gro: Fix illegal merging of trailer trash
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70
71 #include "kmap_skb.h"
72
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
78 {
79 put_page(buf->page);
80 }
81
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
84 {
85 get_page(buf->page);
86 }
87
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 return 1;
92 }
93
94
95 /* Pipe buffer operations for a socket. */
96 static struct pipe_buf_operations sock_pipe_buf_ops = {
97 .can_merge = 0,
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
104 };
105
106 /*
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
109 * reliable.
110 */
111
112 /**
113 * skb_over_panic - private function
114 * @skb: buffer
115 * @sz: size
116 * @here: address
117 *
118 * Out of line support code for skb_put(). Not user callable.
119 */
120 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129 EXPORT_SYMBOL(skb_over_panic);
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149 EXPORT_SYMBOL(skb_under_panic);
150
151 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
152 * 'private' fields and also do memory statistics to find all the
153 * [BEEP] leaks.
154 *
155 */
156
157 /**
158 * __alloc_skb - allocate a network buffer
159 * @size: size to allocate
160 * @gfp_mask: allocation mask
161 * @fclone: allocate from fclone cache instead of head cache
162 * and allocate a cloned (child) skb
163 * @node: numa node to allocate memory on
164 *
165 * Allocate a new &sk_buff. The returned buffer has no headroom and a
166 * tail room of size bytes. The object has a reference count of one.
167 * The return is the buffer. On a failure the return is %NULL.
168 *
169 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 * %GFP_ATOMIC.
171 */
172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
173 int fclone, int node)
174 {
175 struct kmem_cache *cache;
176 struct skb_shared_info *shinfo;
177 struct sk_buff *skb;
178 u8 *data;
179
180 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181
182 /* Get the HEAD */
183 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
184 if (!skb)
185 goto out;
186
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192
193 /*
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
197 */
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 kmemcheck_annotate_bitfield(skb, flags1);
206 kmemcheck_annotate_bitfield(skb, flags2);
207 #ifdef NET_SKBUFF_DATA_USES_OFFSET
208 skb->mac_header = ~0U;
209 #endif
210
211 /* make sure we initialize shinfo sequentially */
212 shinfo = skb_shinfo(skb);
213 atomic_set(&shinfo->dataref, 1);
214 shinfo->nr_frags = 0;
215 shinfo->gso_size = 0;
216 shinfo->gso_segs = 0;
217 shinfo->gso_type = 0;
218 shinfo->ip6_frag_id = 0;
219 shinfo->tx_flags.flags = 0;
220 skb_frag_list_init(skb);
221 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
222
223 if (fclone) {
224 struct sk_buff *child = skb + 1;
225 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226
227 kmemcheck_annotate_bitfield(child, flags1);
228 kmemcheck_annotate_bitfield(child, flags2);
229 skb->fclone = SKB_FCLONE_ORIG;
230 atomic_set(fclone_ref, 1);
231
232 child->fclone = SKB_FCLONE_UNAVAILABLE;
233 }
234 out:
235 return skb;
236 nodata:
237 kmem_cache_free(cache, skb);
238 skb = NULL;
239 goto out;
240 }
241 EXPORT_SYMBOL(__alloc_skb);
242
243 /**
244 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
245 * @dev: network device to receive on
246 * @length: length to allocate
247 * @gfp_mask: get_free_pages mask, passed to alloc_skb
248 *
249 * Allocate a new &sk_buff and assign it a usage count of one. The
250 * buffer has unspecified headroom built in. Users should allocate
251 * the headroom they think they need without accounting for the
252 * built in space. The built in space is used for optimisations.
253 *
254 * %NULL is returned if there is no free memory.
255 */
256 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
257 unsigned int length, gfp_t gfp_mask)
258 {
259 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
260 struct sk_buff *skb;
261
262 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
263 if (likely(skb)) {
264 skb_reserve(skb, NET_SKB_PAD);
265 skb->dev = dev;
266 }
267 return skb;
268 }
269 EXPORT_SYMBOL(__netdev_alloc_skb);
270
271 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
272 {
273 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
274 struct page *page;
275
276 page = alloc_pages_node(node, gfp_mask, 0);
277 return page;
278 }
279 EXPORT_SYMBOL(__netdev_alloc_page);
280
281 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
282 int size)
283 {
284 skb_fill_page_desc(skb, i, page, off, size);
285 skb->len += size;
286 skb->data_len += size;
287 skb->truesize += size;
288 }
289 EXPORT_SYMBOL(skb_add_rx_frag);
290
291 /**
292 * dev_alloc_skb - allocate an skbuff for receiving
293 * @length: length to allocate
294 *
295 * Allocate a new &sk_buff and assign it a usage count of one. The
296 * buffer has unspecified headroom built in. Users should allocate
297 * the headroom they think they need without accounting for the
298 * built in space. The built in space is used for optimisations.
299 *
300 * %NULL is returned if there is no free memory. Although this function
301 * allocates memory it can be called from an interrupt.
302 */
303 struct sk_buff *dev_alloc_skb(unsigned int length)
304 {
305 /*
306 * There is more code here than it seems:
307 * __dev_alloc_skb is an inline
308 */
309 return __dev_alloc_skb(length, GFP_ATOMIC);
310 }
311 EXPORT_SYMBOL(dev_alloc_skb);
312
313 static void skb_drop_list(struct sk_buff **listp)
314 {
315 struct sk_buff *list = *listp;
316
317 *listp = NULL;
318
319 do {
320 struct sk_buff *this = list;
321 list = list->next;
322 kfree_skb(this);
323 } while (list);
324 }
325
326 static inline void skb_drop_fraglist(struct sk_buff *skb)
327 {
328 skb_drop_list(&skb_shinfo(skb)->frag_list);
329 }
330
331 static void skb_clone_fraglist(struct sk_buff *skb)
332 {
333 struct sk_buff *list;
334
335 skb_walk_frags(skb, list)
336 skb_get(list);
337 }
338
339 static void skb_release_data(struct sk_buff *skb)
340 {
341 if (!skb->cloned ||
342 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
343 &skb_shinfo(skb)->dataref)) {
344 if (skb_shinfo(skb)->nr_frags) {
345 int i;
346 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
347 put_page(skb_shinfo(skb)->frags[i].page);
348 }
349
350 if (skb_has_frags(skb))
351 skb_drop_fraglist(skb);
352
353 kfree(skb->head);
354 }
355 }
356
357 /*
358 * Free an skbuff by memory without cleaning the state.
359 */
360 static void kfree_skbmem(struct sk_buff *skb)
361 {
362 struct sk_buff *other;
363 atomic_t *fclone_ref;
364
365 switch (skb->fclone) {
366 case SKB_FCLONE_UNAVAILABLE:
367 kmem_cache_free(skbuff_head_cache, skb);
368 break;
369
370 case SKB_FCLONE_ORIG:
371 fclone_ref = (atomic_t *) (skb + 2);
372 if (atomic_dec_and_test(fclone_ref))
373 kmem_cache_free(skbuff_fclone_cache, skb);
374 break;
375
376 case SKB_FCLONE_CLONE:
377 fclone_ref = (atomic_t *) (skb + 1);
378 other = skb - 1;
379
380 /* The clone portion is available for
381 * fast-cloning again.
382 */
383 skb->fclone = SKB_FCLONE_UNAVAILABLE;
384
385 if (atomic_dec_and_test(fclone_ref))
386 kmem_cache_free(skbuff_fclone_cache, other);
387 break;
388 }
389 }
390
391 static void skb_release_head_state(struct sk_buff *skb)
392 {
393 skb_dst_drop(skb);
394 #ifdef CONFIG_XFRM
395 secpath_put(skb->sp);
396 #endif
397 if (skb->destructor) {
398 WARN_ON(in_irq());
399 skb->destructor(skb);
400 }
401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
402 nf_conntrack_put(skb->nfct);
403 nf_conntrack_put_reasm(skb->nfct_reasm);
404 #endif
405 #ifdef CONFIG_BRIDGE_NETFILTER
406 nf_bridge_put(skb->nf_bridge);
407 #endif
408 /* XXX: IS this still necessary? - JHS */
409 #ifdef CONFIG_NET_SCHED
410 skb->tc_index = 0;
411 #ifdef CONFIG_NET_CLS_ACT
412 skb->tc_verd = 0;
413 #endif
414 #endif
415 }
416
417 /* Free everything but the sk_buff shell. */
418 static void skb_release_all(struct sk_buff *skb)
419 {
420 skb_release_head_state(skb);
421 skb_release_data(skb);
422 }
423
424 /**
425 * __kfree_skb - private function
426 * @skb: buffer
427 *
428 * Free an sk_buff. Release anything attached to the buffer.
429 * Clean the state. This is an internal helper function. Users should
430 * always call kfree_skb
431 */
432
433 void __kfree_skb(struct sk_buff *skb)
434 {
435 skb_release_all(skb);
436 kfree_skbmem(skb);
437 }
438 EXPORT_SYMBOL(__kfree_skb);
439
440 /**
441 * kfree_skb - free an sk_buff
442 * @skb: buffer to free
443 *
444 * Drop a reference to the buffer and free it if the usage count has
445 * hit zero.
446 */
447 void kfree_skb(struct sk_buff *skb)
448 {
449 if (unlikely(!skb))
450 return;
451 if (likely(atomic_read(&skb->users) == 1))
452 smp_rmb();
453 else if (likely(!atomic_dec_and_test(&skb->users)))
454 return;
455 trace_kfree_skb(skb, __builtin_return_address(0));
456 __kfree_skb(skb);
457 }
458 EXPORT_SYMBOL(kfree_skb);
459
460 /**
461 * consume_skb - free an skbuff
462 * @skb: buffer to free
463 *
464 * Drop a ref to the buffer and free it if the usage count has hit zero
465 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
466 * is being dropped after a failure and notes that
467 */
468 void consume_skb(struct sk_buff *skb)
469 {
470 if (unlikely(!skb))
471 return;
472 if (likely(atomic_read(&skb->users) == 1))
473 smp_rmb();
474 else if (likely(!atomic_dec_and_test(&skb->users)))
475 return;
476 __kfree_skb(skb);
477 }
478 EXPORT_SYMBOL(consume_skb);
479
480 /**
481 * skb_recycle_check - check if skb can be reused for receive
482 * @skb: buffer
483 * @skb_size: minimum receive buffer size
484 *
485 * Checks that the skb passed in is not shared or cloned, and
486 * that it is linear and its head portion at least as large as
487 * skb_size so that it can be recycled as a receive buffer.
488 * If these conditions are met, this function does any necessary
489 * reference count dropping and cleans up the skbuff as if it
490 * just came from __alloc_skb().
491 */
492 int skb_recycle_check(struct sk_buff *skb, int skb_size)
493 {
494 struct skb_shared_info *shinfo;
495
496 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
497 return 0;
498
499 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
500 if (skb_end_pointer(skb) - skb->head < skb_size)
501 return 0;
502
503 if (skb_shared(skb) || skb_cloned(skb))
504 return 0;
505
506 skb_release_head_state(skb);
507 shinfo = skb_shinfo(skb);
508 atomic_set(&shinfo->dataref, 1);
509 shinfo->nr_frags = 0;
510 shinfo->gso_size = 0;
511 shinfo->gso_segs = 0;
512 shinfo->gso_type = 0;
513 shinfo->ip6_frag_id = 0;
514 shinfo->tx_flags.flags = 0;
515 skb_frag_list_init(skb);
516 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
517
518 memset(skb, 0, offsetof(struct sk_buff, tail));
519 skb->data = skb->head + NET_SKB_PAD;
520 skb_reset_tail_pointer(skb);
521
522 return 1;
523 }
524 EXPORT_SYMBOL(skb_recycle_check);
525
526 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
527 {
528 new->tstamp = old->tstamp;
529 new->dev = old->dev;
530 new->transport_header = old->transport_header;
531 new->network_header = old->network_header;
532 new->mac_header = old->mac_header;
533 skb_dst_set(new, dst_clone(skb_dst(old)));
534 #ifdef CONFIG_XFRM
535 new->sp = secpath_get(old->sp);
536 #endif
537 memcpy(new->cb, old->cb, sizeof(old->cb));
538 new->csum = old->csum;
539 new->local_df = old->local_df;
540 new->pkt_type = old->pkt_type;
541 new->ip_summed = old->ip_summed;
542 skb_copy_queue_mapping(new, old);
543 new->priority = old->priority;
544 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
545 new->ipvs_property = old->ipvs_property;
546 #endif
547 new->protocol = old->protocol;
548 new->mark = old->mark;
549 new->iif = old->iif;
550 __nf_copy(new, old);
551 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
552 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
553 new->nf_trace = old->nf_trace;
554 #endif
555 #ifdef CONFIG_NET_SCHED
556 new->tc_index = old->tc_index;
557 #ifdef CONFIG_NET_CLS_ACT
558 new->tc_verd = old->tc_verd;
559 #endif
560 #endif
561 new->vlan_tci = old->vlan_tci;
562
563 skb_copy_secmark(new, old);
564 }
565
566 /*
567 * You should not add any new code to this function. Add it to
568 * __copy_skb_header above instead.
569 */
570 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
571 {
572 #define C(x) n->x = skb->x
573
574 n->next = n->prev = NULL;
575 n->sk = NULL;
576 __copy_skb_header(n, skb);
577
578 C(len);
579 C(data_len);
580 C(mac_len);
581 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
582 n->cloned = 1;
583 n->nohdr = 0;
584 n->destructor = NULL;
585 C(tail);
586 C(end);
587 C(head);
588 C(data);
589 C(truesize);
590 atomic_set(&n->users, 1);
591
592 atomic_inc(&(skb_shinfo(skb)->dataref));
593 skb->cloned = 1;
594
595 return n;
596 #undef C
597 }
598
599 /**
600 * skb_morph - morph one skb into another
601 * @dst: the skb to receive the contents
602 * @src: the skb to supply the contents
603 *
604 * This is identical to skb_clone except that the target skb is
605 * supplied by the user.
606 *
607 * The target skb is returned upon exit.
608 */
609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
610 {
611 skb_release_all(dst);
612 return __skb_clone(dst, src);
613 }
614 EXPORT_SYMBOL_GPL(skb_morph);
615
616 /**
617 * skb_clone - duplicate an sk_buff
618 * @skb: buffer to clone
619 * @gfp_mask: allocation priority
620 *
621 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
622 * copies share the same packet data but not structure. The new
623 * buffer has a reference count of 1. If the allocation fails the
624 * function returns %NULL otherwise the new buffer is returned.
625 *
626 * If this function is called from an interrupt gfp_mask() must be
627 * %GFP_ATOMIC.
628 */
629
630 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
631 {
632 struct sk_buff *n;
633
634 n = skb + 1;
635 if (skb->fclone == SKB_FCLONE_ORIG &&
636 n->fclone == SKB_FCLONE_UNAVAILABLE) {
637 atomic_t *fclone_ref = (atomic_t *) (n + 1);
638 n->fclone = SKB_FCLONE_CLONE;
639 atomic_inc(fclone_ref);
640 } else {
641 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
642 if (!n)
643 return NULL;
644
645 kmemcheck_annotate_bitfield(n, flags1);
646 kmemcheck_annotate_bitfield(n, flags2);
647 n->fclone = SKB_FCLONE_UNAVAILABLE;
648 }
649
650 return __skb_clone(n, skb);
651 }
652 EXPORT_SYMBOL(skb_clone);
653
654 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
655 {
656 #ifndef NET_SKBUFF_DATA_USES_OFFSET
657 /*
658 * Shift between the two data areas in bytes
659 */
660 unsigned long offset = new->data - old->data;
661 #endif
662
663 __copy_skb_header(new, old);
664
665 #ifndef NET_SKBUFF_DATA_USES_OFFSET
666 /* {transport,network,mac}_header are relative to skb->head */
667 new->transport_header += offset;
668 new->network_header += offset;
669 if (skb_mac_header_was_set(new))
670 new->mac_header += offset;
671 #endif
672 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
673 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
674 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
675 }
676
677 /**
678 * skb_copy - create private copy of an sk_buff
679 * @skb: buffer to copy
680 * @gfp_mask: allocation priority
681 *
682 * Make a copy of both an &sk_buff and its data. This is used when the
683 * caller wishes to modify the data and needs a private copy of the
684 * data to alter. Returns %NULL on failure or the pointer to the buffer
685 * on success. The returned buffer has a reference count of 1.
686 *
687 * As by-product this function converts non-linear &sk_buff to linear
688 * one, so that &sk_buff becomes completely private and caller is allowed
689 * to modify all the data of returned buffer. This means that this
690 * function is not recommended for use in circumstances when only
691 * header is going to be modified. Use pskb_copy() instead.
692 */
693
694 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
695 {
696 int headerlen = skb->data - skb->head;
697 /*
698 * Allocate the copy buffer
699 */
700 struct sk_buff *n;
701 #ifdef NET_SKBUFF_DATA_USES_OFFSET
702 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
703 #else
704 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
705 #endif
706 if (!n)
707 return NULL;
708
709 /* Set the data pointer */
710 skb_reserve(n, headerlen);
711 /* Set the tail pointer and length */
712 skb_put(n, skb->len);
713
714 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
715 BUG();
716
717 copy_skb_header(n, skb);
718 return n;
719 }
720 EXPORT_SYMBOL(skb_copy);
721
722 /**
723 * pskb_copy - create copy of an sk_buff with private head.
724 * @skb: buffer to copy
725 * @gfp_mask: allocation priority
726 *
727 * Make a copy of both an &sk_buff and part of its data, located
728 * in header. Fragmented data remain shared. This is used when
729 * the caller wishes to modify only header of &sk_buff and needs
730 * private copy of the header to alter. Returns %NULL on failure
731 * or the pointer to the buffer on success.
732 * The returned buffer has a reference count of 1.
733 */
734
735 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
736 {
737 /*
738 * Allocate the copy buffer
739 */
740 struct sk_buff *n;
741 #ifdef NET_SKBUFF_DATA_USES_OFFSET
742 n = alloc_skb(skb->end, gfp_mask);
743 #else
744 n = alloc_skb(skb->end - skb->head, gfp_mask);
745 #endif
746 if (!n)
747 goto out;
748
749 /* Set the data pointer */
750 skb_reserve(n, skb->data - skb->head);
751 /* Set the tail pointer and length */
752 skb_put(n, skb_headlen(skb));
753 /* Copy the bytes */
754 skb_copy_from_linear_data(skb, n->data, n->len);
755
756 n->truesize += skb->data_len;
757 n->data_len = skb->data_len;
758 n->len = skb->len;
759
760 if (skb_shinfo(skb)->nr_frags) {
761 int i;
762
763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
764 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
765 get_page(skb_shinfo(n)->frags[i].page);
766 }
767 skb_shinfo(n)->nr_frags = i;
768 }
769
770 if (skb_has_frags(skb)) {
771 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
772 skb_clone_fraglist(n);
773 }
774
775 copy_skb_header(n, skb);
776 out:
777 return n;
778 }
779 EXPORT_SYMBOL(pskb_copy);
780
781 /**
782 * pskb_expand_head - reallocate header of &sk_buff
783 * @skb: buffer to reallocate
784 * @nhead: room to add at head
785 * @ntail: room to add at tail
786 * @gfp_mask: allocation priority
787 *
788 * Expands (or creates identical copy, if &nhead and &ntail are zero)
789 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
790 * reference count of 1. Returns zero in the case of success or error,
791 * if expansion failed. In the last case, &sk_buff is not changed.
792 *
793 * All the pointers pointing into skb header may change and must be
794 * reloaded after call to this function.
795 */
796
797 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
798 gfp_t gfp_mask)
799 {
800 int i;
801 u8 *data;
802 #ifdef NET_SKBUFF_DATA_USES_OFFSET
803 int size = nhead + skb->end + ntail;
804 #else
805 int size = nhead + (skb->end - skb->head) + ntail;
806 #endif
807 long off;
808
809 BUG_ON(nhead < 0);
810
811 if (skb_shared(skb))
812 BUG();
813
814 size = SKB_DATA_ALIGN(size);
815
816 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
817 if (!data)
818 goto nodata;
819
820 /* Copy only real data... and, alas, header. This should be
821 * optimized for the cases when header is void. */
822 #ifdef NET_SKBUFF_DATA_USES_OFFSET
823 memcpy(data + nhead, skb->head, skb->tail);
824 #else
825 memcpy(data + nhead, skb->head, skb->tail - skb->head);
826 #endif
827 memcpy(data + size, skb_end_pointer(skb),
828 sizeof(struct skb_shared_info));
829
830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
831 get_page(skb_shinfo(skb)->frags[i].page);
832
833 if (skb_has_frags(skb))
834 skb_clone_fraglist(skb);
835
836 skb_release_data(skb);
837
838 off = (data + nhead) - skb->head;
839
840 skb->head = data;
841 skb->data += off;
842 #ifdef NET_SKBUFF_DATA_USES_OFFSET
843 skb->end = size;
844 off = nhead;
845 #else
846 skb->end = skb->head + size;
847 #endif
848 /* {transport,network,mac}_header and tail are relative to skb->head */
849 skb->tail += off;
850 skb->transport_header += off;
851 skb->network_header += off;
852 if (skb_mac_header_was_set(skb))
853 skb->mac_header += off;
854 skb->csum_start += nhead;
855 skb->cloned = 0;
856 skb->hdr_len = 0;
857 skb->nohdr = 0;
858 atomic_set(&skb_shinfo(skb)->dataref, 1);
859 return 0;
860
861 nodata:
862 return -ENOMEM;
863 }
864 EXPORT_SYMBOL(pskb_expand_head);
865
866 /* Make private copy of skb with writable head and some headroom */
867
868 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
869 {
870 struct sk_buff *skb2;
871 int delta = headroom - skb_headroom(skb);
872
873 if (delta <= 0)
874 skb2 = pskb_copy(skb, GFP_ATOMIC);
875 else {
876 skb2 = skb_clone(skb, GFP_ATOMIC);
877 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
878 GFP_ATOMIC)) {
879 kfree_skb(skb2);
880 skb2 = NULL;
881 }
882 }
883 return skb2;
884 }
885 EXPORT_SYMBOL(skb_realloc_headroom);
886
887 /**
888 * skb_copy_expand - copy and expand sk_buff
889 * @skb: buffer to copy
890 * @newheadroom: new free bytes at head
891 * @newtailroom: new free bytes at tail
892 * @gfp_mask: allocation priority
893 *
894 * Make a copy of both an &sk_buff and its data and while doing so
895 * allocate additional space.
896 *
897 * This is used when the caller wishes to modify the data and needs a
898 * private copy of the data to alter as well as more space for new fields.
899 * Returns %NULL on failure or the pointer to the buffer
900 * on success. The returned buffer has a reference count of 1.
901 *
902 * You must pass %GFP_ATOMIC as the allocation priority if this function
903 * is called from an interrupt.
904 */
905 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
906 int newheadroom, int newtailroom,
907 gfp_t gfp_mask)
908 {
909 /*
910 * Allocate the copy buffer
911 */
912 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
913 gfp_mask);
914 int oldheadroom = skb_headroom(skb);
915 int head_copy_len, head_copy_off;
916 int off;
917
918 if (!n)
919 return NULL;
920
921 skb_reserve(n, newheadroom);
922
923 /* Set the tail pointer and length */
924 skb_put(n, skb->len);
925
926 head_copy_len = oldheadroom;
927 head_copy_off = 0;
928 if (newheadroom <= head_copy_len)
929 head_copy_len = newheadroom;
930 else
931 head_copy_off = newheadroom - head_copy_len;
932
933 /* Copy the linear header and data. */
934 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
935 skb->len + head_copy_len))
936 BUG();
937
938 copy_skb_header(n, skb);
939
940 off = newheadroom - oldheadroom;
941 n->csum_start += off;
942 #ifdef NET_SKBUFF_DATA_USES_OFFSET
943 n->transport_header += off;
944 n->network_header += off;
945 if (skb_mac_header_was_set(skb))
946 n->mac_header += off;
947 #endif
948
949 return n;
950 }
951 EXPORT_SYMBOL(skb_copy_expand);
952
953 /**
954 * skb_pad - zero pad the tail of an skb
955 * @skb: buffer to pad
956 * @pad: space to pad
957 *
958 * Ensure that a buffer is followed by a padding area that is zero
959 * filled. Used by network drivers which may DMA or transfer data
960 * beyond the buffer end onto the wire.
961 *
962 * May return error in out of memory cases. The skb is freed on error.
963 */
964
965 int skb_pad(struct sk_buff *skb, int pad)
966 {
967 int err;
968 int ntail;
969
970 /* If the skbuff is non linear tailroom is always zero.. */
971 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
972 memset(skb->data+skb->len, 0, pad);
973 return 0;
974 }
975
976 ntail = skb->data_len + pad - (skb->end - skb->tail);
977 if (likely(skb_cloned(skb) || ntail > 0)) {
978 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
979 if (unlikely(err))
980 goto free_skb;
981 }
982
983 /* FIXME: The use of this function with non-linear skb's really needs
984 * to be audited.
985 */
986 err = skb_linearize(skb);
987 if (unlikely(err))
988 goto free_skb;
989
990 memset(skb->data + skb->len, 0, pad);
991 return 0;
992
993 free_skb:
994 kfree_skb(skb);
995 return err;
996 }
997 EXPORT_SYMBOL(skb_pad);
998
999 /**
1000 * skb_put - add data to a buffer
1001 * @skb: buffer to use
1002 * @len: amount of data to add
1003 *
1004 * This function extends the used data area of the buffer. If this would
1005 * exceed the total buffer size the kernel will panic. A pointer to the
1006 * first byte of the extra data is returned.
1007 */
1008 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1009 {
1010 unsigned char *tmp = skb_tail_pointer(skb);
1011 SKB_LINEAR_ASSERT(skb);
1012 skb->tail += len;
1013 skb->len += len;
1014 if (unlikely(skb->tail > skb->end))
1015 skb_over_panic(skb, len, __builtin_return_address(0));
1016 return tmp;
1017 }
1018 EXPORT_SYMBOL(skb_put);
1019
1020 /**
1021 * skb_push - add data to the start of a buffer
1022 * @skb: buffer to use
1023 * @len: amount of data to add
1024 *
1025 * This function extends the used data area of the buffer at the buffer
1026 * start. If this would exceed the total buffer headroom the kernel will
1027 * panic. A pointer to the first byte of the extra data is returned.
1028 */
1029 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1030 {
1031 skb->data -= len;
1032 skb->len += len;
1033 if (unlikely(skb->data<skb->head))
1034 skb_under_panic(skb, len, __builtin_return_address(0));
1035 return skb->data;
1036 }
1037 EXPORT_SYMBOL(skb_push);
1038
1039 /**
1040 * skb_pull - remove data from the start of a buffer
1041 * @skb: buffer to use
1042 * @len: amount of data to remove
1043 *
1044 * This function removes data from the start of a buffer, returning
1045 * the memory to the headroom. A pointer to the next data in the buffer
1046 * is returned. Once the data has been pulled future pushes will overwrite
1047 * the old data.
1048 */
1049 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1050 {
1051 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1052 }
1053 EXPORT_SYMBOL(skb_pull);
1054
1055 /**
1056 * skb_trim - remove end from a buffer
1057 * @skb: buffer to alter
1058 * @len: new length
1059 *
1060 * Cut the length of a buffer down by removing data from the tail. If
1061 * the buffer is already under the length specified it is not modified.
1062 * The skb must be linear.
1063 */
1064 void skb_trim(struct sk_buff *skb, unsigned int len)
1065 {
1066 if (skb->len > len)
1067 __skb_trim(skb, len);
1068 }
1069 EXPORT_SYMBOL(skb_trim);
1070
1071 /* Trims skb to length len. It can change skb pointers.
1072 */
1073
1074 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1075 {
1076 struct sk_buff **fragp;
1077 struct sk_buff *frag;
1078 int offset = skb_headlen(skb);
1079 int nfrags = skb_shinfo(skb)->nr_frags;
1080 int i;
1081 int err;
1082
1083 if (skb_cloned(skb) &&
1084 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1085 return err;
1086
1087 i = 0;
1088 if (offset >= len)
1089 goto drop_pages;
1090
1091 for (; i < nfrags; i++) {
1092 int end = offset + skb_shinfo(skb)->frags[i].size;
1093
1094 if (end < len) {
1095 offset = end;
1096 continue;
1097 }
1098
1099 skb_shinfo(skb)->frags[i++].size = len - offset;
1100
1101 drop_pages:
1102 skb_shinfo(skb)->nr_frags = i;
1103
1104 for (; i < nfrags; i++)
1105 put_page(skb_shinfo(skb)->frags[i].page);
1106
1107 if (skb_has_frags(skb))
1108 skb_drop_fraglist(skb);
1109 goto done;
1110 }
1111
1112 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1113 fragp = &frag->next) {
1114 int end = offset + frag->len;
1115
1116 if (skb_shared(frag)) {
1117 struct sk_buff *nfrag;
1118
1119 nfrag = skb_clone(frag, GFP_ATOMIC);
1120 if (unlikely(!nfrag))
1121 return -ENOMEM;
1122
1123 nfrag->next = frag->next;
1124 kfree_skb(frag);
1125 frag = nfrag;
1126 *fragp = frag;
1127 }
1128
1129 if (end < len) {
1130 offset = end;
1131 continue;
1132 }
1133
1134 if (end > len &&
1135 unlikely((err = pskb_trim(frag, len - offset))))
1136 return err;
1137
1138 if (frag->next)
1139 skb_drop_list(&frag->next);
1140 break;
1141 }
1142
1143 done:
1144 if (len > skb_headlen(skb)) {
1145 skb->data_len -= skb->len - len;
1146 skb->len = len;
1147 } else {
1148 skb->len = len;
1149 skb->data_len = 0;
1150 skb_set_tail_pointer(skb, len);
1151 }
1152
1153 return 0;
1154 }
1155 EXPORT_SYMBOL(___pskb_trim);
1156
1157 /**
1158 * __pskb_pull_tail - advance tail of skb header
1159 * @skb: buffer to reallocate
1160 * @delta: number of bytes to advance tail
1161 *
1162 * The function makes a sense only on a fragmented &sk_buff,
1163 * it expands header moving its tail forward and copying necessary
1164 * data from fragmented part.
1165 *
1166 * &sk_buff MUST have reference count of 1.
1167 *
1168 * Returns %NULL (and &sk_buff does not change) if pull failed
1169 * or value of new tail of skb in the case of success.
1170 *
1171 * All the pointers pointing into skb header may change and must be
1172 * reloaded after call to this function.
1173 */
1174
1175 /* Moves tail of skb head forward, copying data from fragmented part,
1176 * when it is necessary.
1177 * 1. It may fail due to malloc failure.
1178 * 2. It may change skb pointers.
1179 *
1180 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1181 */
1182 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1183 {
1184 /* If skb has not enough free space at tail, get new one
1185 * plus 128 bytes for future expansions. If we have enough
1186 * room at tail, reallocate without expansion only if skb is cloned.
1187 */
1188 int i, k, eat = (skb->tail + delta) - skb->end;
1189
1190 if (eat > 0 || skb_cloned(skb)) {
1191 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1192 GFP_ATOMIC))
1193 return NULL;
1194 }
1195
1196 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1197 BUG();
1198
1199 /* Optimization: no fragments, no reasons to preestimate
1200 * size of pulled pages. Superb.
1201 */
1202 if (!skb_has_frags(skb))
1203 goto pull_pages;
1204
1205 /* Estimate size of pulled pages. */
1206 eat = delta;
1207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1208 if (skb_shinfo(skb)->frags[i].size >= eat)
1209 goto pull_pages;
1210 eat -= skb_shinfo(skb)->frags[i].size;
1211 }
1212
1213 /* If we need update frag list, we are in troubles.
1214 * Certainly, it possible to add an offset to skb data,
1215 * but taking into account that pulling is expected to
1216 * be very rare operation, it is worth to fight against
1217 * further bloating skb head and crucify ourselves here instead.
1218 * Pure masohism, indeed. 8)8)
1219 */
1220 if (eat) {
1221 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1222 struct sk_buff *clone = NULL;
1223 struct sk_buff *insp = NULL;
1224
1225 do {
1226 BUG_ON(!list);
1227
1228 if (list->len <= eat) {
1229 /* Eaten as whole. */
1230 eat -= list->len;
1231 list = list->next;
1232 insp = list;
1233 } else {
1234 /* Eaten partially. */
1235
1236 if (skb_shared(list)) {
1237 /* Sucks! We need to fork list. :-( */
1238 clone = skb_clone(list, GFP_ATOMIC);
1239 if (!clone)
1240 return NULL;
1241 insp = list->next;
1242 list = clone;
1243 } else {
1244 /* This may be pulled without
1245 * problems. */
1246 insp = list;
1247 }
1248 if (!pskb_pull(list, eat)) {
1249 kfree_skb(clone);
1250 return NULL;
1251 }
1252 break;
1253 }
1254 } while (eat);
1255
1256 /* Free pulled out fragments. */
1257 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1258 skb_shinfo(skb)->frag_list = list->next;
1259 kfree_skb(list);
1260 }
1261 /* And insert new clone at head. */
1262 if (clone) {
1263 clone->next = list;
1264 skb_shinfo(skb)->frag_list = clone;
1265 }
1266 }
1267 /* Success! Now we may commit changes to skb data. */
1268
1269 pull_pages:
1270 eat = delta;
1271 k = 0;
1272 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1273 if (skb_shinfo(skb)->frags[i].size <= eat) {
1274 put_page(skb_shinfo(skb)->frags[i].page);
1275 eat -= skb_shinfo(skb)->frags[i].size;
1276 } else {
1277 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1278 if (eat) {
1279 skb_shinfo(skb)->frags[k].page_offset += eat;
1280 skb_shinfo(skb)->frags[k].size -= eat;
1281 eat = 0;
1282 }
1283 k++;
1284 }
1285 }
1286 skb_shinfo(skb)->nr_frags = k;
1287
1288 skb->tail += delta;
1289 skb->data_len -= delta;
1290
1291 return skb_tail_pointer(skb);
1292 }
1293 EXPORT_SYMBOL(__pskb_pull_tail);
1294
1295 /* Copy some data bits from skb to kernel buffer. */
1296
1297 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1298 {
1299 int start = skb_headlen(skb);
1300 struct sk_buff *frag_iter;
1301 int i, copy;
1302
1303 if (offset > (int)skb->len - len)
1304 goto fault;
1305
1306 /* Copy header. */
1307 if ((copy = start - offset) > 0) {
1308 if (copy > len)
1309 copy = len;
1310 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1311 if ((len -= copy) == 0)
1312 return 0;
1313 offset += copy;
1314 to += copy;
1315 }
1316
1317 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1318 int end;
1319
1320 WARN_ON(start > offset + len);
1321
1322 end = start + skb_shinfo(skb)->frags[i].size;
1323 if ((copy = end - offset) > 0) {
1324 u8 *vaddr;
1325
1326 if (copy > len)
1327 copy = len;
1328
1329 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1330 memcpy(to,
1331 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1332 offset - start, copy);
1333 kunmap_skb_frag(vaddr);
1334
1335 if ((len -= copy) == 0)
1336 return 0;
1337 offset += copy;
1338 to += copy;
1339 }
1340 start = end;
1341 }
1342
1343 skb_walk_frags(skb, frag_iter) {
1344 int end;
1345
1346 WARN_ON(start > offset + len);
1347
1348 end = start + frag_iter->len;
1349 if ((copy = end - offset) > 0) {
1350 if (copy > len)
1351 copy = len;
1352 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1353 goto fault;
1354 if ((len -= copy) == 0)
1355 return 0;
1356 offset += copy;
1357 to += copy;
1358 }
1359 start = end;
1360 }
1361 if (!len)
1362 return 0;
1363
1364 fault:
1365 return -EFAULT;
1366 }
1367 EXPORT_SYMBOL(skb_copy_bits);
1368
1369 /*
1370 * Callback from splice_to_pipe(), if we need to release some pages
1371 * at the end of the spd in case we error'ed out in filling the pipe.
1372 */
1373 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1374 {
1375 put_page(spd->pages[i]);
1376 }
1377
1378 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1379 unsigned int *offset,
1380 struct sk_buff *skb, struct sock *sk)
1381 {
1382 struct page *p = sk->sk_sndmsg_page;
1383 unsigned int off;
1384
1385 if (!p) {
1386 new_page:
1387 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1388 if (!p)
1389 return NULL;
1390
1391 off = sk->sk_sndmsg_off = 0;
1392 /* hold one ref to this page until it's full */
1393 } else {
1394 unsigned int mlen;
1395
1396 off = sk->sk_sndmsg_off;
1397 mlen = PAGE_SIZE - off;
1398 if (mlen < 64 && mlen < *len) {
1399 put_page(p);
1400 goto new_page;
1401 }
1402
1403 *len = min_t(unsigned int, *len, mlen);
1404 }
1405
1406 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1407 sk->sk_sndmsg_off += *len;
1408 *offset = off;
1409 get_page(p);
1410
1411 return p;
1412 }
1413
1414 /*
1415 * Fill page/offset/length into spd, if it can hold more pages.
1416 */
1417 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1418 unsigned int *len, unsigned int offset,
1419 struct sk_buff *skb, int linear,
1420 struct sock *sk)
1421 {
1422 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1423 return 1;
1424
1425 if (linear) {
1426 page = linear_to_page(page, len, &offset, skb, sk);
1427 if (!page)
1428 return 1;
1429 } else
1430 get_page(page);
1431
1432 spd->pages[spd->nr_pages] = page;
1433 spd->partial[spd->nr_pages].len = *len;
1434 spd->partial[spd->nr_pages].offset = offset;
1435 spd->nr_pages++;
1436
1437 return 0;
1438 }
1439
1440 static inline void __segment_seek(struct page **page, unsigned int *poff,
1441 unsigned int *plen, unsigned int off)
1442 {
1443 unsigned long n;
1444
1445 *poff += off;
1446 n = *poff / PAGE_SIZE;
1447 if (n)
1448 *page = nth_page(*page, n);
1449
1450 *poff = *poff % PAGE_SIZE;
1451 *plen -= off;
1452 }
1453
1454 static inline int __splice_segment(struct page *page, unsigned int poff,
1455 unsigned int plen, unsigned int *off,
1456 unsigned int *len, struct sk_buff *skb,
1457 struct splice_pipe_desc *spd, int linear,
1458 struct sock *sk)
1459 {
1460 if (!*len)
1461 return 1;
1462
1463 /* skip this segment if already processed */
1464 if (*off >= plen) {
1465 *off -= plen;
1466 return 0;
1467 }
1468
1469 /* ignore any bits we already processed */
1470 if (*off) {
1471 __segment_seek(&page, &poff, &plen, *off);
1472 *off = 0;
1473 }
1474
1475 do {
1476 unsigned int flen = min(*len, plen);
1477
1478 /* the linear region may spread across several pages */
1479 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1480
1481 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1482 return 1;
1483
1484 __segment_seek(&page, &poff, &plen, flen);
1485 *len -= flen;
1486
1487 } while (*len && plen);
1488
1489 return 0;
1490 }
1491
1492 /*
1493 * Map linear and fragment data from the skb to spd. It reports failure if the
1494 * pipe is full or if we already spliced the requested length.
1495 */
1496 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1497 unsigned int *len, struct splice_pipe_desc *spd,
1498 struct sock *sk)
1499 {
1500 int seg;
1501
1502 /*
1503 * map the linear part
1504 */
1505 if (__splice_segment(virt_to_page(skb->data),
1506 (unsigned long) skb->data & (PAGE_SIZE - 1),
1507 skb_headlen(skb),
1508 offset, len, skb, spd, 1, sk))
1509 return 1;
1510
1511 /*
1512 * then map the fragments
1513 */
1514 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1515 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1516
1517 if (__splice_segment(f->page, f->page_offset, f->size,
1518 offset, len, skb, spd, 0, sk))
1519 return 1;
1520 }
1521
1522 return 0;
1523 }
1524
1525 /*
1526 * Map data from the skb to a pipe. Should handle both the linear part,
1527 * the fragments, and the frag list. It does NOT handle frag lists within
1528 * the frag list, if such a thing exists. We'd probably need to recurse to
1529 * handle that cleanly.
1530 */
1531 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1532 struct pipe_inode_info *pipe, unsigned int tlen,
1533 unsigned int flags)
1534 {
1535 struct partial_page partial[PIPE_BUFFERS];
1536 struct page *pages[PIPE_BUFFERS];
1537 struct splice_pipe_desc spd = {
1538 .pages = pages,
1539 .partial = partial,
1540 .flags = flags,
1541 .ops = &sock_pipe_buf_ops,
1542 .spd_release = sock_spd_release,
1543 };
1544 struct sk_buff *frag_iter;
1545 struct sock *sk = skb->sk;
1546
1547 /*
1548 * __skb_splice_bits() only fails if the output has no room left,
1549 * so no point in going over the frag_list for the error case.
1550 */
1551 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1552 goto done;
1553 else if (!tlen)
1554 goto done;
1555
1556 /*
1557 * now see if we have a frag_list to map
1558 */
1559 skb_walk_frags(skb, frag_iter) {
1560 if (!tlen)
1561 break;
1562 if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk))
1563 break;
1564 }
1565
1566 done:
1567 if (spd.nr_pages) {
1568 int ret;
1569
1570 /*
1571 * Drop the socket lock, otherwise we have reverse
1572 * locking dependencies between sk_lock and i_mutex
1573 * here as compared to sendfile(). We enter here
1574 * with the socket lock held, and splice_to_pipe() will
1575 * grab the pipe inode lock. For sendfile() emulation,
1576 * we call into ->sendpage() with the i_mutex lock held
1577 * and networking will grab the socket lock.
1578 */
1579 release_sock(sk);
1580 ret = splice_to_pipe(pipe, &spd);
1581 lock_sock(sk);
1582 return ret;
1583 }
1584
1585 return 0;
1586 }
1587
1588 /**
1589 * skb_store_bits - store bits from kernel buffer to skb
1590 * @skb: destination buffer
1591 * @offset: offset in destination
1592 * @from: source buffer
1593 * @len: number of bytes to copy
1594 *
1595 * Copy the specified number of bytes from the source buffer to the
1596 * destination skb. This function handles all the messy bits of
1597 * traversing fragment lists and such.
1598 */
1599
1600 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1601 {
1602 int start = skb_headlen(skb);
1603 struct sk_buff *frag_iter;
1604 int i, copy;
1605
1606 if (offset > (int)skb->len - len)
1607 goto fault;
1608
1609 if ((copy = start - offset) > 0) {
1610 if (copy > len)
1611 copy = len;
1612 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1613 if ((len -= copy) == 0)
1614 return 0;
1615 offset += copy;
1616 from += copy;
1617 }
1618
1619 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1620 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1621 int end;
1622
1623 WARN_ON(start > offset + len);
1624
1625 end = start + frag->size;
1626 if ((copy = end - offset) > 0) {
1627 u8 *vaddr;
1628
1629 if (copy > len)
1630 copy = len;
1631
1632 vaddr = kmap_skb_frag(frag);
1633 memcpy(vaddr + frag->page_offset + offset - start,
1634 from, copy);
1635 kunmap_skb_frag(vaddr);
1636
1637 if ((len -= copy) == 0)
1638 return 0;
1639 offset += copy;
1640 from += copy;
1641 }
1642 start = end;
1643 }
1644
1645 skb_walk_frags(skb, frag_iter) {
1646 int end;
1647
1648 WARN_ON(start > offset + len);
1649
1650 end = start + frag_iter->len;
1651 if ((copy = end - offset) > 0) {
1652 if (copy > len)
1653 copy = len;
1654 if (skb_store_bits(frag_iter, offset - start,
1655 from, copy))
1656 goto fault;
1657 if ((len -= copy) == 0)
1658 return 0;
1659 offset += copy;
1660 from += copy;
1661 }
1662 start = end;
1663 }
1664 if (!len)
1665 return 0;
1666
1667 fault:
1668 return -EFAULT;
1669 }
1670 EXPORT_SYMBOL(skb_store_bits);
1671
1672 /* Checksum skb data. */
1673
1674 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1675 int len, __wsum csum)
1676 {
1677 int start = skb_headlen(skb);
1678 int i, copy = start - offset;
1679 struct sk_buff *frag_iter;
1680 int pos = 0;
1681
1682 /* Checksum header. */
1683 if (copy > 0) {
1684 if (copy > len)
1685 copy = len;
1686 csum = csum_partial(skb->data + offset, copy, csum);
1687 if ((len -= copy) == 0)
1688 return csum;
1689 offset += copy;
1690 pos = copy;
1691 }
1692
1693 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 int end;
1695
1696 WARN_ON(start > offset + len);
1697
1698 end = start + skb_shinfo(skb)->frags[i].size;
1699 if ((copy = end - offset) > 0) {
1700 __wsum csum2;
1701 u8 *vaddr;
1702 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703
1704 if (copy > len)
1705 copy = len;
1706 vaddr = kmap_skb_frag(frag);
1707 csum2 = csum_partial(vaddr + frag->page_offset +
1708 offset - start, copy, 0);
1709 kunmap_skb_frag(vaddr);
1710 csum = csum_block_add(csum, csum2, pos);
1711 if (!(len -= copy))
1712 return csum;
1713 offset += copy;
1714 pos += copy;
1715 }
1716 start = end;
1717 }
1718
1719 skb_walk_frags(skb, frag_iter) {
1720 int end;
1721
1722 WARN_ON(start > offset + len);
1723
1724 end = start + frag_iter->len;
1725 if ((copy = end - offset) > 0) {
1726 __wsum csum2;
1727 if (copy > len)
1728 copy = len;
1729 csum2 = skb_checksum(frag_iter, offset - start,
1730 copy, 0);
1731 csum = csum_block_add(csum, csum2, pos);
1732 if ((len -= copy) == 0)
1733 return csum;
1734 offset += copy;
1735 pos += copy;
1736 }
1737 start = end;
1738 }
1739 BUG_ON(len);
1740
1741 return csum;
1742 }
1743 EXPORT_SYMBOL(skb_checksum);
1744
1745 /* Both of above in one bottle. */
1746
1747 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1748 u8 *to, int len, __wsum csum)
1749 {
1750 int start = skb_headlen(skb);
1751 int i, copy = start - offset;
1752 struct sk_buff *frag_iter;
1753 int pos = 0;
1754
1755 /* Copy header. */
1756 if (copy > 0) {
1757 if (copy > len)
1758 copy = len;
1759 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1760 copy, csum);
1761 if ((len -= copy) == 0)
1762 return csum;
1763 offset += copy;
1764 to += copy;
1765 pos = copy;
1766 }
1767
1768 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1769 int end;
1770
1771 WARN_ON(start > offset + len);
1772
1773 end = start + skb_shinfo(skb)->frags[i].size;
1774 if ((copy = end - offset) > 0) {
1775 __wsum csum2;
1776 u8 *vaddr;
1777 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778
1779 if (copy > len)
1780 copy = len;
1781 vaddr = kmap_skb_frag(frag);
1782 csum2 = csum_partial_copy_nocheck(vaddr +
1783 frag->page_offset +
1784 offset - start, to,
1785 copy, 0);
1786 kunmap_skb_frag(vaddr);
1787 csum = csum_block_add(csum, csum2, pos);
1788 if (!(len -= copy))
1789 return csum;
1790 offset += copy;
1791 to += copy;
1792 pos += copy;
1793 }
1794 start = end;
1795 }
1796
1797 skb_walk_frags(skb, frag_iter) {
1798 __wsum csum2;
1799 int end;
1800
1801 WARN_ON(start > offset + len);
1802
1803 end = start + frag_iter->len;
1804 if ((copy = end - offset) > 0) {
1805 if (copy > len)
1806 copy = len;
1807 csum2 = skb_copy_and_csum_bits(frag_iter,
1808 offset - start,
1809 to, copy, 0);
1810 csum = csum_block_add(csum, csum2, pos);
1811 if ((len -= copy) == 0)
1812 return csum;
1813 offset += copy;
1814 to += copy;
1815 pos += copy;
1816 }
1817 start = end;
1818 }
1819 BUG_ON(len);
1820 return csum;
1821 }
1822 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1823
1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1825 {
1826 __wsum csum;
1827 long csstart;
1828
1829 if (skb->ip_summed == CHECKSUM_PARTIAL)
1830 csstart = skb->csum_start - skb_headroom(skb);
1831 else
1832 csstart = skb_headlen(skb);
1833
1834 BUG_ON(csstart > skb_headlen(skb));
1835
1836 skb_copy_from_linear_data(skb, to, csstart);
1837
1838 csum = 0;
1839 if (csstart != skb->len)
1840 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1841 skb->len - csstart, 0);
1842
1843 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 long csstuff = csstart + skb->csum_offset;
1845
1846 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1847 }
1848 }
1849 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1850
1851 /**
1852 * skb_dequeue - remove from the head of the queue
1853 * @list: list to dequeue from
1854 *
1855 * Remove the head of the list. The list lock is taken so the function
1856 * may be used safely with other locking list functions. The head item is
1857 * returned or %NULL if the list is empty.
1858 */
1859
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1861 {
1862 unsigned long flags;
1863 struct sk_buff *result;
1864
1865 spin_lock_irqsave(&list->lock, flags);
1866 result = __skb_dequeue(list);
1867 spin_unlock_irqrestore(&list->lock, flags);
1868 return result;
1869 }
1870 EXPORT_SYMBOL(skb_dequeue);
1871
1872 /**
1873 * skb_dequeue_tail - remove from the tail of the queue
1874 * @list: list to dequeue from
1875 *
1876 * Remove the tail of the list. The list lock is taken so the function
1877 * may be used safely with other locking list functions. The tail item is
1878 * returned or %NULL if the list is empty.
1879 */
1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1881 {
1882 unsigned long flags;
1883 struct sk_buff *result;
1884
1885 spin_lock_irqsave(&list->lock, flags);
1886 result = __skb_dequeue_tail(list);
1887 spin_unlock_irqrestore(&list->lock, flags);
1888 return result;
1889 }
1890 EXPORT_SYMBOL(skb_dequeue_tail);
1891
1892 /**
1893 * skb_queue_purge - empty a list
1894 * @list: list to empty
1895 *
1896 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1897 * the list and one reference dropped. This function takes the list
1898 * lock and is atomic with respect to other list locking functions.
1899 */
1900 void skb_queue_purge(struct sk_buff_head *list)
1901 {
1902 struct sk_buff *skb;
1903 while ((skb = skb_dequeue(list)) != NULL)
1904 kfree_skb(skb);
1905 }
1906 EXPORT_SYMBOL(skb_queue_purge);
1907
1908 /**
1909 * skb_queue_head - queue a buffer at the list head
1910 * @list: list to use
1911 * @newsk: buffer to queue
1912 *
1913 * Queue a buffer at the start of the list. This function takes the
1914 * list lock and can be used safely with other locking &sk_buff functions
1915 * safely.
1916 *
1917 * A buffer cannot be placed on two lists at the same time.
1918 */
1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1920 {
1921 unsigned long flags;
1922
1923 spin_lock_irqsave(&list->lock, flags);
1924 __skb_queue_head(list, newsk);
1925 spin_unlock_irqrestore(&list->lock, flags);
1926 }
1927 EXPORT_SYMBOL(skb_queue_head);
1928
1929 /**
1930 * skb_queue_tail - queue a buffer at the list tail
1931 * @list: list to use
1932 * @newsk: buffer to queue
1933 *
1934 * Queue a buffer at the tail of the list. This function takes the
1935 * list lock and can be used safely with other locking &sk_buff functions
1936 * safely.
1937 *
1938 * A buffer cannot be placed on two lists at the same time.
1939 */
1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1941 {
1942 unsigned long flags;
1943
1944 spin_lock_irqsave(&list->lock, flags);
1945 __skb_queue_tail(list, newsk);
1946 spin_unlock_irqrestore(&list->lock, flags);
1947 }
1948 EXPORT_SYMBOL(skb_queue_tail);
1949
1950 /**
1951 * skb_unlink - remove a buffer from a list
1952 * @skb: buffer to remove
1953 * @list: list to use
1954 *
1955 * Remove a packet from a list. The list locks are taken and this
1956 * function is atomic with respect to other list locked calls
1957 *
1958 * You must know what list the SKB is on.
1959 */
1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1961 {
1962 unsigned long flags;
1963
1964 spin_lock_irqsave(&list->lock, flags);
1965 __skb_unlink(skb, list);
1966 spin_unlock_irqrestore(&list->lock, flags);
1967 }
1968 EXPORT_SYMBOL(skb_unlink);
1969
1970 /**
1971 * skb_append - append a buffer
1972 * @old: buffer to insert after
1973 * @newsk: buffer to insert
1974 * @list: list to use
1975 *
1976 * Place a packet after a given packet in a list. The list locks are taken
1977 * and this function is atomic with respect to other list locked calls.
1978 * A buffer cannot be placed on two lists at the same time.
1979 */
1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1981 {
1982 unsigned long flags;
1983
1984 spin_lock_irqsave(&list->lock, flags);
1985 __skb_queue_after(list, old, newsk);
1986 spin_unlock_irqrestore(&list->lock, flags);
1987 }
1988 EXPORT_SYMBOL(skb_append);
1989
1990 /**
1991 * skb_insert - insert a buffer
1992 * @old: buffer to insert before
1993 * @newsk: buffer to insert
1994 * @list: list to use
1995 *
1996 * Place a packet before a given packet in a list. The list locks are
1997 * taken and this function is atomic with respect to other list locked
1998 * calls.
1999 *
2000 * A buffer cannot be placed on two lists at the same time.
2001 */
2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2003 {
2004 unsigned long flags;
2005
2006 spin_lock_irqsave(&list->lock, flags);
2007 __skb_insert(newsk, old->prev, old, list);
2008 spin_unlock_irqrestore(&list->lock, flags);
2009 }
2010 EXPORT_SYMBOL(skb_insert);
2011
2012 static inline void skb_split_inside_header(struct sk_buff *skb,
2013 struct sk_buff* skb1,
2014 const u32 len, const int pos)
2015 {
2016 int i;
2017
2018 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2019 pos - len);
2020 /* And move data appendix as is. */
2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2022 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2023
2024 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2025 skb_shinfo(skb)->nr_frags = 0;
2026 skb1->data_len = skb->data_len;
2027 skb1->len += skb1->data_len;
2028 skb->data_len = 0;
2029 skb->len = len;
2030 skb_set_tail_pointer(skb, len);
2031 }
2032
2033 static inline void skb_split_no_header(struct sk_buff *skb,
2034 struct sk_buff* skb1,
2035 const u32 len, int pos)
2036 {
2037 int i, k = 0;
2038 const int nfrags = skb_shinfo(skb)->nr_frags;
2039
2040 skb_shinfo(skb)->nr_frags = 0;
2041 skb1->len = skb1->data_len = skb->len - len;
2042 skb->len = len;
2043 skb->data_len = len - pos;
2044
2045 for (i = 0; i < nfrags; i++) {
2046 int size = skb_shinfo(skb)->frags[i].size;
2047
2048 if (pos + size > len) {
2049 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050
2051 if (pos < len) {
2052 /* Split frag.
2053 * We have two variants in this case:
2054 * 1. Move all the frag to the second
2055 * part, if it is possible. F.e.
2056 * this approach is mandatory for TUX,
2057 * where splitting is expensive.
2058 * 2. Split is accurately. We make this.
2059 */
2060 get_page(skb_shinfo(skb)->frags[i].page);
2061 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2062 skb_shinfo(skb1)->frags[0].size -= len - pos;
2063 skb_shinfo(skb)->frags[i].size = len - pos;
2064 skb_shinfo(skb)->nr_frags++;
2065 }
2066 k++;
2067 } else
2068 skb_shinfo(skb)->nr_frags++;
2069 pos += size;
2070 }
2071 skb_shinfo(skb1)->nr_frags = k;
2072 }
2073
2074 /**
2075 * skb_split - Split fragmented skb to two parts at length len.
2076 * @skb: the buffer to split
2077 * @skb1: the buffer to receive the second part
2078 * @len: new length for skb
2079 */
2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2081 {
2082 int pos = skb_headlen(skb);
2083
2084 if (len < pos) /* Split line is inside header. */
2085 skb_split_inside_header(skb, skb1, len, pos);
2086 else /* Second chunk has no header, nothing to copy. */
2087 skb_split_no_header(skb, skb1, len, pos);
2088 }
2089 EXPORT_SYMBOL(skb_split);
2090
2091 /* Shifting from/to a cloned skb is a no-go.
2092 *
2093 * Caller cannot keep skb_shinfo related pointers past calling here!
2094 */
2095 static int skb_prepare_for_shift(struct sk_buff *skb)
2096 {
2097 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098 }
2099
2100 /**
2101 * skb_shift - Shifts paged data partially from skb to another
2102 * @tgt: buffer into which tail data gets added
2103 * @skb: buffer from which the paged data comes from
2104 * @shiftlen: shift up to this many bytes
2105 *
2106 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2107 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2108 * It's up to caller to free skb if everything was shifted.
2109 *
2110 * If @tgt runs out of frags, the whole operation is aborted.
2111 *
2112 * Skb cannot include anything else but paged data while tgt is allowed
2113 * to have non-paged data as well.
2114 *
2115 * TODO: full sized shift could be optimized but that would need
2116 * specialized skb free'er to handle frags without up-to-date nr_frags.
2117 */
2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2119 {
2120 int from, to, merge, todo;
2121 struct skb_frag_struct *fragfrom, *fragto;
2122
2123 BUG_ON(shiftlen > skb->len);
2124 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2125
2126 todo = shiftlen;
2127 from = 0;
2128 to = skb_shinfo(tgt)->nr_frags;
2129 fragfrom = &skb_shinfo(skb)->frags[from];
2130
2131 /* Actual merge is delayed until the point when we know we can
2132 * commit all, so that we don't have to undo partial changes
2133 */
2134 if (!to ||
2135 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2136 merge = -1;
2137 } else {
2138 merge = to - 1;
2139
2140 todo -= fragfrom->size;
2141 if (todo < 0) {
2142 if (skb_prepare_for_shift(skb) ||
2143 skb_prepare_for_shift(tgt))
2144 return 0;
2145
2146 /* All previous frag pointers might be stale! */
2147 fragfrom = &skb_shinfo(skb)->frags[from];
2148 fragto = &skb_shinfo(tgt)->frags[merge];
2149
2150 fragto->size += shiftlen;
2151 fragfrom->size -= shiftlen;
2152 fragfrom->page_offset += shiftlen;
2153
2154 goto onlymerged;
2155 }
2156
2157 from++;
2158 }
2159
2160 /* Skip full, not-fitting skb to avoid expensive operations */
2161 if ((shiftlen == skb->len) &&
2162 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2163 return 0;
2164
2165 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2166 return 0;
2167
2168 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2169 if (to == MAX_SKB_FRAGS)
2170 return 0;
2171
2172 fragfrom = &skb_shinfo(skb)->frags[from];
2173 fragto = &skb_shinfo(tgt)->frags[to];
2174
2175 if (todo >= fragfrom->size) {
2176 *fragto = *fragfrom;
2177 todo -= fragfrom->size;
2178 from++;
2179 to++;
2180
2181 } else {
2182 get_page(fragfrom->page);
2183 fragto->page = fragfrom->page;
2184 fragto->page_offset = fragfrom->page_offset;
2185 fragto->size = todo;
2186
2187 fragfrom->page_offset += todo;
2188 fragfrom->size -= todo;
2189 todo = 0;
2190
2191 to++;
2192 break;
2193 }
2194 }
2195
2196 /* Ready to "commit" this state change to tgt */
2197 skb_shinfo(tgt)->nr_frags = to;
2198
2199 if (merge >= 0) {
2200 fragfrom = &skb_shinfo(skb)->frags[0];
2201 fragto = &skb_shinfo(tgt)->frags[merge];
2202
2203 fragto->size += fragfrom->size;
2204 put_page(fragfrom->page);
2205 }
2206
2207 /* Reposition in the original skb */
2208 to = 0;
2209 while (from < skb_shinfo(skb)->nr_frags)
2210 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2211 skb_shinfo(skb)->nr_frags = to;
2212
2213 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2214
2215 onlymerged:
2216 /* Most likely the tgt won't ever need its checksum anymore, skb on
2217 * the other hand might need it if it needs to be resent
2218 */
2219 tgt->ip_summed = CHECKSUM_PARTIAL;
2220 skb->ip_summed = CHECKSUM_PARTIAL;
2221
2222 /* Yak, is it really working this way? Some helper please? */
2223 skb->len -= shiftlen;
2224 skb->data_len -= shiftlen;
2225 skb->truesize -= shiftlen;
2226 tgt->len += shiftlen;
2227 tgt->data_len += shiftlen;
2228 tgt->truesize += shiftlen;
2229
2230 return shiftlen;
2231 }
2232
2233 /**
2234 * skb_prepare_seq_read - Prepare a sequential read of skb data
2235 * @skb: the buffer to read
2236 * @from: lower offset of data to be read
2237 * @to: upper offset of data to be read
2238 * @st: state variable
2239 *
2240 * Initializes the specified state variable. Must be called before
2241 * invoking skb_seq_read() for the first time.
2242 */
2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2244 unsigned int to, struct skb_seq_state *st)
2245 {
2246 st->lower_offset = from;
2247 st->upper_offset = to;
2248 st->root_skb = st->cur_skb = skb;
2249 st->frag_idx = st->stepped_offset = 0;
2250 st->frag_data = NULL;
2251 }
2252 EXPORT_SYMBOL(skb_prepare_seq_read);
2253
2254 /**
2255 * skb_seq_read - Sequentially read skb data
2256 * @consumed: number of bytes consumed by the caller so far
2257 * @data: destination pointer for data to be returned
2258 * @st: state variable
2259 *
2260 * Reads a block of skb data at &consumed relative to the
2261 * lower offset specified to skb_prepare_seq_read(). Assigns
2262 * the head of the data block to &data and returns the length
2263 * of the block or 0 if the end of the skb data or the upper
2264 * offset has been reached.
2265 *
2266 * The caller is not required to consume all of the data
2267 * returned, i.e. &consumed is typically set to the number
2268 * of bytes already consumed and the next call to
2269 * skb_seq_read() will return the remaining part of the block.
2270 *
2271 * Note 1: The size of each block of data returned can be arbitary,
2272 * this limitation is the cost for zerocopy seqeuental
2273 * reads of potentially non linear data.
2274 *
2275 * Note 2: Fragment lists within fragments are not implemented
2276 * at the moment, state->root_skb could be replaced with
2277 * a stack for this purpose.
2278 */
2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2280 struct skb_seq_state *st)
2281 {
2282 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2283 skb_frag_t *frag;
2284
2285 if (unlikely(abs_offset >= st->upper_offset))
2286 return 0;
2287
2288 next_skb:
2289 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2290
2291 if (abs_offset < block_limit && !st->frag_data) {
2292 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2293 return block_limit - abs_offset;
2294 }
2295
2296 if (st->frag_idx == 0 && !st->frag_data)
2297 st->stepped_offset += skb_headlen(st->cur_skb);
2298
2299 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2300 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2301 block_limit = frag->size + st->stepped_offset;
2302
2303 if (abs_offset < block_limit) {
2304 if (!st->frag_data)
2305 st->frag_data = kmap_skb_frag(frag);
2306
2307 *data = (u8 *) st->frag_data + frag->page_offset +
2308 (abs_offset - st->stepped_offset);
2309
2310 return block_limit - abs_offset;
2311 }
2312
2313 if (st->frag_data) {
2314 kunmap_skb_frag(st->frag_data);
2315 st->frag_data = NULL;
2316 }
2317
2318 st->frag_idx++;
2319 st->stepped_offset += frag->size;
2320 }
2321
2322 if (st->frag_data) {
2323 kunmap_skb_frag(st->frag_data);
2324 st->frag_data = NULL;
2325 }
2326
2327 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
2328 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2329 st->frag_idx = 0;
2330 goto next_skb;
2331 } else if (st->cur_skb->next) {
2332 st->cur_skb = st->cur_skb->next;
2333 st->frag_idx = 0;
2334 goto next_skb;
2335 }
2336
2337 return 0;
2338 }
2339 EXPORT_SYMBOL(skb_seq_read);
2340
2341 /**
2342 * skb_abort_seq_read - Abort a sequential read of skb data
2343 * @st: state variable
2344 *
2345 * Must be called if skb_seq_read() was not called until it
2346 * returned 0.
2347 */
2348 void skb_abort_seq_read(struct skb_seq_state *st)
2349 {
2350 if (st->frag_data)
2351 kunmap_skb_frag(st->frag_data);
2352 }
2353 EXPORT_SYMBOL(skb_abort_seq_read);
2354
2355 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2356
2357 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2358 struct ts_config *conf,
2359 struct ts_state *state)
2360 {
2361 return skb_seq_read(offset, text, TS_SKB_CB(state));
2362 }
2363
2364 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2365 {
2366 skb_abort_seq_read(TS_SKB_CB(state));
2367 }
2368
2369 /**
2370 * skb_find_text - Find a text pattern in skb data
2371 * @skb: the buffer to look in
2372 * @from: search offset
2373 * @to: search limit
2374 * @config: textsearch configuration
2375 * @state: uninitialized textsearch state variable
2376 *
2377 * Finds a pattern in the skb data according to the specified
2378 * textsearch configuration. Use textsearch_next() to retrieve
2379 * subsequent occurrences of the pattern. Returns the offset
2380 * to the first occurrence or UINT_MAX if no match was found.
2381 */
2382 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2383 unsigned int to, struct ts_config *config,
2384 struct ts_state *state)
2385 {
2386 unsigned int ret;
2387
2388 config->get_next_block = skb_ts_get_next_block;
2389 config->finish = skb_ts_finish;
2390
2391 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2392
2393 ret = textsearch_find(config, state);
2394 return (ret <= to - from ? ret : UINT_MAX);
2395 }
2396 EXPORT_SYMBOL(skb_find_text);
2397
2398 /**
2399 * skb_append_datato_frags: - append the user data to a skb
2400 * @sk: sock structure
2401 * @skb: skb structure to be appened with user data.
2402 * @getfrag: call back function to be used for getting the user data
2403 * @from: pointer to user message iov
2404 * @length: length of the iov message
2405 *
2406 * Description: This procedure append the user data in the fragment part
2407 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2408 */
2409 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2410 int (*getfrag)(void *from, char *to, int offset,
2411 int len, int odd, struct sk_buff *skb),
2412 void *from, int length)
2413 {
2414 int frg_cnt = 0;
2415 skb_frag_t *frag = NULL;
2416 struct page *page = NULL;
2417 int copy, left;
2418 int offset = 0;
2419 int ret;
2420
2421 do {
2422 /* Return error if we don't have space for new frag */
2423 frg_cnt = skb_shinfo(skb)->nr_frags;
2424 if (frg_cnt >= MAX_SKB_FRAGS)
2425 return -EFAULT;
2426
2427 /* allocate a new page for next frag */
2428 page = alloc_pages(sk->sk_allocation, 0);
2429
2430 /* If alloc_page fails just return failure and caller will
2431 * free previous allocated pages by doing kfree_skb()
2432 */
2433 if (page == NULL)
2434 return -ENOMEM;
2435
2436 /* initialize the next frag */
2437 sk->sk_sndmsg_page = page;
2438 sk->sk_sndmsg_off = 0;
2439 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2440 skb->truesize += PAGE_SIZE;
2441 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2442
2443 /* get the new initialized frag */
2444 frg_cnt = skb_shinfo(skb)->nr_frags;
2445 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2446
2447 /* copy the user data to page */
2448 left = PAGE_SIZE - frag->page_offset;
2449 copy = (length > left)? left : length;
2450
2451 ret = getfrag(from, (page_address(frag->page) +
2452 frag->page_offset + frag->size),
2453 offset, copy, 0, skb);
2454 if (ret < 0)
2455 return -EFAULT;
2456
2457 /* copy was successful so update the size parameters */
2458 sk->sk_sndmsg_off += copy;
2459 frag->size += copy;
2460 skb->len += copy;
2461 skb->data_len += copy;
2462 offset += copy;
2463 length -= copy;
2464
2465 } while (length > 0);
2466
2467 return 0;
2468 }
2469 EXPORT_SYMBOL(skb_append_datato_frags);
2470
2471 /**
2472 * skb_pull_rcsum - pull skb and update receive checksum
2473 * @skb: buffer to update
2474 * @len: length of data pulled
2475 *
2476 * This function performs an skb_pull on the packet and updates
2477 * the CHECKSUM_COMPLETE checksum. It should be used on
2478 * receive path processing instead of skb_pull unless you know
2479 * that the checksum difference is zero (e.g., a valid IP header)
2480 * or you are setting ip_summed to CHECKSUM_NONE.
2481 */
2482 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2483 {
2484 BUG_ON(len > skb->len);
2485 skb->len -= len;
2486 BUG_ON(skb->len < skb->data_len);
2487 skb_postpull_rcsum(skb, skb->data, len);
2488 return skb->data += len;
2489 }
2490
2491 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2492
2493 /**
2494 * skb_segment - Perform protocol segmentation on skb.
2495 * @skb: buffer to segment
2496 * @features: features for the output path (see dev->features)
2497 *
2498 * This function performs segmentation on the given skb. It returns
2499 * a pointer to the first in a list of new skbs for the segments.
2500 * In case of error it returns ERR_PTR(err).
2501 */
2502 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2503 {
2504 struct sk_buff *segs = NULL;
2505 struct sk_buff *tail = NULL;
2506 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2507 unsigned int mss = skb_shinfo(skb)->gso_size;
2508 unsigned int doffset = skb->data - skb_mac_header(skb);
2509 unsigned int offset = doffset;
2510 unsigned int headroom;
2511 unsigned int len;
2512 int sg = features & NETIF_F_SG;
2513 int nfrags = skb_shinfo(skb)->nr_frags;
2514 int err = -ENOMEM;
2515 int i = 0;
2516 int pos;
2517
2518 __skb_push(skb, doffset);
2519 headroom = skb_headroom(skb);
2520 pos = skb_headlen(skb);
2521
2522 do {
2523 struct sk_buff *nskb;
2524 skb_frag_t *frag;
2525 int hsize;
2526 int size;
2527
2528 len = skb->len - offset;
2529 if (len > mss)
2530 len = mss;
2531
2532 hsize = skb_headlen(skb) - offset;
2533 if (hsize < 0)
2534 hsize = 0;
2535 if (hsize > len || !sg)
2536 hsize = len;
2537
2538 if (!hsize && i >= nfrags) {
2539 BUG_ON(fskb->len != len);
2540
2541 pos += len;
2542 nskb = skb_clone(fskb, GFP_ATOMIC);
2543 fskb = fskb->next;
2544
2545 if (unlikely(!nskb))
2546 goto err;
2547
2548 hsize = skb_end_pointer(nskb) - nskb->head;
2549 if (skb_cow_head(nskb, doffset + headroom)) {
2550 kfree_skb(nskb);
2551 goto err;
2552 }
2553
2554 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2555 hsize;
2556 skb_release_head_state(nskb);
2557 __skb_push(nskb, doffset);
2558 } else {
2559 nskb = alloc_skb(hsize + doffset + headroom,
2560 GFP_ATOMIC);
2561
2562 if (unlikely(!nskb))
2563 goto err;
2564
2565 skb_reserve(nskb, headroom);
2566 __skb_put(nskb, doffset);
2567 }
2568
2569 if (segs)
2570 tail->next = nskb;
2571 else
2572 segs = nskb;
2573 tail = nskb;
2574
2575 __copy_skb_header(nskb, skb);
2576 nskb->mac_len = skb->mac_len;
2577
2578 skb_reset_mac_header(nskb);
2579 skb_set_network_header(nskb, skb->mac_len);
2580 nskb->transport_header = (nskb->network_header +
2581 skb_network_header_len(skb));
2582 skb_copy_from_linear_data(skb, nskb->data, doffset);
2583
2584 if (fskb != skb_shinfo(skb)->frag_list)
2585 continue;
2586
2587 if (!sg) {
2588 nskb->ip_summed = CHECKSUM_NONE;
2589 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2590 skb_put(nskb, len),
2591 len, 0);
2592 continue;
2593 }
2594
2595 frag = skb_shinfo(nskb)->frags;
2596
2597 skb_copy_from_linear_data_offset(skb, offset,
2598 skb_put(nskb, hsize), hsize);
2599
2600 while (pos < offset + len && i < nfrags) {
2601 *frag = skb_shinfo(skb)->frags[i];
2602 get_page(frag->page);
2603 size = frag->size;
2604
2605 if (pos < offset) {
2606 frag->page_offset += offset - pos;
2607 frag->size -= offset - pos;
2608 }
2609
2610 skb_shinfo(nskb)->nr_frags++;
2611
2612 if (pos + size <= offset + len) {
2613 i++;
2614 pos += size;
2615 } else {
2616 frag->size -= pos + size - (offset + len);
2617 goto skip_fraglist;
2618 }
2619
2620 frag++;
2621 }
2622
2623 if (pos < offset + len) {
2624 struct sk_buff *fskb2 = fskb;
2625
2626 BUG_ON(pos + fskb->len != offset + len);
2627
2628 pos += fskb->len;
2629 fskb = fskb->next;
2630
2631 if (fskb2->next) {
2632 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2633 if (!fskb2)
2634 goto err;
2635 } else
2636 skb_get(fskb2);
2637
2638 SKB_FRAG_ASSERT(nskb);
2639 skb_shinfo(nskb)->frag_list = fskb2;
2640 }
2641
2642 skip_fraglist:
2643 nskb->data_len = len - hsize;
2644 nskb->len += nskb->data_len;
2645 nskb->truesize += nskb->data_len;
2646 } while ((offset += len) < skb->len);
2647
2648 return segs;
2649
2650 err:
2651 while ((skb = segs)) {
2652 segs = skb->next;
2653 kfree_skb(skb);
2654 }
2655 return ERR_PTR(err);
2656 }
2657 EXPORT_SYMBOL_GPL(skb_segment);
2658
2659 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2660 {
2661 struct sk_buff *p = *head;
2662 struct sk_buff *nskb;
2663 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2664 struct skb_shared_info *pinfo = skb_shinfo(p);
2665 unsigned int headroom;
2666 unsigned int len = skb_gro_len(skb);
2667 unsigned int offset = skb_gro_offset(skb);
2668 unsigned int headlen = skb_headlen(skb);
2669
2670 if (p->len + len >= 65536)
2671 return -E2BIG;
2672
2673 if (pinfo->frag_list)
2674 goto merge;
2675 else if (headlen <= offset) {
2676 skb_frag_t *frag;
2677 skb_frag_t *frag2;
2678 int i = skbinfo->nr_frags;
2679 int nr_frags = pinfo->nr_frags + i;
2680
2681 offset -= headlen;
2682
2683 if (nr_frags > MAX_SKB_FRAGS)
2684 return -E2BIG;
2685
2686 pinfo->nr_frags = nr_frags;
2687 skbinfo->nr_frags = 0;
2688
2689 frag = pinfo->frags + nr_frags;
2690 frag2 = skbinfo->frags + i;
2691 do {
2692 *--frag = *--frag2;
2693 } while (--i);
2694
2695 frag->page_offset += offset;
2696 frag->size -= offset;
2697
2698 skb->truesize -= skb->data_len;
2699 skb->len -= skb->data_len;
2700 skb->data_len = 0;
2701
2702 NAPI_GRO_CB(skb)->free = 1;
2703 goto done;
2704 } else if (skb_gro_len(p) != pinfo->gso_size)
2705 return -E2BIG;
2706
2707 headroom = skb_headroom(p);
2708 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2709 if (unlikely(!nskb))
2710 return -ENOMEM;
2711
2712 __copy_skb_header(nskb, p);
2713 nskb->mac_len = p->mac_len;
2714
2715 skb_reserve(nskb, headroom);
2716 __skb_put(nskb, skb_gro_offset(p));
2717
2718 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2719 skb_set_network_header(nskb, skb_network_offset(p));
2720 skb_set_transport_header(nskb, skb_transport_offset(p));
2721
2722 __skb_pull(p, skb_gro_offset(p));
2723 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2724 p->data - skb_mac_header(p));
2725
2726 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2727 skb_shinfo(nskb)->frag_list = p;
2728 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2729 skb_header_release(p);
2730 nskb->prev = p;
2731
2732 nskb->data_len += p->len;
2733 nskb->truesize += p->len;
2734 nskb->len += p->len;
2735
2736 *head = nskb;
2737 nskb->next = p->next;
2738 p->next = NULL;
2739
2740 p = nskb;
2741
2742 merge:
2743 if (offset > headlen) {
2744 skbinfo->frags[0].page_offset += offset - headlen;
2745 skbinfo->frags[0].size -= offset - headlen;
2746 offset = headlen;
2747 }
2748
2749 __skb_pull(skb, offset);
2750
2751 p->prev->next = skb;
2752 p->prev = skb;
2753 skb_header_release(skb);
2754
2755 done:
2756 NAPI_GRO_CB(p)->count++;
2757 p->data_len += len;
2758 p->truesize += len;
2759 p->len += len;
2760
2761 NAPI_GRO_CB(skb)->same_flow = 1;
2762 return 0;
2763 }
2764 EXPORT_SYMBOL_GPL(skb_gro_receive);
2765
2766 void __init skb_init(void)
2767 {
2768 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2769 sizeof(struct sk_buff),
2770 0,
2771 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2772 NULL);
2773 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2774 (2*sizeof(struct sk_buff)) +
2775 sizeof(atomic_t),
2776 0,
2777 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2778 NULL);
2779 }
2780
2781 /**
2782 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2783 * @skb: Socket buffer containing the buffers to be mapped
2784 * @sg: The scatter-gather list to map into
2785 * @offset: The offset into the buffer's contents to start mapping
2786 * @len: Length of buffer space to be mapped
2787 *
2788 * Fill the specified scatter-gather list with mappings/pointers into a
2789 * region of the buffer space attached to a socket buffer.
2790 */
2791 static int
2792 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2793 {
2794 int start = skb_headlen(skb);
2795 int i, copy = start - offset;
2796 struct sk_buff *frag_iter;
2797 int elt = 0;
2798
2799 if (copy > 0) {
2800 if (copy > len)
2801 copy = len;
2802 sg_set_buf(sg, skb->data + offset, copy);
2803 elt++;
2804 if ((len -= copy) == 0)
2805 return elt;
2806 offset += copy;
2807 }
2808
2809 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2810 int end;
2811
2812 WARN_ON(start > offset + len);
2813
2814 end = start + skb_shinfo(skb)->frags[i].size;
2815 if ((copy = end - offset) > 0) {
2816 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2817
2818 if (copy > len)
2819 copy = len;
2820 sg_set_page(&sg[elt], frag->page, copy,
2821 frag->page_offset+offset-start);
2822 elt++;
2823 if (!(len -= copy))
2824 return elt;
2825 offset += copy;
2826 }
2827 start = end;
2828 }
2829
2830 skb_walk_frags(skb, frag_iter) {
2831 int end;
2832
2833 WARN_ON(start > offset + len);
2834
2835 end = start + frag_iter->len;
2836 if ((copy = end - offset) > 0) {
2837 if (copy > len)
2838 copy = len;
2839 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2840 copy);
2841 if ((len -= copy) == 0)
2842 return elt;
2843 offset += copy;
2844 }
2845 start = end;
2846 }
2847 BUG_ON(len);
2848 return elt;
2849 }
2850
2851 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2852 {
2853 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2854
2855 sg_mark_end(&sg[nsg - 1]);
2856
2857 return nsg;
2858 }
2859 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2860
2861 /**
2862 * skb_cow_data - Check that a socket buffer's data buffers are writable
2863 * @skb: The socket buffer to check.
2864 * @tailbits: Amount of trailing space to be added
2865 * @trailer: Returned pointer to the skb where the @tailbits space begins
2866 *
2867 * Make sure that the data buffers attached to a socket buffer are
2868 * writable. If they are not, private copies are made of the data buffers
2869 * and the socket buffer is set to use these instead.
2870 *
2871 * If @tailbits is given, make sure that there is space to write @tailbits
2872 * bytes of data beyond current end of socket buffer. @trailer will be
2873 * set to point to the skb in which this space begins.
2874 *
2875 * The number of scatterlist elements required to completely map the
2876 * COW'd and extended socket buffer will be returned.
2877 */
2878 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2879 {
2880 int copyflag;
2881 int elt;
2882 struct sk_buff *skb1, **skb_p;
2883
2884 /* If skb is cloned or its head is paged, reallocate
2885 * head pulling out all the pages (pages are considered not writable
2886 * at the moment even if they are anonymous).
2887 */
2888 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2889 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2890 return -ENOMEM;
2891
2892 /* Easy case. Most of packets will go this way. */
2893 if (!skb_has_frags(skb)) {
2894 /* A little of trouble, not enough of space for trailer.
2895 * This should not happen, when stack is tuned to generate
2896 * good frames. OK, on miss we reallocate and reserve even more
2897 * space, 128 bytes is fair. */
2898
2899 if (skb_tailroom(skb) < tailbits &&
2900 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2901 return -ENOMEM;
2902
2903 /* Voila! */
2904 *trailer = skb;
2905 return 1;
2906 }
2907
2908 /* Misery. We are in troubles, going to mincer fragments... */
2909
2910 elt = 1;
2911 skb_p = &skb_shinfo(skb)->frag_list;
2912 copyflag = 0;
2913
2914 while ((skb1 = *skb_p) != NULL) {
2915 int ntail = 0;
2916
2917 /* The fragment is partially pulled by someone,
2918 * this can happen on input. Copy it and everything
2919 * after it. */
2920
2921 if (skb_shared(skb1))
2922 copyflag = 1;
2923
2924 /* If the skb is the last, worry about trailer. */
2925
2926 if (skb1->next == NULL && tailbits) {
2927 if (skb_shinfo(skb1)->nr_frags ||
2928 skb_has_frags(skb1) ||
2929 skb_tailroom(skb1) < tailbits)
2930 ntail = tailbits + 128;
2931 }
2932
2933 if (copyflag ||
2934 skb_cloned(skb1) ||
2935 ntail ||
2936 skb_shinfo(skb1)->nr_frags ||
2937 skb_has_frags(skb1)) {
2938 struct sk_buff *skb2;
2939
2940 /* Fuck, we are miserable poor guys... */
2941 if (ntail == 0)
2942 skb2 = skb_copy(skb1, GFP_ATOMIC);
2943 else
2944 skb2 = skb_copy_expand(skb1,
2945 skb_headroom(skb1),
2946 ntail,
2947 GFP_ATOMIC);
2948 if (unlikely(skb2 == NULL))
2949 return -ENOMEM;
2950
2951 if (skb1->sk)
2952 skb_set_owner_w(skb2, skb1->sk);
2953
2954 /* Looking around. Are we still alive?
2955 * OK, link new skb, drop old one */
2956
2957 skb2->next = skb1->next;
2958 *skb_p = skb2;
2959 kfree_skb(skb1);
2960 skb1 = skb2;
2961 }
2962 elt++;
2963 *trailer = skb1;
2964 skb_p = &skb1->next;
2965 }
2966
2967 return elt;
2968 }
2969 EXPORT_SYMBOL_GPL(skb_cow_data);
2970
2971 void skb_tstamp_tx(struct sk_buff *orig_skb,
2972 struct skb_shared_hwtstamps *hwtstamps)
2973 {
2974 struct sock *sk = orig_skb->sk;
2975 struct sock_exterr_skb *serr;
2976 struct sk_buff *skb;
2977 int err;
2978
2979 if (!sk)
2980 return;
2981
2982 skb = skb_clone(orig_skb, GFP_ATOMIC);
2983 if (!skb)
2984 return;
2985
2986 if (hwtstamps) {
2987 *skb_hwtstamps(skb) =
2988 *hwtstamps;
2989 } else {
2990 /*
2991 * no hardware time stamps available,
2992 * so keep the skb_shared_tx and only
2993 * store software time stamp
2994 */
2995 skb->tstamp = ktime_get_real();
2996 }
2997
2998 serr = SKB_EXT_ERR(skb);
2999 memset(serr, 0, sizeof(*serr));
3000 serr->ee.ee_errno = ENOMSG;
3001 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3002 err = sock_queue_err_skb(sk, skb);
3003 if (err)
3004 kfree_skb(skb);
3005 }
3006 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3007
3008
3009 /**
3010 * skb_partial_csum_set - set up and verify partial csum values for packet
3011 * @skb: the skb to set
3012 * @start: the number of bytes after skb->data to start checksumming.
3013 * @off: the offset from start to place the checksum.
3014 *
3015 * For untrusted partially-checksummed packets, we need to make sure the values
3016 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3017 *
3018 * This function checks and sets those values and skb->ip_summed: if this
3019 * returns false you should drop the packet.
3020 */
3021 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3022 {
3023 if (unlikely(start > skb_headlen(skb)) ||
3024 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3025 if (net_ratelimit())
3026 printk(KERN_WARNING
3027 "bad partial csum: csum=%u/%u len=%u\n",
3028 start, off, skb_headlen(skb));
3029 return false;
3030 }
3031 skb->ip_summed = CHECKSUM_PARTIAL;
3032 skb->csum_start = skb_headroom(skb) + start;
3033 skb->csum_offset = off;
3034 return true;
3035 }
3036 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3037
3038 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3039 {
3040 if (net_ratelimit())
3041 pr_warning("%s: received packets cannot be forwarded"
3042 " while LRO is enabled\n", skb->dev->name);
3043 }
3044 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.106526 seconds and 5 git commands to generate.