxy_queue.lock);
1249 }
1250
1251 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1252 struct sk_buff *skb)
1253 {
1254 unsigned long now = jiffies;
1255 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1256
1257 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1258 kfree_skb(skb);
1259 return;
1260 }
1261
1262 NEIGH_CB(skb)->sched_next = sched_next;
1263 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1264
1265 spin_lock(&tbl->proxy_queue.lock);
1266 if (del_timer(&tbl->proxy_timer)) {
1267 if (time_before(tbl->proxy_timer.expires, sched_next))
1268 sched_next = tbl->proxy_timer.expires;
1269 }
1270 dst_release(skb->dst);
1271 skb->dst = NULL;
1272 dev_hold(skb->dev);
1273 __skb_queue_tail(&tbl->proxy_queue, skb);
1274 mod_timer(&tbl->proxy_timer, sched_next);
1275 spin_unlock(&tbl->proxy_queue.lock);
1276 }
1277
1278 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1279 struct net *net, int ifindex)
1280 {
1281 struct neigh_parms *p;
1282
1283 for (p = &tbl->parms; p; p = p->next) {
1284 if (p->net != net)
1285 continue;
1286 if ((p->dev && p->dev->ifindex == ifindex) ||
1287 (!p->dev && !ifindex))
1288 return p;
1289 }
1290
1291 return NULL;
1292 }
1293
1294 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1295 struct neigh_table *tbl)
1296 {
1297 struct neigh_parms *p, *ref;
1298 struct net *net;
1299
1300 net = dev->nd_net;
1301 ref = lookup_neigh_params(tbl, net, 0);
1302 if (!ref)
1303 return NULL;
1304
1305 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1306 if (p) {
1307 p->tbl = tbl;
1308 atomic_set(&p->refcnt, 1);
1309 INIT_RCU_HEAD(&p->rcu_head);
1310 p->reachable_time =
1311 neigh_rand_reach_time(p->base_reachable_time);
1312
1313 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1314 kfree(p);
1315 return NULL;
1316 }
1317
1318 dev_hold(dev);
1319 p->dev = dev;
1320 p->net = hold_net(net);
1321 p->sysctl_table = NULL;
1322 write_lock_bh(&tbl->lock);
1323 p->next = tbl->parms.next;
1324 tbl->parms.next = p;
1325 write_unlock_bh(&tbl->lock);
1326 }
1327 return p;
1328 }
1329
1330 static void neigh_rcu_free_parms(struct rcu_head *head)
1331 {
1332 struct neigh_parms *parms =
1333 container_of(head, struct neigh_parms, rcu_head);
1334
1335 neigh_parms_put(parms);
1336 }
1337
1338 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1339 {
1340 struct neigh_parms **p;
1341
1342 if (!parms || parms == &tbl->parms)
1343 return;
1344 write_lock_bh(&tbl->lock);
1345 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1346 if (*p == parms) {
1347 *p = parms->next;
1348 parms->dead = 1;
1349 write_unlock_bh(&tbl->lock);
1350 if (parms->dev)
1351 dev_put(parms->dev);
1352 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1353 return;
1354 }
1355 }
1356 write_unlock_bh(&tbl->lock);
1357 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1358 }
1359
1360 static void neigh_parms_destroy(struct neigh_parms *parms)
1361 {
1362 release_net(parms->net);
1363 kfree(parms);
1364 }
1365
1366 static struct lock_class_key neigh_table_proxy_queue_class;
1367
1368 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1369 {
1370 unsigned long now = jiffies;
1371 unsigned long phsize;
1372
1373 tbl->parms.net = &init_net;
1374 atomic_set(&tbl->parms.refcnt, 1);
1375 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1376 tbl->parms.reachable_time =
1377 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1378
1379 if (!tbl->kmem_cachep)
1380 tbl->kmem_cachep =
1381 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1382 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1383 NULL);
1384 tbl->stats = alloc_percpu(struct neigh_statistics);
1385 if (!tbl->stats)
1386 panic("cannot create neighbour cache statistics");
1387
1388 #ifdef CONFIG_PROC_FS
1389 tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
1390 if (!tbl->pde)
1391 panic("cannot create neighbour proc dir entry");
1392 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1393 tbl->pde->data = tbl;
1394 #endif
1395
1396 tbl->hash_mask = 1;
1397 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1398
1399 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1400 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1401
1402 if (!tbl->hash_buckets || !tbl->phash_buckets)
1403 panic("cannot allocate neighbour cache hashes");
1404
1405 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1406
1407 rwlock_init(&tbl->lock);
1408 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl);
1409 tbl->gc_timer.expires = now + 1;
1410 add_timer(&tbl->gc_timer);
1411
1412 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1413 skb_queue_head_init_class(&tbl->proxy_queue,
1414 &neigh_table_proxy_queue_class);
1415
1416 tbl->last_flush = now;
1417 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1418 }
1419
1420 void neigh_table_init(struct neigh_table *tbl)
1421 {
1422 struct neigh_table *tmp;
1423
1424 neigh_table_init_no_netlink(tbl);
1425 write_lock(&neigh_tbl_lock);
1426 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1427 if (tmp->family == tbl->family)
1428 break;
1429 }
1430 tbl->next = neigh_tables;
1431 neigh_tables = tbl;
1432 write_unlock(&neigh_tbl_lock);
1433
1434 if (unlikely(tmp)) {
1435 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1436 "family %d\n", tbl->family);
1437 dump_stack();
1438 }
1439 }
1440
1441 int neigh_table_clear(struct neigh_table *tbl)
1442 {
1443 struct neigh_table **tp;
1444
1445 /* It is not clean... Fix it to unload IPv6 module safely */
1446 del_timer_sync(&tbl->gc_timer);
1447 del_timer_sync(&tbl->proxy_timer);
1448 pneigh_queue_purge(&tbl->proxy_queue);
1449 neigh_ifdown(tbl, NULL);
1450 if (atomic_read(&tbl->entries))
1451 printk(KERN_CRIT "neighbour leakage\n");
1452 write_lock(&neigh_tbl_lock);
1453 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1454 if (*tp == tbl) {
1455 *tp = tbl->next;
1456 break;
1457 }
1458 }
1459 write_unlock(&neigh_tbl_lock);
1460
1461 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1462 tbl->hash_buckets = NULL;
1463
1464 kfree(tbl->phash_buckets);
1465 tbl->phash_buckets = NULL;
1466
1467 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1468
1469 free_percpu(tbl->stats);
1470 tbl->stats = NULL;
1471
1472 kmem_cache_destroy(tbl->kmem_cachep);
1473 tbl->kmem_cachep = NULL;
1474
1475 return 0;
1476 }
1477
1478 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1479 {
1480 struct net *net = skb->sk->sk_net;
1481 struct ndmsg *ndm;
1482 struct nlattr *dst_attr;
1483 struct neigh_table *tbl;
1484 struct net_device *dev = NULL;
1485 int err = -EINVAL;
1486
1487 if (nlmsg_len(nlh) < sizeof(*ndm))
1488 goto out;
1489
1490 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1491 if (dst_attr == NULL)
1492 goto out;
1493
1494 ndm = nlmsg_data(nlh);
1495 if (ndm->ndm_ifindex) {
1496 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1497 if (dev == NULL) {
1498 err = -ENODEV;
1499 goto out;
1500 }
1501 }
1502
1503 read_lock(&neigh_tbl_lock);
1504 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1505 struct neighbour *neigh;
1506
1507 if (tbl->family != ndm->ndm_family)
1508 continue;
1509 read_unlock(&neigh_tbl_lock);
1510
1511 if (nla_len(dst_attr) < tbl->key_len)
1512 goto out_dev_put;
1513
1514 if (ndm->ndm_flags & NTF_PROXY) {
1515 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1516 goto out_dev_put;
1517 }
1518
1519 if (dev == NULL)
1520 goto out_dev_put;
1521
1522 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1523 if (neigh == NULL) {
1524 err = -ENOENT;
1525 goto out_dev_put;
1526 }
1527
1528 err = neigh_update(neigh, NULL, NUD_FAILED,
1529 NEIGH_UPDATE_F_OVERRIDE |
1530 NEIGH_UPDATE_F_ADMIN);
1531 neigh_release(neigh);
1532 goto out_dev_put;
1533 }
1534 read_unlock(&neigh_tbl_lock);
1535 err = -EAFNOSUPPORT;
1536
1537 out_dev_put:
1538 if (dev)
1539 dev_put(dev);
1540 out:
1541 return err;
1542 }
1543
1544 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1545 {
1546 struct net *net = skb->sk->sk_net;
1547 struct ndmsg *ndm;
1548 struct nlattr *tb[NDA_MAX+1];
1549 struct neigh_table *tbl;
1550 struct net_device *dev = NULL;
1551 int err;
1552
1553 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1554 if (err < 0)
1555 goto out;
1556
1557 err = -EINVAL;
1558 if (tb[NDA_DST] == NULL)
1559 goto out;
1560
1561 ndm = nlmsg_data(nlh);
1562 if (ndm->ndm_ifindex) {
1563 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1564 if (dev == NULL) {
1565 err = -ENODEV;
1566 goto out;
1567 }
1568
1569 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1570 goto out_dev_put;
1571 }
1572
1573 read_lock(&neigh_tbl_lock);
1574 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1575 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1576 struct neighbour *neigh;
1577 void *dst, *lladdr;
1578
1579 if (tbl->family != ndm->ndm_family)
1580 continue;
1581 read_unlock(&neigh_tbl_lock);
1582
1583 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1584 goto out_dev_put;
1585 dst = nla_data(tb[NDA_DST]);
1586 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1587
1588 if (ndm->ndm_flags & NTF_PROXY) {
1589 struct pneigh_entry *pn;
1590
1591 err = -ENOBUFS;
1592 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1593 if (pn) {
1594 pn->flags = ndm->ndm_flags;
1595 err = 0;
1596 }
1597 goto out_dev_put;
1598 }
1599
1600 if (dev == NULL)
1601 goto out_dev_put;
1602
1603 neigh = neigh_lookup(tbl, dst, dev);
1604 if (neigh == NULL) {
1605 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1606 err = -ENOENT;
1607 goto out_dev_put;
1608 }
1609
1610 neigh = __neigh_lookup_errno(tbl, dst, dev);
1611 if (IS_ERR(neigh)) {
1612 err = PTR_ERR(neigh);
1613 goto out_dev_put;
1614 }
1615 } else {
1616 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1617 err = -EEXIST;
1618 neigh_release(neigh);
1619 goto out_dev_put;
1620 }
1621
1622 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1623 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1624 }
1625
1626 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1627 neigh_release(neigh);
1628 goto out_dev_put;
1629 }
1630
1631 read_unlock(&neigh_tbl_lock);
1632 err = -EAFNOSUPPORT;
1633
1634 out_dev_put:
1635 if (dev)
1636 dev_put(dev);
1637 out:
1638 return err;
1639 }
1640
1641 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1642 {
1643 struct nlattr *nest;
1644
1645 nest = nla_nest_start(skb, NDTA_PARMS);
1646 if (nest == NULL)
1647 return -ENOBUFS;
1648
1649 if (parms->dev)
1650 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1651
1652 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1653 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1654 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1655 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1656 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1657 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1658 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1659 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1660 parms->base_reachable_time);
1661 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1662 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1663 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1664 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1665 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1666 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1667
1668 return nla_nest_end(skb, nest);
1669
1670 nla_put_failure:
1671 return nla_nest_cancel(skb, nest);
1672 }
1673
1674 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1675 u32 pid, u32 seq, int type, int flags)
1676 {
1677 struct nlmsghdr *nlh;
1678 struct ndtmsg *ndtmsg;
1679
1680 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1681 if (nlh == NULL)
1682 return -EMSGSIZE;
1683
1684 ndtmsg = nlmsg_data(nlh);
1685
1686 read_lock_bh(&tbl->lock);
1687 ndtmsg->ndtm_family = tbl->family;
1688 ndtmsg->ndtm_pad1 = 0;
1689 ndtmsg->ndtm_pad2 = 0;
1690
1691 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1692 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1693 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1694 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1695 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1696
1697 {
1698 unsigned long now = jiffies;
1699 unsigned int flush_delta = now - tbl->last_flush;
1700 unsigned int rand_delta = now - tbl->last_rand;
1701
1702 struct ndt_config ndc = {
1703 .ndtc_key_len = tbl->key_len,
1704 .ndtc_entry_size = tbl->entry_size,
1705 .ndtc_entries = atomic_read(&tbl->entries),
1706 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1707 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1708 .ndtc_hash_rnd = tbl->hash_rnd,
1709 .ndtc_hash_mask = tbl->hash_mask,
1710 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1711 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1712 };
1713
1714 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1715 }
1716
1717 {
1718 int cpu;
1719 struct ndt_stats ndst;
1720
1721 memset(&ndst, 0, sizeof(ndst));
1722
1723 for_each_possible_cpu(cpu) {
1724 struct neigh_statistics *st;
1725
1726 st = per_cpu_ptr(tbl->stats, cpu);
1727 ndst.ndts_allocs += st->allocs;
1728 ndst.ndts_destroys += st->destroys;
1729 ndst.ndts_hash_grows += st->hash_grows;
1730 ndst.ndts_res_failed += st->res_failed;
1731 ndst.ndts_lookups += st->lookups;
1732 ndst.ndts_hits += st->hits;
1733 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1734 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1735 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1736 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1737 }
1738
1739 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1740 }
1741
1742 BUG_ON(tbl->parms.dev);
1743 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1744 goto nla_put_failure;
1745
1746 read_unlock_bh(&tbl->lock);
1747 return nlmsg_end(skb, nlh);
1748
1749 nla_put_failure:
1750 read_unlock_bh(&tbl->lock);
1751 nlmsg_cancel(skb, nlh);
1752 return -EMSGSIZE;
1753 }
1754
1755 static int neightbl_fill_param_info(struct sk_buff *skb,
1756 struct neigh_table *tbl,
1757 struct neigh_parms *parms,
1758 u32 pid, u32 seq, int type,
1759 unsigned int flags)
1760 {
1761 struct ndtmsg *ndtmsg;
1762 struct nlmsghdr *nlh;
1763
1764 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1765 if (nlh == NULL)
1766 return -EMSGSIZE;
1767
1768 ndtmsg = nlmsg_data(nlh);
1769
1770 read_lock_bh(&tbl->lock);
1771 ndtmsg->ndtm_family = tbl->family;
1772 ndtmsg->ndtm_pad1 = 0;
1773 ndtmsg->ndtm_pad2 = 0;
1774
1775 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1776 neightbl_fill_parms(skb, parms) < 0)
1777 goto errout;
1778
1779 read_unlock_bh(&tbl->lock);
1780 return nlmsg_end(skb, nlh);
1781 errout:
1782 read_unlock_bh(&tbl->lock);
1783 nlmsg_cancel(skb, nlh);
1784 return -EMSGSIZE;
1785 }
1786
1787 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1788 [NDTA_NAME] = { .type = NLA_STRING },
1789 [NDTA_THRESH1] = { .type = NLA_U32 },
1790 [NDTA_THRESH2] = { .type = NLA_U32 },
1791 [NDTA_THRESH3] = { .type = NLA_U32 },
1792 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1793 [NDTA_PARMS] = { .type = NLA_NESTED },
1794 };
1795
1796 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1797 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1798 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1799 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1800 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1801 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1802 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1803 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1804 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1805 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1806 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1807 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1808 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1809 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1810 };
1811
1812 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1813 {
1814 struct net *net = skb->sk->sk_net;
1815 struct neigh_table *tbl;
1816 struct ndtmsg *ndtmsg;
1817 struct nlattr *tb[NDTA_MAX+1];
1818 int err;
1819
1820 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1821 nl_neightbl_policy);
1822 if (err < 0)
1823 goto errout;
1824
1825 if (tb[NDTA_NAME] == NULL) {
1826 err = -EINVAL;
1827 goto errout;
1828 }
1829
1830 ndtmsg = nlmsg_data(nlh);
1831 read_lock(&neigh_tbl_lock);
1832 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1833 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1834 continue;
1835
1836 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1837 break;
1838 }
1839
1840 if (tbl == NULL) {
1841 err = -ENOENT;
1842 goto errout_locked;
1843 }
1844
1845 /*
1846 * We acquire tbl->lock to be nice to the periodic timers and
1847 * make sure they always see a consistent set of values.
1848 */
1849 write_lock_bh(&tbl->lock);
1850
1851 if (tb[NDTA_PARMS]) {
1852 struct nlattr *tbp[NDTPA_MAX+1];
1853 struct neigh_parms *p;
1854 int i, ifindex = 0;
1855
1856 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1857 nl_ntbl_parm_policy);
1858 if (err < 0)
1859 goto errout_tbl_lock;
1860
1861 if (tbp[NDTPA_IFINDEX])
1862 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1863
1864 p = lookup_neigh_params(tbl, net, ifindex);
1865 if (p == NULL) {
1866 err = -ENOENT;
1867 goto errout_tbl_lock;
1868 }
1869
1870 for (i = 1; i <= NDTPA_MAX; i++) {
1871 if (tbp[i] == NULL)
1872 continue;
1873
1874 switch (i) {
1875 case NDTPA_QUEUE_LEN:
1876 p->queue_len = nla_get_u32(tbp[i]);
1877 break;
1878 case NDTPA_PROXY_QLEN:
1879 p->proxy_qlen = nla_get_u32(tbp[i]);
1880 break;
1881 case NDTPA_APP_PROBES:
1882 p->app_probes = nla_get_u32(tbp[i]);
1883 break;
1884 case NDTPA_UCAST_PROBES:
1885 p->ucast_probes = nla_get_u32(tbp[i]);
1886 break;
1887 case NDTPA_MCAST_PROBES:
1888 p->mcast_probes = nla_get_u32(tbp[i]);
1889 break;
1890 case NDTPA_BASE_REACHABLE_TIME:
1891 p->base_reachable_time = nla_get_msecs(tbp[i]);
1892 break;
1893 case NDTPA_GC_STALETIME:
1894 p->gc_staletime = nla_get_msecs(tbp[i]);
1895 break;
1896 case NDTPA_DELAY_PROBE_TIME:
1897 p->delay_probe_time = nla_get_msecs(tbp[i]);
1898 break;
1899 case NDTPA_RETRANS_TIME:
1900 p->retrans_time = nla_get_msecs(tbp[i]);
1901 break;
1902 case NDTPA_ANYCAST_DELAY:
1903 p->anycast_delay = nla_get_msecs(tbp[i]);
1904 break;
1905 case NDTPA_PROXY_DELAY:
1906 p->proxy_delay = nla_get_msecs(tbp[i]);
1907 break;
1908 case NDTPA_LOCKTIME:
1909 p->locktime = nla_get_msecs(tbp[i]);
1910 break;
1911 }
1912 }
1913 }
1914
1915 if (tb[NDTA_THRESH1])
1916 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1917
1918 if (tb[NDTA_THRESH2])
1919 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1920
1921 if (tb[NDTA_THRESH3])
1922 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1923
1924 if (tb[NDTA_GC_INTERVAL])
1925 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1926
1927 err = 0;
1928
1929 errout_tbl_lock:
1930 write_unlock_bh(&tbl->lock);
1931 errout_locked:
1932 read_unlock(&neigh_tbl_lock);
1933 errout:
1934 return err;
1935 }
1936
1937 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1938 {
1939 struct net *net = skb->sk->sk_net;
1940 int family, tidx, nidx = 0;
1941 int tbl_skip = cb->args[0];
1942 int neigh_skip = cb->args[1];
1943 struct neigh_table *tbl;
1944
1945 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1946
1947 read_lock(&neigh_tbl_lock);
1948 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1949 struct neigh_parms *p;
1950
1951 if (tidx < tbl_skip || (family && tbl->family != family))
1952 continue;
1953
1954 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1955 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1956 NLM_F_MULTI) <= 0)
1957 break;
1958
1959 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
1960 if (net != p->net)
1961 continue;
1962
1963 if (nidx++ < neigh_skip)
1964 continue;
1965
1966 if (neightbl_fill_param_info(skb, tbl, p,
1967 NETLINK_CB(cb->skb).pid,
1968 cb->nlh->nlmsg_seq,
1969 RTM_NEWNEIGHTBL,
1970 NLM_F_MULTI) <= 0)
1971 goto out;
1972 }
1973
1974 neigh_skip = 0;
1975 }
1976 out:
1977 read_unlock(&neigh_tbl_lock);
1978 cb->args[0] = tidx;
1979 cb->args[1] = nidx;
1980
1981 return skb->len;
1982 }
1983
1984 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1985 u32 pid, u32 seq, int type, unsigned int flags)
1986 {
1987 unsigned long now = jiffies;
1988 struct nda_cacheinfo ci;
1989 struct nlmsghdr *nlh;
1990 struct ndmsg *ndm;
1991
1992 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1993 if (nlh == NULL)
1994 return -EMSGSIZE;
1995
1996 ndm = nlmsg_data(nlh);
1997 ndm->ndm_family = neigh->ops->family;
1998 ndm->ndm_pad1 = 0;
1999 ndm->ndm_pad2 = 0;
2000 ndm->ndm_flags = neigh->flags;
2001 ndm->ndm_type = neigh->type;
2002 ndm->ndm_ifindex = neigh->dev->ifindex;
2003
2004 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2005
2006 read_lock_bh(&neigh->lock);
2007 ndm->ndm_state = neigh->nud_state;
2008 if ((neigh->nud_state & NUD_VALID) &&
2009 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2010 read_unlock_bh(&neigh->lock);
2011 goto nla_put_failure;
2012 }
2013
2014 ci.ndm_used = now - neigh->used;
2015 ci.ndm_confirmed = now - neigh->confirmed;
2016 ci.ndm_updated = now - neigh->updated;
2017 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2018 read_unlock_bh(&neigh->lock);
2019
2020 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2021 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2022
2023 return nlmsg_end(skb, nlh);
2024
2025 nla_put_failure:
2026 nlmsg_cancel(skb, nlh);
2027 return -EMSGSIZE;
2028 }
2029
2030 static void neigh_update_notify(struct neighbour *neigh)
2031 {
2032 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2033 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2034 }
2035
2036 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2037 struct netlink_callback *cb)
2038 {
2039 struct net * net = skb->sk->sk_net;
2040 struct neighbour *n;
2041 int rc, h, s_h = cb->args[1];
2042 int idx, s_idx = idx = cb->args[2];
2043
2044 read_lock_bh(&tbl->lock);
2045 for (h = 0; h <= tbl->hash_mask; h++) {
2046 if (h < s_h)
2047 continue;
2048 if (h > s_h)
2049 s_idx = 0;
2050 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2051 int lidx;
2052 if (n->dev->nd_net != net)
2053 continue;
2054 lidx = idx++;
2055 if (lidx < s_idx)
2056 continue;
2057 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2058 cb->nlh->nlmsg_seq,
2059 RTM_NEWNEIGH,
2060 NLM_F_MULTI) <= 0) {
2061 read_unlock_bh(&tbl->lock);
2062 rc = -1;
2063 goto out;
2064 }
2065 }
2066 }
2067 read_unlock_bh(&tbl->lock);
2068 rc = skb->len;
2069 out:
2070 cb->args[1] = h;
2071 cb->args[2] = idx;
2072 return rc;
2073 }
2074
2075 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2076 {
2077 struct neigh_table *tbl;
2078 int t, family, s_t;
2079
2080 read_lock(&neigh_tbl_lock);
2081 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2082 s_t = cb->args[0];
2083
2084 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2085 if (t < s_t || (family && tbl->family != family))
2086 continue;
2087 if (t > s_t)
2088 memset(&cb->args[1], 0, sizeof(cb->args) -
2089 sizeof(cb->args[0]));
2090 if (neigh_dump_table(tbl, skb, cb) < 0)
2091 break;
2092 }
2093 read_unlock(&neigh_tbl_lock);
2094
2095 cb->args[0] = t;
2096 return skb->len;
2097 }
2098
2099 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2100 {
2101 int chain;
2102
2103 read_lock_bh(&tbl->lock);
2104 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2105 struct neighbour *n;
2106
2107 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2108 cb(n, cookie);
2109 }
2110 read_unlock_bh(&tbl->lock);
2111 }
2112 EXPORT_SYMBOL(neigh_for_each);
2113
2114 /* The tbl->lock must be held as a writer and BH disabled. */
2115 void __neigh_for_each_release(struct neigh_table *tbl,
2116 int (*cb)(struct neighbour *))
2117 {
2118 int chain;
2119
2120 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2121 struct neighbour *n, **np;
2122
2123 np = &tbl->hash_buckets[chain];
2124 while ((n = *np) != NULL) {
2125 int release;
2126
2127 write_lock(&n->lock);
2128 release = cb(n);
2129 if (release) {
2130 *np = n->next;
2131 n->dead = 1;
2132 } else
2133 np = &n->next;
2134 write_unlock(&n->lock);
2135 if (release)
2136 neigh_cleanup_and_release(n);
2137 }
2138 }
2139 }
2140 EXPORT_SYMBOL(__neigh_for_each_release);
2141
2142 #ifdef CONFIG_PROC_FS
2143
2144 static struct neighbour *neigh_get_first(struct seq_file *seq)
2145 {
2146 struct neigh_seq_state *state = seq->private;
2147 struct net *net = state->p.net;
2148 struct neigh_table *tbl = state->tbl;
2149 struct neighbour *n = NULL;
2150 int bucket = state->bucket;
2151
2152 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2153 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2154 n = tbl->hash_buckets[bucket];
2155
2156 while (n) {
2157 if (n->dev->nd_net != net)
2158 goto next;
2159 if (state->neigh_sub_iter) {
2160 loff_t fakep = 0;
2161 void *v;
2162
2163 v = state->neigh_sub_iter(state, n, &fakep);
2164 if (!v)
2165 goto next;
2166 }
2167 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2168 break;
2169 if (n->nud_state & ~NUD_NOARP)
2170 break;
2171 next:
2172 n = n->next;
2173 }
2174
2175 if (n)
2176 break;
2177 }
2178 state->bucket = bucket;
2179
2180 return n;
2181 }
2182
2183 static struct neighbour *neigh_get_next(struct seq_file *seq,
2184 struct neighbour *n,
2185 loff_t *pos)
2186 {
2187 struct neigh_seq_state *state = seq->private;
2188 struct net *net = state->p.net;
2189 struct neigh_table *tbl = state->tbl;
2190
2191 if (state->neigh_sub_iter) {
2192 void *v = state->neigh_sub_iter(state, n, pos);
2193 if (v)
2194 return n;
2195 }
2196 n = n->next;
2197
2198 while (1) {
2199 while (n) {
2200 if (n->dev->nd_net != net)
2201 goto next;
2202 if (state->neigh_sub_iter) {
2203 void *v = state->neigh_sub_iter(state, n, pos);
2204 if (v)
2205 return n;
2206 goto next;
2207 }
2208 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2209 break;
2210
2211 if (n->nud_state & ~NUD_NOARP)
2212 break;
2213 next:
2214 n = n->next;
2215 }
2216
2217 if (n)
2218 break;
2219
2220 if (++state->bucket > tbl->hash_mask)
2221 break;
2222
2223 n = tbl->hash_buckets[state->bucket];
2224 }
2225
2226 if (n && pos)
2227 --(*pos);
2228 return n;
2229 }
2230
2231 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2232 {
2233 struct neighbour *n = neigh_get_first(seq);
2234
2235 if (n) {
2236 while (*pos) {
2237 n = neigh_get_next(seq, n, pos);
2238 if (!n)
2239 break;
2240 }
2241 }
2242 return *pos ? NULL : n;
2243 }
2244
2245 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2246 {
2247 struct neigh_seq_state *state = seq->private;
2248 struct net * net = state->p.net;
2249 struct neigh_table *tbl = state->tbl;
2250 struct pneigh_entry *pn = NULL;
2251 int bucket = state->bucket;
2252
2253 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2254 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2255 pn = tbl->phash_buckets[bucket];
2256 while (pn && (pn->net != net))
2257 pn = pn->next;
2258 if (pn)
2259 break;
2260 }
2261 state->bucket = bucket;
2262
2263 return pn;
2264 }
2265
2266 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2267 struct pneigh_entry *pn,
2268 loff_t *pos)
2269 {
2270 struct neigh_seq_state *state = seq->private;
2271 struct net * net = state->p.net;
2272 struct neigh_table *tbl = state->tbl;
2273
2274 pn = pn->next;
2275 while (!pn) {
2276 if (++state->bucket > PNEIGH_HASHMASK)
2277 break;
2278 pn = tbl->phash_buckets[state->bucket];
2279 while (pn && (pn->net != net))
2280 pn = pn->next;
2281 if (pn)
2282 break;
2283 }
2284
2285 if (pn && pos)
2286 --(*pos);
2287
2288 return pn;
2289 }
2290
2291 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2292 {
2293 struct pneigh_entry *pn = pneigh_get_first(seq);
2294
2295 if (pn) {
2296 while (*pos) {
2297 pn = pneigh_get_next(seq, pn, pos);
2298 if (!pn)
2299 break;
2300 }
2301 }
2302 return *pos ? NULL : pn;
2303 }
2304
2305 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2306 {
2307 struct neigh_seq_state *state = seq->private;
2308 void *rc;
2309
2310 rc = neigh_get_idx(seq, pos);
2311 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2312 rc = pneigh_get_idx(seq, pos);
2313
2314 return rc;
2315 }
2316
2317 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2318 __acquires(tbl->lock)
2319 {
2320 struct neigh_seq_state *state = seq->private;
2321 loff_t pos_minus_one;
2322
2323 state->tbl = tbl;
2324 state->bucket = 0;
2325 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2326
2327 read_lock_bh(&tbl->lock);
2328
2329 pos_minus_one = *pos - 1;
2330 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2331 }
2332 EXPORT_SYMBOL(neigh_seq_start);
2333
2334 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2335 {
2336 struct neigh_seq_state *state;
2337 void *rc;
2338
2339 if (v == SEQ_START_TOKEN) {
2340 rc = neigh_get_idx(seq, pos);
2341 goto out;
2342 }
2343
2344 state = seq->private;
2345 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2346 rc = neigh_get_next(seq, v, NULL);
2347 if (rc)
2348 goto out;
2349 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2350 rc = pneigh_get_first(seq);
2351 } else {
2352 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2353 rc = pneigh_get_next(seq, v, NULL);
2354 }
2355 out:
2356 ++(*pos);
2357 return rc;
2358 }
2359 EXPORT_SYMBOL(neigh_seq_next);
2360
2361 void neigh_seq_stop(struct seq_file *seq, void *v)
2362 __releases(tbl->lock)
2363 {
2364 struct neigh_seq_state *state = seq->private;
2365 struct neigh_table *tbl = state->tbl;
2366
2367 read_unlock_bh(&tbl->lock);
2368 }
2369 EXPORT_SYMBOL(neigh_seq_stop);
2370
2371 /* statistics via seq_file */
2372
2373 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2374 {
2375 struct proc_dir_entry *pde = seq->private;
2376 struct neigh_table *tbl = pde->data;
2377 int cpu;
2378
2379 if (*pos == 0)
2380 return SEQ_START_TOKEN;
2381
2382 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2383 if (!cpu_possible(cpu))
2384 continue;
2385 *pos = cpu+1;
2386 return per_cpu_ptr(tbl->stats, cpu);
2387 }
2388 return NULL;
2389 }
2390
2391 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2392 {
2393 struct proc_dir_entry *pde = seq->private;
2394 struct neigh_table *tbl = pde->data;
2395 int cpu;
2396
2397 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2398 if (!cpu_possible(cpu))
2399 continue;
2400 *pos = cpu+1;
2401 return per_cpu_ptr(tbl->stats, cpu);
2402 }
2403 return NULL;
2404 }
2405
2406 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2407 {
2408
2409 }
2410
2411 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2412 {
2413 struct proc_dir_entry *pde = seq->private;
2414 struct neigh_table *tbl = pde->data;
2415 struct neigh_statistics *st = v;
2416
2417 if (v == SEQ_START_TOKEN) {
2418 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2419 return 0;
2420 }
2421
2422 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2423 "%08lx %08lx %08lx %08lx\n",
2424 atomic_read(&tbl->entries),
2425
2426 st->allocs,
2427 st->destroys,
2428 st->hash_grows,
2429
2430 st->lookups,
2431 st->hits,
2432
2433 st->res_failed,
2434
2435 st->rcv_probes_mcast,
2436 st->rcv_probes_ucast,
2437
2438 st->periodic_gc_runs,
2439 st->forced_gc_runs
2440 );
2441
2442 return 0;
2443 }
2444
2445 static const struct seq_operations neigh_stat_seq_ops = {
2446 .start = neigh_stat_seq_start,
2447 .next = neigh_stat_seq_next,
2448 .stop = neigh_stat_seq_stop,
2449 .show = neigh_stat_seq_show,
2450 };
2451
2452 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2453 {
2454 int ret = seq_open(file, &neigh_stat_seq_ops);
2455
2456 if (!ret) {
2457 struct seq_file *sf = file->private_data;
2458 sf->private = PDE(inode);
2459 }
2460 return ret;
2461 };
2462
2463 static const struct file_operations neigh_stat_seq_fops = {
2464 .owner = THIS_MODULE,
2465 .open = neigh_stat_seq_open,
2466 .read = seq_read,
2467 .llseek = seq_lseek,
2468 .release = seq_release,
2469 };
2470
2471 #endif /* CONFIG_PROC_FS */
2472
2473 static inline size_t neigh_nlmsg_size(void)
2474 {
2475 return NLMSG_ALIGN(sizeof(struct ndmsg))
2476 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2477 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2478 + nla_total_size(sizeof(struct nda_cacheinfo))
2479 + nla_total_size(4); /* NDA_PROBES */
2480 }
2481
2482 static void __neigh_notify(struct neighbour *n, int type, int flags)
2483 {
2484 struct net *net = n->dev->nd_net;
2485 struct sk_buff *skb;
2486 int err = -ENOBUFS;
2487
2488 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2489 if (skb == NULL)
2490 goto errout;
2491
2492 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2493 if (err < 0) {
2494 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2495 WARN_ON(err == -EMSGSIZE);
2496 kfree_skb(skb);
2497 goto errout;
2498 }
2499 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2500 errout:
2501 if (err < 0)
2502 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2503 }
2504
2505 #ifdef CONFIG_ARPD
2506 void neigh_app_ns(struct neighbour *n)
2507 {
2508 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2509 }
2510 #endif /* CONFIG_ARPD */
2511
2512 #ifdef CONFIG_SYSCTL
2513
2514 static struct neigh_sysctl_table {
2515 struct ctl_table_header *sysctl_header;
2516 struct ctl_table neigh_vars[__NET_NEIGH_MAX];
2517 char *dev_name;
2518 } neigh_sysctl_template __read_mostly = {
2519 .neigh_vars = {
2520 {
2521 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2522 .procname = "mcast_solicit",
2523 .maxlen = sizeof(int),
2524 .mode = 0644,
2525 .proc_handler = &proc_dointvec,
2526 },
2527 {
2528 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2529 .procname = "ucast_solicit",
2530 .maxlen = sizeof(int),
2531 .mode = 0644,
2532 .proc_handler = &proc_dointvec,
2533 },
2534 {
2535 .ctl_name = NET_NEIGH_APP_SOLICIT,
2536 .procname = "app_solicit",
2537 .maxlen = sizeof(int),
2538 .mode = 0644,
2539 .proc_handler = &proc_dointvec,
2540 },
2541 {
2542 .procname = "retrans_time",
2543 .maxlen = sizeof(int),
2544 .mode = 0644,
2545 .proc_handler = &proc_dointvec_userhz_jiffies,
2546 },
2547 {
2548 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2549 .procname = "base_reachable_time",
2550 .maxlen = sizeof(int),
2551 .mode = 0644,
2552 .proc_handler = &proc_dointvec_jiffies,
2553 .strategy = &sysctl_jiffies,
2554 },
2555 {
2556 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2557 .procname = "delay_first_probe_time",
2558 .maxlen = sizeof(int),
2559 .mode = 0644,
2560 .proc_handler = &proc_dointvec_jiffies,
2561 .strategy = &sysctl_jiffies,
2562 },
2563 {
2564 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2565 .procname = "gc_stale_time",
2566 .maxlen = sizeof(int),
2567 .mode = 0644,
2568 .proc_handler = &proc_dointvec_jiffies,
2569 .strategy = &sysctl_jiffies,
2570 },
2571 {
2572 .ctl_name = NET_NEIGH_UNRES_QLEN,
2573 .procname = "unres_qlen",
2574 .maxlen = sizeof(int),
2575 .mode = 0644,
2576 .proc_handler = &proc_dointvec,
2577 },
2578 {
2579 .ctl_name = NET_NEIGH_PROXY_QLEN,
2580 .procname = "proxy_qlen",
2581 .maxlen = sizeof(int),
2582 .mode = 0644,
2583 .proc_handler = &proc_dointvec,
2584 },
2585 {
2586 .procname = "anycast_delay",
2587 .maxlen = sizeof(int),
2588 .mode = 0644,
2589 .proc_handler = &proc_dointvec_userhz_jiffies,
2590 },
2591 {
2592 .procname = "proxy_delay",
2593 .maxlen = sizeof(int),
2594 .mode = 0644,
2595 .proc_handler = &proc_dointvec_userhz_jiffies,
2596 },
2597 {
2598 .procname = "locktime",
2599 .maxlen = sizeof(int),
2600 .mode = 0644,
2601 .proc_handler = &proc_dointvec_userhz_jiffies,
2602 },
2603 {
2604 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2605 .procname = "retrans_time_ms",
2606 .maxlen = sizeof(int),
2607 .mode = 0644,
2608 .proc_handler = &proc_dointvec_ms_jiffies,
2609 .strategy = &sysctl_ms_jiffies,
2610 },
2611 {
2612 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2613 .procname = "base_reachable_time_ms",
2614 .maxlen = sizeof(int),
2615 .mode = 0644,
2616 .proc_handler = &proc_dointvec_ms_jiffies,
2617 .strategy = &sysctl_ms_jiffies,
2618 },
2619 {
2620 .ctl_name = NET_NEIGH_GC_INTERVAL,
2621 .procname = "gc_interval",
2622 .maxlen = sizeof(int),
2623 .mode = 0644,
2624 .proc_handler = &proc_dointvec_jiffies,
2625 .strategy = &sysctl_jiffies,
2626 },
2627 {
2628 .ctl_name = NET_NEIGH_GC_THRESH1,
2629 .procname = "gc_thresh1",
2630 .maxlen = sizeof(int),
2631 .mode = 0644,
2632 .proc_handler = &proc_dointvec,
2633 },
2634 {
2635 .ctl_name = NET_NEIGH_GC_THRESH2,
2636 .procname = "gc_thresh2",
2637 .maxlen = sizeof(int),
2638 .mode = 0644,
2639 .proc_handler = &proc_dointvec,
2640 },
2641 {
2642 .ctl_name = NET_NEIGH_GC_THRESH3,
2643 .procname = "gc_thresh3",
2644 .maxlen = sizeof(int),
2645 .mode = 0644,
2646 .proc_handler = &proc_dointvec,
2647 },
2648 {},
2649 },
2650 };
2651
2652 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2653 int p_id, int pdev_id, char *p_name,
2654 proc_handler *handler, ctl_handler *strategy)
2655 {
2656 struct neigh_sysctl_table *t;
2657 const char *dev_name_source = NULL;
2658
2659 #define NEIGH_CTL_PATH_ROOT 0
2660 #define NEIGH_CTL_PATH_PROTO 1
2661 #define NEIGH_CTL_PATH_NEIGH 2
2662 #define NEIGH_CTL_PATH_DEV 3
2663
2664 struct ctl_path neigh_path[] = {
2665 { .procname = "net", .ctl_name = CTL_NET, },
2666 { .procname = "proto", .ctl_name = 0, },
2667 { .procname = "neigh", .ctl_name = 0, },
2668 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, },
2669 { },
2670 };
2671
2672 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2673 if (!t)
2674 goto err;
2675
2676 t->neigh_vars[0].data = &p->mcast_probes;
2677 t->neigh_vars[1].data = &p->ucast_probes;
2678 t->neigh_vars[2].data = &p->app_probes;
2679 t->neigh_vars[3].data = &p->retrans_time;
2680 t->neigh_vars[4].data = &p->base_reachable_time;
2681 t->neigh_vars[5].data = &p->delay_probe_time;
2682 t->neigh_vars[6].data = &p->gc_staletime;
2683 t->neigh_vars[7].data = &p->queue_len;
2684 t->neigh_vars[8].data = &p->proxy_qlen;
2685 t->neigh_vars[9].data = &p->anycast_delay;
2686 t->neigh_vars[10].data = &p->proxy_delay;
2687 t->neigh_vars[11].data = &p->locktime;
2688 t->neigh_vars[12].data = &p->retrans_time;
2689 t->neigh_vars[13].data = &p->base_reachable_time;
2690
2691 if (dev) {
2692 dev_name_source = dev->name;
2693 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex;
2694 /* Terminate the table early */
2695 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2696 } else {
2697 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2698 t->neigh_vars[14].data = (int *)(p + 1);
2699 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2700 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2701 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2702 }
2703
2704
2705 if (handler || strategy) {
2706 /* RetransTime */
2707 t->neigh_vars[3].proc_handler = handler;
2708 t->neigh_vars[3].strategy = strategy;
2709 t->neigh_vars[3].extra1 = dev;
2710 if (!strategy)
2711 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
2712 /* ReachableTime */
2713 t->neigh_vars[4].proc_handler = handler;
2714 t->neigh_vars[4].strategy = strategy;
2715 t->neigh_vars[4].extra1 = dev;
2716 if (!strategy)
2717 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
2718 /* RetransTime (in milliseconds)*/
2719 t->neigh_vars[12].proc_handler = handler;
2720 t->neigh_vars[12].strategy = strategy;
2721 t->neigh_vars[12].extra1 = dev;
2722 if (!strategy)
2723 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
2724 /* ReachableTime (in milliseconds) */
2725 t->neigh_vars[13].proc_handler = handler;
2726 t->neigh_vars[13].strategy = strategy;
2727 t->neigh_vars[13].extra1 = dev;
2728 if (!strategy)
2729 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
2730 }
2731
2732 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2733 if (!t->dev_name)
2734 goto free;
2735
2736 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2737 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id;
2738 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2739 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id;
2740
2741 t->sysctl_header = register_sysctl_paths(neigh_path, t->neigh_vars);
2742 if (!t->sysctl_header)
2743 goto free_procname;
2744
2745 p->sysctl_table = t;
2746 return 0;
2747
2748 free_procname:
2749 kfree(t->dev_name);
2750 free:
2751 kfree(t);
2752 err:
2753 return -ENOBUFS;
2754 }
2755
2756 void neigh_sysctl_unregister(struct neigh_parms *p)
2757 {
2758 if (p->sysctl_table) {
2759 struct neigh_sysctl_table *t = p->sysctl_table;
2760 p->sysctl_table = NULL;
2761 unregister_sysctl_table(t->sysctl_header);
2762 kfree(t->dev_name);
2763 kfree(t);
2764 }
2765 }
2766
2767 #endif /* CONFIG_SYSCTL */
2768
2769 static int __init neigh_init(void)
2770 {
2771 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2772 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2773 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2774
2775 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2776 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2777
2778 return 0;
2779 }
2780
2781 subsys_initcall(neigh_init);
2782
2783 EXPORT_SYMBOL(__neigh_event_send);
2784 EXPORT_SYMBOL(neigh_changeaddr);
2785 EXPORT_SYMBOL(neigh_compat_output);
2786 EXPORT_SYMBOL(neigh_connected_output);
2787 EXPORT_SYMBOL(neigh_create);
2788 EXPORT_SYMBOL(neigh_destroy);
2789 EXPORT_SYMBOL(neigh_event_ns);
2790 EXPORT_SYMBOL(neigh_ifdown);
2791 EXPORT_SYMBOL(neigh_lookup);
2792 EXPORT_SYMBOL(neigh_lookup_nodev);
2793 EXPORT_SYMBOL(neigh_parms_alloc);
2794 EXPORT_SYMBOL(neigh_parms_release);
2795 EXPORT_SYMBOL(neigh_rand_reach_time);
2796 EXPORT_SYMBOL(neigh_resolve_output);
2797 EXPORT_SYMBOL(neigh_table_clear);
2798 EXPORT_SYMBOL(neigh_table_init);
2799 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2800 EXPORT_SYMBOL(neigh_update);
2801 EXPORT_SYMBOL(pneigh_enqueue);
2802 EXPORT_SYMBOL(pneigh_lookup);
2803
2804 #ifdef CONFIG_ARPD
2805 EXPORT_SYMBOL(neigh_app_ns);
2806 #endif
2807 #ifdef CONFIG_SYSCTL
2808 EXPORT_SYMBOL(neigh_sysctl_register);
2809 EXPORT_SYMBOL(neigh_sysctl_unregister);
2810 #endif
This page took 0.096413 seconds and 6 git commands to generate.