Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
59
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <trace/events/skb.h>
69
70 #include "kmap_skb.h"
71
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
77 {
78 put_page(buf->page);
79 }
80
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83 {
84 get_page(buf->page);
85 }
86
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
89 {
90 return 1;
91 }
92
93
94 /* Pipe buffer operations for a socket. */
95 static struct pipe_buf_operations sock_pipe_buf_ops = {
96 .can_merge = 0,
97 .map = generic_pipe_buf_map,
98 .unmap = generic_pipe_buf_unmap,
99 .confirm = generic_pipe_buf_confirm,
100 .release = sock_pipe_buf_release,
101 .steal = sock_pipe_buf_steal,
102 .get = sock_pipe_buf_get,
103 };
104
105 /*
106 * Keep out-of-line to prevent kernel bloat.
107 * __builtin_return_address is not used because it is not always
108 * reliable.
109 */
110
111 /**
112 * skb_over_panic - private function
113 * @skb: buffer
114 * @sz: size
115 * @here: address
116 *
117 * Out of line support code for skb_put(). Not user callable.
118 */
119 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 "data:%p tail:%#lx end:%#lx dev:%s\n",
123 here, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128 EXPORT_SYMBOL(skb_over_panic);
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
146 BUG();
147 }
148 EXPORT_SYMBOL(skb_under_panic);
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 gfp_mask, node);
189 if (!data)
190 goto nodata;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->truesize = size + sizeof(struct sk_buff);
199 atomic_set(&skb->users, 1);
200 skb->head = data;
201 skb->data = data;
202 skb_reset_tail_pointer(skb);
203 skb->end = skb->tail + size;
204 /* make sure we initialize shinfo sequentially */
205 shinfo = skb_shinfo(skb);
206 atomic_set(&shinfo->dataref, 1);
207 shinfo->nr_frags = 0;
208 shinfo->gso_size = 0;
209 shinfo->gso_segs = 0;
210 shinfo->gso_type = 0;
211 shinfo->ip6_frag_id = 0;
212 shinfo->tx_flags.flags = 0;
213 skb_frag_list_init(skb);
214 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 skb->fclone = SKB_FCLONE_ORIG;
221 atomic_set(fclone_ref, 1);
222
223 child->fclone = SKB_FCLONE_UNAVAILABLE;
224 }
225 out:
226 return skb;
227 nodata:
228 kmem_cache_free(cache, skb);
229 skb = NULL;
230 goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233
234 /**
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
239 *
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
244 *
245 * %NULL is returned if there is no free memory.
246 */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 unsigned int length, gfp_t gfp_mask)
249 {
250 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
251 struct sk_buff *skb;
252
253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
254 if (likely(skb)) {
255 skb_reserve(skb, NET_SKB_PAD);
256 skb->dev = dev;
257 }
258 return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 struct page *page;
266
267 page = alloc_pages_node(node, gfp_mask, 0);
268 return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 int size)
274 {
275 skb_fill_page_desc(skb, i, page, off, size);
276 skb->len += size;
277 skb->data_len += size;
278 skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281
282 /**
283 * dev_alloc_skb - allocate an skbuff for receiving
284 * @length: length to allocate
285 *
286 * Allocate a new &sk_buff and assign it a usage count of one. The
287 * buffer has unspecified headroom built in. Users should allocate
288 * the headroom they think they need without accounting for the
289 * built in space. The built in space is used for optimisations.
290 *
291 * %NULL is returned if there is no free memory. Although this function
292 * allocates memory it can be called from an interrupt.
293 */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 /*
297 * There is more code here than it seems:
298 * __dev_alloc_skb is an inline
299 */
300 return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 struct sk_buff *list = *listp;
307
308 *listp = NULL;
309
310 do {
311 struct sk_buff *this = list;
312 list = list->next;
313 kfree_skb(this);
314 } while (list);
315 }
316
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 struct sk_buff *list;
325
326 skb_walk_frags(skb, list)
327 skb_get(list);
328 }
329
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 if (!skb->cloned ||
333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 &skb_shinfo(skb)->dataref)) {
335 if (skb_shinfo(skb)->nr_frags) {
336 int i;
337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 put_page(skb_shinfo(skb)->frags[i].page);
339 }
340
341 if (skb_has_frags(skb))
342 skb_drop_fraglist(skb);
343
344 kfree(skb->head);
345 }
346 }
347
348 /*
349 * Free an skbuff by memory without cleaning the state.
350 */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 struct sk_buff *other;
354 atomic_t *fclone_ref;
355
356 switch (skb->fclone) {
357 case SKB_FCLONE_UNAVAILABLE:
358 kmem_cache_free(skbuff_head_cache, skb);
359 break;
360
361 case SKB_FCLONE_ORIG:
362 fclone_ref = (atomic_t *) (skb + 2);
363 if (atomic_dec_and_test(fclone_ref))
364 kmem_cache_free(skbuff_fclone_cache, skb);
365 break;
366
367 case SKB_FCLONE_CLONE:
368 fclone_ref = (atomic_t *) (skb + 1);
369 other = skb - 1;
370
371 /* The clone portion is available for
372 * fast-cloning again.
373 */
374 skb->fclone = SKB_FCLONE_UNAVAILABLE;
375
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, other);
378 break;
379 }
380 }
381
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 skb_dst_drop(skb);
385 #ifdef CONFIG_XFRM
386 secpath_put(skb->sp);
387 #endif
388 if (skb->destructor) {
389 WARN_ON(in_irq());
390 skb->destructor(skb);
391 }
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 nf_conntrack_put(skb->nfct);
394 nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 skb_release_head_state(skb);
412 skb_release_data(skb);
413 }
414
415 /**
416 * __kfree_skb - private function
417 * @skb: buffer
418 *
419 * Free an sk_buff. Release anything attached to the buffer.
420 * Clean the state. This is an internal helper function. Users should
421 * always call kfree_skb
422 */
423
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 skb_release_all(skb);
427 kfree_skbmem(skb);
428 }
429 EXPORT_SYMBOL(__kfree_skb);
430
431 /**
432 * kfree_skb - free an sk_buff
433 * @skb: buffer to free
434 *
435 * Drop a reference to the buffer and free it if the usage count has
436 * hit zero.
437 */
438 void kfree_skb(struct sk_buff *skb)
439 {
440 if (unlikely(!skb))
441 return;
442 if (likely(atomic_read(&skb->users) == 1))
443 smp_rmb();
444 else if (likely(!atomic_dec_and_test(&skb->users)))
445 return;
446 trace_kfree_skb(skb, __builtin_return_address(0));
447 __kfree_skb(skb);
448 }
449 EXPORT_SYMBOL(kfree_skb);
450
451 /**
452 * consume_skb - free an skbuff
453 * @skb: buffer to free
454 *
455 * Drop a ref to the buffer and free it if the usage count has hit zero
456 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
457 * is being dropped after a failure and notes that
458 */
459 void consume_skb(struct sk_buff *skb)
460 {
461 if (unlikely(!skb))
462 return;
463 if (likely(atomic_read(&skb->users) == 1))
464 smp_rmb();
465 else if (likely(!atomic_dec_and_test(&skb->users)))
466 return;
467 __kfree_skb(skb);
468 }
469 EXPORT_SYMBOL(consume_skb);
470
471 /**
472 * skb_recycle_check - check if skb can be reused for receive
473 * @skb: buffer
474 * @skb_size: minimum receive buffer size
475 *
476 * Checks that the skb passed in is not shared or cloned, and
477 * that it is linear and its head portion at least as large as
478 * skb_size so that it can be recycled as a receive buffer.
479 * If these conditions are met, this function does any necessary
480 * reference count dropping and cleans up the skbuff as if it
481 * just came from __alloc_skb().
482 */
483 int skb_recycle_check(struct sk_buff *skb, int skb_size)
484 {
485 struct skb_shared_info *shinfo;
486
487 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
488 return 0;
489
490 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
491 if (skb_end_pointer(skb) - skb->head < skb_size)
492 return 0;
493
494 if (skb_shared(skb) || skb_cloned(skb))
495 return 0;
496
497 skb_release_head_state(skb);
498 shinfo = skb_shinfo(skb);
499 atomic_set(&shinfo->dataref, 1);
500 shinfo->nr_frags = 0;
501 shinfo->gso_size = 0;
502 shinfo->gso_segs = 0;
503 shinfo->gso_type = 0;
504 shinfo->ip6_frag_id = 0;
505 shinfo->tx_flags.flags = 0;
506 skb_frag_list_init(skb);
507 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
508
509 memset(skb, 0, offsetof(struct sk_buff, tail));
510 skb->data = skb->head + NET_SKB_PAD;
511 skb_reset_tail_pointer(skb);
512
513 return 1;
514 }
515 EXPORT_SYMBOL(skb_recycle_check);
516
517 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
518 {
519 new->tstamp = old->tstamp;
520 new->dev = old->dev;
521 new->transport_header = old->transport_header;
522 new->network_header = old->network_header;
523 new->mac_header = old->mac_header;
524 skb_dst_set(new, dst_clone(skb_dst(old)));
525 #ifdef CONFIG_XFRM
526 new->sp = secpath_get(old->sp);
527 #endif
528 memcpy(new->cb, old->cb, sizeof(old->cb));
529 new->csum = old->csum;
530 new->local_df = old->local_df;
531 new->pkt_type = old->pkt_type;
532 new->ip_summed = old->ip_summed;
533 skb_copy_queue_mapping(new, old);
534 new->priority = old->priority;
535 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
536 new->ipvs_property = old->ipvs_property;
537 #endif
538 new->protocol = old->protocol;
539 new->mark = old->mark;
540 new->iif = old->iif;
541 __nf_copy(new, old);
542 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
543 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
544 new->nf_trace = old->nf_trace;
545 #endif
546 #ifdef CONFIG_NET_SCHED
547 new->tc_index = old->tc_index;
548 #ifdef CONFIG_NET_CLS_ACT
549 new->tc_verd = old->tc_verd;
550 #endif
551 #endif
552 new->vlan_tci = old->vlan_tci;
553 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
554 new->do_not_encrypt = old->do_not_encrypt;
555 #endif
556
557 skb_copy_secmark(new, old);
558 }
559
560 /*
561 * You should not add any new code to this function. Add it to
562 * __copy_skb_header above instead.
563 */
564 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
565 {
566 #define C(x) n->x = skb->x
567
568 n->next = n->prev = NULL;
569 n->sk = NULL;
570 __copy_skb_header(n, skb);
571
572 C(len);
573 C(data_len);
574 C(mac_len);
575 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
576 n->cloned = 1;
577 n->nohdr = 0;
578 n->destructor = NULL;
579 C(tail);
580 C(end);
581 C(head);
582 C(data);
583 C(truesize);
584 atomic_set(&n->users, 1);
585
586 atomic_inc(&(skb_shinfo(skb)->dataref));
587 skb->cloned = 1;
588
589 return n;
590 #undef C
591 }
592
593 /**
594 * skb_morph - morph one skb into another
595 * @dst: the skb to receive the contents
596 * @src: the skb to supply the contents
597 *
598 * This is identical to skb_clone except that the target skb is
599 * supplied by the user.
600 *
601 * The target skb is returned upon exit.
602 */
603 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
604 {
605 skb_release_all(dst);
606 return __skb_clone(dst, src);
607 }
608 EXPORT_SYMBOL_GPL(skb_morph);
609
610 /**
611 * skb_clone - duplicate an sk_buff
612 * @skb: buffer to clone
613 * @gfp_mask: allocation priority
614 *
615 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
616 * copies share the same packet data but not structure. The new
617 * buffer has a reference count of 1. If the allocation fails the
618 * function returns %NULL otherwise the new buffer is returned.
619 *
620 * If this function is called from an interrupt gfp_mask() must be
621 * %GFP_ATOMIC.
622 */
623
624 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
625 {
626 struct sk_buff *n;
627
628 n = skb + 1;
629 if (skb->fclone == SKB_FCLONE_ORIG &&
630 n->fclone == SKB_FCLONE_UNAVAILABLE) {
631 atomic_t *fclone_ref = (atomic_t *) (n + 1);
632 n->fclone = SKB_FCLONE_CLONE;
633 atomic_inc(fclone_ref);
634 } else {
635 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
636 if (!n)
637 return NULL;
638 n->fclone = SKB_FCLONE_UNAVAILABLE;
639 }
640
641 return __skb_clone(n, skb);
642 }
643 EXPORT_SYMBOL(skb_clone);
644
645 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
646 {
647 #ifndef NET_SKBUFF_DATA_USES_OFFSET
648 /*
649 * Shift between the two data areas in bytes
650 */
651 unsigned long offset = new->data - old->data;
652 #endif
653
654 __copy_skb_header(new, old);
655
656 #ifndef NET_SKBUFF_DATA_USES_OFFSET
657 /* {transport,network,mac}_header are relative to skb->head */
658 new->transport_header += offset;
659 new->network_header += offset;
660 new->mac_header += offset;
661 #endif
662 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
663 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
664 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
665 }
666
667 /**
668 * skb_copy - create private copy of an sk_buff
669 * @skb: buffer to copy
670 * @gfp_mask: allocation priority
671 *
672 * Make a copy of both an &sk_buff and its data. This is used when the
673 * caller wishes to modify the data and needs a private copy of the
674 * data to alter. Returns %NULL on failure or the pointer to the buffer
675 * on success. The returned buffer has a reference count of 1.
676 *
677 * As by-product this function converts non-linear &sk_buff to linear
678 * one, so that &sk_buff becomes completely private and caller is allowed
679 * to modify all the data of returned buffer. This means that this
680 * function is not recommended for use in circumstances when only
681 * header is going to be modified. Use pskb_copy() instead.
682 */
683
684 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
685 {
686 int headerlen = skb->data - skb->head;
687 /*
688 * Allocate the copy buffer
689 */
690 struct sk_buff *n;
691 #ifdef NET_SKBUFF_DATA_USES_OFFSET
692 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
693 #else
694 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
695 #endif
696 if (!n)
697 return NULL;
698
699 /* Set the data pointer */
700 skb_reserve(n, headerlen);
701 /* Set the tail pointer and length */
702 skb_put(n, skb->len);
703
704 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
705 BUG();
706
707 copy_skb_header(n, skb);
708 return n;
709 }
710 EXPORT_SYMBOL(skb_copy);
711
712 /**
713 * pskb_copy - create copy of an sk_buff with private head.
714 * @skb: buffer to copy
715 * @gfp_mask: allocation priority
716 *
717 * Make a copy of both an &sk_buff and part of its data, located
718 * in header. Fragmented data remain shared. This is used when
719 * the caller wishes to modify only header of &sk_buff and needs
720 * private copy of the header to alter. Returns %NULL on failure
721 * or the pointer to the buffer on success.
722 * The returned buffer has a reference count of 1.
723 */
724
725 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
726 {
727 /*
728 * Allocate the copy buffer
729 */
730 struct sk_buff *n;
731 #ifdef NET_SKBUFF_DATA_USES_OFFSET
732 n = alloc_skb(skb->end, gfp_mask);
733 #else
734 n = alloc_skb(skb->end - skb->head, gfp_mask);
735 #endif
736 if (!n)
737 goto out;
738
739 /* Set the data pointer */
740 skb_reserve(n, skb->data - skb->head);
741 /* Set the tail pointer and length */
742 skb_put(n, skb_headlen(skb));
743 /* Copy the bytes */
744 skb_copy_from_linear_data(skb, n->data, n->len);
745
746 n->truesize += skb->data_len;
747 n->data_len = skb->data_len;
748 n->len = skb->len;
749
750 if (skb_shinfo(skb)->nr_frags) {
751 int i;
752
753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
754 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
755 get_page(skb_shinfo(n)->frags[i].page);
756 }
757 skb_shinfo(n)->nr_frags = i;
758 }
759
760 if (skb_has_frags(skb)) {
761 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
762 skb_clone_fraglist(n);
763 }
764
765 copy_skb_header(n, skb);
766 out:
767 return n;
768 }
769 EXPORT_SYMBOL(pskb_copy);
770
771 /**
772 * pskb_expand_head - reallocate header of &sk_buff
773 * @skb: buffer to reallocate
774 * @nhead: room to add at head
775 * @ntail: room to add at tail
776 * @gfp_mask: allocation priority
777 *
778 * Expands (or creates identical copy, if &nhead and &ntail are zero)
779 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
780 * reference count of 1. Returns zero in the case of success or error,
781 * if expansion failed. In the last case, &sk_buff is not changed.
782 *
783 * All the pointers pointing into skb header may change and must be
784 * reloaded after call to this function.
785 */
786
787 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
788 gfp_t gfp_mask)
789 {
790 int i;
791 u8 *data;
792 #ifdef NET_SKBUFF_DATA_USES_OFFSET
793 int size = nhead + skb->end + ntail;
794 #else
795 int size = nhead + (skb->end - skb->head) + ntail;
796 #endif
797 long off;
798
799 BUG_ON(nhead < 0);
800
801 if (skb_shared(skb))
802 BUG();
803
804 size = SKB_DATA_ALIGN(size);
805
806 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
807 if (!data)
808 goto nodata;
809
810 /* Copy only real data... and, alas, header. This should be
811 * optimized for the cases when header is void. */
812 #ifdef NET_SKBUFF_DATA_USES_OFFSET
813 memcpy(data + nhead, skb->head, skb->tail);
814 #else
815 memcpy(data + nhead, skb->head, skb->tail - skb->head);
816 #endif
817 memcpy(data + size, skb_end_pointer(skb),
818 sizeof(struct skb_shared_info));
819
820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
821 get_page(skb_shinfo(skb)->frags[i].page);
822
823 if (skb_has_frags(skb))
824 skb_clone_fraglist(skb);
825
826 skb_release_data(skb);
827
828 off = (data + nhead) - skb->head;
829
830 skb->head = data;
831 skb->data += off;
832 #ifdef NET_SKBUFF_DATA_USES_OFFSET
833 skb->end = size;
834 off = nhead;
835 #else
836 skb->end = skb->head + size;
837 #endif
838 /* {transport,network,mac}_header and tail are relative to skb->head */
839 skb->tail += off;
840 skb->transport_header += off;
841 skb->network_header += off;
842 skb->mac_header += off;
843 skb->csum_start += nhead;
844 skb->cloned = 0;
845 skb->hdr_len = 0;
846 skb->nohdr = 0;
847 atomic_set(&skb_shinfo(skb)->dataref, 1);
848 return 0;
849
850 nodata:
851 return -ENOMEM;
852 }
853 EXPORT_SYMBOL(pskb_expand_head);
854
855 /* Make private copy of skb with writable head and some headroom */
856
857 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
858 {
859 struct sk_buff *skb2;
860 int delta = headroom - skb_headroom(skb);
861
862 if (delta <= 0)
863 skb2 = pskb_copy(skb, GFP_ATOMIC);
864 else {
865 skb2 = skb_clone(skb, GFP_ATOMIC);
866 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
867 GFP_ATOMIC)) {
868 kfree_skb(skb2);
869 skb2 = NULL;
870 }
871 }
872 return skb2;
873 }
874 EXPORT_SYMBOL(skb_realloc_headroom);
875
876 /**
877 * skb_copy_expand - copy and expand sk_buff
878 * @skb: buffer to copy
879 * @newheadroom: new free bytes at head
880 * @newtailroom: new free bytes at tail
881 * @gfp_mask: allocation priority
882 *
883 * Make a copy of both an &sk_buff and its data and while doing so
884 * allocate additional space.
885 *
886 * This is used when the caller wishes to modify the data and needs a
887 * private copy of the data to alter as well as more space for new fields.
888 * Returns %NULL on failure or the pointer to the buffer
889 * on success. The returned buffer has a reference count of 1.
890 *
891 * You must pass %GFP_ATOMIC as the allocation priority if this function
892 * is called from an interrupt.
893 */
894 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
895 int newheadroom, int newtailroom,
896 gfp_t gfp_mask)
897 {
898 /*
899 * Allocate the copy buffer
900 */
901 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
902 gfp_mask);
903 int oldheadroom = skb_headroom(skb);
904 int head_copy_len, head_copy_off;
905 int off;
906
907 if (!n)
908 return NULL;
909
910 skb_reserve(n, newheadroom);
911
912 /* Set the tail pointer and length */
913 skb_put(n, skb->len);
914
915 head_copy_len = oldheadroom;
916 head_copy_off = 0;
917 if (newheadroom <= head_copy_len)
918 head_copy_len = newheadroom;
919 else
920 head_copy_off = newheadroom - head_copy_len;
921
922 /* Copy the linear header and data. */
923 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
924 skb->len + head_copy_len))
925 BUG();
926
927 copy_skb_header(n, skb);
928
929 off = newheadroom - oldheadroom;
930 n->csum_start += off;
931 #ifdef NET_SKBUFF_DATA_USES_OFFSET
932 n->transport_header += off;
933 n->network_header += off;
934 n->mac_header += off;
935 #endif
936
937 return n;
938 }
939 EXPORT_SYMBOL(skb_copy_expand);
940
941 /**
942 * skb_pad - zero pad the tail of an skb
943 * @skb: buffer to pad
944 * @pad: space to pad
945 *
946 * Ensure that a buffer is followed by a padding area that is zero
947 * filled. Used by network drivers which may DMA or transfer data
948 * beyond the buffer end onto the wire.
949 *
950 * May return error in out of memory cases. The skb is freed on error.
951 */
952
953 int skb_pad(struct sk_buff *skb, int pad)
954 {
955 int err;
956 int ntail;
957
958 /* If the skbuff is non linear tailroom is always zero.. */
959 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
960 memset(skb->data+skb->len, 0, pad);
961 return 0;
962 }
963
964 ntail = skb->data_len + pad - (skb->end - skb->tail);
965 if (likely(skb_cloned(skb) || ntail > 0)) {
966 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
967 if (unlikely(err))
968 goto free_skb;
969 }
970
971 /* FIXME: The use of this function with non-linear skb's really needs
972 * to be audited.
973 */
974 err = skb_linearize(skb);
975 if (unlikely(err))
976 goto free_skb;
977
978 memset(skb->data + skb->len, 0, pad);
979 return 0;
980
981 free_skb:
982 kfree_skb(skb);
983 return err;
984 }
985 EXPORT_SYMBOL(skb_pad);
986
987 /**
988 * skb_put - add data to a buffer
989 * @skb: buffer to use
990 * @len: amount of data to add
991 *
992 * This function extends the used data area of the buffer. If this would
993 * exceed the total buffer size the kernel will panic. A pointer to the
994 * first byte of the extra data is returned.
995 */
996 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
997 {
998 unsigned char *tmp = skb_tail_pointer(skb);
999 SKB_LINEAR_ASSERT(skb);
1000 skb->tail += len;
1001 skb->len += len;
1002 if (unlikely(skb->tail > skb->end))
1003 skb_over_panic(skb, len, __builtin_return_address(0));
1004 return tmp;
1005 }
1006 EXPORT_SYMBOL(skb_put);
1007
1008 /**
1009 * skb_push - add data to the start of a buffer
1010 * @skb: buffer to use
1011 * @len: amount of data to add
1012 *
1013 * This function extends the used data area of the buffer at the buffer
1014 * start. If this would exceed the total buffer headroom the kernel will
1015 * panic. A pointer to the first byte of the extra data is returned.
1016 */
1017 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1018 {
1019 skb->data -= len;
1020 skb->len += len;
1021 if (unlikely(skb->data<skb->head))
1022 skb_under_panic(skb, len, __builtin_return_address(0));
1023 return skb->data;
1024 }
1025 EXPORT_SYMBOL(skb_push);
1026
1027 /**
1028 * skb_pull - remove data from the start of a buffer
1029 * @skb: buffer to use
1030 * @len: amount of data to remove
1031 *
1032 * This function removes data from the start of a buffer, returning
1033 * the memory to the headroom. A pointer to the next data in the buffer
1034 * is returned. Once the data has been pulled future pushes will overwrite
1035 * the old data.
1036 */
1037 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1038 {
1039 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1040 }
1041 EXPORT_SYMBOL(skb_pull);
1042
1043 /**
1044 * skb_trim - remove end from a buffer
1045 * @skb: buffer to alter
1046 * @len: new length
1047 *
1048 * Cut the length of a buffer down by removing data from the tail. If
1049 * the buffer is already under the length specified it is not modified.
1050 * The skb must be linear.
1051 */
1052 void skb_trim(struct sk_buff *skb, unsigned int len)
1053 {
1054 if (skb->len > len)
1055 __skb_trim(skb, len);
1056 }
1057 EXPORT_SYMBOL(skb_trim);
1058
1059 /* Trims skb to length len. It can change skb pointers.
1060 */
1061
1062 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1063 {
1064 struct sk_buff **fragp;
1065 struct sk_buff *frag;
1066 int offset = skb_headlen(skb);
1067 int nfrags = skb_shinfo(skb)->nr_frags;
1068 int i;
1069 int err;
1070
1071 if (skb_cloned(skb) &&
1072 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1073 return err;
1074
1075 i = 0;
1076 if (offset >= len)
1077 goto drop_pages;
1078
1079 for (; i < nfrags; i++) {
1080 int end = offset + skb_shinfo(skb)->frags[i].size;
1081
1082 if (end < len) {
1083 offset = end;
1084 continue;
1085 }
1086
1087 skb_shinfo(skb)->frags[i++].size = len - offset;
1088
1089 drop_pages:
1090 skb_shinfo(skb)->nr_frags = i;
1091
1092 for (; i < nfrags; i++)
1093 put_page(skb_shinfo(skb)->frags[i].page);
1094
1095 if (skb_has_frags(skb))
1096 skb_drop_fraglist(skb);
1097 goto done;
1098 }
1099
1100 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1101 fragp = &frag->next) {
1102 int end = offset + frag->len;
1103
1104 if (skb_shared(frag)) {
1105 struct sk_buff *nfrag;
1106
1107 nfrag = skb_clone(frag, GFP_ATOMIC);
1108 if (unlikely(!nfrag))
1109 return -ENOMEM;
1110
1111 nfrag->next = frag->next;
1112 kfree_skb(frag);
1113 frag = nfrag;
1114 *fragp = frag;
1115 }
1116
1117 if (end < len) {
1118 offset = end;
1119 continue;
1120 }
1121
1122 if (end > len &&
1123 unlikely((err = pskb_trim(frag, len - offset))))
1124 return err;
1125
1126 if (frag->next)
1127 skb_drop_list(&frag->next);
1128 break;
1129 }
1130
1131 done:
1132 if (len > skb_headlen(skb)) {
1133 skb->data_len -= skb->len - len;
1134 skb->len = len;
1135 } else {
1136 skb->len = len;
1137 skb->data_len = 0;
1138 skb_set_tail_pointer(skb, len);
1139 }
1140
1141 return 0;
1142 }
1143 EXPORT_SYMBOL(___pskb_trim);
1144
1145 /**
1146 * __pskb_pull_tail - advance tail of skb header
1147 * @skb: buffer to reallocate
1148 * @delta: number of bytes to advance tail
1149 *
1150 * The function makes a sense only on a fragmented &sk_buff,
1151 * it expands header moving its tail forward and copying necessary
1152 * data from fragmented part.
1153 *
1154 * &sk_buff MUST have reference count of 1.
1155 *
1156 * Returns %NULL (and &sk_buff does not change) if pull failed
1157 * or value of new tail of skb in the case of success.
1158 *
1159 * All the pointers pointing into skb header may change and must be
1160 * reloaded after call to this function.
1161 */
1162
1163 /* Moves tail of skb head forward, copying data from fragmented part,
1164 * when it is necessary.
1165 * 1. It may fail due to malloc failure.
1166 * 2. It may change skb pointers.
1167 *
1168 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1169 */
1170 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1171 {
1172 /* If skb has not enough free space at tail, get new one
1173 * plus 128 bytes for future expansions. If we have enough
1174 * room at tail, reallocate without expansion only if skb is cloned.
1175 */
1176 int i, k, eat = (skb->tail + delta) - skb->end;
1177
1178 if (eat > 0 || skb_cloned(skb)) {
1179 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1180 GFP_ATOMIC))
1181 return NULL;
1182 }
1183
1184 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1185 BUG();
1186
1187 /* Optimization: no fragments, no reasons to preestimate
1188 * size of pulled pages. Superb.
1189 */
1190 if (!skb_has_frags(skb))
1191 goto pull_pages;
1192
1193 /* Estimate size of pulled pages. */
1194 eat = delta;
1195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1196 if (skb_shinfo(skb)->frags[i].size >= eat)
1197 goto pull_pages;
1198 eat -= skb_shinfo(skb)->frags[i].size;
1199 }
1200
1201 /* If we need update frag list, we are in troubles.
1202 * Certainly, it possible to add an offset to skb data,
1203 * but taking into account that pulling is expected to
1204 * be very rare operation, it is worth to fight against
1205 * further bloating skb head and crucify ourselves here instead.
1206 * Pure masohism, indeed. 8)8)
1207 */
1208 if (eat) {
1209 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1210 struct sk_buff *clone = NULL;
1211 struct sk_buff *insp = NULL;
1212
1213 do {
1214 BUG_ON(!list);
1215
1216 if (list->len <= eat) {
1217 /* Eaten as whole. */
1218 eat -= list->len;
1219 list = list->next;
1220 insp = list;
1221 } else {
1222 /* Eaten partially. */
1223
1224 if (skb_shared(list)) {
1225 /* Sucks! We need to fork list. :-( */
1226 clone = skb_clone(list, GFP_ATOMIC);
1227 if (!clone)
1228 return NULL;
1229 insp = list->next;
1230 list = clone;
1231 } else {
1232 /* This may be pulled without
1233 * problems. */
1234 insp = list;
1235 }
1236 if (!pskb_pull(list, eat)) {
1237 kfree_skb(clone);
1238 return NULL;
1239 }
1240 break;
1241 }
1242 } while (eat);
1243
1244 /* Free pulled out fragments. */
1245 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1246 skb_shinfo(skb)->frag_list = list->next;
1247 kfree_skb(list);
1248 }
1249 /* And insert new clone at head. */
1250 if (clone) {
1251 clone->next = list;
1252 skb_shinfo(skb)->frag_list = clone;
1253 }
1254 }
1255 /* Success! Now we may commit changes to skb data. */
1256
1257 pull_pages:
1258 eat = delta;
1259 k = 0;
1260 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1261 if (skb_shinfo(skb)->frags[i].size <= eat) {
1262 put_page(skb_shinfo(skb)->frags[i].page);
1263 eat -= skb_shinfo(skb)->frags[i].size;
1264 } else {
1265 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1266 if (eat) {
1267 skb_shinfo(skb)->frags[k].page_offset += eat;
1268 skb_shinfo(skb)->frags[k].size -= eat;
1269 eat = 0;
1270 }
1271 k++;
1272 }
1273 }
1274 skb_shinfo(skb)->nr_frags = k;
1275
1276 skb->tail += delta;
1277 skb->data_len -= delta;
1278
1279 return skb_tail_pointer(skb);
1280 }
1281 EXPORT_SYMBOL(__pskb_pull_tail);
1282
1283 /* Copy some data bits from skb to kernel buffer. */
1284
1285 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1286 {
1287 int start = skb_headlen(skb);
1288 struct sk_buff *frag_iter;
1289 int i, copy;
1290
1291 if (offset > (int)skb->len - len)
1292 goto fault;
1293
1294 /* Copy header. */
1295 if ((copy = start - offset) > 0) {
1296 if (copy > len)
1297 copy = len;
1298 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1299 if ((len -= copy) == 0)
1300 return 0;
1301 offset += copy;
1302 to += copy;
1303 }
1304
1305 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1306 int end;
1307
1308 WARN_ON(start > offset + len);
1309
1310 end = start + skb_shinfo(skb)->frags[i].size;
1311 if ((copy = end - offset) > 0) {
1312 u8 *vaddr;
1313
1314 if (copy > len)
1315 copy = len;
1316
1317 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1318 memcpy(to,
1319 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1320 offset - start, copy);
1321 kunmap_skb_frag(vaddr);
1322
1323 if ((len -= copy) == 0)
1324 return 0;
1325 offset += copy;
1326 to += copy;
1327 }
1328 start = end;
1329 }
1330
1331 skb_walk_frags(skb, frag_iter) {
1332 int end;
1333
1334 WARN_ON(start > offset + len);
1335
1336 end = start + frag_iter->len;
1337 if ((copy = end - offset) > 0) {
1338 if (copy > len)
1339 copy = len;
1340 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1341 goto fault;
1342 if ((len -= copy) == 0)
1343 return 0;
1344 offset += copy;
1345 to += copy;
1346 }
1347 start = end;
1348 }
1349 if (!len)
1350 return 0;
1351
1352 fault:
1353 return -EFAULT;
1354 }
1355 EXPORT_SYMBOL(skb_copy_bits);
1356
1357 /*
1358 * Callback from splice_to_pipe(), if we need to release some pages
1359 * at the end of the spd in case we error'ed out in filling the pipe.
1360 */
1361 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1362 {
1363 put_page(spd->pages[i]);
1364 }
1365
1366 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1367 unsigned int *offset,
1368 struct sk_buff *skb, struct sock *sk)
1369 {
1370 struct page *p = sk->sk_sndmsg_page;
1371 unsigned int off;
1372
1373 if (!p) {
1374 new_page:
1375 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1376 if (!p)
1377 return NULL;
1378
1379 off = sk->sk_sndmsg_off = 0;
1380 /* hold one ref to this page until it's full */
1381 } else {
1382 unsigned int mlen;
1383
1384 off = sk->sk_sndmsg_off;
1385 mlen = PAGE_SIZE - off;
1386 if (mlen < 64 && mlen < *len) {
1387 put_page(p);
1388 goto new_page;
1389 }
1390
1391 *len = min_t(unsigned int, *len, mlen);
1392 }
1393
1394 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1395 sk->sk_sndmsg_off += *len;
1396 *offset = off;
1397 get_page(p);
1398
1399 return p;
1400 }
1401
1402 /*
1403 * Fill page/offset/length into spd, if it can hold more pages.
1404 */
1405 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1406 unsigned int *len, unsigned int offset,
1407 struct sk_buff *skb, int linear,
1408 struct sock *sk)
1409 {
1410 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1411 return 1;
1412
1413 if (linear) {
1414 page = linear_to_page(page, len, &offset, skb, sk);
1415 if (!page)
1416 return 1;
1417 } else
1418 get_page(page);
1419
1420 spd->pages[spd->nr_pages] = page;
1421 spd->partial[spd->nr_pages].len = *len;
1422 spd->partial[spd->nr_pages].offset = offset;
1423 spd->nr_pages++;
1424
1425 return 0;
1426 }
1427
1428 static inline void __segment_seek(struct page **page, unsigned int *poff,
1429 unsigned int *plen, unsigned int off)
1430 {
1431 unsigned long n;
1432
1433 *poff += off;
1434 n = *poff / PAGE_SIZE;
1435 if (n)
1436 *page = nth_page(*page, n);
1437
1438 *poff = *poff % PAGE_SIZE;
1439 *plen -= off;
1440 }
1441
1442 static inline int __splice_segment(struct page *page, unsigned int poff,
1443 unsigned int plen, unsigned int *off,
1444 unsigned int *len, struct sk_buff *skb,
1445 struct splice_pipe_desc *spd, int linear,
1446 struct sock *sk)
1447 {
1448 if (!*len)
1449 return 1;
1450
1451 /* skip this segment if already processed */
1452 if (*off >= plen) {
1453 *off -= plen;
1454 return 0;
1455 }
1456
1457 /* ignore any bits we already processed */
1458 if (*off) {
1459 __segment_seek(&page, &poff, &plen, *off);
1460 *off = 0;
1461 }
1462
1463 do {
1464 unsigned int flen = min(*len, plen);
1465
1466 /* the linear region may spread across several pages */
1467 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1468
1469 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1470 return 1;
1471
1472 __segment_seek(&page, &poff, &plen, flen);
1473 *len -= flen;
1474
1475 } while (*len && plen);
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * Map linear and fragment data from the skb to spd. It reports failure if the
1482 * pipe is full or if we already spliced the requested length.
1483 */
1484 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1485 unsigned int *len, struct splice_pipe_desc *spd,
1486 struct sock *sk)
1487 {
1488 int seg;
1489
1490 /*
1491 * map the linear part
1492 */
1493 if (__splice_segment(virt_to_page(skb->data),
1494 (unsigned long) skb->data & (PAGE_SIZE - 1),
1495 skb_headlen(skb),
1496 offset, len, skb, spd, 1, sk))
1497 return 1;
1498
1499 /*
1500 * then map the fragments
1501 */
1502 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1503 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1504
1505 if (__splice_segment(f->page, f->page_offset, f->size,
1506 offset, len, skb, spd, 0, sk))
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 /*
1514 * Map data from the skb to a pipe. Should handle both the linear part,
1515 * the fragments, and the frag list. It does NOT handle frag lists within
1516 * the frag list, if such a thing exists. We'd probably need to recurse to
1517 * handle that cleanly.
1518 */
1519 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1520 struct pipe_inode_info *pipe, unsigned int tlen,
1521 unsigned int flags)
1522 {
1523 struct partial_page partial[PIPE_BUFFERS];
1524 struct page *pages[PIPE_BUFFERS];
1525 struct splice_pipe_desc spd = {
1526 .pages = pages,
1527 .partial = partial,
1528 .flags = flags,
1529 .ops = &sock_pipe_buf_ops,
1530 .spd_release = sock_spd_release,
1531 };
1532 struct sk_buff *frag_iter;
1533 struct sock *sk = skb->sk;
1534
1535 /*
1536 * __skb_splice_bits() only fails if the output has no room left,
1537 * so no point in going over the frag_list for the error case.
1538 */
1539 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1540 goto done;
1541 else if (!tlen)
1542 goto done;
1543
1544 /*
1545 * now see if we have a frag_list to map
1546 */
1547 skb_walk_frags(skb, frag_iter) {
1548 if (!tlen)
1549 break;
1550 if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk))
1551 break;
1552 }
1553
1554 done:
1555 if (spd.nr_pages) {
1556 int ret;
1557
1558 /*
1559 * Drop the socket lock, otherwise we have reverse
1560 * locking dependencies between sk_lock and i_mutex
1561 * here as compared to sendfile(). We enter here
1562 * with the socket lock held, and splice_to_pipe() will
1563 * grab the pipe inode lock. For sendfile() emulation,
1564 * we call into ->sendpage() with the i_mutex lock held
1565 * and networking will grab the socket lock.
1566 */
1567 release_sock(sk);
1568 ret = splice_to_pipe(pipe, &spd);
1569 lock_sock(sk);
1570 return ret;
1571 }
1572
1573 return 0;
1574 }
1575
1576 /**
1577 * skb_store_bits - store bits from kernel buffer to skb
1578 * @skb: destination buffer
1579 * @offset: offset in destination
1580 * @from: source buffer
1581 * @len: number of bytes to copy
1582 *
1583 * Copy the specified number of bytes from the source buffer to the
1584 * destination skb. This function handles all the messy bits of
1585 * traversing fragment lists and such.
1586 */
1587
1588 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1589 {
1590 int start = skb_headlen(skb);
1591 struct sk_buff *frag_iter;
1592 int i, copy;
1593
1594 if (offset > (int)skb->len - len)
1595 goto fault;
1596
1597 if ((copy = start - offset) > 0) {
1598 if (copy > len)
1599 copy = len;
1600 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1601 if ((len -= copy) == 0)
1602 return 0;
1603 offset += copy;
1604 from += copy;
1605 }
1606
1607 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1608 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1609 int end;
1610
1611 WARN_ON(start > offset + len);
1612
1613 end = start + frag->size;
1614 if ((copy = end - offset) > 0) {
1615 u8 *vaddr;
1616
1617 if (copy > len)
1618 copy = len;
1619
1620 vaddr = kmap_skb_frag(frag);
1621 memcpy(vaddr + frag->page_offset + offset - start,
1622 from, copy);
1623 kunmap_skb_frag(vaddr);
1624
1625 if ((len -= copy) == 0)
1626 return 0;
1627 offset += copy;
1628 from += copy;
1629 }
1630 start = end;
1631 }
1632
1633 skb_walk_frags(skb, frag_iter) {
1634 int end;
1635
1636 WARN_ON(start > offset + len);
1637
1638 end = start + frag_iter->len;
1639 if ((copy = end - offset) > 0) {
1640 if (copy > len)
1641 copy = len;
1642 if (skb_store_bits(frag_iter, offset - start,
1643 from, copy))
1644 goto fault;
1645 if ((len -= copy) == 0)
1646 return 0;
1647 offset += copy;
1648 from += copy;
1649 }
1650 start = end;
1651 }
1652 if (!len)
1653 return 0;
1654
1655 fault:
1656 return -EFAULT;
1657 }
1658 EXPORT_SYMBOL(skb_store_bits);
1659
1660 /* Checksum skb data. */
1661
1662 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1663 int len, __wsum csum)
1664 {
1665 int start = skb_headlen(skb);
1666 int i, copy = start - offset;
1667 struct sk_buff *frag_iter;
1668 int pos = 0;
1669
1670 /* Checksum header. */
1671 if (copy > 0) {
1672 if (copy > len)
1673 copy = len;
1674 csum = csum_partial(skb->data + offset, copy, csum);
1675 if ((len -= copy) == 0)
1676 return csum;
1677 offset += copy;
1678 pos = copy;
1679 }
1680
1681 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1682 int end;
1683
1684 WARN_ON(start > offset + len);
1685
1686 end = start + skb_shinfo(skb)->frags[i].size;
1687 if ((copy = end - offset) > 0) {
1688 __wsum csum2;
1689 u8 *vaddr;
1690 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1691
1692 if (copy > len)
1693 copy = len;
1694 vaddr = kmap_skb_frag(frag);
1695 csum2 = csum_partial(vaddr + frag->page_offset +
1696 offset - start, copy, 0);
1697 kunmap_skb_frag(vaddr);
1698 csum = csum_block_add(csum, csum2, pos);
1699 if (!(len -= copy))
1700 return csum;
1701 offset += copy;
1702 pos += copy;
1703 }
1704 start = end;
1705 }
1706
1707 skb_walk_frags(skb, frag_iter) {
1708 int end;
1709
1710 WARN_ON(start > offset + len);
1711
1712 end = start + frag_iter->len;
1713 if ((copy = end - offset) > 0) {
1714 __wsum csum2;
1715 if (copy > len)
1716 copy = len;
1717 csum2 = skb_checksum(frag_iter, offset - start,
1718 copy, 0);
1719 csum = csum_block_add(csum, csum2, pos);
1720 if ((len -= copy) == 0)
1721 return csum;
1722 offset += copy;
1723 pos += copy;
1724 }
1725 start = end;
1726 }
1727 BUG_ON(len);
1728
1729 return csum;
1730 }
1731 EXPORT_SYMBOL(skb_checksum);
1732
1733 /* Both of above in one bottle. */
1734
1735 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1736 u8 *to, int len, __wsum csum)
1737 {
1738 int start = skb_headlen(skb);
1739 int i, copy = start - offset;
1740 struct sk_buff *frag_iter;
1741 int pos = 0;
1742
1743 /* Copy header. */
1744 if (copy > 0) {
1745 if (copy > len)
1746 copy = len;
1747 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1748 copy, csum);
1749 if ((len -= copy) == 0)
1750 return csum;
1751 offset += copy;
1752 to += copy;
1753 pos = copy;
1754 }
1755
1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757 int end;
1758
1759 WARN_ON(start > offset + len);
1760
1761 end = start + skb_shinfo(skb)->frags[i].size;
1762 if ((copy = end - offset) > 0) {
1763 __wsum csum2;
1764 u8 *vaddr;
1765 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1766
1767 if (copy > len)
1768 copy = len;
1769 vaddr = kmap_skb_frag(frag);
1770 csum2 = csum_partial_copy_nocheck(vaddr +
1771 frag->page_offset +
1772 offset - start, to,
1773 copy, 0);
1774 kunmap_skb_frag(vaddr);
1775 csum = csum_block_add(csum, csum2, pos);
1776 if (!(len -= copy))
1777 return csum;
1778 offset += copy;
1779 to += copy;
1780 pos += copy;
1781 }
1782 start = end;
1783 }
1784
1785 skb_walk_frags(skb, frag_iter) {
1786 __wsum csum2;
1787 int end;
1788
1789 WARN_ON(start > offset + len);
1790
1791 end = start + frag_iter->len;
1792 if ((copy = end - offset) > 0) {
1793 if (copy > len)
1794 copy = len;
1795 csum2 = skb_copy_and_csum_bits(frag_iter,
1796 offset - start,
1797 to, copy, 0);
1798 csum = csum_block_add(csum, csum2, pos);
1799 if ((len -= copy) == 0)
1800 return csum;
1801 offset += copy;
1802 to += copy;
1803 pos += copy;
1804 }
1805 start = end;
1806 }
1807 BUG_ON(len);
1808 return csum;
1809 }
1810 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1811
1812 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1813 {
1814 __wsum csum;
1815 long csstart;
1816
1817 if (skb->ip_summed == CHECKSUM_PARTIAL)
1818 csstart = skb->csum_start - skb_headroom(skb);
1819 else
1820 csstart = skb_headlen(skb);
1821
1822 BUG_ON(csstart > skb_headlen(skb));
1823
1824 skb_copy_from_linear_data(skb, to, csstart);
1825
1826 csum = 0;
1827 if (csstart != skb->len)
1828 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1829 skb->len - csstart, 0);
1830
1831 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1832 long csstuff = csstart + skb->csum_offset;
1833
1834 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1835 }
1836 }
1837 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1838
1839 /**
1840 * skb_dequeue - remove from the head of the queue
1841 * @list: list to dequeue from
1842 *
1843 * Remove the head of the list. The list lock is taken so the function
1844 * may be used safely with other locking list functions. The head item is
1845 * returned or %NULL if the list is empty.
1846 */
1847
1848 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1849 {
1850 unsigned long flags;
1851 struct sk_buff *result;
1852
1853 spin_lock_irqsave(&list->lock, flags);
1854 result = __skb_dequeue(list);
1855 spin_unlock_irqrestore(&list->lock, flags);
1856 return result;
1857 }
1858 EXPORT_SYMBOL(skb_dequeue);
1859
1860 /**
1861 * skb_dequeue_tail - remove from the tail of the queue
1862 * @list: list to dequeue from
1863 *
1864 * Remove the tail of the list. The list lock is taken so the function
1865 * may be used safely with other locking list functions. The tail item is
1866 * returned or %NULL if the list is empty.
1867 */
1868 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1869 {
1870 unsigned long flags;
1871 struct sk_buff *result;
1872
1873 spin_lock_irqsave(&list->lock, flags);
1874 result = __skb_dequeue_tail(list);
1875 spin_unlock_irqrestore(&list->lock, flags);
1876 return result;
1877 }
1878 EXPORT_SYMBOL(skb_dequeue_tail);
1879
1880 /**
1881 * skb_queue_purge - empty a list
1882 * @list: list to empty
1883 *
1884 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1885 * the list and one reference dropped. This function takes the list
1886 * lock and is atomic with respect to other list locking functions.
1887 */
1888 void skb_queue_purge(struct sk_buff_head *list)
1889 {
1890 struct sk_buff *skb;
1891 while ((skb = skb_dequeue(list)) != NULL)
1892 kfree_skb(skb);
1893 }
1894 EXPORT_SYMBOL(skb_queue_purge);
1895
1896 /**
1897 * skb_queue_head - queue a buffer at the list head
1898 * @list: list to use
1899 * @newsk: buffer to queue
1900 *
1901 * Queue a buffer at the start of the list. This function takes the
1902 * list lock and can be used safely with other locking &sk_buff functions
1903 * safely.
1904 *
1905 * A buffer cannot be placed on two lists at the same time.
1906 */
1907 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1908 {
1909 unsigned long flags;
1910
1911 spin_lock_irqsave(&list->lock, flags);
1912 __skb_queue_head(list, newsk);
1913 spin_unlock_irqrestore(&list->lock, flags);
1914 }
1915 EXPORT_SYMBOL(skb_queue_head);
1916
1917 /**
1918 * skb_queue_tail - queue a buffer at the list tail
1919 * @list: list to use
1920 * @newsk: buffer to queue
1921 *
1922 * Queue a buffer at the tail of the list. This function takes the
1923 * list lock and can be used safely with other locking &sk_buff functions
1924 * safely.
1925 *
1926 * A buffer cannot be placed on two lists at the same time.
1927 */
1928 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1929 {
1930 unsigned long flags;
1931
1932 spin_lock_irqsave(&list->lock, flags);
1933 __skb_queue_tail(list, newsk);
1934 spin_unlock_irqrestore(&list->lock, flags);
1935 }
1936 EXPORT_SYMBOL(skb_queue_tail);
1937
1938 /**
1939 * skb_unlink - remove a buffer from a list
1940 * @skb: buffer to remove
1941 * @list: list to use
1942 *
1943 * Remove a packet from a list. The list locks are taken and this
1944 * function is atomic with respect to other list locked calls
1945 *
1946 * You must know what list the SKB is on.
1947 */
1948 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1949 {
1950 unsigned long flags;
1951
1952 spin_lock_irqsave(&list->lock, flags);
1953 __skb_unlink(skb, list);
1954 spin_unlock_irqrestore(&list->lock, flags);
1955 }
1956 EXPORT_SYMBOL(skb_unlink);
1957
1958 /**
1959 * skb_append - append a buffer
1960 * @old: buffer to insert after
1961 * @newsk: buffer to insert
1962 * @list: list to use
1963 *
1964 * Place a packet after a given packet in a list. The list locks are taken
1965 * and this function is atomic with respect to other list locked calls.
1966 * A buffer cannot be placed on two lists at the same time.
1967 */
1968 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1969 {
1970 unsigned long flags;
1971
1972 spin_lock_irqsave(&list->lock, flags);
1973 __skb_queue_after(list, old, newsk);
1974 spin_unlock_irqrestore(&list->lock, flags);
1975 }
1976 EXPORT_SYMBOL(skb_append);
1977
1978 /**
1979 * skb_insert - insert a buffer
1980 * @old: buffer to insert before
1981 * @newsk: buffer to insert
1982 * @list: list to use
1983 *
1984 * Place a packet before a given packet in a list. The list locks are
1985 * taken and this function is atomic with respect to other list locked
1986 * calls.
1987 *
1988 * A buffer cannot be placed on two lists at the same time.
1989 */
1990 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1991 {
1992 unsigned long flags;
1993
1994 spin_lock_irqsave(&list->lock, flags);
1995 __skb_insert(newsk, old->prev, old, list);
1996 spin_unlock_irqrestore(&list->lock, flags);
1997 }
1998 EXPORT_SYMBOL(skb_insert);
1999
2000 static inline void skb_split_inside_header(struct sk_buff *skb,
2001 struct sk_buff* skb1,
2002 const u32 len, const int pos)
2003 {
2004 int i;
2005
2006 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2007 pos - len);
2008 /* And move data appendix as is. */
2009 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2010 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2011
2012 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2013 skb_shinfo(skb)->nr_frags = 0;
2014 skb1->data_len = skb->data_len;
2015 skb1->len += skb1->data_len;
2016 skb->data_len = 0;
2017 skb->len = len;
2018 skb_set_tail_pointer(skb, len);
2019 }
2020
2021 static inline void skb_split_no_header(struct sk_buff *skb,
2022 struct sk_buff* skb1,
2023 const u32 len, int pos)
2024 {
2025 int i, k = 0;
2026 const int nfrags = skb_shinfo(skb)->nr_frags;
2027
2028 skb_shinfo(skb)->nr_frags = 0;
2029 skb1->len = skb1->data_len = skb->len - len;
2030 skb->len = len;
2031 skb->data_len = len - pos;
2032
2033 for (i = 0; i < nfrags; i++) {
2034 int size = skb_shinfo(skb)->frags[i].size;
2035
2036 if (pos + size > len) {
2037 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2038
2039 if (pos < len) {
2040 /* Split frag.
2041 * We have two variants in this case:
2042 * 1. Move all the frag to the second
2043 * part, if it is possible. F.e.
2044 * this approach is mandatory for TUX,
2045 * where splitting is expensive.
2046 * 2. Split is accurately. We make this.
2047 */
2048 get_page(skb_shinfo(skb)->frags[i].page);
2049 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2050 skb_shinfo(skb1)->frags[0].size -= len - pos;
2051 skb_shinfo(skb)->frags[i].size = len - pos;
2052 skb_shinfo(skb)->nr_frags++;
2053 }
2054 k++;
2055 } else
2056 skb_shinfo(skb)->nr_frags++;
2057 pos += size;
2058 }
2059 skb_shinfo(skb1)->nr_frags = k;
2060 }
2061
2062 /**
2063 * skb_split - Split fragmented skb to two parts at length len.
2064 * @skb: the buffer to split
2065 * @skb1: the buffer to receive the second part
2066 * @len: new length for skb
2067 */
2068 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2069 {
2070 int pos = skb_headlen(skb);
2071
2072 if (len < pos) /* Split line is inside header. */
2073 skb_split_inside_header(skb, skb1, len, pos);
2074 else /* Second chunk has no header, nothing to copy. */
2075 skb_split_no_header(skb, skb1, len, pos);
2076 }
2077 EXPORT_SYMBOL(skb_split);
2078
2079 /* Shifting from/to a cloned skb is a no-go.
2080 *
2081 * Caller cannot keep skb_shinfo related pointers past calling here!
2082 */
2083 static int skb_prepare_for_shift(struct sk_buff *skb)
2084 {
2085 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2086 }
2087
2088 /**
2089 * skb_shift - Shifts paged data partially from skb to another
2090 * @tgt: buffer into which tail data gets added
2091 * @skb: buffer from which the paged data comes from
2092 * @shiftlen: shift up to this many bytes
2093 *
2094 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2095 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2096 * It's up to caller to free skb if everything was shifted.
2097 *
2098 * If @tgt runs out of frags, the whole operation is aborted.
2099 *
2100 * Skb cannot include anything else but paged data while tgt is allowed
2101 * to have non-paged data as well.
2102 *
2103 * TODO: full sized shift could be optimized but that would need
2104 * specialized skb free'er to handle frags without up-to-date nr_frags.
2105 */
2106 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2107 {
2108 int from, to, merge, todo;
2109 struct skb_frag_struct *fragfrom, *fragto;
2110
2111 BUG_ON(shiftlen > skb->len);
2112 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2113
2114 todo = shiftlen;
2115 from = 0;
2116 to = skb_shinfo(tgt)->nr_frags;
2117 fragfrom = &skb_shinfo(skb)->frags[from];
2118
2119 /* Actual merge is delayed until the point when we know we can
2120 * commit all, so that we don't have to undo partial changes
2121 */
2122 if (!to ||
2123 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2124 merge = -1;
2125 } else {
2126 merge = to - 1;
2127
2128 todo -= fragfrom->size;
2129 if (todo < 0) {
2130 if (skb_prepare_for_shift(skb) ||
2131 skb_prepare_for_shift(tgt))
2132 return 0;
2133
2134 /* All previous frag pointers might be stale! */
2135 fragfrom = &skb_shinfo(skb)->frags[from];
2136 fragto = &skb_shinfo(tgt)->frags[merge];
2137
2138 fragto->size += shiftlen;
2139 fragfrom->size -= shiftlen;
2140 fragfrom->page_offset += shiftlen;
2141
2142 goto onlymerged;
2143 }
2144
2145 from++;
2146 }
2147
2148 /* Skip full, not-fitting skb to avoid expensive operations */
2149 if ((shiftlen == skb->len) &&
2150 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2151 return 0;
2152
2153 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2154 return 0;
2155
2156 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2157 if (to == MAX_SKB_FRAGS)
2158 return 0;
2159
2160 fragfrom = &skb_shinfo(skb)->frags[from];
2161 fragto = &skb_shinfo(tgt)->frags[to];
2162
2163 if (todo >= fragfrom->size) {
2164 *fragto = *fragfrom;
2165 todo -= fragfrom->size;
2166 from++;
2167 to++;
2168
2169 } else {
2170 get_page(fragfrom->page);
2171 fragto->page = fragfrom->page;
2172 fragto->page_offset = fragfrom->page_offset;
2173 fragto->size = todo;
2174
2175 fragfrom->page_offset += todo;
2176 fragfrom->size -= todo;
2177 todo = 0;
2178
2179 to++;
2180 break;
2181 }
2182 }
2183
2184 /* Ready to "commit" this state change to tgt */
2185 skb_shinfo(tgt)->nr_frags = to;
2186
2187 if (merge >= 0) {
2188 fragfrom = &skb_shinfo(skb)->frags[0];
2189 fragto = &skb_shinfo(tgt)->frags[merge];
2190
2191 fragto->size += fragfrom->size;
2192 put_page(fragfrom->page);
2193 }
2194
2195 /* Reposition in the original skb */
2196 to = 0;
2197 while (from < skb_shinfo(skb)->nr_frags)
2198 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2199 skb_shinfo(skb)->nr_frags = to;
2200
2201 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2202
2203 onlymerged:
2204 /* Most likely the tgt won't ever need its checksum anymore, skb on
2205 * the other hand might need it if it needs to be resent
2206 */
2207 tgt->ip_summed = CHECKSUM_PARTIAL;
2208 skb->ip_summed = CHECKSUM_PARTIAL;
2209
2210 /* Yak, is it really working this way? Some helper please? */
2211 skb->len -= shiftlen;
2212 skb->data_len -= shiftlen;
2213 skb->truesize -= shiftlen;
2214 tgt->len += shiftlen;
2215 tgt->data_len += shiftlen;
2216 tgt->truesize += shiftlen;
2217
2218 return shiftlen;
2219 }
2220
2221 /**
2222 * skb_prepare_seq_read - Prepare a sequential read of skb data
2223 * @skb: the buffer to read
2224 * @from: lower offset of data to be read
2225 * @to: upper offset of data to be read
2226 * @st: state variable
2227 *
2228 * Initializes the specified state variable. Must be called before
2229 * invoking skb_seq_read() for the first time.
2230 */
2231 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2232 unsigned int to, struct skb_seq_state *st)
2233 {
2234 st->lower_offset = from;
2235 st->upper_offset = to;
2236 st->root_skb = st->cur_skb = skb;
2237 st->frag_idx = st->stepped_offset = 0;
2238 st->frag_data = NULL;
2239 }
2240 EXPORT_SYMBOL(skb_prepare_seq_read);
2241
2242 /**
2243 * skb_seq_read - Sequentially read skb data
2244 * @consumed: number of bytes consumed by the caller so far
2245 * @data: destination pointer for data to be returned
2246 * @st: state variable
2247 *
2248 * Reads a block of skb data at &consumed relative to the
2249 * lower offset specified to skb_prepare_seq_read(). Assigns
2250 * the head of the data block to &data and returns the length
2251 * of the block or 0 if the end of the skb data or the upper
2252 * offset has been reached.
2253 *
2254 * The caller is not required to consume all of the data
2255 * returned, i.e. &consumed is typically set to the number
2256 * of bytes already consumed and the next call to
2257 * skb_seq_read() will return the remaining part of the block.
2258 *
2259 * Note 1: The size of each block of data returned can be arbitary,
2260 * this limitation is the cost for zerocopy seqeuental
2261 * reads of potentially non linear data.
2262 *
2263 * Note 2: Fragment lists within fragments are not implemented
2264 * at the moment, state->root_skb could be replaced with
2265 * a stack for this purpose.
2266 */
2267 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2268 struct skb_seq_state *st)
2269 {
2270 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2271 skb_frag_t *frag;
2272
2273 if (unlikely(abs_offset >= st->upper_offset))
2274 return 0;
2275
2276 next_skb:
2277 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2278
2279 if (abs_offset < block_limit && !st->frag_data) {
2280 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2281 return block_limit - abs_offset;
2282 }
2283
2284 if (st->frag_idx == 0 && !st->frag_data)
2285 st->stepped_offset += skb_headlen(st->cur_skb);
2286
2287 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2288 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2289 block_limit = frag->size + st->stepped_offset;
2290
2291 if (abs_offset < block_limit) {
2292 if (!st->frag_data)
2293 st->frag_data = kmap_skb_frag(frag);
2294
2295 *data = (u8 *) st->frag_data + frag->page_offset +
2296 (abs_offset - st->stepped_offset);
2297
2298 return block_limit - abs_offset;
2299 }
2300
2301 if (st->frag_data) {
2302 kunmap_skb_frag(st->frag_data);
2303 st->frag_data = NULL;
2304 }
2305
2306 st->frag_idx++;
2307 st->stepped_offset += frag->size;
2308 }
2309
2310 if (st->frag_data) {
2311 kunmap_skb_frag(st->frag_data);
2312 st->frag_data = NULL;
2313 }
2314
2315 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
2316 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2317 st->frag_idx = 0;
2318 goto next_skb;
2319 } else if (st->cur_skb->next) {
2320 st->cur_skb = st->cur_skb->next;
2321 st->frag_idx = 0;
2322 goto next_skb;
2323 }
2324
2325 return 0;
2326 }
2327 EXPORT_SYMBOL(skb_seq_read);
2328
2329 /**
2330 * skb_abort_seq_read - Abort a sequential read of skb data
2331 * @st: state variable
2332 *
2333 * Must be called if skb_seq_read() was not called until it
2334 * returned 0.
2335 */
2336 void skb_abort_seq_read(struct skb_seq_state *st)
2337 {
2338 if (st->frag_data)
2339 kunmap_skb_frag(st->frag_data);
2340 }
2341 EXPORT_SYMBOL(skb_abort_seq_read);
2342
2343 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2344
2345 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2346 struct ts_config *conf,
2347 struct ts_state *state)
2348 {
2349 return skb_seq_read(offset, text, TS_SKB_CB(state));
2350 }
2351
2352 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2353 {
2354 skb_abort_seq_read(TS_SKB_CB(state));
2355 }
2356
2357 /**
2358 * skb_find_text - Find a text pattern in skb data
2359 * @skb: the buffer to look in
2360 * @from: search offset
2361 * @to: search limit
2362 * @config: textsearch configuration
2363 * @state: uninitialized textsearch state variable
2364 *
2365 * Finds a pattern in the skb data according to the specified
2366 * textsearch configuration. Use textsearch_next() to retrieve
2367 * subsequent occurrences of the pattern. Returns the offset
2368 * to the first occurrence or UINT_MAX if no match was found.
2369 */
2370 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2371 unsigned int to, struct ts_config *config,
2372 struct ts_state *state)
2373 {
2374 unsigned int ret;
2375
2376 config->get_next_block = skb_ts_get_next_block;
2377 config->finish = skb_ts_finish;
2378
2379 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2380
2381 ret = textsearch_find(config, state);
2382 return (ret <= to - from ? ret : UINT_MAX);
2383 }
2384 EXPORT_SYMBOL(skb_find_text);
2385
2386 /**
2387 * skb_append_datato_frags: - append the user data to a skb
2388 * @sk: sock structure
2389 * @skb: skb structure to be appened with user data.
2390 * @getfrag: call back function to be used for getting the user data
2391 * @from: pointer to user message iov
2392 * @length: length of the iov message
2393 *
2394 * Description: This procedure append the user data in the fragment part
2395 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2396 */
2397 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2398 int (*getfrag)(void *from, char *to, int offset,
2399 int len, int odd, struct sk_buff *skb),
2400 void *from, int length)
2401 {
2402 int frg_cnt = 0;
2403 skb_frag_t *frag = NULL;
2404 struct page *page = NULL;
2405 int copy, left;
2406 int offset = 0;
2407 int ret;
2408
2409 do {
2410 /* Return error if we don't have space for new frag */
2411 frg_cnt = skb_shinfo(skb)->nr_frags;
2412 if (frg_cnt >= MAX_SKB_FRAGS)
2413 return -EFAULT;
2414
2415 /* allocate a new page for next frag */
2416 page = alloc_pages(sk->sk_allocation, 0);
2417
2418 /* If alloc_page fails just return failure and caller will
2419 * free previous allocated pages by doing kfree_skb()
2420 */
2421 if (page == NULL)
2422 return -ENOMEM;
2423
2424 /* initialize the next frag */
2425 sk->sk_sndmsg_page = page;
2426 sk->sk_sndmsg_off = 0;
2427 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2428 skb->truesize += PAGE_SIZE;
2429 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2430
2431 /* get the new initialized frag */
2432 frg_cnt = skb_shinfo(skb)->nr_frags;
2433 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2434
2435 /* copy the user data to page */
2436 left = PAGE_SIZE - frag->page_offset;
2437 copy = (length > left)? left : length;
2438
2439 ret = getfrag(from, (page_address(frag->page) +
2440 frag->page_offset + frag->size),
2441 offset, copy, 0, skb);
2442 if (ret < 0)
2443 return -EFAULT;
2444
2445 /* copy was successful so update the size parameters */
2446 sk->sk_sndmsg_off += copy;
2447 frag->size += copy;
2448 skb->len += copy;
2449 skb->data_len += copy;
2450 offset += copy;
2451 length -= copy;
2452
2453 } while (length > 0);
2454
2455 return 0;
2456 }
2457 EXPORT_SYMBOL(skb_append_datato_frags);
2458
2459 /**
2460 * skb_pull_rcsum - pull skb and update receive checksum
2461 * @skb: buffer to update
2462 * @len: length of data pulled
2463 *
2464 * This function performs an skb_pull on the packet and updates
2465 * the CHECKSUM_COMPLETE checksum. It should be used on
2466 * receive path processing instead of skb_pull unless you know
2467 * that the checksum difference is zero (e.g., a valid IP header)
2468 * or you are setting ip_summed to CHECKSUM_NONE.
2469 */
2470 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2471 {
2472 BUG_ON(len > skb->len);
2473 skb->len -= len;
2474 BUG_ON(skb->len < skb->data_len);
2475 skb_postpull_rcsum(skb, skb->data, len);
2476 return skb->data += len;
2477 }
2478
2479 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2480
2481 /**
2482 * skb_segment - Perform protocol segmentation on skb.
2483 * @skb: buffer to segment
2484 * @features: features for the output path (see dev->features)
2485 *
2486 * This function performs segmentation on the given skb. It returns
2487 * a pointer to the first in a list of new skbs for the segments.
2488 * In case of error it returns ERR_PTR(err).
2489 */
2490 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2491 {
2492 struct sk_buff *segs = NULL;
2493 struct sk_buff *tail = NULL;
2494 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2495 unsigned int mss = skb_shinfo(skb)->gso_size;
2496 unsigned int doffset = skb->data - skb_mac_header(skb);
2497 unsigned int offset = doffset;
2498 unsigned int headroom;
2499 unsigned int len;
2500 int sg = features & NETIF_F_SG;
2501 int nfrags = skb_shinfo(skb)->nr_frags;
2502 int err = -ENOMEM;
2503 int i = 0;
2504 int pos;
2505
2506 __skb_push(skb, doffset);
2507 headroom = skb_headroom(skb);
2508 pos = skb_headlen(skb);
2509
2510 do {
2511 struct sk_buff *nskb;
2512 skb_frag_t *frag;
2513 int hsize;
2514 int size;
2515
2516 len = skb->len - offset;
2517 if (len > mss)
2518 len = mss;
2519
2520 hsize = skb_headlen(skb) - offset;
2521 if (hsize < 0)
2522 hsize = 0;
2523 if (hsize > len || !sg)
2524 hsize = len;
2525
2526 if (!hsize && i >= nfrags) {
2527 BUG_ON(fskb->len != len);
2528
2529 pos += len;
2530 nskb = skb_clone(fskb, GFP_ATOMIC);
2531 fskb = fskb->next;
2532
2533 if (unlikely(!nskb))
2534 goto err;
2535
2536 hsize = skb_end_pointer(nskb) - nskb->head;
2537 if (skb_cow_head(nskb, doffset + headroom)) {
2538 kfree_skb(nskb);
2539 goto err;
2540 }
2541
2542 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2543 hsize;
2544 skb_release_head_state(nskb);
2545 __skb_push(nskb, doffset);
2546 } else {
2547 nskb = alloc_skb(hsize + doffset + headroom,
2548 GFP_ATOMIC);
2549
2550 if (unlikely(!nskb))
2551 goto err;
2552
2553 skb_reserve(nskb, headroom);
2554 __skb_put(nskb, doffset);
2555 }
2556
2557 if (segs)
2558 tail->next = nskb;
2559 else
2560 segs = nskb;
2561 tail = nskb;
2562
2563 __copy_skb_header(nskb, skb);
2564 nskb->mac_len = skb->mac_len;
2565
2566 skb_reset_mac_header(nskb);
2567 skb_set_network_header(nskb, skb->mac_len);
2568 nskb->transport_header = (nskb->network_header +
2569 skb_network_header_len(skb));
2570 skb_copy_from_linear_data(skb, nskb->data, doffset);
2571
2572 if (fskb != skb_shinfo(skb)->frag_list)
2573 continue;
2574
2575 if (!sg) {
2576 nskb->ip_summed = CHECKSUM_NONE;
2577 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2578 skb_put(nskb, len),
2579 len, 0);
2580 continue;
2581 }
2582
2583 frag = skb_shinfo(nskb)->frags;
2584
2585 skb_copy_from_linear_data_offset(skb, offset,
2586 skb_put(nskb, hsize), hsize);
2587
2588 while (pos < offset + len && i < nfrags) {
2589 *frag = skb_shinfo(skb)->frags[i];
2590 get_page(frag->page);
2591 size = frag->size;
2592
2593 if (pos < offset) {
2594 frag->page_offset += offset - pos;
2595 frag->size -= offset - pos;
2596 }
2597
2598 skb_shinfo(nskb)->nr_frags++;
2599
2600 if (pos + size <= offset + len) {
2601 i++;
2602 pos += size;
2603 } else {
2604 frag->size -= pos + size - (offset + len);
2605 goto skip_fraglist;
2606 }
2607
2608 frag++;
2609 }
2610
2611 if (pos < offset + len) {
2612 struct sk_buff *fskb2 = fskb;
2613
2614 BUG_ON(pos + fskb->len != offset + len);
2615
2616 pos += fskb->len;
2617 fskb = fskb->next;
2618
2619 if (fskb2->next) {
2620 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2621 if (!fskb2)
2622 goto err;
2623 } else
2624 skb_get(fskb2);
2625
2626 SKB_FRAG_ASSERT(nskb);
2627 skb_shinfo(nskb)->frag_list = fskb2;
2628 }
2629
2630 skip_fraglist:
2631 nskb->data_len = len - hsize;
2632 nskb->len += nskb->data_len;
2633 nskb->truesize += nskb->data_len;
2634 } while ((offset += len) < skb->len);
2635
2636 return segs;
2637
2638 err:
2639 while ((skb = segs)) {
2640 segs = skb->next;
2641 kfree_skb(skb);
2642 }
2643 return ERR_PTR(err);
2644 }
2645 EXPORT_SYMBOL_GPL(skb_segment);
2646
2647 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2648 {
2649 struct sk_buff *p = *head;
2650 struct sk_buff *nskb;
2651 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2652 struct skb_shared_info *pinfo = skb_shinfo(p);
2653 unsigned int headroom;
2654 unsigned int len = skb_gro_len(skb);
2655 unsigned int offset = skb_gro_offset(skb);
2656 unsigned int headlen = skb_headlen(skb);
2657
2658 if (p->len + len >= 65536)
2659 return -E2BIG;
2660
2661 if (pinfo->frag_list)
2662 goto merge;
2663 else if (headlen <= offset) {
2664 skb_frag_t *frag;
2665 skb_frag_t *frag2;
2666 int i = skbinfo->nr_frags;
2667 int nr_frags = pinfo->nr_frags + i;
2668
2669 offset -= headlen;
2670
2671 if (nr_frags > MAX_SKB_FRAGS)
2672 return -E2BIG;
2673
2674 pinfo->nr_frags = nr_frags;
2675 skbinfo->nr_frags = 0;
2676
2677 frag = pinfo->frags + nr_frags;
2678 frag2 = skbinfo->frags + i;
2679 do {
2680 *--frag = *--frag2;
2681 } while (--i);
2682
2683 frag->page_offset += offset;
2684 frag->size -= offset;
2685
2686 skb->truesize -= skb->data_len;
2687 skb->len -= skb->data_len;
2688 skb->data_len = 0;
2689
2690 NAPI_GRO_CB(skb)->free = 1;
2691 goto done;
2692 }
2693
2694 headroom = skb_headroom(p);
2695 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2696 if (unlikely(!nskb))
2697 return -ENOMEM;
2698
2699 __copy_skb_header(nskb, p);
2700 nskb->mac_len = p->mac_len;
2701
2702 skb_reserve(nskb, headroom);
2703 __skb_put(nskb, skb_gro_offset(p));
2704
2705 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2706 skb_set_network_header(nskb, skb_network_offset(p));
2707 skb_set_transport_header(nskb, skb_transport_offset(p));
2708
2709 __skb_pull(p, skb_gro_offset(p));
2710 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2711 p->data - skb_mac_header(p));
2712
2713 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2714 skb_shinfo(nskb)->frag_list = p;
2715 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2716 skb_header_release(p);
2717 nskb->prev = p;
2718
2719 nskb->data_len += p->len;
2720 nskb->truesize += p->len;
2721 nskb->len += p->len;
2722
2723 *head = nskb;
2724 nskb->next = p->next;
2725 p->next = NULL;
2726
2727 p = nskb;
2728
2729 merge:
2730 if (offset > headlen) {
2731 skbinfo->frags[0].page_offset += offset - headlen;
2732 skbinfo->frags[0].size -= offset - headlen;
2733 offset = headlen;
2734 }
2735
2736 __skb_pull(skb, offset);
2737
2738 p->prev->next = skb;
2739 p->prev = skb;
2740 skb_header_release(skb);
2741
2742 done:
2743 NAPI_GRO_CB(p)->count++;
2744 p->data_len += len;
2745 p->truesize += len;
2746 p->len += len;
2747
2748 NAPI_GRO_CB(skb)->same_flow = 1;
2749 return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(skb_gro_receive);
2752
2753 void __init skb_init(void)
2754 {
2755 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2756 sizeof(struct sk_buff),
2757 0,
2758 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2759 NULL);
2760 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2761 (2*sizeof(struct sk_buff)) +
2762 sizeof(atomic_t),
2763 0,
2764 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2765 NULL);
2766 }
2767
2768 /**
2769 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2770 * @skb: Socket buffer containing the buffers to be mapped
2771 * @sg: The scatter-gather list to map into
2772 * @offset: The offset into the buffer's contents to start mapping
2773 * @len: Length of buffer space to be mapped
2774 *
2775 * Fill the specified scatter-gather list with mappings/pointers into a
2776 * region of the buffer space attached to a socket buffer.
2777 */
2778 static int
2779 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2780 {
2781 int start = skb_headlen(skb);
2782 int i, copy = start - offset;
2783 struct sk_buff *frag_iter;
2784 int elt = 0;
2785
2786 if (copy > 0) {
2787 if (copy > len)
2788 copy = len;
2789 sg_set_buf(sg, skb->data + offset, copy);
2790 elt++;
2791 if ((len -= copy) == 0)
2792 return elt;
2793 offset += copy;
2794 }
2795
2796 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797 int end;
2798
2799 WARN_ON(start > offset + len);
2800
2801 end = start + skb_shinfo(skb)->frags[i].size;
2802 if ((copy = end - offset) > 0) {
2803 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2804
2805 if (copy > len)
2806 copy = len;
2807 sg_set_page(&sg[elt], frag->page, copy,
2808 frag->page_offset+offset-start);
2809 elt++;
2810 if (!(len -= copy))
2811 return elt;
2812 offset += copy;
2813 }
2814 start = end;
2815 }
2816
2817 skb_walk_frags(skb, frag_iter) {
2818 int end;
2819
2820 WARN_ON(start > offset + len);
2821
2822 end = start + frag_iter->len;
2823 if ((copy = end - offset) > 0) {
2824 if (copy > len)
2825 copy = len;
2826 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2827 copy);
2828 if ((len -= copy) == 0)
2829 return elt;
2830 offset += copy;
2831 }
2832 start = end;
2833 }
2834 BUG_ON(len);
2835 return elt;
2836 }
2837
2838 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2839 {
2840 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2841
2842 sg_mark_end(&sg[nsg - 1]);
2843
2844 return nsg;
2845 }
2846 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2847
2848 /**
2849 * skb_cow_data - Check that a socket buffer's data buffers are writable
2850 * @skb: The socket buffer to check.
2851 * @tailbits: Amount of trailing space to be added
2852 * @trailer: Returned pointer to the skb where the @tailbits space begins
2853 *
2854 * Make sure that the data buffers attached to a socket buffer are
2855 * writable. If they are not, private copies are made of the data buffers
2856 * and the socket buffer is set to use these instead.
2857 *
2858 * If @tailbits is given, make sure that there is space to write @tailbits
2859 * bytes of data beyond current end of socket buffer. @trailer will be
2860 * set to point to the skb in which this space begins.
2861 *
2862 * The number of scatterlist elements required to completely map the
2863 * COW'd and extended socket buffer will be returned.
2864 */
2865 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2866 {
2867 int copyflag;
2868 int elt;
2869 struct sk_buff *skb1, **skb_p;
2870
2871 /* If skb is cloned or its head is paged, reallocate
2872 * head pulling out all the pages (pages are considered not writable
2873 * at the moment even if they are anonymous).
2874 */
2875 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2876 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2877 return -ENOMEM;
2878
2879 /* Easy case. Most of packets will go this way. */
2880 if (!skb_has_frags(skb)) {
2881 /* A little of trouble, not enough of space for trailer.
2882 * This should not happen, when stack is tuned to generate
2883 * good frames. OK, on miss we reallocate and reserve even more
2884 * space, 128 bytes is fair. */
2885
2886 if (skb_tailroom(skb) < tailbits &&
2887 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2888 return -ENOMEM;
2889
2890 /* Voila! */
2891 *trailer = skb;
2892 return 1;
2893 }
2894
2895 /* Misery. We are in troubles, going to mincer fragments... */
2896
2897 elt = 1;
2898 skb_p = &skb_shinfo(skb)->frag_list;
2899 copyflag = 0;
2900
2901 while ((skb1 = *skb_p) != NULL) {
2902 int ntail = 0;
2903
2904 /* The fragment is partially pulled by someone,
2905 * this can happen on input. Copy it and everything
2906 * after it. */
2907
2908 if (skb_shared(skb1))
2909 copyflag = 1;
2910
2911 /* If the skb is the last, worry about trailer. */
2912
2913 if (skb1->next == NULL && tailbits) {
2914 if (skb_shinfo(skb1)->nr_frags ||
2915 skb_has_frags(skb1) ||
2916 skb_tailroom(skb1) < tailbits)
2917 ntail = tailbits + 128;
2918 }
2919
2920 if (copyflag ||
2921 skb_cloned(skb1) ||
2922 ntail ||
2923 skb_shinfo(skb1)->nr_frags ||
2924 skb_has_frags(skb1)) {
2925 struct sk_buff *skb2;
2926
2927 /* Fuck, we are miserable poor guys... */
2928 if (ntail == 0)
2929 skb2 = skb_copy(skb1, GFP_ATOMIC);
2930 else
2931 skb2 = skb_copy_expand(skb1,
2932 skb_headroom(skb1),
2933 ntail,
2934 GFP_ATOMIC);
2935 if (unlikely(skb2 == NULL))
2936 return -ENOMEM;
2937
2938 if (skb1->sk)
2939 skb_set_owner_w(skb2, skb1->sk);
2940
2941 /* Looking around. Are we still alive?
2942 * OK, link new skb, drop old one */
2943
2944 skb2->next = skb1->next;
2945 *skb_p = skb2;
2946 kfree_skb(skb1);
2947 skb1 = skb2;
2948 }
2949 elt++;
2950 *trailer = skb1;
2951 skb_p = &skb1->next;
2952 }
2953
2954 return elt;
2955 }
2956 EXPORT_SYMBOL_GPL(skb_cow_data);
2957
2958 void skb_tstamp_tx(struct sk_buff *orig_skb,
2959 struct skb_shared_hwtstamps *hwtstamps)
2960 {
2961 struct sock *sk = orig_skb->sk;
2962 struct sock_exterr_skb *serr;
2963 struct sk_buff *skb;
2964 int err;
2965
2966 if (!sk)
2967 return;
2968
2969 skb = skb_clone(orig_skb, GFP_ATOMIC);
2970 if (!skb)
2971 return;
2972
2973 if (hwtstamps) {
2974 *skb_hwtstamps(skb) =
2975 *hwtstamps;
2976 } else {
2977 /*
2978 * no hardware time stamps available,
2979 * so keep the skb_shared_tx and only
2980 * store software time stamp
2981 */
2982 skb->tstamp = ktime_get_real();
2983 }
2984
2985 serr = SKB_EXT_ERR(skb);
2986 memset(serr, 0, sizeof(*serr));
2987 serr->ee.ee_errno = ENOMSG;
2988 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
2989 err = sock_queue_err_skb(sk, skb);
2990 if (err)
2991 kfree_skb(skb);
2992 }
2993 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
2994
2995
2996 /**
2997 * skb_partial_csum_set - set up and verify partial csum values for packet
2998 * @skb: the skb to set
2999 * @start: the number of bytes after skb->data to start checksumming.
3000 * @off: the offset from start to place the checksum.
3001 *
3002 * For untrusted partially-checksummed packets, we need to make sure the values
3003 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3004 *
3005 * This function checks and sets those values and skb->ip_summed: if this
3006 * returns false you should drop the packet.
3007 */
3008 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3009 {
3010 if (unlikely(start > skb_headlen(skb)) ||
3011 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3012 if (net_ratelimit())
3013 printk(KERN_WARNING
3014 "bad partial csum: csum=%u/%u len=%u\n",
3015 start, off, skb_headlen(skb));
3016 return false;
3017 }
3018 skb->ip_summed = CHECKSUM_PARTIAL;
3019 skb->csum_start = skb_headroom(skb) + start;
3020 skb->csum_offset = off;
3021 return true;
3022 }
3023 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3024
3025 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3026 {
3027 if (net_ratelimit())
3028 pr_warning("%s: received packets cannot be forwarded"
3029 " while LRO is enabled\n", skb->dev->name);
3030 }
3031 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.11108 seconds and 5 git commands to generate.