net: add __pskb_copy_fclone and pskb_copy_for_clone
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
79
80 /**
81 * skb_panic - private function for out-of-line support
82 * @skb: buffer
83 * @sz: size
84 * @addr: address
85 * @msg: skb_over_panic or skb_under_panic
86 *
87 * Out-of-line support for skb_put() and skb_push().
88 * Called via the wrapper skb_over_panic() or skb_under_panic().
89 * Keep out of line to prevent kernel bloat.
90 * __builtin_return_address is not used because it is not always reliable.
91 */
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
93 const char msg[])
94 {
95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 msg, addr, skb->len, sz, skb->head, skb->data,
97 (unsigned long)skb->tail, (unsigned long)skb->end,
98 skb->dev ? skb->dev->name : "<NULL>");
99 BUG();
100 }
101
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
103 {
104 skb_panic(skb, sz, addr, __func__);
105 }
106
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
112 /*
113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114 * the caller if emergency pfmemalloc reserves are being used. If it is and
115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116 * may be used. Otherwise, the packet data may be discarded until enough
117 * memory is free
118 */
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 unsigned long ip, bool *pfmemalloc)
124 {
125 void *obj;
126 bool ret_pfmemalloc = false;
127
128 /*
129 * Try a regular allocation, when that fails and we're not entitled
130 * to the reserves, fail.
131 */
132 obj = kmalloc_node_track_caller(size,
133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
134 node);
135 if (obj || !(gfp_pfmemalloc_allowed(flags)))
136 goto out;
137
138 /* Try again but now we are using pfmemalloc reserves */
139 ret_pfmemalloc = true;
140 obj = kmalloc_node_track_caller(size, flags, node);
141
142 out:
143 if (pfmemalloc)
144 *pfmemalloc = ret_pfmemalloc;
145
146 return obj;
147 }
148
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
152 *
153 */
154
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
156 {
157 struct sk_buff *skb;
158
159 /* Get the HEAD */
160 skb = kmem_cache_alloc_node(skbuff_head_cache,
161 gfp_mask & ~__GFP_DMA, node);
162 if (!skb)
163 goto out;
164
165 /*
166 * Only clear those fields we need to clear, not those that we will
167 * actually initialise below. Hence, don't put any more fields after
168 * the tail pointer in struct sk_buff!
169 */
170 memset(skb, 0, offsetof(struct sk_buff, tail));
171 skb->head = NULL;
172 skb->truesize = sizeof(struct sk_buff);
173 atomic_set(&skb->users, 1);
174
175 skb->mac_header = (typeof(skb->mac_header))~0U;
176 out:
177 return skb;
178 }
179
180 /**
181 * __alloc_skb - allocate a network buffer
182 * @size: size to allocate
183 * @gfp_mask: allocation mask
184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185 * instead of head cache and allocate a cloned (child) skb.
186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187 * allocations in case the data is required for writeback
188 * @node: numa node to allocate memory on
189 *
190 * Allocate a new &sk_buff. The returned buffer has no headroom and a
191 * tail room of at least size bytes. The object has a reference count
192 * of one. The return is the buffer. On a failure the return is %NULL.
193 *
194 * Buffers may only be allocated from interrupts using a @gfp_mask of
195 * %GFP_ATOMIC.
196 */
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
198 int flags, int node)
199 {
200 struct kmem_cache *cache;
201 struct skb_shared_info *shinfo;
202 struct sk_buff *skb;
203 u8 *data;
204 bool pfmemalloc;
205
206 cache = (flags & SKB_ALLOC_FCLONE)
207 ? skbuff_fclone_cache : skbuff_head_cache;
208
209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 gfp_mask |= __GFP_MEMALLOC;
211
212 /* Get the HEAD */
213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
214 if (!skb)
215 goto out;
216 prefetchw(skb);
217
218 /* We do our best to align skb_shared_info on a separate cache
219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 * Both skb->head and skb_shared_info are cache line aligned.
222 */
223 size = SKB_DATA_ALIGN(size);
224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
226 if (!data)
227 goto nodata;
228 /* kmalloc(size) might give us more room than requested.
229 * Put skb_shared_info exactly at the end of allocated zone,
230 * to allow max possible filling before reallocation.
231 */
232 size = SKB_WITH_OVERHEAD(ksize(data));
233 prefetchw(data + size);
234
235 /*
236 * Only clear those fields we need to clear, not those that we will
237 * actually initialise below. Hence, don't put any more fields after
238 * the tail pointer in struct sk_buff!
239 */
240 memset(skb, 0, offsetof(struct sk_buff, tail));
241 /* Account for allocated memory : skb + skb->head */
242 skb->truesize = SKB_TRUESIZE(size);
243 skb->pfmemalloc = pfmemalloc;
244 atomic_set(&skb->users, 1);
245 skb->head = data;
246 skb->data = data;
247 skb_reset_tail_pointer(skb);
248 skb->end = skb->tail + size;
249 skb->mac_header = (typeof(skb->mac_header))~0U;
250 skb->transport_header = (typeof(skb->transport_header))~0U;
251
252 /* make sure we initialize shinfo sequentially */
253 shinfo = skb_shinfo(skb);
254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 atomic_set(&shinfo->dataref, 1);
256 kmemcheck_annotate_variable(shinfo->destructor_arg);
257
258 if (flags & SKB_ALLOC_FCLONE) {
259 struct sk_buff *child = skb + 1;
260 atomic_t *fclone_ref = (atomic_t *) (child + 1);
261
262 kmemcheck_annotate_bitfield(child, flags1);
263 kmemcheck_annotate_bitfield(child, flags2);
264 skb->fclone = SKB_FCLONE_ORIG;
265 atomic_set(fclone_ref, 1);
266
267 child->fclone = SKB_FCLONE_UNAVAILABLE;
268 child->pfmemalloc = pfmemalloc;
269 }
270 out:
271 return skb;
272 nodata:
273 kmem_cache_free(cache, skb);
274 skb = NULL;
275 goto out;
276 }
277 EXPORT_SYMBOL(__alloc_skb);
278
279 /**
280 * build_skb - build a network buffer
281 * @data: data buffer provided by caller
282 * @frag_size: size of fragment, or 0 if head was kmalloced
283 *
284 * Allocate a new &sk_buff. Caller provides space holding head and
285 * skb_shared_info. @data must have been allocated by kmalloc() only if
286 * @frag_size is 0, otherwise data should come from the page allocator.
287 * The return is the new skb buffer.
288 * On a failure the return is %NULL, and @data is not freed.
289 * Notes :
290 * Before IO, driver allocates only data buffer where NIC put incoming frame
291 * Driver should add room at head (NET_SKB_PAD) and
292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
294 * before giving packet to stack.
295 * RX rings only contains data buffers, not full skbs.
296 */
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
298 {
299 struct skb_shared_info *shinfo;
300 struct sk_buff *skb;
301 unsigned int size = frag_size ? : ksize(data);
302
303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
304 if (!skb)
305 return NULL;
306
307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 skb->truesize = SKB_TRUESIZE(size);
311 skb->head_frag = frag_size != 0;
312 atomic_set(&skb->users, 1);
313 skb->head = data;
314 skb->data = data;
315 skb_reset_tail_pointer(skb);
316 skb->end = skb->tail + size;
317 skb->mac_header = (typeof(skb->mac_header))~0U;
318 skb->transport_header = (typeof(skb->transport_header))~0U;
319
320 /* make sure we initialize shinfo sequentially */
321 shinfo = skb_shinfo(skb);
322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 atomic_set(&shinfo->dataref, 1);
324 kmemcheck_annotate_variable(shinfo->destructor_arg);
325
326 return skb;
327 }
328 EXPORT_SYMBOL(build_skb);
329
330 struct netdev_alloc_cache {
331 struct page_frag frag;
332 /* we maintain a pagecount bias, so that we dont dirty cache line
333 * containing page->_count every time we allocate a fragment.
334 */
335 unsigned int pagecnt_bias;
336 };
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
338
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
340 {
341 struct netdev_alloc_cache *nc;
342 void *data = NULL;
343 int order;
344 unsigned long flags;
345
346 local_irq_save(flags);
347 nc = &__get_cpu_var(netdev_alloc_cache);
348 if (unlikely(!nc->frag.page)) {
349 refill:
350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 gfp_t gfp = gfp_mask;
352
353 if (order)
354 gfp |= __GFP_COMP | __GFP_NOWARN;
355 nc->frag.page = alloc_pages(gfp, order);
356 if (likely(nc->frag.page))
357 break;
358 if (--order < 0)
359 goto end;
360 }
361 nc->frag.size = PAGE_SIZE << order;
362 recycle:
363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
365 nc->frag.offset = 0;
366 }
367
368 if (nc->frag.offset + fragsz > nc->frag.size) {
369 /* avoid unnecessary locked operations if possible */
370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
372 goto recycle;
373 goto refill;
374 }
375
376 data = page_address(nc->frag.page) + nc->frag.offset;
377 nc->frag.offset += fragsz;
378 nc->pagecnt_bias--;
379 end:
380 local_irq_restore(flags);
381 return data;
382 }
383
384 /**
385 * netdev_alloc_frag - allocate a page fragment
386 * @fragsz: fragment size
387 *
388 * Allocates a frag from a page for receive buffer.
389 * Uses GFP_ATOMIC allocations.
390 */
391 void *netdev_alloc_frag(unsigned int fragsz)
392 {
393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396
397 /**
398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
399 * @dev: network device to receive on
400 * @length: length to allocate
401 * @gfp_mask: get_free_pages mask, passed to alloc_skb
402 *
403 * Allocate a new &sk_buff and assign it a usage count of one. The
404 * buffer has unspecified headroom built in. Users should allocate
405 * the headroom they think they need without accounting for the
406 * built in space. The built in space is used for optimisations.
407 *
408 * %NULL is returned if there is no free memory.
409 */
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 unsigned int length, gfp_t gfp_mask)
412 {
413 struct sk_buff *skb = NULL;
414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
416
417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
418 void *data;
419
420 if (sk_memalloc_socks())
421 gfp_mask |= __GFP_MEMALLOC;
422
423 data = __netdev_alloc_frag(fragsz, gfp_mask);
424
425 if (likely(data)) {
426 skb = build_skb(data, fragsz);
427 if (unlikely(!skb))
428 put_page(virt_to_head_page(data));
429 }
430 } else {
431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 SKB_ALLOC_RX, NUMA_NO_NODE);
433 }
434 if (likely(skb)) {
435 skb_reserve(skb, NET_SKB_PAD);
436 skb->dev = dev;
437 }
438 return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 int size, unsigned int truesize)
444 {
445 skb_fill_page_desc(skb, i, page, off, size);
446 skb->len += size;
447 skb->data_len += size;
448 skb->truesize += truesize;
449 }
450 EXPORT_SYMBOL(skb_add_rx_frag);
451
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 unsigned int truesize)
454 {
455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456
457 skb_frag_size_add(frag, size);
458 skb->len += size;
459 skb->data_len += size;
460 skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
463
464 static void skb_drop_list(struct sk_buff **listp)
465 {
466 kfree_skb_list(*listp);
467 *listp = NULL;
468 }
469
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 struct sk_buff *list;
478
479 skb_walk_frags(skb, list)
480 skb_get(list);
481 }
482
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 if (skb->head_frag)
486 put_page(virt_to_head_page(skb->head));
487 else
488 kfree(skb->head);
489 }
490
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 if (!skb->cloned ||
494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 &skb_shinfo(skb)->dataref)) {
496 if (skb_shinfo(skb)->nr_frags) {
497 int i;
498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 skb_frag_unref(skb, i);
500 }
501
502 /*
503 * If skb buf is from userspace, we need to notify the caller
504 * the lower device DMA has done;
505 */
506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 struct ubuf_info *uarg;
508
509 uarg = skb_shinfo(skb)->destructor_arg;
510 if (uarg->callback)
511 uarg->callback(uarg, true);
512 }
513
514 if (skb_has_frag_list(skb))
515 skb_drop_fraglist(skb);
516
517 skb_free_head(skb);
518 }
519 }
520
521 /*
522 * Free an skbuff by memory without cleaning the state.
523 */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 struct sk_buff *other;
527 atomic_t *fclone_ref;
528
529 switch (skb->fclone) {
530 case SKB_FCLONE_UNAVAILABLE:
531 kmem_cache_free(skbuff_head_cache, skb);
532 break;
533
534 case SKB_FCLONE_ORIG:
535 fclone_ref = (atomic_t *) (skb + 2);
536 if (atomic_dec_and_test(fclone_ref))
537 kmem_cache_free(skbuff_fclone_cache, skb);
538 break;
539
540 case SKB_FCLONE_CLONE:
541 fclone_ref = (atomic_t *) (skb + 1);
542 other = skb - 1;
543
544 /* The clone portion is available for
545 * fast-cloning again.
546 */
547 skb->fclone = SKB_FCLONE_UNAVAILABLE;
548
549 if (atomic_dec_and_test(fclone_ref))
550 kmem_cache_free(skbuff_fclone_cache, other);
551 break;
552 }
553 }
554
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 secpath_put(skb->sp);
560 #endif
561 if (skb->destructor) {
562 WARN_ON(in_irq());
563 skb->destructor(skb);
564 }
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 skb_release_head_state(skb);
584 if (likely(skb->head))
585 skb_release_data(skb);
586 }
587
588 /**
589 * __kfree_skb - private function
590 * @skb: buffer
591 *
592 * Free an sk_buff. Release anything attached to the buffer.
593 * Clean the state. This is an internal helper function. Users should
594 * always call kfree_skb
595 */
596
597 void __kfree_skb(struct sk_buff *skb)
598 {
599 skb_release_all(skb);
600 kfree_skbmem(skb);
601 }
602 EXPORT_SYMBOL(__kfree_skb);
603
604 /**
605 * kfree_skb - free an sk_buff
606 * @skb: buffer to free
607 *
608 * Drop a reference to the buffer and free it if the usage count has
609 * hit zero.
610 */
611 void kfree_skb(struct sk_buff *skb)
612 {
613 if (unlikely(!skb))
614 return;
615 if (likely(atomic_read(&skb->users) == 1))
616 smp_rmb();
617 else if (likely(!atomic_dec_and_test(&skb->users)))
618 return;
619 trace_kfree_skb(skb, __builtin_return_address(0));
620 __kfree_skb(skb);
621 }
622 EXPORT_SYMBOL(kfree_skb);
623
624 void kfree_skb_list(struct sk_buff *segs)
625 {
626 while (segs) {
627 struct sk_buff *next = segs->next;
628
629 kfree_skb(segs);
630 segs = next;
631 }
632 }
633 EXPORT_SYMBOL(kfree_skb_list);
634
635 /**
636 * skb_tx_error - report an sk_buff xmit error
637 * @skb: buffer that triggered an error
638 *
639 * Report xmit error if a device callback is tracking this skb.
640 * skb must be freed afterwards.
641 */
642 void skb_tx_error(struct sk_buff *skb)
643 {
644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 struct ubuf_info *uarg;
646
647 uarg = skb_shinfo(skb)->destructor_arg;
648 if (uarg->callback)
649 uarg->callback(uarg, false);
650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
651 }
652 }
653 EXPORT_SYMBOL(skb_tx_error);
654
655 /**
656 * consume_skb - free an skbuff
657 * @skb: buffer to free
658 *
659 * Drop a ref to the buffer and free it if the usage count has hit zero
660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
661 * is being dropped after a failure and notes that
662 */
663 void consume_skb(struct sk_buff *skb)
664 {
665 if (unlikely(!skb))
666 return;
667 if (likely(atomic_read(&skb->users) == 1))
668 smp_rmb();
669 else if (likely(!atomic_dec_and_test(&skb->users)))
670 return;
671 trace_consume_skb(skb);
672 __kfree_skb(skb);
673 }
674 EXPORT_SYMBOL(consume_skb);
675
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
677 {
678 new->tstamp = old->tstamp;
679 new->dev = old->dev;
680 new->transport_header = old->transport_header;
681 new->network_header = old->network_header;
682 new->mac_header = old->mac_header;
683 new->inner_protocol = old->inner_protocol;
684 new->inner_transport_header = old->inner_transport_header;
685 new->inner_network_header = old->inner_network_header;
686 new->inner_mac_header = old->inner_mac_header;
687 skb_dst_copy(new, old);
688 skb_copy_hash(new, old);
689 new->ooo_okay = old->ooo_okay;
690 new->no_fcs = old->no_fcs;
691 new->encapsulation = old->encapsulation;
692 #ifdef CONFIG_XFRM
693 new->sp = secpath_get(old->sp);
694 #endif
695 memcpy(new->cb, old->cb, sizeof(old->cb));
696 new->csum = old->csum;
697 new->ignore_df = old->ignore_df;
698 new->pkt_type = old->pkt_type;
699 new->ip_summed = old->ip_summed;
700 skb_copy_queue_mapping(new, old);
701 new->priority = old->priority;
702 #if IS_ENABLED(CONFIG_IP_VS)
703 new->ipvs_property = old->ipvs_property;
704 #endif
705 new->pfmemalloc = old->pfmemalloc;
706 new->protocol = old->protocol;
707 new->mark = old->mark;
708 new->skb_iif = old->skb_iif;
709 __nf_copy(new, old);
710 #ifdef CONFIG_NET_SCHED
711 new->tc_index = old->tc_index;
712 #ifdef CONFIG_NET_CLS_ACT
713 new->tc_verd = old->tc_verd;
714 #endif
715 #endif
716 new->vlan_proto = old->vlan_proto;
717 new->vlan_tci = old->vlan_tci;
718
719 skb_copy_secmark(new, old);
720
721 #ifdef CONFIG_NET_RX_BUSY_POLL
722 new->napi_id = old->napi_id;
723 #endif
724 }
725
726 /*
727 * You should not add any new code to this function. Add it to
728 * __copy_skb_header above instead.
729 */
730 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
731 {
732 #define C(x) n->x = skb->x
733
734 n->next = n->prev = NULL;
735 n->sk = NULL;
736 __copy_skb_header(n, skb);
737
738 C(len);
739 C(data_len);
740 C(mac_len);
741 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
742 n->cloned = 1;
743 n->nohdr = 0;
744 n->destructor = NULL;
745 C(tail);
746 C(end);
747 C(head);
748 C(head_frag);
749 C(data);
750 C(truesize);
751 atomic_set(&n->users, 1);
752
753 atomic_inc(&(skb_shinfo(skb)->dataref));
754 skb->cloned = 1;
755
756 return n;
757 #undef C
758 }
759
760 /**
761 * skb_morph - morph one skb into another
762 * @dst: the skb to receive the contents
763 * @src: the skb to supply the contents
764 *
765 * This is identical to skb_clone except that the target skb is
766 * supplied by the user.
767 *
768 * The target skb is returned upon exit.
769 */
770 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
771 {
772 skb_release_all(dst);
773 return __skb_clone(dst, src);
774 }
775 EXPORT_SYMBOL_GPL(skb_morph);
776
777 /**
778 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
779 * @skb: the skb to modify
780 * @gfp_mask: allocation priority
781 *
782 * This must be called on SKBTX_DEV_ZEROCOPY skb.
783 * It will copy all frags into kernel and drop the reference
784 * to userspace pages.
785 *
786 * If this function is called from an interrupt gfp_mask() must be
787 * %GFP_ATOMIC.
788 *
789 * Returns 0 on success or a negative error code on failure
790 * to allocate kernel memory to copy to.
791 */
792 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
793 {
794 int i;
795 int num_frags = skb_shinfo(skb)->nr_frags;
796 struct page *page, *head = NULL;
797 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
798
799 for (i = 0; i < num_frags; i++) {
800 u8 *vaddr;
801 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
802
803 page = alloc_page(gfp_mask);
804 if (!page) {
805 while (head) {
806 struct page *next = (struct page *)page_private(head);
807 put_page(head);
808 head = next;
809 }
810 return -ENOMEM;
811 }
812 vaddr = kmap_atomic(skb_frag_page(f));
813 memcpy(page_address(page),
814 vaddr + f->page_offset, skb_frag_size(f));
815 kunmap_atomic(vaddr);
816 set_page_private(page, (unsigned long)head);
817 head = page;
818 }
819
820 /* skb frags release userspace buffers */
821 for (i = 0; i < num_frags; i++)
822 skb_frag_unref(skb, i);
823
824 uarg->callback(uarg, false);
825
826 /* skb frags point to kernel buffers */
827 for (i = num_frags - 1; i >= 0; i--) {
828 __skb_fill_page_desc(skb, i, head, 0,
829 skb_shinfo(skb)->frags[i].size);
830 head = (struct page *)page_private(head);
831 }
832
833 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
834 return 0;
835 }
836 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
837
838 /**
839 * skb_clone - duplicate an sk_buff
840 * @skb: buffer to clone
841 * @gfp_mask: allocation priority
842 *
843 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
844 * copies share the same packet data but not structure. The new
845 * buffer has a reference count of 1. If the allocation fails the
846 * function returns %NULL otherwise the new buffer is returned.
847 *
848 * If this function is called from an interrupt gfp_mask() must be
849 * %GFP_ATOMIC.
850 */
851
852 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
853 {
854 struct sk_buff *n;
855
856 if (skb_orphan_frags(skb, gfp_mask))
857 return NULL;
858
859 n = skb + 1;
860 if (skb->fclone == SKB_FCLONE_ORIG &&
861 n->fclone == SKB_FCLONE_UNAVAILABLE) {
862 atomic_t *fclone_ref = (atomic_t *) (n + 1);
863 n->fclone = SKB_FCLONE_CLONE;
864 atomic_inc(fclone_ref);
865 } else {
866 if (skb_pfmemalloc(skb))
867 gfp_mask |= __GFP_MEMALLOC;
868
869 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
870 if (!n)
871 return NULL;
872
873 kmemcheck_annotate_bitfield(n, flags1);
874 kmemcheck_annotate_bitfield(n, flags2);
875 n->fclone = SKB_FCLONE_UNAVAILABLE;
876 }
877
878 return __skb_clone(n, skb);
879 }
880 EXPORT_SYMBOL(skb_clone);
881
882 static void skb_headers_offset_update(struct sk_buff *skb, int off)
883 {
884 /* Only adjust this if it actually is csum_start rather than csum */
885 if (skb->ip_summed == CHECKSUM_PARTIAL)
886 skb->csum_start += off;
887 /* {transport,network,mac}_header and tail are relative to skb->head */
888 skb->transport_header += off;
889 skb->network_header += off;
890 if (skb_mac_header_was_set(skb))
891 skb->mac_header += off;
892 skb->inner_transport_header += off;
893 skb->inner_network_header += off;
894 skb->inner_mac_header += off;
895 }
896
897 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
898 {
899 __copy_skb_header(new, old);
900
901 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
902 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
903 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
904 }
905
906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
907 {
908 if (skb_pfmemalloc(skb))
909 return SKB_ALLOC_RX;
910 return 0;
911 }
912
913 /**
914 * skb_copy - create private copy of an sk_buff
915 * @skb: buffer to copy
916 * @gfp_mask: allocation priority
917 *
918 * Make a copy of both an &sk_buff and its data. This is used when the
919 * caller wishes to modify the data and needs a private copy of the
920 * data to alter. Returns %NULL on failure or the pointer to the buffer
921 * on success. The returned buffer has a reference count of 1.
922 *
923 * As by-product this function converts non-linear &sk_buff to linear
924 * one, so that &sk_buff becomes completely private and caller is allowed
925 * to modify all the data of returned buffer. This means that this
926 * function is not recommended for use in circumstances when only
927 * header is going to be modified. Use pskb_copy() instead.
928 */
929
930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
931 {
932 int headerlen = skb_headroom(skb);
933 unsigned int size = skb_end_offset(skb) + skb->data_len;
934 struct sk_buff *n = __alloc_skb(size, gfp_mask,
935 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
936
937 if (!n)
938 return NULL;
939
940 /* Set the data pointer */
941 skb_reserve(n, headerlen);
942 /* Set the tail pointer and length */
943 skb_put(n, skb->len);
944
945 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
946 BUG();
947
948 copy_skb_header(n, skb);
949 return n;
950 }
951 EXPORT_SYMBOL(skb_copy);
952
953 /**
954 * __pskb_copy_fclone - create copy of an sk_buff with private head.
955 * @skb: buffer to copy
956 * @headroom: headroom of new skb
957 * @gfp_mask: allocation priority
958 * @fclone: if true allocate the copy of the skb from the fclone
959 * cache instead of the head cache; it is recommended to set this
960 * to true for the cases where the copy will likely be cloned
961 *
962 * Make a copy of both an &sk_buff and part of its data, located
963 * in header. Fragmented data remain shared. This is used when
964 * the caller wishes to modify only header of &sk_buff and needs
965 * private copy of the header to alter. Returns %NULL on failure
966 * or the pointer to the buffer on success.
967 * The returned buffer has a reference count of 1.
968 */
969
970 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
971 gfp_t gfp_mask, bool fclone)
972 {
973 unsigned int size = skb_headlen(skb) + headroom;
974 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
975 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
976
977 if (!n)
978 goto out;
979
980 /* Set the data pointer */
981 skb_reserve(n, headroom);
982 /* Set the tail pointer and length */
983 skb_put(n, skb_headlen(skb));
984 /* Copy the bytes */
985 skb_copy_from_linear_data(skb, n->data, n->len);
986
987 n->truesize += skb->data_len;
988 n->data_len = skb->data_len;
989 n->len = skb->len;
990
991 if (skb_shinfo(skb)->nr_frags) {
992 int i;
993
994 if (skb_orphan_frags(skb, gfp_mask)) {
995 kfree_skb(n);
996 n = NULL;
997 goto out;
998 }
999 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1000 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1001 skb_frag_ref(skb, i);
1002 }
1003 skb_shinfo(n)->nr_frags = i;
1004 }
1005
1006 if (skb_has_frag_list(skb)) {
1007 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1008 skb_clone_fraglist(n);
1009 }
1010
1011 copy_skb_header(n, skb);
1012 out:
1013 return n;
1014 }
1015 EXPORT_SYMBOL(__pskb_copy_fclone);
1016
1017 /**
1018 * pskb_expand_head - reallocate header of &sk_buff
1019 * @skb: buffer to reallocate
1020 * @nhead: room to add at head
1021 * @ntail: room to add at tail
1022 * @gfp_mask: allocation priority
1023 *
1024 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1025 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1026 * reference count of 1. Returns zero in the case of success or error,
1027 * if expansion failed. In the last case, &sk_buff is not changed.
1028 *
1029 * All the pointers pointing into skb header may change and must be
1030 * reloaded after call to this function.
1031 */
1032
1033 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1034 gfp_t gfp_mask)
1035 {
1036 int i;
1037 u8 *data;
1038 int size = nhead + skb_end_offset(skb) + ntail;
1039 long off;
1040
1041 BUG_ON(nhead < 0);
1042
1043 if (skb_shared(skb))
1044 BUG();
1045
1046 size = SKB_DATA_ALIGN(size);
1047
1048 if (skb_pfmemalloc(skb))
1049 gfp_mask |= __GFP_MEMALLOC;
1050 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1051 gfp_mask, NUMA_NO_NODE, NULL);
1052 if (!data)
1053 goto nodata;
1054 size = SKB_WITH_OVERHEAD(ksize(data));
1055
1056 /* Copy only real data... and, alas, header. This should be
1057 * optimized for the cases when header is void.
1058 */
1059 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1060
1061 memcpy((struct skb_shared_info *)(data + size),
1062 skb_shinfo(skb),
1063 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1064
1065 /*
1066 * if shinfo is shared we must drop the old head gracefully, but if it
1067 * is not we can just drop the old head and let the existing refcount
1068 * be since all we did is relocate the values
1069 */
1070 if (skb_cloned(skb)) {
1071 /* copy this zero copy skb frags */
1072 if (skb_orphan_frags(skb, gfp_mask))
1073 goto nofrags;
1074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1075 skb_frag_ref(skb, i);
1076
1077 if (skb_has_frag_list(skb))
1078 skb_clone_fraglist(skb);
1079
1080 skb_release_data(skb);
1081 } else {
1082 skb_free_head(skb);
1083 }
1084 off = (data + nhead) - skb->head;
1085
1086 skb->head = data;
1087 skb->head_frag = 0;
1088 skb->data += off;
1089 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1090 skb->end = size;
1091 off = nhead;
1092 #else
1093 skb->end = skb->head + size;
1094 #endif
1095 skb->tail += off;
1096 skb_headers_offset_update(skb, nhead);
1097 skb->cloned = 0;
1098 skb->hdr_len = 0;
1099 skb->nohdr = 0;
1100 atomic_set(&skb_shinfo(skb)->dataref, 1);
1101 return 0;
1102
1103 nofrags:
1104 kfree(data);
1105 nodata:
1106 return -ENOMEM;
1107 }
1108 EXPORT_SYMBOL(pskb_expand_head);
1109
1110 /* Make private copy of skb with writable head and some headroom */
1111
1112 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1113 {
1114 struct sk_buff *skb2;
1115 int delta = headroom - skb_headroom(skb);
1116
1117 if (delta <= 0)
1118 skb2 = pskb_copy(skb, GFP_ATOMIC);
1119 else {
1120 skb2 = skb_clone(skb, GFP_ATOMIC);
1121 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1122 GFP_ATOMIC)) {
1123 kfree_skb(skb2);
1124 skb2 = NULL;
1125 }
1126 }
1127 return skb2;
1128 }
1129 EXPORT_SYMBOL(skb_realloc_headroom);
1130
1131 /**
1132 * skb_copy_expand - copy and expand sk_buff
1133 * @skb: buffer to copy
1134 * @newheadroom: new free bytes at head
1135 * @newtailroom: new free bytes at tail
1136 * @gfp_mask: allocation priority
1137 *
1138 * Make a copy of both an &sk_buff and its data and while doing so
1139 * allocate additional space.
1140 *
1141 * This is used when the caller wishes to modify the data and needs a
1142 * private copy of the data to alter as well as more space for new fields.
1143 * Returns %NULL on failure or the pointer to the buffer
1144 * on success. The returned buffer has a reference count of 1.
1145 *
1146 * You must pass %GFP_ATOMIC as the allocation priority if this function
1147 * is called from an interrupt.
1148 */
1149 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1150 int newheadroom, int newtailroom,
1151 gfp_t gfp_mask)
1152 {
1153 /*
1154 * Allocate the copy buffer
1155 */
1156 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1157 gfp_mask, skb_alloc_rx_flag(skb),
1158 NUMA_NO_NODE);
1159 int oldheadroom = skb_headroom(skb);
1160 int head_copy_len, head_copy_off;
1161
1162 if (!n)
1163 return NULL;
1164
1165 skb_reserve(n, newheadroom);
1166
1167 /* Set the tail pointer and length */
1168 skb_put(n, skb->len);
1169
1170 head_copy_len = oldheadroom;
1171 head_copy_off = 0;
1172 if (newheadroom <= head_copy_len)
1173 head_copy_len = newheadroom;
1174 else
1175 head_copy_off = newheadroom - head_copy_len;
1176
1177 /* Copy the linear header and data. */
1178 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1179 skb->len + head_copy_len))
1180 BUG();
1181
1182 copy_skb_header(n, skb);
1183
1184 skb_headers_offset_update(n, newheadroom - oldheadroom);
1185
1186 return n;
1187 }
1188 EXPORT_SYMBOL(skb_copy_expand);
1189
1190 /**
1191 * skb_pad - zero pad the tail of an skb
1192 * @skb: buffer to pad
1193 * @pad: space to pad
1194 *
1195 * Ensure that a buffer is followed by a padding area that is zero
1196 * filled. Used by network drivers which may DMA or transfer data
1197 * beyond the buffer end onto the wire.
1198 *
1199 * May return error in out of memory cases. The skb is freed on error.
1200 */
1201
1202 int skb_pad(struct sk_buff *skb, int pad)
1203 {
1204 int err;
1205 int ntail;
1206
1207 /* If the skbuff is non linear tailroom is always zero.. */
1208 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1209 memset(skb->data+skb->len, 0, pad);
1210 return 0;
1211 }
1212
1213 ntail = skb->data_len + pad - (skb->end - skb->tail);
1214 if (likely(skb_cloned(skb) || ntail > 0)) {
1215 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1216 if (unlikely(err))
1217 goto free_skb;
1218 }
1219
1220 /* FIXME: The use of this function with non-linear skb's really needs
1221 * to be audited.
1222 */
1223 err = skb_linearize(skb);
1224 if (unlikely(err))
1225 goto free_skb;
1226
1227 memset(skb->data + skb->len, 0, pad);
1228 return 0;
1229
1230 free_skb:
1231 kfree_skb(skb);
1232 return err;
1233 }
1234 EXPORT_SYMBOL(skb_pad);
1235
1236 /**
1237 * pskb_put - add data to the tail of a potentially fragmented buffer
1238 * @skb: start of the buffer to use
1239 * @tail: tail fragment of the buffer to use
1240 * @len: amount of data to add
1241 *
1242 * This function extends the used data area of the potentially
1243 * fragmented buffer. @tail must be the last fragment of @skb -- or
1244 * @skb itself. If this would exceed the total buffer size the kernel
1245 * will panic. A pointer to the first byte of the extra data is
1246 * returned.
1247 */
1248
1249 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1250 {
1251 if (tail != skb) {
1252 skb->data_len += len;
1253 skb->len += len;
1254 }
1255 return skb_put(tail, len);
1256 }
1257 EXPORT_SYMBOL_GPL(pskb_put);
1258
1259 /**
1260 * skb_put - add data to a buffer
1261 * @skb: buffer to use
1262 * @len: amount of data to add
1263 *
1264 * This function extends the used data area of the buffer. If this would
1265 * exceed the total buffer size the kernel will panic. A pointer to the
1266 * first byte of the extra data is returned.
1267 */
1268 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1269 {
1270 unsigned char *tmp = skb_tail_pointer(skb);
1271 SKB_LINEAR_ASSERT(skb);
1272 skb->tail += len;
1273 skb->len += len;
1274 if (unlikely(skb->tail > skb->end))
1275 skb_over_panic(skb, len, __builtin_return_address(0));
1276 return tmp;
1277 }
1278 EXPORT_SYMBOL(skb_put);
1279
1280 /**
1281 * skb_push - add data to the start of a buffer
1282 * @skb: buffer to use
1283 * @len: amount of data to add
1284 *
1285 * This function extends the used data area of the buffer at the buffer
1286 * start. If this would exceed the total buffer headroom the kernel will
1287 * panic. A pointer to the first byte of the extra data is returned.
1288 */
1289 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1290 {
1291 skb->data -= len;
1292 skb->len += len;
1293 if (unlikely(skb->data<skb->head))
1294 skb_under_panic(skb, len, __builtin_return_address(0));
1295 return skb->data;
1296 }
1297 EXPORT_SYMBOL(skb_push);
1298
1299 /**
1300 * skb_pull - remove data from the start of a buffer
1301 * @skb: buffer to use
1302 * @len: amount of data to remove
1303 *
1304 * This function removes data from the start of a buffer, returning
1305 * the memory to the headroom. A pointer to the next data in the buffer
1306 * is returned. Once the data has been pulled future pushes will overwrite
1307 * the old data.
1308 */
1309 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1310 {
1311 return skb_pull_inline(skb, len);
1312 }
1313 EXPORT_SYMBOL(skb_pull);
1314
1315 /**
1316 * skb_trim - remove end from a buffer
1317 * @skb: buffer to alter
1318 * @len: new length
1319 *
1320 * Cut the length of a buffer down by removing data from the tail. If
1321 * the buffer is already under the length specified it is not modified.
1322 * The skb must be linear.
1323 */
1324 void skb_trim(struct sk_buff *skb, unsigned int len)
1325 {
1326 if (skb->len > len)
1327 __skb_trim(skb, len);
1328 }
1329 EXPORT_SYMBOL(skb_trim);
1330
1331 /* Trims skb to length len. It can change skb pointers.
1332 */
1333
1334 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1335 {
1336 struct sk_buff **fragp;
1337 struct sk_buff *frag;
1338 int offset = skb_headlen(skb);
1339 int nfrags = skb_shinfo(skb)->nr_frags;
1340 int i;
1341 int err;
1342
1343 if (skb_cloned(skb) &&
1344 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1345 return err;
1346
1347 i = 0;
1348 if (offset >= len)
1349 goto drop_pages;
1350
1351 for (; i < nfrags; i++) {
1352 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1353
1354 if (end < len) {
1355 offset = end;
1356 continue;
1357 }
1358
1359 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1360
1361 drop_pages:
1362 skb_shinfo(skb)->nr_frags = i;
1363
1364 for (; i < nfrags; i++)
1365 skb_frag_unref(skb, i);
1366
1367 if (skb_has_frag_list(skb))
1368 skb_drop_fraglist(skb);
1369 goto done;
1370 }
1371
1372 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1373 fragp = &frag->next) {
1374 int end = offset + frag->len;
1375
1376 if (skb_shared(frag)) {
1377 struct sk_buff *nfrag;
1378
1379 nfrag = skb_clone(frag, GFP_ATOMIC);
1380 if (unlikely(!nfrag))
1381 return -ENOMEM;
1382
1383 nfrag->next = frag->next;
1384 consume_skb(frag);
1385 frag = nfrag;
1386 *fragp = frag;
1387 }
1388
1389 if (end < len) {
1390 offset = end;
1391 continue;
1392 }
1393
1394 if (end > len &&
1395 unlikely((err = pskb_trim(frag, len - offset))))
1396 return err;
1397
1398 if (frag->next)
1399 skb_drop_list(&frag->next);
1400 break;
1401 }
1402
1403 done:
1404 if (len > skb_headlen(skb)) {
1405 skb->data_len -= skb->len - len;
1406 skb->len = len;
1407 } else {
1408 skb->len = len;
1409 skb->data_len = 0;
1410 skb_set_tail_pointer(skb, len);
1411 }
1412
1413 return 0;
1414 }
1415 EXPORT_SYMBOL(___pskb_trim);
1416
1417 /**
1418 * __pskb_pull_tail - advance tail of skb header
1419 * @skb: buffer to reallocate
1420 * @delta: number of bytes to advance tail
1421 *
1422 * The function makes a sense only on a fragmented &sk_buff,
1423 * it expands header moving its tail forward and copying necessary
1424 * data from fragmented part.
1425 *
1426 * &sk_buff MUST have reference count of 1.
1427 *
1428 * Returns %NULL (and &sk_buff does not change) if pull failed
1429 * or value of new tail of skb in the case of success.
1430 *
1431 * All the pointers pointing into skb header may change and must be
1432 * reloaded after call to this function.
1433 */
1434
1435 /* Moves tail of skb head forward, copying data from fragmented part,
1436 * when it is necessary.
1437 * 1. It may fail due to malloc failure.
1438 * 2. It may change skb pointers.
1439 *
1440 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1441 */
1442 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1443 {
1444 /* If skb has not enough free space at tail, get new one
1445 * plus 128 bytes for future expansions. If we have enough
1446 * room at tail, reallocate without expansion only if skb is cloned.
1447 */
1448 int i, k, eat = (skb->tail + delta) - skb->end;
1449
1450 if (eat > 0 || skb_cloned(skb)) {
1451 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1452 GFP_ATOMIC))
1453 return NULL;
1454 }
1455
1456 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1457 BUG();
1458
1459 /* Optimization: no fragments, no reasons to preestimate
1460 * size of pulled pages. Superb.
1461 */
1462 if (!skb_has_frag_list(skb))
1463 goto pull_pages;
1464
1465 /* Estimate size of pulled pages. */
1466 eat = delta;
1467 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1468 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1469
1470 if (size >= eat)
1471 goto pull_pages;
1472 eat -= size;
1473 }
1474
1475 /* If we need update frag list, we are in troubles.
1476 * Certainly, it possible to add an offset to skb data,
1477 * but taking into account that pulling is expected to
1478 * be very rare operation, it is worth to fight against
1479 * further bloating skb head and crucify ourselves here instead.
1480 * Pure masohism, indeed. 8)8)
1481 */
1482 if (eat) {
1483 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1484 struct sk_buff *clone = NULL;
1485 struct sk_buff *insp = NULL;
1486
1487 do {
1488 BUG_ON(!list);
1489
1490 if (list->len <= eat) {
1491 /* Eaten as whole. */
1492 eat -= list->len;
1493 list = list->next;
1494 insp = list;
1495 } else {
1496 /* Eaten partially. */
1497
1498 if (skb_shared(list)) {
1499 /* Sucks! We need to fork list. :-( */
1500 clone = skb_clone(list, GFP_ATOMIC);
1501 if (!clone)
1502 return NULL;
1503 insp = list->next;
1504 list = clone;
1505 } else {
1506 /* This may be pulled without
1507 * problems. */
1508 insp = list;
1509 }
1510 if (!pskb_pull(list, eat)) {
1511 kfree_skb(clone);
1512 return NULL;
1513 }
1514 break;
1515 }
1516 } while (eat);
1517
1518 /* Free pulled out fragments. */
1519 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1520 skb_shinfo(skb)->frag_list = list->next;
1521 kfree_skb(list);
1522 }
1523 /* And insert new clone at head. */
1524 if (clone) {
1525 clone->next = list;
1526 skb_shinfo(skb)->frag_list = clone;
1527 }
1528 }
1529 /* Success! Now we may commit changes to skb data. */
1530
1531 pull_pages:
1532 eat = delta;
1533 k = 0;
1534 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1535 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1536
1537 if (size <= eat) {
1538 skb_frag_unref(skb, i);
1539 eat -= size;
1540 } else {
1541 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1542 if (eat) {
1543 skb_shinfo(skb)->frags[k].page_offset += eat;
1544 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1545 eat = 0;
1546 }
1547 k++;
1548 }
1549 }
1550 skb_shinfo(skb)->nr_frags = k;
1551
1552 skb->tail += delta;
1553 skb->data_len -= delta;
1554
1555 return skb_tail_pointer(skb);
1556 }
1557 EXPORT_SYMBOL(__pskb_pull_tail);
1558
1559 /**
1560 * skb_copy_bits - copy bits from skb to kernel buffer
1561 * @skb: source skb
1562 * @offset: offset in source
1563 * @to: destination buffer
1564 * @len: number of bytes to copy
1565 *
1566 * Copy the specified number of bytes from the source skb to the
1567 * destination buffer.
1568 *
1569 * CAUTION ! :
1570 * If its prototype is ever changed,
1571 * check arch/{*}/net/{*}.S files,
1572 * since it is called from BPF assembly code.
1573 */
1574 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1575 {
1576 int start = skb_headlen(skb);
1577 struct sk_buff *frag_iter;
1578 int i, copy;
1579
1580 if (offset > (int)skb->len - len)
1581 goto fault;
1582
1583 /* Copy header. */
1584 if ((copy = start - offset) > 0) {
1585 if (copy > len)
1586 copy = len;
1587 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1588 if ((len -= copy) == 0)
1589 return 0;
1590 offset += copy;
1591 to += copy;
1592 }
1593
1594 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1595 int end;
1596 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1597
1598 WARN_ON(start > offset + len);
1599
1600 end = start + skb_frag_size(f);
1601 if ((copy = end - offset) > 0) {
1602 u8 *vaddr;
1603
1604 if (copy > len)
1605 copy = len;
1606
1607 vaddr = kmap_atomic(skb_frag_page(f));
1608 memcpy(to,
1609 vaddr + f->page_offset + offset - start,
1610 copy);
1611 kunmap_atomic(vaddr);
1612
1613 if ((len -= copy) == 0)
1614 return 0;
1615 offset += copy;
1616 to += copy;
1617 }
1618 start = end;
1619 }
1620
1621 skb_walk_frags(skb, frag_iter) {
1622 int end;
1623
1624 WARN_ON(start > offset + len);
1625
1626 end = start + frag_iter->len;
1627 if ((copy = end - offset) > 0) {
1628 if (copy > len)
1629 copy = len;
1630 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1631 goto fault;
1632 if ((len -= copy) == 0)
1633 return 0;
1634 offset += copy;
1635 to += copy;
1636 }
1637 start = end;
1638 }
1639
1640 if (!len)
1641 return 0;
1642
1643 fault:
1644 return -EFAULT;
1645 }
1646 EXPORT_SYMBOL(skb_copy_bits);
1647
1648 /*
1649 * Callback from splice_to_pipe(), if we need to release some pages
1650 * at the end of the spd in case we error'ed out in filling the pipe.
1651 */
1652 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1653 {
1654 put_page(spd->pages[i]);
1655 }
1656
1657 static struct page *linear_to_page(struct page *page, unsigned int *len,
1658 unsigned int *offset,
1659 struct sock *sk)
1660 {
1661 struct page_frag *pfrag = sk_page_frag(sk);
1662
1663 if (!sk_page_frag_refill(sk, pfrag))
1664 return NULL;
1665
1666 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1667
1668 memcpy(page_address(pfrag->page) + pfrag->offset,
1669 page_address(page) + *offset, *len);
1670 *offset = pfrag->offset;
1671 pfrag->offset += *len;
1672
1673 return pfrag->page;
1674 }
1675
1676 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1677 struct page *page,
1678 unsigned int offset)
1679 {
1680 return spd->nr_pages &&
1681 spd->pages[spd->nr_pages - 1] == page &&
1682 (spd->partial[spd->nr_pages - 1].offset +
1683 spd->partial[spd->nr_pages - 1].len == offset);
1684 }
1685
1686 /*
1687 * Fill page/offset/length into spd, if it can hold more pages.
1688 */
1689 static bool spd_fill_page(struct splice_pipe_desc *spd,
1690 struct pipe_inode_info *pipe, struct page *page,
1691 unsigned int *len, unsigned int offset,
1692 bool linear,
1693 struct sock *sk)
1694 {
1695 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1696 return true;
1697
1698 if (linear) {
1699 page = linear_to_page(page, len, &offset, sk);
1700 if (!page)
1701 return true;
1702 }
1703 if (spd_can_coalesce(spd, page, offset)) {
1704 spd->partial[spd->nr_pages - 1].len += *len;
1705 return false;
1706 }
1707 get_page(page);
1708 spd->pages[spd->nr_pages] = page;
1709 spd->partial[spd->nr_pages].len = *len;
1710 spd->partial[spd->nr_pages].offset = offset;
1711 spd->nr_pages++;
1712
1713 return false;
1714 }
1715
1716 static bool __splice_segment(struct page *page, unsigned int poff,
1717 unsigned int plen, unsigned int *off,
1718 unsigned int *len,
1719 struct splice_pipe_desc *spd, bool linear,
1720 struct sock *sk,
1721 struct pipe_inode_info *pipe)
1722 {
1723 if (!*len)
1724 return true;
1725
1726 /* skip this segment if already processed */
1727 if (*off >= plen) {
1728 *off -= plen;
1729 return false;
1730 }
1731
1732 /* ignore any bits we already processed */
1733 poff += *off;
1734 plen -= *off;
1735 *off = 0;
1736
1737 do {
1738 unsigned int flen = min(*len, plen);
1739
1740 if (spd_fill_page(spd, pipe, page, &flen, poff,
1741 linear, sk))
1742 return true;
1743 poff += flen;
1744 plen -= flen;
1745 *len -= flen;
1746 } while (*len && plen);
1747
1748 return false;
1749 }
1750
1751 /*
1752 * Map linear and fragment data from the skb to spd. It reports true if the
1753 * pipe is full or if we already spliced the requested length.
1754 */
1755 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1756 unsigned int *offset, unsigned int *len,
1757 struct splice_pipe_desc *spd, struct sock *sk)
1758 {
1759 int seg;
1760
1761 /* map the linear part :
1762 * If skb->head_frag is set, this 'linear' part is backed by a
1763 * fragment, and if the head is not shared with any clones then
1764 * we can avoid a copy since we own the head portion of this page.
1765 */
1766 if (__splice_segment(virt_to_page(skb->data),
1767 (unsigned long) skb->data & (PAGE_SIZE - 1),
1768 skb_headlen(skb),
1769 offset, len, spd,
1770 skb_head_is_locked(skb),
1771 sk, pipe))
1772 return true;
1773
1774 /*
1775 * then map the fragments
1776 */
1777 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1778 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1779
1780 if (__splice_segment(skb_frag_page(f),
1781 f->page_offset, skb_frag_size(f),
1782 offset, len, spd, false, sk, pipe))
1783 return true;
1784 }
1785
1786 return false;
1787 }
1788
1789 /*
1790 * Map data from the skb to a pipe. Should handle both the linear part,
1791 * the fragments, and the frag list. It does NOT handle frag lists within
1792 * the frag list, if such a thing exists. We'd probably need to recurse to
1793 * handle that cleanly.
1794 */
1795 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1796 struct pipe_inode_info *pipe, unsigned int tlen,
1797 unsigned int flags)
1798 {
1799 struct partial_page partial[MAX_SKB_FRAGS];
1800 struct page *pages[MAX_SKB_FRAGS];
1801 struct splice_pipe_desc spd = {
1802 .pages = pages,
1803 .partial = partial,
1804 .nr_pages_max = MAX_SKB_FRAGS,
1805 .flags = flags,
1806 .ops = &nosteal_pipe_buf_ops,
1807 .spd_release = sock_spd_release,
1808 };
1809 struct sk_buff *frag_iter;
1810 struct sock *sk = skb->sk;
1811 int ret = 0;
1812
1813 /*
1814 * __skb_splice_bits() only fails if the output has no room left,
1815 * so no point in going over the frag_list for the error case.
1816 */
1817 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1818 goto done;
1819 else if (!tlen)
1820 goto done;
1821
1822 /*
1823 * now see if we have a frag_list to map
1824 */
1825 skb_walk_frags(skb, frag_iter) {
1826 if (!tlen)
1827 break;
1828 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1829 break;
1830 }
1831
1832 done:
1833 if (spd.nr_pages) {
1834 /*
1835 * Drop the socket lock, otherwise we have reverse
1836 * locking dependencies between sk_lock and i_mutex
1837 * here as compared to sendfile(). We enter here
1838 * with the socket lock held, and splice_to_pipe() will
1839 * grab the pipe inode lock. For sendfile() emulation,
1840 * we call into ->sendpage() with the i_mutex lock held
1841 * and networking will grab the socket lock.
1842 */
1843 release_sock(sk);
1844 ret = splice_to_pipe(pipe, &spd);
1845 lock_sock(sk);
1846 }
1847
1848 return ret;
1849 }
1850
1851 /**
1852 * skb_store_bits - store bits from kernel buffer to skb
1853 * @skb: destination buffer
1854 * @offset: offset in destination
1855 * @from: source buffer
1856 * @len: number of bytes to copy
1857 *
1858 * Copy the specified number of bytes from the source buffer to the
1859 * destination skb. This function handles all the messy bits of
1860 * traversing fragment lists and such.
1861 */
1862
1863 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1864 {
1865 int start = skb_headlen(skb);
1866 struct sk_buff *frag_iter;
1867 int i, copy;
1868
1869 if (offset > (int)skb->len - len)
1870 goto fault;
1871
1872 if ((copy = start - offset) > 0) {
1873 if (copy > len)
1874 copy = len;
1875 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1876 if ((len -= copy) == 0)
1877 return 0;
1878 offset += copy;
1879 from += copy;
1880 }
1881
1882 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1883 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1884 int end;
1885
1886 WARN_ON(start > offset + len);
1887
1888 end = start + skb_frag_size(frag);
1889 if ((copy = end - offset) > 0) {
1890 u8 *vaddr;
1891
1892 if (copy > len)
1893 copy = len;
1894
1895 vaddr = kmap_atomic(skb_frag_page(frag));
1896 memcpy(vaddr + frag->page_offset + offset - start,
1897 from, copy);
1898 kunmap_atomic(vaddr);
1899
1900 if ((len -= copy) == 0)
1901 return 0;
1902 offset += copy;
1903 from += copy;
1904 }
1905 start = end;
1906 }
1907
1908 skb_walk_frags(skb, frag_iter) {
1909 int end;
1910
1911 WARN_ON(start > offset + len);
1912
1913 end = start + frag_iter->len;
1914 if ((copy = end - offset) > 0) {
1915 if (copy > len)
1916 copy = len;
1917 if (skb_store_bits(frag_iter, offset - start,
1918 from, copy))
1919 goto fault;
1920 if ((len -= copy) == 0)
1921 return 0;
1922 offset += copy;
1923 from += copy;
1924 }
1925 start = end;
1926 }
1927 if (!len)
1928 return 0;
1929
1930 fault:
1931 return -EFAULT;
1932 }
1933 EXPORT_SYMBOL(skb_store_bits);
1934
1935 /* Checksum skb data. */
1936 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1937 __wsum csum, const struct skb_checksum_ops *ops)
1938 {
1939 int start = skb_headlen(skb);
1940 int i, copy = start - offset;
1941 struct sk_buff *frag_iter;
1942 int pos = 0;
1943
1944 /* Checksum header. */
1945 if (copy > 0) {
1946 if (copy > len)
1947 copy = len;
1948 csum = ops->update(skb->data + offset, copy, csum);
1949 if ((len -= copy) == 0)
1950 return csum;
1951 offset += copy;
1952 pos = copy;
1953 }
1954
1955 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1956 int end;
1957 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1958
1959 WARN_ON(start > offset + len);
1960
1961 end = start + skb_frag_size(frag);
1962 if ((copy = end - offset) > 0) {
1963 __wsum csum2;
1964 u8 *vaddr;
1965
1966 if (copy > len)
1967 copy = len;
1968 vaddr = kmap_atomic(skb_frag_page(frag));
1969 csum2 = ops->update(vaddr + frag->page_offset +
1970 offset - start, copy, 0);
1971 kunmap_atomic(vaddr);
1972 csum = ops->combine(csum, csum2, pos, copy);
1973 if (!(len -= copy))
1974 return csum;
1975 offset += copy;
1976 pos += copy;
1977 }
1978 start = end;
1979 }
1980
1981 skb_walk_frags(skb, frag_iter) {
1982 int end;
1983
1984 WARN_ON(start > offset + len);
1985
1986 end = start + frag_iter->len;
1987 if ((copy = end - offset) > 0) {
1988 __wsum csum2;
1989 if (copy > len)
1990 copy = len;
1991 csum2 = __skb_checksum(frag_iter, offset - start,
1992 copy, 0, ops);
1993 csum = ops->combine(csum, csum2, pos, copy);
1994 if ((len -= copy) == 0)
1995 return csum;
1996 offset += copy;
1997 pos += copy;
1998 }
1999 start = end;
2000 }
2001 BUG_ON(len);
2002
2003 return csum;
2004 }
2005 EXPORT_SYMBOL(__skb_checksum);
2006
2007 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2008 int len, __wsum csum)
2009 {
2010 const struct skb_checksum_ops ops = {
2011 .update = csum_partial_ext,
2012 .combine = csum_block_add_ext,
2013 };
2014
2015 return __skb_checksum(skb, offset, len, csum, &ops);
2016 }
2017 EXPORT_SYMBOL(skb_checksum);
2018
2019 /* Both of above in one bottle. */
2020
2021 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2022 u8 *to, int len, __wsum csum)
2023 {
2024 int start = skb_headlen(skb);
2025 int i, copy = start - offset;
2026 struct sk_buff *frag_iter;
2027 int pos = 0;
2028
2029 /* Copy header. */
2030 if (copy > 0) {
2031 if (copy > len)
2032 copy = len;
2033 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2034 copy, csum);
2035 if ((len -= copy) == 0)
2036 return csum;
2037 offset += copy;
2038 to += copy;
2039 pos = copy;
2040 }
2041
2042 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 int end;
2044
2045 WARN_ON(start > offset + len);
2046
2047 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2048 if ((copy = end - offset) > 0) {
2049 __wsum csum2;
2050 u8 *vaddr;
2051 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2052
2053 if (copy > len)
2054 copy = len;
2055 vaddr = kmap_atomic(skb_frag_page(frag));
2056 csum2 = csum_partial_copy_nocheck(vaddr +
2057 frag->page_offset +
2058 offset - start, to,
2059 copy, 0);
2060 kunmap_atomic(vaddr);
2061 csum = csum_block_add(csum, csum2, pos);
2062 if (!(len -= copy))
2063 return csum;
2064 offset += copy;
2065 to += copy;
2066 pos += copy;
2067 }
2068 start = end;
2069 }
2070
2071 skb_walk_frags(skb, frag_iter) {
2072 __wsum csum2;
2073 int end;
2074
2075 WARN_ON(start > offset + len);
2076
2077 end = start + frag_iter->len;
2078 if ((copy = end - offset) > 0) {
2079 if (copy > len)
2080 copy = len;
2081 csum2 = skb_copy_and_csum_bits(frag_iter,
2082 offset - start,
2083 to, copy, 0);
2084 csum = csum_block_add(csum, csum2, pos);
2085 if ((len -= copy) == 0)
2086 return csum;
2087 offset += copy;
2088 to += copy;
2089 pos += copy;
2090 }
2091 start = end;
2092 }
2093 BUG_ON(len);
2094 return csum;
2095 }
2096 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2097
2098 /**
2099 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2100 * @from: source buffer
2101 *
2102 * Calculates the amount of linear headroom needed in the 'to' skb passed
2103 * into skb_zerocopy().
2104 */
2105 unsigned int
2106 skb_zerocopy_headlen(const struct sk_buff *from)
2107 {
2108 unsigned int hlen = 0;
2109
2110 if (!from->head_frag ||
2111 skb_headlen(from) < L1_CACHE_BYTES ||
2112 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2113 hlen = skb_headlen(from);
2114
2115 if (skb_has_frag_list(from))
2116 hlen = from->len;
2117
2118 return hlen;
2119 }
2120 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2121
2122 /**
2123 * skb_zerocopy - Zero copy skb to skb
2124 * @to: destination buffer
2125 * @from: source buffer
2126 * @len: number of bytes to copy from source buffer
2127 * @hlen: size of linear headroom in destination buffer
2128 *
2129 * Copies up to `len` bytes from `from` to `to` by creating references
2130 * to the frags in the source buffer.
2131 *
2132 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2133 * headroom in the `to` buffer.
2134 *
2135 * Return value:
2136 * 0: everything is OK
2137 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2138 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2139 */
2140 int
2141 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2142 {
2143 int i, j = 0;
2144 int plen = 0; /* length of skb->head fragment */
2145 int ret;
2146 struct page *page;
2147 unsigned int offset;
2148
2149 BUG_ON(!from->head_frag && !hlen);
2150
2151 /* dont bother with small payloads */
2152 if (len <= skb_tailroom(to))
2153 return skb_copy_bits(from, 0, skb_put(to, len), len);
2154
2155 if (hlen) {
2156 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2157 if (unlikely(ret))
2158 return ret;
2159 len -= hlen;
2160 } else {
2161 plen = min_t(int, skb_headlen(from), len);
2162 if (plen) {
2163 page = virt_to_head_page(from->head);
2164 offset = from->data - (unsigned char *)page_address(page);
2165 __skb_fill_page_desc(to, 0, page, offset, plen);
2166 get_page(page);
2167 j = 1;
2168 len -= plen;
2169 }
2170 }
2171
2172 to->truesize += len + plen;
2173 to->len += len + plen;
2174 to->data_len += len + plen;
2175
2176 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2177 skb_tx_error(from);
2178 return -ENOMEM;
2179 }
2180
2181 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2182 if (!len)
2183 break;
2184 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2185 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2186 len -= skb_shinfo(to)->frags[j].size;
2187 skb_frag_ref(to, j);
2188 j++;
2189 }
2190 skb_shinfo(to)->nr_frags = j;
2191
2192 return 0;
2193 }
2194 EXPORT_SYMBOL_GPL(skb_zerocopy);
2195
2196 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2197 {
2198 __wsum csum;
2199 long csstart;
2200
2201 if (skb->ip_summed == CHECKSUM_PARTIAL)
2202 csstart = skb_checksum_start_offset(skb);
2203 else
2204 csstart = skb_headlen(skb);
2205
2206 BUG_ON(csstart > skb_headlen(skb));
2207
2208 skb_copy_from_linear_data(skb, to, csstart);
2209
2210 csum = 0;
2211 if (csstart != skb->len)
2212 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2213 skb->len - csstart, 0);
2214
2215 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2216 long csstuff = csstart + skb->csum_offset;
2217
2218 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2219 }
2220 }
2221 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2222
2223 /**
2224 * skb_dequeue - remove from the head of the queue
2225 * @list: list to dequeue from
2226 *
2227 * Remove the head of the list. The list lock is taken so the function
2228 * may be used safely with other locking list functions. The head item is
2229 * returned or %NULL if the list is empty.
2230 */
2231
2232 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2233 {
2234 unsigned long flags;
2235 struct sk_buff *result;
2236
2237 spin_lock_irqsave(&list->lock, flags);
2238 result = __skb_dequeue(list);
2239 spin_unlock_irqrestore(&list->lock, flags);
2240 return result;
2241 }
2242 EXPORT_SYMBOL(skb_dequeue);
2243
2244 /**
2245 * skb_dequeue_tail - remove from the tail of the queue
2246 * @list: list to dequeue from
2247 *
2248 * Remove the tail of the list. The list lock is taken so the function
2249 * may be used safely with other locking list functions. The tail item is
2250 * returned or %NULL if the list is empty.
2251 */
2252 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2253 {
2254 unsigned long flags;
2255 struct sk_buff *result;
2256
2257 spin_lock_irqsave(&list->lock, flags);
2258 result = __skb_dequeue_tail(list);
2259 spin_unlock_irqrestore(&list->lock, flags);
2260 return result;
2261 }
2262 EXPORT_SYMBOL(skb_dequeue_tail);
2263
2264 /**
2265 * skb_queue_purge - empty a list
2266 * @list: list to empty
2267 *
2268 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2269 * the list and one reference dropped. This function takes the list
2270 * lock and is atomic with respect to other list locking functions.
2271 */
2272 void skb_queue_purge(struct sk_buff_head *list)
2273 {
2274 struct sk_buff *skb;
2275 while ((skb = skb_dequeue(list)) != NULL)
2276 kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(skb_queue_purge);
2279
2280 /**
2281 * skb_queue_head - queue a buffer at the list head
2282 * @list: list to use
2283 * @newsk: buffer to queue
2284 *
2285 * Queue a buffer at the start of the list. This function takes the
2286 * list lock and can be used safely with other locking &sk_buff functions
2287 * safely.
2288 *
2289 * A buffer cannot be placed on two lists at the same time.
2290 */
2291 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2292 {
2293 unsigned long flags;
2294
2295 spin_lock_irqsave(&list->lock, flags);
2296 __skb_queue_head(list, newsk);
2297 spin_unlock_irqrestore(&list->lock, flags);
2298 }
2299 EXPORT_SYMBOL(skb_queue_head);
2300
2301 /**
2302 * skb_queue_tail - queue a buffer at the list tail
2303 * @list: list to use
2304 * @newsk: buffer to queue
2305 *
2306 * Queue a buffer at the tail of the list. This function takes the
2307 * list lock and can be used safely with other locking &sk_buff functions
2308 * safely.
2309 *
2310 * A buffer cannot be placed on two lists at the same time.
2311 */
2312 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2313 {
2314 unsigned long flags;
2315
2316 spin_lock_irqsave(&list->lock, flags);
2317 __skb_queue_tail(list, newsk);
2318 spin_unlock_irqrestore(&list->lock, flags);
2319 }
2320 EXPORT_SYMBOL(skb_queue_tail);
2321
2322 /**
2323 * skb_unlink - remove a buffer from a list
2324 * @skb: buffer to remove
2325 * @list: list to use
2326 *
2327 * Remove a packet from a list. The list locks are taken and this
2328 * function is atomic with respect to other list locked calls
2329 *
2330 * You must know what list the SKB is on.
2331 */
2332 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2333 {
2334 unsigned long flags;
2335
2336 spin_lock_irqsave(&list->lock, flags);
2337 __skb_unlink(skb, list);
2338 spin_unlock_irqrestore(&list->lock, flags);
2339 }
2340 EXPORT_SYMBOL(skb_unlink);
2341
2342 /**
2343 * skb_append - append a buffer
2344 * @old: buffer to insert after
2345 * @newsk: buffer to insert
2346 * @list: list to use
2347 *
2348 * Place a packet after a given packet in a list. The list locks are taken
2349 * and this function is atomic with respect to other list locked calls.
2350 * A buffer cannot be placed on two lists at the same time.
2351 */
2352 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2353 {
2354 unsigned long flags;
2355
2356 spin_lock_irqsave(&list->lock, flags);
2357 __skb_queue_after(list, old, newsk);
2358 spin_unlock_irqrestore(&list->lock, flags);
2359 }
2360 EXPORT_SYMBOL(skb_append);
2361
2362 /**
2363 * skb_insert - insert a buffer
2364 * @old: buffer to insert before
2365 * @newsk: buffer to insert
2366 * @list: list to use
2367 *
2368 * Place a packet before a given packet in a list. The list locks are
2369 * taken and this function is atomic with respect to other list locked
2370 * calls.
2371 *
2372 * A buffer cannot be placed on two lists at the same time.
2373 */
2374 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2375 {
2376 unsigned long flags;
2377
2378 spin_lock_irqsave(&list->lock, flags);
2379 __skb_insert(newsk, old->prev, old, list);
2380 spin_unlock_irqrestore(&list->lock, flags);
2381 }
2382 EXPORT_SYMBOL(skb_insert);
2383
2384 static inline void skb_split_inside_header(struct sk_buff *skb,
2385 struct sk_buff* skb1,
2386 const u32 len, const int pos)
2387 {
2388 int i;
2389
2390 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2391 pos - len);
2392 /* And move data appendix as is. */
2393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2394 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2395
2396 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2397 skb_shinfo(skb)->nr_frags = 0;
2398 skb1->data_len = skb->data_len;
2399 skb1->len += skb1->data_len;
2400 skb->data_len = 0;
2401 skb->len = len;
2402 skb_set_tail_pointer(skb, len);
2403 }
2404
2405 static inline void skb_split_no_header(struct sk_buff *skb,
2406 struct sk_buff* skb1,
2407 const u32 len, int pos)
2408 {
2409 int i, k = 0;
2410 const int nfrags = skb_shinfo(skb)->nr_frags;
2411
2412 skb_shinfo(skb)->nr_frags = 0;
2413 skb1->len = skb1->data_len = skb->len - len;
2414 skb->len = len;
2415 skb->data_len = len - pos;
2416
2417 for (i = 0; i < nfrags; i++) {
2418 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2419
2420 if (pos + size > len) {
2421 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2422
2423 if (pos < len) {
2424 /* Split frag.
2425 * We have two variants in this case:
2426 * 1. Move all the frag to the second
2427 * part, if it is possible. F.e.
2428 * this approach is mandatory for TUX,
2429 * where splitting is expensive.
2430 * 2. Split is accurately. We make this.
2431 */
2432 skb_frag_ref(skb, i);
2433 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2434 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2435 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2436 skb_shinfo(skb)->nr_frags++;
2437 }
2438 k++;
2439 } else
2440 skb_shinfo(skb)->nr_frags++;
2441 pos += size;
2442 }
2443 skb_shinfo(skb1)->nr_frags = k;
2444 }
2445
2446 /**
2447 * skb_split - Split fragmented skb to two parts at length len.
2448 * @skb: the buffer to split
2449 * @skb1: the buffer to receive the second part
2450 * @len: new length for skb
2451 */
2452 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2453 {
2454 int pos = skb_headlen(skb);
2455
2456 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2457 if (len < pos) /* Split line is inside header. */
2458 skb_split_inside_header(skb, skb1, len, pos);
2459 else /* Second chunk has no header, nothing to copy. */
2460 skb_split_no_header(skb, skb1, len, pos);
2461 }
2462 EXPORT_SYMBOL(skb_split);
2463
2464 /* Shifting from/to a cloned skb is a no-go.
2465 *
2466 * Caller cannot keep skb_shinfo related pointers past calling here!
2467 */
2468 static int skb_prepare_for_shift(struct sk_buff *skb)
2469 {
2470 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2471 }
2472
2473 /**
2474 * skb_shift - Shifts paged data partially from skb to another
2475 * @tgt: buffer into which tail data gets added
2476 * @skb: buffer from which the paged data comes from
2477 * @shiftlen: shift up to this many bytes
2478 *
2479 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2480 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2481 * It's up to caller to free skb if everything was shifted.
2482 *
2483 * If @tgt runs out of frags, the whole operation is aborted.
2484 *
2485 * Skb cannot include anything else but paged data while tgt is allowed
2486 * to have non-paged data as well.
2487 *
2488 * TODO: full sized shift could be optimized but that would need
2489 * specialized skb free'er to handle frags without up-to-date nr_frags.
2490 */
2491 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2492 {
2493 int from, to, merge, todo;
2494 struct skb_frag_struct *fragfrom, *fragto;
2495
2496 BUG_ON(shiftlen > skb->len);
2497 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2498
2499 todo = shiftlen;
2500 from = 0;
2501 to = skb_shinfo(tgt)->nr_frags;
2502 fragfrom = &skb_shinfo(skb)->frags[from];
2503
2504 /* Actual merge is delayed until the point when we know we can
2505 * commit all, so that we don't have to undo partial changes
2506 */
2507 if (!to ||
2508 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2509 fragfrom->page_offset)) {
2510 merge = -1;
2511 } else {
2512 merge = to - 1;
2513
2514 todo -= skb_frag_size(fragfrom);
2515 if (todo < 0) {
2516 if (skb_prepare_for_shift(skb) ||
2517 skb_prepare_for_shift(tgt))
2518 return 0;
2519
2520 /* All previous frag pointers might be stale! */
2521 fragfrom = &skb_shinfo(skb)->frags[from];
2522 fragto = &skb_shinfo(tgt)->frags[merge];
2523
2524 skb_frag_size_add(fragto, shiftlen);
2525 skb_frag_size_sub(fragfrom, shiftlen);
2526 fragfrom->page_offset += shiftlen;
2527
2528 goto onlymerged;
2529 }
2530
2531 from++;
2532 }
2533
2534 /* Skip full, not-fitting skb to avoid expensive operations */
2535 if ((shiftlen == skb->len) &&
2536 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2537 return 0;
2538
2539 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2540 return 0;
2541
2542 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2543 if (to == MAX_SKB_FRAGS)
2544 return 0;
2545
2546 fragfrom = &skb_shinfo(skb)->frags[from];
2547 fragto = &skb_shinfo(tgt)->frags[to];
2548
2549 if (todo >= skb_frag_size(fragfrom)) {
2550 *fragto = *fragfrom;
2551 todo -= skb_frag_size(fragfrom);
2552 from++;
2553 to++;
2554
2555 } else {
2556 __skb_frag_ref(fragfrom);
2557 fragto->page = fragfrom->page;
2558 fragto->page_offset = fragfrom->page_offset;
2559 skb_frag_size_set(fragto, todo);
2560
2561 fragfrom->page_offset += todo;
2562 skb_frag_size_sub(fragfrom, todo);
2563 todo = 0;
2564
2565 to++;
2566 break;
2567 }
2568 }
2569
2570 /* Ready to "commit" this state change to tgt */
2571 skb_shinfo(tgt)->nr_frags = to;
2572
2573 if (merge >= 0) {
2574 fragfrom = &skb_shinfo(skb)->frags[0];
2575 fragto = &skb_shinfo(tgt)->frags[merge];
2576
2577 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2578 __skb_frag_unref(fragfrom);
2579 }
2580
2581 /* Reposition in the original skb */
2582 to = 0;
2583 while (from < skb_shinfo(skb)->nr_frags)
2584 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2585 skb_shinfo(skb)->nr_frags = to;
2586
2587 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2588
2589 onlymerged:
2590 /* Most likely the tgt won't ever need its checksum anymore, skb on
2591 * the other hand might need it if it needs to be resent
2592 */
2593 tgt->ip_summed = CHECKSUM_PARTIAL;
2594 skb->ip_summed = CHECKSUM_PARTIAL;
2595
2596 /* Yak, is it really working this way? Some helper please? */
2597 skb->len -= shiftlen;
2598 skb->data_len -= shiftlen;
2599 skb->truesize -= shiftlen;
2600 tgt->len += shiftlen;
2601 tgt->data_len += shiftlen;
2602 tgt->truesize += shiftlen;
2603
2604 return shiftlen;
2605 }
2606
2607 /**
2608 * skb_prepare_seq_read - Prepare a sequential read of skb data
2609 * @skb: the buffer to read
2610 * @from: lower offset of data to be read
2611 * @to: upper offset of data to be read
2612 * @st: state variable
2613 *
2614 * Initializes the specified state variable. Must be called before
2615 * invoking skb_seq_read() for the first time.
2616 */
2617 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2618 unsigned int to, struct skb_seq_state *st)
2619 {
2620 st->lower_offset = from;
2621 st->upper_offset = to;
2622 st->root_skb = st->cur_skb = skb;
2623 st->frag_idx = st->stepped_offset = 0;
2624 st->frag_data = NULL;
2625 }
2626 EXPORT_SYMBOL(skb_prepare_seq_read);
2627
2628 /**
2629 * skb_seq_read - Sequentially read skb data
2630 * @consumed: number of bytes consumed by the caller so far
2631 * @data: destination pointer for data to be returned
2632 * @st: state variable
2633 *
2634 * Reads a block of skb data at @consumed relative to the
2635 * lower offset specified to skb_prepare_seq_read(). Assigns
2636 * the head of the data block to @data and returns the length
2637 * of the block or 0 if the end of the skb data or the upper
2638 * offset has been reached.
2639 *
2640 * The caller is not required to consume all of the data
2641 * returned, i.e. @consumed is typically set to the number
2642 * of bytes already consumed and the next call to
2643 * skb_seq_read() will return the remaining part of the block.
2644 *
2645 * Note 1: The size of each block of data returned can be arbitrary,
2646 * this limitation is the cost for zerocopy seqeuental
2647 * reads of potentially non linear data.
2648 *
2649 * Note 2: Fragment lists within fragments are not implemented
2650 * at the moment, state->root_skb could be replaced with
2651 * a stack for this purpose.
2652 */
2653 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2654 struct skb_seq_state *st)
2655 {
2656 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2657 skb_frag_t *frag;
2658
2659 if (unlikely(abs_offset >= st->upper_offset)) {
2660 if (st->frag_data) {
2661 kunmap_atomic(st->frag_data);
2662 st->frag_data = NULL;
2663 }
2664 return 0;
2665 }
2666
2667 next_skb:
2668 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2669
2670 if (abs_offset < block_limit && !st->frag_data) {
2671 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2672 return block_limit - abs_offset;
2673 }
2674
2675 if (st->frag_idx == 0 && !st->frag_data)
2676 st->stepped_offset += skb_headlen(st->cur_skb);
2677
2678 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2679 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2680 block_limit = skb_frag_size(frag) + st->stepped_offset;
2681
2682 if (abs_offset < block_limit) {
2683 if (!st->frag_data)
2684 st->frag_data = kmap_atomic(skb_frag_page(frag));
2685
2686 *data = (u8 *) st->frag_data + frag->page_offset +
2687 (abs_offset - st->stepped_offset);
2688
2689 return block_limit - abs_offset;
2690 }
2691
2692 if (st->frag_data) {
2693 kunmap_atomic(st->frag_data);
2694 st->frag_data = NULL;
2695 }
2696
2697 st->frag_idx++;
2698 st->stepped_offset += skb_frag_size(frag);
2699 }
2700
2701 if (st->frag_data) {
2702 kunmap_atomic(st->frag_data);
2703 st->frag_data = NULL;
2704 }
2705
2706 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2707 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2708 st->frag_idx = 0;
2709 goto next_skb;
2710 } else if (st->cur_skb->next) {
2711 st->cur_skb = st->cur_skb->next;
2712 st->frag_idx = 0;
2713 goto next_skb;
2714 }
2715
2716 return 0;
2717 }
2718 EXPORT_SYMBOL(skb_seq_read);
2719
2720 /**
2721 * skb_abort_seq_read - Abort a sequential read of skb data
2722 * @st: state variable
2723 *
2724 * Must be called if skb_seq_read() was not called until it
2725 * returned 0.
2726 */
2727 void skb_abort_seq_read(struct skb_seq_state *st)
2728 {
2729 if (st->frag_data)
2730 kunmap_atomic(st->frag_data);
2731 }
2732 EXPORT_SYMBOL(skb_abort_seq_read);
2733
2734 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2735
2736 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2737 struct ts_config *conf,
2738 struct ts_state *state)
2739 {
2740 return skb_seq_read(offset, text, TS_SKB_CB(state));
2741 }
2742
2743 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2744 {
2745 skb_abort_seq_read(TS_SKB_CB(state));
2746 }
2747
2748 /**
2749 * skb_find_text - Find a text pattern in skb data
2750 * @skb: the buffer to look in
2751 * @from: search offset
2752 * @to: search limit
2753 * @config: textsearch configuration
2754 * @state: uninitialized textsearch state variable
2755 *
2756 * Finds a pattern in the skb data according to the specified
2757 * textsearch configuration. Use textsearch_next() to retrieve
2758 * subsequent occurrences of the pattern. Returns the offset
2759 * to the first occurrence or UINT_MAX if no match was found.
2760 */
2761 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2762 unsigned int to, struct ts_config *config,
2763 struct ts_state *state)
2764 {
2765 unsigned int ret;
2766
2767 config->get_next_block = skb_ts_get_next_block;
2768 config->finish = skb_ts_finish;
2769
2770 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2771
2772 ret = textsearch_find(config, state);
2773 return (ret <= to - from ? ret : UINT_MAX);
2774 }
2775 EXPORT_SYMBOL(skb_find_text);
2776
2777 /**
2778 * skb_append_datato_frags - append the user data to a skb
2779 * @sk: sock structure
2780 * @skb: skb structure to be appened with user data.
2781 * @getfrag: call back function to be used for getting the user data
2782 * @from: pointer to user message iov
2783 * @length: length of the iov message
2784 *
2785 * Description: This procedure append the user data in the fragment part
2786 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2787 */
2788 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2789 int (*getfrag)(void *from, char *to, int offset,
2790 int len, int odd, struct sk_buff *skb),
2791 void *from, int length)
2792 {
2793 int frg_cnt = skb_shinfo(skb)->nr_frags;
2794 int copy;
2795 int offset = 0;
2796 int ret;
2797 struct page_frag *pfrag = &current->task_frag;
2798
2799 do {
2800 /* Return error if we don't have space for new frag */
2801 if (frg_cnt >= MAX_SKB_FRAGS)
2802 return -EMSGSIZE;
2803
2804 if (!sk_page_frag_refill(sk, pfrag))
2805 return -ENOMEM;
2806
2807 /* copy the user data to page */
2808 copy = min_t(int, length, pfrag->size - pfrag->offset);
2809
2810 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2811 offset, copy, 0, skb);
2812 if (ret < 0)
2813 return -EFAULT;
2814
2815 /* copy was successful so update the size parameters */
2816 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2817 copy);
2818 frg_cnt++;
2819 pfrag->offset += copy;
2820 get_page(pfrag->page);
2821
2822 skb->truesize += copy;
2823 atomic_add(copy, &sk->sk_wmem_alloc);
2824 skb->len += copy;
2825 skb->data_len += copy;
2826 offset += copy;
2827 length -= copy;
2828
2829 } while (length > 0);
2830
2831 return 0;
2832 }
2833 EXPORT_SYMBOL(skb_append_datato_frags);
2834
2835 /**
2836 * skb_pull_rcsum - pull skb and update receive checksum
2837 * @skb: buffer to update
2838 * @len: length of data pulled
2839 *
2840 * This function performs an skb_pull on the packet and updates
2841 * the CHECKSUM_COMPLETE checksum. It should be used on
2842 * receive path processing instead of skb_pull unless you know
2843 * that the checksum difference is zero (e.g., a valid IP header)
2844 * or you are setting ip_summed to CHECKSUM_NONE.
2845 */
2846 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2847 {
2848 BUG_ON(len > skb->len);
2849 skb->len -= len;
2850 BUG_ON(skb->len < skb->data_len);
2851 skb_postpull_rcsum(skb, skb->data, len);
2852 return skb->data += len;
2853 }
2854 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2855
2856 /**
2857 * skb_segment - Perform protocol segmentation on skb.
2858 * @head_skb: buffer to segment
2859 * @features: features for the output path (see dev->features)
2860 *
2861 * This function performs segmentation on the given skb. It returns
2862 * a pointer to the first in a list of new skbs for the segments.
2863 * In case of error it returns ERR_PTR(err).
2864 */
2865 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2866 netdev_features_t features)
2867 {
2868 struct sk_buff *segs = NULL;
2869 struct sk_buff *tail = NULL;
2870 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2871 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2872 unsigned int mss = skb_shinfo(head_skb)->gso_size;
2873 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2874 struct sk_buff *frag_skb = head_skb;
2875 unsigned int offset = doffset;
2876 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2877 unsigned int headroom;
2878 unsigned int len;
2879 __be16 proto;
2880 bool csum;
2881 int sg = !!(features & NETIF_F_SG);
2882 int nfrags = skb_shinfo(head_skb)->nr_frags;
2883 int err = -ENOMEM;
2884 int i = 0;
2885 int pos;
2886 int dummy;
2887
2888 proto = skb_network_protocol(head_skb, &dummy);
2889 if (unlikely(!proto))
2890 return ERR_PTR(-EINVAL);
2891
2892 csum = !head_skb->encap_hdr_csum &&
2893 !!can_checksum_protocol(features, proto);
2894
2895 __skb_push(head_skb, doffset);
2896 headroom = skb_headroom(head_skb);
2897 pos = skb_headlen(head_skb);
2898
2899 do {
2900 struct sk_buff *nskb;
2901 skb_frag_t *nskb_frag;
2902 int hsize;
2903 int size;
2904
2905 len = head_skb->len - offset;
2906 if (len > mss)
2907 len = mss;
2908
2909 hsize = skb_headlen(head_skb) - offset;
2910 if (hsize < 0)
2911 hsize = 0;
2912 if (hsize > len || !sg)
2913 hsize = len;
2914
2915 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2916 (skb_headlen(list_skb) == len || sg)) {
2917 BUG_ON(skb_headlen(list_skb) > len);
2918
2919 i = 0;
2920 nfrags = skb_shinfo(list_skb)->nr_frags;
2921 frag = skb_shinfo(list_skb)->frags;
2922 frag_skb = list_skb;
2923 pos += skb_headlen(list_skb);
2924
2925 while (pos < offset + len) {
2926 BUG_ON(i >= nfrags);
2927
2928 size = skb_frag_size(frag);
2929 if (pos + size > offset + len)
2930 break;
2931
2932 i++;
2933 pos += size;
2934 frag++;
2935 }
2936
2937 nskb = skb_clone(list_skb, GFP_ATOMIC);
2938 list_skb = list_skb->next;
2939
2940 if (unlikely(!nskb))
2941 goto err;
2942
2943 if (unlikely(pskb_trim(nskb, len))) {
2944 kfree_skb(nskb);
2945 goto err;
2946 }
2947
2948 hsize = skb_end_offset(nskb);
2949 if (skb_cow_head(nskb, doffset + headroom)) {
2950 kfree_skb(nskb);
2951 goto err;
2952 }
2953
2954 nskb->truesize += skb_end_offset(nskb) - hsize;
2955 skb_release_head_state(nskb);
2956 __skb_push(nskb, doffset);
2957 } else {
2958 nskb = __alloc_skb(hsize + doffset + headroom,
2959 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2960 NUMA_NO_NODE);
2961
2962 if (unlikely(!nskb))
2963 goto err;
2964
2965 skb_reserve(nskb, headroom);
2966 __skb_put(nskb, doffset);
2967 }
2968
2969 if (segs)
2970 tail->next = nskb;
2971 else
2972 segs = nskb;
2973 tail = nskb;
2974
2975 __copy_skb_header(nskb, head_skb);
2976 nskb->mac_len = head_skb->mac_len;
2977
2978 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2979
2980 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2981 nskb->data - tnl_hlen,
2982 doffset + tnl_hlen);
2983
2984 if (nskb->len == len + doffset)
2985 goto perform_csum_check;
2986
2987 if (!sg) {
2988 nskb->ip_summed = CHECKSUM_NONE;
2989 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
2990 skb_put(nskb, len),
2991 len, 0);
2992 SKB_GSO_CB(nskb)->csum_start =
2993 skb_headroom(nskb) + offset;
2994 continue;
2995 }
2996
2997 nskb_frag = skb_shinfo(nskb)->frags;
2998
2999 skb_copy_from_linear_data_offset(head_skb, offset,
3000 skb_put(nskb, hsize), hsize);
3001
3002 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3003 SKBTX_SHARED_FRAG;
3004
3005 while (pos < offset + len) {
3006 if (i >= nfrags) {
3007 BUG_ON(skb_headlen(list_skb));
3008
3009 i = 0;
3010 nfrags = skb_shinfo(list_skb)->nr_frags;
3011 frag = skb_shinfo(list_skb)->frags;
3012 frag_skb = list_skb;
3013
3014 BUG_ON(!nfrags);
3015
3016 list_skb = list_skb->next;
3017 }
3018
3019 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3020 MAX_SKB_FRAGS)) {
3021 net_warn_ratelimited(
3022 "skb_segment: too many frags: %u %u\n",
3023 pos, mss);
3024 goto err;
3025 }
3026
3027 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3028 goto err;
3029
3030 *nskb_frag = *frag;
3031 __skb_frag_ref(nskb_frag);
3032 size = skb_frag_size(nskb_frag);
3033
3034 if (pos < offset) {
3035 nskb_frag->page_offset += offset - pos;
3036 skb_frag_size_sub(nskb_frag, offset - pos);
3037 }
3038
3039 skb_shinfo(nskb)->nr_frags++;
3040
3041 if (pos + size <= offset + len) {
3042 i++;
3043 frag++;
3044 pos += size;
3045 } else {
3046 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3047 goto skip_fraglist;
3048 }
3049
3050 nskb_frag++;
3051 }
3052
3053 skip_fraglist:
3054 nskb->data_len = len - hsize;
3055 nskb->len += nskb->data_len;
3056 nskb->truesize += nskb->data_len;
3057
3058 perform_csum_check:
3059 if (!csum) {
3060 nskb->csum = skb_checksum(nskb, doffset,
3061 nskb->len - doffset, 0);
3062 nskb->ip_summed = CHECKSUM_NONE;
3063 SKB_GSO_CB(nskb)->csum_start =
3064 skb_headroom(nskb) + doffset;
3065 }
3066 } while ((offset += len) < head_skb->len);
3067
3068 return segs;
3069
3070 err:
3071 kfree_skb_list(segs);
3072 return ERR_PTR(err);
3073 }
3074 EXPORT_SYMBOL_GPL(skb_segment);
3075
3076 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3077 {
3078 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3079 unsigned int offset = skb_gro_offset(skb);
3080 unsigned int headlen = skb_headlen(skb);
3081 struct sk_buff *nskb, *lp, *p = *head;
3082 unsigned int len = skb_gro_len(skb);
3083 unsigned int delta_truesize;
3084 unsigned int headroom;
3085
3086 if (unlikely(p->len + len >= 65536))
3087 return -E2BIG;
3088
3089 lp = NAPI_GRO_CB(p)->last;
3090 pinfo = skb_shinfo(lp);
3091
3092 if (headlen <= offset) {
3093 skb_frag_t *frag;
3094 skb_frag_t *frag2;
3095 int i = skbinfo->nr_frags;
3096 int nr_frags = pinfo->nr_frags + i;
3097
3098 if (nr_frags > MAX_SKB_FRAGS)
3099 goto merge;
3100
3101 offset -= headlen;
3102 pinfo->nr_frags = nr_frags;
3103 skbinfo->nr_frags = 0;
3104
3105 frag = pinfo->frags + nr_frags;
3106 frag2 = skbinfo->frags + i;
3107 do {
3108 *--frag = *--frag2;
3109 } while (--i);
3110
3111 frag->page_offset += offset;
3112 skb_frag_size_sub(frag, offset);
3113
3114 /* all fragments truesize : remove (head size + sk_buff) */
3115 delta_truesize = skb->truesize -
3116 SKB_TRUESIZE(skb_end_offset(skb));
3117
3118 skb->truesize -= skb->data_len;
3119 skb->len -= skb->data_len;
3120 skb->data_len = 0;
3121
3122 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3123 goto done;
3124 } else if (skb->head_frag) {
3125 int nr_frags = pinfo->nr_frags;
3126 skb_frag_t *frag = pinfo->frags + nr_frags;
3127 struct page *page = virt_to_head_page(skb->head);
3128 unsigned int first_size = headlen - offset;
3129 unsigned int first_offset;
3130
3131 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3132 goto merge;
3133
3134 first_offset = skb->data -
3135 (unsigned char *)page_address(page) +
3136 offset;
3137
3138 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3139
3140 frag->page.p = page;
3141 frag->page_offset = first_offset;
3142 skb_frag_size_set(frag, first_size);
3143
3144 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3145 /* We dont need to clear skbinfo->nr_frags here */
3146
3147 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3148 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3149 goto done;
3150 }
3151 if (pinfo->frag_list)
3152 goto merge;
3153 if (skb_gro_len(p) != pinfo->gso_size)
3154 return -E2BIG;
3155
3156 headroom = skb_headroom(p);
3157 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3158 if (unlikely(!nskb))
3159 return -ENOMEM;
3160
3161 __copy_skb_header(nskb, p);
3162 nskb->mac_len = p->mac_len;
3163
3164 skb_reserve(nskb, headroom);
3165 __skb_put(nskb, skb_gro_offset(p));
3166
3167 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3168 skb_set_network_header(nskb, skb_network_offset(p));
3169 skb_set_transport_header(nskb, skb_transport_offset(p));
3170
3171 __skb_pull(p, skb_gro_offset(p));
3172 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3173 p->data - skb_mac_header(p));
3174
3175 skb_shinfo(nskb)->frag_list = p;
3176 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3177 pinfo->gso_size = 0;
3178 skb_header_release(p);
3179 NAPI_GRO_CB(nskb)->last = p;
3180
3181 nskb->data_len += p->len;
3182 nskb->truesize += p->truesize;
3183 nskb->len += p->len;
3184
3185 *head = nskb;
3186 nskb->next = p->next;
3187 p->next = NULL;
3188
3189 p = nskb;
3190
3191 merge:
3192 delta_truesize = skb->truesize;
3193 if (offset > headlen) {
3194 unsigned int eat = offset - headlen;
3195
3196 skbinfo->frags[0].page_offset += eat;
3197 skb_frag_size_sub(&skbinfo->frags[0], eat);
3198 skb->data_len -= eat;
3199 skb->len -= eat;
3200 offset = headlen;
3201 }
3202
3203 __skb_pull(skb, offset);
3204
3205 if (NAPI_GRO_CB(p)->last == p)
3206 skb_shinfo(p)->frag_list = skb;
3207 else
3208 NAPI_GRO_CB(p)->last->next = skb;
3209 NAPI_GRO_CB(p)->last = skb;
3210 skb_header_release(skb);
3211 lp = p;
3212
3213 done:
3214 NAPI_GRO_CB(p)->count++;
3215 p->data_len += len;
3216 p->truesize += delta_truesize;
3217 p->len += len;
3218 if (lp != p) {
3219 lp->data_len += len;
3220 lp->truesize += delta_truesize;
3221 lp->len += len;
3222 }
3223 NAPI_GRO_CB(skb)->same_flow = 1;
3224 return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(skb_gro_receive);
3227
3228 void __init skb_init(void)
3229 {
3230 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3231 sizeof(struct sk_buff),
3232 0,
3233 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3234 NULL);
3235 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3236 (2*sizeof(struct sk_buff)) +
3237 sizeof(atomic_t),
3238 0,
3239 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3240 NULL);
3241 }
3242
3243 /**
3244 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3245 * @skb: Socket buffer containing the buffers to be mapped
3246 * @sg: The scatter-gather list to map into
3247 * @offset: The offset into the buffer's contents to start mapping
3248 * @len: Length of buffer space to be mapped
3249 *
3250 * Fill the specified scatter-gather list with mappings/pointers into a
3251 * region of the buffer space attached to a socket buffer.
3252 */
3253 static int
3254 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3255 {
3256 int start = skb_headlen(skb);
3257 int i, copy = start - offset;
3258 struct sk_buff *frag_iter;
3259 int elt = 0;
3260
3261 if (copy > 0) {
3262 if (copy > len)
3263 copy = len;
3264 sg_set_buf(sg, skb->data + offset, copy);
3265 elt++;
3266 if ((len -= copy) == 0)
3267 return elt;
3268 offset += copy;
3269 }
3270
3271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3272 int end;
3273
3274 WARN_ON(start > offset + len);
3275
3276 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3277 if ((copy = end - offset) > 0) {
3278 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3279
3280 if (copy > len)
3281 copy = len;
3282 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3283 frag->page_offset+offset-start);
3284 elt++;
3285 if (!(len -= copy))
3286 return elt;
3287 offset += copy;
3288 }
3289 start = end;
3290 }
3291
3292 skb_walk_frags(skb, frag_iter) {
3293 int end;
3294
3295 WARN_ON(start > offset + len);
3296
3297 end = start + frag_iter->len;
3298 if ((copy = end - offset) > 0) {
3299 if (copy > len)
3300 copy = len;
3301 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3302 copy);
3303 if ((len -= copy) == 0)
3304 return elt;
3305 offset += copy;
3306 }
3307 start = end;
3308 }
3309 BUG_ON(len);
3310 return elt;
3311 }
3312
3313 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3314 * sglist without mark the sg which contain last skb data as the end.
3315 * So the caller can mannipulate sg list as will when padding new data after
3316 * the first call without calling sg_unmark_end to expend sg list.
3317 *
3318 * Scenario to use skb_to_sgvec_nomark:
3319 * 1. sg_init_table
3320 * 2. skb_to_sgvec_nomark(payload1)
3321 * 3. skb_to_sgvec_nomark(payload2)
3322 *
3323 * This is equivalent to:
3324 * 1. sg_init_table
3325 * 2. skb_to_sgvec(payload1)
3326 * 3. sg_unmark_end
3327 * 4. skb_to_sgvec(payload2)
3328 *
3329 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3330 * is more preferable.
3331 */
3332 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3333 int offset, int len)
3334 {
3335 return __skb_to_sgvec(skb, sg, offset, len);
3336 }
3337 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3338
3339 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3340 {
3341 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3342
3343 sg_mark_end(&sg[nsg - 1]);
3344
3345 return nsg;
3346 }
3347 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3348
3349 /**
3350 * skb_cow_data - Check that a socket buffer's data buffers are writable
3351 * @skb: The socket buffer to check.
3352 * @tailbits: Amount of trailing space to be added
3353 * @trailer: Returned pointer to the skb where the @tailbits space begins
3354 *
3355 * Make sure that the data buffers attached to a socket buffer are
3356 * writable. If they are not, private copies are made of the data buffers
3357 * and the socket buffer is set to use these instead.
3358 *
3359 * If @tailbits is given, make sure that there is space to write @tailbits
3360 * bytes of data beyond current end of socket buffer. @trailer will be
3361 * set to point to the skb in which this space begins.
3362 *
3363 * The number of scatterlist elements required to completely map the
3364 * COW'd and extended socket buffer will be returned.
3365 */
3366 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3367 {
3368 int copyflag;
3369 int elt;
3370 struct sk_buff *skb1, **skb_p;
3371
3372 /* If skb is cloned or its head is paged, reallocate
3373 * head pulling out all the pages (pages are considered not writable
3374 * at the moment even if they are anonymous).
3375 */
3376 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3377 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3378 return -ENOMEM;
3379
3380 /* Easy case. Most of packets will go this way. */
3381 if (!skb_has_frag_list(skb)) {
3382 /* A little of trouble, not enough of space for trailer.
3383 * This should not happen, when stack is tuned to generate
3384 * good frames. OK, on miss we reallocate and reserve even more
3385 * space, 128 bytes is fair. */
3386
3387 if (skb_tailroom(skb) < tailbits &&
3388 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3389 return -ENOMEM;
3390
3391 /* Voila! */
3392 *trailer = skb;
3393 return 1;
3394 }
3395
3396 /* Misery. We are in troubles, going to mincer fragments... */
3397
3398 elt = 1;
3399 skb_p = &skb_shinfo(skb)->frag_list;
3400 copyflag = 0;
3401
3402 while ((skb1 = *skb_p) != NULL) {
3403 int ntail = 0;
3404
3405 /* The fragment is partially pulled by someone,
3406 * this can happen on input. Copy it and everything
3407 * after it. */
3408
3409 if (skb_shared(skb1))
3410 copyflag = 1;
3411
3412 /* If the skb is the last, worry about trailer. */
3413
3414 if (skb1->next == NULL && tailbits) {
3415 if (skb_shinfo(skb1)->nr_frags ||
3416 skb_has_frag_list(skb1) ||
3417 skb_tailroom(skb1) < tailbits)
3418 ntail = tailbits + 128;
3419 }
3420
3421 if (copyflag ||
3422 skb_cloned(skb1) ||
3423 ntail ||
3424 skb_shinfo(skb1)->nr_frags ||
3425 skb_has_frag_list(skb1)) {
3426 struct sk_buff *skb2;
3427
3428 /* Fuck, we are miserable poor guys... */
3429 if (ntail == 0)
3430 skb2 = skb_copy(skb1, GFP_ATOMIC);
3431 else
3432 skb2 = skb_copy_expand(skb1,
3433 skb_headroom(skb1),
3434 ntail,
3435 GFP_ATOMIC);
3436 if (unlikely(skb2 == NULL))
3437 return -ENOMEM;
3438
3439 if (skb1->sk)
3440 skb_set_owner_w(skb2, skb1->sk);
3441
3442 /* Looking around. Are we still alive?
3443 * OK, link new skb, drop old one */
3444
3445 skb2->next = skb1->next;
3446 *skb_p = skb2;
3447 kfree_skb(skb1);
3448 skb1 = skb2;
3449 }
3450 elt++;
3451 *trailer = skb1;
3452 skb_p = &skb1->next;
3453 }
3454
3455 return elt;
3456 }
3457 EXPORT_SYMBOL_GPL(skb_cow_data);
3458
3459 static void sock_rmem_free(struct sk_buff *skb)
3460 {
3461 struct sock *sk = skb->sk;
3462
3463 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3464 }
3465
3466 /*
3467 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3468 */
3469 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3470 {
3471 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3472 (unsigned int)sk->sk_rcvbuf)
3473 return -ENOMEM;
3474
3475 skb_orphan(skb);
3476 skb->sk = sk;
3477 skb->destructor = sock_rmem_free;
3478 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3479
3480 /* before exiting rcu section, make sure dst is refcounted */
3481 skb_dst_force(skb);
3482
3483 skb_queue_tail(&sk->sk_error_queue, skb);
3484 if (!sock_flag(sk, SOCK_DEAD))
3485 sk->sk_data_ready(sk);
3486 return 0;
3487 }
3488 EXPORT_SYMBOL(sock_queue_err_skb);
3489
3490 void skb_tstamp_tx(struct sk_buff *orig_skb,
3491 struct skb_shared_hwtstamps *hwtstamps)
3492 {
3493 struct sock *sk = orig_skb->sk;
3494 struct sock_exterr_skb *serr;
3495 struct sk_buff *skb;
3496 int err;
3497
3498 if (!sk)
3499 return;
3500
3501 if (hwtstamps) {
3502 *skb_hwtstamps(orig_skb) =
3503 *hwtstamps;
3504 } else {
3505 /*
3506 * no hardware time stamps available,
3507 * so keep the shared tx_flags and only
3508 * store software time stamp
3509 */
3510 orig_skb->tstamp = ktime_get_real();
3511 }
3512
3513 skb = skb_clone(orig_skb, GFP_ATOMIC);
3514 if (!skb)
3515 return;
3516
3517 serr = SKB_EXT_ERR(skb);
3518 memset(serr, 0, sizeof(*serr));
3519 serr->ee.ee_errno = ENOMSG;
3520 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3521
3522 err = sock_queue_err_skb(sk, skb);
3523
3524 if (err)
3525 kfree_skb(skb);
3526 }
3527 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3528
3529 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3530 {
3531 struct sock *sk = skb->sk;
3532 struct sock_exterr_skb *serr;
3533 int err;
3534
3535 skb->wifi_acked_valid = 1;
3536 skb->wifi_acked = acked;
3537
3538 serr = SKB_EXT_ERR(skb);
3539 memset(serr, 0, sizeof(*serr));
3540 serr->ee.ee_errno = ENOMSG;
3541 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3542
3543 err = sock_queue_err_skb(sk, skb);
3544 if (err)
3545 kfree_skb(skb);
3546 }
3547 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3548
3549
3550 /**
3551 * skb_partial_csum_set - set up and verify partial csum values for packet
3552 * @skb: the skb to set
3553 * @start: the number of bytes after skb->data to start checksumming.
3554 * @off: the offset from start to place the checksum.
3555 *
3556 * For untrusted partially-checksummed packets, we need to make sure the values
3557 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3558 *
3559 * This function checks and sets those values and skb->ip_summed: if this
3560 * returns false you should drop the packet.
3561 */
3562 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3563 {
3564 if (unlikely(start > skb_headlen(skb)) ||
3565 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3566 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3567 start, off, skb_headlen(skb));
3568 return false;
3569 }
3570 skb->ip_summed = CHECKSUM_PARTIAL;
3571 skb->csum_start = skb_headroom(skb) + start;
3572 skb->csum_offset = off;
3573 skb_set_transport_header(skb, start);
3574 return true;
3575 }
3576 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3577
3578 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3579 unsigned int max)
3580 {
3581 if (skb_headlen(skb) >= len)
3582 return 0;
3583
3584 /* If we need to pullup then pullup to the max, so we
3585 * won't need to do it again.
3586 */
3587 if (max > skb->len)
3588 max = skb->len;
3589
3590 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3591 return -ENOMEM;
3592
3593 if (skb_headlen(skb) < len)
3594 return -EPROTO;
3595
3596 return 0;
3597 }
3598
3599 #define MAX_TCP_HDR_LEN (15 * 4)
3600
3601 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3602 typeof(IPPROTO_IP) proto,
3603 unsigned int off)
3604 {
3605 switch (proto) {
3606 int err;
3607
3608 case IPPROTO_TCP:
3609 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3610 off + MAX_TCP_HDR_LEN);
3611 if (!err && !skb_partial_csum_set(skb, off,
3612 offsetof(struct tcphdr,
3613 check)))
3614 err = -EPROTO;
3615 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3616
3617 case IPPROTO_UDP:
3618 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3619 off + sizeof(struct udphdr));
3620 if (!err && !skb_partial_csum_set(skb, off,
3621 offsetof(struct udphdr,
3622 check)))
3623 err = -EPROTO;
3624 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3625 }
3626
3627 return ERR_PTR(-EPROTO);
3628 }
3629
3630 /* This value should be large enough to cover a tagged ethernet header plus
3631 * maximally sized IP and TCP or UDP headers.
3632 */
3633 #define MAX_IP_HDR_LEN 128
3634
3635 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3636 {
3637 unsigned int off;
3638 bool fragment;
3639 __sum16 *csum;
3640 int err;
3641
3642 fragment = false;
3643
3644 err = skb_maybe_pull_tail(skb,
3645 sizeof(struct iphdr),
3646 MAX_IP_HDR_LEN);
3647 if (err < 0)
3648 goto out;
3649
3650 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3651 fragment = true;
3652
3653 off = ip_hdrlen(skb);
3654
3655 err = -EPROTO;
3656
3657 if (fragment)
3658 goto out;
3659
3660 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3661 if (IS_ERR(csum))
3662 return PTR_ERR(csum);
3663
3664 if (recalculate)
3665 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3666 ip_hdr(skb)->daddr,
3667 skb->len - off,
3668 ip_hdr(skb)->protocol, 0);
3669 err = 0;
3670
3671 out:
3672 return err;
3673 }
3674
3675 /* This value should be large enough to cover a tagged ethernet header plus
3676 * an IPv6 header, all options, and a maximal TCP or UDP header.
3677 */
3678 #define MAX_IPV6_HDR_LEN 256
3679
3680 #define OPT_HDR(type, skb, off) \
3681 (type *)(skb_network_header(skb) + (off))
3682
3683 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3684 {
3685 int err;
3686 u8 nexthdr;
3687 unsigned int off;
3688 unsigned int len;
3689 bool fragment;
3690 bool done;
3691 __sum16 *csum;
3692
3693 fragment = false;
3694 done = false;
3695
3696 off = sizeof(struct ipv6hdr);
3697
3698 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3699 if (err < 0)
3700 goto out;
3701
3702 nexthdr = ipv6_hdr(skb)->nexthdr;
3703
3704 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3705 while (off <= len && !done) {
3706 switch (nexthdr) {
3707 case IPPROTO_DSTOPTS:
3708 case IPPROTO_HOPOPTS:
3709 case IPPROTO_ROUTING: {
3710 struct ipv6_opt_hdr *hp;
3711
3712 err = skb_maybe_pull_tail(skb,
3713 off +
3714 sizeof(struct ipv6_opt_hdr),
3715 MAX_IPV6_HDR_LEN);
3716 if (err < 0)
3717 goto out;
3718
3719 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3720 nexthdr = hp->nexthdr;
3721 off += ipv6_optlen(hp);
3722 break;
3723 }
3724 case IPPROTO_AH: {
3725 struct ip_auth_hdr *hp;
3726
3727 err = skb_maybe_pull_tail(skb,
3728 off +
3729 sizeof(struct ip_auth_hdr),
3730 MAX_IPV6_HDR_LEN);
3731 if (err < 0)
3732 goto out;
3733
3734 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3735 nexthdr = hp->nexthdr;
3736 off += ipv6_authlen(hp);
3737 break;
3738 }
3739 case IPPROTO_FRAGMENT: {
3740 struct frag_hdr *hp;
3741
3742 err = skb_maybe_pull_tail(skb,
3743 off +
3744 sizeof(struct frag_hdr),
3745 MAX_IPV6_HDR_LEN);
3746 if (err < 0)
3747 goto out;
3748
3749 hp = OPT_HDR(struct frag_hdr, skb, off);
3750
3751 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3752 fragment = true;
3753
3754 nexthdr = hp->nexthdr;
3755 off += sizeof(struct frag_hdr);
3756 break;
3757 }
3758 default:
3759 done = true;
3760 break;
3761 }
3762 }
3763
3764 err = -EPROTO;
3765
3766 if (!done || fragment)
3767 goto out;
3768
3769 csum = skb_checksum_setup_ip(skb, nexthdr, off);
3770 if (IS_ERR(csum))
3771 return PTR_ERR(csum);
3772
3773 if (recalculate)
3774 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3775 &ipv6_hdr(skb)->daddr,
3776 skb->len - off, nexthdr, 0);
3777 err = 0;
3778
3779 out:
3780 return err;
3781 }
3782
3783 /**
3784 * skb_checksum_setup - set up partial checksum offset
3785 * @skb: the skb to set up
3786 * @recalculate: if true the pseudo-header checksum will be recalculated
3787 */
3788 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3789 {
3790 int err;
3791
3792 switch (skb->protocol) {
3793 case htons(ETH_P_IP):
3794 err = skb_checksum_setup_ipv4(skb, recalculate);
3795 break;
3796
3797 case htons(ETH_P_IPV6):
3798 err = skb_checksum_setup_ipv6(skb, recalculate);
3799 break;
3800
3801 default:
3802 err = -EPROTO;
3803 break;
3804 }
3805
3806 return err;
3807 }
3808 EXPORT_SYMBOL(skb_checksum_setup);
3809
3810 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3811 {
3812 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3813 skb->dev->name);
3814 }
3815 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3816
3817 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3818 {
3819 if (head_stolen) {
3820 skb_release_head_state(skb);
3821 kmem_cache_free(skbuff_head_cache, skb);
3822 } else {
3823 __kfree_skb(skb);
3824 }
3825 }
3826 EXPORT_SYMBOL(kfree_skb_partial);
3827
3828 /**
3829 * skb_try_coalesce - try to merge skb to prior one
3830 * @to: prior buffer
3831 * @from: buffer to add
3832 * @fragstolen: pointer to boolean
3833 * @delta_truesize: how much more was allocated than was requested
3834 */
3835 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3836 bool *fragstolen, int *delta_truesize)
3837 {
3838 int i, delta, len = from->len;
3839
3840 *fragstolen = false;
3841
3842 if (skb_cloned(to))
3843 return false;
3844
3845 if (len <= skb_tailroom(to)) {
3846 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3847 *delta_truesize = 0;
3848 return true;
3849 }
3850
3851 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3852 return false;
3853
3854 if (skb_headlen(from) != 0) {
3855 struct page *page;
3856 unsigned int offset;
3857
3858 if (skb_shinfo(to)->nr_frags +
3859 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3860 return false;
3861
3862 if (skb_head_is_locked(from))
3863 return false;
3864
3865 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3866
3867 page = virt_to_head_page(from->head);
3868 offset = from->data - (unsigned char *)page_address(page);
3869
3870 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3871 page, offset, skb_headlen(from));
3872 *fragstolen = true;
3873 } else {
3874 if (skb_shinfo(to)->nr_frags +
3875 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3876 return false;
3877
3878 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3879 }
3880
3881 WARN_ON_ONCE(delta < len);
3882
3883 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3884 skb_shinfo(from)->frags,
3885 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3886 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3887
3888 if (!skb_cloned(from))
3889 skb_shinfo(from)->nr_frags = 0;
3890
3891 /* if the skb is not cloned this does nothing
3892 * since we set nr_frags to 0.
3893 */
3894 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3895 skb_frag_ref(from, i);
3896
3897 to->truesize += delta;
3898 to->len += len;
3899 to->data_len += len;
3900
3901 *delta_truesize = delta;
3902 return true;
3903 }
3904 EXPORT_SYMBOL(skb_try_coalesce);
3905
3906 /**
3907 * skb_scrub_packet - scrub an skb
3908 *
3909 * @skb: buffer to clean
3910 * @xnet: packet is crossing netns
3911 *
3912 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3913 * into/from a tunnel. Some information have to be cleared during these
3914 * operations.
3915 * skb_scrub_packet can also be used to clean a skb before injecting it in
3916 * another namespace (@xnet == true). We have to clear all information in the
3917 * skb that could impact namespace isolation.
3918 */
3919 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3920 {
3921 if (xnet)
3922 skb_orphan(skb);
3923 skb->tstamp.tv64 = 0;
3924 skb->pkt_type = PACKET_HOST;
3925 skb->skb_iif = 0;
3926 skb->ignore_df = 0;
3927 skb_dst_drop(skb);
3928 skb->mark = 0;
3929 secpath_reset(skb);
3930 nf_reset(skb);
3931 nf_reset_trace(skb);
3932 }
3933 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3934
3935 /**
3936 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3937 *
3938 * @skb: GSO skb
3939 *
3940 * skb_gso_transport_seglen is used to determine the real size of the
3941 * individual segments, including Layer4 headers (TCP/UDP).
3942 *
3943 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3944 */
3945 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3946 {
3947 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3948
3949 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3950 return tcp_hdrlen(skb) + shinfo->gso_size;
3951
3952 /* UFO sets gso_size to the size of the fragmentation
3953 * payload, i.e. the size of the L4 (UDP) header is already
3954 * accounted for.
3955 */
3956 return shinfo->gso_size;
3957 }
3958 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
This page took 0.115377 seconds and 5 git commands to generate.