net: add skb frag size accessors
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
71
72 #include "kmap_skb.h"
73
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
129 }
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
186
187 /* We do our best to align skb_shared_info on a separate cache
188 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
189 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
190 * Both skb->head and skb_shared_info are cache line aligned.
191 */
192 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
193 data = kmalloc_node_track_caller(size, gfp_mask, node);
194 if (!data)
195 goto nodata;
196 /* kmalloc(size) might give us more room than requested.
197 * Put skb_shared_info exactly at the end of allocated zone,
198 * to allow max possible filling before reallocation.
199 */
200 size = SKB_WITH_OVERHEAD(ksize(data));
201 prefetchw(data + size);
202
203 /*
204 * Only clear those fields we need to clear, not those that we will
205 * actually initialise below. Hence, don't put any more fields after
206 * the tail pointer in struct sk_buff!
207 */
208 memset(skb, 0, offsetof(struct sk_buff, tail));
209 /* Account for allocated memory : skb + skb->head */
210 skb->truesize = SKB_TRUESIZE(size);
211 atomic_set(&skb->users, 1);
212 skb->head = data;
213 skb->data = data;
214 skb_reset_tail_pointer(skb);
215 skb->end = skb->tail + size;
216 #ifdef NET_SKBUFF_DATA_USES_OFFSET
217 skb->mac_header = ~0U;
218 #endif
219
220 /* make sure we initialize shinfo sequentially */
221 shinfo = skb_shinfo(skb);
222 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
223 atomic_set(&shinfo->dataref, 1);
224 kmemcheck_annotate_variable(shinfo->destructor_arg);
225
226 if (fclone) {
227 struct sk_buff *child = skb + 1;
228 atomic_t *fclone_ref = (atomic_t *) (child + 1);
229
230 kmemcheck_annotate_bitfield(child, flags1);
231 kmemcheck_annotate_bitfield(child, flags2);
232 skb->fclone = SKB_FCLONE_ORIG;
233 atomic_set(fclone_ref, 1);
234
235 child->fclone = SKB_FCLONE_UNAVAILABLE;
236 }
237 out:
238 return skb;
239 nodata:
240 kmem_cache_free(cache, skb);
241 skb = NULL;
242 goto out;
243 }
244 EXPORT_SYMBOL(__alloc_skb);
245
246 /**
247 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
248 * @dev: network device to receive on
249 * @length: length to allocate
250 * @gfp_mask: get_free_pages mask, passed to alloc_skb
251 *
252 * Allocate a new &sk_buff and assign it a usage count of one. The
253 * buffer has unspecified headroom built in. Users should allocate
254 * the headroom they think they need without accounting for the
255 * built in space. The built in space is used for optimisations.
256 *
257 * %NULL is returned if there is no free memory.
258 */
259 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
260 unsigned int length, gfp_t gfp_mask)
261 {
262 struct sk_buff *skb;
263
264 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
265 if (likely(skb)) {
266 skb_reserve(skb, NET_SKB_PAD);
267 skb->dev = dev;
268 }
269 return skb;
270 }
271 EXPORT_SYMBOL(__netdev_alloc_skb);
272
273 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
274 int size)
275 {
276 skb_fill_page_desc(skb, i, page, off, size);
277 skb->len += size;
278 skb->data_len += size;
279 skb->truesize += size;
280 }
281 EXPORT_SYMBOL(skb_add_rx_frag);
282
283 /**
284 * dev_alloc_skb - allocate an skbuff for receiving
285 * @length: length to allocate
286 *
287 * Allocate a new &sk_buff and assign it a usage count of one. The
288 * buffer has unspecified headroom built in. Users should allocate
289 * the headroom they think they need without accounting for the
290 * built in space. The built in space is used for optimisations.
291 *
292 * %NULL is returned if there is no free memory. Although this function
293 * allocates memory it can be called from an interrupt.
294 */
295 struct sk_buff *dev_alloc_skb(unsigned int length)
296 {
297 /*
298 * There is more code here than it seems:
299 * __dev_alloc_skb is an inline
300 */
301 return __dev_alloc_skb(length, GFP_ATOMIC);
302 }
303 EXPORT_SYMBOL(dev_alloc_skb);
304
305 static void skb_drop_list(struct sk_buff **listp)
306 {
307 struct sk_buff *list = *listp;
308
309 *listp = NULL;
310
311 do {
312 struct sk_buff *this = list;
313 list = list->next;
314 kfree_skb(this);
315 } while (list);
316 }
317
318 static inline void skb_drop_fraglist(struct sk_buff *skb)
319 {
320 skb_drop_list(&skb_shinfo(skb)->frag_list);
321 }
322
323 static void skb_clone_fraglist(struct sk_buff *skb)
324 {
325 struct sk_buff *list;
326
327 skb_walk_frags(skb, list)
328 skb_get(list);
329 }
330
331 static void skb_release_data(struct sk_buff *skb)
332 {
333 if (!skb->cloned ||
334 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
335 &skb_shinfo(skb)->dataref)) {
336 if (skb_shinfo(skb)->nr_frags) {
337 int i;
338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
339 skb_frag_unref(skb, i);
340 }
341
342 /*
343 * If skb buf is from userspace, we need to notify the caller
344 * the lower device DMA has done;
345 */
346 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
347 struct ubuf_info *uarg;
348
349 uarg = skb_shinfo(skb)->destructor_arg;
350 if (uarg->callback)
351 uarg->callback(uarg);
352 }
353
354 if (skb_has_frag_list(skb))
355 skb_drop_fraglist(skb);
356
357 kfree(skb->head);
358 }
359 }
360
361 /*
362 * Free an skbuff by memory without cleaning the state.
363 */
364 static void kfree_skbmem(struct sk_buff *skb)
365 {
366 struct sk_buff *other;
367 atomic_t *fclone_ref;
368
369 switch (skb->fclone) {
370 case SKB_FCLONE_UNAVAILABLE:
371 kmem_cache_free(skbuff_head_cache, skb);
372 break;
373
374 case SKB_FCLONE_ORIG:
375 fclone_ref = (atomic_t *) (skb + 2);
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, skb);
378 break;
379
380 case SKB_FCLONE_CLONE:
381 fclone_ref = (atomic_t *) (skb + 1);
382 other = skb - 1;
383
384 /* The clone portion is available for
385 * fast-cloning again.
386 */
387 skb->fclone = SKB_FCLONE_UNAVAILABLE;
388
389 if (atomic_dec_and_test(fclone_ref))
390 kmem_cache_free(skbuff_fclone_cache, other);
391 break;
392 }
393 }
394
395 static void skb_release_head_state(struct sk_buff *skb)
396 {
397 skb_dst_drop(skb);
398 #ifdef CONFIG_XFRM
399 secpath_put(skb->sp);
400 #endif
401 if (skb->destructor) {
402 WARN_ON(in_irq());
403 skb->destructor(skb);
404 }
405 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
406 nf_conntrack_put(skb->nfct);
407 #endif
408 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
409 nf_conntrack_put_reasm(skb->nfct_reasm);
410 #endif
411 #ifdef CONFIG_BRIDGE_NETFILTER
412 nf_bridge_put(skb->nf_bridge);
413 #endif
414 /* XXX: IS this still necessary? - JHS */
415 #ifdef CONFIG_NET_SCHED
416 skb->tc_index = 0;
417 #ifdef CONFIG_NET_CLS_ACT
418 skb->tc_verd = 0;
419 #endif
420 #endif
421 }
422
423 /* Free everything but the sk_buff shell. */
424 static void skb_release_all(struct sk_buff *skb)
425 {
426 skb_release_head_state(skb);
427 skb_release_data(skb);
428 }
429
430 /**
431 * __kfree_skb - private function
432 * @skb: buffer
433 *
434 * Free an sk_buff. Release anything attached to the buffer.
435 * Clean the state. This is an internal helper function. Users should
436 * always call kfree_skb
437 */
438
439 void __kfree_skb(struct sk_buff *skb)
440 {
441 skb_release_all(skb);
442 kfree_skbmem(skb);
443 }
444 EXPORT_SYMBOL(__kfree_skb);
445
446 /**
447 * kfree_skb - free an sk_buff
448 * @skb: buffer to free
449 *
450 * Drop a reference to the buffer and free it if the usage count has
451 * hit zero.
452 */
453 void kfree_skb(struct sk_buff *skb)
454 {
455 if (unlikely(!skb))
456 return;
457 if (likely(atomic_read(&skb->users) == 1))
458 smp_rmb();
459 else if (likely(!atomic_dec_and_test(&skb->users)))
460 return;
461 trace_kfree_skb(skb, __builtin_return_address(0));
462 __kfree_skb(skb);
463 }
464 EXPORT_SYMBOL(kfree_skb);
465
466 /**
467 * consume_skb - free an skbuff
468 * @skb: buffer to free
469 *
470 * Drop a ref to the buffer and free it if the usage count has hit zero
471 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
472 * is being dropped after a failure and notes that
473 */
474 void consume_skb(struct sk_buff *skb)
475 {
476 if (unlikely(!skb))
477 return;
478 if (likely(atomic_read(&skb->users) == 1))
479 smp_rmb();
480 else if (likely(!atomic_dec_and_test(&skb->users)))
481 return;
482 trace_consume_skb(skb);
483 __kfree_skb(skb);
484 }
485 EXPORT_SYMBOL(consume_skb);
486
487 /**
488 * skb_recycle_check - check if skb can be reused for receive
489 * @skb: buffer
490 * @skb_size: minimum receive buffer size
491 *
492 * Checks that the skb passed in is not shared or cloned, and
493 * that it is linear and its head portion at least as large as
494 * skb_size so that it can be recycled as a receive buffer.
495 * If these conditions are met, this function does any necessary
496 * reference count dropping and cleans up the skbuff as if it
497 * just came from __alloc_skb().
498 */
499 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
500 {
501 struct skb_shared_info *shinfo;
502
503 if (irqs_disabled())
504 return false;
505
506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
507 return false;
508
509 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
510 return false;
511
512 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
513 if (skb_end_pointer(skb) - skb->head < skb_size)
514 return false;
515
516 if (skb_shared(skb) || skb_cloned(skb))
517 return false;
518
519 skb_release_head_state(skb);
520
521 shinfo = skb_shinfo(skb);
522 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
523 atomic_set(&shinfo->dataref, 1);
524
525 memset(skb, 0, offsetof(struct sk_buff, tail));
526 skb->data = skb->head + NET_SKB_PAD;
527 skb_reset_tail_pointer(skb);
528
529 return true;
530 }
531 EXPORT_SYMBOL(skb_recycle_check);
532
533 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
534 {
535 new->tstamp = old->tstamp;
536 new->dev = old->dev;
537 new->transport_header = old->transport_header;
538 new->network_header = old->network_header;
539 new->mac_header = old->mac_header;
540 skb_dst_copy(new, old);
541 new->rxhash = old->rxhash;
542 new->ooo_okay = old->ooo_okay;
543 new->l4_rxhash = old->l4_rxhash;
544 #ifdef CONFIG_XFRM
545 new->sp = secpath_get(old->sp);
546 #endif
547 memcpy(new->cb, old->cb, sizeof(old->cb));
548 new->csum = old->csum;
549 new->local_df = old->local_df;
550 new->pkt_type = old->pkt_type;
551 new->ip_summed = old->ip_summed;
552 skb_copy_queue_mapping(new, old);
553 new->priority = old->priority;
554 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
555 new->ipvs_property = old->ipvs_property;
556 #endif
557 new->protocol = old->protocol;
558 new->mark = old->mark;
559 new->skb_iif = old->skb_iif;
560 __nf_copy(new, old);
561 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
562 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
563 new->nf_trace = old->nf_trace;
564 #endif
565 #ifdef CONFIG_NET_SCHED
566 new->tc_index = old->tc_index;
567 #ifdef CONFIG_NET_CLS_ACT
568 new->tc_verd = old->tc_verd;
569 #endif
570 #endif
571 new->vlan_tci = old->vlan_tci;
572
573 skb_copy_secmark(new, old);
574 }
575
576 /*
577 * You should not add any new code to this function. Add it to
578 * __copy_skb_header above instead.
579 */
580 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
581 {
582 #define C(x) n->x = skb->x
583
584 n->next = n->prev = NULL;
585 n->sk = NULL;
586 __copy_skb_header(n, skb);
587
588 C(len);
589 C(data_len);
590 C(mac_len);
591 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
592 n->cloned = 1;
593 n->nohdr = 0;
594 n->destructor = NULL;
595 C(tail);
596 C(end);
597 C(head);
598 C(data);
599 C(truesize);
600 atomic_set(&n->users, 1);
601
602 atomic_inc(&(skb_shinfo(skb)->dataref));
603 skb->cloned = 1;
604
605 return n;
606 #undef C
607 }
608
609 /**
610 * skb_morph - morph one skb into another
611 * @dst: the skb to receive the contents
612 * @src: the skb to supply the contents
613 *
614 * This is identical to skb_clone except that the target skb is
615 * supplied by the user.
616 *
617 * The target skb is returned upon exit.
618 */
619 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
620 {
621 skb_release_all(dst);
622 return __skb_clone(dst, src);
623 }
624 EXPORT_SYMBOL_GPL(skb_morph);
625
626 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
627 * @skb: the skb to modify
628 * @gfp_mask: allocation priority
629 *
630 * This must be called on SKBTX_DEV_ZEROCOPY skb.
631 * It will copy all frags into kernel and drop the reference
632 * to userspace pages.
633 *
634 * If this function is called from an interrupt gfp_mask() must be
635 * %GFP_ATOMIC.
636 *
637 * Returns 0 on success or a negative error code on failure
638 * to allocate kernel memory to copy to.
639 */
640 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
641 {
642 int i;
643 int num_frags = skb_shinfo(skb)->nr_frags;
644 struct page *page, *head = NULL;
645 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
646
647 for (i = 0; i < num_frags; i++) {
648 u8 *vaddr;
649 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
650
651 page = alloc_page(GFP_ATOMIC);
652 if (!page) {
653 while (head) {
654 struct page *next = (struct page *)head->private;
655 put_page(head);
656 head = next;
657 }
658 return -ENOMEM;
659 }
660 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
661 memcpy(page_address(page),
662 vaddr + f->page_offset, skb_frag_size(f));
663 kunmap_skb_frag(vaddr);
664 page->private = (unsigned long)head;
665 head = page;
666 }
667
668 /* skb frags release userspace buffers */
669 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
670 put_page(skb_shinfo(skb)->frags[i].page);
671
672 uarg->callback(uarg);
673
674 /* skb frags point to kernel buffers */
675 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
676 skb_shinfo(skb)->frags[i - 1].page_offset = 0;
677 skb_shinfo(skb)->frags[i - 1].page = head;
678 head = (struct page *)head->private;
679 }
680
681 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
682 return 0;
683 }
684
685
686 /**
687 * skb_clone - duplicate an sk_buff
688 * @skb: buffer to clone
689 * @gfp_mask: allocation priority
690 *
691 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
692 * copies share the same packet data but not structure. The new
693 * buffer has a reference count of 1. If the allocation fails the
694 * function returns %NULL otherwise the new buffer is returned.
695 *
696 * If this function is called from an interrupt gfp_mask() must be
697 * %GFP_ATOMIC.
698 */
699
700 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
701 {
702 struct sk_buff *n;
703
704 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
705 if (skb_copy_ubufs(skb, gfp_mask))
706 return NULL;
707 }
708
709 n = skb + 1;
710 if (skb->fclone == SKB_FCLONE_ORIG &&
711 n->fclone == SKB_FCLONE_UNAVAILABLE) {
712 atomic_t *fclone_ref = (atomic_t *) (n + 1);
713 n->fclone = SKB_FCLONE_CLONE;
714 atomic_inc(fclone_ref);
715 } else {
716 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
717 if (!n)
718 return NULL;
719
720 kmemcheck_annotate_bitfield(n, flags1);
721 kmemcheck_annotate_bitfield(n, flags2);
722 n->fclone = SKB_FCLONE_UNAVAILABLE;
723 }
724
725 return __skb_clone(n, skb);
726 }
727 EXPORT_SYMBOL(skb_clone);
728
729 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
730 {
731 #ifndef NET_SKBUFF_DATA_USES_OFFSET
732 /*
733 * Shift between the two data areas in bytes
734 */
735 unsigned long offset = new->data - old->data;
736 #endif
737
738 __copy_skb_header(new, old);
739
740 #ifndef NET_SKBUFF_DATA_USES_OFFSET
741 /* {transport,network,mac}_header are relative to skb->head */
742 new->transport_header += offset;
743 new->network_header += offset;
744 if (skb_mac_header_was_set(new))
745 new->mac_header += offset;
746 #endif
747 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
748 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
749 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
750 }
751
752 /**
753 * skb_copy - create private copy of an sk_buff
754 * @skb: buffer to copy
755 * @gfp_mask: allocation priority
756 *
757 * Make a copy of both an &sk_buff and its data. This is used when the
758 * caller wishes to modify the data and needs a private copy of the
759 * data to alter. Returns %NULL on failure or the pointer to the buffer
760 * on success. The returned buffer has a reference count of 1.
761 *
762 * As by-product this function converts non-linear &sk_buff to linear
763 * one, so that &sk_buff becomes completely private and caller is allowed
764 * to modify all the data of returned buffer. This means that this
765 * function is not recommended for use in circumstances when only
766 * header is going to be modified. Use pskb_copy() instead.
767 */
768
769 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
770 {
771 int headerlen = skb_headroom(skb);
772 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
773 struct sk_buff *n = alloc_skb(size, gfp_mask);
774
775 if (!n)
776 return NULL;
777
778 /* Set the data pointer */
779 skb_reserve(n, headerlen);
780 /* Set the tail pointer and length */
781 skb_put(n, skb->len);
782
783 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
784 BUG();
785
786 copy_skb_header(n, skb);
787 return n;
788 }
789 EXPORT_SYMBOL(skb_copy);
790
791 /**
792 * pskb_copy - create copy of an sk_buff with private head.
793 * @skb: buffer to copy
794 * @gfp_mask: allocation priority
795 *
796 * Make a copy of both an &sk_buff and part of its data, located
797 * in header. Fragmented data remain shared. This is used when
798 * the caller wishes to modify only header of &sk_buff and needs
799 * private copy of the header to alter. Returns %NULL on failure
800 * or the pointer to the buffer on success.
801 * The returned buffer has a reference count of 1.
802 */
803
804 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
805 {
806 unsigned int size = skb_end_pointer(skb) - skb->head;
807 struct sk_buff *n = alloc_skb(size, gfp_mask);
808
809 if (!n)
810 goto out;
811
812 /* Set the data pointer */
813 skb_reserve(n, skb_headroom(skb));
814 /* Set the tail pointer and length */
815 skb_put(n, skb_headlen(skb));
816 /* Copy the bytes */
817 skb_copy_from_linear_data(skb, n->data, n->len);
818
819 n->truesize += skb->data_len;
820 n->data_len = skb->data_len;
821 n->len = skb->len;
822
823 if (skb_shinfo(skb)->nr_frags) {
824 int i;
825
826 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
827 if (skb_copy_ubufs(skb, gfp_mask)) {
828 kfree_skb(n);
829 n = NULL;
830 goto out;
831 }
832 }
833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
834 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
835 skb_frag_ref(skb, i);
836 }
837 skb_shinfo(n)->nr_frags = i;
838 }
839
840 if (skb_has_frag_list(skb)) {
841 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
842 skb_clone_fraglist(n);
843 }
844
845 copy_skb_header(n, skb);
846 out:
847 return n;
848 }
849 EXPORT_SYMBOL(pskb_copy);
850
851 /**
852 * pskb_expand_head - reallocate header of &sk_buff
853 * @skb: buffer to reallocate
854 * @nhead: room to add at head
855 * @ntail: room to add at tail
856 * @gfp_mask: allocation priority
857 *
858 * Expands (or creates identical copy, if &nhead and &ntail are zero)
859 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
860 * reference count of 1. Returns zero in the case of success or error,
861 * if expansion failed. In the last case, &sk_buff is not changed.
862 *
863 * All the pointers pointing into skb header may change and must be
864 * reloaded after call to this function.
865 */
866
867 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
868 gfp_t gfp_mask)
869 {
870 int i;
871 u8 *data;
872 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
873 long off;
874 bool fastpath;
875
876 BUG_ON(nhead < 0);
877
878 if (skb_shared(skb))
879 BUG();
880
881 size = SKB_DATA_ALIGN(size);
882
883 /* Check if we can avoid taking references on fragments if we own
884 * the last reference on skb->head. (see skb_release_data())
885 */
886 if (!skb->cloned)
887 fastpath = true;
888 else {
889 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
890 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
891 }
892
893 if (fastpath &&
894 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
895 memmove(skb->head + size, skb_shinfo(skb),
896 offsetof(struct skb_shared_info,
897 frags[skb_shinfo(skb)->nr_frags]));
898 memmove(skb->head + nhead, skb->head,
899 skb_tail_pointer(skb) - skb->head);
900 off = nhead;
901 goto adjust_others;
902 }
903
904 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
905 if (!data)
906 goto nodata;
907
908 /* Copy only real data... and, alas, header. This should be
909 * optimized for the cases when header is void.
910 */
911 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
912
913 memcpy((struct skb_shared_info *)(data + size),
914 skb_shinfo(skb),
915 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
916
917 if (fastpath) {
918 kfree(skb->head);
919 } else {
920 /* copy this zero copy skb frags */
921 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
922 if (skb_copy_ubufs(skb, gfp_mask))
923 goto nofrags;
924 }
925 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
926 skb_frag_ref(skb, i);
927
928 if (skb_has_frag_list(skb))
929 skb_clone_fraglist(skb);
930
931 skb_release_data(skb);
932 }
933 off = (data + nhead) - skb->head;
934
935 skb->head = data;
936 adjust_others:
937 skb->data += off;
938 #ifdef NET_SKBUFF_DATA_USES_OFFSET
939 skb->end = size;
940 off = nhead;
941 #else
942 skb->end = skb->head + size;
943 #endif
944 /* {transport,network,mac}_header and tail are relative to skb->head */
945 skb->tail += off;
946 skb->transport_header += off;
947 skb->network_header += off;
948 if (skb_mac_header_was_set(skb))
949 skb->mac_header += off;
950 /* Only adjust this if it actually is csum_start rather than csum */
951 if (skb->ip_summed == CHECKSUM_PARTIAL)
952 skb->csum_start += nhead;
953 skb->cloned = 0;
954 skb->hdr_len = 0;
955 skb->nohdr = 0;
956 atomic_set(&skb_shinfo(skb)->dataref, 1);
957 return 0;
958
959 nofrags:
960 kfree(data);
961 nodata:
962 return -ENOMEM;
963 }
964 EXPORT_SYMBOL(pskb_expand_head);
965
966 /* Make private copy of skb with writable head and some headroom */
967
968 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
969 {
970 struct sk_buff *skb2;
971 int delta = headroom - skb_headroom(skb);
972
973 if (delta <= 0)
974 skb2 = pskb_copy(skb, GFP_ATOMIC);
975 else {
976 skb2 = skb_clone(skb, GFP_ATOMIC);
977 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
978 GFP_ATOMIC)) {
979 kfree_skb(skb2);
980 skb2 = NULL;
981 }
982 }
983 return skb2;
984 }
985 EXPORT_SYMBOL(skb_realloc_headroom);
986
987 /**
988 * skb_copy_expand - copy and expand sk_buff
989 * @skb: buffer to copy
990 * @newheadroom: new free bytes at head
991 * @newtailroom: new free bytes at tail
992 * @gfp_mask: allocation priority
993 *
994 * Make a copy of both an &sk_buff and its data and while doing so
995 * allocate additional space.
996 *
997 * This is used when the caller wishes to modify the data and needs a
998 * private copy of the data to alter as well as more space for new fields.
999 * Returns %NULL on failure or the pointer to the buffer
1000 * on success. The returned buffer has a reference count of 1.
1001 *
1002 * You must pass %GFP_ATOMIC as the allocation priority if this function
1003 * is called from an interrupt.
1004 */
1005 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1006 int newheadroom, int newtailroom,
1007 gfp_t gfp_mask)
1008 {
1009 /*
1010 * Allocate the copy buffer
1011 */
1012 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1013 gfp_mask);
1014 int oldheadroom = skb_headroom(skb);
1015 int head_copy_len, head_copy_off;
1016 int off;
1017
1018 if (!n)
1019 return NULL;
1020
1021 skb_reserve(n, newheadroom);
1022
1023 /* Set the tail pointer and length */
1024 skb_put(n, skb->len);
1025
1026 head_copy_len = oldheadroom;
1027 head_copy_off = 0;
1028 if (newheadroom <= head_copy_len)
1029 head_copy_len = newheadroom;
1030 else
1031 head_copy_off = newheadroom - head_copy_len;
1032
1033 /* Copy the linear header and data. */
1034 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1035 skb->len + head_copy_len))
1036 BUG();
1037
1038 copy_skb_header(n, skb);
1039
1040 off = newheadroom - oldheadroom;
1041 if (n->ip_summed == CHECKSUM_PARTIAL)
1042 n->csum_start += off;
1043 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1044 n->transport_header += off;
1045 n->network_header += off;
1046 if (skb_mac_header_was_set(skb))
1047 n->mac_header += off;
1048 #endif
1049
1050 return n;
1051 }
1052 EXPORT_SYMBOL(skb_copy_expand);
1053
1054 /**
1055 * skb_pad - zero pad the tail of an skb
1056 * @skb: buffer to pad
1057 * @pad: space to pad
1058 *
1059 * Ensure that a buffer is followed by a padding area that is zero
1060 * filled. Used by network drivers which may DMA or transfer data
1061 * beyond the buffer end onto the wire.
1062 *
1063 * May return error in out of memory cases. The skb is freed on error.
1064 */
1065
1066 int skb_pad(struct sk_buff *skb, int pad)
1067 {
1068 int err;
1069 int ntail;
1070
1071 /* If the skbuff is non linear tailroom is always zero.. */
1072 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1073 memset(skb->data+skb->len, 0, pad);
1074 return 0;
1075 }
1076
1077 ntail = skb->data_len + pad - (skb->end - skb->tail);
1078 if (likely(skb_cloned(skb) || ntail > 0)) {
1079 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1080 if (unlikely(err))
1081 goto free_skb;
1082 }
1083
1084 /* FIXME: The use of this function with non-linear skb's really needs
1085 * to be audited.
1086 */
1087 err = skb_linearize(skb);
1088 if (unlikely(err))
1089 goto free_skb;
1090
1091 memset(skb->data + skb->len, 0, pad);
1092 return 0;
1093
1094 free_skb:
1095 kfree_skb(skb);
1096 return err;
1097 }
1098 EXPORT_SYMBOL(skb_pad);
1099
1100 /**
1101 * skb_put - add data to a buffer
1102 * @skb: buffer to use
1103 * @len: amount of data to add
1104 *
1105 * This function extends the used data area of the buffer. If this would
1106 * exceed the total buffer size the kernel will panic. A pointer to the
1107 * first byte of the extra data is returned.
1108 */
1109 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1110 {
1111 unsigned char *tmp = skb_tail_pointer(skb);
1112 SKB_LINEAR_ASSERT(skb);
1113 skb->tail += len;
1114 skb->len += len;
1115 if (unlikely(skb->tail > skb->end))
1116 skb_over_panic(skb, len, __builtin_return_address(0));
1117 return tmp;
1118 }
1119 EXPORT_SYMBOL(skb_put);
1120
1121 /**
1122 * skb_push - add data to the start of a buffer
1123 * @skb: buffer to use
1124 * @len: amount of data to add
1125 *
1126 * This function extends the used data area of the buffer at the buffer
1127 * start. If this would exceed the total buffer headroom the kernel will
1128 * panic. A pointer to the first byte of the extra data is returned.
1129 */
1130 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1131 {
1132 skb->data -= len;
1133 skb->len += len;
1134 if (unlikely(skb->data<skb->head))
1135 skb_under_panic(skb, len, __builtin_return_address(0));
1136 return skb->data;
1137 }
1138 EXPORT_SYMBOL(skb_push);
1139
1140 /**
1141 * skb_pull - remove data from the start of a buffer
1142 * @skb: buffer to use
1143 * @len: amount of data to remove
1144 *
1145 * This function removes data from the start of a buffer, returning
1146 * the memory to the headroom. A pointer to the next data in the buffer
1147 * is returned. Once the data has been pulled future pushes will overwrite
1148 * the old data.
1149 */
1150 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1151 {
1152 return skb_pull_inline(skb, len);
1153 }
1154 EXPORT_SYMBOL(skb_pull);
1155
1156 /**
1157 * skb_trim - remove end from a buffer
1158 * @skb: buffer to alter
1159 * @len: new length
1160 *
1161 * Cut the length of a buffer down by removing data from the tail. If
1162 * the buffer is already under the length specified it is not modified.
1163 * The skb must be linear.
1164 */
1165 void skb_trim(struct sk_buff *skb, unsigned int len)
1166 {
1167 if (skb->len > len)
1168 __skb_trim(skb, len);
1169 }
1170 EXPORT_SYMBOL(skb_trim);
1171
1172 /* Trims skb to length len. It can change skb pointers.
1173 */
1174
1175 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1176 {
1177 struct sk_buff **fragp;
1178 struct sk_buff *frag;
1179 int offset = skb_headlen(skb);
1180 int nfrags = skb_shinfo(skb)->nr_frags;
1181 int i;
1182 int err;
1183
1184 if (skb_cloned(skb) &&
1185 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1186 return err;
1187
1188 i = 0;
1189 if (offset >= len)
1190 goto drop_pages;
1191
1192 for (; i < nfrags; i++) {
1193 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1194
1195 if (end < len) {
1196 offset = end;
1197 continue;
1198 }
1199
1200 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1201
1202 drop_pages:
1203 skb_shinfo(skb)->nr_frags = i;
1204
1205 for (; i < nfrags; i++)
1206 skb_frag_unref(skb, i);
1207
1208 if (skb_has_frag_list(skb))
1209 skb_drop_fraglist(skb);
1210 goto done;
1211 }
1212
1213 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1214 fragp = &frag->next) {
1215 int end = offset + frag->len;
1216
1217 if (skb_shared(frag)) {
1218 struct sk_buff *nfrag;
1219
1220 nfrag = skb_clone(frag, GFP_ATOMIC);
1221 if (unlikely(!nfrag))
1222 return -ENOMEM;
1223
1224 nfrag->next = frag->next;
1225 kfree_skb(frag);
1226 frag = nfrag;
1227 *fragp = frag;
1228 }
1229
1230 if (end < len) {
1231 offset = end;
1232 continue;
1233 }
1234
1235 if (end > len &&
1236 unlikely((err = pskb_trim(frag, len - offset))))
1237 return err;
1238
1239 if (frag->next)
1240 skb_drop_list(&frag->next);
1241 break;
1242 }
1243
1244 done:
1245 if (len > skb_headlen(skb)) {
1246 skb->data_len -= skb->len - len;
1247 skb->len = len;
1248 } else {
1249 skb->len = len;
1250 skb->data_len = 0;
1251 skb_set_tail_pointer(skb, len);
1252 }
1253
1254 return 0;
1255 }
1256 EXPORT_SYMBOL(___pskb_trim);
1257
1258 /**
1259 * __pskb_pull_tail - advance tail of skb header
1260 * @skb: buffer to reallocate
1261 * @delta: number of bytes to advance tail
1262 *
1263 * The function makes a sense only on a fragmented &sk_buff,
1264 * it expands header moving its tail forward and copying necessary
1265 * data from fragmented part.
1266 *
1267 * &sk_buff MUST have reference count of 1.
1268 *
1269 * Returns %NULL (and &sk_buff does not change) if pull failed
1270 * or value of new tail of skb in the case of success.
1271 *
1272 * All the pointers pointing into skb header may change and must be
1273 * reloaded after call to this function.
1274 */
1275
1276 /* Moves tail of skb head forward, copying data from fragmented part,
1277 * when it is necessary.
1278 * 1. It may fail due to malloc failure.
1279 * 2. It may change skb pointers.
1280 *
1281 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1282 */
1283 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1284 {
1285 /* If skb has not enough free space at tail, get new one
1286 * plus 128 bytes for future expansions. If we have enough
1287 * room at tail, reallocate without expansion only if skb is cloned.
1288 */
1289 int i, k, eat = (skb->tail + delta) - skb->end;
1290
1291 if (eat > 0 || skb_cloned(skb)) {
1292 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1293 GFP_ATOMIC))
1294 return NULL;
1295 }
1296
1297 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1298 BUG();
1299
1300 /* Optimization: no fragments, no reasons to preestimate
1301 * size of pulled pages. Superb.
1302 */
1303 if (!skb_has_frag_list(skb))
1304 goto pull_pages;
1305
1306 /* Estimate size of pulled pages. */
1307 eat = delta;
1308 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1309 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1310
1311 if (size >= eat)
1312 goto pull_pages;
1313 eat -= size;
1314 }
1315
1316 /* If we need update frag list, we are in troubles.
1317 * Certainly, it possible to add an offset to skb data,
1318 * but taking into account that pulling is expected to
1319 * be very rare operation, it is worth to fight against
1320 * further bloating skb head and crucify ourselves here instead.
1321 * Pure masohism, indeed. 8)8)
1322 */
1323 if (eat) {
1324 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1325 struct sk_buff *clone = NULL;
1326 struct sk_buff *insp = NULL;
1327
1328 do {
1329 BUG_ON(!list);
1330
1331 if (list->len <= eat) {
1332 /* Eaten as whole. */
1333 eat -= list->len;
1334 list = list->next;
1335 insp = list;
1336 } else {
1337 /* Eaten partially. */
1338
1339 if (skb_shared(list)) {
1340 /* Sucks! We need to fork list. :-( */
1341 clone = skb_clone(list, GFP_ATOMIC);
1342 if (!clone)
1343 return NULL;
1344 insp = list->next;
1345 list = clone;
1346 } else {
1347 /* This may be pulled without
1348 * problems. */
1349 insp = list;
1350 }
1351 if (!pskb_pull(list, eat)) {
1352 kfree_skb(clone);
1353 return NULL;
1354 }
1355 break;
1356 }
1357 } while (eat);
1358
1359 /* Free pulled out fragments. */
1360 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1361 skb_shinfo(skb)->frag_list = list->next;
1362 kfree_skb(list);
1363 }
1364 /* And insert new clone at head. */
1365 if (clone) {
1366 clone->next = list;
1367 skb_shinfo(skb)->frag_list = clone;
1368 }
1369 }
1370 /* Success! Now we may commit changes to skb data. */
1371
1372 pull_pages:
1373 eat = delta;
1374 k = 0;
1375 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1376 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1377
1378 if (size <= eat) {
1379 skb_frag_unref(skb, i);
1380 eat -= size;
1381 } else {
1382 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1383 if (eat) {
1384 skb_shinfo(skb)->frags[k].page_offset += eat;
1385 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1386 eat = 0;
1387 }
1388 k++;
1389 }
1390 }
1391 skb_shinfo(skb)->nr_frags = k;
1392
1393 skb->tail += delta;
1394 skb->data_len -= delta;
1395
1396 return skb_tail_pointer(skb);
1397 }
1398 EXPORT_SYMBOL(__pskb_pull_tail);
1399
1400 /**
1401 * skb_copy_bits - copy bits from skb to kernel buffer
1402 * @skb: source skb
1403 * @offset: offset in source
1404 * @to: destination buffer
1405 * @len: number of bytes to copy
1406 *
1407 * Copy the specified number of bytes from the source skb to the
1408 * destination buffer.
1409 *
1410 * CAUTION ! :
1411 * If its prototype is ever changed,
1412 * check arch/{*}/net/{*}.S files,
1413 * since it is called from BPF assembly code.
1414 */
1415 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1416 {
1417 int start = skb_headlen(skb);
1418 struct sk_buff *frag_iter;
1419 int i, copy;
1420
1421 if (offset > (int)skb->len - len)
1422 goto fault;
1423
1424 /* Copy header. */
1425 if ((copy = start - offset) > 0) {
1426 if (copy > len)
1427 copy = len;
1428 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1429 if ((len -= copy) == 0)
1430 return 0;
1431 offset += copy;
1432 to += copy;
1433 }
1434
1435 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1436 int end;
1437
1438 WARN_ON(start > offset + len);
1439
1440 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1441 if ((copy = end - offset) > 0) {
1442 u8 *vaddr;
1443
1444 if (copy > len)
1445 copy = len;
1446
1447 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1448 memcpy(to,
1449 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1450 offset - start, copy);
1451 kunmap_skb_frag(vaddr);
1452
1453 if ((len -= copy) == 0)
1454 return 0;
1455 offset += copy;
1456 to += copy;
1457 }
1458 start = end;
1459 }
1460
1461 skb_walk_frags(skb, frag_iter) {
1462 int end;
1463
1464 WARN_ON(start > offset + len);
1465
1466 end = start + frag_iter->len;
1467 if ((copy = end - offset) > 0) {
1468 if (copy > len)
1469 copy = len;
1470 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1471 goto fault;
1472 if ((len -= copy) == 0)
1473 return 0;
1474 offset += copy;
1475 to += copy;
1476 }
1477 start = end;
1478 }
1479
1480 if (!len)
1481 return 0;
1482
1483 fault:
1484 return -EFAULT;
1485 }
1486 EXPORT_SYMBOL(skb_copy_bits);
1487
1488 /*
1489 * Callback from splice_to_pipe(), if we need to release some pages
1490 * at the end of the spd in case we error'ed out in filling the pipe.
1491 */
1492 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1493 {
1494 put_page(spd->pages[i]);
1495 }
1496
1497 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1498 unsigned int *offset,
1499 struct sk_buff *skb, struct sock *sk)
1500 {
1501 struct page *p = sk->sk_sndmsg_page;
1502 unsigned int off;
1503
1504 if (!p) {
1505 new_page:
1506 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1507 if (!p)
1508 return NULL;
1509
1510 off = sk->sk_sndmsg_off = 0;
1511 /* hold one ref to this page until it's full */
1512 } else {
1513 unsigned int mlen;
1514
1515 off = sk->sk_sndmsg_off;
1516 mlen = PAGE_SIZE - off;
1517 if (mlen < 64 && mlen < *len) {
1518 put_page(p);
1519 goto new_page;
1520 }
1521
1522 *len = min_t(unsigned int, *len, mlen);
1523 }
1524
1525 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1526 sk->sk_sndmsg_off += *len;
1527 *offset = off;
1528 get_page(p);
1529
1530 return p;
1531 }
1532
1533 /*
1534 * Fill page/offset/length into spd, if it can hold more pages.
1535 */
1536 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1537 struct pipe_inode_info *pipe, struct page *page,
1538 unsigned int *len, unsigned int offset,
1539 struct sk_buff *skb, int linear,
1540 struct sock *sk)
1541 {
1542 if (unlikely(spd->nr_pages == pipe->buffers))
1543 return 1;
1544
1545 if (linear) {
1546 page = linear_to_page(page, len, &offset, skb, sk);
1547 if (!page)
1548 return 1;
1549 } else
1550 get_page(page);
1551
1552 spd->pages[spd->nr_pages] = page;
1553 spd->partial[spd->nr_pages].len = *len;
1554 spd->partial[spd->nr_pages].offset = offset;
1555 spd->nr_pages++;
1556
1557 return 0;
1558 }
1559
1560 static inline void __segment_seek(struct page **page, unsigned int *poff,
1561 unsigned int *plen, unsigned int off)
1562 {
1563 unsigned long n;
1564
1565 *poff += off;
1566 n = *poff / PAGE_SIZE;
1567 if (n)
1568 *page = nth_page(*page, n);
1569
1570 *poff = *poff % PAGE_SIZE;
1571 *plen -= off;
1572 }
1573
1574 static inline int __splice_segment(struct page *page, unsigned int poff,
1575 unsigned int plen, unsigned int *off,
1576 unsigned int *len, struct sk_buff *skb,
1577 struct splice_pipe_desc *spd, int linear,
1578 struct sock *sk,
1579 struct pipe_inode_info *pipe)
1580 {
1581 if (!*len)
1582 return 1;
1583
1584 /* skip this segment if already processed */
1585 if (*off >= plen) {
1586 *off -= plen;
1587 return 0;
1588 }
1589
1590 /* ignore any bits we already processed */
1591 if (*off) {
1592 __segment_seek(&page, &poff, &plen, *off);
1593 *off = 0;
1594 }
1595
1596 do {
1597 unsigned int flen = min(*len, plen);
1598
1599 /* the linear region may spread across several pages */
1600 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1601
1602 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1603 return 1;
1604
1605 __segment_seek(&page, &poff, &plen, flen);
1606 *len -= flen;
1607
1608 } while (*len && plen);
1609
1610 return 0;
1611 }
1612
1613 /*
1614 * Map linear and fragment data from the skb to spd. It reports failure if the
1615 * pipe is full or if we already spliced the requested length.
1616 */
1617 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1618 unsigned int *offset, unsigned int *len,
1619 struct splice_pipe_desc *spd, struct sock *sk)
1620 {
1621 int seg;
1622
1623 /*
1624 * map the linear part
1625 */
1626 if (__splice_segment(virt_to_page(skb->data),
1627 (unsigned long) skb->data & (PAGE_SIZE - 1),
1628 skb_headlen(skb),
1629 offset, len, skb, spd, 1, sk, pipe))
1630 return 1;
1631
1632 /*
1633 * then map the fragments
1634 */
1635 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1636 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1637
1638 if (__splice_segment(skb_frag_page(f),
1639 f->page_offset, skb_frag_size(f),
1640 offset, len, skb, spd, 0, sk, pipe))
1641 return 1;
1642 }
1643
1644 return 0;
1645 }
1646
1647 /*
1648 * Map data from the skb to a pipe. Should handle both the linear part,
1649 * the fragments, and the frag list. It does NOT handle frag lists within
1650 * the frag list, if such a thing exists. We'd probably need to recurse to
1651 * handle that cleanly.
1652 */
1653 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1654 struct pipe_inode_info *pipe, unsigned int tlen,
1655 unsigned int flags)
1656 {
1657 struct partial_page partial[PIPE_DEF_BUFFERS];
1658 struct page *pages[PIPE_DEF_BUFFERS];
1659 struct splice_pipe_desc spd = {
1660 .pages = pages,
1661 .partial = partial,
1662 .flags = flags,
1663 .ops = &sock_pipe_buf_ops,
1664 .spd_release = sock_spd_release,
1665 };
1666 struct sk_buff *frag_iter;
1667 struct sock *sk = skb->sk;
1668 int ret = 0;
1669
1670 if (splice_grow_spd(pipe, &spd))
1671 return -ENOMEM;
1672
1673 /*
1674 * __skb_splice_bits() only fails if the output has no room left,
1675 * so no point in going over the frag_list for the error case.
1676 */
1677 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1678 goto done;
1679 else if (!tlen)
1680 goto done;
1681
1682 /*
1683 * now see if we have a frag_list to map
1684 */
1685 skb_walk_frags(skb, frag_iter) {
1686 if (!tlen)
1687 break;
1688 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1689 break;
1690 }
1691
1692 done:
1693 if (spd.nr_pages) {
1694 /*
1695 * Drop the socket lock, otherwise we have reverse
1696 * locking dependencies between sk_lock and i_mutex
1697 * here as compared to sendfile(). We enter here
1698 * with the socket lock held, and splice_to_pipe() will
1699 * grab the pipe inode lock. For sendfile() emulation,
1700 * we call into ->sendpage() with the i_mutex lock held
1701 * and networking will grab the socket lock.
1702 */
1703 release_sock(sk);
1704 ret = splice_to_pipe(pipe, &spd);
1705 lock_sock(sk);
1706 }
1707
1708 splice_shrink_spd(pipe, &spd);
1709 return ret;
1710 }
1711
1712 /**
1713 * skb_store_bits - store bits from kernel buffer to skb
1714 * @skb: destination buffer
1715 * @offset: offset in destination
1716 * @from: source buffer
1717 * @len: number of bytes to copy
1718 *
1719 * Copy the specified number of bytes from the source buffer to the
1720 * destination skb. This function handles all the messy bits of
1721 * traversing fragment lists and such.
1722 */
1723
1724 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1725 {
1726 int start = skb_headlen(skb);
1727 struct sk_buff *frag_iter;
1728 int i, copy;
1729
1730 if (offset > (int)skb->len - len)
1731 goto fault;
1732
1733 if ((copy = start - offset) > 0) {
1734 if (copy > len)
1735 copy = len;
1736 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1737 if ((len -= copy) == 0)
1738 return 0;
1739 offset += copy;
1740 from += copy;
1741 }
1742
1743 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1744 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1745 int end;
1746
1747 WARN_ON(start > offset + len);
1748
1749 end = start + skb_frag_size(frag);
1750 if ((copy = end - offset) > 0) {
1751 u8 *vaddr;
1752
1753 if (copy > len)
1754 copy = len;
1755
1756 vaddr = kmap_skb_frag(frag);
1757 memcpy(vaddr + frag->page_offset + offset - start,
1758 from, copy);
1759 kunmap_skb_frag(vaddr);
1760
1761 if ((len -= copy) == 0)
1762 return 0;
1763 offset += copy;
1764 from += copy;
1765 }
1766 start = end;
1767 }
1768
1769 skb_walk_frags(skb, frag_iter) {
1770 int end;
1771
1772 WARN_ON(start > offset + len);
1773
1774 end = start + frag_iter->len;
1775 if ((copy = end - offset) > 0) {
1776 if (copy > len)
1777 copy = len;
1778 if (skb_store_bits(frag_iter, offset - start,
1779 from, copy))
1780 goto fault;
1781 if ((len -= copy) == 0)
1782 return 0;
1783 offset += copy;
1784 from += copy;
1785 }
1786 start = end;
1787 }
1788 if (!len)
1789 return 0;
1790
1791 fault:
1792 return -EFAULT;
1793 }
1794 EXPORT_SYMBOL(skb_store_bits);
1795
1796 /* Checksum skb data. */
1797
1798 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1799 int len, __wsum csum)
1800 {
1801 int start = skb_headlen(skb);
1802 int i, copy = start - offset;
1803 struct sk_buff *frag_iter;
1804 int pos = 0;
1805
1806 /* Checksum header. */
1807 if (copy > 0) {
1808 if (copy > len)
1809 copy = len;
1810 csum = csum_partial(skb->data + offset, copy, csum);
1811 if ((len -= copy) == 0)
1812 return csum;
1813 offset += copy;
1814 pos = copy;
1815 }
1816
1817 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1818 int end;
1819
1820 WARN_ON(start > offset + len);
1821
1822 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1823 if ((copy = end - offset) > 0) {
1824 __wsum csum2;
1825 u8 *vaddr;
1826 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1827
1828 if (copy > len)
1829 copy = len;
1830 vaddr = kmap_skb_frag(frag);
1831 csum2 = csum_partial(vaddr + frag->page_offset +
1832 offset - start, copy, 0);
1833 kunmap_skb_frag(vaddr);
1834 csum = csum_block_add(csum, csum2, pos);
1835 if (!(len -= copy))
1836 return csum;
1837 offset += copy;
1838 pos += copy;
1839 }
1840 start = end;
1841 }
1842
1843 skb_walk_frags(skb, frag_iter) {
1844 int end;
1845
1846 WARN_ON(start > offset + len);
1847
1848 end = start + frag_iter->len;
1849 if ((copy = end - offset) > 0) {
1850 __wsum csum2;
1851 if (copy > len)
1852 copy = len;
1853 csum2 = skb_checksum(frag_iter, offset - start,
1854 copy, 0);
1855 csum = csum_block_add(csum, csum2, pos);
1856 if ((len -= copy) == 0)
1857 return csum;
1858 offset += copy;
1859 pos += copy;
1860 }
1861 start = end;
1862 }
1863 BUG_ON(len);
1864
1865 return csum;
1866 }
1867 EXPORT_SYMBOL(skb_checksum);
1868
1869 /* Both of above in one bottle. */
1870
1871 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1872 u8 *to, int len, __wsum csum)
1873 {
1874 int start = skb_headlen(skb);
1875 int i, copy = start - offset;
1876 struct sk_buff *frag_iter;
1877 int pos = 0;
1878
1879 /* Copy header. */
1880 if (copy > 0) {
1881 if (copy > len)
1882 copy = len;
1883 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1884 copy, csum);
1885 if ((len -= copy) == 0)
1886 return csum;
1887 offset += copy;
1888 to += copy;
1889 pos = copy;
1890 }
1891
1892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1893 int end;
1894
1895 WARN_ON(start > offset + len);
1896
1897 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1898 if ((copy = end - offset) > 0) {
1899 __wsum csum2;
1900 u8 *vaddr;
1901 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1902
1903 if (copy > len)
1904 copy = len;
1905 vaddr = kmap_skb_frag(frag);
1906 csum2 = csum_partial_copy_nocheck(vaddr +
1907 frag->page_offset +
1908 offset - start, to,
1909 copy, 0);
1910 kunmap_skb_frag(vaddr);
1911 csum = csum_block_add(csum, csum2, pos);
1912 if (!(len -= copy))
1913 return csum;
1914 offset += copy;
1915 to += copy;
1916 pos += copy;
1917 }
1918 start = end;
1919 }
1920
1921 skb_walk_frags(skb, frag_iter) {
1922 __wsum csum2;
1923 int end;
1924
1925 WARN_ON(start > offset + len);
1926
1927 end = start + frag_iter->len;
1928 if ((copy = end - offset) > 0) {
1929 if (copy > len)
1930 copy = len;
1931 csum2 = skb_copy_and_csum_bits(frag_iter,
1932 offset - start,
1933 to, copy, 0);
1934 csum = csum_block_add(csum, csum2, pos);
1935 if ((len -= copy) == 0)
1936 return csum;
1937 offset += copy;
1938 to += copy;
1939 pos += copy;
1940 }
1941 start = end;
1942 }
1943 BUG_ON(len);
1944 return csum;
1945 }
1946 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1947
1948 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1949 {
1950 __wsum csum;
1951 long csstart;
1952
1953 if (skb->ip_summed == CHECKSUM_PARTIAL)
1954 csstart = skb_checksum_start_offset(skb);
1955 else
1956 csstart = skb_headlen(skb);
1957
1958 BUG_ON(csstart > skb_headlen(skb));
1959
1960 skb_copy_from_linear_data(skb, to, csstart);
1961
1962 csum = 0;
1963 if (csstart != skb->len)
1964 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1965 skb->len - csstart, 0);
1966
1967 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1968 long csstuff = csstart + skb->csum_offset;
1969
1970 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1971 }
1972 }
1973 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1974
1975 /**
1976 * skb_dequeue - remove from the head of the queue
1977 * @list: list to dequeue from
1978 *
1979 * Remove the head of the list. The list lock is taken so the function
1980 * may be used safely with other locking list functions. The head item is
1981 * returned or %NULL if the list is empty.
1982 */
1983
1984 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1985 {
1986 unsigned long flags;
1987 struct sk_buff *result;
1988
1989 spin_lock_irqsave(&list->lock, flags);
1990 result = __skb_dequeue(list);
1991 spin_unlock_irqrestore(&list->lock, flags);
1992 return result;
1993 }
1994 EXPORT_SYMBOL(skb_dequeue);
1995
1996 /**
1997 * skb_dequeue_tail - remove from the tail of the queue
1998 * @list: list to dequeue from
1999 *
2000 * Remove the tail of the list. The list lock is taken so the function
2001 * may be used safely with other locking list functions. The tail item is
2002 * returned or %NULL if the list is empty.
2003 */
2004 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2005 {
2006 unsigned long flags;
2007 struct sk_buff *result;
2008
2009 spin_lock_irqsave(&list->lock, flags);
2010 result = __skb_dequeue_tail(list);
2011 spin_unlock_irqrestore(&list->lock, flags);
2012 return result;
2013 }
2014 EXPORT_SYMBOL(skb_dequeue_tail);
2015
2016 /**
2017 * skb_queue_purge - empty a list
2018 * @list: list to empty
2019 *
2020 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2021 * the list and one reference dropped. This function takes the list
2022 * lock and is atomic with respect to other list locking functions.
2023 */
2024 void skb_queue_purge(struct sk_buff_head *list)
2025 {
2026 struct sk_buff *skb;
2027 while ((skb = skb_dequeue(list)) != NULL)
2028 kfree_skb(skb);
2029 }
2030 EXPORT_SYMBOL(skb_queue_purge);
2031
2032 /**
2033 * skb_queue_head - queue a buffer at the list head
2034 * @list: list to use
2035 * @newsk: buffer to queue
2036 *
2037 * Queue a buffer at the start of the list. This function takes the
2038 * list lock and can be used safely with other locking &sk_buff functions
2039 * safely.
2040 *
2041 * A buffer cannot be placed on two lists at the same time.
2042 */
2043 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2044 {
2045 unsigned long flags;
2046
2047 spin_lock_irqsave(&list->lock, flags);
2048 __skb_queue_head(list, newsk);
2049 spin_unlock_irqrestore(&list->lock, flags);
2050 }
2051 EXPORT_SYMBOL(skb_queue_head);
2052
2053 /**
2054 * skb_queue_tail - queue a buffer at the list tail
2055 * @list: list to use
2056 * @newsk: buffer to queue
2057 *
2058 * Queue a buffer at the tail of the list. This function takes the
2059 * list lock and can be used safely with other locking &sk_buff functions
2060 * safely.
2061 *
2062 * A buffer cannot be placed on two lists at the same time.
2063 */
2064 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2065 {
2066 unsigned long flags;
2067
2068 spin_lock_irqsave(&list->lock, flags);
2069 __skb_queue_tail(list, newsk);
2070 spin_unlock_irqrestore(&list->lock, flags);
2071 }
2072 EXPORT_SYMBOL(skb_queue_tail);
2073
2074 /**
2075 * skb_unlink - remove a buffer from a list
2076 * @skb: buffer to remove
2077 * @list: list to use
2078 *
2079 * Remove a packet from a list. The list locks are taken and this
2080 * function is atomic with respect to other list locked calls
2081 *
2082 * You must know what list the SKB is on.
2083 */
2084 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2085 {
2086 unsigned long flags;
2087
2088 spin_lock_irqsave(&list->lock, flags);
2089 __skb_unlink(skb, list);
2090 spin_unlock_irqrestore(&list->lock, flags);
2091 }
2092 EXPORT_SYMBOL(skb_unlink);
2093
2094 /**
2095 * skb_append - append a buffer
2096 * @old: buffer to insert after
2097 * @newsk: buffer to insert
2098 * @list: list to use
2099 *
2100 * Place a packet after a given packet in a list. The list locks are taken
2101 * and this function is atomic with respect to other list locked calls.
2102 * A buffer cannot be placed on two lists at the same time.
2103 */
2104 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2105 {
2106 unsigned long flags;
2107
2108 spin_lock_irqsave(&list->lock, flags);
2109 __skb_queue_after(list, old, newsk);
2110 spin_unlock_irqrestore(&list->lock, flags);
2111 }
2112 EXPORT_SYMBOL(skb_append);
2113
2114 /**
2115 * skb_insert - insert a buffer
2116 * @old: buffer to insert before
2117 * @newsk: buffer to insert
2118 * @list: list to use
2119 *
2120 * Place a packet before a given packet in a list. The list locks are
2121 * taken and this function is atomic with respect to other list locked
2122 * calls.
2123 *
2124 * A buffer cannot be placed on two lists at the same time.
2125 */
2126 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2127 {
2128 unsigned long flags;
2129
2130 spin_lock_irqsave(&list->lock, flags);
2131 __skb_insert(newsk, old->prev, old, list);
2132 spin_unlock_irqrestore(&list->lock, flags);
2133 }
2134 EXPORT_SYMBOL(skb_insert);
2135
2136 static inline void skb_split_inside_header(struct sk_buff *skb,
2137 struct sk_buff* skb1,
2138 const u32 len, const int pos)
2139 {
2140 int i;
2141
2142 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2143 pos - len);
2144 /* And move data appendix as is. */
2145 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2146 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2147
2148 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2149 skb_shinfo(skb)->nr_frags = 0;
2150 skb1->data_len = skb->data_len;
2151 skb1->len += skb1->data_len;
2152 skb->data_len = 0;
2153 skb->len = len;
2154 skb_set_tail_pointer(skb, len);
2155 }
2156
2157 static inline void skb_split_no_header(struct sk_buff *skb,
2158 struct sk_buff* skb1,
2159 const u32 len, int pos)
2160 {
2161 int i, k = 0;
2162 const int nfrags = skb_shinfo(skb)->nr_frags;
2163
2164 skb_shinfo(skb)->nr_frags = 0;
2165 skb1->len = skb1->data_len = skb->len - len;
2166 skb->len = len;
2167 skb->data_len = len - pos;
2168
2169 for (i = 0; i < nfrags; i++) {
2170 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2171
2172 if (pos + size > len) {
2173 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2174
2175 if (pos < len) {
2176 /* Split frag.
2177 * We have two variants in this case:
2178 * 1. Move all the frag to the second
2179 * part, if it is possible. F.e.
2180 * this approach is mandatory for TUX,
2181 * where splitting is expensive.
2182 * 2. Split is accurately. We make this.
2183 */
2184 skb_frag_ref(skb, i);
2185 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2186 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2187 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2188 skb_shinfo(skb)->nr_frags++;
2189 }
2190 k++;
2191 } else
2192 skb_shinfo(skb)->nr_frags++;
2193 pos += size;
2194 }
2195 skb_shinfo(skb1)->nr_frags = k;
2196 }
2197
2198 /**
2199 * skb_split - Split fragmented skb to two parts at length len.
2200 * @skb: the buffer to split
2201 * @skb1: the buffer to receive the second part
2202 * @len: new length for skb
2203 */
2204 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2205 {
2206 int pos = skb_headlen(skb);
2207
2208 if (len < pos) /* Split line is inside header. */
2209 skb_split_inside_header(skb, skb1, len, pos);
2210 else /* Second chunk has no header, nothing to copy. */
2211 skb_split_no_header(skb, skb1, len, pos);
2212 }
2213 EXPORT_SYMBOL(skb_split);
2214
2215 /* Shifting from/to a cloned skb is a no-go.
2216 *
2217 * Caller cannot keep skb_shinfo related pointers past calling here!
2218 */
2219 static int skb_prepare_for_shift(struct sk_buff *skb)
2220 {
2221 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2222 }
2223
2224 /**
2225 * skb_shift - Shifts paged data partially from skb to another
2226 * @tgt: buffer into which tail data gets added
2227 * @skb: buffer from which the paged data comes from
2228 * @shiftlen: shift up to this many bytes
2229 *
2230 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2231 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2232 * It's up to caller to free skb if everything was shifted.
2233 *
2234 * If @tgt runs out of frags, the whole operation is aborted.
2235 *
2236 * Skb cannot include anything else but paged data while tgt is allowed
2237 * to have non-paged data as well.
2238 *
2239 * TODO: full sized shift could be optimized but that would need
2240 * specialized skb free'er to handle frags without up-to-date nr_frags.
2241 */
2242 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2243 {
2244 int from, to, merge, todo;
2245 struct skb_frag_struct *fragfrom, *fragto;
2246
2247 BUG_ON(shiftlen > skb->len);
2248 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2249
2250 todo = shiftlen;
2251 from = 0;
2252 to = skb_shinfo(tgt)->nr_frags;
2253 fragfrom = &skb_shinfo(skb)->frags[from];
2254
2255 /* Actual merge is delayed until the point when we know we can
2256 * commit all, so that we don't have to undo partial changes
2257 */
2258 if (!to ||
2259 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2260 fragfrom->page_offset)) {
2261 merge = -1;
2262 } else {
2263 merge = to - 1;
2264
2265 todo -= skb_frag_size(fragfrom);
2266 if (todo < 0) {
2267 if (skb_prepare_for_shift(skb) ||
2268 skb_prepare_for_shift(tgt))
2269 return 0;
2270
2271 /* All previous frag pointers might be stale! */
2272 fragfrom = &skb_shinfo(skb)->frags[from];
2273 fragto = &skb_shinfo(tgt)->frags[merge];
2274
2275 skb_frag_size_add(fragto, shiftlen);
2276 skb_frag_size_sub(fragfrom, shiftlen);
2277 fragfrom->page_offset += shiftlen;
2278
2279 goto onlymerged;
2280 }
2281
2282 from++;
2283 }
2284
2285 /* Skip full, not-fitting skb to avoid expensive operations */
2286 if ((shiftlen == skb->len) &&
2287 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2288 return 0;
2289
2290 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2291 return 0;
2292
2293 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2294 if (to == MAX_SKB_FRAGS)
2295 return 0;
2296
2297 fragfrom = &skb_shinfo(skb)->frags[from];
2298 fragto = &skb_shinfo(tgt)->frags[to];
2299
2300 if (todo >= skb_frag_size(fragfrom)) {
2301 *fragto = *fragfrom;
2302 todo -= skb_frag_size(fragfrom);
2303 from++;
2304 to++;
2305
2306 } else {
2307 __skb_frag_ref(fragfrom);
2308 fragto->page = fragfrom->page;
2309 fragto->page_offset = fragfrom->page_offset;
2310 skb_frag_size_set(fragto, todo);
2311
2312 fragfrom->page_offset += todo;
2313 skb_frag_size_sub(fragfrom, todo);
2314 todo = 0;
2315
2316 to++;
2317 break;
2318 }
2319 }
2320
2321 /* Ready to "commit" this state change to tgt */
2322 skb_shinfo(tgt)->nr_frags = to;
2323
2324 if (merge >= 0) {
2325 fragfrom = &skb_shinfo(skb)->frags[0];
2326 fragto = &skb_shinfo(tgt)->frags[merge];
2327
2328 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2329 __skb_frag_unref(fragfrom);
2330 }
2331
2332 /* Reposition in the original skb */
2333 to = 0;
2334 while (from < skb_shinfo(skb)->nr_frags)
2335 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2336 skb_shinfo(skb)->nr_frags = to;
2337
2338 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2339
2340 onlymerged:
2341 /* Most likely the tgt won't ever need its checksum anymore, skb on
2342 * the other hand might need it if it needs to be resent
2343 */
2344 tgt->ip_summed = CHECKSUM_PARTIAL;
2345 skb->ip_summed = CHECKSUM_PARTIAL;
2346
2347 /* Yak, is it really working this way? Some helper please? */
2348 skb->len -= shiftlen;
2349 skb->data_len -= shiftlen;
2350 skb->truesize -= shiftlen;
2351 tgt->len += shiftlen;
2352 tgt->data_len += shiftlen;
2353 tgt->truesize += shiftlen;
2354
2355 return shiftlen;
2356 }
2357
2358 /**
2359 * skb_prepare_seq_read - Prepare a sequential read of skb data
2360 * @skb: the buffer to read
2361 * @from: lower offset of data to be read
2362 * @to: upper offset of data to be read
2363 * @st: state variable
2364 *
2365 * Initializes the specified state variable. Must be called before
2366 * invoking skb_seq_read() for the first time.
2367 */
2368 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2369 unsigned int to, struct skb_seq_state *st)
2370 {
2371 st->lower_offset = from;
2372 st->upper_offset = to;
2373 st->root_skb = st->cur_skb = skb;
2374 st->frag_idx = st->stepped_offset = 0;
2375 st->frag_data = NULL;
2376 }
2377 EXPORT_SYMBOL(skb_prepare_seq_read);
2378
2379 /**
2380 * skb_seq_read - Sequentially read skb data
2381 * @consumed: number of bytes consumed by the caller so far
2382 * @data: destination pointer for data to be returned
2383 * @st: state variable
2384 *
2385 * Reads a block of skb data at &consumed relative to the
2386 * lower offset specified to skb_prepare_seq_read(). Assigns
2387 * the head of the data block to &data and returns the length
2388 * of the block or 0 if the end of the skb data or the upper
2389 * offset has been reached.
2390 *
2391 * The caller is not required to consume all of the data
2392 * returned, i.e. &consumed is typically set to the number
2393 * of bytes already consumed and the next call to
2394 * skb_seq_read() will return the remaining part of the block.
2395 *
2396 * Note 1: The size of each block of data returned can be arbitrary,
2397 * this limitation is the cost for zerocopy seqeuental
2398 * reads of potentially non linear data.
2399 *
2400 * Note 2: Fragment lists within fragments are not implemented
2401 * at the moment, state->root_skb could be replaced with
2402 * a stack for this purpose.
2403 */
2404 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2405 struct skb_seq_state *st)
2406 {
2407 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2408 skb_frag_t *frag;
2409
2410 if (unlikely(abs_offset >= st->upper_offset))
2411 return 0;
2412
2413 next_skb:
2414 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2415
2416 if (abs_offset < block_limit && !st->frag_data) {
2417 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2418 return block_limit - abs_offset;
2419 }
2420
2421 if (st->frag_idx == 0 && !st->frag_data)
2422 st->stepped_offset += skb_headlen(st->cur_skb);
2423
2424 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2425 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2426 block_limit = skb_frag_size(frag) + st->stepped_offset;
2427
2428 if (abs_offset < block_limit) {
2429 if (!st->frag_data)
2430 st->frag_data = kmap_skb_frag(frag);
2431
2432 *data = (u8 *) st->frag_data + frag->page_offset +
2433 (abs_offset - st->stepped_offset);
2434
2435 return block_limit - abs_offset;
2436 }
2437
2438 if (st->frag_data) {
2439 kunmap_skb_frag(st->frag_data);
2440 st->frag_data = NULL;
2441 }
2442
2443 st->frag_idx++;
2444 st->stepped_offset += skb_frag_size(frag);
2445 }
2446
2447 if (st->frag_data) {
2448 kunmap_skb_frag(st->frag_data);
2449 st->frag_data = NULL;
2450 }
2451
2452 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2453 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2454 st->frag_idx = 0;
2455 goto next_skb;
2456 } else if (st->cur_skb->next) {
2457 st->cur_skb = st->cur_skb->next;
2458 st->frag_idx = 0;
2459 goto next_skb;
2460 }
2461
2462 return 0;
2463 }
2464 EXPORT_SYMBOL(skb_seq_read);
2465
2466 /**
2467 * skb_abort_seq_read - Abort a sequential read of skb data
2468 * @st: state variable
2469 *
2470 * Must be called if skb_seq_read() was not called until it
2471 * returned 0.
2472 */
2473 void skb_abort_seq_read(struct skb_seq_state *st)
2474 {
2475 if (st->frag_data)
2476 kunmap_skb_frag(st->frag_data);
2477 }
2478 EXPORT_SYMBOL(skb_abort_seq_read);
2479
2480 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2481
2482 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2483 struct ts_config *conf,
2484 struct ts_state *state)
2485 {
2486 return skb_seq_read(offset, text, TS_SKB_CB(state));
2487 }
2488
2489 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2490 {
2491 skb_abort_seq_read(TS_SKB_CB(state));
2492 }
2493
2494 /**
2495 * skb_find_text - Find a text pattern in skb data
2496 * @skb: the buffer to look in
2497 * @from: search offset
2498 * @to: search limit
2499 * @config: textsearch configuration
2500 * @state: uninitialized textsearch state variable
2501 *
2502 * Finds a pattern in the skb data according to the specified
2503 * textsearch configuration. Use textsearch_next() to retrieve
2504 * subsequent occurrences of the pattern. Returns the offset
2505 * to the first occurrence or UINT_MAX if no match was found.
2506 */
2507 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2508 unsigned int to, struct ts_config *config,
2509 struct ts_state *state)
2510 {
2511 unsigned int ret;
2512
2513 config->get_next_block = skb_ts_get_next_block;
2514 config->finish = skb_ts_finish;
2515
2516 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2517
2518 ret = textsearch_find(config, state);
2519 return (ret <= to - from ? ret : UINT_MAX);
2520 }
2521 EXPORT_SYMBOL(skb_find_text);
2522
2523 /**
2524 * skb_append_datato_frags: - append the user data to a skb
2525 * @sk: sock structure
2526 * @skb: skb structure to be appened with user data.
2527 * @getfrag: call back function to be used for getting the user data
2528 * @from: pointer to user message iov
2529 * @length: length of the iov message
2530 *
2531 * Description: This procedure append the user data in the fragment part
2532 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2533 */
2534 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2535 int (*getfrag)(void *from, char *to, int offset,
2536 int len, int odd, struct sk_buff *skb),
2537 void *from, int length)
2538 {
2539 int frg_cnt = 0;
2540 skb_frag_t *frag = NULL;
2541 struct page *page = NULL;
2542 int copy, left;
2543 int offset = 0;
2544 int ret;
2545
2546 do {
2547 /* Return error if we don't have space for new frag */
2548 frg_cnt = skb_shinfo(skb)->nr_frags;
2549 if (frg_cnt >= MAX_SKB_FRAGS)
2550 return -EFAULT;
2551
2552 /* allocate a new page for next frag */
2553 page = alloc_pages(sk->sk_allocation, 0);
2554
2555 /* If alloc_page fails just return failure and caller will
2556 * free previous allocated pages by doing kfree_skb()
2557 */
2558 if (page == NULL)
2559 return -ENOMEM;
2560
2561 /* initialize the next frag */
2562 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2563 skb->truesize += PAGE_SIZE;
2564 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2565
2566 /* get the new initialized frag */
2567 frg_cnt = skb_shinfo(skb)->nr_frags;
2568 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2569
2570 /* copy the user data to page */
2571 left = PAGE_SIZE - frag->page_offset;
2572 copy = (length > left)? left : length;
2573
2574 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2575 offset, copy, 0, skb);
2576 if (ret < 0)
2577 return -EFAULT;
2578
2579 /* copy was successful so update the size parameters */
2580 skb_frag_size_add(frag, copy);
2581 skb->len += copy;
2582 skb->data_len += copy;
2583 offset += copy;
2584 length -= copy;
2585
2586 } while (length > 0);
2587
2588 return 0;
2589 }
2590 EXPORT_SYMBOL(skb_append_datato_frags);
2591
2592 /**
2593 * skb_pull_rcsum - pull skb and update receive checksum
2594 * @skb: buffer to update
2595 * @len: length of data pulled
2596 *
2597 * This function performs an skb_pull on the packet and updates
2598 * the CHECKSUM_COMPLETE checksum. It should be used on
2599 * receive path processing instead of skb_pull unless you know
2600 * that the checksum difference is zero (e.g., a valid IP header)
2601 * or you are setting ip_summed to CHECKSUM_NONE.
2602 */
2603 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2604 {
2605 BUG_ON(len > skb->len);
2606 skb->len -= len;
2607 BUG_ON(skb->len < skb->data_len);
2608 skb_postpull_rcsum(skb, skb->data, len);
2609 return skb->data += len;
2610 }
2611 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2612
2613 /**
2614 * skb_segment - Perform protocol segmentation on skb.
2615 * @skb: buffer to segment
2616 * @features: features for the output path (see dev->features)
2617 *
2618 * This function performs segmentation on the given skb. It returns
2619 * a pointer to the first in a list of new skbs for the segments.
2620 * In case of error it returns ERR_PTR(err).
2621 */
2622 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2623 {
2624 struct sk_buff *segs = NULL;
2625 struct sk_buff *tail = NULL;
2626 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2627 unsigned int mss = skb_shinfo(skb)->gso_size;
2628 unsigned int doffset = skb->data - skb_mac_header(skb);
2629 unsigned int offset = doffset;
2630 unsigned int headroom;
2631 unsigned int len;
2632 int sg = !!(features & NETIF_F_SG);
2633 int nfrags = skb_shinfo(skb)->nr_frags;
2634 int err = -ENOMEM;
2635 int i = 0;
2636 int pos;
2637
2638 __skb_push(skb, doffset);
2639 headroom = skb_headroom(skb);
2640 pos = skb_headlen(skb);
2641
2642 do {
2643 struct sk_buff *nskb;
2644 skb_frag_t *frag;
2645 int hsize;
2646 int size;
2647
2648 len = skb->len - offset;
2649 if (len > mss)
2650 len = mss;
2651
2652 hsize = skb_headlen(skb) - offset;
2653 if (hsize < 0)
2654 hsize = 0;
2655 if (hsize > len || !sg)
2656 hsize = len;
2657
2658 if (!hsize && i >= nfrags) {
2659 BUG_ON(fskb->len != len);
2660
2661 pos += len;
2662 nskb = skb_clone(fskb, GFP_ATOMIC);
2663 fskb = fskb->next;
2664
2665 if (unlikely(!nskb))
2666 goto err;
2667
2668 hsize = skb_end_pointer(nskb) - nskb->head;
2669 if (skb_cow_head(nskb, doffset + headroom)) {
2670 kfree_skb(nskb);
2671 goto err;
2672 }
2673
2674 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2675 hsize;
2676 skb_release_head_state(nskb);
2677 __skb_push(nskb, doffset);
2678 } else {
2679 nskb = alloc_skb(hsize + doffset + headroom,
2680 GFP_ATOMIC);
2681
2682 if (unlikely(!nskb))
2683 goto err;
2684
2685 skb_reserve(nskb, headroom);
2686 __skb_put(nskb, doffset);
2687 }
2688
2689 if (segs)
2690 tail->next = nskb;
2691 else
2692 segs = nskb;
2693 tail = nskb;
2694
2695 __copy_skb_header(nskb, skb);
2696 nskb->mac_len = skb->mac_len;
2697
2698 /* nskb and skb might have different headroom */
2699 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2700 nskb->csum_start += skb_headroom(nskb) - headroom;
2701
2702 skb_reset_mac_header(nskb);
2703 skb_set_network_header(nskb, skb->mac_len);
2704 nskb->transport_header = (nskb->network_header +
2705 skb_network_header_len(skb));
2706 skb_copy_from_linear_data(skb, nskb->data, doffset);
2707
2708 if (fskb != skb_shinfo(skb)->frag_list)
2709 continue;
2710
2711 if (!sg) {
2712 nskb->ip_summed = CHECKSUM_NONE;
2713 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2714 skb_put(nskb, len),
2715 len, 0);
2716 continue;
2717 }
2718
2719 frag = skb_shinfo(nskb)->frags;
2720
2721 skb_copy_from_linear_data_offset(skb, offset,
2722 skb_put(nskb, hsize), hsize);
2723
2724 while (pos < offset + len && i < nfrags) {
2725 *frag = skb_shinfo(skb)->frags[i];
2726 __skb_frag_ref(frag);
2727 size = skb_frag_size(frag);
2728
2729 if (pos < offset) {
2730 frag->page_offset += offset - pos;
2731 skb_frag_size_sub(frag, offset - pos);
2732 }
2733
2734 skb_shinfo(nskb)->nr_frags++;
2735
2736 if (pos + size <= offset + len) {
2737 i++;
2738 pos += size;
2739 } else {
2740 skb_frag_size_sub(frag, pos + size - (offset + len));
2741 goto skip_fraglist;
2742 }
2743
2744 frag++;
2745 }
2746
2747 if (pos < offset + len) {
2748 struct sk_buff *fskb2 = fskb;
2749
2750 BUG_ON(pos + fskb->len != offset + len);
2751
2752 pos += fskb->len;
2753 fskb = fskb->next;
2754
2755 if (fskb2->next) {
2756 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2757 if (!fskb2)
2758 goto err;
2759 } else
2760 skb_get(fskb2);
2761
2762 SKB_FRAG_ASSERT(nskb);
2763 skb_shinfo(nskb)->frag_list = fskb2;
2764 }
2765
2766 skip_fraglist:
2767 nskb->data_len = len - hsize;
2768 nskb->len += nskb->data_len;
2769 nskb->truesize += nskb->data_len;
2770 } while ((offset += len) < skb->len);
2771
2772 return segs;
2773
2774 err:
2775 while ((skb = segs)) {
2776 segs = skb->next;
2777 kfree_skb(skb);
2778 }
2779 return ERR_PTR(err);
2780 }
2781 EXPORT_SYMBOL_GPL(skb_segment);
2782
2783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2784 {
2785 struct sk_buff *p = *head;
2786 struct sk_buff *nskb;
2787 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2788 struct skb_shared_info *pinfo = skb_shinfo(p);
2789 unsigned int headroom;
2790 unsigned int len = skb_gro_len(skb);
2791 unsigned int offset = skb_gro_offset(skb);
2792 unsigned int headlen = skb_headlen(skb);
2793
2794 if (p->len + len >= 65536)
2795 return -E2BIG;
2796
2797 if (pinfo->frag_list)
2798 goto merge;
2799 else if (headlen <= offset) {
2800 skb_frag_t *frag;
2801 skb_frag_t *frag2;
2802 int i = skbinfo->nr_frags;
2803 int nr_frags = pinfo->nr_frags + i;
2804
2805 offset -= headlen;
2806
2807 if (nr_frags > MAX_SKB_FRAGS)
2808 return -E2BIG;
2809
2810 pinfo->nr_frags = nr_frags;
2811 skbinfo->nr_frags = 0;
2812
2813 frag = pinfo->frags + nr_frags;
2814 frag2 = skbinfo->frags + i;
2815 do {
2816 *--frag = *--frag2;
2817 } while (--i);
2818
2819 frag->page_offset += offset;
2820 skb_frag_size_sub(frag, offset);
2821
2822 skb->truesize -= skb->data_len;
2823 skb->len -= skb->data_len;
2824 skb->data_len = 0;
2825
2826 NAPI_GRO_CB(skb)->free = 1;
2827 goto done;
2828 } else if (skb_gro_len(p) != pinfo->gso_size)
2829 return -E2BIG;
2830
2831 headroom = skb_headroom(p);
2832 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2833 if (unlikely(!nskb))
2834 return -ENOMEM;
2835
2836 __copy_skb_header(nskb, p);
2837 nskb->mac_len = p->mac_len;
2838
2839 skb_reserve(nskb, headroom);
2840 __skb_put(nskb, skb_gro_offset(p));
2841
2842 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2843 skb_set_network_header(nskb, skb_network_offset(p));
2844 skb_set_transport_header(nskb, skb_transport_offset(p));
2845
2846 __skb_pull(p, skb_gro_offset(p));
2847 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2848 p->data - skb_mac_header(p));
2849
2850 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2851 skb_shinfo(nskb)->frag_list = p;
2852 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2853 pinfo->gso_size = 0;
2854 skb_header_release(p);
2855 nskb->prev = p;
2856
2857 nskb->data_len += p->len;
2858 nskb->truesize += p->len;
2859 nskb->len += p->len;
2860
2861 *head = nskb;
2862 nskb->next = p->next;
2863 p->next = NULL;
2864
2865 p = nskb;
2866
2867 merge:
2868 if (offset > headlen) {
2869 unsigned int eat = offset - headlen;
2870
2871 skbinfo->frags[0].page_offset += eat;
2872 skb_frag_size_sub(&skbinfo->frags[0], eat);
2873 skb->data_len -= eat;
2874 skb->len -= eat;
2875 offset = headlen;
2876 }
2877
2878 __skb_pull(skb, offset);
2879
2880 p->prev->next = skb;
2881 p->prev = skb;
2882 skb_header_release(skb);
2883
2884 done:
2885 NAPI_GRO_CB(p)->count++;
2886 p->data_len += len;
2887 p->truesize += len;
2888 p->len += len;
2889
2890 NAPI_GRO_CB(skb)->same_flow = 1;
2891 return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(skb_gro_receive);
2894
2895 void __init skb_init(void)
2896 {
2897 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2898 sizeof(struct sk_buff),
2899 0,
2900 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2901 NULL);
2902 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2903 (2*sizeof(struct sk_buff)) +
2904 sizeof(atomic_t),
2905 0,
2906 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2907 NULL);
2908 }
2909
2910 /**
2911 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2912 * @skb: Socket buffer containing the buffers to be mapped
2913 * @sg: The scatter-gather list to map into
2914 * @offset: The offset into the buffer's contents to start mapping
2915 * @len: Length of buffer space to be mapped
2916 *
2917 * Fill the specified scatter-gather list with mappings/pointers into a
2918 * region of the buffer space attached to a socket buffer.
2919 */
2920 static int
2921 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2922 {
2923 int start = skb_headlen(skb);
2924 int i, copy = start - offset;
2925 struct sk_buff *frag_iter;
2926 int elt = 0;
2927
2928 if (copy > 0) {
2929 if (copy > len)
2930 copy = len;
2931 sg_set_buf(sg, skb->data + offset, copy);
2932 elt++;
2933 if ((len -= copy) == 0)
2934 return elt;
2935 offset += copy;
2936 }
2937
2938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2939 int end;
2940
2941 WARN_ON(start > offset + len);
2942
2943 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2944 if ((copy = end - offset) > 0) {
2945 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2946
2947 if (copy > len)
2948 copy = len;
2949 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
2950 frag->page_offset+offset-start);
2951 elt++;
2952 if (!(len -= copy))
2953 return elt;
2954 offset += copy;
2955 }
2956 start = end;
2957 }
2958
2959 skb_walk_frags(skb, frag_iter) {
2960 int end;
2961
2962 WARN_ON(start > offset + len);
2963
2964 end = start + frag_iter->len;
2965 if ((copy = end - offset) > 0) {
2966 if (copy > len)
2967 copy = len;
2968 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2969 copy);
2970 if ((len -= copy) == 0)
2971 return elt;
2972 offset += copy;
2973 }
2974 start = end;
2975 }
2976 BUG_ON(len);
2977 return elt;
2978 }
2979
2980 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2981 {
2982 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2983
2984 sg_mark_end(&sg[nsg - 1]);
2985
2986 return nsg;
2987 }
2988 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2989
2990 /**
2991 * skb_cow_data - Check that a socket buffer's data buffers are writable
2992 * @skb: The socket buffer to check.
2993 * @tailbits: Amount of trailing space to be added
2994 * @trailer: Returned pointer to the skb where the @tailbits space begins
2995 *
2996 * Make sure that the data buffers attached to a socket buffer are
2997 * writable. If they are not, private copies are made of the data buffers
2998 * and the socket buffer is set to use these instead.
2999 *
3000 * If @tailbits is given, make sure that there is space to write @tailbits
3001 * bytes of data beyond current end of socket buffer. @trailer will be
3002 * set to point to the skb in which this space begins.
3003 *
3004 * The number of scatterlist elements required to completely map the
3005 * COW'd and extended socket buffer will be returned.
3006 */
3007 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3008 {
3009 int copyflag;
3010 int elt;
3011 struct sk_buff *skb1, **skb_p;
3012
3013 /* If skb is cloned or its head is paged, reallocate
3014 * head pulling out all the pages (pages are considered not writable
3015 * at the moment even if they are anonymous).
3016 */
3017 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3018 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3019 return -ENOMEM;
3020
3021 /* Easy case. Most of packets will go this way. */
3022 if (!skb_has_frag_list(skb)) {
3023 /* A little of trouble, not enough of space for trailer.
3024 * This should not happen, when stack is tuned to generate
3025 * good frames. OK, on miss we reallocate and reserve even more
3026 * space, 128 bytes is fair. */
3027
3028 if (skb_tailroom(skb) < tailbits &&
3029 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3030 return -ENOMEM;
3031
3032 /* Voila! */
3033 *trailer = skb;
3034 return 1;
3035 }
3036
3037 /* Misery. We are in troubles, going to mincer fragments... */
3038
3039 elt = 1;
3040 skb_p = &skb_shinfo(skb)->frag_list;
3041 copyflag = 0;
3042
3043 while ((skb1 = *skb_p) != NULL) {
3044 int ntail = 0;
3045
3046 /* The fragment is partially pulled by someone,
3047 * this can happen on input. Copy it and everything
3048 * after it. */
3049
3050 if (skb_shared(skb1))
3051 copyflag = 1;
3052
3053 /* If the skb is the last, worry about trailer. */
3054
3055 if (skb1->next == NULL && tailbits) {
3056 if (skb_shinfo(skb1)->nr_frags ||
3057 skb_has_frag_list(skb1) ||
3058 skb_tailroom(skb1) < tailbits)
3059 ntail = tailbits + 128;
3060 }
3061
3062 if (copyflag ||
3063 skb_cloned(skb1) ||
3064 ntail ||
3065 skb_shinfo(skb1)->nr_frags ||
3066 skb_has_frag_list(skb1)) {
3067 struct sk_buff *skb2;
3068
3069 /* Fuck, we are miserable poor guys... */
3070 if (ntail == 0)
3071 skb2 = skb_copy(skb1, GFP_ATOMIC);
3072 else
3073 skb2 = skb_copy_expand(skb1,
3074 skb_headroom(skb1),
3075 ntail,
3076 GFP_ATOMIC);
3077 if (unlikely(skb2 == NULL))
3078 return -ENOMEM;
3079
3080 if (skb1->sk)
3081 skb_set_owner_w(skb2, skb1->sk);
3082
3083 /* Looking around. Are we still alive?
3084 * OK, link new skb, drop old one */
3085
3086 skb2->next = skb1->next;
3087 *skb_p = skb2;
3088 kfree_skb(skb1);
3089 skb1 = skb2;
3090 }
3091 elt++;
3092 *trailer = skb1;
3093 skb_p = &skb1->next;
3094 }
3095
3096 return elt;
3097 }
3098 EXPORT_SYMBOL_GPL(skb_cow_data);
3099
3100 static void sock_rmem_free(struct sk_buff *skb)
3101 {
3102 struct sock *sk = skb->sk;
3103
3104 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3105 }
3106
3107 /*
3108 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3109 */
3110 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3111 {
3112 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3113 (unsigned)sk->sk_rcvbuf)
3114 return -ENOMEM;
3115
3116 skb_orphan(skb);
3117 skb->sk = sk;
3118 skb->destructor = sock_rmem_free;
3119 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3120
3121 /* before exiting rcu section, make sure dst is refcounted */
3122 skb_dst_force(skb);
3123
3124 skb_queue_tail(&sk->sk_error_queue, skb);
3125 if (!sock_flag(sk, SOCK_DEAD))
3126 sk->sk_data_ready(sk, skb->len);
3127 return 0;
3128 }
3129 EXPORT_SYMBOL(sock_queue_err_skb);
3130
3131 void skb_tstamp_tx(struct sk_buff *orig_skb,
3132 struct skb_shared_hwtstamps *hwtstamps)
3133 {
3134 struct sock *sk = orig_skb->sk;
3135 struct sock_exterr_skb *serr;
3136 struct sk_buff *skb;
3137 int err;
3138
3139 if (!sk)
3140 return;
3141
3142 skb = skb_clone(orig_skb, GFP_ATOMIC);
3143 if (!skb)
3144 return;
3145
3146 if (hwtstamps) {
3147 *skb_hwtstamps(skb) =
3148 *hwtstamps;
3149 } else {
3150 /*
3151 * no hardware time stamps available,
3152 * so keep the shared tx_flags and only
3153 * store software time stamp
3154 */
3155 skb->tstamp = ktime_get_real();
3156 }
3157
3158 serr = SKB_EXT_ERR(skb);
3159 memset(serr, 0, sizeof(*serr));
3160 serr->ee.ee_errno = ENOMSG;
3161 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3162
3163 err = sock_queue_err_skb(sk, skb);
3164
3165 if (err)
3166 kfree_skb(skb);
3167 }
3168 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3169
3170
3171 /**
3172 * skb_partial_csum_set - set up and verify partial csum values for packet
3173 * @skb: the skb to set
3174 * @start: the number of bytes after skb->data to start checksumming.
3175 * @off: the offset from start to place the checksum.
3176 *
3177 * For untrusted partially-checksummed packets, we need to make sure the values
3178 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3179 *
3180 * This function checks and sets those values and skb->ip_summed: if this
3181 * returns false you should drop the packet.
3182 */
3183 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3184 {
3185 if (unlikely(start > skb_headlen(skb)) ||
3186 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3187 if (net_ratelimit())
3188 printk(KERN_WARNING
3189 "bad partial csum: csum=%u/%u len=%u\n",
3190 start, off, skb_headlen(skb));
3191 return false;
3192 }
3193 skb->ip_summed = CHECKSUM_PARTIAL;
3194 skb->csum_start = skb_headroom(skb) + start;
3195 skb->csum_offset = off;
3196 return true;
3197 }
3198 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3199
3200 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3201 {
3202 if (net_ratelimit())
3203 pr_warning("%s: received packets cannot be forwarded"
3204 " while LRO is enabled\n", skb->dev->name);
3205 }
3206 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.136492 seconds and 5 git commands to generate.