skbuff: Move new code into __copy_skb_header
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
59
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <trace/skb.h>
69
70 #include "kmap_skb.h"
71
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
77 {
78 put_page(buf->page);
79 }
80
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83 {
84 get_page(buf->page);
85 }
86
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
89 {
90 return 1;
91 }
92
93
94 /* Pipe buffer operations for a socket. */
95 static struct pipe_buf_operations sock_pipe_buf_ops = {
96 .can_merge = 0,
97 .map = generic_pipe_buf_map,
98 .unmap = generic_pipe_buf_unmap,
99 .confirm = generic_pipe_buf_confirm,
100 .release = sock_pipe_buf_release,
101 .steal = sock_pipe_buf_steal,
102 .get = sock_pipe_buf_get,
103 };
104
105 /*
106 * Keep out-of-line to prevent kernel bloat.
107 * __builtin_return_address is not used because it is not always
108 * reliable.
109 */
110
111 /**
112 * skb_over_panic - private function
113 * @skb: buffer
114 * @sz: size
115 * @here: address
116 *
117 * Out of line support code for skb_put(). Not user callable.
118 */
119 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 "data:%p tail:%#lx end:%#lx dev:%s\n",
123 here, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128 EXPORT_SYMBOL(skb_over_panic);
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
146 BUG();
147 }
148 EXPORT_SYMBOL(skb_under_panic);
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 gfp_mask, node);
189 if (!data)
190 goto nodata;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->truesize = size + sizeof(struct sk_buff);
199 atomic_set(&skb->users, 1);
200 skb->head = data;
201 skb->data = data;
202 skb_reset_tail_pointer(skb);
203 skb->end = skb->tail + size;
204 /* make sure we initialize shinfo sequentially */
205 shinfo = skb_shinfo(skb);
206 atomic_set(&shinfo->dataref, 1);
207 shinfo->nr_frags = 0;
208 shinfo->gso_size = 0;
209 shinfo->gso_segs = 0;
210 shinfo->gso_type = 0;
211 shinfo->ip6_frag_id = 0;
212 shinfo->tx_flags.flags = 0;
213 shinfo->frag_list = NULL;
214 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 skb->fclone = SKB_FCLONE_ORIG;
221 atomic_set(fclone_ref, 1);
222
223 child->fclone = SKB_FCLONE_UNAVAILABLE;
224 }
225 out:
226 return skb;
227 nodata:
228 kmem_cache_free(cache, skb);
229 skb = NULL;
230 goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233
234 /**
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
239 *
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
244 *
245 * %NULL is returned if there is no free memory.
246 */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 unsigned int length, gfp_t gfp_mask)
249 {
250 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
251 struct sk_buff *skb;
252
253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
254 if (likely(skb)) {
255 skb_reserve(skb, NET_SKB_PAD);
256 skb->dev = dev;
257 }
258 return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 struct page *page;
266
267 page = alloc_pages_node(node, gfp_mask, 0);
268 return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 int size)
274 {
275 skb_fill_page_desc(skb, i, page, off, size);
276 skb->len += size;
277 skb->data_len += size;
278 skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281
282 /**
283 * dev_alloc_skb - allocate an skbuff for receiving
284 * @length: length to allocate
285 *
286 * Allocate a new &sk_buff and assign it a usage count of one. The
287 * buffer has unspecified headroom built in. Users should allocate
288 * the headroom they think they need without accounting for the
289 * built in space. The built in space is used for optimisations.
290 *
291 * %NULL is returned if there is no free memory. Although this function
292 * allocates memory it can be called from an interrupt.
293 */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 /*
297 * There is more code here than it seems:
298 * __dev_alloc_skb is an inline
299 */
300 return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 struct sk_buff *list = *listp;
307
308 *listp = NULL;
309
310 do {
311 struct sk_buff *this = list;
312 list = list->next;
313 kfree_skb(this);
314 } while (list);
315 }
316
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 struct sk_buff *list;
325
326 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
327 skb_get(list);
328 }
329
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 if (!skb->cloned ||
333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 &skb_shinfo(skb)->dataref)) {
335 if (skb_shinfo(skb)->nr_frags) {
336 int i;
337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 put_page(skb_shinfo(skb)->frags[i].page);
339 }
340
341 if (skb_shinfo(skb)->frag_list)
342 skb_drop_fraglist(skb);
343
344 kfree(skb->head);
345 }
346 }
347
348 /*
349 * Free an skbuff by memory without cleaning the state.
350 */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 struct sk_buff *other;
354 atomic_t *fclone_ref;
355
356 switch (skb->fclone) {
357 case SKB_FCLONE_UNAVAILABLE:
358 kmem_cache_free(skbuff_head_cache, skb);
359 break;
360
361 case SKB_FCLONE_ORIG:
362 fclone_ref = (atomic_t *) (skb + 2);
363 if (atomic_dec_and_test(fclone_ref))
364 kmem_cache_free(skbuff_fclone_cache, skb);
365 break;
366
367 case SKB_FCLONE_CLONE:
368 fclone_ref = (atomic_t *) (skb + 1);
369 other = skb - 1;
370
371 /* The clone portion is available for
372 * fast-cloning again.
373 */
374 skb->fclone = SKB_FCLONE_UNAVAILABLE;
375
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, other);
378 break;
379 }
380 }
381
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 dst_release(skb->dst);
385 #ifdef CONFIG_XFRM
386 secpath_put(skb->sp);
387 #endif
388 if (skb->destructor) {
389 WARN_ON(in_irq());
390 skb->destructor(skb);
391 }
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 nf_conntrack_put(skb->nfct);
394 nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 skb_release_head_state(skb);
412 skb_release_data(skb);
413 }
414
415 /**
416 * __kfree_skb - private function
417 * @skb: buffer
418 *
419 * Free an sk_buff. Release anything attached to the buffer.
420 * Clean the state. This is an internal helper function. Users should
421 * always call kfree_skb
422 */
423
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 skb_release_all(skb);
427 kfree_skbmem(skb);
428 }
429 EXPORT_SYMBOL(__kfree_skb);
430
431 /**
432 * kfree_skb - free an sk_buff
433 * @skb: buffer to free
434 *
435 * Drop a reference to the buffer and free it if the usage count has
436 * hit zero.
437 */
438 void kfree_skb(struct sk_buff *skb)
439 {
440 if (unlikely(!skb))
441 return;
442 if (likely(atomic_read(&skb->users) == 1))
443 smp_rmb();
444 else if (likely(!atomic_dec_and_test(&skb->users)))
445 return;
446 trace_kfree_skb(skb, __builtin_return_address(0));
447 __kfree_skb(skb);
448 }
449 EXPORT_SYMBOL(kfree_skb);
450
451 /**
452 * consume_skb - free an skbuff
453 * @skb: buffer to free
454 *
455 * Drop a ref to the buffer and free it if the usage count has hit zero
456 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
457 * is being dropped after a failure and notes that
458 */
459 void consume_skb(struct sk_buff *skb)
460 {
461 if (unlikely(!skb))
462 return;
463 if (likely(atomic_read(&skb->users) == 1))
464 smp_rmb();
465 else if (likely(!atomic_dec_and_test(&skb->users)))
466 return;
467 __kfree_skb(skb);
468 }
469 EXPORT_SYMBOL(consume_skb);
470
471 /**
472 * skb_recycle_check - check if skb can be reused for receive
473 * @skb: buffer
474 * @skb_size: minimum receive buffer size
475 *
476 * Checks that the skb passed in is not shared or cloned, and
477 * that it is linear and its head portion at least as large as
478 * skb_size so that it can be recycled as a receive buffer.
479 * If these conditions are met, this function does any necessary
480 * reference count dropping and cleans up the skbuff as if it
481 * just came from __alloc_skb().
482 */
483 int skb_recycle_check(struct sk_buff *skb, int skb_size)
484 {
485 struct skb_shared_info *shinfo;
486
487 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
488 return 0;
489
490 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
491 if (skb_end_pointer(skb) - skb->head < skb_size)
492 return 0;
493
494 if (skb_shared(skb) || skb_cloned(skb))
495 return 0;
496
497 skb_release_head_state(skb);
498 shinfo = skb_shinfo(skb);
499 atomic_set(&shinfo->dataref, 1);
500 shinfo->nr_frags = 0;
501 shinfo->gso_size = 0;
502 shinfo->gso_segs = 0;
503 shinfo->gso_type = 0;
504 shinfo->ip6_frag_id = 0;
505 shinfo->tx_flags.flags = 0;
506 shinfo->frag_list = NULL;
507 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
508
509 memset(skb, 0, offsetof(struct sk_buff, tail));
510 skb->data = skb->head + NET_SKB_PAD;
511 skb_reset_tail_pointer(skb);
512
513 return 1;
514 }
515 EXPORT_SYMBOL(skb_recycle_check);
516
517 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
518 {
519 new->tstamp = old->tstamp;
520 new->dev = old->dev;
521 new->transport_header = old->transport_header;
522 new->network_header = old->network_header;
523 new->mac_header = old->mac_header;
524 new->dst = dst_clone(old->dst);
525 #ifdef CONFIG_XFRM
526 new->sp = secpath_get(old->sp);
527 #endif
528 memcpy(new->cb, old->cb, sizeof(old->cb));
529 new->csum_start = old->csum_start;
530 new->csum_offset = old->csum_offset;
531 new->local_df = old->local_df;
532 new->pkt_type = old->pkt_type;
533 new->ip_summed = old->ip_summed;
534 skb_copy_queue_mapping(new, old);
535 new->priority = old->priority;
536 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
537 new->ipvs_property = old->ipvs_property;
538 #endif
539 new->protocol = old->protocol;
540 new->mark = old->mark;
541 new->iif = old->iif;
542 __nf_copy(new, old);
543 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
544 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
545 new->nf_trace = old->nf_trace;
546 #endif
547 #ifdef CONFIG_NET_SCHED
548 new->tc_index = old->tc_index;
549 #ifdef CONFIG_NET_CLS_ACT
550 new->tc_verd = old->tc_verd;
551 #endif
552 #endif
553 new->vlan_tci = old->vlan_tci;
554 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
555 new->do_not_encrypt = old->do_not_encrypt;
556 new->requeue = old->requeue;
557 #endif
558
559 skb_copy_secmark(new, old);
560 }
561
562 /*
563 * You should not add any new code to this function. Add it to
564 * __copy_skb_header above instead.
565 */
566 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
567 {
568 #define C(x) n->x = skb->x
569
570 n->next = n->prev = NULL;
571 n->sk = NULL;
572 __copy_skb_header(n, skb);
573
574 C(len);
575 C(data_len);
576 C(mac_len);
577 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
578 n->cloned = 1;
579 n->nohdr = 0;
580 n->destructor = NULL;
581 C(tail);
582 C(end);
583 C(head);
584 C(data);
585 C(truesize);
586 atomic_set(&n->users, 1);
587
588 atomic_inc(&(skb_shinfo(skb)->dataref));
589 skb->cloned = 1;
590
591 return n;
592 #undef C
593 }
594
595 /**
596 * skb_morph - morph one skb into another
597 * @dst: the skb to receive the contents
598 * @src: the skb to supply the contents
599 *
600 * This is identical to skb_clone except that the target skb is
601 * supplied by the user.
602 *
603 * The target skb is returned upon exit.
604 */
605 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
606 {
607 skb_release_all(dst);
608 return __skb_clone(dst, src);
609 }
610 EXPORT_SYMBOL_GPL(skb_morph);
611
612 /**
613 * skb_clone - duplicate an sk_buff
614 * @skb: buffer to clone
615 * @gfp_mask: allocation priority
616 *
617 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
618 * copies share the same packet data but not structure. The new
619 * buffer has a reference count of 1. If the allocation fails the
620 * function returns %NULL otherwise the new buffer is returned.
621 *
622 * If this function is called from an interrupt gfp_mask() must be
623 * %GFP_ATOMIC.
624 */
625
626 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
627 {
628 struct sk_buff *n;
629
630 n = skb + 1;
631 if (skb->fclone == SKB_FCLONE_ORIG &&
632 n->fclone == SKB_FCLONE_UNAVAILABLE) {
633 atomic_t *fclone_ref = (atomic_t *) (n + 1);
634 n->fclone = SKB_FCLONE_CLONE;
635 atomic_inc(fclone_ref);
636 } else {
637 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
638 if (!n)
639 return NULL;
640 n->fclone = SKB_FCLONE_UNAVAILABLE;
641 }
642
643 return __skb_clone(n, skb);
644 }
645 EXPORT_SYMBOL(skb_clone);
646
647 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
648 {
649 #ifndef NET_SKBUFF_DATA_USES_OFFSET
650 /*
651 * Shift between the two data areas in bytes
652 */
653 unsigned long offset = new->data - old->data;
654 #endif
655
656 __copy_skb_header(new, old);
657
658 #ifndef NET_SKBUFF_DATA_USES_OFFSET
659 /* {transport,network,mac}_header are relative to skb->head */
660 new->transport_header += offset;
661 new->network_header += offset;
662 new->mac_header += offset;
663 #endif
664 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
665 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
666 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
667 }
668
669 /**
670 * skb_copy - create private copy of an sk_buff
671 * @skb: buffer to copy
672 * @gfp_mask: allocation priority
673 *
674 * Make a copy of both an &sk_buff and its data. This is used when the
675 * caller wishes to modify the data and needs a private copy of the
676 * data to alter. Returns %NULL on failure or the pointer to the buffer
677 * on success. The returned buffer has a reference count of 1.
678 *
679 * As by-product this function converts non-linear &sk_buff to linear
680 * one, so that &sk_buff becomes completely private and caller is allowed
681 * to modify all the data of returned buffer. This means that this
682 * function is not recommended for use in circumstances when only
683 * header is going to be modified. Use pskb_copy() instead.
684 */
685
686 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
687 {
688 int headerlen = skb->data - skb->head;
689 /*
690 * Allocate the copy buffer
691 */
692 struct sk_buff *n;
693 #ifdef NET_SKBUFF_DATA_USES_OFFSET
694 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
695 #else
696 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
697 #endif
698 if (!n)
699 return NULL;
700
701 /* Set the data pointer */
702 skb_reserve(n, headerlen);
703 /* Set the tail pointer and length */
704 skb_put(n, skb->len);
705
706 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
707 BUG();
708
709 copy_skb_header(n, skb);
710 return n;
711 }
712 EXPORT_SYMBOL(skb_copy);
713
714 /**
715 * pskb_copy - create copy of an sk_buff with private head.
716 * @skb: buffer to copy
717 * @gfp_mask: allocation priority
718 *
719 * Make a copy of both an &sk_buff and part of its data, located
720 * in header. Fragmented data remain shared. This is used when
721 * the caller wishes to modify only header of &sk_buff and needs
722 * private copy of the header to alter. Returns %NULL on failure
723 * or the pointer to the buffer on success.
724 * The returned buffer has a reference count of 1.
725 */
726
727 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
728 {
729 /*
730 * Allocate the copy buffer
731 */
732 struct sk_buff *n;
733 #ifdef NET_SKBUFF_DATA_USES_OFFSET
734 n = alloc_skb(skb->end, gfp_mask);
735 #else
736 n = alloc_skb(skb->end - skb->head, gfp_mask);
737 #endif
738 if (!n)
739 goto out;
740
741 /* Set the data pointer */
742 skb_reserve(n, skb->data - skb->head);
743 /* Set the tail pointer and length */
744 skb_put(n, skb_headlen(skb));
745 /* Copy the bytes */
746 skb_copy_from_linear_data(skb, n->data, n->len);
747
748 n->truesize += skb->data_len;
749 n->data_len = skb->data_len;
750 n->len = skb->len;
751
752 if (skb_shinfo(skb)->nr_frags) {
753 int i;
754
755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
756 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
757 get_page(skb_shinfo(n)->frags[i].page);
758 }
759 skb_shinfo(n)->nr_frags = i;
760 }
761
762 if (skb_shinfo(skb)->frag_list) {
763 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
764 skb_clone_fraglist(n);
765 }
766
767 copy_skb_header(n, skb);
768 out:
769 return n;
770 }
771 EXPORT_SYMBOL(pskb_copy);
772
773 /**
774 * pskb_expand_head - reallocate header of &sk_buff
775 * @skb: buffer to reallocate
776 * @nhead: room to add at head
777 * @ntail: room to add at tail
778 * @gfp_mask: allocation priority
779 *
780 * Expands (or creates identical copy, if &nhead and &ntail are zero)
781 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
782 * reference count of 1. Returns zero in the case of success or error,
783 * if expansion failed. In the last case, &sk_buff is not changed.
784 *
785 * All the pointers pointing into skb header may change and must be
786 * reloaded after call to this function.
787 */
788
789 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
790 gfp_t gfp_mask)
791 {
792 int i;
793 u8 *data;
794 #ifdef NET_SKBUFF_DATA_USES_OFFSET
795 int size = nhead + skb->end + ntail;
796 #else
797 int size = nhead + (skb->end - skb->head) + ntail;
798 #endif
799 long off;
800
801 BUG_ON(nhead < 0);
802
803 if (skb_shared(skb))
804 BUG();
805
806 size = SKB_DATA_ALIGN(size);
807
808 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
809 if (!data)
810 goto nodata;
811
812 /* Copy only real data... and, alas, header. This should be
813 * optimized for the cases when header is void. */
814 #ifdef NET_SKBUFF_DATA_USES_OFFSET
815 memcpy(data + nhead, skb->head, skb->tail);
816 #else
817 memcpy(data + nhead, skb->head, skb->tail - skb->head);
818 #endif
819 memcpy(data + size, skb_end_pointer(skb),
820 sizeof(struct skb_shared_info));
821
822 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
823 get_page(skb_shinfo(skb)->frags[i].page);
824
825 if (skb_shinfo(skb)->frag_list)
826 skb_clone_fraglist(skb);
827
828 skb_release_data(skb);
829
830 off = (data + nhead) - skb->head;
831
832 skb->head = data;
833 skb->data += off;
834 #ifdef NET_SKBUFF_DATA_USES_OFFSET
835 skb->end = size;
836 off = nhead;
837 #else
838 skb->end = skb->head + size;
839 #endif
840 /* {transport,network,mac}_header and tail are relative to skb->head */
841 skb->tail += off;
842 skb->transport_header += off;
843 skb->network_header += off;
844 skb->mac_header += off;
845 skb->csum_start += nhead;
846 skb->cloned = 0;
847 skb->hdr_len = 0;
848 skb->nohdr = 0;
849 atomic_set(&skb_shinfo(skb)->dataref, 1);
850 return 0;
851
852 nodata:
853 return -ENOMEM;
854 }
855 EXPORT_SYMBOL(pskb_expand_head);
856
857 /* Make private copy of skb with writable head and some headroom */
858
859 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
860 {
861 struct sk_buff *skb2;
862 int delta = headroom - skb_headroom(skb);
863
864 if (delta <= 0)
865 skb2 = pskb_copy(skb, GFP_ATOMIC);
866 else {
867 skb2 = skb_clone(skb, GFP_ATOMIC);
868 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
869 GFP_ATOMIC)) {
870 kfree_skb(skb2);
871 skb2 = NULL;
872 }
873 }
874 return skb2;
875 }
876 EXPORT_SYMBOL(skb_realloc_headroom);
877
878 /**
879 * skb_copy_expand - copy and expand sk_buff
880 * @skb: buffer to copy
881 * @newheadroom: new free bytes at head
882 * @newtailroom: new free bytes at tail
883 * @gfp_mask: allocation priority
884 *
885 * Make a copy of both an &sk_buff and its data and while doing so
886 * allocate additional space.
887 *
888 * This is used when the caller wishes to modify the data and needs a
889 * private copy of the data to alter as well as more space for new fields.
890 * Returns %NULL on failure or the pointer to the buffer
891 * on success. The returned buffer has a reference count of 1.
892 *
893 * You must pass %GFP_ATOMIC as the allocation priority if this function
894 * is called from an interrupt.
895 */
896 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
897 int newheadroom, int newtailroom,
898 gfp_t gfp_mask)
899 {
900 /*
901 * Allocate the copy buffer
902 */
903 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
904 gfp_mask);
905 int oldheadroom = skb_headroom(skb);
906 int head_copy_len, head_copy_off;
907 int off;
908
909 if (!n)
910 return NULL;
911
912 skb_reserve(n, newheadroom);
913
914 /* Set the tail pointer and length */
915 skb_put(n, skb->len);
916
917 head_copy_len = oldheadroom;
918 head_copy_off = 0;
919 if (newheadroom <= head_copy_len)
920 head_copy_len = newheadroom;
921 else
922 head_copy_off = newheadroom - head_copy_len;
923
924 /* Copy the linear header and data. */
925 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
926 skb->len + head_copy_len))
927 BUG();
928
929 copy_skb_header(n, skb);
930
931 off = newheadroom - oldheadroom;
932 n->csum_start += off;
933 #ifdef NET_SKBUFF_DATA_USES_OFFSET
934 n->transport_header += off;
935 n->network_header += off;
936 n->mac_header += off;
937 #endif
938
939 return n;
940 }
941 EXPORT_SYMBOL(skb_copy_expand);
942
943 /**
944 * skb_pad - zero pad the tail of an skb
945 * @skb: buffer to pad
946 * @pad: space to pad
947 *
948 * Ensure that a buffer is followed by a padding area that is zero
949 * filled. Used by network drivers which may DMA or transfer data
950 * beyond the buffer end onto the wire.
951 *
952 * May return error in out of memory cases. The skb is freed on error.
953 */
954
955 int skb_pad(struct sk_buff *skb, int pad)
956 {
957 int err;
958 int ntail;
959
960 /* If the skbuff is non linear tailroom is always zero.. */
961 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
962 memset(skb->data+skb->len, 0, pad);
963 return 0;
964 }
965
966 ntail = skb->data_len + pad - (skb->end - skb->tail);
967 if (likely(skb_cloned(skb) || ntail > 0)) {
968 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
969 if (unlikely(err))
970 goto free_skb;
971 }
972
973 /* FIXME: The use of this function with non-linear skb's really needs
974 * to be audited.
975 */
976 err = skb_linearize(skb);
977 if (unlikely(err))
978 goto free_skb;
979
980 memset(skb->data + skb->len, 0, pad);
981 return 0;
982
983 free_skb:
984 kfree_skb(skb);
985 return err;
986 }
987 EXPORT_SYMBOL(skb_pad);
988
989 /**
990 * skb_put - add data to a buffer
991 * @skb: buffer to use
992 * @len: amount of data to add
993 *
994 * This function extends the used data area of the buffer. If this would
995 * exceed the total buffer size the kernel will panic. A pointer to the
996 * first byte of the extra data is returned.
997 */
998 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
999 {
1000 unsigned char *tmp = skb_tail_pointer(skb);
1001 SKB_LINEAR_ASSERT(skb);
1002 skb->tail += len;
1003 skb->len += len;
1004 if (unlikely(skb->tail > skb->end))
1005 skb_over_panic(skb, len, __builtin_return_address(0));
1006 return tmp;
1007 }
1008 EXPORT_SYMBOL(skb_put);
1009
1010 /**
1011 * skb_push - add data to the start of a buffer
1012 * @skb: buffer to use
1013 * @len: amount of data to add
1014 *
1015 * This function extends the used data area of the buffer at the buffer
1016 * start. If this would exceed the total buffer headroom the kernel will
1017 * panic. A pointer to the first byte of the extra data is returned.
1018 */
1019 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1020 {
1021 skb->data -= len;
1022 skb->len += len;
1023 if (unlikely(skb->data<skb->head))
1024 skb_under_panic(skb, len, __builtin_return_address(0));
1025 return skb->data;
1026 }
1027 EXPORT_SYMBOL(skb_push);
1028
1029 /**
1030 * skb_pull - remove data from the start of a buffer
1031 * @skb: buffer to use
1032 * @len: amount of data to remove
1033 *
1034 * This function removes data from the start of a buffer, returning
1035 * the memory to the headroom. A pointer to the next data in the buffer
1036 * is returned. Once the data has been pulled future pushes will overwrite
1037 * the old data.
1038 */
1039 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1040 {
1041 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1042 }
1043 EXPORT_SYMBOL(skb_pull);
1044
1045 /**
1046 * skb_trim - remove end from a buffer
1047 * @skb: buffer to alter
1048 * @len: new length
1049 *
1050 * Cut the length of a buffer down by removing data from the tail. If
1051 * the buffer is already under the length specified it is not modified.
1052 * The skb must be linear.
1053 */
1054 void skb_trim(struct sk_buff *skb, unsigned int len)
1055 {
1056 if (skb->len > len)
1057 __skb_trim(skb, len);
1058 }
1059 EXPORT_SYMBOL(skb_trim);
1060
1061 /* Trims skb to length len. It can change skb pointers.
1062 */
1063
1064 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1065 {
1066 struct sk_buff **fragp;
1067 struct sk_buff *frag;
1068 int offset = skb_headlen(skb);
1069 int nfrags = skb_shinfo(skb)->nr_frags;
1070 int i;
1071 int err;
1072
1073 if (skb_cloned(skb) &&
1074 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1075 return err;
1076
1077 i = 0;
1078 if (offset >= len)
1079 goto drop_pages;
1080
1081 for (; i < nfrags; i++) {
1082 int end = offset + skb_shinfo(skb)->frags[i].size;
1083
1084 if (end < len) {
1085 offset = end;
1086 continue;
1087 }
1088
1089 skb_shinfo(skb)->frags[i++].size = len - offset;
1090
1091 drop_pages:
1092 skb_shinfo(skb)->nr_frags = i;
1093
1094 for (; i < nfrags; i++)
1095 put_page(skb_shinfo(skb)->frags[i].page);
1096
1097 if (skb_shinfo(skb)->frag_list)
1098 skb_drop_fraglist(skb);
1099 goto done;
1100 }
1101
1102 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1103 fragp = &frag->next) {
1104 int end = offset + frag->len;
1105
1106 if (skb_shared(frag)) {
1107 struct sk_buff *nfrag;
1108
1109 nfrag = skb_clone(frag, GFP_ATOMIC);
1110 if (unlikely(!nfrag))
1111 return -ENOMEM;
1112
1113 nfrag->next = frag->next;
1114 kfree_skb(frag);
1115 frag = nfrag;
1116 *fragp = frag;
1117 }
1118
1119 if (end < len) {
1120 offset = end;
1121 continue;
1122 }
1123
1124 if (end > len &&
1125 unlikely((err = pskb_trim(frag, len - offset))))
1126 return err;
1127
1128 if (frag->next)
1129 skb_drop_list(&frag->next);
1130 break;
1131 }
1132
1133 done:
1134 if (len > skb_headlen(skb)) {
1135 skb->data_len -= skb->len - len;
1136 skb->len = len;
1137 } else {
1138 skb->len = len;
1139 skb->data_len = 0;
1140 skb_set_tail_pointer(skb, len);
1141 }
1142
1143 return 0;
1144 }
1145 EXPORT_SYMBOL(___pskb_trim);
1146
1147 /**
1148 * __pskb_pull_tail - advance tail of skb header
1149 * @skb: buffer to reallocate
1150 * @delta: number of bytes to advance tail
1151 *
1152 * The function makes a sense only on a fragmented &sk_buff,
1153 * it expands header moving its tail forward and copying necessary
1154 * data from fragmented part.
1155 *
1156 * &sk_buff MUST have reference count of 1.
1157 *
1158 * Returns %NULL (and &sk_buff does not change) if pull failed
1159 * or value of new tail of skb in the case of success.
1160 *
1161 * All the pointers pointing into skb header may change and must be
1162 * reloaded after call to this function.
1163 */
1164
1165 /* Moves tail of skb head forward, copying data from fragmented part,
1166 * when it is necessary.
1167 * 1. It may fail due to malloc failure.
1168 * 2. It may change skb pointers.
1169 *
1170 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1171 */
1172 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1173 {
1174 /* If skb has not enough free space at tail, get new one
1175 * plus 128 bytes for future expansions. If we have enough
1176 * room at tail, reallocate without expansion only if skb is cloned.
1177 */
1178 int i, k, eat = (skb->tail + delta) - skb->end;
1179
1180 if (eat > 0 || skb_cloned(skb)) {
1181 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1182 GFP_ATOMIC))
1183 return NULL;
1184 }
1185
1186 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1187 BUG();
1188
1189 /* Optimization: no fragments, no reasons to preestimate
1190 * size of pulled pages. Superb.
1191 */
1192 if (!skb_shinfo(skb)->frag_list)
1193 goto pull_pages;
1194
1195 /* Estimate size of pulled pages. */
1196 eat = delta;
1197 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1198 if (skb_shinfo(skb)->frags[i].size >= eat)
1199 goto pull_pages;
1200 eat -= skb_shinfo(skb)->frags[i].size;
1201 }
1202
1203 /* If we need update frag list, we are in troubles.
1204 * Certainly, it possible to add an offset to skb data,
1205 * but taking into account that pulling is expected to
1206 * be very rare operation, it is worth to fight against
1207 * further bloating skb head and crucify ourselves here instead.
1208 * Pure masohism, indeed. 8)8)
1209 */
1210 if (eat) {
1211 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1212 struct sk_buff *clone = NULL;
1213 struct sk_buff *insp = NULL;
1214
1215 do {
1216 BUG_ON(!list);
1217
1218 if (list->len <= eat) {
1219 /* Eaten as whole. */
1220 eat -= list->len;
1221 list = list->next;
1222 insp = list;
1223 } else {
1224 /* Eaten partially. */
1225
1226 if (skb_shared(list)) {
1227 /* Sucks! We need to fork list. :-( */
1228 clone = skb_clone(list, GFP_ATOMIC);
1229 if (!clone)
1230 return NULL;
1231 insp = list->next;
1232 list = clone;
1233 } else {
1234 /* This may be pulled without
1235 * problems. */
1236 insp = list;
1237 }
1238 if (!pskb_pull(list, eat)) {
1239 kfree_skb(clone);
1240 return NULL;
1241 }
1242 break;
1243 }
1244 } while (eat);
1245
1246 /* Free pulled out fragments. */
1247 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1248 skb_shinfo(skb)->frag_list = list->next;
1249 kfree_skb(list);
1250 }
1251 /* And insert new clone at head. */
1252 if (clone) {
1253 clone->next = list;
1254 skb_shinfo(skb)->frag_list = clone;
1255 }
1256 }
1257 /* Success! Now we may commit changes to skb data. */
1258
1259 pull_pages:
1260 eat = delta;
1261 k = 0;
1262 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1263 if (skb_shinfo(skb)->frags[i].size <= eat) {
1264 put_page(skb_shinfo(skb)->frags[i].page);
1265 eat -= skb_shinfo(skb)->frags[i].size;
1266 } else {
1267 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1268 if (eat) {
1269 skb_shinfo(skb)->frags[k].page_offset += eat;
1270 skb_shinfo(skb)->frags[k].size -= eat;
1271 eat = 0;
1272 }
1273 k++;
1274 }
1275 }
1276 skb_shinfo(skb)->nr_frags = k;
1277
1278 skb->tail += delta;
1279 skb->data_len -= delta;
1280
1281 return skb_tail_pointer(skb);
1282 }
1283 EXPORT_SYMBOL(__pskb_pull_tail);
1284
1285 /* Copy some data bits from skb to kernel buffer. */
1286
1287 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1288 {
1289 int i, copy;
1290 int start = skb_headlen(skb);
1291
1292 if (offset > (int)skb->len - len)
1293 goto fault;
1294
1295 /* Copy header. */
1296 if ((copy = start - offset) > 0) {
1297 if (copy > len)
1298 copy = len;
1299 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1300 if ((len -= copy) == 0)
1301 return 0;
1302 offset += copy;
1303 to += copy;
1304 }
1305
1306 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1307 int end;
1308
1309 WARN_ON(start > offset + len);
1310
1311 end = start + skb_shinfo(skb)->frags[i].size;
1312 if ((copy = end - offset) > 0) {
1313 u8 *vaddr;
1314
1315 if (copy > len)
1316 copy = len;
1317
1318 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1319 memcpy(to,
1320 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1321 offset - start, copy);
1322 kunmap_skb_frag(vaddr);
1323
1324 if ((len -= copy) == 0)
1325 return 0;
1326 offset += copy;
1327 to += copy;
1328 }
1329 start = end;
1330 }
1331
1332 if (skb_shinfo(skb)->frag_list) {
1333 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1334
1335 for (; list; list = list->next) {
1336 int end;
1337
1338 WARN_ON(start > offset + len);
1339
1340 end = start + list->len;
1341 if ((copy = end - offset) > 0) {
1342 if (copy > len)
1343 copy = len;
1344 if (skb_copy_bits(list, offset - start,
1345 to, copy))
1346 goto fault;
1347 if ((len -= copy) == 0)
1348 return 0;
1349 offset += copy;
1350 to += copy;
1351 }
1352 start = end;
1353 }
1354 }
1355 if (!len)
1356 return 0;
1357
1358 fault:
1359 return -EFAULT;
1360 }
1361 EXPORT_SYMBOL(skb_copy_bits);
1362
1363 /*
1364 * Callback from splice_to_pipe(), if we need to release some pages
1365 * at the end of the spd in case we error'ed out in filling the pipe.
1366 */
1367 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1368 {
1369 put_page(spd->pages[i]);
1370 }
1371
1372 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1373 unsigned int *offset,
1374 struct sk_buff *skb, struct sock *sk)
1375 {
1376 struct page *p = sk->sk_sndmsg_page;
1377 unsigned int off;
1378
1379 if (!p) {
1380 new_page:
1381 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1382 if (!p)
1383 return NULL;
1384
1385 off = sk->sk_sndmsg_off = 0;
1386 /* hold one ref to this page until it's full */
1387 } else {
1388 unsigned int mlen;
1389
1390 off = sk->sk_sndmsg_off;
1391 mlen = PAGE_SIZE - off;
1392 if (mlen < 64 && mlen < *len) {
1393 put_page(p);
1394 goto new_page;
1395 }
1396
1397 *len = min_t(unsigned int, *len, mlen);
1398 }
1399
1400 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1401 sk->sk_sndmsg_off += *len;
1402 *offset = off;
1403 get_page(p);
1404
1405 return p;
1406 }
1407
1408 /*
1409 * Fill page/offset/length into spd, if it can hold more pages.
1410 */
1411 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1412 unsigned int *len, unsigned int offset,
1413 struct sk_buff *skb, int linear,
1414 struct sock *sk)
1415 {
1416 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1417 return 1;
1418
1419 if (linear) {
1420 page = linear_to_page(page, len, &offset, skb, sk);
1421 if (!page)
1422 return 1;
1423 } else
1424 get_page(page);
1425
1426 spd->pages[spd->nr_pages] = page;
1427 spd->partial[spd->nr_pages].len = *len;
1428 spd->partial[spd->nr_pages].offset = offset;
1429 spd->nr_pages++;
1430
1431 return 0;
1432 }
1433
1434 static inline void __segment_seek(struct page **page, unsigned int *poff,
1435 unsigned int *plen, unsigned int off)
1436 {
1437 unsigned long n;
1438
1439 *poff += off;
1440 n = *poff / PAGE_SIZE;
1441 if (n)
1442 *page = nth_page(*page, n);
1443
1444 *poff = *poff % PAGE_SIZE;
1445 *plen -= off;
1446 }
1447
1448 static inline int __splice_segment(struct page *page, unsigned int poff,
1449 unsigned int plen, unsigned int *off,
1450 unsigned int *len, struct sk_buff *skb,
1451 struct splice_pipe_desc *spd, int linear,
1452 struct sock *sk)
1453 {
1454 if (!*len)
1455 return 1;
1456
1457 /* skip this segment if already processed */
1458 if (*off >= plen) {
1459 *off -= plen;
1460 return 0;
1461 }
1462
1463 /* ignore any bits we already processed */
1464 if (*off) {
1465 __segment_seek(&page, &poff, &plen, *off);
1466 *off = 0;
1467 }
1468
1469 do {
1470 unsigned int flen = min(*len, plen);
1471
1472 /* the linear region may spread across several pages */
1473 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1474
1475 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1476 return 1;
1477
1478 __segment_seek(&page, &poff, &plen, flen);
1479 *len -= flen;
1480
1481 } while (*len && plen);
1482
1483 return 0;
1484 }
1485
1486 /*
1487 * Map linear and fragment data from the skb to spd. It reports failure if the
1488 * pipe is full or if we already spliced the requested length.
1489 */
1490 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1491 unsigned int *len, struct splice_pipe_desc *spd,
1492 struct sock *sk)
1493 {
1494 int seg;
1495
1496 /*
1497 * map the linear part
1498 */
1499 if (__splice_segment(virt_to_page(skb->data),
1500 (unsigned long) skb->data & (PAGE_SIZE - 1),
1501 skb_headlen(skb),
1502 offset, len, skb, spd, 1, sk))
1503 return 1;
1504
1505 /*
1506 * then map the fragments
1507 */
1508 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1509 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1510
1511 if (__splice_segment(f->page, f->page_offset, f->size,
1512 offset, len, skb, spd, 0, sk))
1513 return 1;
1514 }
1515
1516 return 0;
1517 }
1518
1519 /*
1520 * Map data from the skb to a pipe. Should handle both the linear part,
1521 * the fragments, and the frag list. It does NOT handle frag lists within
1522 * the frag list, if such a thing exists. We'd probably need to recurse to
1523 * handle that cleanly.
1524 */
1525 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1526 struct pipe_inode_info *pipe, unsigned int tlen,
1527 unsigned int flags)
1528 {
1529 struct partial_page partial[PIPE_BUFFERS];
1530 struct page *pages[PIPE_BUFFERS];
1531 struct splice_pipe_desc spd = {
1532 .pages = pages,
1533 .partial = partial,
1534 .flags = flags,
1535 .ops = &sock_pipe_buf_ops,
1536 .spd_release = sock_spd_release,
1537 };
1538 struct sock *sk = skb->sk;
1539
1540 /*
1541 * __skb_splice_bits() only fails if the output has no room left,
1542 * so no point in going over the frag_list for the error case.
1543 */
1544 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1545 goto done;
1546 else if (!tlen)
1547 goto done;
1548
1549 /*
1550 * now see if we have a frag_list to map
1551 */
1552 if (skb_shinfo(skb)->frag_list) {
1553 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1554
1555 for (; list && tlen; list = list->next) {
1556 if (__skb_splice_bits(list, &offset, &tlen, &spd, sk))
1557 break;
1558 }
1559 }
1560
1561 done:
1562 if (spd.nr_pages) {
1563 int ret;
1564
1565 /*
1566 * Drop the socket lock, otherwise we have reverse
1567 * locking dependencies between sk_lock and i_mutex
1568 * here as compared to sendfile(). We enter here
1569 * with the socket lock held, and splice_to_pipe() will
1570 * grab the pipe inode lock. For sendfile() emulation,
1571 * we call into ->sendpage() with the i_mutex lock held
1572 * and networking will grab the socket lock.
1573 */
1574 release_sock(sk);
1575 ret = splice_to_pipe(pipe, &spd);
1576 lock_sock(sk);
1577 return ret;
1578 }
1579
1580 return 0;
1581 }
1582
1583 /**
1584 * skb_store_bits - store bits from kernel buffer to skb
1585 * @skb: destination buffer
1586 * @offset: offset in destination
1587 * @from: source buffer
1588 * @len: number of bytes to copy
1589 *
1590 * Copy the specified number of bytes from the source buffer to the
1591 * destination skb. This function handles all the messy bits of
1592 * traversing fragment lists and such.
1593 */
1594
1595 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1596 {
1597 int i, copy;
1598 int start = skb_headlen(skb);
1599
1600 if (offset > (int)skb->len - len)
1601 goto fault;
1602
1603 if ((copy = start - offset) > 0) {
1604 if (copy > len)
1605 copy = len;
1606 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1607 if ((len -= copy) == 0)
1608 return 0;
1609 offset += copy;
1610 from += copy;
1611 }
1612
1613 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1614 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1615 int end;
1616
1617 WARN_ON(start > offset + len);
1618
1619 end = start + frag->size;
1620 if ((copy = end - offset) > 0) {
1621 u8 *vaddr;
1622
1623 if (copy > len)
1624 copy = len;
1625
1626 vaddr = kmap_skb_frag(frag);
1627 memcpy(vaddr + frag->page_offset + offset - start,
1628 from, copy);
1629 kunmap_skb_frag(vaddr);
1630
1631 if ((len -= copy) == 0)
1632 return 0;
1633 offset += copy;
1634 from += copy;
1635 }
1636 start = end;
1637 }
1638
1639 if (skb_shinfo(skb)->frag_list) {
1640 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1641
1642 for (; list; list = list->next) {
1643 int end;
1644
1645 WARN_ON(start > offset + len);
1646
1647 end = start + list->len;
1648 if ((copy = end - offset) > 0) {
1649 if (copy > len)
1650 copy = len;
1651 if (skb_store_bits(list, offset - start,
1652 from, copy))
1653 goto fault;
1654 if ((len -= copy) == 0)
1655 return 0;
1656 offset += copy;
1657 from += copy;
1658 }
1659 start = end;
1660 }
1661 }
1662 if (!len)
1663 return 0;
1664
1665 fault:
1666 return -EFAULT;
1667 }
1668 EXPORT_SYMBOL(skb_store_bits);
1669
1670 /* Checksum skb data. */
1671
1672 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1673 int len, __wsum csum)
1674 {
1675 int start = skb_headlen(skb);
1676 int i, copy = start - offset;
1677 int pos = 0;
1678
1679 /* Checksum header. */
1680 if (copy > 0) {
1681 if (copy > len)
1682 copy = len;
1683 csum = csum_partial(skb->data + offset, copy, csum);
1684 if ((len -= copy) == 0)
1685 return csum;
1686 offset += copy;
1687 pos = copy;
1688 }
1689
1690 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1691 int end;
1692
1693 WARN_ON(start > offset + len);
1694
1695 end = start + skb_shinfo(skb)->frags[i].size;
1696 if ((copy = end - offset) > 0) {
1697 __wsum csum2;
1698 u8 *vaddr;
1699 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1700
1701 if (copy > len)
1702 copy = len;
1703 vaddr = kmap_skb_frag(frag);
1704 csum2 = csum_partial(vaddr + frag->page_offset +
1705 offset - start, copy, 0);
1706 kunmap_skb_frag(vaddr);
1707 csum = csum_block_add(csum, csum2, pos);
1708 if (!(len -= copy))
1709 return csum;
1710 offset += copy;
1711 pos += copy;
1712 }
1713 start = end;
1714 }
1715
1716 if (skb_shinfo(skb)->frag_list) {
1717 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1718
1719 for (; list; list = list->next) {
1720 int end;
1721
1722 WARN_ON(start > offset + len);
1723
1724 end = start + list->len;
1725 if ((copy = end - offset) > 0) {
1726 __wsum csum2;
1727 if (copy > len)
1728 copy = len;
1729 csum2 = skb_checksum(list, offset - start,
1730 copy, 0);
1731 csum = csum_block_add(csum, csum2, pos);
1732 if ((len -= copy) == 0)
1733 return csum;
1734 offset += copy;
1735 pos += copy;
1736 }
1737 start = end;
1738 }
1739 }
1740 BUG_ON(len);
1741
1742 return csum;
1743 }
1744 EXPORT_SYMBOL(skb_checksum);
1745
1746 /* Both of above in one bottle. */
1747
1748 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1749 u8 *to, int len, __wsum csum)
1750 {
1751 int start = skb_headlen(skb);
1752 int i, copy = start - offset;
1753 int pos = 0;
1754
1755 /* Copy header. */
1756 if (copy > 0) {
1757 if (copy > len)
1758 copy = len;
1759 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1760 copy, csum);
1761 if ((len -= copy) == 0)
1762 return csum;
1763 offset += copy;
1764 to += copy;
1765 pos = copy;
1766 }
1767
1768 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1769 int end;
1770
1771 WARN_ON(start > offset + len);
1772
1773 end = start + skb_shinfo(skb)->frags[i].size;
1774 if ((copy = end - offset) > 0) {
1775 __wsum csum2;
1776 u8 *vaddr;
1777 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778
1779 if (copy > len)
1780 copy = len;
1781 vaddr = kmap_skb_frag(frag);
1782 csum2 = csum_partial_copy_nocheck(vaddr +
1783 frag->page_offset +
1784 offset - start, to,
1785 copy, 0);
1786 kunmap_skb_frag(vaddr);
1787 csum = csum_block_add(csum, csum2, pos);
1788 if (!(len -= copy))
1789 return csum;
1790 offset += copy;
1791 to += copy;
1792 pos += copy;
1793 }
1794 start = end;
1795 }
1796
1797 if (skb_shinfo(skb)->frag_list) {
1798 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1799
1800 for (; list; list = list->next) {
1801 __wsum csum2;
1802 int end;
1803
1804 WARN_ON(start > offset + len);
1805
1806 end = start + list->len;
1807 if ((copy = end - offset) > 0) {
1808 if (copy > len)
1809 copy = len;
1810 csum2 = skb_copy_and_csum_bits(list,
1811 offset - start,
1812 to, copy, 0);
1813 csum = csum_block_add(csum, csum2, pos);
1814 if ((len -= copy) == 0)
1815 return csum;
1816 offset += copy;
1817 to += copy;
1818 pos += copy;
1819 }
1820 start = end;
1821 }
1822 }
1823 BUG_ON(len);
1824 return csum;
1825 }
1826 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1827
1828 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1829 {
1830 __wsum csum;
1831 long csstart;
1832
1833 if (skb->ip_summed == CHECKSUM_PARTIAL)
1834 csstart = skb->csum_start - skb_headroom(skb);
1835 else
1836 csstart = skb_headlen(skb);
1837
1838 BUG_ON(csstart > skb_headlen(skb));
1839
1840 skb_copy_from_linear_data(skb, to, csstart);
1841
1842 csum = 0;
1843 if (csstart != skb->len)
1844 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1845 skb->len - csstart, 0);
1846
1847 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1848 long csstuff = csstart + skb->csum_offset;
1849
1850 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1851 }
1852 }
1853 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1854
1855 /**
1856 * skb_dequeue - remove from the head of the queue
1857 * @list: list to dequeue from
1858 *
1859 * Remove the head of the list. The list lock is taken so the function
1860 * may be used safely with other locking list functions. The head item is
1861 * returned or %NULL if the list is empty.
1862 */
1863
1864 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1865 {
1866 unsigned long flags;
1867 struct sk_buff *result;
1868
1869 spin_lock_irqsave(&list->lock, flags);
1870 result = __skb_dequeue(list);
1871 spin_unlock_irqrestore(&list->lock, flags);
1872 return result;
1873 }
1874 EXPORT_SYMBOL(skb_dequeue);
1875
1876 /**
1877 * skb_dequeue_tail - remove from the tail of the queue
1878 * @list: list to dequeue from
1879 *
1880 * Remove the tail of the list. The list lock is taken so the function
1881 * may be used safely with other locking list functions. The tail item is
1882 * returned or %NULL if the list is empty.
1883 */
1884 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1885 {
1886 unsigned long flags;
1887 struct sk_buff *result;
1888
1889 spin_lock_irqsave(&list->lock, flags);
1890 result = __skb_dequeue_tail(list);
1891 spin_unlock_irqrestore(&list->lock, flags);
1892 return result;
1893 }
1894 EXPORT_SYMBOL(skb_dequeue_tail);
1895
1896 /**
1897 * skb_queue_purge - empty a list
1898 * @list: list to empty
1899 *
1900 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1901 * the list and one reference dropped. This function takes the list
1902 * lock and is atomic with respect to other list locking functions.
1903 */
1904 void skb_queue_purge(struct sk_buff_head *list)
1905 {
1906 struct sk_buff *skb;
1907 while ((skb = skb_dequeue(list)) != NULL)
1908 kfree_skb(skb);
1909 }
1910 EXPORT_SYMBOL(skb_queue_purge);
1911
1912 /**
1913 * skb_queue_head - queue a buffer at the list head
1914 * @list: list to use
1915 * @newsk: buffer to queue
1916 *
1917 * Queue a buffer at the start of the list. This function takes the
1918 * list lock and can be used safely with other locking &sk_buff functions
1919 * safely.
1920 *
1921 * A buffer cannot be placed on two lists at the same time.
1922 */
1923 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1924 {
1925 unsigned long flags;
1926
1927 spin_lock_irqsave(&list->lock, flags);
1928 __skb_queue_head(list, newsk);
1929 spin_unlock_irqrestore(&list->lock, flags);
1930 }
1931 EXPORT_SYMBOL(skb_queue_head);
1932
1933 /**
1934 * skb_queue_tail - queue a buffer at the list tail
1935 * @list: list to use
1936 * @newsk: buffer to queue
1937 *
1938 * Queue a buffer at the tail of the list. This function takes the
1939 * list lock and can be used safely with other locking &sk_buff functions
1940 * safely.
1941 *
1942 * A buffer cannot be placed on two lists at the same time.
1943 */
1944 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1945 {
1946 unsigned long flags;
1947
1948 spin_lock_irqsave(&list->lock, flags);
1949 __skb_queue_tail(list, newsk);
1950 spin_unlock_irqrestore(&list->lock, flags);
1951 }
1952 EXPORT_SYMBOL(skb_queue_tail);
1953
1954 /**
1955 * skb_unlink - remove a buffer from a list
1956 * @skb: buffer to remove
1957 * @list: list to use
1958 *
1959 * Remove a packet from a list. The list locks are taken and this
1960 * function is atomic with respect to other list locked calls
1961 *
1962 * You must know what list the SKB is on.
1963 */
1964 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1965 {
1966 unsigned long flags;
1967
1968 spin_lock_irqsave(&list->lock, flags);
1969 __skb_unlink(skb, list);
1970 spin_unlock_irqrestore(&list->lock, flags);
1971 }
1972 EXPORT_SYMBOL(skb_unlink);
1973
1974 /**
1975 * skb_append - append a buffer
1976 * @old: buffer to insert after
1977 * @newsk: buffer to insert
1978 * @list: list to use
1979 *
1980 * Place a packet after a given packet in a list. The list locks are taken
1981 * and this function is atomic with respect to other list locked calls.
1982 * A buffer cannot be placed on two lists at the same time.
1983 */
1984 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1985 {
1986 unsigned long flags;
1987
1988 spin_lock_irqsave(&list->lock, flags);
1989 __skb_queue_after(list, old, newsk);
1990 spin_unlock_irqrestore(&list->lock, flags);
1991 }
1992 EXPORT_SYMBOL(skb_append);
1993
1994 /**
1995 * skb_insert - insert a buffer
1996 * @old: buffer to insert before
1997 * @newsk: buffer to insert
1998 * @list: list to use
1999 *
2000 * Place a packet before a given packet in a list. The list locks are
2001 * taken and this function is atomic with respect to other list locked
2002 * calls.
2003 *
2004 * A buffer cannot be placed on two lists at the same time.
2005 */
2006 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2007 {
2008 unsigned long flags;
2009
2010 spin_lock_irqsave(&list->lock, flags);
2011 __skb_insert(newsk, old->prev, old, list);
2012 spin_unlock_irqrestore(&list->lock, flags);
2013 }
2014 EXPORT_SYMBOL(skb_insert);
2015
2016 static inline void skb_split_inside_header(struct sk_buff *skb,
2017 struct sk_buff* skb1,
2018 const u32 len, const int pos)
2019 {
2020 int i;
2021
2022 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2023 pos - len);
2024 /* And move data appendix as is. */
2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2026 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2027
2028 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2029 skb_shinfo(skb)->nr_frags = 0;
2030 skb1->data_len = skb->data_len;
2031 skb1->len += skb1->data_len;
2032 skb->data_len = 0;
2033 skb->len = len;
2034 skb_set_tail_pointer(skb, len);
2035 }
2036
2037 static inline void skb_split_no_header(struct sk_buff *skb,
2038 struct sk_buff* skb1,
2039 const u32 len, int pos)
2040 {
2041 int i, k = 0;
2042 const int nfrags = skb_shinfo(skb)->nr_frags;
2043
2044 skb_shinfo(skb)->nr_frags = 0;
2045 skb1->len = skb1->data_len = skb->len - len;
2046 skb->len = len;
2047 skb->data_len = len - pos;
2048
2049 for (i = 0; i < nfrags; i++) {
2050 int size = skb_shinfo(skb)->frags[i].size;
2051
2052 if (pos + size > len) {
2053 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2054
2055 if (pos < len) {
2056 /* Split frag.
2057 * We have two variants in this case:
2058 * 1. Move all the frag to the second
2059 * part, if it is possible. F.e.
2060 * this approach is mandatory for TUX,
2061 * where splitting is expensive.
2062 * 2. Split is accurately. We make this.
2063 */
2064 get_page(skb_shinfo(skb)->frags[i].page);
2065 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2066 skb_shinfo(skb1)->frags[0].size -= len - pos;
2067 skb_shinfo(skb)->frags[i].size = len - pos;
2068 skb_shinfo(skb)->nr_frags++;
2069 }
2070 k++;
2071 } else
2072 skb_shinfo(skb)->nr_frags++;
2073 pos += size;
2074 }
2075 skb_shinfo(skb1)->nr_frags = k;
2076 }
2077
2078 /**
2079 * skb_split - Split fragmented skb to two parts at length len.
2080 * @skb: the buffer to split
2081 * @skb1: the buffer to receive the second part
2082 * @len: new length for skb
2083 */
2084 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2085 {
2086 int pos = skb_headlen(skb);
2087
2088 if (len < pos) /* Split line is inside header. */
2089 skb_split_inside_header(skb, skb1, len, pos);
2090 else /* Second chunk has no header, nothing to copy. */
2091 skb_split_no_header(skb, skb1, len, pos);
2092 }
2093 EXPORT_SYMBOL(skb_split);
2094
2095 /* Shifting from/to a cloned skb is a no-go.
2096 *
2097 * Caller cannot keep skb_shinfo related pointers past calling here!
2098 */
2099 static int skb_prepare_for_shift(struct sk_buff *skb)
2100 {
2101 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2102 }
2103
2104 /**
2105 * skb_shift - Shifts paged data partially from skb to another
2106 * @tgt: buffer into which tail data gets added
2107 * @skb: buffer from which the paged data comes from
2108 * @shiftlen: shift up to this many bytes
2109 *
2110 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2111 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2112 * It's up to caller to free skb if everything was shifted.
2113 *
2114 * If @tgt runs out of frags, the whole operation is aborted.
2115 *
2116 * Skb cannot include anything else but paged data while tgt is allowed
2117 * to have non-paged data as well.
2118 *
2119 * TODO: full sized shift could be optimized but that would need
2120 * specialized skb free'er to handle frags without up-to-date nr_frags.
2121 */
2122 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2123 {
2124 int from, to, merge, todo;
2125 struct skb_frag_struct *fragfrom, *fragto;
2126
2127 BUG_ON(shiftlen > skb->len);
2128 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2129
2130 todo = shiftlen;
2131 from = 0;
2132 to = skb_shinfo(tgt)->nr_frags;
2133 fragfrom = &skb_shinfo(skb)->frags[from];
2134
2135 /* Actual merge is delayed until the point when we know we can
2136 * commit all, so that we don't have to undo partial changes
2137 */
2138 if (!to ||
2139 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2140 merge = -1;
2141 } else {
2142 merge = to - 1;
2143
2144 todo -= fragfrom->size;
2145 if (todo < 0) {
2146 if (skb_prepare_for_shift(skb) ||
2147 skb_prepare_for_shift(tgt))
2148 return 0;
2149
2150 /* All previous frag pointers might be stale! */
2151 fragfrom = &skb_shinfo(skb)->frags[from];
2152 fragto = &skb_shinfo(tgt)->frags[merge];
2153
2154 fragto->size += shiftlen;
2155 fragfrom->size -= shiftlen;
2156 fragfrom->page_offset += shiftlen;
2157
2158 goto onlymerged;
2159 }
2160
2161 from++;
2162 }
2163
2164 /* Skip full, not-fitting skb to avoid expensive operations */
2165 if ((shiftlen == skb->len) &&
2166 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2167 return 0;
2168
2169 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2170 return 0;
2171
2172 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2173 if (to == MAX_SKB_FRAGS)
2174 return 0;
2175
2176 fragfrom = &skb_shinfo(skb)->frags[from];
2177 fragto = &skb_shinfo(tgt)->frags[to];
2178
2179 if (todo >= fragfrom->size) {
2180 *fragto = *fragfrom;
2181 todo -= fragfrom->size;
2182 from++;
2183 to++;
2184
2185 } else {
2186 get_page(fragfrom->page);
2187 fragto->page = fragfrom->page;
2188 fragto->page_offset = fragfrom->page_offset;
2189 fragto->size = todo;
2190
2191 fragfrom->page_offset += todo;
2192 fragfrom->size -= todo;
2193 todo = 0;
2194
2195 to++;
2196 break;
2197 }
2198 }
2199
2200 /* Ready to "commit" this state change to tgt */
2201 skb_shinfo(tgt)->nr_frags = to;
2202
2203 if (merge >= 0) {
2204 fragfrom = &skb_shinfo(skb)->frags[0];
2205 fragto = &skb_shinfo(tgt)->frags[merge];
2206
2207 fragto->size += fragfrom->size;
2208 put_page(fragfrom->page);
2209 }
2210
2211 /* Reposition in the original skb */
2212 to = 0;
2213 while (from < skb_shinfo(skb)->nr_frags)
2214 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2215 skb_shinfo(skb)->nr_frags = to;
2216
2217 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2218
2219 onlymerged:
2220 /* Most likely the tgt won't ever need its checksum anymore, skb on
2221 * the other hand might need it if it needs to be resent
2222 */
2223 tgt->ip_summed = CHECKSUM_PARTIAL;
2224 skb->ip_summed = CHECKSUM_PARTIAL;
2225
2226 /* Yak, is it really working this way? Some helper please? */
2227 skb->len -= shiftlen;
2228 skb->data_len -= shiftlen;
2229 skb->truesize -= shiftlen;
2230 tgt->len += shiftlen;
2231 tgt->data_len += shiftlen;
2232 tgt->truesize += shiftlen;
2233
2234 return shiftlen;
2235 }
2236
2237 /**
2238 * skb_prepare_seq_read - Prepare a sequential read of skb data
2239 * @skb: the buffer to read
2240 * @from: lower offset of data to be read
2241 * @to: upper offset of data to be read
2242 * @st: state variable
2243 *
2244 * Initializes the specified state variable. Must be called before
2245 * invoking skb_seq_read() for the first time.
2246 */
2247 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2248 unsigned int to, struct skb_seq_state *st)
2249 {
2250 st->lower_offset = from;
2251 st->upper_offset = to;
2252 st->root_skb = st->cur_skb = skb;
2253 st->frag_idx = st->stepped_offset = 0;
2254 st->frag_data = NULL;
2255 }
2256 EXPORT_SYMBOL(skb_prepare_seq_read);
2257
2258 /**
2259 * skb_seq_read - Sequentially read skb data
2260 * @consumed: number of bytes consumed by the caller so far
2261 * @data: destination pointer for data to be returned
2262 * @st: state variable
2263 *
2264 * Reads a block of skb data at &consumed relative to the
2265 * lower offset specified to skb_prepare_seq_read(). Assigns
2266 * the head of the data block to &data and returns the length
2267 * of the block or 0 if the end of the skb data or the upper
2268 * offset has been reached.
2269 *
2270 * The caller is not required to consume all of the data
2271 * returned, i.e. &consumed is typically set to the number
2272 * of bytes already consumed and the next call to
2273 * skb_seq_read() will return the remaining part of the block.
2274 *
2275 * Note 1: The size of each block of data returned can be arbitary,
2276 * this limitation is the cost for zerocopy seqeuental
2277 * reads of potentially non linear data.
2278 *
2279 * Note 2: Fragment lists within fragments are not implemented
2280 * at the moment, state->root_skb could be replaced with
2281 * a stack for this purpose.
2282 */
2283 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2284 struct skb_seq_state *st)
2285 {
2286 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2287 skb_frag_t *frag;
2288
2289 if (unlikely(abs_offset >= st->upper_offset))
2290 return 0;
2291
2292 next_skb:
2293 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2294
2295 if (abs_offset < block_limit) {
2296 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2297 return block_limit - abs_offset;
2298 }
2299
2300 if (st->frag_idx == 0 && !st->frag_data)
2301 st->stepped_offset += skb_headlen(st->cur_skb);
2302
2303 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2304 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2305 block_limit = frag->size + st->stepped_offset;
2306
2307 if (abs_offset < block_limit) {
2308 if (!st->frag_data)
2309 st->frag_data = kmap_skb_frag(frag);
2310
2311 *data = (u8 *) st->frag_data + frag->page_offset +
2312 (abs_offset - st->stepped_offset);
2313
2314 return block_limit - abs_offset;
2315 }
2316
2317 if (st->frag_data) {
2318 kunmap_skb_frag(st->frag_data);
2319 st->frag_data = NULL;
2320 }
2321
2322 st->frag_idx++;
2323 st->stepped_offset += frag->size;
2324 }
2325
2326 if (st->frag_data) {
2327 kunmap_skb_frag(st->frag_data);
2328 st->frag_data = NULL;
2329 }
2330
2331 if (st->root_skb == st->cur_skb &&
2332 skb_shinfo(st->root_skb)->frag_list) {
2333 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2334 st->frag_idx = 0;
2335 goto next_skb;
2336 } else if (st->cur_skb->next) {
2337 st->cur_skb = st->cur_skb->next;
2338 st->frag_idx = 0;
2339 goto next_skb;
2340 }
2341
2342 return 0;
2343 }
2344 EXPORT_SYMBOL(skb_seq_read);
2345
2346 /**
2347 * skb_abort_seq_read - Abort a sequential read of skb data
2348 * @st: state variable
2349 *
2350 * Must be called if skb_seq_read() was not called until it
2351 * returned 0.
2352 */
2353 void skb_abort_seq_read(struct skb_seq_state *st)
2354 {
2355 if (st->frag_data)
2356 kunmap_skb_frag(st->frag_data);
2357 }
2358 EXPORT_SYMBOL(skb_abort_seq_read);
2359
2360 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2361
2362 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2363 struct ts_config *conf,
2364 struct ts_state *state)
2365 {
2366 return skb_seq_read(offset, text, TS_SKB_CB(state));
2367 }
2368
2369 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2370 {
2371 skb_abort_seq_read(TS_SKB_CB(state));
2372 }
2373
2374 /**
2375 * skb_find_text - Find a text pattern in skb data
2376 * @skb: the buffer to look in
2377 * @from: search offset
2378 * @to: search limit
2379 * @config: textsearch configuration
2380 * @state: uninitialized textsearch state variable
2381 *
2382 * Finds a pattern in the skb data according to the specified
2383 * textsearch configuration. Use textsearch_next() to retrieve
2384 * subsequent occurrences of the pattern. Returns the offset
2385 * to the first occurrence or UINT_MAX if no match was found.
2386 */
2387 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2388 unsigned int to, struct ts_config *config,
2389 struct ts_state *state)
2390 {
2391 unsigned int ret;
2392
2393 config->get_next_block = skb_ts_get_next_block;
2394 config->finish = skb_ts_finish;
2395
2396 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2397
2398 ret = textsearch_find(config, state);
2399 return (ret <= to - from ? ret : UINT_MAX);
2400 }
2401 EXPORT_SYMBOL(skb_find_text);
2402
2403 /**
2404 * skb_append_datato_frags: - append the user data to a skb
2405 * @sk: sock structure
2406 * @skb: skb structure to be appened with user data.
2407 * @getfrag: call back function to be used for getting the user data
2408 * @from: pointer to user message iov
2409 * @length: length of the iov message
2410 *
2411 * Description: This procedure append the user data in the fragment part
2412 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2413 */
2414 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2415 int (*getfrag)(void *from, char *to, int offset,
2416 int len, int odd, struct sk_buff *skb),
2417 void *from, int length)
2418 {
2419 int frg_cnt = 0;
2420 skb_frag_t *frag = NULL;
2421 struct page *page = NULL;
2422 int copy, left;
2423 int offset = 0;
2424 int ret;
2425
2426 do {
2427 /* Return error if we don't have space for new frag */
2428 frg_cnt = skb_shinfo(skb)->nr_frags;
2429 if (frg_cnt >= MAX_SKB_FRAGS)
2430 return -EFAULT;
2431
2432 /* allocate a new page for next frag */
2433 page = alloc_pages(sk->sk_allocation, 0);
2434
2435 /* If alloc_page fails just return failure and caller will
2436 * free previous allocated pages by doing kfree_skb()
2437 */
2438 if (page == NULL)
2439 return -ENOMEM;
2440
2441 /* initialize the next frag */
2442 sk->sk_sndmsg_page = page;
2443 sk->sk_sndmsg_off = 0;
2444 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2445 skb->truesize += PAGE_SIZE;
2446 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2447
2448 /* get the new initialized frag */
2449 frg_cnt = skb_shinfo(skb)->nr_frags;
2450 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2451
2452 /* copy the user data to page */
2453 left = PAGE_SIZE - frag->page_offset;
2454 copy = (length > left)? left : length;
2455
2456 ret = getfrag(from, (page_address(frag->page) +
2457 frag->page_offset + frag->size),
2458 offset, copy, 0, skb);
2459 if (ret < 0)
2460 return -EFAULT;
2461
2462 /* copy was successful so update the size parameters */
2463 sk->sk_sndmsg_off += copy;
2464 frag->size += copy;
2465 skb->len += copy;
2466 skb->data_len += copy;
2467 offset += copy;
2468 length -= copy;
2469
2470 } while (length > 0);
2471
2472 return 0;
2473 }
2474 EXPORT_SYMBOL(skb_append_datato_frags);
2475
2476 /**
2477 * skb_pull_rcsum - pull skb and update receive checksum
2478 * @skb: buffer to update
2479 * @len: length of data pulled
2480 *
2481 * This function performs an skb_pull on the packet and updates
2482 * the CHECKSUM_COMPLETE checksum. It should be used on
2483 * receive path processing instead of skb_pull unless you know
2484 * that the checksum difference is zero (e.g., a valid IP header)
2485 * or you are setting ip_summed to CHECKSUM_NONE.
2486 */
2487 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2488 {
2489 BUG_ON(len > skb->len);
2490 skb->len -= len;
2491 BUG_ON(skb->len < skb->data_len);
2492 skb_postpull_rcsum(skb, skb->data, len);
2493 return skb->data += len;
2494 }
2495
2496 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2497
2498 /**
2499 * skb_segment - Perform protocol segmentation on skb.
2500 * @skb: buffer to segment
2501 * @features: features for the output path (see dev->features)
2502 *
2503 * This function performs segmentation on the given skb. It returns
2504 * a pointer to the first in a list of new skbs for the segments.
2505 * In case of error it returns ERR_PTR(err).
2506 */
2507 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2508 {
2509 struct sk_buff *segs = NULL;
2510 struct sk_buff *tail = NULL;
2511 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2512 unsigned int mss = skb_shinfo(skb)->gso_size;
2513 unsigned int doffset = skb->data - skb_mac_header(skb);
2514 unsigned int offset = doffset;
2515 unsigned int headroom;
2516 unsigned int len;
2517 int sg = features & NETIF_F_SG;
2518 int nfrags = skb_shinfo(skb)->nr_frags;
2519 int err = -ENOMEM;
2520 int i = 0;
2521 int pos;
2522
2523 __skb_push(skb, doffset);
2524 headroom = skb_headroom(skb);
2525 pos = skb_headlen(skb);
2526
2527 do {
2528 struct sk_buff *nskb;
2529 skb_frag_t *frag;
2530 int hsize;
2531 int size;
2532
2533 len = skb->len - offset;
2534 if (len > mss)
2535 len = mss;
2536
2537 hsize = skb_headlen(skb) - offset;
2538 if (hsize < 0)
2539 hsize = 0;
2540 if (hsize > len || !sg)
2541 hsize = len;
2542
2543 if (!hsize && i >= nfrags) {
2544 BUG_ON(fskb->len != len);
2545
2546 pos += len;
2547 nskb = skb_clone(fskb, GFP_ATOMIC);
2548 fskb = fskb->next;
2549
2550 if (unlikely(!nskb))
2551 goto err;
2552
2553 hsize = skb_end_pointer(nskb) - nskb->head;
2554 if (skb_cow_head(nskb, doffset + headroom)) {
2555 kfree_skb(nskb);
2556 goto err;
2557 }
2558
2559 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2560 hsize;
2561 skb_release_head_state(nskb);
2562 __skb_push(nskb, doffset);
2563 } else {
2564 nskb = alloc_skb(hsize + doffset + headroom,
2565 GFP_ATOMIC);
2566
2567 if (unlikely(!nskb))
2568 goto err;
2569
2570 skb_reserve(nskb, headroom);
2571 __skb_put(nskb, doffset);
2572 }
2573
2574 if (segs)
2575 tail->next = nskb;
2576 else
2577 segs = nskb;
2578 tail = nskb;
2579
2580 __copy_skb_header(nskb, skb);
2581 nskb->mac_len = skb->mac_len;
2582
2583 skb_reset_mac_header(nskb);
2584 skb_set_network_header(nskb, skb->mac_len);
2585 nskb->transport_header = (nskb->network_header +
2586 skb_network_header_len(skb));
2587 skb_copy_from_linear_data(skb, nskb->data, doffset);
2588
2589 if (fskb != skb_shinfo(skb)->frag_list)
2590 continue;
2591
2592 if (!sg) {
2593 nskb->ip_summed = CHECKSUM_NONE;
2594 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2595 skb_put(nskb, len),
2596 len, 0);
2597 continue;
2598 }
2599
2600 frag = skb_shinfo(nskb)->frags;
2601
2602 skb_copy_from_linear_data_offset(skb, offset,
2603 skb_put(nskb, hsize), hsize);
2604
2605 while (pos < offset + len && i < nfrags) {
2606 *frag = skb_shinfo(skb)->frags[i];
2607 get_page(frag->page);
2608 size = frag->size;
2609
2610 if (pos < offset) {
2611 frag->page_offset += offset - pos;
2612 frag->size -= offset - pos;
2613 }
2614
2615 skb_shinfo(nskb)->nr_frags++;
2616
2617 if (pos + size <= offset + len) {
2618 i++;
2619 pos += size;
2620 } else {
2621 frag->size -= pos + size - (offset + len);
2622 goto skip_fraglist;
2623 }
2624
2625 frag++;
2626 }
2627
2628 if (pos < offset + len) {
2629 struct sk_buff *fskb2 = fskb;
2630
2631 BUG_ON(pos + fskb->len != offset + len);
2632
2633 pos += fskb->len;
2634 fskb = fskb->next;
2635
2636 if (fskb2->next) {
2637 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2638 if (!fskb2)
2639 goto err;
2640 } else
2641 skb_get(fskb2);
2642
2643 BUG_ON(skb_shinfo(nskb)->frag_list);
2644 skb_shinfo(nskb)->frag_list = fskb2;
2645 }
2646
2647 skip_fraglist:
2648 nskb->data_len = len - hsize;
2649 nskb->len += nskb->data_len;
2650 nskb->truesize += nskb->data_len;
2651 } while ((offset += len) < skb->len);
2652
2653 return segs;
2654
2655 err:
2656 while ((skb = segs)) {
2657 segs = skb->next;
2658 kfree_skb(skb);
2659 }
2660 return ERR_PTR(err);
2661 }
2662 EXPORT_SYMBOL_GPL(skb_segment);
2663
2664 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2665 {
2666 struct sk_buff *p = *head;
2667 struct sk_buff *nskb;
2668 unsigned int headroom;
2669 unsigned int len = skb_gro_len(skb);
2670
2671 if (p->len + len >= 65536)
2672 return -E2BIG;
2673
2674 if (skb_shinfo(p)->frag_list)
2675 goto merge;
2676 else if (skb_headlen(skb) <= skb_gro_offset(skb)) {
2677 if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags >
2678 MAX_SKB_FRAGS)
2679 return -E2BIG;
2680
2681 skb_shinfo(skb)->frags[0].page_offset +=
2682 skb_gro_offset(skb) - skb_headlen(skb);
2683 skb_shinfo(skb)->frags[0].size -=
2684 skb_gro_offset(skb) - skb_headlen(skb);
2685
2686 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2687 skb_shinfo(skb)->frags,
2688 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2689
2690 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2691 skb_shinfo(skb)->nr_frags = 0;
2692
2693 skb->truesize -= skb->data_len;
2694 skb->len -= skb->data_len;
2695 skb->data_len = 0;
2696
2697 NAPI_GRO_CB(skb)->free = 1;
2698 goto done;
2699 }
2700
2701 headroom = skb_headroom(p);
2702 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2703 if (unlikely(!nskb))
2704 return -ENOMEM;
2705
2706 __copy_skb_header(nskb, p);
2707 nskb->mac_len = p->mac_len;
2708
2709 skb_reserve(nskb, headroom);
2710 __skb_put(nskb, skb_gro_offset(p));
2711
2712 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2713 skb_set_network_header(nskb, skb_network_offset(p));
2714 skb_set_transport_header(nskb, skb_transport_offset(p));
2715
2716 __skb_pull(p, skb_gro_offset(p));
2717 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2718 p->data - skb_mac_header(p));
2719
2720 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2721 skb_shinfo(nskb)->frag_list = p;
2722 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2723 skb_header_release(p);
2724 nskb->prev = p;
2725
2726 nskb->data_len += p->len;
2727 nskb->truesize += p->len;
2728 nskb->len += p->len;
2729
2730 *head = nskb;
2731 nskb->next = p->next;
2732 p->next = NULL;
2733
2734 p = nskb;
2735
2736 merge:
2737 if (skb_gro_offset(skb) > skb_headlen(skb)) {
2738 skb_shinfo(skb)->frags[0].page_offset +=
2739 skb_gro_offset(skb) - skb_headlen(skb);
2740 skb_shinfo(skb)->frags[0].size -=
2741 skb_gro_offset(skb) - skb_headlen(skb);
2742 skb_gro_reset_offset(skb);
2743 skb_gro_pull(skb, skb_headlen(skb));
2744 }
2745
2746 __skb_pull(skb, skb_gro_offset(skb));
2747
2748 p->prev->next = skb;
2749 p->prev = skb;
2750 skb_header_release(skb);
2751
2752 done:
2753 NAPI_GRO_CB(p)->count++;
2754 p->data_len += len;
2755 p->truesize += len;
2756 p->len += len;
2757
2758 NAPI_GRO_CB(skb)->same_flow = 1;
2759 return 0;
2760 }
2761 EXPORT_SYMBOL_GPL(skb_gro_receive);
2762
2763 void __init skb_init(void)
2764 {
2765 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2766 sizeof(struct sk_buff),
2767 0,
2768 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2769 NULL);
2770 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2771 (2*sizeof(struct sk_buff)) +
2772 sizeof(atomic_t),
2773 0,
2774 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2775 NULL);
2776 }
2777
2778 /**
2779 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2780 * @skb: Socket buffer containing the buffers to be mapped
2781 * @sg: The scatter-gather list to map into
2782 * @offset: The offset into the buffer's contents to start mapping
2783 * @len: Length of buffer space to be mapped
2784 *
2785 * Fill the specified scatter-gather list with mappings/pointers into a
2786 * region of the buffer space attached to a socket buffer.
2787 */
2788 static int
2789 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2790 {
2791 int start = skb_headlen(skb);
2792 int i, copy = start - offset;
2793 int elt = 0;
2794
2795 if (copy > 0) {
2796 if (copy > len)
2797 copy = len;
2798 sg_set_buf(sg, skb->data + offset, copy);
2799 elt++;
2800 if ((len -= copy) == 0)
2801 return elt;
2802 offset += copy;
2803 }
2804
2805 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2806 int end;
2807
2808 WARN_ON(start > offset + len);
2809
2810 end = start + skb_shinfo(skb)->frags[i].size;
2811 if ((copy = end - offset) > 0) {
2812 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2813
2814 if (copy > len)
2815 copy = len;
2816 sg_set_page(&sg[elt], frag->page, copy,
2817 frag->page_offset+offset-start);
2818 elt++;
2819 if (!(len -= copy))
2820 return elt;
2821 offset += copy;
2822 }
2823 start = end;
2824 }
2825
2826 if (skb_shinfo(skb)->frag_list) {
2827 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2828
2829 for (; list; list = list->next) {
2830 int end;
2831
2832 WARN_ON(start > offset + len);
2833
2834 end = start + list->len;
2835 if ((copy = end - offset) > 0) {
2836 if (copy > len)
2837 copy = len;
2838 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2839 copy);
2840 if ((len -= copy) == 0)
2841 return elt;
2842 offset += copy;
2843 }
2844 start = end;
2845 }
2846 }
2847 BUG_ON(len);
2848 return elt;
2849 }
2850
2851 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2852 {
2853 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2854
2855 sg_mark_end(&sg[nsg - 1]);
2856
2857 return nsg;
2858 }
2859 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2860
2861 /**
2862 * skb_cow_data - Check that a socket buffer's data buffers are writable
2863 * @skb: The socket buffer to check.
2864 * @tailbits: Amount of trailing space to be added
2865 * @trailer: Returned pointer to the skb where the @tailbits space begins
2866 *
2867 * Make sure that the data buffers attached to a socket buffer are
2868 * writable. If they are not, private copies are made of the data buffers
2869 * and the socket buffer is set to use these instead.
2870 *
2871 * If @tailbits is given, make sure that there is space to write @tailbits
2872 * bytes of data beyond current end of socket buffer. @trailer will be
2873 * set to point to the skb in which this space begins.
2874 *
2875 * The number of scatterlist elements required to completely map the
2876 * COW'd and extended socket buffer will be returned.
2877 */
2878 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2879 {
2880 int copyflag;
2881 int elt;
2882 struct sk_buff *skb1, **skb_p;
2883
2884 /* If skb is cloned or its head is paged, reallocate
2885 * head pulling out all the pages (pages are considered not writable
2886 * at the moment even if they are anonymous).
2887 */
2888 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2889 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2890 return -ENOMEM;
2891
2892 /* Easy case. Most of packets will go this way. */
2893 if (!skb_shinfo(skb)->frag_list) {
2894 /* A little of trouble, not enough of space for trailer.
2895 * This should not happen, when stack is tuned to generate
2896 * good frames. OK, on miss we reallocate and reserve even more
2897 * space, 128 bytes is fair. */
2898
2899 if (skb_tailroom(skb) < tailbits &&
2900 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2901 return -ENOMEM;
2902
2903 /* Voila! */
2904 *trailer = skb;
2905 return 1;
2906 }
2907
2908 /* Misery. We are in troubles, going to mincer fragments... */
2909
2910 elt = 1;
2911 skb_p = &skb_shinfo(skb)->frag_list;
2912 copyflag = 0;
2913
2914 while ((skb1 = *skb_p) != NULL) {
2915 int ntail = 0;
2916
2917 /* The fragment is partially pulled by someone,
2918 * this can happen on input. Copy it and everything
2919 * after it. */
2920
2921 if (skb_shared(skb1))
2922 copyflag = 1;
2923
2924 /* If the skb is the last, worry about trailer. */
2925
2926 if (skb1->next == NULL && tailbits) {
2927 if (skb_shinfo(skb1)->nr_frags ||
2928 skb_shinfo(skb1)->frag_list ||
2929 skb_tailroom(skb1) < tailbits)
2930 ntail = tailbits + 128;
2931 }
2932
2933 if (copyflag ||
2934 skb_cloned(skb1) ||
2935 ntail ||
2936 skb_shinfo(skb1)->nr_frags ||
2937 skb_shinfo(skb1)->frag_list) {
2938 struct sk_buff *skb2;
2939
2940 /* Fuck, we are miserable poor guys... */
2941 if (ntail == 0)
2942 skb2 = skb_copy(skb1, GFP_ATOMIC);
2943 else
2944 skb2 = skb_copy_expand(skb1,
2945 skb_headroom(skb1),
2946 ntail,
2947 GFP_ATOMIC);
2948 if (unlikely(skb2 == NULL))
2949 return -ENOMEM;
2950
2951 if (skb1->sk)
2952 skb_set_owner_w(skb2, skb1->sk);
2953
2954 /* Looking around. Are we still alive?
2955 * OK, link new skb, drop old one */
2956
2957 skb2->next = skb1->next;
2958 *skb_p = skb2;
2959 kfree_skb(skb1);
2960 skb1 = skb2;
2961 }
2962 elt++;
2963 *trailer = skb1;
2964 skb_p = &skb1->next;
2965 }
2966
2967 return elt;
2968 }
2969 EXPORT_SYMBOL_GPL(skb_cow_data);
2970
2971 void skb_tstamp_tx(struct sk_buff *orig_skb,
2972 struct skb_shared_hwtstamps *hwtstamps)
2973 {
2974 struct sock *sk = orig_skb->sk;
2975 struct sock_exterr_skb *serr;
2976 struct sk_buff *skb;
2977 int err;
2978
2979 if (!sk)
2980 return;
2981
2982 skb = skb_clone(orig_skb, GFP_ATOMIC);
2983 if (!skb)
2984 return;
2985
2986 if (hwtstamps) {
2987 *skb_hwtstamps(skb) =
2988 *hwtstamps;
2989 } else {
2990 /*
2991 * no hardware time stamps available,
2992 * so keep the skb_shared_tx and only
2993 * store software time stamp
2994 */
2995 skb->tstamp = ktime_get_real();
2996 }
2997
2998 serr = SKB_EXT_ERR(skb);
2999 memset(serr, 0, sizeof(*serr));
3000 serr->ee.ee_errno = ENOMSG;
3001 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3002 err = sock_queue_err_skb(sk, skb);
3003 if (err)
3004 kfree_skb(skb);
3005 }
3006 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3007
3008
3009 /**
3010 * skb_partial_csum_set - set up and verify partial csum values for packet
3011 * @skb: the skb to set
3012 * @start: the number of bytes after skb->data to start checksumming.
3013 * @off: the offset from start to place the checksum.
3014 *
3015 * For untrusted partially-checksummed packets, we need to make sure the values
3016 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3017 *
3018 * This function checks and sets those values and skb->ip_summed: if this
3019 * returns false you should drop the packet.
3020 */
3021 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3022 {
3023 if (unlikely(start > skb->len - 2) ||
3024 unlikely((int)start + off > skb->len - 2)) {
3025 if (net_ratelimit())
3026 printk(KERN_WARNING
3027 "bad partial csum: csum=%u/%u len=%u\n",
3028 start, off, skb->len);
3029 return false;
3030 }
3031 skb->ip_summed = CHECKSUM_PARTIAL;
3032 skb->csum_start = skb_headroom(skb) + start;
3033 skb->csum_offset = off;
3034 return true;
3035 }
3036 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3037
3038 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3039 {
3040 if (net_ratelimit())
3041 pr_warning("%s: received packets cannot be forwarded"
3042 " while LRO is enabled\n", skb->dev->name);
3043 }
3044 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.096308 seconds and 5 git commands to generate.