net: Convert net_ratelimit uses to net_<level>_ratelimited
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <trace/events/skb.h>
70 #include <linux/highmem.h>
71
72 struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
77 {
78 put_page(buf->page);
79 }
80
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83 {
84 get_page(buf->page);
85 }
86
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
89 {
90 return 1;
91 }
92
93
94 /* Pipe buffer operations for a socket. */
95 static const struct pipe_buf_operations sock_pipe_buf_ops = {
96 .can_merge = 0,
97 .map = generic_pipe_buf_map,
98 .unmap = generic_pipe_buf_unmap,
99 .confirm = generic_pipe_buf_confirm,
100 .release = sock_pipe_buf_release,
101 .steal = sock_pipe_buf_steal,
102 .get = sock_pipe_buf_get,
103 };
104
105 /*
106 * Keep out-of-line to prevent kernel bloat.
107 * __builtin_return_address is not used because it is not always
108 * reliable.
109 */
110
111 /**
112 * skb_over_panic - private function
113 * @skb: buffer
114 * @sz: size
115 * @here: address
116 *
117 * Out of line support code for skb_put(). Not user callable.
118 */
119 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 "data:%p tail:%#lx end:%#lx dev:%s\n",
123 here, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128
129 /**
130 * skb_under_panic - private function
131 * @skb: buffer
132 * @sz: size
133 * @here: address
134 *
135 * Out of line support code for skb_push(). Not user callable.
136 */
137
138 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
139 {
140 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
141 "data:%p tail:%#lx end:%#lx dev:%s\n",
142 here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
146 }
147
148 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
149 * 'private' fields and also do memory statistics to find all the
150 * [BEEP] leaks.
151 *
152 */
153
154 /**
155 * __alloc_skb - allocate a network buffer
156 * @size: size to allocate
157 * @gfp_mask: allocation mask
158 * @fclone: allocate from fclone cache instead of head cache
159 * and allocate a cloned (child) skb
160 * @node: numa node to allocate memory on
161 *
162 * Allocate a new &sk_buff. The returned buffer has no headroom and a
163 * tail room of size bytes. The object has a reference count of one.
164 * The return is the buffer. On a failure the return is %NULL.
165 *
166 * Buffers may only be allocated from interrupts using a @gfp_mask of
167 * %GFP_ATOMIC.
168 */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 int fclone, int node)
171 {
172 struct kmem_cache *cache;
173 struct skb_shared_info *shinfo;
174 struct sk_buff *skb;
175 u8 *data;
176
177 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178
179 /* Get the HEAD */
180 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 if (!skb)
182 goto out;
183 prefetchw(skb);
184
185 /* We do our best to align skb_shared_info on a separate cache
186 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 * Both skb->head and skb_shared_info are cache line aligned.
189 */
190 size = SKB_DATA_ALIGN(size);
191 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 data = kmalloc_node_track_caller(size, gfp_mask, node);
193 if (!data)
194 goto nodata;
195 /* kmalloc(size) might give us more room than requested.
196 * Put skb_shared_info exactly at the end of allocated zone,
197 * to allow max possible filling before reallocation.
198 */
199 size = SKB_WITH_OVERHEAD(ksize(data));
200 prefetchw(data + size);
201
202 /*
203 * Only clear those fields we need to clear, not those that we will
204 * actually initialise below. Hence, don't put any more fields after
205 * the tail pointer in struct sk_buff!
206 */
207 memset(skb, 0, offsetof(struct sk_buff, tail));
208 /* Account for allocated memory : skb + skb->head */
209 skb->truesize = SKB_TRUESIZE(size);
210 atomic_set(&skb->users, 1);
211 skb->head = data;
212 skb->data = data;
213 skb_reset_tail_pointer(skb);
214 skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 skb->mac_header = ~0U;
217 #endif
218
219 /* make sure we initialize shinfo sequentially */
220 shinfo = skb_shinfo(skb);
221 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 atomic_set(&shinfo->dataref, 1);
223 kmemcheck_annotate_variable(shinfo->destructor_arg);
224
225 if (fclone) {
226 struct sk_buff *child = skb + 1;
227 atomic_t *fclone_ref = (atomic_t *) (child + 1);
228
229 kmemcheck_annotate_bitfield(child, flags1);
230 kmemcheck_annotate_bitfield(child, flags2);
231 skb->fclone = SKB_FCLONE_ORIG;
232 atomic_set(fclone_ref, 1);
233
234 child->fclone = SKB_FCLONE_UNAVAILABLE;
235 }
236 out:
237 return skb;
238 nodata:
239 kmem_cache_free(cache, skb);
240 skb = NULL;
241 goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244
245 /**
246 * build_skb - build a network buffer
247 * @data: data buffer provided by caller
248 * @frag_size: size of fragment, or 0 if head was kmalloced
249 *
250 * Allocate a new &sk_buff. Caller provides space holding head and
251 * skb_shared_info. @data must have been allocated by kmalloc()
252 * The return is the new skb buffer.
253 * On a failure the return is %NULL, and @data is not freed.
254 * Notes :
255 * Before IO, driver allocates only data buffer where NIC put incoming frame
256 * Driver should add room at head (NET_SKB_PAD) and
257 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
259 * before giving packet to stack.
260 * RX rings only contains data buffers, not full skbs.
261 */
262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
263 {
264 struct skb_shared_info *shinfo;
265 struct sk_buff *skb;
266 unsigned int size = frag_size ? : ksize(data);
267
268 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 if (!skb)
270 return NULL;
271
272 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273
274 memset(skb, 0, offsetof(struct sk_buff, tail));
275 skb->truesize = SKB_TRUESIZE(size);
276 skb->head_frag = frag_size != 0;
277 atomic_set(&skb->users, 1);
278 skb->head = data;
279 skb->data = data;
280 skb_reset_tail_pointer(skb);
281 skb->end = skb->tail + size;
282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
283 skb->mac_header = ~0U;
284 #endif
285
286 /* make sure we initialize shinfo sequentially */
287 shinfo = skb_shinfo(skb);
288 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
289 atomic_set(&shinfo->dataref, 1);
290 kmemcheck_annotate_variable(shinfo->destructor_arg);
291
292 return skb;
293 }
294 EXPORT_SYMBOL(build_skb);
295
296 /**
297 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
298 * @dev: network device to receive on
299 * @length: length to allocate
300 * @gfp_mask: get_free_pages mask, passed to alloc_skb
301 *
302 * Allocate a new &sk_buff and assign it a usage count of one. The
303 * buffer has unspecified headroom built in. Users should allocate
304 * the headroom they think they need without accounting for the
305 * built in space. The built in space is used for optimisations.
306 *
307 * %NULL is returned if there is no free memory.
308 */
309 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
310 unsigned int length, gfp_t gfp_mask)
311 {
312 struct sk_buff *skb;
313
314 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
315 if (likely(skb)) {
316 skb_reserve(skb, NET_SKB_PAD);
317 skb->dev = dev;
318 }
319 return skb;
320 }
321 EXPORT_SYMBOL(__netdev_alloc_skb);
322
323 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
324 int size, unsigned int truesize)
325 {
326 skb_fill_page_desc(skb, i, page, off, size);
327 skb->len += size;
328 skb->data_len += size;
329 skb->truesize += truesize;
330 }
331 EXPORT_SYMBOL(skb_add_rx_frag);
332
333 /**
334 * dev_alloc_skb - allocate an skbuff for receiving
335 * @length: length to allocate
336 *
337 * Allocate a new &sk_buff and assign it a usage count of one. The
338 * buffer has unspecified headroom built in. Users should allocate
339 * the headroom they think they need without accounting for the
340 * built in space. The built in space is used for optimisations.
341 *
342 * %NULL is returned if there is no free memory. Although this function
343 * allocates memory it can be called from an interrupt.
344 */
345 struct sk_buff *dev_alloc_skb(unsigned int length)
346 {
347 /*
348 * There is more code here than it seems:
349 * __dev_alloc_skb is an inline
350 */
351 return __dev_alloc_skb(length, GFP_ATOMIC);
352 }
353 EXPORT_SYMBOL(dev_alloc_skb);
354
355 static void skb_drop_list(struct sk_buff **listp)
356 {
357 struct sk_buff *list = *listp;
358
359 *listp = NULL;
360
361 do {
362 struct sk_buff *this = list;
363 list = list->next;
364 kfree_skb(this);
365 } while (list);
366 }
367
368 static inline void skb_drop_fraglist(struct sk_buff *skb)
369 {
370 skb_drop_list(&skb_shinfo(skb)->frag_list);
371 }
372
373 static void skb_clone_fraglist(struct sk_buff *skb)
374 {
375 struct sk_buff *list;
376
377 skb_walk_frags(skb, list)
378 skb_get(list);
379 }
380
381 static void skb_free_head(struct sk_buff *skb)
382 {
383 if (skb->head_frag)
384 put_page(virt_to_head_page(skb->head));
385 else
386 kfree(skb->head);
387 }
388
389 static void skb_release_data(struct sk_buff *skb)
390 {
391 if (!skb->cloned ||
392 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
393 &skb_shinfo(skb)->dataref)) {
394 if (skb_shinfo(skb)->nr_frags) {
395 int i;
396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
397 skb_frag_unref(skb, i);
398 }
399
400 /*
401 * If skb buf is from userspace, we need to notify the caller
402 * the lower device DMA has done;
403 */
404 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
405 struct ubuf_info *uarg;
406
407 uarg = skb_shinfo(skb)->destructor_arg;
408 if (uarg->callback)
409 uarg->callback(uarg);
410 }
411
412 if (skb_has_frag_list(skb))
413 skb_drop_fraglist(skb);
414
415 skb_free_head(skb);
416 }
417 }
418
419 /*
420 * Free an skbuff by memory without cleaning the state.
421 */
422 static void kfree_skbmem(struct sk_buff *skb)
423 {
424 struct sk_buff *other;
425 atomic_t *fclone_ref;
426
427 switch (skb->fclone) {
428 case SKB_FCLONE_UNAVAILABLE:
429 kmem_cache_free(skbuff_head_cache, skb);
430 break;
431
432 case SKB_FCLONE_ORIG:
433 fclone_ref = (atomic_t *) (skb + 2);
434 if (atomic_dec_and_test(fclone_ref))
435 kmem_cache_free(skbuff_fclone_cache, skb);
436 break;
437
438 case SKB_FCLONE_CLONE:
439 fclone_ref = (atomic_t *) (skb + 1);
440 other = skb - 1;
441
442 /* The clone portion is available for
443 * fast-cloning again.
444 */
445 skb->fclone = SKB_FCLONE_UNAVAILABLE;
446
447 if (atomic_dec_and_test(fclone_ref))
448 kmem_cache_free(skbuff_fclone_cache, other);
449 break;
450 }
451 }
452
453 static void skb_release_head_state(struct sk_buff *skb)
454 {
455 skb_dst_drop(skb);
456 #ifdef CONFIG_XFRM
457 secpath_put(skb->sp);
458 #endif
459 if (skb->destructor) {
460 WARN_ON(in_irq());
461 skb->destructor(skb);
462 }
463 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
464 nf_conntrack_put(skb->nfct);
465 #endif
466 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
467 nf_conntrack_put_reasm(skb->nfct_reasm);
468 #endif
469 #ifdef CONFIG_BRIDGE_NETFILTER
470 nf_bridge_put(skb->nf_bridge);
471 #endif
472 /* XXX: IS this still necessary? - JHS */
473 #ifdef CONFIG_NET_SCHED
474 skb->tc_index = 0;
475 #ifdef CONFIG_NET_CLS_ACT
476 skb->tc_verd = 0;
477 #endif
478 #endif
479 }
480
481 /* Free everything but the sk_buff shell. */
482 static void skb_release_all(struct sk_buff *skb)
483 {
484 skb_release_head_state(skb);
485 skb_release_data(skb);
486 }
487
488 /**
489 * __kfree_skb - private function
490 * @skb: buffer
491 *
492 * Free an sk_buff. Release anything attached to the buffer.
493 * Clean the state. This is an internal helper function. Users should
494 * always call kfree_skb
495 */
496
497 void __kfree_skb(struct sk_buff *skb)
498 {
499 skb_release_all(skb);
500 kfree_skbmem(skb);
501 }
502 EXPORT_SYMBOL(__kfree_skb);
503
504 /**
505 * kfree_skb - free an sk_buff
506 * @skb: buffer to free
507 *
508 * Drop a reference to the buffer and free it if the usage count has
509 * hit zero.
510 */
511 void kfree_skb(struct sk_buff *skb)
512 {
513 if (unlikely(!skb))
514 return;
515 if (likely(atomic_read(&skb->users) == 1))
516 smp_rmb();
517 else if (likely(!atomic_dec_and_test(&skb->users)))
518 return;
519 trace_kfree_skb(skb, __builtin_return_address(0));
520 __kfree_skb(skb);
521 }
522 EXPORT_SYMBOL(kfree_skb);
523
524 /**
525 * consume_skb - free an skbuff
526 * @skb: buffer to free
527 *
528 * Drop a ref to the buffer and free it if the usage count has hit zero
529 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
530 * is being dropped after a failure and notes that
531 */
532 void consume_skb(struct sk_buff *skb)
533 {
534 if (unlikely(!skb))
535 return;
536 if (likely(atomic_read(&skb->users) == 1))
537 smp_rmb();
538 else if (likely(!atomic_dec_and_test(&skb->users)))
539 return;
540 trace_consume_skb(skb);
541 __kfree_skb(skb);
542 }
543 EXPORT_SYMBOL(consume_skb);
544
545 /**
546 * skb_recycle - clean up an skb for reuse
547 * @skb: buffer
548 *
549 * Recycles the skb to be reused as a receive buffer. This
550 * function does any necessary reference count dropping, and
551 * cleans up the skbuff as if it just came from __alloc_skb().
552 */
553 void skb_recycle(struct sk_buff *skb)
554 {
555 struct skb_shared_info *shinfo;
556
557 skb_release_head_state(skb);
558
559 shinfo = skb_shinfo(skb);
560 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
561 atomic_set(&shinfo->dataref, 1);
562
563 memset(skb, 0, offsetof(struct sk_buff, tail));
564 skb->data = skb->head + NET_SKB_PAD;
565 skb_reset_tail_pointer(skb);
566 }
567 EXPORT_SYMBOL(skb_recycle);
568
569 /**
570 * skb_recycle_check - check if skb can be reused for receive
571 * @skb: buffer
572 * @skb_size: minimum receive buffer size
573 *
574 * Checks that the skb passed in is not shared or cloned, and
575 * that it is linear and its head portion at least as large as
576 * skb_size so that it can be recycled as a receive buffer.
577 * If these conditions are met, this function does any necessary
578 * reference count dropping and cleans up the skbuff as if it
579 * just came from __alloc_skb().
580 */
581 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
582 {
583 if (!skb_is_recycleable(skb, skb_size))
584 return false;
585
586 skb_recycle(skb);
587
588 return true;
589 }
590 EXPORT_SYMBOL(skb_recycle_check);
591
592 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
593 {
594 new->tstamp = old->tstamp;
595 new->dev = old->dev;
596 new->transport_header = old->transport_header;
597 new->network_header = old->network_header;
598 new->mac_header = old->mac_header;
599 skb_dst_copy(new, old);
600 new->rxhash = old->rxhash;
601 new->ooo_okay = old->ooo_okay;
602 new->l4_rxhash = old->l4_rxhash;
603 new->no_fcs = old->no_fcs;
604 #ifdef CONFIG_XFRM
605 new->sp = secpath_get(old->sp);
606 #endif
607 memcpy(new->cb, old->cb, sizeof(old->cb));
608 new->csum = old->csum;
609 new->local_df = old->local_df;
610 new->pkt_type = old->pkt_type;
611 new->ip_summed = old->ip_summed;
612 skb_copy_queue_mapping(new, old);
613 new->priority = old->priority;
614 #if IS_ENABLED(CONFIG_IP_VS)
615 new->ipvs_property = old->ipvs_property;
616 #endif
617 new->protocol = old->protocol;
618 new->mark = old->mark;
619 new->skb_iif = old->skb_iif;
620 __nf_copy(new, old);
621 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
622 new->nf_trace = old->nf_trace;
623 #endif
624 #ifdef CONFIG_NET_SCHED
625 new->tc_index = old->tc_index;
626 #ifdef CONFIG_NET_CLS_ACT
627 new->tc_verd = old->tc_verd;
628 #endif
629 #endif
630 new->vlan_tci = old->vlan_tci;
631
632 skb_copy_secmark(new, old);
633 }
634
635 /*
636 * You should not add any new code to this function. Add it to
637 * __copy_skb_header above instead.
638 */
639 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
640 {
641 #define C(x) n->x = skb->x
642
643 n->next = n->prev = NULL;
644 n->sk = NULL;
645 __copy_skb_header(n, skb);
646
647 C(len);
648 C(data_len);
649 C(mac_len);
650 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
651 n->cloned = 1;
652 n->nohdr = 0;
653 n->destructor = NULL;
654 C(tail);
655 C(end);
656 C(head);
657 C(head_frag);
658 C(data);
659 C(truesize);
660 atomic_set(&n->users, 1);
661
662 atomic_inc(&(skb_shinfo(skb)->dataref));
663 skb->cloned = 1;
664
665 return n;
666 #undef C
667 }
668
669 /**
670 * skb_morph - morph one skb into another
671 * @dst: the skb to receive the contents
672 * @src: the skb to supply the contents
673 *
674 * This is identical to skb_clone except that the target skb is
675 * supplied by the user.
676 *
677 * The target skb is returned upon exit.
678 */
679 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
680 {
681 skb_release_all(dst);
682 return __skb_clone(dst, src);
683 }
684 EXPORT_SYMBOL_GPL(skb_morph);
685
686 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
687 * @skb: the skb to modify
688 * @gfp_mask: allocation priority
689 *
690 * This must be called on SKBTX_DEV_ZEROCOPY skb.
691 * It will copy all frags into kernel and drop the reference
692 * to userspace pages.
693 *
694 * If this function is called from an interrupt gfp_mask() must be
695 * %GFP_ATOMIC.
696 *
697 * Returns 0 on success or a negative error code on failure
698 * to allocate kernel memory to copy to.
699 */
700 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
701 {
702 int i;
703 int num_frags = skb_shinfo(skb)->nr_frags;
704 struct page *page, *head = NULL;
705 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
706
707 for (i = 0; i < num_frags; i++) {
708 u8 *vaddr;
709 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
710
711 page = alloc_page(GFP_ATOMIC);
712 if (!page) {
713 while (head) {
714 struct page *next = (struct page *)head->private;
715 put_page(head);
716 head = next;
717 }
718 return -ENOMEM;
719 }
720 vaddr = kmap_atomic(skb_frag_page(f));
721 memcpy(page_address(page),
722 vaddr + f->page_offset, skb_frag_size(f));
723 kunmap_atomic(vaddr);
724 page->private = (unsigned long)head;
725 head = page;
726 }
727
728 /* skb frags release userspace buffers */
729 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
730 skb_frag_unref(skb, i);
731
732 uarg->callback(uarg);
733
734 /* skb frags point to kernel buffers */
735 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
736 __skb_fill_page_desc(skb, i-1, head, 0,
737 skb_shinfo(skb)->frags[i - 1].size);
738 head = (struct page *)head->private;
739 }
740
741 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
742 return 0;
743 }
744
745
746 /**
747 * skb_clone - duplicate an sk_buff
748 * @skb: buffer to clone
749 * @gfp_mask: allocation priority
750 *
751 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
752 * copies share the same packet data but not structure. The new
753 * buffer has a reference count of 1. If the allocation fails the
754 * function returns %NULL otherwise the new buffer is returned.
755 *
756 * If this function is called from an interrupt gfp_mask() must be
757 * %GFP_ATOMIC.
758 */
759
760 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
761 {
762 struct sk_buff *n;
763
764 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
765 if (skb_copy_ubufs(skb, gfp_mask))
766 return NULL;
767 }
768
769 n = skb + 1;
770 if (skb->fclone == SKB_FCLONE_ORIG &&
771 n->fclone == SKB_FCLONE_UNAVAILABLE) {
772 atomic_t *fclone_ref = (atomic_t *) (n + 1);
773 n->fclone = SKB_FCLONE_CLONE;
774 atomic_inc(fclone_ref);
775 } else {
776 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
777 if (!n)
778 return NULL;
779
780 kmemcheck_annotate_bitfield(n, flags1);
781 kmemcheck_annotate_bitfield(n, flags2);
782 n->fclone = SKB_FCLONE_UNAVAILABLE;
783 }
784
785 return __skb_clone(n, skb);
786 }
787 EXPORT_SYMBOL(skb_clone);
788
789 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
790 {
791 #ifndef NET_SKBUFF_DATA_USES_OFFSET
792 /*
793 * Shift between the two data areas in bytes
794 */
795 unsigned long offset = new->data - old->data;
796 #endif
797
798 __copy_skb_header(new, old);
799
800 #ifndef NET_SKBUFF_DATA_USES_OFFSET
801 /* {transport,network,mac}_header are relative to skb->head */
802 new->transport_header += offset;
803 new->network_header += offset;
804 if (skb_mac_header_was_set(new))
805 new->mac_header += offset;
806 #endif
807 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
808 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
809 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
810 }
811
812 /**
813 * skb_copy - create private copy of an sk_buff
814 * @skb: buffer to copy
815 * @gfp_mask: allocation priority
816 *
817 * Make a copy of both an &sk_buff and its data. This is used when the
818 * caller wishes to modify the data and needs a private copy of the
819 * data to alter. Returns %NULL on failure or the pointer to the buffer
820 * on success. The returned buffer has a reference count of 1.
821 *
822 * As by-product this function converts non-linear &sk_buff to linear
823 * one, so that &sk_buff becomes completely private and caller is allowed
824 * to modify all the data of returned buffer. This means that this
825 * function is not recommended for use in circumstances when only
826 * header is going to be modified. Use pskb_copy() instead.
827 */
828
829 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
830 {
831 int headerlen = skb_headroom(skb);
832 unsigned int size = skb_end_offset(skb) + skb->data_len;
833 struct sk_buff *n = alloc_skb(size, gfp_mask);
834
835 if (!n)
836 return NULL;
837
838 /* Set the data pointer */
839 skb_reserve(n, headerlen);
840 /* Set the tail pointer and length */
841 skb_put(n, skb->len);
842
843 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
844 BUG();
845
846 copy_skb_header(n, skb);
847 return n;
848 }
849 EXPORT_SYMBOL(skb_copy);
850
851 /**
852 * __pskb_copy - create copy of an sk_buff with private head.
853 * @skb: buffer to copy
854 * @headroom: headroom of new skb
855 * @gfp_mask: allocation priority
856 *
857 * Make a copy of both an &sk_buff and part of its data, located
858 * in header. Fragmented data remain shared. This is used when
859 * the caller wishes to modify only header of &sk_buff and needs
860 * private copy of the header to alter. Returns %NULL on failure
861 * or the pointer to the buffer on success.
862 * The returned buffer has a reference count of 1.
863 */
864
865 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
866 {
867 unsigned int size = skb_headlen(skb) + headroom;
868 struct sk_buff *n = alloc_skb(size, gfp_mask);
869
870 if (!n)
871 goto out;
872
873 /* Set the data pointer */
874 skb_reserve(n, headroom);
875 /* Set the tail pointer and length */
876 skb_put(n, skb_headlen(skb));
877 /* Copy the bytes */
878 skb_copy_from_linear_data(skb, n->data, n->len);
879
880 n->truesize += skb->data_len;
881 n->data_len = skb->data_len;
882 n->len = skb->len;
883
884 if (skb_shinfo(skb)->nr_frags) {
885 int i;
886
887 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
888 if (skb_copy_ubufs(skb, gfp_mask)) {
889 kfree_skb(n);
890 n = NULL;
891 goto out;
892 }
893 }
894 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
895 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
896 skb_frag_ref(skb, i);
897 }
898 skb_shinfo(n)->nr_frags = i;
899 }
900
901 if (skb_has_frag_list(skb)) {
902 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
903 skb_clone_fraglist(n);
904 }
905
906 copy_skb_header(n, skb);
907 out:
908 return n;
909 }
910 EXPORT_SYMBOL(__pskb_copy);
911
912 /**
913 * pskb_expand_head - reallocate header of &sk_buff
914 * @skb: buffer to reallocate
915 * @nhead: room to add at head
916 * @ntail: room to add at tail
917 * @gfp_mask: allocation priority
918 *
919 * Expands (or creates identical copy, if &nhead and &ntail are zero)
920 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
921 * reference count of 1. Returns zero in the case of success or error,
922 * if expansion failed. In the last case, &sk_buff is not changed.
923 *
924 * All the pointers pointing into skb header may change and must be
925 * reloaded after call to this function.
926 */
927
928 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
929 gfp_t gfp_mask)
930 {
931 int i;
932 u8 *data;
933 int size = nhead + skb_end_offset(skb) + ntail;
934 long off;
935
936 BUG_ON(nhead < 0);
937
938 if (skb_shared(skb))
939 BUG();
940
941 size = SKB_DATA_ALIGN(size);
942
943 data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
944 gfp_mask);
945 if (!data)
946 goto nodata;
947 size = SKB_WITH_OVERHEAD(ksize(data));
948
949 /* Copy only real data... and, alas, header. This should be
950 * optimized for the cases when header is void.
951 */
952 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
953
954 memcpy((struct skb_shared_info *)(data + size),
955 skb_shinfo(skb),
956 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
957
958 /*
959 * if shinfo is shared we must drop the old head gracefully, but if it
960 * is not we can just drop the old head and let the existing refcount
961 * be since all we did is relocate the values
962 */
963 if (skb_cloned(skb)) {
964 /* copy this zero copy skb frags */
965 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
966 if (skb_copy_ubufs(skb, gfp_mask))
967 goto nofrags;
968 }
969 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
970 skb_frag_ref(skb, i);
971
972 if (skb_has_frag_list(skb))
973 skb_clone_fraglist(skb);
974
975 skb_release_data(skb);
976 } else {
977 skb_free_head(skb);
978 }
979 off = (data + nhead) - skb->head;
980
981 skb->head = data;
982 skb->head_frag = 0;
983 skb->data += off;
984 #ifdef NET_SKBUFF_DATA_USES_OFFSET
985 skb->end = size;
986 off = nhead;
987 #else
988 skb->end = skb->head + size;
989 #endif
990 /* {transport,network,mac}_header and tail are relative to skb->head */
991 skb->tail += off;
992 skb->transport_header += off;
993 skb->network_header += off;
994 if (skb_mac_header_was_set(skb))
995 skb->mac_header += off;
996 /* Only adjust this if it actually is csum_start rather than csum */
997 if (skb->ip_summed == CHECKSUM_PARTIAL)
998 skb->csum_start += nhead;
999 skb->cloned = 0;
1000 skb->hdr_len = 0;
1001 skb->nohdr = 0;
1002 atomic_set(&skb_shinfo(skb)->dataref, 1);
1003 return 0;
1004
1005 nofrags:
1006 kfree(data);
1007 nodata:
1008 return -ENOMEM;
1009 }
1010 EXPORT_SYMBOL(pskb_expand_head);
1011
1012 /* Make private copy of skb with writable head and some headroom */
1013
1014 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1015 {
1016 struct sk_buff *skb2;
1017 int delta = headroom - skb_headroom(skb);
1018
1019 if (delta <= 0)
1020 skb2 = pskb_copy(skb, GFP_ATOMIC);
1021 else {
1022 skb2 = skb_clone(skb, GFP_ATOMIC);
1023 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1024 GFP_ATOMIC)) {
1025 kfree_skb(skb2);
1026 skb2 = NULL;
1027 }
1028 }
1029 return skb2;
1030 }
1031 EXPORT_SYMBOL(skb_realloc_headroom);
1032
1033 /**
1034 * skb_copy_expand - copy and expand sk_buff
1035 * @skb: buffer to copy
1036 * @newheadroom: new free bytes at head
1037 * @newtailroom: new free bytes at tail
1038 * @gfp_mask: allocation priority
1039 *
1040 * Make a copy of both an &sk_buff and its data and while doing so
1041 * allocate additional space.
1042 *
1043 * This is used when the caller wishes to modify the data and needs a
1044 * private copy of the data to alter as well as more space for new fields.
1045 * Returns %NULL on failure or the pointer to the buffer
1046 * on success. The returned buffer has a reference count of 1.
1047 *
1048 * You must pass %GFP_ATOMIC as the allocation priority if this function
1049 * is called from an interrupt.
1050 */
1051 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1052 int newheadroom, int newtailroom,
1053 gfp_t gfp_mask)
1054 {
1055 /*
1056 * Allocate the copy buffer
1057 */
1058 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1059 gfp_mask);
1060 int oldheadroom = skb_headroom(skb);
1061 int head_copy_len, head_copy_off;
1062 int off;
1063
1064 if (!n)
1065 return NULL;
1066
1067 skb_reserve(n, newheadroom);
1068
1069 /* Set the tail pointer and length */
1070 skb_put(n, skb->len);
1071
1072 head_copy_len = oldheadroom;
1073 head_copy_off = 0;
1074 if (newheadroom <= head_copy_len)
1075 head_copy_len = newheadroom;
1076 else
1077 head_copy_off = newheadroom - head_copy_len;
1078
1079 /* Copy the linear header and data. */
1080 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1081 skb->len + head_copy_len))
1082 BUG();
1083
1084 copy_skb_header(n, skb);
1085
1086 off = newheadroom - oldheadroom;
1087 if (n->ip_summed == CHECKSUM_PARTIAL)
1088 n->csum_start += off;
1089 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1090 n->transport_header += off;
1091 n->network_header += off;
1092 if (skb_mac_header_was_set(skb))
1093 n->mac_header += off;
1094 #endif
1095
1096 return n;
1097 }
1098 EXPORT_SYMBOL(skb_copy_expand);
1099
1100 /**
1101 * skb_pad - zero pad the tail of an skb
1102 * @skb: buffer to pad
1103 * @pad: space to pad
1104 *
1105 * Ensure that a buffer is followed by a padding area that is zero
1106 * filled. Used by network drivers which may DMA or transfer data
1107 * beyond the buffer end onto the wire.
1108 *
1109 * May return error in out of memory cases. The skb is freed on error.
1110 */
1111
1112 int skb_pad(struct sk_buff *skb, int pad)
1113 {
1114 int err;
1115 int ntail;
1116
1117 /* If the skbuff is non linear tailroom is always zero.. */
1118 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1119 memset(skb->data+skb->len, 0, pad);
1120 return 0;
1121 }
1122
1123 ntail = skb->data_len + pad - (skb->end - skb->tail);
1124 if (likely(skb_cloned(skb) || ntail > 0)) {
1125 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1126 if (unlikely(err))
1127 goto free_skb;
1128 }
1129
1130 /* FIXME: The use of this function with non-linear skb's really needs
1131 * to be audited.
1132 */
1133 err = skb_linearize(skb);
1134 if (unlikely(err))
1135 goto free_skb;
1136
1137 memset(skb->data + skb->len, 0, pad);
1138 return 0;
1139
1140 free_skb:
1141 kfree_skb(skb);
1142 return err;
1143 }
1144 EXPORT_SYMBOL(skb_pad);
1145
1146 /**
1147 * skb_put - add data to a buffer
1148 * @skb: buffer to use
1149 * @len: amount of data to add
1150 *
1151 * This function extends the used data area of the buffer. If this would
1152 * exceed the total buffer size the kernel will panic. A pointer to the
1153 * first byte of the extra data is returned.
1154 */
1155 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1156 {
1157 unsigned char *tmp = skb_tail_pointer(skb);
1158 SKB_LINEAR_ASSERT(skb);
1159 skb->tail += len;
1160 skb->len += len;
1161 if (unlikely(skb->tail > skb->end))
1162 skb_over_panic(skb, len, __builtin_return_address(0));
1163 return tmp;
1164 }
1165 EXPORT_SYMBOL(skb_put);
1166
1167 /**
1168 * skb_push - add data to the start of a buffer
1169 * @skb: buffer to use
1170 * @len: amount of data to add
1171 *
1172 * This function extends the used data area of the buffer at the buffer
1173 * start. If this would exceed the total buffer headroom the kernel will
1174 * panic. A pointer to the first byte of the extra data is returned.
1175 */
1176 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1177 {
1178 skb->data -= len;
1179 skb->len += len;
1180 if (unlikely(skb->data<skb->head))
1181 skb_under_panic(skb, len, __builtin_return_address(0));
1182 return skb->data;
1183 }
1184 EXPORT_SYMBOL(skb_push);
1185
1186 /**
1187 * skb_pull - remove data from the start of a buffer
1188 * @skb: buffer to use
1189 * @len: amount of data to remove
1190 *
1191 * This function removes data from the start of a buffer, returning
1192 * the memory to the headroom. A pointer to the next data in the buffer
1193 * is returned. Once the data has been pulled future pushes will overwrite
1194 * the old data.
1195 */
1196 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1197 {
1198 return skb_pull_inline(skb, len);
1199 }
1200 EXPORT_SYMBOL(skb_pull);
1201
1202 /**
1203 * skb_trim - remove end from a buffer
1204 * @skb: buffer to alter
1205 * @len: new length
1206 *
1207 * Cut the length of a buffer down by removing data from the tail. If
1208 * the buffer is already under the length specified it is not modified.
1209 * The skb must be linear.
1210 */
1211 void skb_trim(struct sk_buff *skb, unsigned int len)
1212 {
1213 if (skb->len > len)
1214 __skb_trim(skb, len);
1215 }
1216 EXPORT_SYMBOL(skb_trim);
1217
1218 /* Trims skb to length len. It can change skb pointers.
1219 */
1220
1221 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1222 {
1223 struct sk_buff **fragp;
1224 struct sk_buff *frag;
1225 int offset = skb_headlen(skb);
1226 int nfrags = skb_shinfo(skb)->nr_frags;
1227 int i;
1228 int err;
1229
1230 if (skb_cloned(skb) &&
1231 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1232 return err;
1233
1234 i = 0;
1235 if (offset >= len)
1236 goto drop_pages;
1237
1238 for (; i < nfrags; i++) {
1239 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1240
1241 if (end < len) {
1242 offset = end;
1243 continue;
1244 }
1245
1246 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1247
1248 drop_pages:
1249 skb_shinfo(skb)->nr_frags = i;
1250
1251 for (; i < nfrags; i++)
1252 skb_frag_unref(skb, i);
1253
1254 if (skb_has_frag_list(skb))
1255 skb_drop_fraglist(skb);
1256 goto done;
1257 }
1258
1259 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1260 fragp = &frag->next) {
1261 int end = offset + frag->len;
1262
1263 if (skb_shared(frag)) {
1264 struct sk_buff *nfrag;
1265
1266 nfrag = skb_clone(frag, GFP_ATOMIC);
1267 if (unlikely(!nfrag))
1268 return -ENOMEM;
1269
1270 nfrag->next = frag->next;
1271 consume_skb(frag);
1272 frag = nfrag;
1273 *fragp = frag;
1274 }
1275
1276 if (end < len) {
1277 offset = end;
1278 continue;
1279 }
1280
1281 if (end > len &&
1282 unlikely((err = pskb_trim(frag, len - offset))))
1283 return err;
1284
1285 if (frag->next)
1286 skb_drop_list(&frag->next);
1287 break;
1288 }
1289
1290 done:
1291 if (len > skb_headlen(skb)) {
1292 skb->data_len -= skb->len - len;
1293 skb->len = len;
1294 } else {
1295 skb->len = len;
1296 skb->data_len = 0;
1297 skb_set_tail_pointer(skb, len);
1298 }
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL(___pskb_trim);
1303
1304 /**
1305 * __pskb_pull_tail - advance tail of skb header
1306 * @skb: buffer to reallocate
1307 * @delta: number of bytes to advance tail
1308 *
1309 * The function makes a sense only on a fragmented &sk_buff,
1310 * it expands header moving its tail forward and copying necessary
1311 * data from fragmented part.
1312 *
1313 * &sk_buff MUST have reference count of 1.
1314 *
1315 * Returns %NULL (and &sk_buff does not change) if pull failed
1316 * or value of new tail of skb in the case of success.
1317 *
1318 * All the pointers pointing into skb header may change and must be
1319 * reloaded after call to this function.
1320 */
1321
1322 /* Moves tail of skb head forward, copying data from fragmented part,
1323 * when it is necessary.
1324 * 1. It may fail due to malloc failure.
1325 * 2. It may change skb pointers.
1326 *
1327 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1328 */
1329 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1330 {
1331 /* If skb has not enough free space at tail, get new one
1332 * plus 128 bytes for future expansions. If we have enough
1333 * room at tail, reallocate without expansion only if skb is cloned.
1334 */
1335 int i, k, eat = (skb->tail + delta) - skb->end;
1336
1337 if (eat > 0 || skb_cloned(skb)) {
1338 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1339 GFP_ATOMIC))
1340 return NULL;
1341 }
1342
1343 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1344 BUG();
1345
1346 /* Optimization: no fragments, no reasons to preestimate
1347 * size of pulled pages. Superb.
1348 */
1349 if (!skb_has_frag_list(skb))
1350 goto pull_pages;
1351
1352 /* Estimate size of pulled pages. */
1353 eat = delta;
1354 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1355 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1356
1357 if (size >= eat)
1358 goto pull_pages;
1359 eat -= size;
1360 }
1361
1362 /* If we need update frag list, we are in troubles.
1363 * Certainly, it possible to add an offset to skb data,
1364 * but taking into account that pulling is expected to
1365 * be very rare operation, it is worth to fight against
1366 * further bloating skb head and crucify ourselves here instead.
1367 * Pure masohism, indeed. 8)8)
1368 */
1369 if (eat) {
1370 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1371 struct sk_buff *clone = NULL;
1372 struct sk_buff *insp = NULL;
1373
1374 do {
1375 BUG_ON(!list);
1376
1377 if (list->len <= eat) {
1378 /* Eaten as whole. */
1379 eat -= list->len;
1380 list = list->next;
1381 insp = list;
1382 } else {
1383 /* Eaten partially. */
1384
1385 if (skb_shared(list)) {
1386 /* Sucks! We need to fork list. :-( */
1387 clone = skb_clone(list, GFP_ATOMIC);
1388 if (!clone)
1389 return NULL;
1390 insp = list->next;
1391 list = clone;
1392 } else {
1393 /* This may be pulled without
1394 * problems. */
1395 insp = list;
1396 }
1397 if (!pskb_pull(list, eat)) {
1398 kfree_skb(clone);
1399 return NULL;
1400 }
1401 break;
1402 }
1403 } while (eat);
1404
1405 /* Free pulled out fragments. */
1406 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1407 skb_shinfo(skb)->frag_list = list->next;
1408 kfree_skb(list);
1409 }
1410 /* And insert new clone at head. */
1411 if (clone) {
1412 clone->next = list;
1413 skb_shinfo(skb)->frag_list = clone;
1414 }
1415 }
1416 /* Success! Now we may commit changes to skb data. */
1417
1418 pull_pages:
1419 eat = delta;
1420 k = 0;
1421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1422 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1423
1424 if (size <= eat) {
1425 skb_frag_unref(skb, i);
1426 eat -= size;
1427 } else {
1428 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1429 if (eat) {
1430 skb_shinfo(skb)->frags[k].page_offset += eat;
1431 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1432 eat = 0;
1433 }
1434 k++;
1435 }
1436 }
1437 skb_shinfo(skb)->nr_frags = k;
1438
1439 skb->tail += delta;
1440 skb->data_len -= delta;
1441
1442 return skb_tail_pointer(skb);
1443 }
1444 EXPORT_SYMBOL(__pskb_pull_tail);
1445
1446 /**
1447 * skb_copy_bits - copy bits from skb to kernel buffer
1448 * @skb: source skb
1449 * @offset: offset in source
1450 * @to: destination buffer
1451 * @len: number of bytes to copy
1452 *
1453 * Copy the specified number of bytes from the source skb to the
1454 * destination buffer.
1455 *
1456 * CAUTION ! :
1457 * If its prototype is ever changed,
1458 * check arch/{*}/net/{*}.S files,
1459 * since it is called from BPF assembly code.
1460 */
1461 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1462 {
1463 int start = skb_headlen(skb);
1464 struct sk_buff *frag_iter;
1465 int i, copy;
1466
1467 if (offset > (int)skb->len - len)
1468 goto fault;
1469
1470 /* Copy header. */
1471 if ((copy = start - offset) > 0) {
1472 if (copy > len)
1473 copy = len;
1474 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1475 if ((len -= copy) == 0)
1476 return 0;
1477 offset += copy;
1478 to += copy;
1479 }
1480
1481 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1482 int end;
1483 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1484
1485 WARN_ON(start > offset + len);
1486
1487 end = start + skb_frag_size(f);
1488 if ((copy = end - offset) > 0) {
1489 u8 *vaddr;
1490
1491 if (copy > len)
1492 copy = len;
1493
1494 vaddr = kmap_atomic(skb_frag_page(f));
1495 memcpy(to,
1496 vaddr + f->page_offset + offset - start,
1497 copy);
1498 kunmap_atomic(vaddr);
1499
1500 if ((len -= copy) == 0)
1501 return 0;
1502 offset += copy;
1503 to += copy;
1504 }
1505 start = end;
1506 }
1507
1508 skb_walk_frags(skb, frag_iter) {
1509 int end;
1510
1511 WARN_ON(start > offset + len);
1512
1513 end = start + frag_iter->len;
1514 if ((copy = end - offset) > 0) {
1515 if (copy > len)
1516 copy = len;
1517 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1518 goto fault;
1519 if ((len -= copy) == 0)
1520 return 0;
1521 offset += copy;
1522 to += copy;
1523 }
1524 start = end;
1525 }
1526
1527 if (!len)
1528 return 0;
1529
1530 fault:
1531 return -EFAULT;
1532 }
1533 EXPORT_SYMBOL(skb_copy_bits);
1534
1535 /*
1536 * Callback from splice_to_pipe(), if we need to release some pages
1537 * at the end of the spd in case we error'ed out in filling the pipe.
1538 */
1539 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1540 {
1541 put_page(spd->pages[i]);
1542 }
1543
1544 static struct page *linear_to_page(struct page *page, unsigned int *len,
1545 unsigned int *offset,
1546 struct sk_buff *skb, struct sock *sk)
1547 {
1548 struct page *p = sk->sk_sndmsg_page;
1549 unsigned int off;
1550
1551 if (!p) {
1552 new_page:
1553 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1554 if (!p)
1555 return NULL;
1556
1557 off = sk->sk_sndmsg_off = 0;
1558 /* hold one ref to this page until it's full */
1559 } else {
1560 unsigned int mlen;
1561
1562 /* If we are the only user of the page, we can reset offset */
1563 if (page_count(p) == 1)
1564 sk->sk_sndmsg_off = 0;
1565 off = sk->sk_sndmsg_off;
1566 mlen = PAGE_SIZE - off;
1567 if (mlen < 64 && mlen < *len) {
1568 put_page(p);
1569 goto new_page;
1570 }
1571
1572 *len = min_t(unsigned int, *len, mlen);
1573 }
1574
1575 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1576 sk->sk_sndmsg_off += *len;
1577 *offset = off;
1578
1579 return p;
1580 }
1581
1582 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1583 struct page *page,
1584 unsigned int offset)
1585 {
1586 return spd->nr_pages &&
1587 spd->pages[spd->nr_pages - 1] == page &&
1588 (spd->partial[spd->nr_pages - 1].offset +
1589 spd->partial[spd->nr_pages - 1].len == offset);
1590 }
1591
1592 /*
1593 * Fill page/offset/length into spd, if it can hold more pages.
1594 */
1595 static bool spd_fill_page(struct splice_pipe_desc *spd,
1596 struct pipe_inode_info *pipe, struct page *page,
1597 unsigned int *len, unsigned int offset,
1598 struct sk_buff *skb, bool linear,
1599 struct sock *sk)
1600 {
1601 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1602 return true;
1603
1604 if (linear) {
1605 page = linear_to_page(page, len, &offset, skb, sk);
1606 if (!page)
1607 return true;
1608 }
1609 if (spd_can_coalesce(spd, page, offset)) {
1610 spd->partial[spd->nr_pages - 1].len += *len;
1611 return false;
1612 }
1613 get_page(page);
1614 spd->pages[spd->nr_pages] = page;
1615 spd->partial[spd->nr_pages].len = *len;
1616 spd->partial[spd->nr_pages].offset = offset;
1617 spd->nr_pages++;
1618
1619 return false;
1620 }
1621
1622 static inline void __segment_seek(struct page **page, unsigned int *poff,
1623 unsigned int *plen, unsigned int off)
1624 {
1625 unsigned long n;
1626
1627 *poff += off;
1628 n = *poff / PAGE_SIZE;
1629 if (n)
1630 *page = nth_page(*page, n);
1631
1632 *poff = *poff % PAGE_SIZE;
1633 *plen -= off;
1634 }
1635
1636 static bool __splice_segment(struct page *page, unsigned int poff,
1637 unsigned int plen, unsigned int *off,
1638 unsigned int *len, struct sk_buff *skb,
1639 struct splice_pipe_desc *spd, bool linear,
1640 struct sock *sk,
1641 struct pipe_inode_info *pipe)
1642 {
1643 if (!*len)
1644 return true;
1645
1646 /* skip this segment if already processed */
1647 if (*off >= plen) {
1648 *off -= plen;
1649 return false;
1650 }
1651
1652 /* ignore any bits we already processed */
1653 if (*off) {
1654 __segment_seek(&page, &poff, &plen, *off);
1655 *off = 0;
1656 }
1657
1658 do {
1659 unsigned int flen = min(*len, plen);
1660
1661 /* the linear region may spread across several pages */
1662 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1663
1664 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1665 return true;
1666
1667 __segment_seek(&page, &poff, &plen, flen);
1668 *len -= flen;
1669
1670 } while (*len && plen);
1671
1672 return false;
1673 }
1674
1675 /*
1676 * Map linear and fragment data from the skb to spd. It reports true if the
1677 * pipe is full or if we already spliced the requested length.
1678 */
1679 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1680 unsigned int *offset, unsigned int *len,
1681 struct splice_pipe_desc *spd, struct sock *sk)
1682 {
1683 int seg;
1684
1685 /* map the linear part :
1686 * If skb->head_frag is set, this 'linear' part is backed by a
1687 * fragment, and if the head is not shared with any clones then
1688 * we can avoid a copy since we own the head portion of this page.
1689 */
1690 if (__splice_segment(virt_to_page(skb->data),
1691 (unsigned long) skb->data & (PAGE_SIZE - 1),
1692 skb_headlen(skb),
1693 offset, len, skb, spd,
1694 skb_head_is_locked(skb),
1695 sk, pipe))
1696 return true;
1697
1698 /*
1699 * then map the fragments
1700 */
1701 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1702 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1703
1704 if (__splice_segment(skb_frag_page(f),
1705 f->page_offset, skb_frag_size(f),
1706 offset, len, skb, spd, false, sk, pipe))
1707 return true;
1708 }
1709
1710 return false;
1711 }
1712
1713 /*
1714 * Map data from the skb to a pipe. Should handle both the linear part,
1715 * the fragments, and the frag list. It does NOT handle frag lists within
1716 * the frag list, if such a thing exists. We'd probably need to recurse to
1717 * handle that cleanly.
1718 */
1719 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1720 struct pipe_inode_info *pipe, unsigned int tlen,
1721 unsigned int flags)
1722 {
1723 struct partial_page partial[MAX_SKB_FRAGS];
1724 struct page *pages[MAX_SKB_FRAGS];
1725 struct splice_pipe_desc spd = {
1726 .pages = pages,
1727 .partial = partial,
1728 .flags = flags,
1729 .ops = &sock_pipe_buf_ops,
1730 .spd_release = sock_spd_release,
1731 };
1732 struct sk_buff *frag_iter;
1733 struct sock *sk = skb->sk;
1734 int ret = 0;
1735
1736 /*
1737 * __skb_splice_bits() only fails if the output has no room left,
1738 * so no point in going over the frag_list for the error case.
1739 */
1740 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1741 goto done;
1742 else if (!tlen)
1743 goto done;
1744
1745 /*
1746 * now see if we have a frag_list to map
1747 */
1748 skb_walk_frags(skb, frag_iter) {
1749 if (!tlen)
1750 break;
1751 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1752 break;
1753 }
1754
1755 done:
1756 if (spd.nr_pages) {
1757 /*
1758 * Drop the socket lock, otherwise we have reverse
1759 * locking dependencies between sk_lock and i_mutex
1760 * here as compared to sendfile(). We enter here
1761 * with the socket lock held, and splice_to_pipe() will
1762 * grab the pipe inode lock. For sendfile() emulation,
1763 * we call into ->sendpage() with the i_mutex lock held
1764 * and networking will grab the socket lock.
1765 */
1766 release_sock(sk);
1767 ret = splice_to_pipe(pipe, &spd);
1768 lock_sock(sk);
1769 }
1770
1771 return ret;
1772 }
1773
1774 /**
1775 * skb_store_bits - store bits from kernel buffer to skb
1776 * @skb: destination buffer
1777 * @offset: offset in destination
1778 * @from: source buffer
1779 * @len: number of bytes to copy
1780 *
1781 * Copy the specified number of bytes from the source buffer to the
1782 * destination skb. This function handles all the messy bits of
1783 * traversing fragment lists and such.
1784 */
1785
1786 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1787 {
1788 int start = skb_headlen(skb);
1789 struct sk_buff *frag_iter;
1790 int i, copy;
1791
1792 if (offset > (int)skb->len - len)
1793 goto fault;
1794
1795 if ((copy = start - offset) > 0) {
1796 if (copy > len)
1797 copy = len;
1798 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1799 if ((len -= copy) == 0)
1800 return 0;
1801 offset += copy;
1802 from += copy;
1803 }
1804
1805 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1806 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1807 int end;
1808
1809 WARN_ON(start > offset + len);
1810
1811 end = start + skb_frag_size(frag);
1812 if ((copy = end - offset) > 0) {
1813 u8 *vaddr;
1814
1815 if (copy > len)
1816 copy = len;
1817
1818 vaddr = kmap_atomic(skb_frag_page(frag));
1819 memcpy(vaddr + frag->page_offset + offset - start,
1820 from, copy);
1821 kunmap_atomic(vaddr);
1822
1823 if ((len -= copy) == 0)
1824 return 0;
1825 offset += copy;
1826 from += copy;
1827 }
1828 start = end;
1829 }
1830
1831 skb_walk_frags(skb, frag_iter) {
1832 int end;
1833
1834 WARN_ON(start > offset + len);
1835
1836 end = start + frag_iter->len;
1837 if ((copy = end - offset) > 0) {
1838 if (copy > len)
1839 copy = len;
1840 if (skb_store_bits(frag_iter, offset - start,
1841 from, copy))
1842 goto fault;
1843 if ((len -= copy) == 0)
1844 return 0;
1845 offset += copy;
1846 from += copy;
1847 }
1848 start = end;
1849 }
1850 if (!len)
1851 return 0;
1852
1853 fault:
1854 return -EFAULT;
1855 }
1856 EXPORT_SYMBOL(skb_store_bits);
1857
1858 /* Checksum skb data. */
1859
1860 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1861 int len, __wsum csum)
1862 {
1863 int start = skb_headlen(skb);
1864 int i, copy = start - offset;
1865 struct sk_buff *frag_iter;
1866 int pos = 0;
1867
1868 /* Checksum header. */
1869 if (copy > 0) {
1870 if (copy > len)
1871 copy = len;
1872 csum = csum_partial(skb->data + offset, copy, csum);
1873 if ((len -= copy) == 0)
1874 return csum;
1875 offset += copy;
1876 pos = copy;
1877 }
1878
1879 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1880 int end;
1881 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1882
1883 WARN_ON(start > offset + len);
1884
1885 end = start + skb_frag_size(frag);
1886 if ((copy = end - offset) > 0) {
1887 __wsum csum2;
1888 u8 *vaddr;
1889
1890 if (copy > len)
1891 copy = len;
1892 vaddr = kmap_atomic(skb_frag_page(frag));
1893 csum2 = csum_partial(vaddr + frag->page_offset +
1894 offset - start, copy, 0);
1895 kunmap_atomic(vaddr);
1896 csum = csum_block_add(csum, csum2, pos);
1897 if (!(len -= copy))
1898 return csum;
1899 offset += copy;
1900 pos += copy;
1901 }
1902 start = end;
1903 }
1904
1905 skb_walk_frags(skb, frag_iter) {
1906 int end;
1907
1908 WARN_ON(start > offset + len);
1909
1910 end = start + frag_iter->len;
1911 if ((copy = end - offset) > 0) {
1912 __wsum csum2;
1913 if (copy > len)
1914 copy = len;
1915 csum2 = skb_checksum(frag_iter, offset - start,
1916 copy, 0);
1917 csum = csum_block_add(csum, csum2, pos);
1918 if ((len -= copy) == 0)
1919 return csum;
1920 offset += copy;
1921 pos += copy;
1922 }
1923 start = end;
1924 }
1925 BUG_ON(len);
1926
1927 return csum;
1928 }
1929 EXPORT_SYMBOL(skb_checksum);
1930
1931 /* Both of above in one bottle. */
1932
1933 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1934 u8 *to, int len, __wsum csum)
1935 {
1936 int start = skb_headlen(skb);
1937 int i, copy = start - offset;
1938 struct sk_buff *frag_iter;
1939 int pos = 0;
1940
1941 /* Copy header. */
1942 if (copy > 0) {
1943 if (copy > len)
1944 copy = len;
1945 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1946 copy, csum);
1947 if ((len -= copy) == 0)
1948 return csum;
1949 offset += copy;
1950 to += copy;
1951 pos = copy;
1952 }
1953
1954 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1955 int end;
1956
1957 WARN_ON(start > offset + len);
1958
1959 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1960 if ((copy = end - offset) > 0) {
1961 __wsum csum2;
1962 u8 *vaddr;
1963 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1964
1965 if (copy > len)
1966 copy = len;
1967 vaddr = kmap_atomic(skb_frag_page(frag));
1968 csum2 = csum_partial_copy_nocheck(vaddr +
1969 frag->page_offset +
1970 offset - start, to,
1971 copy, 0);
1972 kunmap_atomic(vaddr);
1973 csum = csum_block_add(csum, csum2, pos);
1974 if (!(len -= copy))
1975 return csum;
1976 offset += copy;
1977 to += copy;
1978 pos += copy;
1979 }
1980 start = end;
1981 }
1982
1983 skb_walk_frags(skb, frag_iter) {
1984 __wsum csum2;
1985 int end;
1986
1987 WARN_ON(start > offset + len);
1988
1989 end = start + frag_iter->len;
1990 if ((copy = end - offset) > 0) {
1991 if (copy > len)
1992 copy = len;
1993 csum2 = skb_copy_and_csum_bits(frag_iter,
1994 offset - start,
1995 to, copy, 0);
1996 csum = csum_block_add(csum, csum2, pos);
1997 if ((len -= copy) == 0)
1998 return csum;
1999 offset += copy;
2000 to += copy;
2001 pos += copy;
2002 }
2003 start = end;
2004 }
2005 BUG_ON(len);
2006 return csum;
2007 }
2008 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2009
2010 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2011 {
2012 __wsum csum;
2013 long csstart;
2014
2015 if (skb->ip_summed == CHECKSUM_PARTIAL)
2016 csstart = skb_checksum_start_offset(skb);
2017 else
2018 csstart = skb_headlen(skb);
2019
2020 BUG_ON(csstart > skb_headlen(skb));
2021
2022 skb_copy_from_linear_data(skb, to, csstart);
2023
2024 csum = 0;
2025 if (csstart != skb->len)
2026 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2027 skb->len - csstart, 0);
2028
2029 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2030 long csstuff = csstart + skb->csum_offset;
2031
2032 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2033 }
2034 }
2035 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2036
2037 /**
2038 * skb_dequeue - remove from the head of the queue
2039 * @list: list to dequeue from
2040 *
2041 * Remove the head of the list. The list lock is taken so the function
2042 * may be used safely with other locking list functions. The head item is
2043 * returned or %NULL if the list is empty.
2044 */
2045
2046 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2047 {
2048 unsigned long flags;
2049 struct sk_buff *result;
2050
2051 spin_lock_irqsave(&list->lock, flags);
2052 result = __skb_dequeue(list);
2053 spin_unlock_irqrestore(&list->lock, flags);
2054 return result;
2055 }
2056 EXPORT_SYMBOL(skb_dequeue);
2057
2058 /**
2059 * skb_dequeue_tail - remove from the tail of the queue
2060 * @list: list to dequeue from
2061 *
2062 * Remove the tail of the list. The list lock is taken so the function
2063 * may be used safely with other locking list functions. The tail item is
2064 * returned or %NULL if the list is empty.
2065 */
2066 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2067 {
2068 unsigned long flags;
2069 struct sk_buff *result;
2070
2071 spin_lock_irqsave(&list->lock, flags);
2072 result = __skb_dequeue_tail(list);
2073 spin_unlock_irqrestore(&list->lock, flags);
2074 return result;
2075 }
2076 EXPORT_SYMBOL(skb_dequeue_tail);
2077
2078 /**
2079 * skb_queue_purge - empty a list
2080 * @list: list to empty
2081 *
2082 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2083 * the list and one reference dropped. This function takes the list
2084 * lock and is atomic with respect to other list locking functions.
2085 */
2086 void skb_queue_purge(struct sk_buff_head *list)
2087 {
2088 struct sk_buff *skb;
2089 while ((skb = skb_dequeue(list)) != NULL)
2090 kfree_skb(skb);
2091 }
2092 EXPORT_SYMBOL(skb_queue_purge);
2093
2094 /**
2095 * skb_queue_head - queue a buffer at the list head
2096 * @list: list to use
2097 * @newsk: buffer to queue
2098 *
2099 * Queue a buffer at the start of the list. This function takes the
2100 * list lock and can be used safely with other locking &sk_buff functions
2101 * safely.
2102 *
2103 * A buffer cannot be placed on two lists at the same time.
2104 */
2105 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2106 {
2107 unsigned long flags;
2108
2109 spin_lock_irqsave(&list->lock, flags);
2110 __skb_queue_head(list, newsk);
2111 spin_unlock_irqrestore(&list->lock, flags);
2112 }
2113 EXPORT_SYMBOL(skb_queue_head);
2114
2115 /**
2116 * skb_queue_tail - queue a buffer at the list tail
2117 * @list: list to use
2118 * @newsk: buffer to queue
2119 *
2120 * Queue a buffer at the tail of the list. This function takes the
2121 * list lock and can be used safely with other locking &sk_buff functions
2122 * safely.
2123 *
2124 * A buffer cannot be placed on two lists at the same time.
2125 */
2126 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2127 {
2128 unsigned long flags;
2129
2130 spin_lock_irqsave(&list->lock, flags);
2131 __skb_queue_tail(list, newsk);
2132 spin_unlock_irqrestore(&list->lock, flags);
2133 }
2134 EXPORT_SYMBOL(skb_queue_tail);
2135
2136 /**
2137 * skb_unlink - remove a buffer from a list
2138 * @skb: buffer to remove
2139 * @list: list to use
2140 *
2141 * Remove a packet from a list. The list locks are taken and this
2142 * function is atomic with respect to other list locked calls
2143 *
2144 * You must know what list the SKB is on.
2145 */
2146 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2147 {
2148 unsigned long flags;
2149
2150 spin_lock_irqsave(&list->lock, flags);
2151 __skb_unlink(skb, list);
2152 spin_unlock_irqrestore(&list->lock, flags);
2153 }
2154 EXPORT_SYMBOL(skb_unlink);
2155
2156 /**
2157 * skb_append - append a buffer
2158 * @old: buffer to insert after
2159 * @newsk: buffer to insert
2160 * @list: list to use
2161 *
2162 * Place a packet after a given packet in a list. The list locks are taken
2163 * and this function is atomic with respect to other list locked calls.
2164 * A buffer cannot be placed on two lists at the same time.
2165 */
2166 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2167 {
2168 unsigned long flags;
2169
2170 spin_lock_irqsave(&list->lock, flags);
2171 __skb_queue_after(list, old, newsk);
2172 spin_unlock_irqrestore(&list->lock, flags);
2173 }
2174 EXPORT_SYMBOL(skb_append);
2175
2176 /**
2177 * skb_insert - insert a buffer
2178 * @old: buffer to insert before
2179 * @newsk: buffer to insert
2180 * @list: list to use
2181 *
2182 * Place a packet before a given packet in a list. The list locks are
2183 * taken and this function is atomic with respect to other list locked
2184 * calls.
2185 *
2186 * A buffer cannot be placed on two lists at the same time.
2187 */
2188 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2189 {
2190 unsigned long flags;
2191
2192 spin_lock_irqsave(&list->lock, flags);
2193 __skb_insert(newsk, old->prev, old, list);
2194 spin_unlock_irqrestore(&list->lock, flags);
2195 }
2196 EXPORT_SYMBOL(skb_insert);
2197
2198 static inline void skb_split_inside_header(struct sk_buff *skb,
2199 struct sk_buff* skb1,
2200 const u32 len, const int pos)
2201 {
2202 int i;
2203
2204 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2205 pos - len);
2206 /* And move data appendix as is. */
2207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2208 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2209
2210 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2211 skb_shinfo(skb)->nr_frags = 0;
2212 skb1->data_len = skb->data_len;
2213 skb1->len += skb1->data_len;
2214 skb->data_len = 0;
2215 skb->len = len;
2216 skb_set_tail_pointer(skb, len);
2217 }
2218
2219 static inline void skb_split_no_header(struct sk_buff *skb,
2220 struct sk_buff* skb1,
2221 const u32 len, int pos)
2222 {
2223 int i, k = 0;
2224 const int nfrags = skb_shinfo(skb)->nr_frags;
2225
2226 skb_shinfo(skb)->nr_frags = 0;
2227 skb1->len = skb1->data_len = skb->len - len;
2228 skb->len = len;
2229 skb->data_len = len - pos;
2230
2231 for (i = 0; i < nfrags; i++) {
2232 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2233
2234 if (pos + size > len) {
2235 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2236
2237 if (pos < len) {
2238 /* Split frag.
2239 * We have two variants in this case:
2240 * 1. Move all the frag to the second
2241 * part, if it is possible. F.e.
2242 * this approach is mandatory for TUX,
2243 * where splitting is expensive.
2244 * 2. Split is accurately. We make this.
2245 */
2246 skb_frag_ref(skb, i);
2247 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2248 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2249 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2250 skb_shinfo(skb)->nr_frags++;
2251 }
2252 k++;
2253 } else
2254 skb_shinfo(skb)->nr_frags++;
2255 pos += size;
2256 }
2257 skb_shinfo(skb1)->nr_frags = k;
2258 }
2259
2260 /**
2261 * skb_split - Split fragmented skb to two parts at length len.
2262 * @skb: the buffer to split
2263 * @skb1: the buffer to receive the second part
2264 * @len: new length for skb
2265 */
2266 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2267 {
2268 int pos = skb_headlen(skb);
2269
2270 if (len < pos) /* Split line is inside header. */
2271 skb_split_inside_header(skb, skb1, len, pos);
2272 else /* Second chunk has no header, nothing to copy. */
2273 skb_split_no_header(skb, skb1, len, pos);
2274 }
2275 EXPORT_SYMBOL(skb_split);
2276
2277 /* Shifting from/to a cloned skb is a no-go.
2278 *
2279 * Caller cannot keep skb_shinfo related pointers past calling here!
2280 */
2281 static int skb_prepare_for_shift(struct sk_buff *skb)
2282 {
2283 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2284 }
2285
2286 /**
2287 * skb_shift - Shifts paged data partially from skb to another
2288 * @tgt: buffer into which tail data gets added
2289 * @skb: buffer from which the paged data comes from
2290 * @shiftlen: shift up to this many bytes
2291 *
2292 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2293 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2294 * It's up to caller to free skb if everything was shifted.
2295 *
2296 * If @tgt runs out of frags, the whole operation is aborted.
2297 *
2298 * Skb cannot include anything else but paged data while tgt is allowed
2299 * to have non-paged data as well.
2300 *
2301 * TODO: full sized shift could be optimized but that would need
2302 * specialized skb free'er to handle frags without up-to-date nr_frags.
2303 */
2304 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2305 {
2306 int from, to, merge, todo;
2307 struct skb_frag_struct *fragfrom, *fragto;
2308
2309 BUG_ON(shiftlen > skb->len);
2310 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2311
2312 todo = shiftlen;
2313 from = 0;
2314 to = skb_shinfo(tgt)->nr_frags;
2315 fragfrom = &skb_shinfo(skb)->frags[from];
2316
2317 /* Actual merge is delayed until the point when we know we can
2318 * commit all, so that we don't have to undo partial changes
2319 */
2320 if (!to ||
2321 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2322 fragfrom->page_offset)) {
2323 merge = -1;
2324 } else {
2325 merge = to - 1;
2326
2327 todo -= skb_frag_size(fragfrom);
2328 if (todo < 0) {
2329 if (skb_prepare_for_shift(skb) ||
2330 skb_prepare_for_shift(tgt))
2331 return 0;
2332
2333 /* All previous frag pointers might be stale! */
2334 fragfrom = &skb_shinfo(skb)->frags[from];
2335 fragto = &skb_shinfo(tgt)->frags[merge];
2336
2337 skb_frag_size_add(fragto, shiftlen);
2338 skb_frag_size_sub(fragfrom, shiftlen);
2339 fragfrom->page_offset += shiftlen;
2340
2341 goto onlymerged;
2342 }
2343
2344 from++;
2345 }
2346
2347 /* Skip full, not-fitting skb to avoid expensive operations */
2348 if ((shiftlen == skb->len) &&
2349 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2350 return 0;
2351
2352 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2353 return 0;
2354
2355 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2356 if (to == MAX_SKB_FRAGS)
2357 return 0;
2358
2359 fragfrom = &skb_shinfo(skb)->frags[from];
2360 fragto = &skb_shinfo(tgt)->frags[to];
2361
2362 if (todo >= skb_frag_size(fragfrom)) {
2363 *fragto = *fragfrom;
2364 todo -= skb_frag_size(fragfrom);
2365 from++;
2366 to++;
2367
2368 } else {
2369 __skb_frag_ref(fragfrom);
2370 fragto->page = fragfrom->page;
2371 fragto->page_offset = fragfrom->page_offset;
2372 skb_frag_size_set(fragto, todo);
2373
2374 fragfrom->page_offset += todo;
2375 skb_frag_size_sub(fragfrom, todo);
2376 todo = 0;
2377
2378 to++;
2379 break;
2380 }
2381 }
2382
2383 /* Ready to "commit" this state change to tgt */
2384 skb_shinfo(tgt)->nr_frags = to;
2385
2386 if (merge >= 0) {
2387 fragfrom = &skb_shinfo(skb)->frags[0];
2388 fragto = &skb_shinfo(tgt)->frags[merge];
2389
2390 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2391 __skb_frag_unref(fragfrom);
2392 }
2393
2394 /* Reposition in the original skb */
2395 to = 0;
2396 while (from < skb_shinfo(skb)->nr_frags)
2397 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2398 skb_shinfo(skb)->nr_frags = to;
2399
2400 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2401
2402 onlymerged:
2403 /* Most likely the tgt won't ever need its checksum anymore, skb on
2404 * the other hand might need it if it needs to be resent
2405 */
2406 tgt->ip_summed = CHECKSUM_PARTIAL;
2407 skb->ip_summed = CHECKSUM_PARTIAL;
2408
2409 /* Yak, is it really working this way? Some helper please? */
2410 skb->len -= shiftlen;
2411 skb->data_len -= shiftlen;
2412 skb->truesize -= shiftlen;
2413 tgt->len += shiftlen;
2414 tgt->data_len += shiftlen;
2415 tgt->truesize += shiftlen;
2416
2417 return shiftlen;
2418 }
2419
2420 /**
2421 * skb_prepare_seq_read - Prepare a sequential read of skb data
2422 * @skb: the buffer to read
2423 * @from: lower offset of data to be read
2424 * @to: upper offset of data to be read
2425 * @st: state variable
2426 *
2427 * Initializes the specified state variable. Must be called before
2428 * invoking skb_seq_read() for the first time.
2429 */
2430 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2431 unsigned int to, struct skb_seq_state *st)
2432 {
2433 st->lower_offset = from;
2434 st->upper_offset = to;
2435 st->root_skb = st->cur_skb = skb;
2436 st->frag_idx = st->stepped_offset = 0;
2437 st->frag_data = NULL;
2438 }
2439 EXPORT_SYMBOL(skb_prepare_seq_read);
2440
2441 /**
2442 * skb_seq_read - Sequentially read skb data
2443 * @consumed: number of bytes consumed by the caller so far
2444 * @data: destination pointer for data to be returned
2445 * @st: state variable
2446 *
2447 * Reads a block of skb data at &consumed relative to the
2448 * lower offset specified to skb_prepare_seq_read(). Assigns
2449 * the head of the data block to &data and returns the length
2450 * of the block or 0 if the end of the skb data or the upper
2451 * offset has been reached.
2452 *
2453 * The caller is not required to consume all of the data
2454 * returned, i.e. &consumed is typically set to the number
2455 * of bytes already consumed and the next call to
2456 * skb_seq_read() will return the remaining part of the block.
2457 *
2458 * Note 1: The size of each block of data returned can be arbitrary,
2459 * this limitation is the cost for zerocopy seqeuental
2460 * reads of potentially non linear data.
2461 *
2462 * Note 2: Fragment lists within fragments are not implemented
2463 * at the moment, state->root_skb could be replaced with
2464 * a stack for this purpose.
2465 */
2466 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2467 struct skb_seq_state *st)
2468 {
2469 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2470 skb_frag_t *frag;
2471
2472 if (unlikely(abs_offset >= st->upper_offset))
2473 return 0;
2474
2475 next_skb:
2476 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2477
2478 if (abs_offset < block_limit && !st->frag_data) {
2479 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2480 return block_limit - abs_offset;
2481 }
2482
2483 if (st->frag_idx == 0 && !st->frag_data)
2484 st->stepped_offset += skb_headlen(st->cur_skb);
2485
2486 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2487 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2488 block_limit = skb_frag_size(frag) + st->stepped_offset;
2489
2490 if (abs_offset < block_limit) {
2491 if (!st->frag_data)
2492 st->frag_data = kmap_atomic(skb_frag_page(frag));
2493
2494 *data = (u8 *) st->frag_data + frag->page_offset +
2495 (abs_offset - st->stepped_offset);
2496
2497 return block_limit - abs_offset;
2498 }
2499
2500 if (st->frag_data) {
2501 kunmap_atomic(st->frag_data);
2502 st->frag_data = NULL;
2503 }
2504
2505 st->frag_idx++;
2506 st->stepped_offset += skb_frag_size(frag);
2507 }
2508
2509 if (st->frag_data) {
2510 kunmap_atomic(st->frag_data);
2511 st->frag_data = NULL;
2512 }
2513
2514 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2515 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2516 st->frag_idx = 0;
2517 goto next_skb;
2518 } else if (st->cur_skb->next) {
2519 st->cur_skb = st->cur_skb->next;
2520 st->frag_idx = 0;
2521 goto next_skb;
2522 }
2523
2524 return 0;
2525 }
2526 EXPORT_SYMBOL(skb_seq_read);
2527
2528 /**
2529 * skb_abort_seq_read - Abort a sequential read of skb data
2530 * @st: state variable
2531 *
2532 * Must be called if skb_seq_read() was not called until it
2533 * returned 0.
2534 */
2535 void skb_abort_seq_read(struct skb_seq_state *st)
2536 {
2537 if (st->frag_data)
2538 kunmap_atomic(st->frag_data);
2539 }
2540 EXPORT_SYMBOL(skb_abort_seq_read);
2541
2542 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2543
2544 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2545 struct ts_config *conf,
2546 struct ts_state *state)
2547 {
2548 return skb_seq_read(offset, text, TS_SKB_CB(state));
2549 }
2550
2551 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2552 {
2553 skb_abort_seq_read(TS_SKB_CB(state));
2554 }
2555
2556 /**
2557 * skb_find_text - Find a text pattern in skb data
2558 * @skb: the buffer to look in
2559 * @from: search offset
2560 * @to: search limit
2561 * @config: textsearch configuration
2562 * @state: uninitialized textsearch state variable
2563 *
2564 * Finds a pattern in the skb data according to the specified
2565 * textsearch configuration. Use textsearch_next() to retrieve
2566 * subsequent occurrences of the pattern. Returns the offset
2567 * to the first occurrence or UINT_MAX if no match was found.
2568 */
2569 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2570 unsigned int to, struct ts_config *config,
2571 struct ts_state *state)
2572 {
2573 unsigned int ret;
2574
2575 config->get_next_block = skb_ts_get_next_block;
2576 config->finish = skb_ts_finish;
2577
2578 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2579
2580 ret = textsearch_find(config, state);
2581 return (ret <= to - from ? ret : UINT_MAX);
2582 }
2583 EXPORT_SYMBOL(skb_find_text);
2584
2585 /**
2586 * skb_append_datato_frags: - append the user data to a skb
2587 * @sk: sock structure
2588 * @skb: skb structure to be appened with user data.
2589 * @getfrag: call back function to be used for getting the user data
2590 * @from: pointer to user message iov
2591 * @length: length of the iov message
2592 *
2593 * Description: This procedure append the user data in the fragment part
2594 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2595 */
2596 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2597 int (*getfrag)(void *from, char *to, int offset,
2598 int len, int odd, struct sk_buff *skb),
2599 void *from, int length)
2600 {
2601 int frg_cnt = 0;
2602 skb_frag_t *frag = NULL;
2603 struct page *page = NULL;
2604 int copy, left;
2605 int offset = 0;
2606 int ret;
2607
2608 do {
2609 /* Return error if we don't have space for new frag */
2610 frg_cnt = skb_shinfo(skb)->nr_frags;
2611 if (frg_cnt >= MAX_SKB_FRAGS)
2612 return -EFAULT;
2613
2614 /* allocate a new page for next frag */
2615 page = alloc_pages(sk->sk_allocation, 0);
2616
2617 /* If alloc_page fails just return failure and caller will
2618 * free previous allocated pages by doing kfree_skb()
2619 */
2620 if (page == NULL)
2621 return -ENOMEM;
2622
2623 /* initialize the next frag */
2624 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2625 skb->truesize += PAGE_SIZE;
2626 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2627
2628 /* get the new initialized frag */
2629 frg_cnt = skb_shinfo(skb)->nr_frags;
2630 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2631
2632 /* copy the user data to page */
2633 left = PAGE_SIZE - frag->page_offset;
2634 copy = (length > left)? left : length;
2635
2636 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2637 offset, copy, 0, skb);
2638 if (ret < 0)
2639 return -EFAULT;
2640
2641 /* copy was successful so update the size parameters */
2642 skb_frag_size_add(frag, copy);
2643 skb->len += copy;
2644 skb->data_len += copy;
2645 offset += copy;
2646 length -= copy;
2647
2648 } while (length > 0);
2649
2650 return 0;
2651 }
2652 EXPORT_SYMBOL(skb_append_datato_frags);
2653
2654 /**
2655 * skb_pull_rcsum - pull skb and update receive checksum
2656 * @skb: buffer to update
2657 * @len: length of data pulled
2658 *
2659 * This function performs an skb_pull on the packet and updates
2660 * the CHECKSUM_COMPLETE checksum. It should be used on
2661 * receive path processing instead of skb_pull unless you know
2662 * that the checksum difference is zero (e.g., a valid IP header)
2663 * or you are setting ip_summed to CHECKSUM_NONE.
2664 */
2665 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2666 {
2667 BUG_ON(len > skb->len);
2668 skb->len -= len;
2669 BUG_ON(skb->len < skb->data_len);
2670 skb_postpull_rcsum(skb, skb->data, len);
2671 return skb->data += len;
2672 }
2673 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2674
2675 /**
2676 * skb_segment - Perform protocol segmentation on skb.
2677 * @skb: buffer to segment
2678 * @features: features for the output path (see dev->features)
2679 *
2680 * This function performs segmentation on the given skb. It returns
2681 * a pointer to the first in a list of new skbs for the segments.
2682 * In case of error it returns ERR_PTR(err).
2683 */
2684 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2685 {
2686 struct sk_buff *segs = NULL;
2687 struct sk_buff *tail = NULL;
2688 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2689 unsigned int mss = skb_shinfo(skb)->gso_size;
2690 unsigned int doffset = skb->data - skb_mac_header(skb);
2691 unsigned int offset = doffset;
2692 unsigned int headroom;
2693 unsigned int len;
2694 int sg = !!(features & NETIF_F_SG);
2695 int nfrags = skb_shinfo(skb)->nr_frags;
2696 int err = -ENOMEM;
2697 int i = 0;
2698 int pos;
2699
2700 __skb_push(skb, doffset);
2701 headroom = skb_headroom(skb);
2702 pos = skb_headlen(skb);
2703
2704 do {
2705 struct sk_buff *nskb;
2706 skb_frag_t *frag;
2707 int hsize;
2708 int size;
2709
2710 len = skb->len - offset;
2711 if (len > mss)
2712 len = mss;
2713
2714 hsize = skb_headlen(skb) - offset;
2715 if (hsize < 0)
2716 hsize = 0;
2717 if (hsize > len || !sg)
2718 hsize = len;
2719
2720 if (!hsize && i >= nfrags) {
2721 BUG_ON(fskb->len != len);
2722
2723 pos += len;
2724 nskb = skb_clone(fskb, GFP_ATOMIC);
2725 fskb = fskb->next;
2726
2727 if (unlikely(!nskb))
2728 goto err;
2729
2730 hsize = skb_end_offset(nskb);
2731 if (skb_cow_head(nskb, doffset + headroom)) {
2732 kfree_skb(nskb);
2733 goto err;
2734 }
2735
2736 nskb->truesize += skb_end_offset(nskb) - hsize;
2737 skb_release_head_state(nskb);
2738 __skb_push(nskb, doffset);
2739 } else {
2740 nskb = alloc_skb(hsize + doffset + headroom,
2741 GFP_ATOMIC);
2742
2743 if (unlikely(!nskb))
2744 goto err;
2745
2746 skb_reserve(nskb, headroom);
2747 __skb_put(nskb, doffset);
2748 }
2749
2750 if (segs)
2751 tail->next = nskb;
2752 else
2753 segs = nskb;
2754 tail = nskb;
2755
2756 __copy_skb_header(nskb, skb);
2757 nskb->mac_len = skb->mac_len;
2758
2759 /* nskb and skb might have different headroom */
2760 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2761 nskb->csum_start += skb_headroom(nskb) - headroom;
2762
2763 skb_reset_mac_header(nskb);
2764 skb_set_network_header(nskb, skb->mac_len);
2765 nskb->transport_header = (nskb->network_header +
2766 skb_network_header_len(skb));
2767 skb_copy_from_linear_data(skb, nskb->data, doffset);
2768
2769 if (fskb != skb_shinfo(skb)->frag_list)
2770 continue;
2771
2772 if (!sg) {
2773 nskb->ip_summed = CHECKSUM_NONE;
2774 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2775 skb_put(nskb, len),
2776 len, 0);
2777 continue;
2778 }
2779
2780 frag = skb_shinfo(nskb)->frags;
2781
2782 skb_copy_from_linear_data_offset(skb, offset,
2783 skb_put(nskb, hsize), hsize);
2784
2785 while (pos < offset + len && i < nfrags) {
2786 *frag = skb_shinfo(skb)->frags[i];
2787 __skb_frag_ref(frag);
2788 size = skb_frag_size(frag);
2789
2790 if (pos < offset) {
2791 frag->page_offset += offset - pos;
2792 skb_frag_size_sub(frag, offset - pos);
2793 }
2794
2795 skb_shinfo(nskb)->nr_frags++;
2796
2797 if (pos + size <= offset + len) {
2798 i++;
2799 pos += size;
2800 } else {
2801 skb_frag_size_sub(frag, pos + size - (offset + len));
2802 goto skip_fraglist;
2803 }
2804
2805 frag++;
2806 }
2807
2808 if (pos < offset + len) {
2809 struct sk_buff *fskb2 = fskb;
2810
2811 BUG_ON(pos + fskb->len != offset + len);
2812
2813 pos += fskb->len;
2814 fskb = fskb->next;
2815
2816 if (fskb2->next) {
2817 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2818 if (!fskb2)
2819 goto err;
2820 } else
2821 skb_get(fskb2);
2822
2823 SKB_FRAG_ASSERT(nskb);
2824 skb_shinfo(nskb)->frag_list = fskb2;
2825 }
2826
2827 skip_fraglist:
2828 nskb->data_len = len - hsize;
2829 nskb->len += nskb->data_len;
2830 nskb->truesize += nskb->data_len;
2831 } while ((offset += len) < skb->len);
2832
2833 return segs;
2834
2835 err:
2836 while ((skb = segs)) {
2837 segs = skb->next;
2838 kfree_skb(skb);
2839 }
2840 return ERR_PTR(err);
2841 }
2842 EXPORT_SYMBOL_GPL(skb_segment);
2843
2844 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2845 {
2846 struct sk_buff *p = *head;
2847 struct sk_buff *nskb;
2848 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2849 struct skb_shared_info *pinfo = skb_shinfo(p);
2850 unsigned int headroom;
2851 unsigned int len = skb_gro_len(skb);
2852 unsigned int offset = skb_gro_offset(skb);
2853 unsigned int headlen = skb_headlen(skb);
2854 unsigned int delta_truesize;
2855
2856 if (p->len + len >= 65536)
2857 return -E2BIG;
2858
2859 if (pinfo->frag_list)
2860 goto merge;
2861 else if (headlen <= offset) {
2862 skb_frag_t *frag;
2863 skb_frag_t *frag2;
2864 int i = skbinfo->nr_frags;
2865 int nr_frags = pinfo->nr_frags + i;
2866
2867 offset -= headlen;
2868
2869 if (nr_frags > MAX_SKB_FRAGS)
2870 return -E2BIG;
2871
2872 pinfo->nr_frags = nr_frags;
2873 skbinfo->nr_frags = 0;
2874
2875 frag = pinfo->frags + nr_frags;
2876 frag2 = skbinfo->frags + i;
2877 do {
2878 *--frag = *--frag2;
2879 } while (--i);
2880
2881 frag->page_offset += offset;
2882 skb_frag_size_sub(frag, offset);
2883
2884 /* all fragments truesize : remove (head size + sk_buff) */
2885 delta_truesize = skb->truesize -
2886 SKB_TRUESIZE(skb_end_offset(skb));
2887
2888 skb->truesize -= skb->data_len;
2889 skb->len -= skb->data_len;
2890 skb->data_len = 0;
2891
2892 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2893 goto done;
2894 } else if (skb->head_frag) {
2895 int nr_frags = pinfo->nr_frags;
2896 skb_frag_t *frag = pinfo->frags + nr_frags;
2897 struct page *page = virt_to_head_page(skb->head);
2898 unsigned int first_size = headlen - offset;
2899 unsigned int first_offset;
2900
2901 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2902 return -E2BIG;
2903
2904 first_offset = skb->data -
2905 (unsigned char *)page_address(page) +
2906 offset;
2907
2908 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2909
2910 frag->page.p = page;
2911 frag->page_offset = first_offset;
2912 skb_frag_size_set(frag, first_size);
2913
2914 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2915 /* We dont need to clear skbinfo->nr_frags here */
2916
2917 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2918 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2919 goto done;
2920 } else if (skb_gro_len(p) != pinfo->gso_size)
2921 return -E2BIG;
2922
2923 headroom = skb_headroom(p);
2924 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2925 if (unlikely(!nskb))
2926 return -ENOMEM;
2927
2928 __copy_skb_header(nskb, p);
2929 nskb->mac_len = p->mac_len;
2930
2931 skb_reserve(nskb, headroom);
2932 __skb_put(nskb, skb_gro_offset(p));
2933
2934 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2935 skb_set_network_header(nskb, skb_network_offset(p));
2936 skb_set_transport_header(nskb, skb_transport_offset(p));
2937
2938 __skb_pull(p, skb_gro_offset(p));
2939 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2940 p->data - skb_mac_header(p));
2941
2942 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2943 skb_shinfo(nskb)->frag_list = p;
2944 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2945 pinfo->gso_size = 0;
2946 skb_header_release(p);
2947 nskb->prev = p;
2948
2949 nskb->data_len += p->len;
2950 nskb->truesize += p->truesize;
2951 nskb->len += p->len;
2952
2953 *head = nskb;
2954 nskb->next = p->next;
2955 p->next = NULL;
2956
2957 p = nskb;
2958
2959 merge:
2960 delta_truesize = skb->truesize;
2961 if (offset > headlen) {
2962 unsigned int eat = offset - headlen;
2963
2964 skbinfo->frags[0].page_offset += eat;
2965 skb_frag_size_sub(&skbinfo->frags[0], eat);
2966 skb->data_len -= eat;
2967 skb->len -= eat;
2968 offset = headlen;
2969 }
2970
2971 __skb_pull(skb, offset);
2972
2973 p->prev->next = skb;
2974 p->prev = skb;
2975 skb_header_release(skb);
2976
2977 done:
2978 NAPI_GRO_CB(p)->count++;
2979 p->data_len += len;
2980 p->truesize += delta_truesize;
2981 p->len += len;
2982
2983 NAPI_GRO_CB(skb)->same_flow = 1;
2984 return 0;
2985 }
2986 EXPORT_SYMBOL_GPL(skb_gro_receive);
2987
2988 void __init skb_init(void)
2989 {
2990 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2991 sizeof(struct sk_buff),
2992 0,
2993 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2994 NULL);
2995 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2996 (2*sizeof(struct sk_buff)) +
2997 sizeof(atomic_t),
2998 0,
2999 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3000 NULL);
3001 }
3002
3003 /**
3004 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3005 * @skb: Socket buffer containing the buffers to be mapped
3006 * @sg: The scatter-gather list to map into
3007 * @offset: The offset into the buffer's contents to start mapping
3008 * @len: Length of buffer space to be mapped
3009 *
3010 * Fill the specified scatter-gather list with mappings/pointers into a
3011 * region of the buffer space attached to a socket buffer.
3012 */
3013 static int
3014 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3015 {
3016 int start = skb_headlen(skb);
3017 int i, copy = start - offset;
3018 struct sk_buff *frag_iter;
3019 int elt = 0;
3020
3021 if (copy > 0) {
3022 if (copy > len)
3023 copy = len;
3024 sg_set_buf(sg, skb->data + offset, copy);
3025 elt++;
3026 if ((len -= copy) == 0)
3027 return elt;
3028 offset += copy;
3029 }
3030
3031 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3032 int end;
3033
3034 WARN_ON(start > offset + len);
3035
3036 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3037 if ((copy = end - offset) > 0) {
3038 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3039
3040 if (copy > len)
3041 copy = len;
3042 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3043 frag->page_offset+offset-start);
3044 elt++;
3045 if (!(len -= copy))
3046 return elt;
3047 offset += copy;
3048 }
3049 start = end;
3050 }
3051
3052 skb_walk_frags(skb, frag_iter) {
3053 int end;
3054
3055 WARN_ON(start > offset + len);
3056
3057 end = start + frag_iter->len;
3058 if ((copy = end - offset) > 0) {
3059 if (copy > len)
3060 copy = len;
3061 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3062 copy);
3063 if ((len -= copy) == 0)
3064 return elt;
3065 offset += copy;
3066 }
3067 start = end;
3068 }
3069 BUG_ON(len);
3070 return elt;
3071 }
3072
3073 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3074 {
3075 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3076
3077 sg_mark_end(&sg[nsg - 1]);
3078
3079 return nsg;
3080 }
3081 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3082
3083 /**
3084 * skb_cow_data - Check that a socket buffer's data buffers are writable
3085 * @skb: The socket buffer to check.
3086 * @tailbits: Amount of trailing space to be added
3087 * @trailer: Returned pointer to the skb where the @tailbits space begins
3088 *
3089 * Make sure that the data buffers attached to a socket buffer are
3090 * writable. If they are not, private copies are made of the data buffers
3091 * and the socket buffer is set to use these instead.
3092 *
3093 * If @tailbits is given, make sure that there is space to write @tailbits
3094 * bytes of data beyond current end of socket buffer. @trailer will be
3095 * set to point to the skb in which this space begins.
3096 *
3097 * The number of scatterlist elements required to completely map the
3098 * COW'd and extended socket buffer will be returned.
3099 */
3100 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3101 {
3102 int copyflag;
3103 int elt;
3104 struct sk_buff *skb1, **skb_p;
3105
3106 /* If skb is cloned or its head is paged, reallocate
3107 * head pulling out all the pages (pages are considered not writable
3108 * at the moment even if they are anonymous).
3109 */
3110 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3111 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3112 return -ENOMEM;
3113
3114 /* Easy case. Most of packets will go this way. */
3115 if (!skb_has_frag_list(skb)) {
3116 /* A little of trouble, not enough of space for trailer.
3117 * This should not happen, when stack is tuned to generate
3118 * good frames. OK, on miss we reallocate and reserve even more
3119 * space, 128 bytes is fair. */
3120
3121 if (skb_tailroom(skb) < tailbits &&
3122 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3123 return -ENOMEM;
3124
3125 /* Voila! */
3126 *trailer = skb;
3127 return 1;
3128 }
3129
3130 /* Misery. We are in troubles, going to mincer fragments... */
3131
3132 elt = 1;
3133 skb_p = &skb_shinfo(skb)->frag_list;
3134 copyflag = 0;
3135
3136 while ((skb1 = *skb_p) != NULL) {
3137 int ntail = 0;
3138
3139 /* The fragment is partially pulled by someone,
3140 * this can happen on input. Copy it and everything
3141 * after it. */
3142
3143 if (skb_shared(skb1))
3144 copyflag = 1;
3145
3146 /* If the skb is the last, worry about trailer. */
3147
3148 if (skb1->next == NULL && tailbits) {
3149 if (skb_shinfo(skb1)->nr_frags ||
3150 skb_has_frag_list(skb1) ||
3151 skb_tailroom(skb1) < tailbits)
3152 ntail = tailbits + 128;
3153 }
3154
3155 if (copyflag ||
3156 skb_cloned(skb1) ||
3157 ntail ||
3158 skb_shinfo(skb1)->nr_frags ||
3159 skb_has_frag_list(skb1)) {
3160 struct sk_buff *skb2;
3161
3162 /* Fuck, we are miserable poor guys... */
3163 if (ntail == 0)
3164 skb2 = skb_copy(skb1, GFP_ATOMIC);
3165 else
3166 skb2 = skb_copy_expand(skb1,
3167 skb_headroom(skb1),
3168 ntail,
3169 GFP_ATOMIC);
3170 if (unlikely(skb2 == NULL))
3171 return -ENOMEM;
3172
3173 if (skb1->sk)
3174 skb_set_owner_w(skb2, skb1->sk);
3175
3176 /* Looking around. Are we still alive?
3177 * OK, link new skb, drop old one */
3178
3179 skb2->next = skb1->next;
3180 *skb_p = skb2;
3181 kfree_skb(skb1);
3182 skb1 = skb2;
3183 }
3184 elt++;
3185 *trailer = skb1;
3186 skb_p = &skb1->next;
3187 }
3188
3189 return elt;
3190 }
3191 EXPORT_SYMBOL_GPL(skb_cow_data);
3192
3193 static void sock_rmem_free(struct sk_buff *skb)
3194 {
3195 struct sock *sk = skb->sk;
3196
3197 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3198 }
3199
3200 /*
3201 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3202 */
3203 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3204 {
3205 int len = skb->len;
3206
3207 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3208 (unsigned int)sk->sk_rcvbuf)
3209 return -ENOMEM;
3210
3211 skb_orphan(skb);
3212 skb->sk = sk;
3213 skb->destructor = sock_rmem_free;
3214 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3215
3216 /* before exiting rcu section, make sure dst is refcounted */
3217 skb_dst_force(skb);
3218
3219 skb_queue_tail(&sk->sk_error_queue, skb);
3220 if (!sock_flag(sk, SOCK_DEAD))
3221 sk->sk_data_ready(sk, len);
3222 return 0;
3223 }
3224 EXPORT_SYMBOL(sock_queue_err_skb);
3225
3226 void skb_tstamp_tx(struct sk_buff *orig_skb,
3227 struct skb_shared_hwtstamps *hwtstamps)
3228 {
3229 struct sock *sk = orig_skb->sk;
3230 struct sock_exterr_skb *serr;
3231 struct sk_buff *skb;
3232 int err;
3233
3234 if (!sk)
3235 return;
3236
3237 skb = skb_clone(orig_skb, GFP_ATOMIC);
3238 if (!skb)
3239 return;
3240
3241 if (hwtstamps) {
3242 *skb_hwtstamps(skb) =
3243 *hwtstamps;
3244 } else {
3245 /*
3246 * no hardware time stamps available,
3247 * so keep the shared tx_flags and only
3248 * store software time stamp
3249 */
3250 skb->tstamp = ktime_get_real();
3251 }
3252
3253 serr = SKB_EXT_ERR(skb);
3254 memset(serr, 0, sizeof(*serr));
3255 serr->ee.ee_errno = ENOMSG;
3256 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3257
3258 err = sock_queue_err_skb(sk, skb);
3259
3260 if (err)
3261 kfree_skb(skb);
3262 }
3263 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3264
3265 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3266 {
3267 struct sock *sk = skb->sk;
3268 struct sock_exterr_skb *serr;
3269 int err;
3270
3271 skb->wifi_acked_valid = 1;
3272 skb->wifi_acked = acked;
3273
3274 serr = SKB_EXT_ERR(skb);
3275 memset(serr, 0, sizeof(*serr));
3276 serr->ee.ee_errno = ENOMSG;
3277 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3278
3279 err = sock_queue_err_skb(sk, skb);
3280 if (err)
3281 kfree_skb(skb);
3282 }
3283 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3284
3285
3286 /**
3287 * skb_partial_csum_set - set up and verify partial csum values for packet
3288 * @skb: the skb to set
3289 * @start: the number of bytes after skb->data to start checksumming.
3290 * @off: the offset from start to place the checksum.
3291 *
3292 * For untrusted partially-checksummed packets, we need to make sure the values
3293 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3294 *
3295 * This function checks and sets those values and skb->ip_summed: if this
3296 * returns false you should drop the packet.
3297 */
3298 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3299 {
3300 if (unlikely(start > skb_headlen(skb)) ||
3301 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3302 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3303 start, off, skb_headlen(skb));
3304 return false;
3305 }
3306 skb->ip_summed = CHECKSUM_PARTIAL;
3307 skb->csum_start = skb_headroom(skb) + start;
3308 skb->csum_offset = off;
3309 return true;
3310 }
3311 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3312
3313 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3314 {
3315 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3316 skb->dev->name);
3317 }
3318 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.520273 seconds and 5 git commands to generate.