net: bulk free SKBs that were delay free'ed due to IRQ context
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82
83 /**
84 * skb_panic - private function for out-of-line support
85 * @skb: buffer
86 * @sz: size
87 * @addr: address
88 * @msg: skb_over_panic or skb_under_panic
89 *
90 * Out-of-line support for skb_put() and skb_push().
91 * Called via the wrapper skb_over_panic() or skb_under_panic().
92 * Keep out of line to prevent kernel bloat.
93 * __builtin_return_address is not used because it is not always reliable.
94 */
95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
96 const char msg[])
97 {
98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 msg, addr, skb->len, sz, skb->head, skb->data,
100 (unsigned long)skb->tail, (unsigned long)skb->end,
101 skb->dev ? skb->dev->name : "<NULL>");
102 BUG();
103 }
104
105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
106 {
107 skb_panic(skb, sz, addr, __func__);
108 }
109
110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 skb_panic(skb, sz, addr, __func__);
113 }
114
115 /*
116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117 * the caller if emergency pfmemalloc reserves are being used. If it is and
118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119 * may be used. Otherwise, the packet data may be discarded until enough
120 * memory is free
121 */
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
124
125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
126 unsigned long ip, bool *pfmemalloc)
127 {
128 void *obj;
129 bool ret_pfmemalloc = false;
130
131 /*
132 * Try a regular allocation, when that fails and we're not entitled
133 * to the reserves, fail.
134 */
135 obj = kmalloc_node_track_caller(size,
136 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
137 node);
138 if (obj || !(gfp_pfmemalloc_allowed(flags)))
139 goto out;
140
141 /* Try again but now we are using pfmemalloc reserves */
142 ret_pfmemalloc = true;
143 obj = kmalloc_node_track_caller(size, flags, node);
144
145 out:
146 if (pfmemalloc)
147 *pfmemalloc = ret_pfmemalloc;
148
149 return obj;
150 }
151
152 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
153 * 'private' fields and also do memory statistics to find all the
154 * [BEEP] leaks.
155 *
156 */
157
158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
159 {
160 struct sk_buff *skb;
161
162 /* Get the HEAD */
163 skb = kmem_cache_alloc_node(skbuff_head_cache,
164 gfp_mask & ~__GFP_DMA, node);
165 if (!skb)
166 goto out;
167
168 /*
169 * Only clear those fields we need to clear, not those that we will
170 * actually initialise below. Hence, don't put any more fields after
171 * the tail pointer in struct sk_buff!
172 */
173 memset(skb, 0, offsetof(struct sk_buff, tail));
174 skb->head = NULL;
175 skb->truesize = sizeof(struct sk_buff);
176 atomic_set(&skb->users, 1);
177
178 skb->mac_header = (typeof(skb->mac_header))~0U;
179 out:
180 return skb;
181 }
182
183 /**
184 * __alloc_skb - allocate a network buffer
185 * @size: size to allocate
186 * @gfp_mask: allocation mask
187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188 * instead of head cache and allocate a cloned (child) skb.
189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190 * allocations in case the data is required for writeback
191 * @node: numa node to allocate memory on
192 *
193 * Allocate a new &sk_buff. The returned buffer has no headroom and a
194 * tail room of at least size bytes. The object has a reference count
195 * of one. The return is the buffer. On a failure the return is %NULL.
196 *
197 * Buffers may only be allocated from interrupts using a @gfp_mask of
198 * %GFP_ATOMIC.
199 */
200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
201 int flags, int node)
202 {
203 struct kmem_cache *cache;
204 struct skb_shared_info *shinfo;
205 struct sk_buff *skb;
206 u8 *data;
207 bool pfmemalloc;
208
209 cache = (flags & SKB_ALLOC_FCLONE)
210 ? skbuff_fclone_cache : skbuff_head_cache;
211
212 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
213 gfp_mask |= __GFP_MEMALLOC;
214
215 /* Get the HEAD */
216 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
217 if (!skb)
218 goto out;
219 prefetchw(skb);
220
221 /* We do our best to align skb_shared_info on a separate cache
222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 * Both skb->head and skb_shared_info are cache line aligned.
225 */
226 size = SKB_DATA_ALIGN(size);
227 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
228 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
229 if (!data)
230 goto nodata;
231 /* kmalloc(size) might give us more room than requested.
232 * Put skb_shared_info exactly at the end of allocated zone,
233 * to allow max possible filling before reallocation.
234 */
235 size = SKB_WITH_OVERHEAD(ksize(data));
236 prefetchw(data + size);
237
238 /*
239 * Only clear those fields we need to clear, not those that we will
240 * actually initialise below. Hence, don't put any more fields after
241 * the tail pointer in struct sk_buff!
242 */
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 /* Account for allocated memory : skb + skb->head */
245 skb->truesize = SKB_TRUESIZE(size);
246 skb->pfmemalloc = pfmemalloc;
247 atomic_set(&skb->users, 1);
248 skb->head = data;
249 skb->data = data;
250 skb_reset_tail_pointer(skb);
251 skb->end = skb->tail + size;
252 skb->mac_header = (typeof(skb->mac_header))~0U;
253 skb->transport_header = (typeof(skb->transport_header))~0U;
254
255 /* make sure we initialize shinfo sequentially */
256 shinfo = skb_shinfo(skb);
257 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
258 atomic_set(&shinfo->dataref, 1);
259 kmemcheck_annotate_variable(shinfo->destructor_arg);
260
261 if (flags & SKB_ALLOC_FCLONE) {
262 struct sk_buff_fclones *fclones;
263
264 fclones = container_of(skb, struct sk_buff_fclones, skb1);
265
266 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
267 skb->fclone = SKB_FCLONE_ORIG;
268 atomic_set(&fclones->fclone_ref, 1);
269
270 fclones->skb2.fclone = SKB_FCLONE_CLONE;
271 fclones->skb2.pfmemalloc = pfmemalloc;
272 }
273 out:
274 return skb;
275 nodata:
276 kmem_cache_free(cache, skb);
277 skb = NULL;
278 goto out;
279 }
280 EXPORT_SYMBOL(__alloc_skb);
281
282 /**
283 * __build_skb - build a network buffer
284 * @data: data buffer provided by caller
285 * @frag_size: size of data, or 0 if head was kmalloced
286 *
287 * Allocate a new &sk_buff. Caller provides space holding head and
288 * skb_shared_info. @data must have been allocated by kmalloc() only if
289 * @frag_size is 0, otherwise data should come from the page allocator
290 * or vmalloc()
291 * The return is the new skb buffer.
292 * On a failure the return is %NULL, and @data is not freed.
293 * Notes :
294 * Before IO, driver allocates only data buffer where NIC put incoming frame
295 * Driver should add room at head (NET_SKB_PAD) and
296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
298 * before giving packet to stack.
299 * RX rings only contains data buffers, not full skbs.
300 */
301 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
302 {
303 struct skb_shared_info *shinfo;
304 struct sk_buff *skb;
305 unsigned int size = frag_size ? : ksize(data);
306
307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
308 if (!skb)
309 return NULL;
310
311 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
312
313 memset(skb, 0, offsetof(struct sk_buff, tail));
314 skb->truesize = SKB_TRUESIZE(size);
315 atomic_set(&skb->users, 1);
316 skb->head = data;
317 skb->data = data;
318 skb_reset_tail_pointer(skb);
319 skb->end = skb->tail + size;
320 skb->mac_header = (typeof(skb->mac_header))~0U;
321 skb->transport_header = (typeof(skb->transport_header))~0U;
322
323 /* make sure we initialize shinfo sequentially */
324 shinfo = skb_shinfo(skb);
325 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
326 atomic_set(&shinfo->dataref, 1);
327 kmemcheck_annotate_variable(shinfo->destructor_arg);
328
329 return skb;
330 }
331
332 /* build_skb() is wrapper over __build_skb(), that specifically
333 * takes care of skb->head and skb->pfmemalloc
334 * This means that if @frag_size is not zero, then @data must be backed
335 * by a page fragment, not kmalloc() or vmalloc()
336 */
337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 struct sk_buff *skb = __build_skb(data, frag_size);
340
341 if (skb && frag_size) {
342 skb->head_frag = 1;
343 if (page_is_pfmemalloc(virt_to_head_page(data)))
344 skb->pfmemalloc = 1;
345 }
346 return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349
350 #define NAPI_SKB_CACHE_SIZE 64
351
352 struct napi_alloc_cache {
353 struct page_frag_cache page;
354 size_t skb_count;
355 void *skb_cache[NAPI_SKB_CACHE_SIZE];
356 };
357
358 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
359 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
360
361 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
362 {
363 struct page_frag_cache *nc;
364 unsigned long flags;
365 void *data;
366
367 local_irq_save(flags);
368 nc = this_cpu_ptr(&netdev_alloc_cache);
369 data = __alloc_page_frag(nc, fragsz, gfp_mask);
370 local_irq_restore(flags);
371 return data;
372 }
373
374 /**
375 * netdev_alloc_frag - allocate a page fragment
376 * @fragsz: fragment size
377 *
378 * Allocates a frag from a page for receive buffer.
379 * Uses GFP_ATOMIC allocations.
380 */
381 void *netdev_alloc_frag(unsigned int fragsz)
382 {
383 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
384 }
385 EXPORT_SYMBOL(netdev_alloc_frag);
386
387 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
388 {
389 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
390
391 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
392 }
393
394 void *napi_alloc_frag(unsigned int fragsz)
395 {
396 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
397 }
398 EXPORT_SYMBOL(napi_alloc_frag);
399
400 /**
401 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
402 * @dev: network device to receive on
403 * @len: length to allocate
404 * @gfp_mask: get_free_pages mask, passed to alloc_skb
405 *
406 * Allocate a new &sk_buff and assign it a usage count of one. The
407 * buffer has NET_SKB_PAD headroom built in. Users should allocate
408 * the headroom they think they need without accounting for the
409 * built in space. The built in space is used for optimisations.
410 *
411 * %NULL is returned if there is no free memory.
412 */
413 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
414 gfp_t gfp_mask)
415 {
416 struct page_frag_cache *nc;
417 unsigned long flags;
418 struct sk_buff *skb;
419 bool pfmemalloc;
420 void *data;
421
422 len += NET_SKB_PAD;
423
424 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
425 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
426 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
427 if (!skb)
428 goto skb_fail;
429 goto skb_success;
430 }
431
432 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
433 len = SKB_DATA_ALIGN(len);
434
435 if (sk_memalloc_socks())
436 gfp_mask |= __GFP_MEMALLOC;
437
438 local_irq_save(flags);
439
440 nc = this_cpu_ptr(&netdev_alloc_cache);
441 data = __alloc_page_frag(nc, len, gfp_mask);
442 pfmemalloc = nc->pfmemalloc;
443
444 local_irq_restore(flags);
445
446 if (unlikely(!data))
447 return NULL;
448
449 skb = __build_skb(data, len);
450 if (unlikely(!skb)) {
451 skb_free_frag(data);
452 return NULL;
453 }
454
455 /* use OR instead of assignment to avoid clearing of bits in mask */
456 if (pfmemalloc)
457 skb->pfmemalloc = 1;
458 skb->head_frag = 1;
459
460 skb_success:
461 skb_reserve(skb, NET_SKB_PAD);
462 skb->dev = dev;
463
464 skb_fail:
465 return skb;
466 }
467 EXPORT_SYMBOL(__netdev_alloc_skb);
468
469 /**
470 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
471 * @napi: napi instance this buffer was allocated for
472 * @len: length to allocate
473 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
474 *
475 * Allocate a new sk_buff for use in NAPI receive. This buffer will
476 * attempt to allocate the head from a special reserved region used
477 * only for NAPI Rx allocation. By doing this we can save several
478 * CPU cycles by avoiding having to disable and re-enable IRQs.
479 *
480 * %NULL is returned if there is no free memory.
481 */
482 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
483 gfp_t gfp_mask)
484 {
485 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
486 struct sk_buff *skb;
487 void *data;
488
489 len += NET_SKB_PAD + NET_IP_ALIGN;
490
491 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 if (!skb)
495 goto skb_fail;
496 goto skb_success;
497 }
498
499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 len = SKB_DATA_ALIGN(len);
501
502 if (sk_memalloc_socks())
503 gfp_mask |= __GFP_MEMALLOC;
504
505 data = __alloc_page_frag(&nc->page, len, gfp_mask);
506 if (unlikely(!data))
507 return NULL;
508
509 skb = __build_skb(data, len);
510 if (unlikely(!skb)) {
511 skb_free_frag(data);
512 return NULL;
513 }
514
515 /* use OR instead of assignment to avoid clearing of bits in mask */
516 if (nc->page.pfmemalloc)
517 skb->pfmemalloc = 1;
518 skb->head_frag = 1;
519
520 skb_success:
521 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
522 skb->dev = napi->dev;
523
524 skb_fail:
525 return skb;
526 }
527 EXPORT_SYMBOL(__napi_alloc_skb);
528
529 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
530 int size, unsigned int truesize)
531 {
532 skb_fill_page_desc(skb, i, page, off, size);
533 skb->len += size;
534 skb->data_len += size;
535 skb->truesize += truesize;
536 }
537 EXPORT_SYMBOL(skb_add_rx_frag);
538
539 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
540 unsigned int truesize)
541 {
542 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
543
544 skb_frag_size_add(frag, size);
545 skb->len += size;
546 skb->data_len += size;
547 skb->truesize += truesize;
548 }
549 EXPORT_SYMBOL(skb_coalesce_rx_frag);
550
551 static void skb_drop_list(struct sk_buff **listp)
552 {
553 kfree_skb_list(*listp);
554 *listp = NULL;
555 }
556
557 static inline void skb_drop_fraglist(struct sk_buff *skb)
558 {
559 skb_drop_list(&skb_shinfo(skb)->frag_list);
560 }
561
562 static void skb_clone_fraglist(struct sk_buff *skb)
563 {
564 struct sk_buff *list;
565
566 skb_walk_frags(skb, list)
567 skb_get(list);
568 }
569
570 static void skb_free_head(struct sk_buff *skb)
571 {
572 unsigned char *head = skb->head;
573
574 if (skb->head_frag)
575 skb_free_frag(head);
576 else
577 kfree(head);
578 }
579
580 static void skb_release_data(struct sk_buff *skb)
581 {
582 struct skb_shared_info *shinfo = skb_shinfo(skb);
583 int i;
584
585 if (skb->cloned &&
586 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
587 &shinfo->dataref))
588 return;
589
590 for (i = 0; i < shinfo->nr_frags; i++)
591 __skb_frag_unref(&shinfo->frags[i]);
592
593 /*
594 * If skb buf is from userspace, we need to notify the caller
595 * the lower device DMA has done;
596 */
597 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
598 struct ubuf_info *uarg;
599
600 uarg = shinfo->destructor_arg;
601 if (uarg->callback)
602 uarg->callback(uarg, true);
603 }
604
605 if (shinfo->frag_list)
606 kfree_skb_list(shinfo->frag_list);
607
608 skb_free_head(skb);
609 }
610
611 /*
612 * Free an skbuff by memory without cleaning the state.
613 */
614 static void kfree_skbmem(struct sk_buff *skb)
615 {
616 struct sk_buff_fclones *fclones;
617
618 switch (skb->fclone) {
619 case SKB_FCLONE_UNAVAILABLE:
620 kmem_cache_free(skbuff_head_cache, skb);
621 return;
622
623 case SKB_FCLONE_ORIG:
624 fclones = container_of(skb, struct sk_buff_fclones, skb1);
625
626 /* We usually free the clone (TX completion) before original skb
627 * This test would have no chance to be true for the clone,
628 * while here, branch prediction will be good.
629 */
630 if (atomic_read(&fclones->fclone_ref) == 1)
631 goto fastpath;
632 break;
633
634 default: /* SKB_FCLONE_CLONE */
635 fclones = container_of(skb, struct sk_buff_fclones, skb2);
636 break;
637 }
638 if (!atomic_dec_and_test(&fclones->fclone_ref))
639 return;
640 fastpath:
641 kmem_cache_free(skbuff_fclone_cache, fclones);
642 }
643
644 static void skb_release_head_state(struct sk_buff *skb)
645 {
646 skb_dst_drop(skb);
647 #ifdef CONFIG_XFRM
648 secpath_put(skb->sp);
649 #endif
650 if (skb->destructor) {
651 WARN_ON(in_irq());
652 skb->destructor(skb);
653 }
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 nf_conntrack_put(skb->nfct);
656 #endif
657 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
658 nf_bridge_put(skb->nf_bridge);
659 #endif
660 }
661
662 /* Free everything but the sk_buff shell. */
663 static void skb_release_all(struct sk_buff *skb)
664 {
665 skb_release_head_state(skb);
666 if (likely(skb->head))
667 skb_release_data(skb);
668 }
669
670 /**
671 * __kfree_skb - private function
672 * @skb: buffer
673 *
674 * Free an sk_buff. Release anything attached to the buffer.
675 * Clean the state. This is an internal helper function. Users should
676 * always call kfree_skb
677 */
678
679 void __kfree_skb(struct sk_buff *skb)
680 {
681 skb_release_all(skb);
682 kfree_skbmem(skb);
683 }
684 EXPORT_SYMBOL(__kfree_skb);
685
686 /**
687 * kfree_skb - free an sk_buff
688 * @skb: buffer to free
689 *
690 * Drop a reference to the buffer and free it if the usage count has
691 * hit zero.
692 */
693 void kfree_skb(struct sk_buff *skb)
694 {
695 if (unlikely(!skb))
696 return;
697 if (likely(atomic_read(&skb->users) == 1))
698 smp_rmb();
699 else if (likely(!atomic_dec_and_test(&skb->users)))
700 return;
701 trace_kfree_skb(skb, __builtin_return_address(0));
702 __kfree_skb(skb);
703 }
704 EXPORT_SYMBOL(kfree_skb);
705
706 void kfree_skb_list(struct sk_buff *segs)
707 {
708 while (segs) {
709 struct sk_buff *next = segs->next;
710
711 kfree_skb(segs);
712 segs = next;
713 }
714 }
715 EXPORT_SYMBOL(kfree_skb_list);
716
717 /**
718 * skb_tx_error - report an sk_buff xmit error
719 * @skb: buffer that triggered an error
720 *
721 * Report xmit error if a device callback is tracking this skb.
722 * skb must be freed afterwards.
723 */
724 void skb_tx_error(struct sk_buff *skb)
725 {
726 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
727 struct ubuf_info *uarg;
728
729 uarg = skb_shinfo(skb)->destructor_arg;
730 if (uarg->callback)
731 uarg->callback(uarg, false);
732 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
733 }
734 }
735 EXPORT_SYMBOL(skb_tx_error);
736
737 /**
738 * consume_skb - free an skbuff
739 * @skb: buffer to free
740 *
741 * Drop a ref to the buffer and free it if the usage count has hit zero
742 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
743 * is being dropped after a failure and notes that
744 */
745 void consume_skb(struct sk_buff *skb)
746 {
747 if (unlikely(!skb))
748 return;
749 if (likely(atomic_read(&skb->users) == 1))
750 smp_rmb();
751 else if (likely(!atomic_dec_and_test(&skb->users)))
752 return;
753 trace_consume_skb(skb);
754 __kfree_skb(skb);
755 }
756 EXPORT_SYMBOL(consume_skb);
757
758 void __kfree_skb_flush(void)
759 {
760 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
761
762 /* flush skb_cache if containing objects */
763 if (nc->skb_count) {
764 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
765 nc->skb_cache);
766 nc->skb_count = 0;
767 }
768 }
769
770 static inline void _kfree_skb_defer(struct sk_buff *skb)
771 {
772 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
773
774 /* drop skb->head and call any destructors for packet */
775 skb_release_all(skb);
776
777 /* record skb to CPU local list */
778 nc->skb_cache[nc->skb_count++] = skb;
779
780 #ifdef CONFIG_SLUB
781 /* SLUB writes into objects when freeing */
782 prefetchw(skb);
783 #endif
784
785 /* flush skb_cache if it is filled */
786 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
787 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
788 nc->skb_cache);
789 nc->skb_count = 0;
790 }
791 }
792 void __kfree_skb_defer(struct sk_buff *skb)
793 {
794 _kfree_skb_defer(skb);
795 }
796
797 void napi_consume_skb(struct sk_buff *skb, int budget)
798 {
799 if (unlikely(!skb))
800 return;
801
802 /* if budget is 0 assume netpoll w/ IRQs disabled */
803 if (unlikely(!budget)) {
804 dev_consume_skb_irq(skb);
805 return;
806 }
807
808 if (likely(atomic_read(&skb->users) == 1))
809 smp_rmb();
810 else if (likely(!atomic_dec_and_test(&skb->users)))
811 return;
812 /* if reaching here SKB is ready to free */
813 trace_consume_skb(skb);
814
815 /* if SKB is a clone, don't handle this case */
816 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
817 __kfree_skb(skb);
818 return;
819 }
820
821 _kfree_skb_defer(skb);
822 }
823 EXPORT_SYMBOL(napi_consume_skb);
824
825 /* Make sure a field is enclosed inside headers_start/headers_end section */
826 #define CHECK_SKB_FIELD(field) \
827 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
828 offsetof(struct sk_buff, headers_start)); \
829 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
830 offsetof(struct sk_buff, headers_end)); \
831
832 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
833 {
834 new->tstamp = old->tstamp;
835 /* We do not copy old->sk */
836 new->dev = old->dev;
837 memcpy(new->cb, old->cb, sizeof(old->cb));
838 skb_dst_copy(new, old);
839 #ifdef CONFIG_XFRM
840 new->sp = secpath_get(old->sp);
841 #endif
842 __nf_copy(new, old, false);
843
844 /* Note : this field could be in headers_start/headers_end section
845 * It is not yet because we do not want to have a 16 bit hole
846 */
847 new->queue_mapping = old->queue_mapping;
848
849 memcpy(&new->headers_start, &old->headers_start,
850 offsetof(struct sk_buff, headers_end) -
851 offsetof(struct sk_buff, headers_start));
852 CHECK_SKB_FIELD(protocol);
853 CHECK_SKB_FIELD(csum);
854 CHECK_SKB_FIELD(hash);
855 CHECK_SKB_FIELD(priority);
856 CHECK_SKB_FIELD(skb_iif);
857 CHECK_SKB_FIELD(vlan_proto);
858 CHECK_SKB_FIELD(vlan_tci);
859 CHECK_SKB_FIELD(transport_header);
860 CHECK_SKB_FIELD(network_header);
861 CHECK_SKB_FIELD(mac_header);
862 CHECK_SKB_FIELD(inner_protocol);
863 CHECK_SKB_FIELD(inner_transport_header);
864 CHECK_SKB_FIELD(inner_network_header);
865 CHECK_SKB_FIELD(inner_mac_header);
866 CHECK_SKB_FIELD(mark);
867 #ifdef CONFIG_NETWORK_SECMARK
868 CHECK_SKB_FIELD(secmark);
869 #endif
870 #ifdef CONFIG_NET_RX_BUSY_POLL
871 CHECK_SKB_FIELD(napi_id);
872 #endif
873 #ifdef CONFIG_XPS
874 CHECK_SKB_FIELD(sender_cpu);
875 #endif
876 #ifdef CONFIG_NET_SCHED
877 CHECK_SKB_FIELD(tc_index);
878 #ifdef CONFIG_NET_CLS_ACT
879 CHECK_SKB_FIELD(tc_verd);
880 #endif
881 #endif
882
883 }
884
885 /*
886 * You should not add any new code to this function. Add it to
887 * __copy_skb_header above instead.
888 */
889 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
890 {
891 #define C(x) n->x = skb->x
892
893 n->next = n->prev = NULL;
894 n->sk = NULL;
895 __copy_skb_header(n, skb);
896
897 C(len);
898 C(data_len);
899 C(mac_len);
900 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
901 n->cloned = 1;
902 n->nohdr = 0;
903 n->destructor = NULL;
904 C(tail);
905 C(end);
906 C(head);
907 C(head_frag);
908 C(data);
909 C(truesize);
910 atomic_set(&n->users, 1);
911
912 atomic_inc(&(skb_shinfo(skb)->dataref));
913 skb->cloned = 1;
914
915 return n;
916 #undef C
917 }
918
919 /**
920 * skb_morph - morph one skb into another
921 * @dst: the skb to receive the contents
922 * @src: the skb to supply the contents
923 *
924 * This is identical to skb_clone except that the target skb is
925 * supplied by the user.
926 *
927 * The target skb is returned upon exit.
928 */
929 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
930 {
931 skb_release_all(dst);
932 return __skb_clone(dst, src);
933 }
934 EXPORT_SYMBOL_GPL(skb_morph);
935
936 /**
937 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
938 * @skb: the skb to modify
939 * @gfp_mask: allocation priority
940 *
941 * This must be called on SKBTX_DEV_ZEROCOPY skb.
942 * It will copy all frags into kernel and drop the reference
943 * to userspace pages.
944 *
945 * If this function is called from an interrupt gfp_mask() must be
946 * %GFP_ATOMIC.
947 *
948 * Returns 0 on success or a negative error code on failure
949 * to allocate kernel memory to copy to.
950 */
951 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
952 {
953 int i;
954 int num_frags = skb_shinfo(skb)->nr_frags;
955 struct page *page, *head = NULL;
956 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
957
958 for (i = 0; i < num_frags; i++) {
959 u8 *vaddr;
960 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
961
962 page = alloc_page(gfp_mask);
963 if (!page) {
964 while (head) {
965 struct page *next = (struct page *)page_private(head);
966 put_page(head);
967 head = next;
968 }
969 return -ENOMEM;
970 }
971 vaddr = kmap_atomic(skb_frag_page(f));
972 memcpy(page_address(page),
973 vaddr + f->page_offset, skb_frag_size(f));
974 kunmap_atomic(vaddr);
975 set_page_private(page, (unsigned long)head);
976 head = page;
977 }
978
979 /* skb frags release userspace buffers */
980 for (i = 0; i < num_frags; i++)
981 skb_frag_unref(skb, i);
982
983 uarg->callback(uarg, false);
984
985 /* skb frags point to kernel buffers */
986 for (i = num_frags - 1; i >= 0; i--) {
987 __skb_fill_page_desc(skb, i, head, 0,
988 skb_shinfo(skb)->frags[i].size);
989 head = (struct page *)page_private(head);
990 }
991
992 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
993 return 0;
994 }
995 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
996
997 /**
998 * skb_clone - duplicate an sk_buff
999 * @skb: buffer to clone
1000 * @gfp_mask: allocation priority
1001 *
1002 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1003 * copies share the same packet data but not structure. The new
1004 * buffer has a reference count of 1. If the allocation fails the
1005 * function returns %NULL otherwise the new buffer is returned.
1006 *
1007 * If this function is called from an interrupt gfp_mask() must be
1008 * %GFP_ATOMIC.
1009 */
1010
1011 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1012 {
1013 struct sk_buff_fclones *fclones = container_of(skb,
1014 struct sk_buff_fclones,
1015 skb1);
1016 struct sk_buff *n;
1017
1018 if (skb_orphan_frags(skb, gfp_mask))
1019 return NULL;
1020
1021 if (skb->fclone == SKB_FCLONE_ORIG &&
1022 atomic_read(&fclones->fclone_ref) == 1) {
1023 n = &fclones->skb2;
1024 atomic_set(&fclones->fclone_ref, 2);
1025 } else {
1026 if (skb_pfmemalloc(skb))
1027 gfp_mask |= __GFP_MEMALLOC;
1028
1029 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1030 if (!n)
1031 return NULL;
1032
1033 kmemcheck_annotate_bitfield(n, flags1);
1034 n->fclone = SKB_FCLONE_UNAVAILABLE;
1035 }
1036
1037 return __skb_clone(n, skb);
1038 }
1039 EXPORT_SYMBOL(skb_clone);
1040
1041 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1042 {
1043 /* Only adjust this if it actually is csum_start rather than csum */
1044 if (skb->ip_summed == CHECKSUM_PARTIAL)
1045 skb->csum_start += off;
1046 /* {transport,network,mac}_header and tail are relative to skb->head */
1047 skb->transport_header += off;
1048 skb->network_header += off;
1049 if (skb_mac_header_was_set(skb))
1050 skb->mac_header += off;
1051 skb->inner_transport_header += off;
1052 skb->inner_network_header += off;
1053 skb->inner_mac_header += off;
1054 }
1055
1056 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1057 {
1058 __copy_skb_header(new, old);
1059
1060 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1061 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1062 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1063 }
1064
1065 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1066 {
1067 if (skb_pfmemalloc(skb))
1068 return SKB_ALLOC_RX;
1069 return 0;
1070 }
1071
1072 /**
1073 * skb_copy - create private copy of an sk_buff
1074 * @skb: buffer to copy
1075 * @gfp_mask: allocation priority
1076 *
1077 * Make a copy of both an &sk_buff and its data. This is used when the
1078 * caller wishes to modify the data and needs a private copy of the
1079 * data to alter. Returns %NULL on failure or the pointer to the buffer
1080 * on success. The returned buffer has a reference count of 1.
1081 *
1082 * As by-product this function converts non-linear &sk_buff to linear
1083 * one, so that &sk_buff becomes completely private and caller is allowed
1084 * to modify all the data of returned buffer. This means that this
1085 * function is not recommended for use in circumstances when only
1086 * header is going to be modified. Use pskb_copy() instead.
1087 */
1088
1089 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1090 {
1091 int headerlen = skb_headroom(skb);
1092 unsigned int size = skb_end_offset(skb) + skb->data_len;
1093 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1094 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1095
1096 if (!n)
1097 return NULL;
1098
1099 /* Set the data pointer */
1100 skb_reserve(n, headerlen);
1101 /* Set the tail pointer and length */
1102 skb_put(n, skb->len);
1103
1104 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1105 BUG();
1106
1107 copy_skb_header(n, skb);
1108 return n;
1109 }
1110 EXPORT_SYMBOL(skb_copy);
1111
1112 /**
1113 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1114 * @skb: buffer to copy
1115 * @headroom: headroom of new skb
1116 * @gfp_mask: allocation priority
1117 * @fclone: if true allocate the copy of the skb from the fclone
1118 * cache instead of the head cache; it is recommended to set this
1119 * to true for the cases where the copy will likely be cloned
1120 *
1121 * Make a copy of both an &sk_buff and part of its data, located
1122 * in header. Fragmented data remain shared. This is used when
1123 * the caller wishes to modify only header of &sk_buff and needs
1124 * private copy of the header to alter. Returns %NULL on failure
1125 * or the pointer to the buffer on success.
1126 * The returned buffer has a reference count of 1.
1127 */
1128
1129 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1130 gfp_t gfp_mask, bool fclone)
1131 {
1132 unsigned int size = skb_headlen(skb) + headroom;
1133 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1134 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1135
1136 if (!n)
1137 goto out;
1138
1139 /* Set the data pointer */
1140 skb_reserve(n, headroom);
1141 /* Set the tail pointer and length */
1142 skb_put(n, skb_headlen(skb));
1143 /* Copy the bytes */
1144 skb_copy_from_linear_data(skb, n->data, n->len);
1145
1146 n->truesize += skb->data_len;
1147 n->data_len = skb->data_len;
1148 n->len = skb->len;
1149
1150 if (skb_shinfo(skb)->nr_frags) {
1151 int i;
1152
1153 if (skb_orphan_frags(skb, gfp_mask)) {
1154 kfree_skb(n);
1155 n = NULL;
1156 goto out;
1157 }
1158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1159 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1160 skb_frag_ref(skb, i);
1161 }
1162 skb_shinfo(n)->nr_frags = i;
1163 }
1164
1165 if (skb_has_frag_list(skb)) {
1166 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1167 skb_clone_fraglist(n);
1168 }
1169
1170 copy_skb_header(n, skb);
1171 out:
1172 return n;
1173 }
1174 EXPORT_SYMBOL(__pskb_copy_fclone);
1175
1176 /**
1177 * pskb_expand_head - reallocate header of &sk_buff
1178 * @skb: buffer to reallocate
1179 * @nhead: room to add at head
1180 * @ntail: room to add at tail
1181 * @gfp_mask: allocation priority
1182 *
1183 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1184 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1185 * reference count of 1. Returns zero in the case of success or error,
1186 * if expansion failed. In the last case, &sk_buff is not changed.
1187 *
1188 * All the pointers pointing into skb header may change and must be
1189 * reloaded after call to this function.
1190 */
1191
1192 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1193 gfp_t gfp_mask)
1194 {
1195 int i;
1196 u8 *data;
1197 int size = nhead + skb_end_offset(skb) + ntail;
1198 long off;
1199
1200 BUG_ON(nhead < 0);
1201
1202 if (skb_shared(skb))
1203 BUG();
1204
1205 size = SKB_DATA_ALIGN(size);
1206
1207 if (skb_pfmemalloc(skb))
1208 gfp_mask |= __GFP_MEMALLOC;
1209 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1210 gfp_mask, NUMA_NO_NODE, NULL);
1211 if (!data)
1212 goto nodata;
1213 size = SKB_WITH_OVERHEAD(ksize(data));
1214
1215 /* Copy only real data... and, alas, header. This should be
1216 * optimized for the cases when header is void.
1217 */
1218 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1219
1220 memcpy((struct skb_shared_info *)(data + size),
1221 skb_shinfo(skb),
1222 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1223
1224 /*
1225 * if shinfo is shared we must drop the old head gracefully, but if it
1226 * is not we can just drop the old head and let the existing refcount
1227 * be since all we did is relocate the values
1228 */
1229 if (skb_cloned(skb)) {
1230 /* copy this zero copy skb frags */
1231 if (skb_orphan_frags(skb, gfp_mask))
1232 goto nofrags;
1233 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1234 skb_frag_ref(skb, i);
1235
1236 if (skb_has_frag_list(skb))
1237 skb_clone_fraglist(skb);
1238
1239 skb_release_data(skb);
1240 } else {
1241 skb_free_head(skb);
1242 }
1243 off = (data + nhead) - skb->head;
1244
1245 skb->head = data;
1246 skb->head_frag = 0;
1247 skb->data += off;
1248 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1249 skb->end = size;
1250 off = nhead;
1251 #else
1252 skb->end = skb->head + size;
1253 #endif
1254 skb->tail += off;
1255 skb_headers_offset_update(skb, nhead);
1256 skb->cloned = 0;
1257 skb->hdr_len = 0;
1258 skb->nohdr = 0;
1259 atomic_set(&skb_shinfo(skb)->dataref, 1);
1260 return 0;
1261
1262 nofrags:
1263 kfree(data);
1264 nodata:
1265 return -ENOMEM;
1266 }
1267 EXPORT_SYMBOL(pskb_expand_head);
1268
1269 /* Make private copy of skb with writable head and some headroom */
1270
1271 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1272 {
1273 struct sk_buff *skb2;
1274 int delta = headroom - skb_headroom(skb);
1275
1276 if (delta <= 0)
1277 skb2 = pskb_copy(skb, GFP_ATOMIC);
1278 else {
1279 skb2 = skb_clone(skb, GFP_ATOMIC);
1280 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1281 GFP_ATOMIC)) {
1282 kfree_skb(skb2);
1283 skb2 = NULL;
1284 }
1285 }
1286 return skb2;
1287 }
1288 EXPORT_SYMBOL(skb_realloc_headroom);
1289
1290 /**
1291 * skb_copy_expand - copy and expand sk_buff
1292 * @skb: buffer to copy
1293 * @newheadroom: new free bytes at head
1294 * @newtailroom: new free bytes at tail
1295 * @gfp_mask: allocation priority
1296 *
1297 * Make a copy of both an &sk_buff and its data and while doing so
1298 * allocate additional space.
1299 *
1300 * This is used when the caller wishes to modify the data and needs a
1301 * private copy of the data to alter as well as more space for new fields.
1302 * Returns %NULL on failure or the pointer to the buffer
1303 * on success. The returned buffer has a reference count of 1.
1304 *
1305 * You must pass %GFP_ATOMIC as the allocation priority if this function
1306 * is called from an interrupt.
1307 */
1308 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1309 int newheadroom, int newtailroom,
1310 gfp_t gfp_mask)
1311 {
1312 /*
1313 * Allocate the copy buffer
1314 */
1315 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1316 gfp_mask, skb_alloc_rx_flag(skb),
1317 NUMA_NO_NODE);
1318 int oldheadroom = skb_headroom(skb);
1319 int head_copy_len, head_copy_off;
1320
1321 if (!n)
1322 return NULL;
1323
1324 skb_reserve(n, newheadroom);
1325
1326 /* Set the tail pointer and length */
1327 skb_put(n, skb->len);
1328
1329 head_copy_len = oldheadroom;
1330 head_copy_off = 0;
1331 if (newheadroom <= head_copy_len)
1332 head_copy_len = newheadroom;
1333 else
1334 head_copy_off = newheadroom - head_copy_len;
1335
1336 /* Copy the linear header and data. */
1337 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1338 skb->len + head_copy_len))
1339 BUG();
1340
1341 copy_skb_header(n, skb);
1342
1343 skb_headers_offset_update(n, newheadroom - oldheadroom);
1344
1345 return n;
1346 }
1347 EXPORT_SYMBOL(skb_copy_expand);
1348
1349 /**
1350 * skb_pad - zero pad the tail of an skb
1351 * @skb: buffer to pad
1352 * @pad: space to pad
1353 *
1354 * Ensure that a buffer is followed by a padding area that is zero
1355 * filled. Used by network drivers which may DMA or transfer data
1356 * beyond the buffer end onto the wire.
1357 *
1358 * May return error in out of memory cases. The skb is freed on error.
1359 */
1360
1361 int skb_pad(struct sk_buff *skb, int pad)
1362 {
1363 int err;
1364 int ntail;
1365
1366 /* If the skbuff is non linear tailroom is always zero.. */
1367 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1368 memset(skb->data+skb->len, 0, pad);
1369 return 0;
1370 }
1371
1372 ntail = skb->data_len + pad - (skb->end - skb->tail);
1373 if (likely(skb_cloned(skb) || ntail > 0)) {
1374 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1375 if (unlikely(err))
1376 goto free_skb;
1377 }
1378
1379 /* FIXME: The use of this function with non-linear skb's really needs
1380 * to be audited.
1381 */
1382 err = skb_linearize(skb);
1383 if (unlikely(err))
1384 goto free_skb;
1385
1386 memset(skb->data + skb->len, 0, pad);
1387 return 0;
1388
1389 free_skb:
1390 kfree_skb(skb);
1391 return err;
1392 }
1393 EXPORT_SYMBOL(skb_pad);
1394
1395 /**
1396 * pskb_put - add data to the tail of a potentially fragmented buffer
1397 * @skb: start of the buffer to use
1398 * @tail: tail fragment of the buffer to use
1399 * @len: amount of data to add
1400 *
1401 * This function extends the used data area of the potentially
1402 * fragmented buffer. @tail must be the last fragment of @skb -- or
1403 * @skb itself. If this would exceed the total buffer size the kernel
1404 * will panic. A pointer to the first byte of the extra data is
1405 * returned.
1406 */
1407
1408 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1409 {
1410 if (tail != skb) {
1411 skb->data_len += len;
1412 skb->len += len;
1413 }
1414 return skb_put(tail, len);
1415 }
1416 EXPORT_SYMBOL_GPL(pskb_put);
1417
1418 /**
1419 * skb_put - add data to a buffer
1420 * @skb: buffer to use
1421 * @len: amount of data to add
1422 *
1423 * This function extends the used data area of the buffer. If this would
1424 * exceed the total buffer size the kernel will panic. A pointer to the
1425 * first byte of the extra data is returned.
1426 */
1427 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1428 {
1429 unsigned char *tmp = skb_tail_pointer(skb);
1430 SKB_LINEAR_ASSERT(skb);
1431 skb->tail += len;
1432 skb->len += len;
1433 if (unlikely(skb->tail > skb->end))
1434 skb_over_panic(skb, len, __builtin_return_address(0));
1435 return tmp;
1436 }
1437 EXPORT_SYMBOL(skb_put);
1438
1439 /**
1440 * skb_push - add data to the start of a buffer
1441 * @skb: buffer to use
1442 * @len: amount of data to add
1443 *
1444 * This function extends the used data area of the buffer at the buffer
1445 * start. If this would exceed the total buffer headroom the kernel will
1446 * panic. A pointer to the first byte of the extra data is returned.
1447 */
1448 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1449 {
1450 skb->data -= len;
1451 skb->len += len;
1452 if (unlikely(skb->data<skb->head))
1453 skb_under_panic(skb, len, __builtin_return_address(0));
1454 return skb->data;
1455 }
1456 EXPORT_SYMBOL(skb_push);
1457
1458 /**
1459 * skb_pull - remove data from the start of a buffer
1460 * @skb: buffer to use
1461 * @len: amount of data to remove
1462 *
1463 * This function removes data from the start of a buffer, returning
1464 * the memory to the headroom. A pointer to the next data in the buffer
1465 * is returned. Once the data has been pulled future pushes will overwrite
1466 * the old data.
1467 */
1468 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1469 {
1470 return skb_pull_inline(skb, len);
1471 }
1472 EXPORT_SYMBOL(skb_pull);
1473
1474 /**
1475 * skb_trim - remove end from a buffer
1476 * @skb: buffer to alter
1477 * @len: new length
1478 *
1479 * Cut the length of a buffer down by removing data from the tail. If
1480 * the buffer is already under the length specified it is not modified.
1481 * The skb must be linear.
1482 */
1483 void skb_trim(struct sk_buff *skb, unsigned int len)
1484 {
1485 if (skb->len > len)
1486 __skb_trim(skb, len);
1487 }
1488 EXPORT_SYMBOL(skb_trim);
1489
1490 /* Trims skb to length len. It can change skb pointers.
1491 */
1492
1493 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1494 {
1495 struct sk_buff **fragp;
1496 struct sk_buff *frag;
1497 int offset = skb_headlen(skb);
1498 int nfrags = skb_shinfo(skb)->nr_frags;
1499 int i;
1500 int err;
1501
1502 if (skb_cloned(skb) &&
1503 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1504 return err;
1505
1506 i = 0;
1507 if (offset >= len)
1508 goto drop_pages;
1509
1510 for (; i < nfrags; i++) {
1511 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1512
1513 if (end < len) {
1514 offset = end;
1515 continue;
1516 }
1517
1518 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1519
1520 drop_pages:
1521 skb_shinfo(skb)->nr_frags = i;
1522
1523 for (; i < nfrags; i++)
1524 skb_frag_unref(skb, i);
1525
1526 if (skb_has_frag_list(skb))
1527 skb_drop_fraglist(skb);
1528 goto done;
1529 }
1530
1531 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1532 fragp = &frag->next) {
1533 int end = offset + frag->len;
1534
1535 if (skb_shared(frag)) {
1536 struct sk_buff *nfrag;
1537
1538 nfrag = skb_clone(frag, GFP_ATOMIC);
1539 if (unlikely(!nfrag))
1540 return -ENOMEM;
1541
1542 nfrag->next = frag->next;
1543 consume_skb(frag);
1544 frag = nfrag;
1545 *fragp = frag;
1546 }
1547
1548 if (end < len) {
1549 offset = end;
1550 continue;
1551 }
1552
1553 if (end > len &&
1554 unlikely((err = pskb_trim(frag, len - offset))))
1555 return err;
1556
1557 if (frag->next)
1558 skb_drop_list(&frag->next);
1559 break;
1560 }
1561
1562 done:
1563 if (len > skb_headlen(skb)) {
1564 skb->data_len -= skb->len - len;
1565 skb->len = len;
1566 } else {
1567 skb->len = len;
1568 skb->data_len = 0;
1569 skb_set_tail_pointer(skb, len);
1570 }
1571
1572 return 0;
1573 }
1574 EXPORT_SYMBOL(___pskb_trim);
1575
1576 /**
1577 * __pskb_pull_tail - advance tail of skb header
1578 * @skb: buffer to reallocate
1579 * @delta: number of bytes to advance tail
1580 *
1581 * The function makes a sense only on a fragmented &sk_buff,
1582 * it expands header moving its tail forward and copying necessary
1583 * data from fragmented part.
1584 *
1585 * &sk_buff MUST have reference count of 1.
1586 *
1587 * Returns %NULL (and &sk_buff does not change) if pull failed
1588 * or value of new tail of skb in the case of success.
1589 *
1590 * All the pointers pointing into skb header may change and must be
1591 * reloaded after call to this function.
1592 */
1593
1594 /* Moves tail of skb head forward, copying data from fragmented part,
1595 * when it is necessary.
1596 * 1. It may fail due to malloc failure.
1597 * 2. It may change skb pointers.
1598 *
1599 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1600 */
1601 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1602 {
1603 /* If skb has not enough free space at tail, get new one
1604 * plus 128 bytes for future expansions. If we have enough
1605 * room at tail, reallocate without expansion only if skb is cloned.
1606 */
1607 int i, k, eat = (skb->tail + delta) - skb->end;
1608
1609 if (eat > 0 || skb_cloned(skb)) {
1610 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1611 GFP_ATOMIC))
1612 return NULL;
1613 }
1614
1615 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1616 BUG();
1617
1618 /* Optimization: no fragments, no reasons to preestimate
1619 * size of pulled pages. Superb.
1620 */
1621 if (!skb_has_frag_list(skb))
1622 goto pull_pages;
1623
1624 /* Estimate size of pulled pages. */
1625 eat = delta;
1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1628
1629 if (size >= eat)
1630 goto pull_pages;
1631 eat -= size;
1632 }
1633
1634 /* If we need update frag list, we are in troubles.
1635 * Certainly, it possible to add an offset to skb data,
1636 * but taking into account that pulling is expected to
1637 * be very rare operation, it is worth to fight against
1638 * further bloating skb head and crucify ourselves here instead.
1639 * Pure masohism, indeed. 8)8)
1640 */
1641 if (eat) {
1642 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1643 struct sk_buff *clone = NULL;
1644 struct sk_buff *insp = NULL;
1645
1646 do {
1647 BUG_ON(!list);
1648
1649 if (list->len <= eat) {
1650 /* Eaten as whole. */
1651 eat -= list->len;
1652 list = list->next;
1653 insp = list;
1654 } else {
1655 /* Eaten partially. */
1656
1657 if (skb_shared(list)) {
1658 /* Sucks! We need to fork list. :-( */
1659 clone = skb_clone(list, GFP_ATOMIC);
1660 if (!clone)
1661 return NULL;
1662 insp = list->next;
1663 list = clone;
1664 } else {
1665 /* This may be pulled without
1666 * problems. */
1667 insp = list;
1668 }
1669 if (!pskb_pull(list, eat)) {
1670 kfree_skb(clone);
1671 return NULL;
1672 }
1673 break;
1674 }
1675 } while (eat);
1676
1677 /* Free pulled out fragments. */
1678 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1679 skb_shinfo(skb)->frag_list = list->next;
1680 kfree_skb(list);
1681 }
1682 /* And insert new clone at head. */
1683 if (clone) {
1684 clone->next = list;
1685 skb_shinfo(skb)->frag_list = clone;
1686 }
1687 }
1688 /* Success! Now we may commit changes to skb data. */
1689
1690 pull_pages:
1691 eat = delta;
1692 k = 0;
1693 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1695
1696 if (size <= eat) {
1697 skb_frag_unref(skb, i);
1698 eat -= size;
1699 } else {
1700 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1701 if (eat) {
1702 skb_shinfo(skb)->frags[k].page_offset += eat;
1703 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1704 eat = 0;
1705 }
1706 k++;
1707 }
1708 }
1709 skb_shinfo(skb)->nr_frags = k;
1710
1711 skb->tail += delta;
1712 skb->data_len -= delta;
1713
1714 return skb_tail_pointer(skb);
1715 }
1716 EXPORT_SYMBOL(__pskb_pull_tail);
1717
1718 /**
1719 * skb_copy_bits - copy bits from skb to kernel buffer
1720 * @skb: source skb
1721 * @offset: offset in source
1722 * @to: destination buffer
1723 * @len: number of bytes to copy
1724 *
1725 * Copy the specified number of bytes from the source skb to the
1726 * destination buffer.
1727 *
1728 * CAUTION ! :
1729 * If its prototype is ever changed,
1730 * check arch/{*}/net/{*}.S files,
1731 * since it is called from BPF assembly code.
1732 */
1733 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1734 {
1735 int start = skb_headlen(skb);
1736 struct sk_buff *frag_iter;
1737 int i, copy;
1738
1739 if (offset > (int)skb->len - len)
1740 goto fault;
1741
1742 /* Copy header. */
1743 if ((copy = start - offset) > 0) {
1744 if (copy > len)
1745 copy = len;
1746 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1747 if ((len -= copy) == 0)
1748 return 0;
1749 offset += copy;
1750 to += copy;
1751 }
1752
1753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1754 int end;
1755 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1756
1757 WARN_ON(start > offset + len);
1758
1759 end = start + skb_frag_size(f);
1760 if ((copy = end - offset) > 0) {
1761 u8 *vaddr;
1762
1763 if (copy > len)
1764 copy = len;
1765
1766 vaddr = kmap_atomic(skb_frag_page(f));
1767 memcpy(to,
1768 vaddr + f->page_offset + offset - start,
1769 copy);
1770 kunmap_atomic(vaddr);
1771
1772 if ((len -= copy) == 0)
1773 return 0;
1774 offset += copy;
1775 to += copy;
1776 }
1777 start = end;
1778 }
1779
1780 skb_walk_frags(skb, frag_iter) {
1781 int end;
1782
1783 WARN_ON(start > offset + len);
1784
1785 end = start + frag_iter->len;
1786 if ((copy = end - offset) > 0) {
1787 if (copy > len)
1788 copy = len;
1789 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1790 goto fault;
1791 if ((len -= copy) == 0)
1792 return 0;
1793 offset += copy;
1794 to += copy;
1795 }
1796 start = end;
1797 }
1798
1799 if (!len)
1800 return 0;
1801
1802 fault:
1803 return -EFAULT;
1804 }
1805 EXPORT_SYMBOL(skb_copy_bits);
1806
1807 /*
1808 * Callback from splice_to_pipe(), if we need to release some pages
1809 * at the end of the spd in case we error'ed out in filling the pipe.
1810 */
1811 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1812 {
1813 put_page(spd->pages[i]);
1814 }
1815
1816 static struct page *linear_to_page(struct page *page, unsigned int *len,
1817 unsigned int *offset,
1818 struct sock *sk)
1819 {
1820 struct page_frag *pfrag = sk_page_frag(sk);
1821
1822 if (!sk_page_frag_refill(sk, pfrag))
1823 return NULL;
1824
1825 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1826
1827 memcpy(page_address(pfrag->page) + pfrag->offset,
1828 page_address(page) + *offset, *len);
1829 *offset = pfrag->offset;
1830 pfrag->offset += *len;
1831
1832 return pfrag->page;
1833 }
1834
1835 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1836 struct page *page,
1837 unsigned int offset)
1838 {
1839 return spd->nr_pages &&
1840 spd->pages[spd->nr_pages - 1] == page &&
1841 (spd->partial[spd->nr_pages - 1].offset +
1842 spd->partial[spd->nr_pages - 1].len == offset);
1843 }
1844
1845 /*
1846 * Fill page/offset/length into spd, if it can hold more pages.
1847 */
1848 static bool spd_fill_page(struct splice_pipe_desc *spd,
1849 struct pipe_inode_info *pipe, struct page *page,
1850 unsigned int *len, unsigned int offset,
1851 bool linear,
1852 struct sock *sk)
1853 {
1854 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1855 return true;
1856
1857 if (linear) {
1858 page = linear_to_page(page, len, &offset, sk);
1859 if (!page)
1860 return true;
1861 }
1862 if (spd_can_coalesce(spd, page, offset)) {
1863 spd->partial[spd->nr_pages - 1].len += *len;
1864 return false;
1865 }
1866 get_page(page);
1867 spd->pages[spd->nr_pages] = page;
1868 spd->partial[spd->nr_pages].len = *len;
1869 spd->partial[spd->nr_pages].offset = offset;
1870 spd->nr_pages++;
1871
1872 return false;
1873 }
1874
1875 static bool __splice_segment(struct page *page, unsigned int poff,
1876 unsigned int plen, unsigned int *off,
1877 unsigned int *len,
1878 struct splice_pipe_desc *spd, bool linear,
1879 struct sock *sk,
1880 struct pipe_inode_info *pipe)
1881 {
1882 if (!*len)
1883 return true;
1884
1885 /* skip this segment if already processed */
1886 if (*off >= plen) {
1887 *off -= plen;
1888 return false;
1889 }
1890
1891 /* ignore any bits we already processed */
1892 poff += *off;
1893 plen -= *off;
1894 *off = 0;
1895
1896 do {
1897 unsigned int flen = min(*len, plen);
1898
1899 if (spd_fill_page(spd, pipe, page, &flen, poff,
1900 linear, sk))
1901 return true;
1902 poff += flen;
1903 plen -= flen;
1904 *len -= flen;
1905 } while (*len && plen);
1906
1907 return false;
1908 }
1909
1910 /*
1911 * Map linear and fragment data from the skb to spd. It reports true if the
1912 * pipe is full or if we already spliced the requested length.
1913 */
1914 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1915 unsigned int *offset, unsigned int *len,
1916 struct splice_pipe_desc *spd, struct sock *sk)
1917 {
1918 int seg;
1919
1920 /* map the linear part :
1921 * If skb->head_frag is set, this 'linear' part is backed by a
1922 * fragment, and if the head is not shared with any clones then
1923 * we can avoid a copy since we own the head portion of this page.
1924 */
1925 if (__splice_segment(virt_to_page(skb->data),
1926 (unsigned long) skb->data & (PAGE_SIZE - 1),
1927 skb_headlen(skb),
1928 offset, len, spd,
1929 skb_head_is_locked(skb),
1930 sk, pipe))
1931 return true;
1932
1933 /*
1934 * then map the fragments
1935 */
1936 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1937 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1938
1939 if (__splice_segment(skb_frag_page(f),
1940 f->page_offset, skb_frag_size(f),
1941 offset, len, spd, false, sk, pipe))
1942 return true;
1943 }
1944
1945 return false;
1946 }
1947
1948 ssize_t skb_socket_splice(struct sock *sk,
1949 struct pipe_inode_info *pipe,
1950 struct splice_pipe_desc *spd)
1951 {
1952 int ret;
1953
1954 /* Drop the socket lock, otherwise we have reverse
1955 * locking dependencies between sk_lock and i_mutex
1956 * here as compared to sendfile(). We enter here
1957 * with the socket lock held, and splice_to_pipe() will
1958 * grab the pipe inode lock. For sendfile() emulation,
1959 * we call into ->sendpage() with the i_mutex lock held
1960 * and networking will grab the socket lock.
1961 */
1962 release_sock(sk);
1963 ret = splice_to_pipe(pipe, spd);
1964 lock_sock(sk);
1965
1966 return ret;
1967 }
1968
1969 /*
1970 * Map data from the skb to a pipe. Should handle both the linear part,
1971 * the fragments, and the frag list. It does NOT handle frag lists within
1972 * the frag list, if such a thing exists. We'd probably need to recurse to
1973 * handle that cleanly.
1974 */
1975 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1976 struct pipe_inode_info *pipe, unsigned int tlen,
1977 unsigned int flags,
1978 ssize_t (*splice_cb)(struct sock *,
1979 struct pipe_inode_info *,
1980 struct splice_pipe_desc *))
1981 {
1982 struct partial_page partial[MAX_SKB_FRAGS];
1983 struct page *pages[MAX_SKB_FRAGS];
1984 struct splice_pipe_desc spd = {
1985 .pages = pages,
1986 .partial = partial,
1987 .nr_pages_max = MAX_SKB_FRAGS,
1988 .flags = flags,
1989 .ops = &nosteal_pipe_buf_ops,
1990 .spd_release = sock_spd_release,
1991 };
1992 struct sk_buff *frag_iter;
1993 int ret = 0;
1994
1995 /*
1996 * __skb_splice_bits() only fails if the output has no room left,
1997 * so no point in going over the frag_list for the error case.
1998 */
1999 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
2000 goto done;
2001 else if (!tlen)
2002 goto done;
2003
2004 /*
2005 * now see if we have a frag_list to map
2006 */
2007 skb_walk_frags(skb, frag_iter) {
2008 if (!tlen)
2009 break;
2010 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
2011 break;
2012 }
2013
2014 done:
2015 if (spd.nr_pages)
2016 ret = splice_cb(sk, pipe, &spd);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(skb_splice_bits);
2021
2022 /**
2023 * skb_store_bits - store bits from kernel buffer to skb
2024 * @skb: destination buffer
2025 * @offset: offset in destination
2026 * @from: source buffer
2027 * @len: number of bytes to copy
2028 *
2029 * Copy the specified number of bytes from the source buffer to the
2030 * destination skb. This function handles all the messy bits of
2031 * traversing fragment lists and such.
2032 */
2033
2034 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2035 {
2036 int start = skb_headlen(skb);
2037 struct sk_buff *frag_iter;
2038 int i, copy;
2039
2040 if (offset > (int)skb->len - len)
2041 goto fault;
2042
2043 if ((copy = start - offset) > 0) {
2044 if (copy > len)
2045 copy = len;
2046 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2047 if ((len -= copy) == 0)
2048 return 0;
2049 offset += copy;
2050 from += copy;
2051 }
2052
2053 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2054 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2055 int end;
2056
2057 WARN_ON(start > offset + len);
2058
2059 end = start + skb_frag_size(frag);
2060 if ((copy = end - offset) > 0) {
2061 u8 *vaddr;
2062
2063 if (copy > len)
2064 copy = len;
2065
2066 vaddr = kmap_atomic(skb_frag_page(frag));
2067 memcpy(vaddr + frag->page_offset + offset - start,
2068 from, copy);
2069 kunmap_atomic(vaddr);
2070
2071 if ((len -= copy) == 0)
2072 return 0;
2073 offset += copy;
2074 from += copy;
2075 }
2076 start = end;
2077 }
2078
2079 skb_walk_frags(skb, frag_iter) {
2080 int end;
2081
2082 WARN_ON(start > offset + len);
2083
2084 end = start + frag_iter->len;
2085 if ((copy = end - offset) > 0) {
2086 if (copy > len)
2087 copy = len;
2088 if (skb_store_bits(frag_iter, offset - start,
2089 from, copy))
2090 goto fault;
2091 if ((len -= copy) == 0)
2092 return 0;
2093 offset += copy;
2094 from += copy;
2095 }
2096 start = end;
2097 }
2098 if (!len)
2099 return 0;
2100
2101 fault:
2102 return -EFAULT;
2103 }
2104 EXPORT_SYMBOL(skb_store_bits);
2105
2106 /* Checksum skb data. */
2107 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2108 __wsum csum, const struct skb_checksum_ops *ops)
2109 {
2110 int start = skb_headlen(skb);
2111 int i, copy = start - offset;
2112 struct sk_buff *frag_iter;
2113 int pos = 0;
2114
2115 /* Checksum header. */
2116 if (copy > 0) {
2117 if (copy > len)
2118 copy = len;
2119 csum = ops->update(skb->data + offset, copy, csum);
2120 if ((len -= copy) == 0)
2121 return csum;
2122 offset += copy;
2123 pos = copy;
2124 }
2125
2126 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2127 int end;
2128 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2129
2130 WARN_ON(start > offset + len);
2131
2132 end = start + skb_frag_size(frag);
2133 if ((copy = end - offset) > 0) {
2134 __wsum csum2;
2135 u8 *vaddr;
2136
2137 if (copy > len)
2138 copy = len;
2139 vaddr = kmap_atomic(skb_frag_page(frag));
2140 csum2 = ops->update(vaddr + frag->page_offset +
2141 offset - start, copy, 0);
2142 kunmap_atomic(vaddr);
2143 csum = ops->combine(csum, csum2, pos, copy);
2144 if (!(len -= copy))
2145 return csum;
2146 offset += copy;
2147 pos += copy;
2148 }
2149 start = end;
2150 }
2151
2152 skb_walk_frags(skb, frag_iter) {
2153 int end;
2154
2155 WARN_ON(start > offset + len);
2156
2157 end = start + frag_iter->len;
2158 if ((copy = end - offset) > 0) {
2159 __wsum csum2;
2160 if (copy > len)
2161 copy = len;
2162 csum2 = __skb_checksum(frag_iter, offset - start,
2163 copy, 0, ops);
2164 csum = ops->combine(csum, csum2, pos, copy);
2165 if ((len -= copy) == 0)
2166 return csum;
2167 offset += copy;
2168 pos += copy;
2169 }
2170 start = end;
2171 }
2172 BUG_ON(len);
2173
2174 return csum;
2175 }
2176 EXPORT_SYMBOL(__skb_checksum);
2177
2178 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2179 int len, __wsum csum)
2180 {
2181 const struct skb_checksum_ops ops = {
2182 .update = csum_partial_ext,
2183 .combine = csum_block_add_ext,
2184 };
2185
2186 return __skb_checksum(skb, offset, len, csum, &ops);
2187 }
2188 EXPORT_SYMBOL(skb_checksum);
2189
2190 /* Both of above in one bottle. */
2191
2192 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2193 u8 *to, int len, __wsum csum)
2194 {
2195 int start = skb_headlen(skb);
2196 int i, copy = start - offset;
2197 struct sk_buff *frag_iter;
2198 int pos = 0;
2199
2200 /* Copy header. */
2201 if (copy > 0) {
2202 if (copy > len)
2203 copy = len;
2204 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2205 copy, csum);
2206 if ((len -= copy) == 0)
2207 return csum;
2208 offset += copy;
2209 to += copy;
2210 pos = copy;
2211 }
2212
2213 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2214 int end;
2215
2216 WARN_ON(start > offset + len);
2217
2218 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2219 if ((copy = end - offset) > 0) {
2220 __wsum csum2;
2221 u8 *vaddr;
2222 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2223
2224 if (copy > len)
2225 copy = len;
2226 vaddr = kmap_atomic(skb_frag_page(frag));
2227 csum2 = csum_partial_copy_nocheck(vaddr +
2228 frag->page_offset +
2229 offset - start, to,
2230 copy, 0);
2231 kunmap_atomic(vaddr);
2232 csum = csum_block_add(csum, csum2, pos);
2233 if (!(len -= copy))
2234 return csum;
2235 offset += copy;
2236 to += copy;
2237 pos += copy;
2238 }
2239 start = end;
2240 }
2241
2242 skb_walk_frags(skb, frag_iter) {
2243 __wsum csum2;
2244 int end;
2245
2246 WARN_ON(start > offset + len);
2247
2248 end = start + frag_iter->len;
2249 if ((copy = end - offset) > 0) {
2250 if (copy > len)
2251 copy = len;
2252 csum2 = skb_copy_and_csum_bits(frag_iter,
2253 offset - start,
2254 to, copy, 0);
2255 csum = csum_block_add(csum, csum2, pos);
2256 if ((len -= copy) == 0)
2257 return csum;
2258 offset += copy;
2259 to += copy;
2260 pos += copy;
2261 }
2262 start = end;
2263 }
2264 BUG_ON(len);
2265 return csum;
2266 }
2267 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2268
2269 /**
2270 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2271 * @from: source buffer
2272 *
2273 * Calculates the amount of linear headroom needed in the 'to' skb passed
2274 * into skb_zerocopy().
2275 */
2276 unsigned int
2277 skb_zerocopy_headlen(const struct sk_buff *from)
2278 {
2279 unsigned int hlen = 0;
2280
2281 if (!from->head_frag ||
2282 skb_headlen(from) < L1_CACHE_BYTES ||
2283 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2284 hlen = skb_headlen(from);
2285
2286 if (skb_has_frag_list(from))
2287 hlen = from->len;
2288
2289 return hlen;
2290 }
2291 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2292
2293 /**
2294 * skb_zerocopy - Zero copy skb to skb
2295 * @to: destination buffer
2296 * @from: source buffer
2297 * @len: number of bytes to copy from source buffer
2298 * @hlen: size of linear headroom in destination buffer
2299 *
2300 * Copies up to `len` bytes from `from` to `to` by creating references
2301 * to the frags in the source buffer.
2302 *
2303 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2304 * headroom in the `to` buffer.
2305 *
2306 * Return value:
2307 * 0: everything is OK
2308 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2309 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2310 */
2311 int
2312 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2313 {
2314 int i, j = 0;
2315 int plen = 0; /* length of skb->head fragment */
2316 int ret;
2317 struct page *page;
2318 unsigned int offset;
2319
2320 BUG_ON(!from->head_frag && !hlen);
2321
2322 /* dont bother with small payloads */
2323 if (len <= skb_tailroom(to))
2324 return skb_copy_bits(from, 0, skb_put(to, len), len);
2325
2326 if (hlen) {
2327 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2328 if (unlikely(ret))
2329 return ret;
2330 len -= hlen;
2331 } else {
2332 plen = min_t(int, skb_headlen(from), len);
2333 if (plen) {
2334 page = virt_to_head_page(from->head);
2335 offset = from->data - (unsigned char *)page_address(page);
2336 __skb_fill_page_desc(to, 0, page, offset, plen);
2337 get_page(page);
2338 j = 1;
2339 len -= plen;
2340 }
2341 }
2342
2343 to->truesize += len + plen;
2344 to->len += len + plen;
2345 to->data_len += len + plen;
2346
2347 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2348 skb_tx_error(from);
2349 return -ENOMEM;
2350 }
2351
2352 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2353 if (!len)
2354 break;
2355 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2356 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2357 len -= skb_shinfo(to)->frags[j].size;
2358 skb_frag_ref(to, j);
2359 j++;
2360 }
2361 skb_shinfo(to)->nr_frags = j;
2362
2363 return 0;
2364 }
2365 EXPORT_SYMBOL_GPL(skb_zerocopy);
2366
2367 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2368 {
2369 __wsum csum;
2370 long csstart;
2371
2372 if (skb->ip_summed == CHECKSUM_PARTIAL)
2373 csstart = skb_checksum_start_offset(skb);
2374 else
2375 csstart = skb_headlen(skb);
2376
2377 BUG_ON(csstart > skb_headlen(skb));
2378
2379 skb_copy_from_linear_data(skb, to, csstart);
2380
2381 csum = 0;
2382 if (csstart != skb->len)
2383 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2384 skb->len - csstart, 0);
2385
2386 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2387 long csstuff = csstart + skb->csum_offset;
2388
2389 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2390 }
2391 }
2392 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2393
2394 /**
2395 * skb_dequeue - remove from the head of the queue
2396 * @list: list to dequeue from
2397 *
2398 * Remove the head of the list. The list lock is taken so the function
2399 * may be used safely with other locking list functions. The head item is
2400 * returned or %NULL if the list is empty.
2401 */
2402
2403 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2404 {
2405 unsigned long flags;
2406 struct sk_buff *result;
2407
2408 spin_lock_irqsave(&list->lock, flags);
2409 result = __skb_dequeue(list);
2410 spin_unlock_irqrestore(&list->lock, flags);
2411 return result;
2412 }
2413 EXPORT_SYMBOL(skb_dequeue);
2414
2415 /**
2416 * skb_dequeue_tail - remove from the tail of the queue
2417 * @list: list to dequeue from
2418 *
2419 * Remove the tail of the list. The list lock is taken so the function
2420 * may be used safely with other locking list functions. The tail item is
2421 * returned or %NULL if the list is empty.
2422 */
2423 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2424 {
2425 unsigned long flags;
2426 struct sk_buff *result;
2427
2428 spin_lock_irqsave(&list->lock, flags);
2429 result = __skb_dequeue_tail(list);
2430 spin_unlock_irqrestore(&list->lock, flags);
2431 return result;
2432 }
2433 EXPORT_SYMBOL(skb_dequeue_tail);
2434
2435 /**
2436 * skb_queue_purge - empty a list
2437 * @list: list to empty
2438 *
2439 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2440 * the list and one reference dropped. This function takes the list
2441 * lock and is atomic with respect to other list locking functions.
2442 */
2443 void skb_queue_purge(struct sk_buff_head *list)
2444 {
2445 struct sk_buff *skb;
2446 while ((skb = skb_dequeue(list)) != NULL)
2447 kfree_skb(skb);
2448 }
2449 EXPORT_SYMBOL(skb_queue_purge);
2450
2451 /**
2452 * skb_queue_head - queue a buffer at the list head
2453 * @list: list to use
2454 * @newsk: buffer to queue
2455 *
2456 * Queue a buffer at the start of the list. This function takes the
2457 * list lock and can be used safely with other locking &sk_buff functions
2458 * safely.
2459 *
2460 * A buffer cannot be placed on two lists at the same time.
2461 */
2462 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2463 {
2464 unsigned long flags;
2465
2466 spin_lock_irqsave(&list->lock, flags);
2467 __skb_queue_head(list, newsk);
2468 spin_unlock_irqrestore(&list->lock, flags);
2469 }
2470 EXPORT_SYMBOL(skb_queue_head);
2471
2472 /**
2473 * skb_queue_tail - queue a buffer at the list tail
2474 * @list: list to use
2475 * @newsk: buffer to queue
2476 *
2477 * Queue a buffer at the tail of the list. This function takes the
2478 * list lock and can be used safely with other locking &sk_buff functions
2479 * safely.
2480 *
2481 * A buffer cannot be placed on two lists at the same time.
2482 */
2483 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2484 {
2485 unsigned long flags;
2486
2487 spin_lock_irqsave(&list->lock, flags);
2488 __skb_queue_tail(list, newsk);
2489 spin_unlock_irqrestore(&list->lock, flags);
2490 }
2491 EXPORT_SYMBOL(skb_queue_tail);
2492
2493 /**
2494 * skb_unlink - remove a buffer from a list
2495 * @skb: buffer to remove
2496 * @list: list to use
2497 *
2498 * Remove a packet from a list. The list locks are taken and this
2499 * function is atomic with respect to other list locked calls
2500 *
2501 * You must know what list the SKB is on.
2502 */
2503 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2504 {
2505 unsigned long flags;
2506
2507 spin_lock_irqsave(&list->lock, flags);
2508 __skb_unlink(skb, list);
2509 spin_unlock_irqrestore(&list->lock, flags);
2510 }
2511 EXPORT_SYMBOL(skb_unlink);
2512
2513 /**
2514 * skb_append - append a buffer
2515 * @old: buffer to insert after
2516 * @newsk: buffer to insert
2517 * @list: list to use
2518 *
2519 * Place a packet after a given packet in a list. The list locks are taken
2520 * and this function is atomic with respect to other list locked calls.
2521 * A buffer cannot be placed on two lists at the same time.
2522 */
2523 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2524 {
2525 unsigned long flags;
2526
2527 spin_lock_irqsave(&list->lock, flags);
2528 __skb_queue_after(list, old, newsk);
2529 spin_unlock_irqrestore(&list->lock, flags);
2530 }
2531 EXPORT_SYMBOL(skb_append);
2532
2533 /**
2534 * skb_insert - insert a buffer
2535 * @old: buffer to insert before
2536 * @newsk: buffer to insert
2537 * @list: list to use
2538 *
2539 * Place a packet before a given packet in a list. The list locks are
2540 * taken and this function is atomic with respect to other list locked
2541 * calls.
2542 *
2543 * A buffer cannot be placed on two lists at the same time.
2544 */
2545 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2546 {
2547 unsigned long flags;
2548
2549 spin_lock_irqsave(&list->lock, flags);
2550 __skb_insert(newsk, old->prev, old, list);
2551 spin_unlock_irqrestore(&list->lock, flags);
2552 }
2553 EXPORT_SYMBOL(skb_insert);
2554
2555 static inline void skb_split_inside_header(struct sk_buff *skb,
2556 struct sk_buff* skb1,
2557 const u32 len, const int pos)
2558 {
2559 int i;
2560
2561 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2562 pos - len);
2563 /* And move data appendix as is. */
2564 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2565 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2566
2567 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2568 skb_shinfo(skb)->nr_frags = 0;
2569 skb1->data_len = skb->data_len;
2570 skb1->len += skb1->data_len;
2571 skb->data_len = 0;
2572 skb->len = len;
2573 skb_set_tail_pointer(skb, len);
2574 }
2575
2576 static inline void skb_split_no_header(struct sk_buff *skb,
2577 struct sk_buff* skb1,
2578 const u32 len, int pos)
2579 {
2580 int i, k = 0;
2581 const int nfrags = skb_shinfo(skb)->nr_frags;
2582
2583 skb_shinfo(skb)->nr_frags = 0;
2584 skb1->len = skb1->data_len = skb->len - len;
2585 skb->len = len;
2586 skb->data_len = len - pos;
2587
2588 for (i = 0; i < nfrags; i++) {
2589 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2590
2591 if (pos + size > len) {
2592 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2593
2594 if (pos < len) {
2595 /* Split frag.
2596 * We have two variants in this case:
2597 * 1. Move all the frag to the second
2598 * part, if it is possible. F.e.
2599 * this approach is mandatory for TUX,
2600 * where splitting is expensive.
2601 * 2. Split is accurately. We make this.
2602 */
2603 skb_frag_ref(skb, i);
2604 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2605 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2606 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2607 skb_shinfo(skb)->nr_frags++;
2608 }
2609 k++;
2610 } else
2611 skb_shinfo(skb)->nr_frags++;
2612 pos += size;
2613 }
2614 skb_shinfo(skb1)->nr_frags = k;
2615 }
2616
2617 /**
2618 * skb_split - Split fragmented skb to two parts at length len.
2619 * @skb: the buffer to split
2620 * @skb1: the buffer to receive the second part
2621 * @len: new length for skb
2622 */
2623 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2624 {
2625 int pos = skb_headlen(skb);
2626
2627 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2628 if (len < pos) /* Split line is inside header. */
2629 skb_split_inside_header(skb, skb1, len, pos);
2630 else /* Second chunk has no header, nothing to copy. */
2631 skb_split_no_header(skb, skb1, len, pos);
2632 }
2633 EXPORT_SYMBOL(skb_split);
2634
2635 /* Shifting from/to a cloned skb is a no-go.
2636 *
2637 * Caller cannot keep skb_shinfo related pointers past calling here!
2638 */
2639 static int skb_prepare_for_shift(struct sk_buff *skb)
2640 {
2641 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2642 }
2643
2644 /**
2645 * skb_shift - Shifts paged data partially from skb to another
2646 * @tgt: buffer into which tail data gets added
2647 * @skb: buffer from which the paged data comes from
2648 * @shiftlen: shift up to this many bytes
2649 *
2650 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2651 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2652 * It's up to caller to free skb if everything was shifted.
2653 *
2654 * If @tgt runs out of frags, the whole operation is aborted.
2655 *
2656 * Skb cannot include anything else but paged data while tgt is allowed
2657 * to have non-paged data as well.
2658 *
2659 * TODO: full sized shift could be optimized but that would need
2660 * specialized skb free'er to handle frags without up-to-date nr_frags.
2661 */
2662 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2663 {
2664 int from, to, merge, todo;
2665 struct skb_frag_struct *fragfrom, *fragto;
2666
2667 BUG_ON(shiftlen > skb->len);
2668 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2669
2670 todo = shiftlen;
2671 from = 0;
2672 to = skb_shinfo(tgt)->nr_frags;
2673 fragfrom = &skb_shinfo(skb)->frags[from];
2674
2675 /* Actual merge is delayed until the point when we know we can
2676 * commit all, so that we don't have to undo partial changes
2677 */
2678 if (!to ||
2679 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2680 fragfrom->page_offset)) {
2681 merge = -1;
2682 } else {
2683 merge = to - 1;
2684
2685 todo -= skb_frag_size(fragfrom);
2686 if (todo < 0) {
2687 if (skb_prepare_for_shift(skb) ||
2688 skb_prepare_for_shift(tgt))
2689 return 0;
2690
2691 /* All previous frag pointers might be stale! */
2692 fragfrom = &skb_shinfo(skb)->frags[from];
2693 fragto = &skb_shinfo(tgt)->frags[merge];
2694
2695 skb_frag_size_add(fragto, shiftlen);
2696 skb_frag_size_sub(fragfrom, shiftlen);
2697 fragfrom->page_offset += shiftlen;
2698
2699 goto onlymerged;
2700 }
2701
2702 from++;
2703 }
2704
2705 /* Skip full, not-fitting skb to avoid expensive operations */
2706 if ((shiftlen == skb->len) &&
2707 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2708 return 0;
2709
2710 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2711 return 0;
2712
2713 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2714 if (to == MAX_SKB_FRAGS)
2715 return 0;
2716
2717 fragfrom = &skb_shinfo(skb)->frags[from];
2718 fragto = &skb_shinfo(tgt)->frags[to];
2719
2720 if (todo >= skb_frag_size(fragfrom)) {
2721 *fragto = *fragfrom;
2722 todo -= skb_frag_size(fragfrom);
2723 from++;
2724 to++;
2725
2726 } else {
2727 __skb_frag_ref(fragfrom);
2728 fragto->page = fragfrom->page;
2729 fragto->page_offset = fragfrom->page_offset;
2730 skb_frag_size_set(fragto, todo);
2731
2732 fragfrom->page_offset += todo;
2733 skb_frag_size_sub(fragfrom, todo);
2734 todo = 0;
2735
2736 to++;
2737 break;
2738 }
2739 }
2740
2741 /* Ready to "commit" this state change to tgt */
2742 skb_shinfo(tgt)->nr_frags = to;
2743
2744 if (merge >= 0) {
2745 fragfrom = &skb_shinfo(skb)->frags[0];
2746 fragto = &skb_shinfo(tgt)->frags[merge];
2747
2748 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2749 __skb_frag_unref(fragfrom);
2750 }
2751
2752 /* Reposition in the original skb */
2753 to = 0;
2754 while (from < skb_shinfo(skb)->nr_frags)
2755 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2756 skb_shinfo(skb)->nr_frags = to;
2757
2758 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2759
2760 onlymerged:
2761 /* Most likely the tgt won't ever need its checksum anymore, skb on
2762 * the other hand might need it if it needs to be resent
2763 */
2764 tgt->ip_summed = CHECKSUM_PARTIAL;
2765 skb->ip_summed = CHECKSUM_PARTIAL;
2766
2767 /* Yak, is it really working this way? Some helper please? */
2768 skb->len -= shiftlen;
2769 skb->data_len -= shiftlen;
2770 skb->truesize -= shiftlen;
2771 tgt->len += shiftlen;
2772 tgt->data_len += shiftlen;
2773 tgt->truesize += shiftlen;
2774
2775 return shiftlen;
2776 }
2777
2778 /**
2779 * skb_prepare_seq_read - Prepare a sequential read of skb data
2780 * @skb: the buffer to read
2781 * @from: lower offset of data to be read
2782 * @to: upper offset of data to be read
2783 * @st: state variable
2784 *
2785 * Initializes the specified state variable. Must be called before
2786 * invoking skb_seq_read() for the first time.
2787 */
2788 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2789 unsigned int to, struct skb_seq_state *st)
2790 {
2791 st->lower_offset = from;
2792 st->upper_offset = to;
2793 st->root_skb = st->cur_skb = skb;
2794 st->frag_idx = st->stepped_offset = 0;
2795 st->frag_data = NULL;
2796 }
2797 EXPORT_SYMBOL(skb_prepare_seq_read);
2798
2799 /**
2800 * skb_seq_read - Sequentially read skb data
2801 * @consumed: number of bytes consumed by the caller so far
2802 * @data: destination pointer for data to be returned
2803 * @st: state variable
2804 *
2805 * Reads a block of skb data at @consumed relative to the
2806 * lower offset specified to skb_prepare_seq_read(). Assigns
2807 * the head of the data block to @data and returns the length
2808 * of the block or 0 if the end of the skb data or the upper
2809 * offset has been reached.
2810 *
2811 * The caller is not required to consume all of the data
2812 * returned, i.e. @consumed is typically set to the number
2813 * of bytes already consumed and the next call to
2814 * skb_seq_read() will return the remaining part of the block.
2815 *
2816 * Note 1: The size of each block of data returned can be arbitrary,
2817 * this limitation is the cost for zerocopy sequential
2818 * reads of potentially non linear data.
2819 *
2820 * Note 2: Fragment lists within fragments are not implemented
2821 * at the moment, state->root_skb could be replaced with
2822 * a stack for this purpose.
2823 */
2824 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2825 struct skb_seq_state *st)
2826 {
2827 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2828 skb_frag_t *frag;
2829
2830 if (unlikely(abs_offset >= st->upper_offset)) {
2831 if (st->frag_data) {
2832 kunmap_atomic(st->frag_data);
2833 st->frag_data = NULL;
2834 }
2835 return 0;
2836 }
2837
2838 next_skb:
2839 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2840
2841 if (abs_offset < block_limit && !st->frag_data) {
2842 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2843 return block_limit - abs_offset;
2844 }
2845
2846 if (st->frag_idx == 0 && !st->frag_data)
2847 st->stepped_offset += skb_headlen(st->cur_skb);
2848
2849 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2850 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2851 block_limit = skb_frag_size(frag) + st->stepped_offset;
2852
2853 if (abs_offset < block_limit) {
2854 if (!st->frag_data)
2855 st->frag_data = kmap_atomic(skb_frag_page(frag));
2856
2857 *data = (u8 *) st->frag_data + frag->page_offset +
2858 (abs_offset - st->stepped_offset);
2859
2860 return block_limit - abs_offset;
2861 }
2862
2863 if (st->frag_data) {
2864 kunmap_atomic(st->frag_data);
2865 st->frag_data = NULL;
2866 }
2867
2868 st->frag_idx++;
2869 st->stepped_offset += skb_frag_size(frag);
2870 }
2871
2872 if (st->frag_data) {
2873 kunmap_atomic(st->frag_data);
2874 st->frag_data = NULL;
2875 }
2876
2877 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2878 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2879 st->frag_idx = 0;
2880 goto next_skb;
2881 } else if (st->cur_skb->next) {
2882 st->cur_skb = st->cur_skb->next;
2883 st->frag_idx = 0;
2884 goto next_skb;
2885 }
2886
2887 return 0;
2888 }
2889 EXPORT_SYMBOL(skb_seq_read);
2890
2891 /**
2892 * skb_abort_seq_read - Abort a sequential read of skb data
2893 * @st: state variable
2894 *
2895 * Must be called if skb_seq_read() was not called until it
2896 * returned 0.
2897 */
2898 void skb_abort_seq_read(struct skb_seq_state *st)
2899 {
2900 if (st->frag_data)
2901 kunmap_atomic(st->frag_data);
2902 }
2903 EXPORT_SYMBOL(skb_abort_seq_read);
2904
2905 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2906
2907 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2908 struct ts_config *conf,
2909 struct ts_state *state)
2910 {
2911 return skb_seq_read(offset, text, TS_SKB_CB(state));
2912 }
2913
2914 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2915 {
2916 skb_abort_seq_read(TS_SKB_CB(state));
2917 }
2918
2919 /**
2920 * skb_find_text - Find a text pattern in skb data
2921 * @skb: the buffer to look in
2922 * @from: search offset
2923 * @to: search limit
2924 * @config: textsearch configuration
2925 *
2926 * Finds a pattern in the skb data according to the specified
2927 * textsearch configuration. Use textsearch_next() to retrieve
2928 * subsequent occurrences of the pattern. Returns the offset
2929 * to the first occurrence or UINT_MAX if no match was found.
2930 */
2931 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2932 unsigned int to, struct ts_config *config)
2933 {
2934 struct ts_state state;
2935 unsigned int ret;
2936
2937 config->get_next_block = skb_ts_get_next_block;
2938 config->finish = skb_ts_finish;
2939
2940 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2941
2942 ret = textsearch_find(config, &state);
2943 return (ret <= to - from ? ret : UINT_MAX);
2944 }
2945 EXPORT_SYMBOL(skb_find_text);
2946
2947 /**
2948 * skb_append_datato_frags - append the user data to a skb
2949 * @sk: sock structure
2950 * @skb: skb structure to be appended with user data.
2951 * @getfrag: call back function to be used for getting the user data
2952 * @from: pointer to user message iov
2953 * @length: length of the iov message
2954 *
2955 * Description: This procedure append the user data in the fragment part
2956 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2957 */
2958 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2959 int (*getfrag)(void *from, char *to, int offset,
2960 int len, int odd, struct sk_buff *skb),
2961 void *from, int length)
2962 {
2963 int frg_cnt = skb_shinfo(skb)->nr_frags;
2964 int copy;
2965 int offset = 0;
2966 int ret;
2967 struct page_frag *pfrag = &current->task_frag;
2968
2969 do {
2970 /* Return error if we don't have space for new frag */
2971 if (frg_cnt >= MAX_SKB_FRAGS)
2972 return -EMSGSIZE;
2973
2974 if (!sk_page_frag_refill(sk, pfrag))
2975 return -ENOMEM;
2976
2977 /* copy the user data to page */
2978 copy = min_t(int, length, pfrag->size - pfrag->offset);
2979
2980 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2981 offset, copy, 0, skb);
2982 if (ret < 0)
2983 return -EFAULT;
2984
2985 /* copy was successful so update the size parameters */
2986 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2987 copy);
2988 frg_cnt++;
2989 pfrag->offset += copy;
2990 get_page(pfrag->page);
2991
2992 skb->truesize += copy;
2993 atomic_add(copy, &sk->sk_wmem_alloc);
2994 skb->len += copy;
2995 skb->data_len += copy;
2996 offset += copy;
2997 length -= copy;
2998
2999 } while (length > 0);
3000
3001 return 0;
3002 }
3003 EXPORT_SYMBOL(skb_append_datato_frags);
3004
3005 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3006 int offset, size_t size)
3007 {
3008 int i = skb_shinfo(skb)->nr_frags;
3009
3010 if (skb_can_coalesce(skb, i, page, offset)) {
3011 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3012 } else if (i < MAX_SKB_FRAGS) {
3013 get_page(page);
3014 skb_fill_page_desc(skb, i, page, offset, size);
3015 } else {
3016 return -EMSGSIZE;
3017 }
3018
3019 return 0;
3020 }
3021 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3022
3023 /**
3024 * skb_pull_rcsum - pull skb and update receive checksum
3025 * @skb: buffer to update
3026 * @len: length of data pulled
3027 *
3028 * This function performs an skb_pull on the packet and updates
3029 * the CHECKSUM_COMPLETE checksum. It should be used on
3030 * receive path processing instead of skb_pull unless you know
3031 * that the checksum difference is zero (e.g., a valid IP header)
3032 * or you are setting ip_summed to CHECKSUM_NONE.
3033 */
3034 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3035 {
3036 unsigned char *data = skb->data;
3037
3038 BUG_ON(len > skb->len);
3039 __skb_pull(skb, len);
3040 skb_postpull_rcsum(skb, data, len);
3041 return skb->data;
3042 }
3043 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3044
3045 /**
3046 * skb_segment - Perform protocol segmentation on skb.
3047 * @head_skb: buffer to segment
3048 * @features: features for the output path (see dev->features)
3049 *
3050 * This function performs segmentation on the given skb. It returns
3051 * a pointer to the first in a list of new skbs for the segments.
3052 * In case of error it returns ERR_PTR(err).
3053 */
3054 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3055 netdev_features_t features)
3056 {
3057 struct sk_buff *segs = NULL;
3058 struct sk_buff *tail = NULL;
3059 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3060 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3061 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3062 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3063 struct sk_buff *frag_skb = head_skb;
3064 unsigned int offset = doffset;
3065 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3066 unsigned int headroom;
3067 unsigned int len;
3068 __be16 proto;
3069 bool csum;
3070 int sg = !!(features & NETIF_F_SG);
3071 int nfrags = skb_shinfo(head_skb)->nr_frags;
3072 int err = -ENOMEM;
3073 int i = 0;
3074 int pos;
3075 int dummy;
3076
3077 __skb_push(head_skb, doffset);
3078 proto = skb_network_protocol(head_skb, &dummy);
3079 if (unlikely(!proto))
3080 return ERR_PTR(-EINVAL);
3081
3082 csum = !!can_checksum_protocol(features, proto);
3083
3084 headroom = skb_headroom(head_skb);
3085 pos = skb_headlen(head_skb);
3086
3087 do {
3088 struct sk_buff *nskb;
3089 skb_frag_t *nskb_frag;
3090 int hsize;
3091 int size;
3092
3093 len = head_skb->len - offset;
3094 if (len > mss)
3095 len = mss;
3096
3097 hsize = skb_headlen(head_skb) - offset;
3098 if (hsize < 0)
3099 hsize = 0;
3100 if (hsize > len || !sg)
3101 hsize = len;
3102
3103 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3104 (skb_headlen(list_skb) == len || sg)) {
3105 BUG_ON(skb_headlen(list_skb) > len);
3106
3107 i = 0;
3108 nfrags = skb_shinfo(list_skb)->nr_frags;
3109 frag = skb_shinfo(list_skb)->frags;
3110 frag_skb = list_skb;
3111 pos += skb_headlen(list_skb);
3112
3113 while (pos < offset + len) {
3114 BUG_ON(i >= nfrags);
3115
3116 size = skb_frag_size(frag);
3117 if (pos + size > offset + len)
3118 break;
3119
3120 i++;
3121 pos += size;
3122 frag++;
3123 }
3124
3125 nskb = skb_clone(list_skb, GFP_ATOMIC);
3126 list_skb = list_skb->next;
3127
3128 if (unlikely(!nskb))
3129 goto err;
3130
3131 if (unlikely(pskb_trim(nskb, len))) {
3132 kfree_skb(nskb);
3133 goto err;
3134 }
3135
3136 hsize = skb_end_offset(nskb);
3137 if (skb_cow_head(nskb, doffset + headroom)) {
3138 kfree_skb(nskb);
3139 goto err;
3140 }
3141
3142 nskb->truesize += skb_end_offset(nskb) - hsize;
3143 skb_release_head_state(nskb);
3144 __skb_push(nskb, doffset);
3145 } else {
3146 nskb = __alloc_skb(hsize + doffset + headroom,
3147 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3148 NUMA_NO_NODE);
3149
3150 if (unlikely(!nskb))
3151 goto err;
3152
3153 skb_reserve(nskb, headroom);
3154 __skb_put(nskb, doffset);
3155 }
3156
3157 if (segs)
3158 tail->next = nskb;
3159 else
3160 segs = nskb;
3161 tail = nskb;
3162
3163 __copy_skb_header(nskb, head_skb);
3164
3165 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3166 skb_reset_mac_len(nskb);
3167
3168 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3169 nskb->data - tnl_hlen,
3170 doffset + tnl_hlen);
3171
3172 if (nskb->len == len + doffset)
3173 goto perform_csum_check;
3174
3175 if (!sg) {
3176 if (!nskb->remcsum_offload)
3177 nskb->ip_summed = CHECKSUM_NONE;
3178 SKB_GSO_CB(nskb)->csum =
3179 skb_copy_and_csum_bits(head_skb, offset,
3180 skb_put(nskb, len),
3181 len, 0);
3182 SKB_GSO_CB(nskb)->csum_start =
3183 skb_headroom(nskb) + doffset;
3184 continue;
3185 }
3186
3187 nskb_frag = skb_shinfo(nskb)->frags;
3188
3189 skb_copy_from_linear_data_offset(head_skb, offset,
3190 skb_put(nskb, hsize), hsize);
3191
3192 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3193 SKBTX_SHARED_FRAG;
3194
3195 while (pos < offset + len) {
3196 if (i >= nfrags) {
3197 BUG_ON(skb_headlen(list_skb));
3198
3199 i = 0;
3200 nfrags = skb_shinfo(list_skb)->nr_frags;
3201 frag = skb_shinfo(list_skb)->frags;
3202 frag_skb = list_skb;
3203
3204 BUG_ON(!nfrags);
3205
3206 list_skb = list_skb->next;
3207 }
3208
3209 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3210 MAX_SKB_FRAGS)) {
3211 net_warn_ratelimited(
3212 "skb_segment: too many frags: %u %u\n",
3213 pos, mss);
3214 goto err;
3215 }
3216
3217 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3218 goto err;
3219
3220 *nskb_frag = *frag;
3221 __skb_frag_ref(nskb_frag);
3222 size = skb_frag_size(nskb_frag);
3223
3224 if (pos < offset) {
3225 nskb_frag->page_offset += offset - pos;
3226 skb_frag_size_sub(nskb_frag, offset - pos);
3227 }
3228
3229 skb_shinfo(nskb)->nr_frags++;
3230
3231 if (pos + size <= offset + len) {
3232 i++;
3233 frag++;
3234 pos += size;
3235 } else {
3236 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3237 goto skip_fraglist;
3238 }
3239
3240 nskb_frag++;
3241 }
3242
3243 skip_fraglist:
3244 nskb->data_len = len - hsize;
3245 nskb->len += nskb->data_len;
3246 nskb->truesize += nskb->data_len;
3247
3248 perform_csum_check:
3249 if (!csum) {
3250 if (skb_has_shared_frag(nskb)) {
3251 err = __skb_linearize(nskb);
3252 if (err)
3253 goto err;
3254 }
3255 if (!nskb->remcsum_offload)
3256 nskb->ip_summed = CHECKSUM_NONE;
3257 SKB_GSO_CB(nskb)->csum =
3258 skb_checksum(nskb, doffset,
3259 nskb->len - doffset, 0);
3260 SKB_GSO_CB(nskb)->csum_start =
3261 skb_headroom(nskb) + doffset;
3262 }
3263 } while ((offset += len) < head_skb->len);
3264
3265 /* Some callers want to get the end of the list.
3266 * Put it in segs->prev to avoid walking the list.
3267 * (see validate_xmit_skb_list() for example)
3268 */
3269 segs->prev = tail;
3270
3271 /* Following permits correct backpressure, for protocols
3272 * using skb_set_owner_w().
3273 * Idea is to tranfert ownership from head_skb to last segment.
3274 */
3275 if (head_skb->destructor == sock_wfree) {
3276 swap(tail->truesize, head_skb->truesize);
3277 swap(tail->destructor, head_skb->destructor);
3278 swap(tail->sk, head_skb->sk);
3279 }
3280 return segs;
3281
3282 err:
3283 kfree_skb_list(segs);
3284 return ERR_PTR(err);
3285 }
3286 EXPORT_SYMBOL_GPL(skb_segment);
3287
3288 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3289 {
3290 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3291 unsigned int offset = skb_gro_offset(skb);
3292 unsigned int headlen = skb_headlen(skb);
3293 unsigned int len = skb_gro_len(skb);
3294 struct sk_buff *lp, *p = *head;
3295 unsigned int delta_truesize;
3296
3297 if (unlikely(p->len + len >= 65536))
3298 return -E2BIG;
3299
3300 lp = NAPI_GRO_CB(p)->last;
3301 pinfo = skb_shinfo(lp);
3302
3303 if (headlen <= offset) {
3304 skb_frag_t *frag;
3305 skb_frag_t *frag2;
3306 int i = skbinfo->nr_frags;
3307 int nr_frags = pinfo->nr_frags + i;
3308
3309 if (nr_frags > MAX_SKB_FRAGS)
3310 goto merge;
3311
3312 offset -= headlen;
3313 pinfo->nr_frags = nr_frags;
3314 skbinfo->nr_frags = 0;
3315
3316 frag = pinfo->frags + nr_frags;
3317 frag2 = skbinfo->frags + i;
3318 do {
3319 *--frag = *--frag2;
3320 } while (--i);
3321
3322 frag->page_offset += offset;
3323 skb_frag_size_sub(frag, offset);
3324
3325 /* all fragments truesize : remove (head size + sk_buff) */
3326 delta_truesize = skb->truesize -
3327 SKB_TRUESIZE(skb_end_offset(skb));
3328
3329 skb->truesize -= skb->data_len;
3330 skb->len -= skb->data_len;
3331 skb->data_len = 0;
3332
3333 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3334 goto done;
3335 } else if (skb->head_frag) {
3336 int nr_frags = pinfo->nr_frags;
3337 skb_frag_t *frag = pinfo->frags + nr_frags;
3338 struct page *page = virt_to_head_page(skb->head);
3339 unsigned int first_size = headlen - offset;
3340 unsigned int first_offset;
3341
3342 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3343 goto merge;
3344
3345 first_offset = skb->data -
3346 (unsigned char *)page_address(page) +
3347 offset;
3348
3349 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3350
3351 frag->page.p = page;
3352 frag->page_offset = first_offset;
3353 skb_frag_size_set(frag, first_size);
3354
3355 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3356 /* We dont need to clear skbinfo->nr_frags here */
3357
3358 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3359 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3360 goto done;
3361 }
3362
3363 merge:
3364 delta_truesize = skb->truesize;
3365 if (offset > headlen) {
3366 unsigned int eat = offset - headlen;
3367
3368 skbinfo->frags[0].page_offset += eat;
3369 skb_frag_size_sub(&skbinfo->frags[0], eat);
3370 skb->data_len -= eat;
3371 skb->len -= eat;
3372 offset = headlen;
3373 }
3374
3375 __skb_pull(skb, offset);
3376
3377 if (NAPI_GRO_CB(p)->last == p)
3378 skb_shinfo(p)->frag_list = skb;
3379 else
3380 NAPI_GRO_CB(p)->last->next = skb;
3381 NAPI_GRO_CB(p)->last = skb;
3382 __skb_header_release(skb);
3383 lp = p;
3384
3385 done:
3386 NAPI_GRO_CB(p)->count++;
3387 p->data_len += len;
3388 p->truesize += delta_truesize;
3389 p->len += len;
3390 if (lp != p) {
3391 lp->data_len += len;
3392 lp->truesize += delta_truesize;
3393 lp->len += len;
3394 }
3395 NAPI_GRO_CB(skb)->same_flow = 1;
3396 return 0;
3397 }
3398
3399 void __init skb_init(void)
3400 {
3401 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3402 sizeof(struct sk_buff),
3403 0,
3404 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3405 NULL);
3406 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3407 sizeof(struct sk_buff_fclones),
3408 0,
3409 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3410 NULL);
3411 }
3412
3413 /**
3414 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3415 * @skb: Socket buffer containing the buffers to be mapped
3416 * @sg: The scatter-gather list to map into
3417 * @offset: The offset into the buffer's contents to start mapping
3418 * @len: Length of buffer space to be mapped
3419 *
3420 * Fill the specified scatter-gather list with mappings/pointers into a
3421 * region of the buffer space attached to a socket buffer.
3422 */
3423 static int
3424 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3425 {
3426 int start = skb_headlen(skb);
3427 int i, copy = start - offset;
3428 struct sk_buff *frag_iter;
3429 int elt = 0;
3430
3431 if (copy > 0) {
3432 if (copy > len)
3433 copy = len;
3434 sg_set_buf(sg, skb->data + offset, copy);
3435 elt++;
3436 if ((len -= copy) == 0)
3437 return elt;
3438 offset += copy;
3439 }
3440
3441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 int end;
3443
3444 WARN_ON(start > offset + len);
3445
3446 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3447 if ((copy = end - offset) > 0) {
3448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449
3450 if (copy > len)
3451 copy = len;
3452 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3453 frag->page_offset+offset-start);
3454 elt++;
3455 if (!(len -= copy))
3456 return elt;
3457 offset += copy;
3458 }
3459 start = end;
3460 }
3461
3462 skb_walk_frags(skb, frag_iter) {
3463 int end;
3464
3465 WARN_ON(start > offset + len);
3466
3467 end = start + frag_iter->len;
3468 if ((copy = end - offset) > 0) {
3469 if (copy > len)
3470 copy = len;
3471 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3472 copy);
3473 if ((len -= copy) == 0)
3474 return elt;
3475 offset += copy;
3476 }
3477 start = end;
3478 }
3479 BUG_ON(len);
3480 return elt;
3481 }
3482
3483 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3484 * sglist without mark the sg which contain last skb data as the end.
3485 * So the caller can mannipulate sg list as will when padding new data after
3486 * the first call without calling sg_unmark_end to expend sg list.
3487 *
3488 * Scenario to use skb_to_sgvec_nomark:
3489 * 1. sg_init_table
3490 * 2. skb_to_sgvec_nomark(payload1)
3491 * 3. skb_to_sgvec_nomark(payload2)
3492 *
3493 * This is equivalent to:
3494 * 1. sg_init_table
3495 * 2. skb_to_sgvec(payload1)
3496 * 3. sg_unmark_end
3497 * 4. skb_to_sgvec(payload2)
3498 *
3499 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3500 * is more preferable.
3501 */
3502 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3503 int offset, int len)
3504 {
3505 return __skb_to_sgvec(skb, sg, offset, len);
3506 }
3507 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3508
3509 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3510 {
3511 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3512
3513 sg_mark_end(&sg[nsg - 1]);
3514
3515 return nsg;
3516 }
3517 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3518
3519 /**
3520 * skb_cow_data - Check that a socket buffer's data buffers are writable
3521 * @skb: The socket buffer to check.
3522 * @tailbits: Amount of trailing space to be added
3523 * @trailer: Returned pointer to the skb where the @tailbits space begins
3524 *
3525 * Make sure that the data buffers attached to a socket buffer are
3526 * writable. If they are not, private copies are made of the data buffers
3527 * and the socket buffer is set to use these instead.
3528 *
3529 * If @tailbits is given, make sure that there is space to write @tailbits
3530 * bytes of data beyond current end of socket buffer. @trailer will be
3531 * set to point to the skb in which this space begins.
3532 *
3533 * The number of scatterlist elements required to completely map the
3534 * COW'd and extended socket buffer will be returned.
3535 */
3536 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3537 {
3538 int copyflag;
3539 int elt;
3540 struct sk_buff *skb1, **skb_p;
3541
3542 /* If skb is cloned or its head is paged, reallocate
3543 * head pulling out all the pages (pages are considered not writable
3544 * at the moment even if they are anonymous).
3545 */
3546 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3547 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3548 return -ENOMEM;
3549
3550 /* Easy case. Most of packets will go this way. */
3551 if (!skb_has_frag_list(skb)) {
3552 /* A little of trouble, not enough of space for trailer.
3553 * This should not happen, when stack is tuned to generate
3554 * good frames. OK, on miss we reallocate and reserve even more
3555 * space, 128 bytes is fair. */
3556
3557 if (skb_tailroom(skb) < tailbits &&
3558 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3559 return -ENOMEM;
3560
3561 /* Voila! */
3562 *trailer = skb;
3563 return 1;
3564 }
3565
3566 /* Misery. We are in troubles, going to mincer fragments... */
3567
3568 elt = 1;
3569 skb_p = &skb_shinfo(skb)->frag_list;
3570 copyflag = 0;
3571
3572 while ((skb1 = *skb_p) != NULL) {
3573 int ntail = 0;
3574
3575 /* The fragment is partially pulled by someone,
3576 * this can happen on input. Copy it and everything
3577 * after it. */
3578
3579 if (skb_shared(skb1))
3580 copyflag = 1;
3581
3582 /* If the skb is the last, worry about trailer. */
3583
3584 if (skb1->next == NULL && tailbits) {
3585 if (skb_shinfo(skb1)->nr_frags ||
3586 skb_has_frag_list(skb1) ||
3587 skb_tailroom(skb1) < tailbits)
3588 ntail = tailbits + 128;
3589 }
3590
3591 if (copyflag ||
3592 skb_cloned(skb1) ||
3593 ntail ||
3594 skb_shinfo(skb1)->nr_frags ||
3595 skb_has_frag_list(skb1)) {
3596 struct sk_buff *skb2;
3597
3598 /* Fuck, we are miserable poor guys... */
3599 if (ntail == 0)
3600 skb2 = skb_copy(skb1, GFP_ATOMIC);
3601 else
3602 skb2 = skb_copy_expand(skb1,
3603 skb_headroom(skb1),
3604 ntail,
3605 GFP_ATOMIC);
3606 if (unlikely(skb2 == NULL))
3607 return -ENOMEM;
3608
3609 if (skb1->sk)
3610 skb_set_owner_w(skb2, skb1->sk);
3611
3612 /* Looking around. Are we still alive?
3613 * OK, link new skb, drop old one */
3614
3615 skb2->next = skb1->next;
3616 *skb_p = skb2;
3617 kfree_skb(skb1);
3618 skb1 = skb2;
3619 }
3620 elt++;
3621 *trailer = skb1;
3622 skb_p = &skb1->next;
3623 }
3624
3625 return elt;
3626 }
3627 EXPORT_SYMBOL_GPL(skb_cow_data);
3628
3629 static void sock_rmem_free(struct sk_buff *skb)
3630 {
3631 struct sock *sk = skb->sk;
3632
3633 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3634 }
3635
3636 /*
3637 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3638 */
3639 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3640 {
3641 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3642 (unsigned int)sk->sk_rcvbuf)
3643 return -ENOMEM;
3644
3645 skb_orphan(skb);
3646 skb->sk = sk;
3647 skb->destructor = sock_rmem_free;
3648 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3649
3650 /* before exiting rcu section, make sure dst is refcounted */
3651 skb_dst_force(skb);
3652
3653 skb_queue_tail(&sk->sk_error_queue, skb);
3654 if (!sock_flag(sk, SOCK_DEAD))
3655 sk->sk_data_ready(sk);
3656 return 0;
3657 }
3658 EXPORT_SYMBOL(sock_queue_err_skb);
3659
3660 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3661 {
3662 struct sk_buff_head *q = &sk->sk_error_queue;
3663 struct sk_buff *skb, *skb_next;
3664 unsigned long flags;
3665 int err = 0;
3666
3667 spin_lock_irqsave(&q->lock, flags);
3668 skb = __skb_dequeue(q);
3669 if (skb && (skb_next = skb_peek(q)))
3670 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3671 spin_unlock_irqrestore(&q->lock, flags);
3672
3673 sk->sk_err = err;
3674 if (err)
3675 sk->sk_error_report(sk);
3676
3677 return skb;
3678 }
3679 EXPORT_SYMBOL(sock_dequeue_err_skb);
3680
3681 /**
3682 * skb_clone_sk - create clone of skb, and take reference to socket
3683 * @skb: the skb to clone
3684 *
3685 * This function creates a clone of a buffer that holds a reference on
3686 * sk_refcnt. Buffers created via this function are meant to be
3687 * returned using sock_queue_err_skb, or free via kfree_skb.
3688 *
3689 * When passing buffers allocated with this function to sock_queue_err_skb
3690 * it is necessary to wrap the call with sock_hold/sock_put in order to
3691 * prevent the socket from being released prior to being enqueued on
3692 * the sk_error_queue.
3693 */
3694 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3695 {
3696 struct sock *sk = skb->sk;
3697 struct sk_buff *clone;
3698
3699 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3700 return NULL;
3701
3702 clone = skb_clone(skb, GFP_ATOMIC);
3703 if (!clone) {
3704 sock_put(sk);
3705 return NULL;
3706 }
3707
3708 clone->sk = sk;
3709 clone->destructor = sock_efree;
3710
3711 return clone;
3712 }
3713 EXPORT_SYMBOL(skb_clone_sk);
3714
3715 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3716 struct sock *sk,
3717 int tstype)
3718 {
3719 struct sock_exterr_skb *serr;
3720 int err;
3721
3722 serr = SKB_EXT_ERR(skb);
3723 memset(serr, 0, sizeof(*serr));
3724 serr->ee.ee_errno = ENOMSG;
3725 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3726 serr->ee.ee_info = tstype;
3727 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3728 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3729 if (sk->sk_protocol == IPPROTO_TCP &&
3730 sk->sk_type == SOCK_STREAM)
3731 serr->ee.ee_data -= sk->sk_tskey;
3732 }
3733
3734 err = sock_queue_err_skb(sk, skb);
3735
3736 if (err)
3737 kfree_skb(skb);
3738 }
3739
3740 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3741 {
3742 bool ret;
3743
3744 if (likely(sysctl_tstamp_allow_data || tsonly))
3745 return true;
3746
3747 read_lock_bh(&sk->sk_callback_lock);
3748 ret = sk->sk_socket && sk->sk_socket->file &&
3749 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3750 read_unlock_bh(&sk->sk_callback_lock);
3751 return ret;
3752 }
3753
3754 void skb_complete_tx_timestamp(struct sk_buff *skb,
3755 struct skb_shared_hwtstamps *hwtstamps)
3756 {
3757 struct sock *sk = skb->sk;
3758
3759 if (!skb_may_tx_timestamp(sk, false))
3760 return;
3761
3762 /* take a reference to prevent skb_orphan() from freeing the socket */
3763 sock_hold(sk);
3764
3765 *skb_hwtstamps(skb) = *hwtstamps;
3766 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3767
3768 sock_put(sk);
3769 }
3770 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3771
3772 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3773 struct skb_shared_hwtstamps *hwtstamps,
3774 struct sock *sk, int tstype)
3775 {
3776 struct sk_buff *skb;
3777 bool tsonly;
3778
3779 if (!sk)
3780 return;
3781
3782 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3783 if (!skb_may_tx_timestamp(sk, tsonly))
3784 return;
3785
3786 if (tsonly)
3787 skb = alloc_skb(0, GFP_ATOMIC);
3788 else
3789 skb = skb_clone(orig_skb, GFP_ATOMIC);
3790 if (!skb)
3791 return;
3792
3793 if (tsonly) {
3794 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3795 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3796 }
3797
3798 if (hwtstamps)
3799 *skb_hwtstamps(skb) = *hwtstamps;
3800 else
3801 skb->tstamp = ktime_get_real();
3802
3803 __skb_complete_tx_timestamp(skb, sk, tstype);
3804 }
3805 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3806
3807 void skb_tstamp_tx(struct sk_buff *orig_skb,
3808 struct skb_shared_hwtstamps *hwtstamps)
3809 {
3810 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3811 SCM_TSTAMP_SND);
3812 }
3813 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3814
3815 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3816 {
3817 struct sock *sk = skb->sk;
3818 struct sock_exterr_skb *serr;
3819 int err;
3820
3821 skb->wifi_acked_valid = 1;
3822 skb->wifi_acked = acked;
3823
3824 serr = SKB_EXT_ERR(skb);
3825 memset(serr, 0, sizeof(*serr));
3826 serr->ee.ee_errno = ENOMSG;
3827 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3828
3829 /* take a reference to prevent skb_orphan() from freeing the socket */
3830 sock_hold(sk);
3831
3832 err = sock_queue_err_skb(sk, skb);
3833 if (err)
3834 kfree_skb(skb);
3835
3836 sock_put(sk);
3837 }
3838 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3839
3840 /**
3841 * skb_partial_csum_set - set up and verify partial csum values for packet
3842 * @skb: the skb to set
3843 * @start: the number of bytes after skb->data to start checksumming.
3844 * @off: the offset from start to place the checksum.
3845 *
3846 * For untrusted partially-checksummed packets, we need to make sure the values
3847 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3848 *
3849 * This function checks and sets those values and skb->ip_summed: if this
3850 * returns false you should drop the packet.
3851 */
3852 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3853 {
3854 if (unlikely(start > skb_headlen(skb)) ||
3855 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3856 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3857 start, off, skb_headlen(skb));
3858 return false;
3859 }
3860 skb->ip_summed = CHECKSUM_PARTIAL;
3861 skb->csum_start = skb_headroom(skb) + start;
3862 skb->csum_offset = off;
3863 skb_set_transport_header(skb, start);
3864 return true;
3865 }
3866 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3867
3868 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3869 unsigned int max)
3870 {
3871 if (skb_headlen(skb) >= len)
3872 return 0;
3873
3874 /* If we need to pullup then pullup to the max, so we
3875 * won't need to do it again.
3876 */
3877 if (max > skb->len)
3878 max = skb->len;
3879
3880 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3881 return -ENOMEM;
3882
3883 if (skb_headlen(skb) < len)
3884 return -EPROTO;
3885
3886 return 0;
3887 }
3888
3889 #define MAX_TCP_HDR_LEN (15 * 4)
3890
3891 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3892 typeof(IPPROTO_IP) proto,
3893 unsigned int off)
3894 {
3895 switch (proto) {
3896 int err;
3897
3898 case IPPROTO_TCP:
3899 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3900 off + MAX_TCP_HDR_LEN);
3901 if (!err && !skb_partial_csum_set(skb, off,
3902 offsetof(struct tcphdr,
3903 check)))
3904 err = -EPROTO;
3905 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3906
3907 case IPPROTO_UDP:
3908 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3909 off + sizeof(struct udphdr));
3910 if (!err && !skb_partial_csum_set(skb, off,
3911 offsetof(struct udphdr,
3912 check)))
3913 err = -EPROTO;
3914 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3915 }
3916
3917 return ERR_PTR(-EPROTO);
3918 }
3919
3920 /* This value should be large enough to cover a tagged ethernet header plus
3921 * maximally sized IP and TCP or UDP headers.
3922 */
3923 #define MAX_IP_HDR_LEN 128
3924
3925 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3926 {
3927 unsigned int off;
3928 bool fragment;
3929 __sum16 *csum;
3930 int err;
3931
3932 fragment = false;
3933
3934 err = skb_maybe_pull_tail(skb,
3935 sizeof(struct iphdr),
3936 MAX_IP_HDR_LEN);
3937 if (err < 0)
3938 goto out;
3939
3940 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3941 fragment = true;
3942
3943 off = ip_hdrlen(skb);
3944
3945 err = -EPROTO;
3946
3947 if (fragment)
3948 goto out;
3949
3950 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3951 if (IS_ERR(csum))
3952 return PTR_ERR(csum);
3953
3954 if (recalculate)
3955 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3956 ip_hdr(skb)->daddr,
3957 skb->len - off,
3958 ip_hdr(skb)->protocol, 0);
3959 err = 0;
3960
3961 out:
3962 return err;
3963 }
3964
3965 /* This value should be large enough to cover a tagged ethernet header plus
3966 * an IPv6 header, all options, and a maximal TCP or UDP header.
3967 */
3968 #define MAX_IPV6_HDR_LEN 256
3969
3970 #define OPT_HDR(type, skb, off) \
3971 (type *)(skb_network_header(skb) + (off))
3972
3973 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3974 {
3975 int err;
3976 u8 nexthdr;
3977 unsigned int off;
3978 unsigned int len;
3979 bool fragment;
3980 bool done;
3981 __sum16 *csum;
3982
3983 fragment = false;
3984 done = false;
3985
3986 off = sizeof(struct ipv6hdr);
3987
3988 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3989 if (err < 0)
3990 goto out;
3991
3992 nexthdr = ipv6_hdr(skb)->nexthdr;
3993
3994 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3995 while (off <= len && !done) {
3996 switch (nexthdr) {
3997 case IPPROTO_DSTOPTS:
3998 case IPPROTO_HOPOPTS:
3999 case IPPROTO_ROUTING: {
4000 struct ipv6_opt_hdr *hp;
4001
4002 err = skb_maybe_pull_tail(skb,
4003 off +
4004 sizeof(struct ipv6_opt_hdr),
4005 MAX_IPV6_HDR_LEN);
4006 if (err < 0)
4007 goto out;
4008
4009 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4010 nexthdr = hp->nexthdr;
4011 off += ipv6_optlen(hp);
4012 break;
4013 }
4014 case IPPROTO_AH: {
4015 struct ip_auth_hdr *hp;
4016
4017 err = skb_maybe_pull_tail(skb,
4018 off +
4019 sizeof(struct ip_auth_hdr),
4020 MAX_IPV6_HDR_LEN);
4021 if (err < 0)
4022 goto out;
4023
4024 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4025 nexthdr = hp->nexthdr;
4026 off += ipv6_authlen(hp);
4027 break;
4028 }
4029 case IPPROTO_FRAGMENT: {
4030 struct frag_hdr *hp;
4031
4032 err = skb_maybe_pull_tail(skb,
4033 off +
4034 sizeof(struct frag_hdr),
4035 MAX_IPV6_HDR_LEN);
4036 if (err < 0)
4037 goto out;
4038
4039 hp = OPT_HDR(struct frag_hdr, skb, off);
4040
4041 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4042 fragment = true;
4043
4044 nexthdr = hp->nexthdr;
4045 off += sizeof(struct frag_hdr);
4046 break;
4047 }
4048 default:
4049 done = true;
4050 break;
4051 }
4052 }
4053
4054 err = -EPROTO;
4055
4056 if (!done || fragment)
4057 goto out;
4058
4059 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4060 if (IS_ERR(csum))
4061 return PTR_ERR(csum);
4062
4063 if (recalculate)
4064 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4065 &ipv6_hdr(skb)->daddr,
4066 skb->len - off, nexthdr, 0);
4067 err = 0;
4068
4069 out:
4070 return err;
4071 }
4072
4073 /**
4074 * skb_checksum_setup - set up partial checksum offset
4075 * @skb: the skb to set up
4076 * @recalculate: if true the pseudo-header checksum will be recalculated
4077 */
4078 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4079 {
4080 int err;
4081
4082 switch (skb->protocol) {
4083 case htons(ETH_P_IP):
4084 err = skb_checksum_setup_ipv4(skb, recalculate);
4085 break;
4086
4087 case htons(ETH_P_IPV6):
4088 err = skb_checksum_setup_ipv6(skb, recalculate);
4089 break;
4090
4091 default:
4092 err = -EPROTO;
4093 break;
4094 }
4095
4096 return err;
4097 }
4098 EXPORT_SYMBOL(skb_checksum_setup);
4099
4100 /**
4101 * skb_checksum_maybe_trim - maybe trims the given skb
4102 * @skb: the skb to check
4103 * @transport_len: the data length beyond the network header
4104 *
4105 * Checks whether the given skb has data beyond the given transport length.
4106 * If so, returns a cloned skb trimmed to this transport length.
4107 * Otherwise returns the provided skb. Returns NULL in error cases
4108 * (e.g. transport_len exceeds skb length or out-of-memory).
4109 *
4110 * Caller needs to set the skb transport header and free any returned skb if it
4111 * differs from the provided skb.
4112 */
4113 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4114 unsigned int transport_len)
4115 {
4116 struct sk_buff *skb_chk;
4117 unsigned int len = skb_transport_offset(skb) + transport_len;
4118 int ret;
4119
4120 if (skb->len < len)
4121 return NULL;
4122 else if (skb->len == len)
4123 return skb;
4124
4125 skb_chk = skb_clone(skb, GFP_ATOMIC);
4126 if (!skb_chk)
4127 return NULL;
4128
4129 ret = pskb_trim_rcsum(skb_chk, len);
4130 if (ret) {
4131 kfree_skb(skb_chk);
4132 return NULL;
4133 }
4134
4135 return skb_chk;
4136 }
4137
4138 /**
4139 * skb_checksum_trimmed - validate checksum of an skb
4140 * @skb: the skb to check
4141 * @transport_len: the data length beyond the network header
4142 * @skb_chkf: checksum function to use
4143 *
4144 * Applies the given checksum function skb_chkf to the provided skb.
4145 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4146 *
4147 * If the skb has data beyond the given transport length, then a
4148 * trimmed & cloned skb is checked and returned.
4149 *
4150 * Caller needs to set the skb transport header and free any returned skb if it
4151 * differs from the provided skb.
4152 */
4153 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4154 unsigned int transport_len,
4155 __sum16(*skb_chkf)(struct sk_buff *skb))
4156 {
4157 struct sk_buff *skb_chk;
4158 unsigned int offset = skb_transport_offset(skb);
4159 __sum16 ret;
4160
4161 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4162 if (!skb_chk)
4163 goto err;
4164
4165 if (!pskb_may_pull(skb_chk, offset))
4166 goto err;
4167
4168 __skb_pull(skb_chk, offset);
4169 ret = skb_chkf(skb_chk);
4170 __skb_push(skb_chk, offset);
4171
4172 if (ret)
4173 goto err;
4174
4175 return skb_chk;
4176
4177 err:
4178 if (skb_chk && skb_chk != skb)
4179 kfree_skb(skb_chk);
4180
4181 return NULL;
4182
4183 }
4184 EXPORT_SYMBOL(skb_checksum_trimmed);
4185
4186 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4187 {
4188 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4189 skb->dev->name);
4190 }
4191 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4192
4193 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4194 {
4195 if (head_stolen) {
4196 skb_release_head_state(skb);
4197 kmem_cache_free(skbuff_head_cache, skb);
4198 } else {
4199 __kfree_skb(skb);
4200 }
4201 }
4202 EXPORT_SYMBOL(kfree_skb_partial);
4203
4204 /**
4205 * skb_try_coalesce - try to merge skb to prior one
4206 * @to: prior buffer
4207 * @from: buffer to add
4208 * @fragstolen: pointer to boolean
4209 * @delta_truesize: how much more was allocated than was requested
4210 */
4211 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4212 bool *fragstolen, int *delta_truesize)
4213 {
4214 int i, delta, len = from->len;
4215
4216 *fragstolen = false;
4217
4218 if (skb_cloned(to))
4219 return false;
4220
4221 if (len <= skb_tailroom(to)) {
4222 if (len)
4223 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4224 *delta_truesize = 0;
4225 return true;
4226 }
4227
4228 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4229 return false;
4230
4231 if (skb_headlen(from) != 0) {
4232 struct page *page;
4233 unsigned int offset;
4234
4235 if (skb_shinfo(to)->nr_frags +
4236 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4237 return false;
4238
4239 if (skb_head_is_locked(from))
4240 return false;
4241
4242 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4243
4244 page = virt_to_head_page(from->head);
4245 offset = from->data - (unsigned char *)page_address(page);
4246
4247 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4248 page, offset, skb_headlen(from));
4249 *fragstolen = true;
4250 } else {
4251 if (skb_shinfo(to)->nr_frags +
4252 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4253 return false;
4254
4255 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4256 }
4257
4258 WARN_ON_ONCE(delta < len);
4259
4260 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4261 skb_shinfo(from)->frags,
4262 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4263 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4264
4265 if (!skb_cloned(from))
4266 skb_shinfo(from)->nr_frags = 0;
4267
4268 /* if the skb is not cloned this does nothing
4269 * since we set nr_frags to 0.
4270 */
4271 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4272 skb_frag_ref(from, i);
4273
4274 to->truesize += delta;
4275 to->len += len;
4276 to->data_len += len;
4277
4278 *delta_truesize = delta;
4279 return true;
4280 }
4281 EXPORT_SYMBOL(skb_try_coalesce);
4282
4283 /**
4284 * skb_scrub_packet - scrub an skb
4285 *
4286 * @skb: buffer to clean
4287 * @xnet: packet is crossing netns
4288 *
4289 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4290 * into/from a tunnel. Some information have to be cleared during these
4291 * operations.
4292 * skb_scrub_packet can also be used to clean a skb before injecting it in
4293 * another namespace (@xnet == true). We have to clear all information in the
4294 * skb that could impact namespace isolation.
4295 */
4296 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4297 {
4298 skb->tstamp.tv64 = 0;
4299 skb->pkt_type = PACKET_HOST;
4300 skb->skb_iif = 0;
4301 skb->ignore_df = 0;
4302 skb_dst_drop(skb);
4303 skb_sender_cpu_clear(skb);
4304 secpath_reset(skb);
4305 nf_reset(skb);
4306 nf_reset_trace(skb);
4307
4308 if (!xnet)
4309 return;
4310
4311 skb_orphan(skb);
4312 skb->mark = 0;
4313 }
4314 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4315
4316 /**
4317 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4318 *
4319 * @skb: GSO skb
4320 *
4321 * skb_gso_transport_seglen is used to determine the real size of the
4322 * individual segments, including Layer4 headers (TCP/UDP).
4323 *
4324 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4325 */
4326 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4327 {
4328 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4329 unsigned int thlen = 0;
4330
4331 if (skb->encapsulation) {
4332 thlen = skb_inner_transport_header(skb) -
4333 skb_transport_header(skb);
4334
4335 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4336 thlen += inner_tcp_hdrlen(skb);
4337 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4338 thlen = tcp_hdrlen(skb);
4339 }
4340 /* UFO sets gso_size to the size of the fragmentation
4341 * payload, i.e. the size of the L4 (UDP) header is already
4342 * accounted for.
4343 */
4344 return thlen + shinfo->gso_size;
4345 }
4346 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4347
4348 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4349 {
4350 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4351 kfree_skb(skb);
4352 return NULL;
4353 }
4354
4355 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4356 2 * ETH_ALEN);
4357 skb->mac_header += VLAN_HLEN;
4358 return skb;
4359 }
4360
4361 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4362 {
4363 struct vlan_hdr *vhdr;
4364 u16 vlan_tci;
4365
4366 if (unlikely(skb_vlan_tag_present(skb))) {
4367 /* vlan_tci is already set-up so leave this for another time */
4368 return skb;
4369 }
4370
4371 skb = skb_share_check(skb, GFP_ATOMIC);
4372 if (unlikely(!skb))
4373 goto err_free;
4374
4375 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4376 goto err_free;
4377
4378 vhdr = (struct vlan_hdr *)skb->data;
4379 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4380 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4381
4382 skb_pull_rcsum(skb, VLAN_HLEN);
4383 vlan_set_encap_proto(skb, vhdr);
4384
4385 skb = skb_reorder_vlan_header(skb);
4386 if (unlikely(!skb))
4387 goto err_free;
4388
4389 skb_reset_network_header(skb);
4390 skb_reset_transport_header(skb);
4391 skb_reset_mac_len(skb);
4392
4393 return skb;
4394
4395 err_free:
4396 kfree_skb(skb);
4397 return NULL;
4398 }
4399 EXPORT_SYMBOL(skb_vlan_untag);
4400
4401 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4402 {
4403 if (!pskb_may_pull(skb, write_len))
4404 return -ENOMEM;
4405
4406 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4407 return 0;
4408
4409 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4410 }
4411 EXPORT_SYMBOL(skb_ensure_writable);
4412
4413 /* remove VLAN header from packet and update csum accordingly. */
4414 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4415 {
4416 struct vlan_hdr *vhdr;
4417 unsigned int offset = skb->data - skb_mac_header(skb);
4418 int err;
4419
4420 __skb_push(skb, offset);
4421 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4422 if (unlikely(err))
4423 goto pull;
4424
4425 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4426
4427 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4428 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4429
4430 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4431 __skb_pull(skb, VLAN_HLEN);
4432
4433 vlan_set_encap_proto(skb, vhdr);
4434 skb->mac_header += VLAN_HLEN;
4435
4436 if (skb_network_offset(skb) < ETH_HLEN)
4437 skb_set_network_header(skb, ETH_HLEN);
4438
4439 skb_reset_mac_len(skb);
4440 pull:
4441 __skb_pull(skb, offset);
4442
4443 return err;
4444 }
4445
4446 int skb_vlan_pop(struct sk_buff *skb)
4447 {
4448 u16 vlan_tci;
4449 __be16 vlan_proto;
4450 int err;
4451
4452 if (likely(skb_vlan_tag_present(skb))) {
4453 skb->vlan_tci = 0;
4454 } else {
4455 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4456 skb->protocol != htons(ETH_P_8021AD)) ||
4457 skb->len < VLAN_ETH_HLEN))
4458 return 0;
4459
4460 err = __skb_vlan_pop(skb, &vlan_tci);
4461 if (err)
4462 return err;
4463 }
4464 /* move next vlan tag to hw accel tag */
4465 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4466 skb->protocol != htons(ETH_P_8021AD)) ||
4467 skb->len < VLAN_ETH_HLEN))
4468 return 0;
4469
4470 vlan_proto = skb->protocol;
4471 err = __skb_vlan_pop(skb, &vlan_tci);
4472 if (unlikely(err))
4473 return err;
4474
4475 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4476 return 0;
4477 }
4478 EXPORT_SYMBOL(skb_vlan_pop);
4479
4480 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4481 {
4482 if (skb_vlan_tag_present(skb)) {
4483 unsigned int offset = skb->data - skb_mac_header(skb);
4484 int err;
4485
4486 /* __vlan_insert_tag expect skb->data pointing to mac header.
4487 * So change skb->data before calling it and change back to
4488 * original position later
4489 */
4490 __skb_push(skb, offset);
4491 err = __vlan_insert_tag(skb, skb->vlan_proto,
4492 skb_vlan_tag_get(skb));
4493 if (err)
4494 return err;
4495 skb->protocol = skb->vlan_proto;
4496 skb->mac_len += VLAN_HLEN;
4497 __skb_pull(skb, offset);
4498
4499 if (skb->ip_summed == CHECKSUM_COMPLETE)
4500 skb->csum = csum_add(skb->csum, csum_partial(skb->data
4501 + (2 * ETH_ALEN), VLAN_HLEN, 0));
4502 }
4503 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4504 return 0;
4505 }
4506 EXPORT_SYMBOL(skb_vlan_push);
4507
4508 /**
4509 * alloc_skb_with_frags - allocate skb with page frags
4510 *
4511 * @header_len: size of linear part
4512 * @data_len: needed length in frags
4513 * @max_page_order: max page order desired.
4514 * @errcode: pointer to error code if any
4515 * @gfp_mask: allocation mask
4516 *
4517 * This can be used to allocate a paged skb, given a maximal order for frags.
4518 */
4519 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4520 unsigned long data_len,
4521 int max_page_order,
4522 int *errcode,
4523 gfp_t gfp_mask)
4524 {
4525 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4526 unsigned long chunk;
4527 struct sk_buff *skb;
4528 struct page *page;
4529 gfp_t gfp_head;
4530 int i;
4531
4532 *errcode = -EMSGSIZE;
4533 /* Note this test could be relaxed, if we succeed to allocate
4534 * high order pages...
4535 */
4536 if (npages > MAX_SKB_FRAGS)
4537 return NULL;
4538
4539 gfp_head = gfp_mask;
4540 if (gfp_head & __GFP_DIRECT_RECLAIM)
4541 gfp_head |= __GFP_REPEAT;
4542
4543 *errcode = -ENOBUFS;
4544 skb = alloc_skb(header_len, gfp_head);
4545 if (!skb)
4546 return NULL;
4547
4548 skb->truesize += npages << PAGE_SHIFT;
4549
4550 for (i = 0; npages > 0; i++) {
4551 int order = max_page_order;
4552
4553 while (order) {
4554 if (npages >= 1 << order) {
4555 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4556 __GFP_COMP |
4557 __GFP_NOWARN |
4558 __GFP_NORETRY,
4559 order);
4560 if (page)
4561 goto fill_page;
4562 /* Do not retry other high order allocations */
4563 order = 1;
4564 max_page_order = 0;
4565 }
4566 order--;
4567 }
4568 page = alloc_page(gfp_mask);
4569 if (!page)
4570 goto failure;
4571 fill_page:
4572 chunk = min_t(unsigned long, data_len,
4573 PAGE_SIZE << order);
4574 skb_fill_page_desc(skb, i, page, 0, chunk);
4575 data_len -= chunk;
4576 npages -= 1 << order;
4577 }
4578 return skb;
4579
4580 failure:
4581 kfree_skb(skb);
4582 return NULL;
4583 }
4584 EXPORT_SYMBOL(alloc_skb_with_frags);
This page took 0.143698 seconds and 5 git commands to generate.