netfilter: nf_tables: fix nf_trace always-on with XT_TRACE=n
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
79
80 /**
81 * skb_panic - private function for out-of-line support
82 * @skb: buffer
83 * @sz: size
84 * @addr: address
85 * @msg: skb_over_panic or skb_under_panic
86 *
87 * Out-of-line support for skb_put() and skb_push().
88 * Called via the wrapper skb_over_panic() or skb_under_panic().
89 * Keep out of line to prevent kernel bloat.
90 * __builtin_return_address is not used because it is not always reliable.
91 */
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
93 const char msg[])
94 {
95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 msg, addr, skb->len, sz, skb->head, skb->data,
97 (unsigned long)skb->tail, (unsigned long)skb->end,
98 skb->dev ? skb->dev->name : "<NULL>");
99 BUG();
100 }
101
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
103 {
104 skb_panic(skb, sz, addr, __func__);
105 }
106
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
112 /*
113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114 * the caller if emergency pfmemalloc reserves are being used. If it is and
115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116 * may be used. Otherwise, the packet data may be discarded until enough
117 * memory is free
118 */
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 unsigned long ip, bool *pfmemalloc)
124 {
125 void *obj;
126 bool ret_pfmemalloc = false;
127
128 /*
129 * Try a regular allocation, when that fails and we're not entitled
130 * to the reserves, fail.
131 */
132 obj = kmalloc_node_track_caller(size,
133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
134 node);
135 if (obj || !(gfp_pfmemalloc_allowed(flags)))
136 goto out;
137
138 /* Try again but now we are using pfmemalloc reserves */
139 ret_pfmemalloc = true;
140 obj = kmalloc_node_track_caller(size, flags, node);
141
142 out:
143 if (pfmemalloc)
144 *pfmemalloc = ret_pfmemalloc;
145
146 return obj;
147 }
148
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
152 *
153 */
154
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
156 {
157 struct sk_buff *skb;
158
159 /* Get the HEAD */
160 skb = kmem_cache_alloc_node(skbuff_head_cache,
161 gfp_mask & ~__GFP_DMA, node);
162 if (!skb)
163 goto out;
164
165 /*
166 * Only clear those fields we need to clear, not those that we will
167 * actually initialise below. Hence, don't put any more fields after
168 * the tail pointer in struct sk_buff!
169 */
170 memset(skb, 0, offsetof(struct sk_buff, tail));
171 skb->head = NULL;
172 skb->truesize = sizeof(struct sk_buff);
173 atomic_set(&skb->users, 1);
174
175 skb->mac_header = (typeof(skb->mac_header))~0U;
176 out:
177 return skb;
178 }
179
180 /**
181 * __alloc_skb - allocate a network buffer
182 * @size: size to allocate
183 * @gfp_mask: allocation mask
184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185 * instead of head cache and allocate a cloned (child) skb.
186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187 * allocations in case the data is required for writeback
188 * @node: numa node to allocate memory on
189 *
190 * Allocate a new &sk_buff. The returned buffer has no headroom and a
191 * tail room of at least size bytes. The object has a reference count
192 * of one. The return is the buffer. On a failure the return is %NULL.
193 *
194 * Buffers may only be allocated from interrupts using a @gfp_mask of
195 * %GFP_ATOMIC.
196 */
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
198 int flags, int node)
199 {
200 struct kmem_cache *cache;
201 struct skb_shared_info *shinfo;
202 struct sk_buff *skb;
203 u8 *data;
204 bool pfmemalloc;
205
206 cache = (flags & SKB_ALLOC_FCLONE)
207 ? skbuff_fclone_cache : skbuff_head_cache;
208
209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 gfp_mask |= __GFP_MEMALLOC;
211
212 /* Get the HEAD */
213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
214 if (!skb)
215 goto out;
216 prefetchw(skb);
217
218 /* We do our best to align skb_shared_info on a separate cache
219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 * Both skb->head and skb_shared_info are cache line aligned.
222 */
223 size = SKB_DATA_ALIGN(size);
224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
226 if (!data)
227 goto nodata;
228 /* kmalloc(size) might give us more room than requested.
229 * Put skb_shared_info exactly at the end of allocated zone,
230 * to allow max possible filling before reallocation.
231 */
232 size = SKB_WITH_OVERHEAD(ksize(data));
233 prefetchw(data + size);
234
235 /*
236 * Only clear those fields we need to clear, not those that we will
237 * actually initialise below. Hence, don't put any more fields after
238 * the tail pointer in struct sk_buff!
239 */
240 memset(skb, 0, offsetof(struct sk_buff, tail));
241 /* Account for allocated memory : skb + skb->head */
242 skb->truesize = SKB_TRUESIZE(size);
243 skb->pfmemalloc = pfmemalloc;
244 atomic_set(&skb->users, 1);
245 skb->head = data;
246 skb->data = data;
247 skb_reset_tail_pointer(skb);
248 skb->end = skb->tail + size;
249 skb->mac_header = (typeof(skb->mac_header))~0U;
250 skb->transport_header = (typeof(skb->transport_header))~0U;
251
252 /* make sure we initialize shinfo sequentially */
253 shinfo = skb_shinfo(skb);
254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 atomic_set(&shinfo->dataref, 1);
256 kmemcheck_annotate_variable(shinfo->destructor_arg);
257
258 if (flags & SKB_ALLOC_FCLONE) {
259 struct sk_buff *child = skb + 1;
260 atomic_t *fclone_ref = (atomic_t *) (child + 1);
261
262 kmemcheck_annotate_bitfield(child, flags1);
263 kmemcheck_annotate_bitfield(child, flags2);
264 skb->fclone = SKB_FCLONE_ORIG;
265 atomic_set(fclone_ref, 1);
266
267 child->fclone = SKB_FCLONE_UNAVAILABLE;
268 child->pfmemalloc = pfmemalloc;
269 }
270 out:
271 return skb;
272 nodata:
273 kmem_cache_free(cache, skb);
274 skb = NULL;
275 goto out;
276 }
277 EXPORT_SYMBOL(__alloc_skb);
278
279 /**
280 * build_skb - build a network buffer
281 * @data: data buffer provided by caller
282 * @frag_size: size of fragment, or 0 if head was kmalloced
283 *
284 * Allocate a new &sk_buff. Caller provides space holding head and
285 * skb_shared_info. @data must have been allocated by kmalloc() only if
286 * @frag_size is 0, otherwise data should come from the page allocator.
287 * The return is the new skb buffer.
288 * On a failure the return is %NULL, and @data is not freed.
289 * Notes :
290 * Before IO, driver allocates only data buffer where NIC put incoming frame
291 * Driver should add room at head (NET_SKB_PAD) and
292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
294 * before giving packet to stack.
295 * RX rings only contains data buffers, not full skbs.
296 */
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
298 {
299 struct skb_shared_info *shinfo;
300 struct sk_buff *skb;
301 unsigned int size = frag_size ? : ksize(data);
302
303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
304 if (!skb)
305 return NULL;
306
307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 skb->truesize = SKB_TRUESIZE(size);
311 skb->head_frag = frag_size != 0;
312 atomic_set(&skb->users, 1);
313 skb->head = data;
314 skb->data = data;
315 skb_reset_tail_pointer(skb);
316 skb->end = skb->tail + size;
317 skb->mac_header = (typeof(skb->mac_header))~0U;
318 skb->transport_header = (typeof(skb->transport_header))~0U;
319
320 /* make sure we initialize shinfo sequentially */
321 shinfo = skb_shinfo(skb);
322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 atomic_set(&shinfo->dataref, 1);
324 kmemcheck_annotate_variable(shinfo->destructor_arg);
325
326 return skb;
327 }
328 EXPORT_SYMBOL(build_skb);
329
330 struct netdev_alloc_cache {
331 struct page_frag frag;
332 /* we maintain a pagecount bias, so that we dont dirty cache line
333 * containing page->_count every time we allocate a fragment.
334 */
335 unsigned int pagecnt_bias;
336 };
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
338
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
340 {
341 struct netdev_alloc_cache *nc;
342 void *data = NULL;
343 int order;
344 unsigned long flags;
345
346 local_irq_save(flags);
347 nc = &__get_cpu_var(netdev_alloc_cache);
348 if (unlikely(!nc->frag.page)) {
349 refill:
350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 gfp_t gfp = gfp_mask;
352
353 if (order)
354 gfp |= __GFP_COMP | __GFP_NOWARN;
355 nc->frag.page = alloc_pages(gfp, order);
356 if (likely(nc->frag.page))
357 break;
358 if (--order < 0)
359 goto end;
360 }
361 nc->frag.size = PAGE_SIZE << order;
362 recycle:
363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
365 nc->frag.offset = 0;
366 }
367
368 if (nc->frag.offset + fragsz > nc->frag.size) {
369 /* avoid unnecessary locked operations if possible */
370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
372 goto recycle;
373 goto refill;
374 }
375
376 data = page_address(nc->frag.page) + nc->frag.offset;
377 nc->frag.offset += fragsz;
378 nc->pagecnt_bias--;
379 end:
380 local_irq_restore(flags);
381 return data;
382 }
383
384 /**
385 * netdev_alloc_frag - allocate a page fragment
386 * @fragsz: fragment size
387 *
388 * Allocates a frag from a page for receive buffer.
389 * Uses GFP_ATOMIC allocations.
390 */
391 void *netdev_alloc_frag(unsigned int fragsz)
392 {
393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396
397 /**
398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
399 * @dev: network device to receive on
400 * @length: length to allocate
401 * @gfp_mask: get_free_pages mask, passed to alloc_skb
402 *
403 * Allocate a new &sk_buff and assign it a usage count of one. The
404 * buffer has unspecified headroom built in. Users should allocate
405 * the headroom they think they need without accounting for the
406 * built in space. The built in space is used for optimisations.
407 *
408 * %NULL is returned if there is no free memory.
409 */
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 unsigned int length, gfp_t gfp_mask)
412 {
413 struct sk_buff *skb = NULL;
414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
416
417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
418 void *data;
419
420 if (sk_memalloc_socks())
421 gfp_mask |= __GFP_MEMALLOC;
422
423 data = __netdev_alloc_frag(fragsz, gfp_mask);
424
425 if (likely(data)) {
426 skb = build_skb(data, fragsz);
427 if (unlikely(!skb))
428 put_page(virt_to_head_page(data));
429 }
430 } else {
431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 SKB_ALLOC_RX, NUMA_NO_NODE);
433 }
434 if (likely(skb)) {
435 skb_reserve(skb, NET_SKB_PAD);
436 skb->dev = dev;
437 }
438 return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 int size, unsigned int truesize)
444 {
445 skb_fill_page_desc(skb, i, page, off, size);
446 skb->len += size;
447 skb->data_len += size;
448 skb->truesize += truesize;
449 }
450 EXPORT_SYMBOL(skb_add_rx_frag);
451
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 unsigned int truesize)
454 {
455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456
457 skb_frag_size_add(frag, size);
458 skb->len += size;
459 skb->data_len += size;
460 skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
463
464 static void skb_drop_list(struct sk_buff **listp)
465 {
466 kfree_skb_list(*listp);
467 *listp = NULL;
468 }
469
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 struct sk_buff *list;
478
479 skb_walk_frags(skb, list)
480 skb_get(list);
481 }
482
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 if (skb->head_frag)
486 put_page(virt_to_head_page(skb->head));
487 else
488 kfree(skb->head);
489 }
490
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 if (!skb->cloned ||
494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 &skb_shinfo(skb)->dataref)) {
496 if (skb_shinfo(skb)->nr_frags) {
497 int i;
498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 skb_frag_unref(skb, i);
500 }
501
502 /*
503 * If skb buf is from userspace, we need to notify the caller
504 * the lower device DMA has done;
505 */
506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 struct ubuf_info *uarg;
508
509 uarg = skb_shinfo(skb)->destructor_arg;
510 if (uarg->callback)
511 uarg->callback(uarg, true);
512 }
513
514 if (skb_has_frag_list(skb))
515 skb_drop_fraglist(skb);
516
517 skb_free_head(skb);
518 }
519 }
520
521 /*
522 * Free an skbuff by memory without cleaning the state.
523 */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 struct sk_buff *other;
527 atomic_t *fclone_ref;
528
529 switch (skb->fclone) {
530 case SKB_FCLONE_UNAVAILABLE:
531 kmem_cache_free(skbuff_head_cache, skb);
532 break;
533
534 case SKB_FCLONE_ORIG:
535 fclone_ref = (atomic_t *) (skb + 2);
536 if (atomic_dec_and_test(fclone_ref))
537 kmem_cache_free(skbuff_fclone_cache, skb);
538 break;
539
540 case SKB_FCLONE_CLONE:
541 fclone_ref = (atomic_t *) (skb + 1);
542 other = skb - 1;
543
544 /* The clone portion is available for
545 * fast-cloning again.
546 */
547 skb->fclone = SKB_FCLONE_UNAVAILABLE;
548
549 if (atomic_dec_and_test(fclone_ref))
550 kmem_cache_free(skbuff_fclone_cache, other);
551 break;
552 }
553 }
554
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 secpath_put(skb->sp);
560 #endif
561 if (skb->destructor) {
562 WARN_ON(in_irq());
563 skb->destructor(skb);
564 }
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 skb_release_head_state(skb);
584 if (likely(skb->head))
585 skb_release_data(skb);
586 }
587
588 /**
589 * __kfree_skb - private function
590 * @skb: buffer
591 *
592 * Free an sk_buff. Release anything attached to the buffer.
593 * Clean the state. This is an internal helper function. Users should
594 * always call kfree_skb
595 */
596
597 void __kfree_skb(struct sk_buff *skb)
598 {
599 skb_release_all(skb);
600 kfree_skbmem(skb);
601 }
602 EXPORT_SYMBOL(__kfree_skb);
603
604 /**
605 * kfree_skb - free an sk_buff
606 * @skb: buffer to free
607 *
608 * Drop a reference to the buffer and free it if the usage count has
609 * hit zero.
610 */
611 void kfree_skb(struct sk_buff *skb)
612 {
613 if (unlikely(!skb))
614 return;
615 if (likely(atomic_read(&skb->users) == 1))
616 smp_rmb();
617 else if (likely(!atomic_dec_and_test(&skb->users)))
618 return;
619 trace_kfree_skb(skb, __builtin_return_address(0));
620 __kfree_skb(skb);
621 }
622 EXPORT_SYMBOL(kfree_skb);
623
624 void kfree_skb_list(struct sk_buff *segs)
625 {
626 while (segs) {
627 struct sk_buff *next = segs->next;
628
629 kfree_skb(segs);
630 segs = next;
631 }
632 }
633 EXPORT_SYMBOL(kfree_skb_list);
634
635 /**
636 * skb_tx_error - report an sk_buff xmit error
637 * @skb: buffer that triggered an error
638 *
639 * Report xmit error if a device callback is tracking this skb.
640 * skb must be freed afterwards.
641 */
642 void skb_tx_error(struct sk_buff *skb)
643 {
644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 struct ubuf_info *uarg;
646
647 uarg = skb_shinfo(skb)->destructor_arg;
648 if (uarg->callback)
649 uarg->callback(uarg, false);
650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
651 }
652 }
653 EXPORT_SYMBOL(skb_tx_error);
654
655 /**
656 * consume_skb - free an skbuff
657 * @skb: buffer to free
658 *
659 * Drop a ref to the buffer and free it if the usage count has hit zero
660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
661 * is being dropped after a failure and notes that
662 */
663 void consume_skb(struct sk_buff *skb)
664 {
665 if (unlikely(!skb))
666 return;
667 if (likely(atomic_read(&skb->users) == 1))
668 smp_rmb();
669 else if (likely(!atomic_dec_and_test(&skb->users)))
670 return;
671 trace_consume_skb(skb);
672 __kfree_skb(skb);
673 }
674 EXPORT_SYMBOL(consume_skb);
675
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
677 {
678 new->tstamp = old->tstamp;
679 new->dev = old->dev;
680 new->transport_header = old->transport_header;
681 new->network_header = old->network_header;
682 new->mac_header = old->mac_header;
683 new->inner_protocol = old->inner_protocol;
684 new->inner_transport_header = old->inner_transport_header;
685 new->inner_network_header = old->inner_network_header;
686 new->inner_mac_header = old->inner_mac_header;
687 skb_dst_copy(new, old);
688 skb_copy_hash(new, old);
689 new->ooo_okay = old->ooo_okay;
690 new->no_fcs = old->no_fcs;
691 new->encapsulation = old->encapsulation;
692 #ifdef CONFIG_XFRM
693 new->sp = secpath_get(old->sp);
694 #endif
695 memcpy(new->cb, old->cb, sizeof(old->cb));
696 new->csum = old->csum;
697 new->local_df = old->local_df;
698 new->pkt_type = old->pkt_type;
699 new->ip_summed = old->ip_summed;
700 skb_copy_queue_mapping(new, old);
701 new->priority = old->priority;
702 #if IS_ENABLED(CONFIG_IP_VS)
703 new->ipvs_property = old->ipvs_property;
704 #endif
705 new->pfmemalloc = old->pfmemalloc;
706 new->protocol = old->protocol;
707 new->mark = old->mark;
708 new->skb_iif = old->skb_iif;
709 __nf_copy(new, old);
710 #ifdef CONFIG_NET_SCHED
711 new->tc_index = old->tc_index;
712 #ifdef CONFIG_NET_CLS_ACT
713 new->tc_verd = old->tc_verd;
714 #endif
715 #endif
716 new->vlan_proto = old->vlan_proto;
717 new->vlan_tci = old->vlan_tci;
718
719 skb_copy_secmark(new, old);
720
721 #ifdef CONFIG_NET_RX_BUSY_POLL
722 new->napi_id = old->napi_id;
723 #endif
724 }
725
726 /*
727 * You should not add any new code to this function. Add it to
728 * __copy_skb_header above instead.
729 */
730 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
731 {
732 #define C(x) n->x = skb->x
733
734 n->next = n->prev = NULL;
735 n->sk = NULL;
736 __copy_skb_header(n, skb);
737
738 C(len);
739 C(data_len);
740 C(mac_len);
741 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
742 n->cloned = 1;
743 n->nohdr = 0;
744 n->destructor = NULL;
745 C(tail);
746 C(end);
747 C(head);
748 C(head_frag);
749 C(data);
750 C(truesize);
751 atomic_set(&n->users, 1);
752
753 atomic_inc(&(skb_shinfo(skb)->dataref));
754 skb->cloned = 1;
755
756 return n;
757 #undef C
758 }
759
760 /**
761 * skb_morph - morph one skb into another
762 * @dst: the skb to receive the contents
763 * @src: the skb to supply the contents
764 *
765 * This is identical to skb_clone except that the target skb is
766 * supplied by the user.
767 *
768 * The target skb is returned upon exit.
769 */
770 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
771 {
772 skb_release_all(dst);
773 return __skb_clone(dst, src);
774 }
775 EXPORT_SYMBOL_GPL(skb_morph);
776
777 /**
778 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
779 * @skb: the skb to modify
780 * @gfp_mask: allocation priority
781 *
782 * This must be called on SKBTX_DEV_ZEROCOPY skb.
783 * It will copy all frags into kernel and drop the reference
784 * to userspace pages.
785 *
786 * If this function is called from an interrupt gfp_mask() must be
787 * %GFP_ATOMIC.
788 *
789 * Returns 0 on success or a negative error code on failure
790 * to allocate kernel memory to copy to.
791 */
792 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
793 {
794 int i;
795 int num_frags = skb_shinfo(skb)->nr_frags;
796 struct page *page, *head = NULL;
797 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
798
799 for (i = 0; i < num_frags; i++) {
800 u8 *vaddr;
801 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
802
803 page = alloc_page(gfp_mask);
804 if (!page) {
805 while (head) {
806 struct page *next = (struct page *)page_private(head);
807 put_page(head);
808 head = next;
809 }
810 return -ENOMEM;
811 }
812 vaddr = kmap_atomic(skb_frag_page(f));
813 memcpy(page_address(page),
814 vaddr + f->page_offset, skb_frag_size(f));
815 kunmap_atomic(vaddr);
816 set_page_private(page, (unsigned long)head);
817 head = page;
818 }
819
820 /* skb frags release userspace buffers */
821 for (i = 0; i < num_frags; i++)
822 skb_frag_unref(skb, i);
823
824 uarg->callback(uarg, false);
825
826 /* skb frags point to kernel buffers */
827 for (i = num_frags - 1; i >= 0; i--) {
828 __skb_fill_page_desc(skb, i, head, 0,
829 skb_shinfo(skb)->frags[i].size);
830 head = (struct page *)page_private(head);
831 }
832
833 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
834 return 0;
835 }
836 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
837
838 /**
839 * skb_clone - duplicate an sk_buff
840 * @skb: buffer to clone
841 * @gfp_mask: allocation priority
842 *
843 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
844 * copies share the same packet data but not structure. The new
845 * buffer has a reference count of 1. If the allocation fails the
846 * function returns %NULL otherwise the new buffer is returned.
847 *
848 * If this function is called from an interrupt gfp_mask() must be
849 * %GFP_ATOMIC.
850 */
851
852 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
853 {
854 struct sk_buff *n;
855
856 if (skb_orphan_frags(skb, gfp_mask))
857 return NULL;
858
859 n = skb + 1;
860 if (skb->fclone == SKB_FCLONE_ORIG &&
861 n->fclone == SKB_FCLONE_UNAVAILABLE) {
862 atomic_t *fclone_ref = (atomic_t *) (n + 1);
863 n->fclone = SKB_FCLONE_CLONE;
864 atomic_inc(fclone_ref);
865 } else {
866 if (skb_pfmemalloc(skb))
867 gfp_mask |= __GFP_MEMALLOC;
868
869 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
870 if (!n)
871 return NULL;
872
873 kmemcheck_annotate_bitfield(n, flags1);
874 kmemcheck_annotate_bitfield(n, flags2);
875 n->fclone = SKB_FCLONE_UNAVAILABLE;
876 }
877
878 return __skb_clone(n, skb);
879 }
880 EXPORT_SYMBOL(skb_clone);
881
882 static void skb_headers_offset_update(struct sk_buff *skb, int off)
883 {
884 /* Only adjust this if it actually is csum_start rather than csum */
885 if (skb->ip_summed == CHECKSUM_PARTIAL)
886 skb->csum_start += off;
887 /* {transport,network,mac}_header and tail are relative to skb->head */
888 skb->transport_header += off;
889 skb->network_header += off;
890 if (skb_mac_header_was_set(skb))
891 skb->mac_header += off;
892 skb->inner_transport_header += off;
893 skb->inner_network_header += off;
894 skb->inner_mac_header += off;
895 }
896
897 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
898 {
899 __copy_skb_header(new, old);
900
901 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
902 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
903 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
904 }
905
906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
907 {
908 if (skb_pfmemalloc(skb))
909 return SKB_ALLOC_RX;
910 return 0;
911 }
912
913 /**
914 * skb_copy - create private copy of an sk_buff
915 * @skb: buffer to copy
916 * @gfp_mask: allocation priority
917 *
918 * Make a copy of both an &sk_buff and its data. This is used when the
919 * caller wishes to modify the data and needs a private copy of the
920 * data to alter. Returns %NULL on failure or the pointer to the buffer
921 * on success. The returned buffer has a reference count of 1.
922 *
923 * As by-product this function converts non-linear &sk_buff to linear
924 * one, so that &sk_buff becomes completely private and caller is allowed
925 * to modify all the data of returned buffer. This means that this
926 * function is not recommended for use in circumstances when only
927 * header is going to be modified. Use pskb_copy() instead.
928 */
929
930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
931 {
932 int headerlen = skb_headroom(skb);
933 unsigned int size = skb_end_offset(skb) + skb->data_len;
934 struct sk_buff *n = __alloc_skb(size, gfp_mask,
935 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
936
937 if (!n)
938 return NULL;
939
940 /* Set the data pointer */
941 skb_reserve(n, headerlen);
942 /* Set the tail pointer and length */
943 skb_put(n, skb->len);
944
945 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
946 BUG();
947
948 copy_skb_header(n, skb);
949 return n;
950 }
951 EXPORT_SYMBOL(skb_copy);
952
953 /**
954 * __pskb_copy - create copy of an sk_buff with private head.
955 * @skb: buffer to copy
956 * @headroom: headroom of new skb
957 * @gfp_mask: allocation priority
958 *
959 * Make a copy of both an &sk_buff and part of its data, located
960 * in header. Fragmented data remain shared. This is used when
961 * the caller wishes to modify only header of &sk_buff and needs
962 * private copy of the header to alter. Returns %NULL on failure
963 * or the pointer to the buffer on success.
964 * The returned buffer has a reference count of 1.
965 */
966
967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
968 {
969 unsigned int size = skb_headlen(skb) + headroom;
970 struct sk_buff *n = __alloc_skb(size, gfp_mask,
971 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
972
973 if (!n)
974 goto out;
975
976 /* Set the data pointer */
977 skb_reserve(n, headroom);
978 /* Set the tail pointer and length */
979 skb_put(n, skb_headlen(skb));
980 /* Copy the bytes */
981 skb_copy_from_linear_data(skb, n->data, n->len);
982
983 n->truesize += skb->data_len;
984 n->data_len = skb->data_len;
985 n->len = skb->len;
986
987 if (skb_shinfo(skb)->nr_frags) {
988 int i;
989
990 if (skb_orphan_frags(skb, gfp_mask)) {
991 kfree_skb(n);
992 n = NULL;
993 goto out;
994 }
995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
997 skb_frag_ref(skb, i);
998 }
999 skb_shinfo(n)->nr_frags = i;
1000 }
1001
1002 if (skb_has_frag_list(skb)) {
1003 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1004 skb_clone_fraglist(n);
1005 }
1006
1007 copy_skb_header(n, skb);
1008 out:
1009 return n;
1010 }
1011 EXPORT_SYMBOL(__pskb_copy);
1012
1013 /**
1014 * pskb_expand_head - reallocate header of &sk_buff
1015 * @skb: buffer to reallocate
1016 * @nhead: room to add at head
1017 * @ntail: room to add at tail
1018 * @gfp_mask: allocation priority
1019 *
1020 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1021 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1022 * reference count of 1. Returns zero in the case of success or error,
1023 * if expansion failed. In the last case, &sk_buff is not changed.
1024 *
1025 * All the pointers pointing into skb header may change and must be
1026 * reloaded after call to this function.
1027 */
1028
1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1030 gfp_t gfp_mask)
1031 {
1032 int i;
1033 u8 *data;
1034 int size = nhead + skb_end_offset(skb) + ntail;
1035 long off;
1036
1037 BUG_ON(nhead < 0);
1038
1039 if (skb_shared(skb))
1040 BUG();
1041
1042 size = SKB_DATA_ALIGN(size);
1043
1044 if (skb_pfmemalloc(skb))
1045 gfp_mask |= __GFP_MEMALLOC;
1046 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1047 gfp_mask, NUMA_NO_NODE, NULL);
1048 if (!data)
1049 goto nodata;
1050 size = SKB_WITH_OVERHEAD(ksize(data));
1051
1052 /* Copy only real data... and, alas, header. This should be
1053 * optimized for the cases when header is void.
1054 */
1055 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1056
1057 memcpy((struct skb_shared_info *)(data + size),
1058 skb_shinfo(skb),
1059 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1060
1061 /*
1062 * if shinfo is shared we must drop the old head gracefully, but if it
1063 * is not we can just drop the old head and let the existing refcount
1064 * be since all we did is relocate the values
1065 */
1066 if (skb_cloned(skb)) {
1067 /* copy this zero copy skb frags */
1068 if (skb_orphan_frags(skb, gfp_mask))
1069 goto nofrags;
1070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1071 skb_frag_ref(skb, i);
1072
1073 if (skb_has_frag_list(skb))
1074 skb_clone_fraglist(skb);
1075
1076 skb_release_data(skb);
1077 } else {
1078 skb_free_head(skb);
1079 }
1080 off = (data + nhead) - skb->head;
1081
1082 skb->head = data;
1083 skb->head_frag = 0;
1084 skb->data += off;
1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1086 skb->end = size;
1087 off = nhead;
1088 #else
1089 skb->end = skb->head + size;
1090 #endif
1091 skb->tail += off;
1092 skb_headers_offset_update(skb, nhead);
1093 skb->cloned = 0;
1094 skb->hdr_len = 0;
1095 skb->nohdr = 0;
1096 atomic_set(&skb_shinfo(skb)->dataref, 1);
1097 return 0;
1098
1099 nofrags:
1100 kfree(data);
1101 nodata:
1102 return -ENOMEM;
1103 }
1104 EXPORT_SYMBOL(pskb_expand_head);
1105
1106 /* Make private copy of skb with writable head and some headroom */
1107
1108 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1109 {
1110 struct sk_buff *skb2;
1111 int delta = headroom - skb_headroom(skb);
1112
1113 if (delta <= 0)
1114 skb2 = pskb_copy(skb, GFP_ATOMIC);
1115 else {
1116 skb2 = skb_clone(skb, GFP_ATOMIC);
1117 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1118 GFP_ATOMIC)) {
1119 kfree_skb(skb2);
1120 skb2 = NULL;
1121 }
1122 }
1123 return skb2;
1124 }
1125 EXPORT_SYMBOL(skb_realloc_headroom);
1126
1127 /**
1128 * skb_copy_expand - copy and expand sk_buff
1129 * @skb: buffer to copy
1130 * @newheadroom: new free bytes at head
1131 * @newtailroom: new free bytes at tail
1132 * @gfp_mask: allocation priority
1133 *
1134 * Make a copy of both an &sk_buff and its data and while doing so
1135 * allocate additional space.
1136 *
1137 * This is used when the caller wishes to modify the data and needs a
1138 * private copy of the data to alter as well as more space for new fields.
1139 * Returns %NULL on failure or the pointer to the buffer
1140 * on success. The returned buffer has a reference count of 1.
1141 *
1142 * You must pass %GFP_ATOMIC as the allocation priority if this function
1143 * is called from an interrupt.
1144 */
1145 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1146 int newheadroom, int newtailroom,
1147 gfp_t gfp_mask)
1148 {
1149 /*
1150 * Allocate the copy buffer
1151 */
1152 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1153 gfp_mask, skb_alloc_rx_flag(skb),
1154 NUMA_NO_NODE);
1155 int oldheadroom = skb_headroom(skb);
1156 int head_copy_len, head_copy_off;
1157
1158 if (!n)
1159 return NULL;
1160
1161 skb_reserve(n, newheadroom);
1162
1163 /* Set the tail pointer and length */
1164 skb_put(n, skb->len);
1165
1166 head_copy_len = oldheadroom;
1167 head_copy_off = 0;
1168 if (newheadroom <= head_copy_len)
1169 head_copy_len = newheadroom;
1170 else
1171 head_copy_off = newheadroom - head_copy_len;
1172
1173 /* Copy the linear header and data. */
1174 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1175 skb->len + head_copy_len))
1176 BUG();
1177
1178 copy_skb_header(n, skb);
1179
1180 skb_headers_offset_update(n, newheadroom - oldheadroom);
1181
1182 return n;
1183 }
1184 EXPORT_SYMBOL(skb_copy_expand);
1185
1186 /**
1187 * skb_pad - zero pad the tail of an skb
1188 * @skb: buffer to pad
1189 * @pad: space to pad
1190 *
1191 * Ensure that a buffer is followed by a padding area that is zero
1192 * filled. Used by network drivers which may DMA or transfer data
1193 * beyond the buffer end onto the wire.
1194 *
1195 * May return error in out of memory cases. The skb is freed on error.
1196 */
1197
1198 int skb_pad(struct sk_buff *skb, int pad)
1199 {
1200 int err;
1201 int ntail;
1202
1203 /* If the skbuff is non linear tailroom is always zero.. */
1204 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1205 memset(skb->data+skb->len, 0, pad);
1206 return 0;
1207 }
1208
1209 ntail = skb->data_len + pad - (skb->end - skb->tail);
1210 if (likely(skb_cloned(skb) || ntail > 0)) {
1211 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1212 if (unlikely(err))
1213 goto free_skb;
1214 }
1215
1216 /* FIXME: The use of this function with non-linear skb's really needs
1217 * to be audited.
1218 */
1219 err = skb_linearize(skb);
1220 if (unlikely(err))
1221 goto free_skb;
1222
1223 memset(skb->data + skb->len, 0, pad);
1224 return 0;
1225
1226 free_skb:
1227 kfree_skb(skb);
1228 return err;
1229 }
1230 EXPORT_SYMBOL(skb_pad);
1231
1232 /**
1233 * pskb_put - add data to the tail of a potentially fragmented buffer
1234 * @skb: start of the buffer to use
1235 * @tail: tail fragment of the buffer to use
1236 * @len: amount of data to add
1237 *
1238 * This function extends the used data area of the potentially
1239 * fragmented buffer. @tail must be the last fragment of @skb -- or
1240 * @skb itself. If this would exceed the total buffer size the kernel
1241 * will panic. A pointer to the first byte of the extra data is
1242 * returned.
1243 */
1244
1245 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1246 {
1247 if (tail != skb) {
1248 skb->data_len += len;
1249 skb->len += len;
1250 }
1251 return skb_put(tail, len);
1252 }
1253 EXPORT_SYMBOL_GPL(pskb_put);
1254
1255 /**
1256 * skb_put - add data to a buffer
1257 * @skb: buffer to use
1258 * @len: amount of data to add
1259 *
1260 * This function extends the used data area of the buffer. If this would
1261 * exceed the total buffer size the kernel will panic. A pointer to the
1262 * first byte of the extra data is returned.
1263 */
1264 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1265 {
1266 unsigned char *tmp = skb_tail_pointer(skb);
1267 SKB_LINEAR_ASSERT(skb);
1268 skb->tail += len;
1269 skb->len += len;
1270 if (unlikely(skb->tail > skb->end))
1271 skb_over_panic(skb, len, __builtin_return_address(0));
1272 return tmp;
1273 }
1274 EXPORT_SYMBOL(skb_put);
1275
1276 /**
1277 * skb_push - add data to the start of a buffer
1278 * @skb: buffer to use
1279 * @len: amount of data to add
1280 *
1281 * This function extends the used data area of the buffer at the buffer
1282 * start. If this would exceed the total buffer headroom the kernel will
1283 * panic. A pointer to the first byte of the extra data is returned.
1284 */
1285 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1286 {
1287 skb->data -= len;
1288 skb->len += len;
1289 if (unlikely(skb->data<skb->head))
1290 skb_under_panic(skb, len, __builtin_return_address(0));
1291 return skb->data;
1292 }
1293 EXPORT_SYMBOL(skb_push);
1294
1295 /**
1296 * skb_pull - remove data from the start of a buffer
1297 * @skb: buffer to use
1298 * @len: amount of data to remove
1299 *
1300 * This function removes data from the start of a buffer, returning
1301 * the memory to the headroom. A pointer to the next data in the buffer
1302 * is returned. Once the data has been pulled future pushes will overwrite
1303 * the old data.
1304 */
1305 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1306 {
1307 return skb_pull_inline(skb, len);
1308 }
1309 EXPORT_SYMBOL(skb_pull);
1310
1311 /**
1312 * skb_trim - remove end from a buffer
1313 * @skb: buffer to alter
1314 * @len: new length
1315 *
1316 * Cut the length of a buffer down by removing data from the tail. If
1317 * the buffer is already under the length specified it is not modified.
1318 * The skb must be linear.
1319 */
1320 void skb_trim(struct sk_buff *skb, unsigned int len)
1321 {
1322 if (skb->len > len)
1323 __skb_trim(skb, len);
1324 }
1325 EXPORT_SYMBOL(skb_trim);
1326
1327 /* Trims skb to length len. It can change skb pointers.
1328 */
1329
1330 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1331 {
1332 struct sk_buff **fragp;
1333 struct sk_buff *frag;
1334 int offset = skb_headlen(skb);
1335 int nfrags = skb_shinfo(skb)->nr_frags;
1336 int i;
1337 int err;
1338
1339 if (skb_cloned(skb) &&
1340 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1341 return err;
1342
1343 i = 0;
1344 if (offset >= len)
1345 goto drop_pages;
1346
1347 for (; i < nfrags; i++) {
1348 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1349
1350 if (end < len) {
1351 offset = end;
1352 continue;
1353 }
1354
1355 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1356
1357 drop_pages:
1358 skb_shinfo(skb)->nr_frags = i;
1359
1360 for (; i < nfrags; i++)
1361 skb_frag_unref(skb, i);
1362
1363 if (skb_has_frag_list(skb))
1364 skb_drop_fraglist(skb);
1365 goto done;
1366 }
1367
1368 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1369 fragp = &frag->next) {
1370 int end = offset + frag->len;
1371
1372 if (skb_shared(frag)) {
1373 struct sk_buff *nfrag;
1374
1375 nfrag = skb_clone(frag, GFP_ATOMIC);
1376 if (unlikely(!nfrag))
1377 return -ENOMEM;
1378
1379 nfrag->next = frag->next;
1380 consume_skb(frag);
1381 frag = nfrag;
1382 *fragp = frag;
1383 }
1384
1385 if (end < len) {
1386 offset = end;
1387 continue;
1388 }
1389
1390 if (end > len &&
1391 unlikely((err = pskb_trim(frag, len - offset))))
1392 return err;
1393
1394 if (frag->next)
1395 skb_drop_list(&frag->next);
1396 break;
1397 }
1398
1399 done:
1400 if (len > skb_headlen(skb)) {
1401 skb->data_len -= skb->len - len;
1402 skb->len = len;
1403 } else {
1404 skb->len = len;
1405 skb->data_len = 0;
1406 skb_set_tail_pointer(skb, len);
1407 }
1408
1409 return 0;
1410 }
1411 EXPORT_SYMBOL(___pskb_trim);
1412
1413 /**
1414 * __pskb_pull_tail - advance tail of skb header
1415 * @skb: buffer to reallocate
1416 * @delta: number of bytes to advance tail
1417 *
1418 * The function makes a sense only on a fragmented &sk_buff,
1419 * it expands header moving its tail forward and copying necessary
1420 * data from fragmented part.
1421 *
1422 * &sk_buff MUST have reference count of 1.
1423 *
1424 * Returns %NULL (and &sk_buff does not change) if pull failed
1425 * or value of new tail of skb in the case of success.
1426 *
1427 * All the pointers pointing into skb header may change and must be
1428 * reloaded after call to this function.
1429 */
1430
1431 /* Moves tail of skb head forward, copying data from fragmented part,
1432 * when it is necessary.
1433 * 1. It may fail due to malloc failure.
1434 * 2. It may change skb pointers.
1435 *
1436 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1437 */
1438 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1439 {
1440 /* If skb has not enough free space at tail, get new one
1441 * plus 128 bytes for future expansions. If we have enough
1442 * room at tail, reallocate without expansion only if skb is cloned.
1443 */
1444 int i, k, eat = (skb->tail + delta) - skb->end;
1445
1446 if (eat > 0 || skb_cloned(skb)) {
1447 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1448 GFP_ATOMIC))
1449 return NULL;
1450 }
1451
1452 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1453 BUG();
1454
1455 /* Optimization: no fragments, no reasons to preestimate
1456 * size of pulled pages. Superb.
1457 */
1458 if (!skb_has_frag_list(skb))
1459 goto pull_pages;
1460
1461 /* Estimate size of pulled pages. */
1462 eat = delta;
1463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1464 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1465
1466 if (size >= eat)
1467 goto pull_pages;
1468 eat -= size;
1469 }
1470
1471 /* If we need update frag list, we are in troubles.
1472 * Certainly, it possible to add an offset to skb data,
1473 * but taking into account that pulling is expected to
1474 * be very rare operation, it is worth to fight against
1475 * further bloating skb head and crucify ourselves here instead.
1476 * Pure masohism, indeed. 8)8)
1477 */
1478 if (eat) {
1479 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1480 struct sk_buff *clone = NULL;
1481 struct sk_buff *insp = NULL;
1482
1483 do {
1484 BUG_ON(!list);
1485
1486 if (list->len <= eat) {
1487 /* Eaten as whole. */
1488 eat -= list->len;
1489 list = list->next;
1490 insp = list;
1491 } else {
1492 /* Eaten partially. */
1493
1494 if (skb_shared(list)) {
1495 /* Sucks! We need to fork list. :-( */
1496 clone = skb_clone(list, GFP_ATOMIC);
1497 if (!clone)
1498 return NULL;
1499 insp = list->next;
1500 list = clone;
1501 } else {
1502 /* This may be pulled without
1503 * problems. */
1504 insp = list;
1505 }
1506 if (!pskb_pull(list, eat)) {
1507 kfree_skb(clone);
1508 return NULL;
1509 }
1510 break;
1511 }
1512 } while (eat);
1513
1514 /* Free pulled out fragments. */
1515 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1516 skb_shinfo(skb)->frag_list = list->next;
1517 kfree_skb(list);
1518 }
1519 /* And insert new clone at head. */
1520 if (clone) {
1521 clone->next = list;
1522 skb_shinfo(skb)->frag_list = clone;
1523 }
1524 }
1525 /* Success! Now we may commit changes to skb data. */
1526
1527 pull_pages:
1528 eat = delta;
1529 k = 0;
1530 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1531 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1532
1533 if (size <= eat) {
1534 skb_frag_unref(skb, i);
1535 eat -= size;
1536 } else {
1537 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1538 if (eat) {
1539 skb_shinfo(skb)->frags[k].page_offset += eat;
1540 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1541 eat = 0;
1542 }
1543 k++;
1544 }
1545 }
1546 skb_shinfo(skb)->nr_frags = k;
1547
1548 skb->tail += delta;
1549 skb->data_len -= delta;
1550
1551 return skb_tail_pointer(skb);
1552 }
1553 EXPORT_SYMBOL(__pskb_pull_tail);
1554
1555 /**
1556 * skb_copy_bits - copy bits from skb to kernel buffer
1557 * @skb: source skb
1558 * @offset: offset in source
1559 * @to: destination buffer
1560 * @len: number of bytes to copy
1561 *
1562 * Copy the specified number of bytes from the source skb to the
1563 * destination buffer.
1564 *
1565 * CAUTION ! :
1566 * If its prototype is ever changed,
1567 * check arch/{*}/net/{*}.S files,
1568 * since it is called from BPF assembly code.
1569 */
1570 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1571 {
1572 int start = skb_headlen(skb);
1573 struct sk_buff *frag_iter;
1574 int i, copy;
1575
1576 if (offset > (int)skb->len - len)
1577 goto fault;
1578
1579 /* Copy header. */
1580 if ((copy = start - offset) > 0) {
1581 if (copy > len)
1582 copy = len;
1583 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1584 if ((len -= copy) == 0)
1585 return 0;
1586 offset += copy;
1587 to += copy;
1588 }
1589
1590 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591 int end;
1592 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1593
1594 WARN_ON(start > offset + len);
1595
1596 end = start + skb_frag_size(f);
1597 if ((copy = end - offset) > 0) {
1598 u8 *vaddr;
1599
1600 if (copy > len)
1601 copy = len;
1602
1603 vaddr = kmap_atomic(skb_frag_page(f));
1604 memcpy(to,
1605 vaddr + f->page_offset + offset - start,
1606 copy);
1607 kunmap_atomic(vaddr);
1608
1609 if ((len -= copy) == 0)
1610 return 0;
1611 offset += copy;
1612 to += copy;
1613 }
1614 start = end;
1615 }
1616
1617 skb_walk_frags(skb, frag_iter) {
1618 int end;
1619
1620 WARN_ON(start > offset + len);
1621
1622 end = start + frag_iter->len;
1623 if ((copy = end - offset) > 0) {
1624 if (copy > len)
1625 copy = len;
1626 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1627 goto fault;
1628 if ((len -= copy) == 0)
1629 return 0;
1630 offset += copy;
1631 to += copy;
1632 }
1633 start = end;
1634 }
1635
1636 if (!len)
1637 return 0;
1638
1639 fault:
1640 return -EFAULT;
1641 }
1642 EXPORT_SYMBOL(skb_copy_bits);
1643
1644 /*
1645 * Callback from splice_to_pipe(), if we need to release some pages
1646 * at the end of the spd in case we error'ed out in filling the pipe.
1647 */
1648 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1649 {
1650 put_page(spd->pages[i]);
1651 }
1652
1653 static struct page *linear_to_page(struct page *page, unsigned int *len,
1654 unsigned int *offset,
1655 struct sock *sk)
1656 {
1657 struct page_frag *pfrag = sk_page_frag(sk);
1658
1659 if (!sk_page_frag_refill(sk, pfrag))
1660 return NULL;
1661
1662 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1663
1664 memcpy(page_address(pfrag->page) + pfrag->offset,
1665 page_address(page) + *offset, *len);
1666 *offset = pfrag->offset;
1667 pfrag->offset += *len;
1668
1669 return pfrag->page;
1670 }
1671
1672 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1673 struct page *page,
1674 unsigned int offset)
1675 {
1676 return spd->nr_pages &&
1677 spd->pages[spd->nr_pages - 1] == page &&
1678 (spd->partial[spd->nr_pages - 1].offset +
1679 spd->partial[spd->nr_pages - 1].len == offset);
1680 }
1681
1682 /*
1683 * Fill page/offset/length into spd, if it can hold more pages.
1684 */
1685 static bool spd_fill_page(struct splice_pipe_desc *spd,
1686 struct pipe_inode_info *pipe, struct page *page,
1687 unsigned int *len, unsigned int offset,
1688 bool linear,
1689 struct sock *sk)
1690 {
1691 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1692 return true;
1693
1694 if (linear) {
1695 page = linear_to_page(page, len, &offset, sk);
1696 if (!page)
1697 return true;
1698 }
1699 if (spd_can_coalesce(spd, page, offset)) {
1700 spd->partial[spd->nr_pages - 1].len += *len;
1701 return false;
1702 }
1703 get_page(page);
1704 spd->pages[spd->nr_pages] = page;
1705 spd->partial[spd->nr_pages].len = *len;
1706 spd->partial[spd->nr_pages].offset = offset;
1707 spd->nr_pages++;
1708
1709 return false;
1710 }
1711
1712 static bool __splice_segment(struct page *page, unsigned int poff,
1713 unsigned int plen, unsigned int *off,
1714 unsigned int *len,
1715 struct splice_pipe_desc *spd, bool linear,
1716 struct sock *sk,
1717 struct pipe_inode_info *pipe)
1718 {
1719 if (!*len)
1720 return true;
1721
1722 /* skip this segment if already processed */
1723 if (*off >= plen) {
1724 *off -= plen;
1725 return false;
1726 }
1727
1728 /* ignore any bits we already processed */
1729 poff += *off;
1730 plen -= *off;
1731 *off = 0;
1732
1733 do {
1734 unsigned int flen = min(*len, plen);
1735
1736 if (spd_fill_page(spd, pipe, page, &flen, poff,
1737 linear, sk))
1738 return true;
1739 poff += flen;
1740 plen -= flen;
1741 *len -= flen;
1742 } while (*len && plen);
1743
1744 return false;
1745 }
1746
1747 /*
1748 * Map linear and fragment data from the skb to spd. It reports true if the
1749 * pipe is full or if we already spliced the requested length.
1750 */
1751 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1752 unsigned int *offset, unsigned int *len,
1753 struct splice_pipe_desc *spd, struct sock *sk)
1754 {
1755 int seg;
1756
1757 /* map the linear part :
1758 * If skb->head_frag is set, this 'linear' part is backed by a
1759 * fragment, and if the head is not shared with any clones then
1760 * we can avoid a copy since we own the head portion of this page.
1761 */
1762 if (__splice_segment(virt_to_page(skb->data),
1763 (unsigned long) skb->data & (PAGE_SIZE - 1),
1764 skb_headlen(skb),
1765 offset, len, spd,
1766 skb_head_is_locked(skb),
1767 sk, pipe))
1768 return true;
1769
1770 /*
1771 * then map the fragments
1772 */
1773 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1774 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1775
1776 if (__splice_segment(skb_frag_page(f),
1777 f->page_offset, skb_frag_size(f),
1778 offset, len, spd, false, sk, pipe))
1779 return true;
1780 }
1781
1782 return false;
1783 }
1784
1785 /*
1786 * Map data from the skb to a pipe. Should handle both the linear part,
1787 * the fragments, and the frag list. It does NOT handle frag lists within
1788 * the frag list, if such a thing exists. We'd probably need to recurse to
1789 * handle that cleanly.
1790 */
1791 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1792 struct pipe_inode_info *pipe, unsigned int tlen,
1793 unsigned int flags)
1794 {
1795 struct partial_page partial[MAX_SKB_FRAGS];
1796 struct page *pages[MAX_SKB_FRAGS];
1797 struct splice_pipe_desc spd = {
1798 .pages = pages,
1799 .partial = partial,
1800 .nr_pages_max = MAX_SKB_FRAGS,
1801 .flags = flags,
1802 .ops = &nosteal_pipe_buf_ops,
1803 .spd_release = sock_spd_release,
1804 };
1805 struct sk_buff *frag_iter;
1806 struct sock *sk = skb->sk;
1807 int ret = 0;
1808
1809 /*
1810 * __skb_splice_bits() only fails if the output has no room left,
1811 * so no point in going over the frag_list for the error case.
1812 */
1813 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1814 goto done;
1815 else if (!tlen)
1816 goto done;
1817
1818 /*
1819 * now see if we have a frag_list to map
1820 */
1821 skb_walk_frags(skb, frag_iter) {
1822 if (!tlen)
1823 break;
1824 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1825 break;
1826 }
1827
1828 done:
1829 if (spd.nr_pages) {
1830 /*
1831 * Drop the socket lock, otherwise we have reverse
1832 * locking dependencies between sk_lock and i_mutex
1833 * here as compared to sendfile(). We enter here
1834 * with the socket lock held, and splice_to_pipe() will
1835 * grab the pipe inode lock. For sendfile() emulation,
1836 * we call into ->sendpage() with the i_mutex lock held
1837 * and networking will grab the socket lock.
1838 */
1839 release_sock(sk);
1840 ret = splice_to_pipe(pipe, &spd);
1841 lock_sock(sk);
1842 }
1843
1844 return ret;
1845 }
1846
1847 /**
1848 * skb_store_bits - store bits from kernel buffer to skb
1849 * @skb: destination buffer
1850 * @offset: offset in destination
1851 * @from: source buffer
1852 * @len: number of bytes to copy
1853 *
1854 * Copy the specified number of bytes from the source buffer to the
1855 * destination skb. This function handles all the messy bits of
1856 * traversing fragment lists and such.
1857 */
1858
1859 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1860 {
1861 int start = skb_headlen(skb);
1862 struct sk_buff *frag_iter;
1863 int i, copy;
1864
1865 if (offset > (int)skb->len - len)
1866 goto fault;
1867
1868 if ((copy = start - offset) > 0) {
1869 if (copy > len)
1870 copy = len;
1871 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1872 if ((len -= copy) == 0)
1873 return 0;
1874 offset += copy;
1875 from += copy;
1876 }
1877
1878 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1879 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1880 int end;
1881
1882 WARN_ON(start > offset + len);
1883
1884 end = start + skb_frag_size(frag);
1885 if ((copy = end - offset) > 0) {
1886 u8 *vaddr;
1887
1888 if (copy > len)
1889 copy = len;
1890
1891 vaddr = kmap_atomic(skb_frag_page(frag));
1892 memcpy(vaddr + frag->page_offset + offset - start,
1893 from, copy);
1894 kunmap_atomic(vaddr);
1895
1896 if ((len -= copy) == 0)
1897 return 0;
1898 offset += copy;
1899 from += copy;
1900 }
1901 start = end;
1902 }
1903
1904 skb_walk_frags(skb, frag_iter) {
1905 int end;
1906
1907 WARN_ON(start > offset + len);
1908
1909 end = start + frag_iter->len;
1910 if ((copy = end - offset) > 0) {
1911 if (copy > len)
1912 copy = len;
1913 if (skb_store_bits(frag_iter, offset - start,
1914 from, copy))
1915 goto fault;
1916 if ((len -= copy) == 0)
1917 return 0;
1918 offset += copy;
1919 from += copy;
1920 }
1921 start = end;
1922 }
1923 if (!len)
1924 return 0;
1925
1926 fault:
1927 return -EFAULT;
1928 }
1929 EXPORT_SYMBOL(skb_store_bits);
1930
1931 /* Checksum skb data. */
1932 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1933 __wsum csum, const struct skb_checksum_ops *ops)
1934 {
1935 int start = skb_headlen(skb);
1936 int i, copy = start - offset;
1937 struct sk_buff *frag_iter;
1938 int pos = 0;
1939
1940 /* Checksum header. */
1941 if (copy > 0) {
1942 if (copy > len)
1943 copy = len;
1944 csum = ops->update(skb->data + offset, copy, csum);
1945 if ((len -= copy) == 0)
1946 return csum;
1947 offset += copy;
1948 pos = copy;
1949 }
1950
1951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1952 int end;
1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954
1955 WARN_ON(start > offset + len);
1956
1957 end = start + skb_frag_size(frag);
1958 if ((copy = end - offset) > 0) {
1959 __wsum csum2;
1960 u8 *vaddr;
1961
1962 if (copy > len)
1963 copy = len;
1964 vaddr = kmap_atomic(skb_frag_page(frag));
1965 csum2 = ops->update(vaddr + frag->page_offset +
1966 offset - start, copy, 0);
1967 kunmap_atomic(vaddr);
1968 csum = ops->combine(csum, csum2, pos, copy);
1969 if (!(len -= copy))
1970 return csum;
1971 offset += copy;
1972 pos += copy;
1973 }
1974 start = end;
1975 }
1976
1977 skb_walk_frags(skb, frag_iter) {
1978 int end;
1979
1980 WARN_ON(start > offset + len);
1981
1982 end = start + frag_iter->len;
1983 if ((copy = end - offset) > 0) {
1984 __wsum csum2;
1985 if (copy > len)
1986 copy = len;
1987 csum2 = __skb_checksum(frag_iter, offset - start,
1988 copy, 0, ops);
1989 csum = ops->combine(csum, csum2, pos, copy);
1990 if ((len -= copy) == 0)
1991 return csum;
1992 offset += copy;
1993 pos += copy;
1994 }
1995 start = end;
1996 }
1997 BUG_ON(len);
1998
1999 return csum;
2000 }
2001 EXPORT_SYMBOL(__skb_checksum);
2002
2003 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2004 int len, __wsum csum)
2005 {
2006 const struct skb_checksum_ops ops = {
2007 .update = csum_partial_ext,
2008 .combine = csum_block_add_ext,
2009 };
2010
2011 return __skb_checksum(skb, offset, len, csum, &ops);
2012 }
2013 EXPORT_SYMBOL(skb_checksum);
2014
2015 /* Both of above in one bottle. */
2016
2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2018 u8 *to, int len, __wsum csum)
2019 {
2020 int start = skb_headlen(skb);
2021 int i, copy = start - offset;
2022 struct sk_buff *frag_iter;
2023 int pos = 0;
2024
2025 /* Copy header. */
2026 if (copy > 0) {
2027 if (copy > len)
2028 copy = len;
2029 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2030 copy, csum);
2031 if ((len -= copy) == 0)
2032 return csum;
2033 offset += copy;
2034 to += copy;
2035 pos = copy;
2036 }
2037
2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039 int end;
2040
2041 WARN_ON(start > offset + len);
2042
2043 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2044 if ((copy = end - offset) > 0) {
2045 __wsum csum2;
2046 u8 *vaddr;
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048
2049 if (copy > len)
2050 copy = len;
2051 vaddr = kmap_atomic(skb_frag_page(frag));
2052 csum2 = csum_partial_copy_nocheck(vaddr +
2053 frag->page_offset +
2054 offset - start, to,
2055 copy, 0);
2056 kunmap_atomic(vaddr);
2057 csum = csum_block_add(csum, csum2, pos);
2058 if (!(len -= copy))
2059 return csum;
2060 offset += copy;
2061 to += copy;
2062 pos += copy;
2063 }
2064 start = end;
2065 }
2066
2067 skb_walk_frags(skb, frag_iter) {
2068 __wsum csum2;
2069 int end;
2070
2071 WARN_ON(start > offset + len);
2072
2073 end = start + frag_iter->len;
2074 if ((copy = end - offset) > 0) {
2075 if (copy > len)
2076 copy = len;
2077 csum2 = skb_copy_and_csum_bits(frag_iter,
2078 offset - start,
2079 to, copy, 0);
2080 csum = csum_block_add(csum, csum2, pos);
2081 if ((len -= copy) == 0)
2082 return csum;
2083 offset += copy;
2084 to += copy;
2085 pos += copy;
2086 }
2087 start = end;
2088 }
2089 BUG_ON(len);
2090 return csum;
2091 }
2092 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2093
2094 /**
2095 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2096 * @from: source buffer
2097 *
2098 * Calculates the amount of linear headroom needed in the 'to' skb passed
2099 * into skb_zerocopy().
2100 */
2101 unsigned int
2102 skb_zerocopy_headlen(const struct sk_buff *from)
2103 {
2104 unsigned int hlen = 0;
2105
2106 if (!from->head_frag ||
2107 skb_headlen(from) < L1_CACHE_BYTES ||
2108 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2109 hlen = skb_headlen(from);
2110
2111 if (skb_has_frag_list(from))
2112 hlen = from->len;
2113
2114 return hlen;
2115 }
2116 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2117
2118 /**
2119 * skb_zerocopy - Zero copy skb to skb
2120 * @to: destination buffer
2121 * @from: source buffer
2122 * @len: number of bytes to copy from source buffer
2123 * @hlen: size of linear headroom in destination buffer
2124 *
2125 * Copies up to `len` bytes from `from` to `to` by creating references
2126 * to the frags in the source buffer.
2127 *
2128 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2129 * headroom in the `to` buffer.
2130 */
2131 void
2132 skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, int len, int hlen)
2133 {
2134 int i, j = 0;
2135 int plen = 0; /* length of skb->head fragment */
2136 struct page *page;
2137 unsigned int offset;
2138
2139 BUG_ON(!from->head_frag && !hlen);
2140
2141 /* dont bother with small payloads */
2142 if (len <= skb_tailroom(to)) {
2143 skb_copy_bits(from, 0, skb_put(to, len), len);
2144 return;
2145 }
2146
2147 if (hlen) {
2148 skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2149 len -= hlen;
2150 } else {
2151 plen = min_t(int, skb_headlen(from), len);
2152 if (plen) {
2153 page = virt_to_head_page(from->head);
2154 offset = from->data - (unsigned char *)page_address(page);
2155 __skb_fill_page_desc(to, 0, page, offset, plen);
2156 get_page(page);
2157 j = 1;
2158 len -= plen;
2159 }
2160 }
2161
2162 to->truesize += len + plen;
2163 to->len += len + plen;
2164 to->data_len += len + plen;
2165
2166 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2167 if (!len)
2168 break;
2169 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2170 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2171 len -= skb_shinfo(to)->frags[j].size;
2172 skb_frag_ref(to, j);
2173 j++;
2174 }
2175 skb_shinfo(to)->nr_frags = j;
2176 }
2177 EXPORT_SYMBOL_GPL(skb_zerocopy);
2178
2179 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2180 {
2181 __wsum csum;
2182 long csstart;
2183
2184 if (skb->ip_summed == CHECKSUM_PARTIAL)
2185 csstart = skb_checksum_start_offset(skb);
2186 else
2187 csstart = skb_headlen(skb);
2188
2189 BUG_ON(csstart > skb_headlen(skb));
2190
2191 skb_copy_from_linear_data(skb, to, csstart);
2192
2193 csum = 0;
2194 if (csstart != skb->len)
2195 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2196 skb->len - csstart, 0);
2197
2198 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2199 long csstuff = csstart + skb->csum_offset;
2200
2201 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2202 }
2203 }
2204 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2205
2206 /**
2207 * skb_dequeue - remove from the head of the queue
2208 * @list: list to dequeue from
2209 *
2210 * Remove the head of the list. The list lock is taken so the function
2211 * may be used safely with other locking list functions. The head item is
2212 * returned or %NULL if the list is empty.
2213 */
2214
2215 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2216 {
2217 unsigned long flags;
2218 struct sk_buff *result;
2219
2220 spin_lock_irqsave(&list->lock, flags);
2221 result = __skb_dequeue(list);
2222 spin_unlock_irqrestore(&list->lock, flags);
2223 return result;
2224 }
2225 EXPORT_SYMBOL(skb_dequeue);
2226
2227 /**
2228 * skb_dequeue_tail - remove from the tail of the queue
2229 * @list: list to dequeue from
2230 *
2231 * Remove the tail of the list. The list lock is taken so the function
2232 * may be used safely with other locking list functions. The tail item is
2233 * returned or %NULL if the list is empty.
2234 */
2235 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2236 {
2237 unsigned long flags;
2238 struct sk_buff *result;
2239
2240 spin_lock_irqsave(&list->lock, flags);
2241 result = __skb_dequeue_tail(list);
2242 spin_unlock_irqrestore(&list->lock, flags);
2243 return result;
2244 }
2245 EXPORT_SYMBOL(skb_dequeue_tail);
2246
2247 /**
2248 * skb_queue_purge - empty a list
2249 * @list: list to empty
2250 *
2251 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2252 * the list and one reference dropped. This function takes the list
2253 * lock and is atomic with respect to other list locking functions.
2254 */
2255 void skb_queue_purge(struct sk_buff_head *list)
2256 {
2257 struct sk_buff *skb;
2258 while ((skb = skb_dequeue(list)) != NULL)
2259 kfree_skb(skb);
2260 }
2261 EXPORT_SYMBOL(skb_queue_purge);
2262
2263 /**
2264 * skb_queue_head - queue a buffer at the list head
2265 * @list: list to use
2266 * @newsk: buffer to queue
2267 *
2268 * Queue a buffer at the start of the list. This function takes the
2269 * list lock and can be used safely with other locking &sk_buff functions
2270 * safely.
2271 *
2272 * A buffer cannot be placed on two lists at the same time.
2273 */
2274 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2275 {
2276 unsigned long flags;
2277
2278 spin_lock_irqsave(&list->lock, flags);
2279 __skb_queue_head(list, newsk);
2280 spin_unlock_irqrestore(&list->lock, flags);
2281 }
2282 EXPORT_SYMBOL(skb_queue_head);
2283
2284 /**
2285 * skb_queue_tail - queue a buffer at the list tail
2286 * @list: list to use
2287 * @newsk: buffer to queue
2288 *
2289 * Queue a buffer at the tail of the list. This function takes the
2290 * list lock and can be used safely with other locking &sk_buff functions
2291 * safely.
2292 *
2293 * A buffer cannot be placed on two lists at the same time.
2294 */
2295 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2296 {
2297 unsigned long flags;
2298
2299 spin_lock_irqsave(&list->lock, flags);
2300 __skb_queue_tail(list, newsk);
2301 spin_unlock_irqrestore(&list->lock, flags);
2302 }
2303 EXPORT_SYMBOL(skb_queue_tail);
2304
2305 /**
2306 * skb_unlink - remove a buffer from a list
2307 * @skb: buffer to remove
2308 * @list: list to use
2309 *
2310 * Remove a packet from a list. The list locks are taken and this
2311 * function is atomic with respect to other list locked calls
2312 *
2313 * You must know what list the SKB is on.
2314 */
2315 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2316 {
2317 unsigned long flags;
2318
2319 spin_lock_irqsave(&list->lock, flags);
2320 __skb_unlink(skb, list);
2321 spin_unlock_irqrestore(&list->lock, flags);
2322 }
2323 EXPORT_SYMBOL(skb_unlink);
2324
2325 /**
2326 * skb_append - append a buffer
2327 * @old: buffer to insert after
2328 * @newsk: buffer to insert
2329 * @list: list to use
2330 *
2331 * Place a packet after a given packet in a list. The list locks are taken
2332 * and this function is atomic with respect to other list locked calls.
2333 * A buffer cannot be placed on two lists at the same time.
2334 */
2335 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2336 {
2337 unsigned long flags;
2338
2339 spin_lock_irqsave(&list->lock, flags);
2340 __skb_queue_after(list, old, newsk);
2341 spin_unlock_irqrestore(&list->lock, flags);
2342 }
2343 EXPORT_SYMBOL(skb_append);
2344
2345 /**
2346 * skb_insert - insert a buffer
2347 * @old: buffer to insert before
2348 * @newsk: buffer to insert
2349 * @list: list to use
2350 *
2351 * Place a packet before a given packet in a list. The list locks are
2352 * taken and this function is atomic with respect to other list locked
2353 * calls.
2354 *
2355 * A buffer cannot be placed on two lists at the same time.
2356 */
2357 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2358 {
2359 unsigned long flags;
2360
2361 spin_lock_irqsave(&list->lock, flags);
2362 __skb_insert(newsk, old->prev, old, list);
2363 spin_unlock_irqrestore(&list->lock, flags);
2364 }
2365 EXPORT_SYMBOL(skb_insert);
2366
2367 static inline void skb_split_inside_header(struct sk_buff *skb,
2368 struct sk_buff* skb1,
2369 const u32 len, const int pos)
2370 {
2371 int i;
2372
2373 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2374 pos - len);
2375 /* And move data appendix as is. */
2376 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2377 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2378
2379 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2380 skb_shinfo(skb)->nr_frags = 0;
2381 skb1->data_len = skb->data_len;
2382 skb1->len += skb1->data_len;
2383 skb->data_len = 0;
2384 skb->len = len;
2385 skb_set_tail_pointer(skb, len);
2386 }
2387
2388 static inline void skb_split_no_header(struct sk_buff *skb,
2389 struct sk_buff* skb1,
2390 const u32 len, int pos)
2391 {
2392 int i, k = 0;
2393 const int nfrags = skb_shinfo(skb)->nr_frags;
2394
2395 skb_shinfo(skb)->nr_frags = 0;
2396 skb1->len = skb1->data_len = skb->len - len;
2397 skb->len = len;
2398 skb->data_len = len - pos;
2399
2400 for (i = 0; i < nfrags; i++) {
2401 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2402
2403 if (pos + size > len) {
2404 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2405
2406 if (pos < len) {
2407 /* Split frag.
2408 * We have two variants in this case:
2409 * 1. Move all the frag to the second
2410 * part, if it is possible. F.e.
2411 * this approach is mandatory for TUX,
2412 * where splitting is expensive.
2413 * 2. Split is accurately. We make this.
2414 */
2415 skb_frag_ref(skb, i);
2416 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2417 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2418 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2419 skb_shinfo(skb)->nr_frags++;
2420 }
2421 k++;
2422 } else
2423 skb_shinfo(skb)->nr_frags++;
2424 pos += size;
2425 }
2426 skb_shinfo(skb1)->nr_frags = k;
2427 }
2428
2429 /**
2430 * skb_split - Split fragmented skb to two parts at length len.
2431 * @skb: the buffer to split
2432 * @skb1: the buffer to receive the second part
2433 * @len: new length for skb
2434 */
2435 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2436 {
2437 int pos = skb_headlen(skb);
2438
2439 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2440 if (len < pos) /* Split line is inside header. */
2441 skb_split_inside_header(skb, skb1, len, pos);
2442 else /* Second chunk has no header, nothing to copy. */
2443 skb_split_no_header(skb, skb1, len, pos);
2444 }
2445 EXPORT_SYMBOL(skb_split);
2446
2447 /* Shifting from/to a cloned skb is a no-go.
2448 *
2449 * Caller cannot keep skb_shinfo related pointers past calling here!
2450 */
2451 static int skb_prepare_for_shift(struct sk_buff *skb)
2452 {
2453 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2454 }
2455
2456 /**
2457 * skb_shift - Shifts paged data partially from skb to another
2458 * @tgt: buffer into which tail data gets added
2459 * @skb: buffer from which the paged data comes from
2460 * @shiftlen: shift up to this many bytes
2461 *
2462 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2463 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2464 * It's up to caller to free skb if everything was shifted.
2465 *
2466 * If @tgt runs out of frags, the whole operation is aborted.
2467 *
2468 * Skb cannot include anything else but paged data while tgt is allowed
2469 * to have non-paged data as well.
2470 *
2471 * TODO: full sized shift could be optimized but that would need
2472 * specialized skb free'er to handle frags without up-to-date nr_frags.
2473 */
2474 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2475 {
2476 int from, to, merge, todo;
2477 struct skb_frag_struct *fragfrom, *fragto;
2478
2479 BUG_ON(shiftlen > skb->len);
2480 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2481
2482 todo = shiftlen;
2483 from = 0;
2484 to = skb_shinfo(tgt)->nr_frags;
2485 fragfrom = &skb_shinfo(skb)->frags[from];
2486
2487 /* Actual merge is delayed until the point when we know we can
2488 * commit all, so that we don't have to undo partial changes
2489 */
2490 if (!to ||
2491 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2492 fragfrom->page_offset)) {
2493 merge = -1;
2494 } else {
2495 merge = to - 1;
2496
2497 todo -= skb_frag_size(fragfrom);
2498 if (todo < 0) {
2499 if (skb_prepare_for_shift(skb) ||
2500 skb_prepare_for_shift(tgt))
2501 return 0;
2502
2503 /* All previous frag pointers might be stale! */
2504 fragfrom = &skb_shinfo(skb)->frags[from];
2505 fragto = &skb_shinfo(tgt)->frags[merge];
2506
2507 skb_frag_size_add(fragto, shiftlen);
2508 skb_frag_size_sub(fragfrom, shiftlen);
2509 fragfrom->page_offset += shiftlen;
2510
2511 goto onlymerged;
2512 }
2513
2514 from++;
2515 }
2516
2517 /* Skip full, not-fitting skb to avoid expensive operations */
2518 if ((shiftlen == skb->len) &&
2519 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2520 return 0;
2521
2522 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2523 return 0;
2524
2525 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2526 if (to == MAX_SKB_FRAGS)
2527 return 0;
2528
2529 fragfrom = &skb_shinfo(skb)->frags[from];
2530 fragto = &skb_shinfo(tgt)->frags[to];
2531
2532 if (todo >= skb_frag_size(fragfrom)) {
2533 *fragto = *fragfrom;
2534 todo -= skb_frag_size(fragfrom);
2535 from++;
2536 to++;
2537
2538 } else {
2539 __skb_frag_ref(fragfrom);
2540 fragto->page = fragfrom->page;
2541 fragto->page_offset = fragfrom->page_offset;
2542 skb_frag_size_set(fragto, todo);
2543
2544 fragfrom->page_offset += todo;
2545 skb_frag_size_sub(fragfrom, todo);
2546 todo = 0;
2547
2548 to++;
2549 break;
2550 }
2551 }
2552
2553 /* Ready to "commit" this state change to tgt */
2554 skb_shinfo(tgt)->nr_frags = to;
2555
2556 if (merge >= 0) {
2557 fragfrom = &skb_shinfo(skb)->frags[0];
2558 fragto = &skb_shinfo(tgt)->frags[merge];
2559
2560 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2561 __skb_frag_unref(fragfrom);
2562 }
2563
2564 /* Reposition in the original skb */
2565 to = 0;
2566 while (from < skb_shinfo(skb)->nr_frags)
2567 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2568 skb_shinfo(skb)->nr_frags = to;
2569
2570 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2571
2572 onlymerged:
2573 /* Most likely the tgt won't ever need its checksum anymore, skb on
2574 * the other hand might need it if it needs to be resent
2575 */
2576 tgt->ip_summed = CHECKSUM_PARTIAL;
2577 skb->ip_summed = CHECKSUM_PARTIAL;
2578
2579 /* Yak, is it really working this way? Some helper please? */
2580 skb->len -= shiftlen;
2581 skb->data_len -= shiftlen;
2582 skb->truesize -= shiftlen;
2583 tgt->len += shiftlen;
2584 tgt->data_len += shiftlen;
2585 tgt->truesize += shiftlen;
2586
2587 return shiftlen;
2588 }
2589
2590 /**
2591 * skb_prepare_seq_read - Prepare a sequential read of skb data
2592 * @skb: the buffer to read
2593 * @from: lower offset of data to be read
2594 * @to: upper offset of data to be read
2595 * @st: state variable
2596 *
2597 * Initializes the specified state variable. Must be called before
2598 * invoking skb_seq_read() for the first time.
2599 */
2600 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2601 unsigned int to, struct skb_seq_state *st)
2602 {
2603 st->lower_offset = from;
2604 st->upper_offset = to;
2605 st->root_skb = st->cur_skb = skb;
2606 st->frag_idx = st->stepped_offset = 0;
2607 st->frag_data = NULL;
2608 }
2609 EXPORT_SYMBOL(skb_prepare_seq_read);
2610
2611 /**
2612 * skb_seq_read - Sequentially read skb data
2613 * @consumed: number of bytes consumed by the caller so far
2614 * @data: destination pointer for data to be returned
2615 * @st: state variable
2616 *
2617 * Reads a block of skb data at @consumed relative to the
2618 * lower offset specified to skb_prepare_seq_read(). Assigns
2619 * the head of the data block to @data and returns the length
2620 * of the block or 0 if the end of the skb data or the upper
2621 * offset has been reached.
2622 *
2623 * The caller is not required to consume all of the data
2624 * returned, i.e. @consumed is typically set to the number
2625 * of bytes already consumed and the next call to
2626 * skb_seq_read() will return the remaining part of the block.
2627 *
2628 * Note 1: The size of each block of data returned can be arbitrary,
2629 * this limitation is the cost for zerocopy seqeuental
2630 * reads of potentially non linear data.
2631 *
2632 * Note 2: Fragment lists within fragments are not implemented
2633 * at the moment, state->root_skb could be replaced with
2634 * a stack for this purpose.
2635 */
2636 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2637 struct skb_seq_state *st)
2638 {
2639 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2640 skb_frag_t *frag;
2641
2642 if (unlikely(abs_offset >= st->upper_offset)) {
2643 if (st->frag_data) {
2644 kunmap_atomic(st->frag_data);
2645 st->frag_data = NULL;
2646 }
2647 return 0;
2648 }
2649
2650 next_skb:
2651 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2652
2653 if (abs_offset < block_limit && !st->frag_data) {
2654 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2655 return block_limit - abs_offset;
2656 }
2657
2658 if (st->frag_idx == 0 && !st->frag_data)
2659 st->stepped_offset += skb_headlen(st->cur_skb);
2660
2661 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2662 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2663 block_limit = skb_frag_size(frag) + st->stepped_offset;
2664
2665 if (abs_offset < block_limit) {
2666 if (!st->frag_data)
2667 st->frag_data = kmap_atomic(skb_frag_page(frag));
2668
2669 *data = (u8 *) st->frag_data + frag->page_offset +
2670 (abs_offset - st->stepped_offset);
2671
2672 return block_limit - abs_offset;
2673 }
2674
2675 if (st->frag_data) {
2676 kunmap_atomic(st->frag_data);
2677 st->frag_data = NULL;
2678 }
2679
2680 st->frag_idx++;
2681 st->stepped_offset += skb_frag_size(frag);
2682 }
2683
2684 if (st->frag_data) {
2685 kunmap_atomic(st->frag_data);
2686 st->frag_data = NULL;
2687 }
2688
2689 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2690 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2691 st->frag_idx = 0;
2692 goto next_skb;
2693 } else if (st->cur_skb->next) {
2694 st->cur_skb = st->cur_skb->next;
2695 st->frag_idx = 0;
2696 goto next_skb;
2697 }
2698
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(skb_seq_read);
2702
2703 /**
2704 * skb_abort_seq_read - Abort a sequential read of skb data
2705 * @st: state variable
2706 *
2707 * Must be called if skb_seq_read() was not called until it
2708 * returned 0.
2709 */
2710 void skb_abort_seq_read(struct skb_seq_state *st)
2711 {
2712 if (st->frag_data)
2713 kunmap_atomic(st->frag_data);
2714 }
2715 EXPORT_SYMBOL(skb_abort_seq_read);
2716
2717 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2718
2719 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2720 struct ts_config *conf,
2721 struct ts_state *state)
2722 {
2723 return skb_seq_read(offset, text, TS_SKB_CB(state));
2724 }
2725
2726 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2727 {
2728 skb_abort_seq_read(TS_SKB_CB(state));
2729 }
2730
2731 /**
2732 * skb_find_text - Find a text pattern in skb data
2733 * @skb: the buffer to look in
2734 * @from: search offset
2735 * @to: search limit
2736 * @config: textsearch configuration
2737 * @state: uninitialized textsearch state variable
2738 *
2739 * Finds a pattern in the skb data according to the specified
2740 * textsearch configuration. Use textsearch_next() to retrieve
2741 * subsequent occurrences of the pattern. Returns the offset
2742 * to the first occurrence or UINT_MAX if no match was found.
2743 */
2744 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2745 unsigned int to, struct ts_config *config,
2746 struct ts_state *state)
2747 {
2748 unsigned int ret;
2749
2750 config->get_next_block = skb_ts_get_next_block;
2751 config->finish = skb_ts_finish;
2752
2753 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2754
2755 ret = textsearch_find(config, state);
2756 return (ret <= to - from ? ret : UINT_MAX);
2757 }
2758 EXPORT_SYMBOL(skb_find_text);
2759
2760 /**
2761 * skb_append_datato_frags - append the user data to a skb
2762 * @sk: sock structure
2763 * @skb: skb structure to be appened with user data.
2764 * @getfrag: call back function to be used for getting the user data
2765 * @from: pointer to user message iov
2766 * @length: length of the iov message
2767 *
2768 * Description: This procedure append the user data in the fragment part
2769 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2770 */
2771 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2772 int (*getfrag)(void *from, char *to, int offset,
2773 int len, int odd, struct sk_buff *skb),
2774 void *from, int length)
2775 {
2776 int frg_cnt = skb_shinfo(skb)->nr_frags;
2777 int copy;
2778 int offset = 0;
2779 int ret;
2780 struct page_frag *pfrag = &current->task_frag;
2781
2782 do {
2783 /* Return error if we don't have space for new frag */
2784 if (frg_cnt >= MAX_SKB_FRAGS)
2785 return -EMSGSIZE;
2786
2787 if (!sk_page_frag_refill(sk, pfrag))
2788 return -ENOMEM;
2789
2790 /* copy the user data to page */
2791 copy = min_t(int, length, pfrag->size - pfrag->offset);
2792
2793 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2794 offset, copy, 0, skb);
2795 if (ret < 0)
2796 return -EFAULT;
2797
2798 /* copy was successful so update the size parameters */
2799 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2800 copy);
2801 frg_cnt++;
2802 pfrag->offset += copy;
2803 get_page(pfrag->page);
2804
2805 skb->truesize += copy;
2806 atomic_add(copy, &sk->sk_wmem_alloc);
2807 skb->len += copy;
2808 skb->data_len += copy;
2809 offset += copy;
2810 length -= copy;
2811
2812 } while (length > 0);
2813
2814 return 0;
2815 }
2816 EXPORT_SYMBOL(skb_append_datato_frags);
2817
2818 /**
2819 * skb_pull_rcsum - pull skb and update receive checksum
2820 * @skb: buffer to update
2821 * @len: length of data pulled
2822 *
2823 * This function performs an skb_pull on the packet and updates
2824 * the CHECKSUM_COMPLETE checksum. It should be used on
2825 * receive path processing instead of skb_pull unless you know
2826 * that the checksum difference is zero (e.g., a valid IP header)
2827 * or you are setting ip_summed to CHECKSUM_NONE.
2828 */
2829 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2830 {
2831 BUG_ON(len > skb->len);
2832 skb->len -= len;
2833 BUG_ON(skb->len < skb->data_len);
2834 skb_postpull_rcsum(skb, skb->data, len);
2835 return skb->data += len;
2836 }
2837 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2838
2839 /**
2840 * skb_segment - Perform protocol segmentation on skb.
2841 * @skb: buffer to segment
2842 * @features: features for the output path (see dev->features)
2843 *
2844 * This function performs segmentation on the given skb. It returns
2845 * a pointer to the first in a list of new skbs for the segments.
2846 * In case of error it returns ERR_PTR(err).
2847 */
2848 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2849 {
2850 struct sk_buff *segs = NULL;
2851 struct sk_buff *tail = NULL;
2852 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2853 skb_frag_t *skb_frag = skb_shinfo(skb)->frags;
2854 unsigned int mss = skb_shinfo(skb)->gso_size;
2855 unsigned int doffset = skb->data - skb_mac_header(skb);
2856 unsigned int offset = doffset;
2857 unsigned int tnl_hlen = skb_tnl_header_len(skb);
2858 unsigned int headroom;
2859 unsigned int len;
2860 __be16 proto;
2861 bool csum;
2862 int sg = !!(features & NETIF_F_SG);
2863 int nfrags = skb_shinfo(skb)->nr_frags;
2864 int err = -ENOMEM;
2865 int i = 0;
2866 int pos;
2867
2868 proto = skb_network_protocol(skb);
2869 if (unlikely(!proto))
2870 return ERR_PTR(-EINVAL);
2871
2872 csum = !!can_checksum_protocol(features, proto);
2873 __skb_push(skb, doffset);
2874 headroom = skb_headroom(skb);
2875 pos = skb_headlen(skb);
2876
2877 do {
2878 struct sk_buff *nskb;
2879 skb_frag_t *frag;
2880 int hsize;
2881 int size;
2882
2883 len = skb->len - offset;
2884 if (len > mss)
2885 len = mss;
2886
2887 hsize = skb_headlen(skb) - offset;
2888 if (hsize < 0)
2889 hsize = 0;
2890 if (hsize > len || !sg)
2891 hsize = len;
2892
2893 if (!hsize && i >= nfrags && skb_headlen(fskb) &&
2894 (skb_headlen(fskb) == len || sg)) {
2895 BUG_ON(skb_headlen(fskb) > len);
2896
2897 i = 0;
2898 nfrags = skb_shinfo(fskb)->nr_frags;
2899 skb_frag = skb_shinfo(fskb)->frags;
2900 pos += skb_headlen(fskb);
2901
2902 while (pos < offset + len) {
2903 BUG_ON(i >= nfrags);
2904
2905 size = skb_frag_size(skb_frag);
2906 if (pos + size > offset + len)
2907 break;
2908
2909 i++;
2910 pos += size;
2911 skb_frag++;
2912 }
2913
2914 nskb = skb_clone(fskb, GFP_ATOMIC);
2915 fskb = fskb->next;
2916
2917 if (unlikely(!nskb))
2918 goto err;
2919
2920 if (unlikely(pskb_trim(nskb, len))) {
2921 kfree_skb(nskb);
2922 goto err;
2923 }
2924
2925 hsize = skb_end_offset(nskb);
2926 if (skb_cow_head(nskb, doffset + headroom)) {
2927 kfree_skb(nskb);
2928 goto err;
2929 }
2930
2931 nskb->truesize += skb_end_offset(nskb) - hsize;
2932 skb_release_head_state(nskb);
2933 __skb_push(nskb, doffset);
2934 } else {
2935 nskb = __alloc_skb(hsize + doffset + headroom,
2936 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2937 NUMA_NO_NODE);
2938
2939 if (unlikely(!nskb))
2940 goto err;
2941
2942 skb_reserve(nskb, headroom);
2943 __skb_put(nskb, doffset);
2944 }
2945
2946 if (segs)
2947 tail->next = nskb;
2948 else
2949 segs = nskb;
2950 tail = nskb;
2951
2952 __copy_skb_header(nskb, skb);
2953 nskb->mac_len = skb->mac_len;
2954
2955 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2956
2957 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2958 nskb->data - tnl_hlen,
2959 doffset + tnl_hlen);
2960
2961 if (nskb->len == len + doffset)
2962 goto perform_csum_check;
2963
2964 if (!sg) {
2965 nskb->ip_summed = CHECKSUM_NONE;
2966 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2967 skb_put(nskb, len),
2968 len, 0);
2969 continue;
2970 }
2971
2972 frag = skb_shinfo(nskb)->frags;
2973
2974 skb_copy_from_linear_data_offset(skb, offset,
2975 skb_put(nskb, hsize), hsize);
2976
2977 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2978
2979 while (pos < offset + len) {
2980 if (i >= nfrags) {
2981 BUG_ON(skb_headlen(fskb));
2982
2983 i = 0;
2984 nfrags = skb_shinfo(fskb)->nr_frags;
2985 skb_frag = skb_shinfo(fskb)->frags;
2986
2987 BUG_ON(!nfrags);
2988
2989 fskb = fskb->next;
2990 }
2991
2992 if (unlikely(skb_shinfo(nskb)->nr_frags >=
2993 MAX_SKB_FRAGS)) {
2994 net_warn_ratelimited(
2995 "skb_segment: too many frags: %u %u\n",
2996 pos, mss);
2997 goto err;
2998 }
2999
3000 *frag = *skb_frag;
3001 __skb_frag_ref(frag);
3002 size = skb_frag_size(frag);
3003
3004 if (pos < offset) {
3005 frag->page_offset += offset - pos;
3006 skb_frag_size_sub(frag, offset - pos);
3007 }
3008
3009 skb_shinfo(nskb)->nr_frags++;
3010
3011 if (pos + size <= offset + len) {
3012 i++;
3013 skb_frag++;
3014 pos += size;
3015 } else {
3016 skb_frag_size_sub(frag, pos + size - (offset + len));
3017 goto skip_fraglist;
3018 }
3019
3020 frag++;
3021 }
3022
3023 skip_fraglist:
3024 nskb->data_len = len - hsize;
3025 nskb->len += nskb->data_len;
3026 nskb->truesize += nskb->data_len;
3027
3028 perform_csum_check:
3029 if (!csum) {
3030 nskb->csum = skb_checksum(nskb, doffset,
3031 nskb->len - doffset, 0);
3032 nskb->ip_summed = CHECKSUM_NONE;
3033 }
3034 } while ((offset += len) < skb->len);
3035
3036 return segs;
3037
3038 err:
3039 kfree_skb_list(segs);
3040 return ERR_PTR(err);
3041 }
3042 EXPORT_SYMBOL_GPL(skb_segment);
3043
3044 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3045 {
3046 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3047 unsigned int offset = skb_gro_offset(skb);
3048 unsigned int headlen = skb_headlen(skb);
3049 struct sk_buff *nskb, *lp, *p = *head;
3050 unsigned int len = skb_gro_len(skb);
3051 unsigned int delta_truesize;
3052 unsigned int headroom;
3053
3054 if (unlikely(p->len + len >= 65536))
3055 return -E2BIG;
3056
3057 lp = NAPI_GRO_CB(p)->last ?: p;
3058 pinfo = skb_shinfo(lp);
3059
3060 if (headlen <= offset) {
3061 skb_frag_t *frag;
3062 skb_frag_t *frag2;
3063 int i = skbinfo->nr_frags;
3064 int nr_frags = pinfo->nr_frags + i;
3065
3066 if (nr_frags > MAX_SKB_FRAGS)
3067 goto merge;
3068
3069 offset -= headlen;
3070 pinfo->nr_frags = nr_frags;
3071 skbinfo->nr_frags = 0;
3072
3073 frag = pinfo->frags + nr_frags;
3074 frag2 = skbinfo->frags + i;
3075 do {
3076 *--frag = *--frag2;
3077 } while (--i);
3078
3079 frag->page_offset += offset;
3080 skb_frag_size_sub(frag, offset);
3081
3082 /* all fragments truesize : remove (head size + sk_buff) */
3083 delta_truesize = skb->truesize -
3084 SKB_TRUESIZE(skb_end_offset(skb));
3085
3086 skb->truesize -= skb->data_len;
3087 skb->len -= skb->data_len;
3088 skb->data_len = 0;
3089
3090 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3091 goto done;
3092 } else if (skb->head_frag) {
3093 int nr_frags = pinfo->nr_frags;
3094 skb_frag_t *frag = pinfo->frags + nr_frags;
3095 struct page *page = virt_to_head_page(skb->head);
3096 unsigned int first_size = headlen - offset;
3097 unsigned int first_offset;
3098
3099 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3100 goto merge;
3101
3102 first_offset = skb->data -
3103 (unsigned char *)page_address(page) +
3104 offset;
3105
3106 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3107
3108 frag->page.p = page;
3109 frag->page_offset = first_offset;
3110 skb_frag_size_set(frag, first_size);
3111
3112 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3113 /* We dont need to clear skbinfo->nr_frags here */
3114
3115 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3116 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3117 goto done;
3118 }
3119 if (pinfo->frag_list)
3120 goto merge;
3121 if (skb_gro_len(p) != pinfo->gso_size)
3122 return -E2BIG;
3123
3124 headroom = skb_headroom(p);
3125 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3126 if (unlikely(!nskb))
3127 return -ENOMEM;
3128
3129 __copy_skb_header(nskb, p);
3130 nskb->mac_len = p->mac_len;
3131
3132 skb_reserve(nskb, headroom);
3133 __skb_put(nskb, skb_gro_offset(p));
3134
3135 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3136 skb_set_network_header(nskb, skb_network_offset(p));
3137 skb_set_transport_header(nskb, skb_transport_offset(p));
3138
3139 __skb_pull(p, skb_gro_offset(p));
3140 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3141 p->data - skb_mac_header(p));
3142
3143 skb_shinfo(nskb)->frag_list = p;
3144 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3145 pinfo->gso_size = 0;
3146 skb_header_release(p);
3147 NAPI_GRO_CB(nskb)->last = p;
3148
3149 nskb->data_len += p->len;
3150 nskb->truesize += p->truesize;
3151 nskb->len += p->len;
3152
3153 *head = nskb;
3154 nskb->next = p->next;
3155 p->next = NULL;
3156
3157 p = nskb;
3158
3159 merge:
3160 delta_truesize = skb->truesize;
3161 if (offset > headlen) {
3162 unsigned int eat = offset - headlen;
3163
3164 skbinfo->frags[0].page_offset += eat;
3165 skb_frag_size_sub(&skbinfo->frags[0], eat);
3166 skb->data_len -= eat;
3167 skb->len -= eat;
3168 offset = headlen;
3169 }
3170
3171 __skb_pull(skb, offset);
3172
3173 if (!NAPI_GRO_CB(p)->last)
3174 skb_shinfo(p)->frag_list = skb;
3175 else
3176 NAPI_GRO_CB(p)->last->next = skb;
3177 NAPI_GRO_CB(p)->last = skb;
3178 skb_header_release(skb);
3179 lp = p;
3180
3181 done:
3182 NAPI_GRO_CB(p)->count++;
3183 p->data_len += len;
3184 p->truesize += delta_truesize;
3185 p->len += len;
3186 if (lp != p) {
3187 lp->data_len += len;
3188 lp->truesize += delta_truesize;
3189 lp->len += len;
3190 }
3191 NAPI_GRO_CB(skb)->same_flow = 1;
3192 return 0;
3193 }
3194 EXPORT_SYMBOL_GPL(skb_gro_receive);
3195
3196 void __init skb_init(void)
3197 {
3198 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3199 sizeof(struct sk_buff),
3200 0,
3201 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3202 NULL);
3203 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3204 (2*sizeof(struct sk_buff)) +
3205 sizeof(atomic_t),
3206 0,
3207 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3208 NULL);
3209 }
3210
3211 /**
3212 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3213 * @skb: Socket buffer containing the buffers to be mapped
3214 * @sg: The scatter-gather list to map into
3215 * @offset: The offset into the buffer's contents to start mapping
3216 * @len: Length of buffer space to be mapped
3217 *
3218 * Fill the specified scatter-gather list with mappings/pointers into a
3219 * region of the buffer space attached to a socket buffer.
3220 */
3221 static int
3222 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3223 {
3224 int start = skb_headlen(skb);
3225 int i, copy = start - offset;
3226 struct sk_buff *frag_iter;
3227 int elt = 0;
3228
3229 if (copy > 0) {
3230 if (copy > len)
3231 copy = len;
3232 sg_set_buf(sg, skb->data + offset, copy);
3233 elt++;
3234 if ((len -= copy) == 0)
3235 return elt;
3236 offset += copy;
3237 }
3238
3239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3240 int end;
3241
3242 WARN_ON(start > offset + len);
3243
3244 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3245 if ((copy = end - offset) > 0) {
3246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3247
3248 if (copy > len)
3249 copy = len;
3250 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3251 frag->page_offset+offset-start);
3252 elt++;
3253 if (!(len -= copy))
3254 return elt;
3255 offset += copy;
3256 }
3257 start = end;
3258 }
3259
3260 skb_walk_frags(skb, frag_iter) {
3261 int end;
3262
3263 WARN_ON(start > offset + len);
3264
3265 end = start + frag_iter->len;
3266 if ((copy = end - offset) > 0) {
3267 if (copy > len)
3268 copy = len;
3269 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3270 copy);
3271 if ((len -= copy) == 0)
3272 return elt;
3273 offset += copy;
3274 }
3275 start = end;
3276 }
3277 BUG_ON(len);
3278 return elt;
3279 }
3280
3281 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3282 {
3283 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3284
3285 sg_mark_end(&sg[nsg - 1]);
3286
3287 return nsg;
3288 }
3289 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3290
3291 /**
3292 * skb_cow_data - Check that a socket buffer's data buffers are writable
3293 * @skb: The socket buffer to check.
3294 * @tailbits: Amount of trailing space to be added
3295 * @trailer: Returned pointer to the skb where the @tailbits space begins
3296 *
3297 * Make sure that the data buffers attached to a socket buffer are
3298 * writable. If they are not, private copies are made of the data buffers
3299 * and the socket buffer is set to use these instead.
3300 *
3301 * If @tailbits is given, make sure that there is space to write @tailbits
3302 * bytes of data beyond current end of socket buffer. @trailer will be
3303 * set to point to the skb in which this space begins.
3304 *
3305 * The number of scatterlist elements required to completely map the
3306 * COW'd and extended socket buffer will be returned.
3307 */
3308 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3309 {
3310 int copyflag;
3311 int elt;
3312 struct sk_buff *skb1, **skb_p;
3313
3314 /* If skb is cloned or its head is paged, reallocate
3315 * head pulling out all the pages (pages are considered not writable
3316 * at the moment even if they are anonymous).
3317 */
3318 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3319 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3320 return -ENOMEM;
3321
3322 /* Easy case. Most of packets will go this way. */
3323 if (!skb_has_frag_list(skb)) {
3324 /* A little of trouble, not enough of space for trailer.
3325 * This should not happen, when stack is tuned to generate
3326 * good frames. OK, on miss we reallocate and reserve even more
3327 * space, 128 bytes is fair. */
3328
3329 if (skb_tailroom(skb) < tailbits &&
3330 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3331 return -ENOMEM;
3332
3333 /* Voila! */
3334 *trailer = skb;
3335 return 1;
3336 }
3337
3338 /* Misery. We are in troubles, going to mincer fragments... */
3339
3340 elt = 1;
3341 skb_p = &skb_shinfo(skb)->frag_list;
3342 copyflag = 0;
3343
3344 while ((skb1 = *skb_p) != NULL) {
3345 int ntail = 0;
3346
3347 /* The fragment is partially pulled by someone,
3348 * this can happen on input. Copy it and everything
3349 * after it. */
3350
3351 if (skb_shared(skb1))
3352 copyflag = 1;
3353
3354 /* If the skb is the last, worry about trailer. */
3355
3356 if (skb1->next == NULL && tailbits) {
3357 if (skb_shinfo(skb1)->nr_frags ||
3358 skb_has_frag_list(skb1) ||
3359 skb_tailroom(skb1) < tailbits)
3360 ntail = tailbits + 128;
3361 }
3362
3363 if (copyflag ||
3364 skb_cloned(skb1) ||
3365 ntail ||
3366 skb_shinfo(skb1)->nr_frags ||
3367 skb_has_frag_list(skb1)) {
3368 struct sk_buff *skb2;
3369
3370 /* Fuck, we are miserable poor guys... */
3371 if (ntail == 0)
3372 skb2 = skb_copy(skb1, GFP_ATOMIC);
3373 else
3374 skb2 = skb_copy_expand(skb1,
3375 skb_headroom(skb1),
3376 ntail,
3377 GFP_ATOMIC);
3378 if (unlikely(skb2 == NULL))
3379 return -ENOMEM;
3380
3381 if (skb1->sk)
3382 skb_set_owner_w(skb2, skb1->sk);
3383
3384 /* Looking around. Are we still alive?
3385 * OK, link new skb, drop old one */
3386
3387 skb2->next = skb1->next;
3388 *skb_p = skb2;
3389 kfree_skb(skb1);
3390 skb1 = skb2;
3391 }
3392 elt++;
3393 *trailer = skb1;
3394 skb_p = &skb1->next;
3395 }
3396
3397 return elt;
3398 }
3399 EXPORT_SYMBOL_GPL(skb_cow_data);
3400
3401 static void sock_rmem_free(struct sk_buff *skb)
3402 {
3403 struct sock *sk = skb->sk;
3404
3405 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3406 }
3407
3408 /*
3409 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3410 */
3411 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3412 {
3413 int len = skb->len;
3414
3415 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3416 (unsigned int)sk->sk_rcvbuf)
3417 return -ENOMEM;
3418
3419 skb_orphan(skb);
3420 skb->sk = sk;
3421 skb->destructor = sock_rmem_free;
3422 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3423
3424 /* before exiting rcu section, make sure dst is refcounted */
3425 skb_dst_force(skb);
3426
3427 skb_queue_tail(&sk->sk_error_queue, skb);
3428 if (!sock_flag(sk, SOCK_DEAD))
3429 sk->sk_data_ready(sk, len);
3430 return 0;
3431 }
3432 EXPORT_SYMBOL(sock_queue_err_skb);
3433
3434 void skb_tstamp_tx(struct sk_buff *orig_skb,
3435 struct skb_shared_hwtstamps *hwtstamps)
3436 {
3437 struct sock *sk = orig_skb->sk;
3438 struct sock_exterr_skb *serr;
3439 struct sk_buff *skb;
3440 int err;
3441
3442 if (!sk)
3443 return;
3444
3445 if (hwtstamps) {
3446 *skb_hwtstamps(orig_skb) =
3447 *hwtstamps;
3448 } else {
3449 /*
3450 * no hardware time stamps available,
3451 * so keep the shared tx_flags and only
3452 * store software time stamp
3453 */
3454 orig_skb->tstamp = ktime_get_real();
3455 }
3456
3457 skb = skb_clone(orig_skb, GFP_ATOMIC);
3458 if (!skb)
3459 return;
3460
3461 serr = SKB_EXT_ERR(skb);
3462 memset(serr, 0, sizeof(*serr));
3463 serr->ee.ee_errno = ENOMSG;
3464 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3465
3466 err = sock_queue_err_skb(sk, skb);
3467
3468 if (err)
3469 kfree_skb(skb);
3470 }
3471 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3472
3473 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3474 {
3475 struct sock *sk = skb->sk;
3476 struct sock_exterr_skb *serr;
3477 int err;
3478
3479 skb->wifi_acked_valid = 1;
3480 skb->wifi_acked = acked;
3481
3482 serr = SKB_EXT_ERR(skb);
3483 memset(serr, 0, sizeof(*serr));
3484 serr->ee.ee_errno = ENOMSG;
3485 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3486
3487 err = sock_queue_err_skb(sk, skb);
3488 if (err)
3489 kfree_skb(skb);
3490 }
3491 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3492
3493
3494 /**
3495 * skb_partial_csum_set - set up and verify partial csum values for packet
3496 * @skb: the skb to set
3497 * @start: the number of bytes after skb->data to start checksumming.
3498 * @off: the offset from start to place the checksum.
3499 *
3500 * For untrusted partially-checksummed packets, we need to make sure the values
3501 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3502 *
3503 * This function checks and sets those values and skb->ip_summed: if this
3504 * returns false you should drop the packet.
3505 */
3506 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3507 {
3508 if (unlikely(start > skb_headlen(skb)) ||
3509 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3510 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3511 start, off, skb_headlen(skb));
3512 return false;
3513 }
3514 skb->ip_summed = CHECKSUM_PARTIAL;
3515 skb->csum_start = skb_headroom(skb) + start;
3516 skb->csum_offset = off;
3517 skb_set_transport_header(skb, start);
3518 return true;
3519 }
3520 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3521
3522 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3523 unsigned int max)
3524 {
3525 if (skb_headlen(skb) >= len)
3526 return 0;
3527
3528 /* If we need to pullup then pullup to the max, so we
3529 * won't need to do it again.
3530 */
3531 if (max > skb->len)
3532 max = skb->len;
3533
3534 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3535 return -ENOMEM;
3536
3537 if (skb_headlen(skb) < len)
3538 return -EPROTO;
3539
3540 return 0;
3541 }
3542
3543 /* This value should be large enough to cover a tagged ethernet header plus
3544 * maximally sized IP and TCP or UDP headers.
3545 */
3546 #define MAX_IP_HDR_LEN 128
3547
3548 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate)
3549 {
3550 unsigned int off;
3551 bool fragment;
3552 int err;
3553
3554 fragment = false;
3555
3556 err = skb_maybe_pull_tail(skb,
3557 sizeof(struct iphdr),
3558 MAX_IP_HDR_LEN);
3559 if (err < 0)
3560 goto out;
3561
3562 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3563 fragment = true;
3564
3565 off = ip_hdrlen(skb);
3566
3567 err = -EPROTO;
3568
3569 if (fragment)
3570 goto out;
3571
3572 switch (ip_hdr(skb)->protocol) {
3573 case IPPROTO_TCP:
3574 err = skb_maybe_pull_tail(skb,
3575 off + sizeof(struct tcphdr),
3576 MAX_IP_HDR_LEN);
3577 if (err < 0)
3578 goto out;
3579
3580 if (!skb_partial_csum_set(skb, off,
3581 offsetof(struct tcphdr, check))) {
3582 err = -EPROTO;
3583 goto out;
3584 }
3585
3586 if (recalculate)
3587 tcp_hdr(skb)->check =
3588 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3589 ip_hdr(skb)->daddr,
3590 skb->len - off,
3591 IPPROTO_TCP, 0);
3592 break;
3593 case IPPROTO_UDP:
3594 err = skb_maybe_pull_tail(skb,
3595 off + sizeof(struct udphdr),
3596 MAX_IP_HDR_LEN);
3597 if (err < 0)
3598 goto out;
3599
3600 if (!skb_partial_csum_set(skb, off,
3601 offsetof(struct udphdr, check))) {
3602 err = -EPROTO;
3603 goto out;
3604 }
3605
3606 if (recalculate)
3607 udp_hdr(skb)->check =
3608 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3609 ip_hdr(skb)->daddr,
3610 skb->len - off,
3611 IPPROTO_UDP, 0);
3612 break;
3613 default:
3614 goto out;
3615 }
3616
3617 err = 0;
3618
3619 out:
3620 return err;
3621 }
3622
3623 /* This value should be large enough to cover a tagged ethernet header plus
3624 * an IPv6 header, all options, and a maximal TCP or UDP header.
3625 */
3626 #define MAX_IPV6_HDR_LEN 256
3627
3628 #define OPT_HDR(type, skb, off) \
3629 (type *)(skb_network_header(skb) + (off))
3630
3631 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3632 {
3633 int err;
3634 u8 nexthdr;
3635 unsigned int off;
3636 unsigned int len;
3637 bool fragment;
3638 bool done;
3639
3640 fragment = false;
3641 done = false;
3642
3643 off = sizeof(struct ipv6hdr);
3644
3645 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3646 if (err < 0)
3647 goto out;
3648
3649 nexthdr = ipv6_hdr(skb)->nexthdr;
3650
3651 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3652 while (off <= len && !done) {
3653 switch (nexthdr) {
3654 case IPPROTO_DSTOPTS:
3655 case IPPROTO_HOPOPTS:
3656 case IPPROTO_ROUTING: {
3657 struct ipv6_opt_hdr *hp;
3658
3659 err = skb_maybe_pull_tail(skb,
3660 off +
3661 sizeof(struct ipv6_opt_hdr),
3662 MAX_IPV6_HDR_LEN);
3663 if (err < 0)
3664 goto out;
3665
3666 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3667 nexthdr = hp->nexthdr;
3668 off += ipv6_optlen(hp);
3669 break;
3670 }
3671 case IPPROTO_AH: {
3672 struct ip_auth_hdr *hp;
3673
3674 err = skb_maybe_pull_tail(skb,
3675 off +
3676 sizeof(struct ip_auth_hdr),
3677 MAX_IPV6_HDR_LEN);
3678 if (err < 0)
3679 goto out;
3680
3681 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3682 nexthdr = hp->nexthdr;
3683 off += ipv6_authlen(hp);
3684 break;
3685 }
3686 case IPPROTO_FRAGMENT: {
3687 struct frag_hdr *hp;
3688
3689 err = skb_maybe_pull_tail(skb,
3690 off +
3691 sizeof(struct frag_hdr),
3692 MAX_IPV6_HDR_LEN);
3693 if (err < 0)
3694 goto out;
3695
3696 hp = OPT_HDR(struct frag_hdr, skb, off);
3697
3698 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3699 fragment = true;
3700
3701 nexthdr = hp->nexthdr;
3702 off += sizeof(struct frag_hdr);
3703 break;
3704 }
3705 default:
3706 done = true;
3707 break;
3708 }
3709 }
3710
3711 err = -EPROTO;
3712
3713 if (!done || fragment)
3714 goto out;
3715
3716 switch (nexthdr) {
3717 case IPPROTO_TCP:
3718 err = skb_maybe_pull_tail(skb,
3719 off + sizeof(struct tcphdr),
3720 MAX_IPV6_HDR_LEN);
3721 if (err < 0)
3722 goto out;
3723
3724 if (!skb_partial_csum_set(skb, off,
3725 offsetof(struct tcphdr, check))) {
3726 err = -EPROTO;
3727 goto out;
3728 }
3729
3730 if (recalculate)
3731 tcp_hdr(skb)->check =
3732 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3733 &ipv6_hdr(skb)->daddr,
3734 skb->len - off,
3735 IPPROTO_TCP, 0);
3736 break;
3737 case IPPROTO_UDP:
3738 err = skb_maybe_pull_tail(skb,
3739 off + sizeof(struct udphdr),
3740 MAX_IPV6_HDR_LEN);
3741 if (err < 0)
3742 goto out;
3743
3744 if (!skb_partial_csum_set(skb, off,
3745 offsetof(struct udphdr, check))) {
3746 err = -EPROTO;
3747 goto out;
3748 }
3749
3750 if (recalculate)
3751 udp_hdr(skb)->check =
3752 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3753 &ipv6_hdr(skb)->daddr,
3754 skb->len - off,
3755 IPPROTO_UDP, 0);
3756 break;
3757 default:
3758 goto out;
3759 }
3760
3761 err = 0;
3762
3763 out:
3764 return err;
3765 }
3766
3767 /**
3768 * skb_checksum_setup - set up partial checksum offset
3769 * @skb: the skb to set up
3770 * @recalculate: if true the pseudo-header checksum will be recalculated
3771 */
3772 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3773 {
3774 int err;
3775
3776 switch (skb->protocol) {
3777 case htons(ETH_P_IP):
3778 err = skb_checksum_setup_ip(skb, recalculate);
3779 break;
3780
3781 case htons(ETH_P_IPV6):
3782 err = skb_checksum_setup_ipv6(skb, recalculate);
3783 break;
3784
3785 default:
3786 err = -EPROTO;
3787 break;
3788 }
3789
3790 return err;
3791 }
3792 EXPORT_SYMBOL(skb_checksum_setup);
3793
3794 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3795 {
3796 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3797 skb->dev->name);
3798 }
3799 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3800
3801 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3802 {
3803 if (head_stolen) {
3804 skb_release_head_state(skb);
3805 kmem_cache_free(skbuff_head_cache, skb);
3806 } else {
3807 __kfree_skb(skb);
3808 }
3809 }
3810 EXPORT_SYMBOL(kfree_skb_partial);
3811
3812 /**
3813 * skb_try_coalesce - try to merge skb to prior one
3814 * @to: prior buffer
3815 * @from: buffer to add
3816 * @fragstolen: pointer to boolean
3817 * @delta_truesize: how much more was allocated than was requested
3818 */
3819 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3820 bool *fragstolen, int *delta_truesize)
3821 {
3822 int i, delta, len = from->len;
3823
3824 *fragstolen = false;
3825
3826 if (skb_cloned(to))
3827 return false;
3828
3829 if (len <= skb_tailroom(to)) {
3830 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3831 *delta_truesize = 0;
3832 return true;
3833 }
3834
3835 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3836 return false;
3837
3838 if (skb_headlen(from) != 0) {
3839 struct page *page;
3840 unsigned int offset;
3841
3842 if (skb_shinfo(to)->nr_frags +
3843 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3844 return false;
3845
3846 if (skb_head_is_locked(from))
3847 return false;
3848
3849 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3850
3851 page = virt_to_head_page(from->head);
3852 offset = from->data - (unsigned char *)page_address(page);
3853
3854 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3855 page, offset, skb_headlen(from));
3856 *fragstolen = true;
3857 } else {
3858 if (skb_shinfo(to)->nr_frags +
3859 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3860 return false;
3861
3862 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3863 }
3864
3865 WARN_ON_ONCE(delta < len);
3866
3867 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3868 skb_shinfo(from)->frags,
3869 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3870 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3871
3872 if (!skb_cloned(from))
3873 skb_shinfo(from)->nr_frags = 0;
3874
3875 /* if the skb is not cloned this does nothing
3876 * since we set nr_frags to 0.
3877 */
3878 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3879 skb_frag_ref(from, i);
3880
3881 to->truesize += delta;
3882 to->len += len;
3883 to->data_len += len;
3884
3885 *delta_truesize = delta;
3886 return true;
3887 }
3888 EXPORT_SYMBOL(skb_try_coalesce);
3889
3890 /**
3891 * skb_scrub_packet - scrub an skb
3892 *
3893 * @skb: buffer to clean
3894 * @xnet: packet is crossing netns
3895 *
3896 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3897 * into/from a tunnel. Some information have to be cleared during these
3898 * operations.
3899 * skb_scrub_packet can also be used to clean a skb before injecting it in
3900 * another namespace (@xnet == true). We have to clear all information in the
3901 * skb that could impact namespace isolation.
3902 */
3903 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3904 {
3905 if (xnet)
3906 skb_orphan(skb);
3907 skb->tstamp.tv64 = 0;
3908 skb->pkt_type = PACKET_HOST;
3909 skb->skb_iif = 0;
3910 skb->local_df = 0;
3911 skb_dst_drop(skb);
3912 skb->mark = 0;
3913 secpath_reset(skb);
3914 nf_reset(skb);
3915 nf_reset_trace(skb);
3916 }
3917 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3918
3919 /**
3920 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3921 *
3922 * @skb: GSO skb
3923 *
3924 * skb_gso_transport_seglen is used to determine the real size of the
3925 * individual segments, including Layer4 headers (TCP/UDP).
3926 *
3927 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3928 */
3929 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3930 {
3931 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3932 unsigned int hdr_len;
3933
3934 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3935 hdr_len = tcp_hdrlen(skb);
3936 else
3937 hdr_len = sizeof(struct udphdr);
3938 return hdr_len + shinfo->gso_size;
3939 }
3940 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
This page took 0.176907 seconds and 5 git commands to generate.