edb66f3e24f15243b51e27814c61a38524927e65
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
71
72 #include "kmap_skb.h"
73
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
129 }
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
186
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192 prefetchw(data + size);
193
194 /*
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
198 */
199 memset(skb, 0, offsetof(struct sk_buff, tail));
200 skb->truesize = size + sizeof(struct sk_buff);
201 atomic_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb->mac_header = ~0U;
208 #endif
209
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214 kmemcheck_annotate_variable(shinfo->destructor_arg);
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 kmemcheck_annotate_bitfield(child, flags1);
221 kmemcheck_annotate_bitfield(child, flags2);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
224
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
226 }
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
233 }
234 EXPORT_SYMBOL(__alloc_skb);
235
236 /**
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
241 *
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
246 *
247 * %NULL is returned if there is no free memory.
248 */
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 unsigned int length, gfp_t gfp_mask)
251 {
252 struct sk_buff *skb;
253
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
258 }
259 return skb;
260 }
261 EXPORT_SYMBOL(__netdev_alloc_skb);
262
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 int size)
265 {
266 skb_fill_page_desc(skb, i, page, off, size);
267 skb->len += size;
268 skb->data_len += size;
269 skb->truesize += size;
270 }
271 EXPORT_SYMBOL(skb_add_rx_frag);
272
273 /**
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
276 *
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
281 *
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
284 */
285 struct sk_buff *dev_alloc_skb(unsigned int length)
286 {
287 /*
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
290 */
291 return __dev_alloc_skb(length, GFP_ATOMIC);
292 }
293 EXPORT_SYMBOL(dev_alloc_skb);
294
295 static void skb_drop_list(struct sk_buff **listp)
296 {
297 struct sk_buff *list = *listp;
298
299 *listp = NULL;
300
301 do {
302 struct sk_buff *this = list;
303 list = list->next;
304 kfree_skb(this);
305 } while (list);
306 }
307
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
309 {
310 skb_drop_list(&skb_shinfo(skb)->frag_list);
311 }
312
313 static void skb_clone_fraglist(struct sk_buff *skb)
314 {
315 struct sk_buff *list;
316
317 skb_walk_frags(skb, list)
318 skb_get(list);
319 }
320
321 static void skb_release_data(struct sk_buff *skb)
322 {
323 if (!skb->cloned ||
324 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 &skb_shinfo(skb)->dataref)) {
326 if (skb_shinfo(skb)->nr_frags) {
327 int i;
328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 put_page(skb_shinfo(skb)->frags[i].page);
330 }
331
332 /*
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
335 */
336 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
337 struct ubuf_info *uarg;
338
339 uarg = skb_shinfo(skb)->destructor_arg;
340 if (uarg->callback)
341 uarg->callback(uarg);
342 }
343
344 if (skb_has_frag_list(skb))
345 skb_drop_fraglist(skb);
346
347 kfree(skb->head);
348 }
349 }
350
351 /*
352 * Free an skbuff by memory without cleaning the state.
353 */
354 static void kfree_skbmem(struct sk_buff *skb)
355 {
356 struct sk_buff *other;
357 atomic_t *fclone_ref;
358
359 switch (skb->fclone) {
360 case SKB_FCLONE_UNAVAILABLE:
361 kmem_cache_free(skbuff_head_cache, skb);
362 break;
363
364 case SKB_FCLONE_ORIG:
365 fclone_ref = (atomic_t *) (skb + 2);
366 if (atomic_dec_and_test(fclone_ref))
367 kmem_cache_free(skbuff_fclone_cache, skb);
368 break;
369
370 case SKB_FCLONE_CLONE:
371 fclone_ref = (atomic_t *) (skb + 1);
372 other = skb - 1;
373
374 /* The clone portion is available for
375 * fast-cloning again.
376 */
377 skb->fclone = SKB_FCLONE_UNAVAILABLE;
378
379 if (atomic_dec_and_test(fclone_ref))
380 kmem_cache_free(skbuff_fclone_cache, other);
381 break;
382 }
383 }
384
385 static void skb_release_head_state(struct sk_buff *skb)
386 {
387 skb_dst_drop(skb);
388 #ifdef CONFIG_XFRM
389 secpath_put(skb->sp);
390 #endif
391 if (skb->destructor) {
392 WARN_ON(in_irq());
393 skb->destructor(skb);
394 }
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb->nfct);
397 #endif
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb->nfct_reasm);
400 #endif
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb->nf_bridge);
403 #endif
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
406 skb->tc_index = 0;
407 #ifdef CONFIG_NET_CLS_ACT
408 skb->tc_verd = 0;
409 #endif
410 #endif
411 }
412
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff *skb)
415 {
416 skb_release_head_state(skb);
417 skb_release_data(skb);
418 }
419
420 /**
421 * __kfree_skb - private function
422 * @skb: buffer
423 *
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
427 */
428
429 void __kfree_skb(struct sk_buff *skb)
430 {
431 skb_release_all(skb);
432 kfree_skbmem(skb);
433 }
434 EXPORT_SYMBOL(__kfree_skb);
435
436 /**
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
439 *
440 * Drop a reference to the buffer and free it if the usage count has
441 * hit zero.
442 */
443 void kfree_skb(struct sk_buff *skb)
444 {
445 if (unlikely(!skb))
446 return;
447 if (likely(atomic_read(&skb->users) == 1))
448 smp_rmb();
449 else if (likely(!atomic_dec_and_test(&skb->users)))
450 return;
451 trace_kfree_skb(skb, __builtin_return_address(0));
452 __kfree_skb(skb);
453 }
454 EXPORT_SYMBOL(kfree_skb);
455
456 /**
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
459 *
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
463 */
464 void consume_skb(struct sk_buff *skb)
465 {
466 if (unlikely(!skb))
467 return;
468 if (likely(atomic_read(&skb->users) == 1))
469 smp_rmb();
470 else if (likely(!atomic_dec_and_test(&skb->users)))
471 return;
472 trace_consume_skb(skb);
473 __kfree_skb(skb);
474 }
475 EXPORT_SYMBOL(consume_skb);
476
477 /**
478 * skb_recycle_check - check if skb can be reused for receive
479 * @skb: buffer
480 * @skb_size: minimum receive buffer size
481 *
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
488 */
489 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
490 {
491 struct skb_shared_info *shinfo;
492
493 if (irqs_disabled())
494 return false;
495
496 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
497 return false;
498
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return false;
501
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return false;
505
506 if (skb_shared(skb) || skb_cloned(skb))
507 return false;
508
509 skb_release_head_state(skb);
510
511 shinfo = skb_shinfo(skb);
512 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
513 atomic_set(&shinfo->dataref, 1);
514
515 memset(skb, 0, offsetof(struct sk_buff, tail));
516 skb->data = skb->head + NET_SKB_PAD;
517 skb_reset_tail_pointer(skb);
518
519 return true;
520 }
521 EXPORT_SYMBOL(skb_recycle_check);
522
523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
524 {
525 new->tstamp = old->tstamp;
526 new->dev = old->dev;
527 new->transport_header = old->transport_header;
528 new->network_header = old->network_header;
529 new->mac_header = old->mac_header;
530 skb_dst_copy(new, old);
531 new->rxhash = old->rxhash;
532 new->l4_rxhash = old->l4_rxhash;
533 #ifdef CONFIG_XFRM
534 new->sp = secpath_get(old->sp);
535 #endif
536 memcpy(new->cb, old->cb, sizeof(old->cb));
537 new->csum = old->csum;
538 new->local_df = old->local_df;
539 new->pkt_type = old->pkt_type;
540 new->ip_summed = old->ip_summed;
541 skb_copy_queue_mapping(new, old);
542 new->priority = old->priority;
543 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
544 new->ipvs_property = old->ipvs_property;
545 #endif
546 new->protocol = old->protocol;
547 new->mark = old->mark;
548 new->skb_iif = old->skb_iif;
549 __nf_copy(new, old);
550 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
551 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
552 new->nf_trace = old->nf_trace;
553 #endif
554 #ifdef CONFIG_NET_SCHED
555 new->tc_index = old->tc_index;
556 #ifdef CONFIG_NET_CLS_ACT
557 new->tc_verd = old->tc_verd;
558 #endif
559 #endif
560 new->vlan_tci = old->vlan_tci;
561
562 skb_copy_secmark(new, old);
563 }
564
565 /*
566 * You should not add any new code to this function. Add it to
567 * __copy_skb_header above instead.
568 */
569 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
570 {
571 #define C(x) n->x = skb->x
572
573 n->next = n->prev = NULL;
574 n->sk = NULL;
575 __copy_skb_header(n, skb);
576
577 C(len);
578 C(data_len);
579 C(mac_len);
580 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
581 n->cloned = 1;
582 n->nohdr = 0;
583 n->destructor = NULL;
584 C(tail);
585 C(end);
586 C(head);
587 C(data);
588 C(truesize);
589 atomic_set(&n->users, 1);
590
591 atomic_inc(&(skb_shinfo(skb)->dataref));
592 skb->cloned = 1;
593
594 return n;
595 #undef C
596 }
597
598 /**
599 * skb_morph - morph one skb into another
600 * @dst: the skb to receive the contents
601 * @src: the skb to supply the contents
602 *
603 * This is identical to skb_clone except that the target skb is
604 * supplied by the user.
605 *
606 * The target skb is returned upon exit.
607 */
608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
609 {
610 skb_release_all(dst);
611 return __skb_clone(dst, src);
612 }
613 EXPORT_SYMBOL_GPL(skb_morph);
614
615 /* skb frags copy userspace buffers to kernel */
616 static int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
617 {
618 int i;
619 int num_frags = skb_shinfo(skb)->nr_frags;
620 struct page *page, *head = NULL;
621 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
622
623 for (i = 0; i < num_frags; i++) {
624 u8 *vaddr;
625 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
626
627 page = alloc_page(GFP_ATOMIC);
628 if (!page) {
629 while (head) {
630 struct page *next = (struct page *)head->private;
631 put_page(head);
632 head = next;
633 }
634 return -ENOMEM;
635 }
636 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
637 memcpy(page_address(page),
638 vaddr + f->page_offset, f->size);
639 kunmap_skb_frag(vaddr);
640 page->private = (unsigned long)head;
641 head = page;
642 }
643
644 /* skb frags release userspace buffers */
645 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
646 put_page(skb_shinfo(skb)->frags[i].page);
647
648 uarg->callback(uarg);
649
650 /* skb frags point to kernel buffers */
651 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
652 skb_shinfo(skb)->frags[i - 1].page_offset = 0;
653 skb_shinfo(skb)->frags[i - 1].page = head;
654 head = (struct page *)head->private;
655 }
656 return 0;
657 }
658
659
660 /**
661 * skb_clone - duplicate an sk_buff
662 * @skb: buffer to clone
663 * @gfp_mask: allocation priority
664 *
665 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
666 * copies share the same packet data but not structure. The new
667 * buffer has a reference count of 1. If the allocation fails the
668 * function returns %NULL otherwise the new buffer is returned.
669 *
670 * If this function is called from an interrupt gfp_mask() must be
671 * %GFP_ATOMIC.
672 */
673
674 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
675 {
676 struct sk_buff *n;
677
678 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
679 if (skb_copy_ubufs(skb, gfp_mask))
680 return NULL;
681 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
682 }
683
684 n = skb + 1;
685 if (skb->fclone == SKB_FCLONE_ORIG &&
686 n->fclone == SKB_FCLONE_UNAVAILABLE) {
687 atomic_t *fclone_ref = (atomic_t *) (n + 1);
688 n->fclone = SKB_FCLONE_CLONE;
689 atomic_inc(fclone_ref);
690 } else {
691 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
692 if (!n)
693 return NULL;
694
695 kmemcheck_annotate_bitfield(n, flags1);
696 kmemcheck_annotate_bitfield(n, flags2);
697 n->fclone = SKB_FCLONE_UNAVAILABLE;
698 }
699
700 return __skb_clone(n, skb);
701 }
702 EXPORT_SYMBOL(skb_clone);
703
704 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
705 {
706 #ifndef NET_SKBUFF_DATA_USES_OFFSET
707 /*
708 * Shift between the two data areas in bytes
709 */
710 unsigned long offset = new->data - old->data;
711 #endif
712
713 __copy_skb_header(new, old);
714
715 #ifndef NET_SKBUFF_DATA_USES_OFFSET
716 /* {transport,network,mac}_header are relative to skb->head */
717 new->transport_header += offset;
718 new->network_header += offset;
719 if (skb_mac_header_was_set(new))
720 new->mac_header += offset;
721 #endif
722 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
723 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
724 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
725 }
726
727 /**
728 * skb_copy - create private copy of an sk_buff
729 * @skb: buffer to copy
730 * @gfp_mask: allocation priority
731 *
732 * Make a copy of both an &sk_buff and its data. This is used when the
733 * caller wishes to modify the data and needs a private copy of the
734 * data to alter. Returns %NULL on failure or the pointer to the buffer
735 * on success. The returned buffer has a reference count of 1.
736 *
737 * As by-product this function converts non-linear &sk_buff to linear
738 * one, so that &sk_buff becomes completely private and caller is allowed
739 * to modify all the data of returned buffer. This means that this
740 * function is not recommended for use in circumstances when only
741 * header is going to be modified. Use pskb_copy() instead.
742 */
743
744 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
745 {
746 int headerlen = skb_headroom(skb);
747 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
748 struct sk_buff *n = alloc_skb(size, gfp_mask);
749
750 if (!n)
751 return NULL;
752
753 /* Set the data pointer */
754 skb_reserve(n, headerlen);
755 /* Set the tail pointer and length */
756 skb_put(n, skb->len);
757
758 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
759 BUG();
760
761 copy_skb_header(n, skb);
762 return n;
763 }
764 EXPORT_SYMBOL(skb_copy);
765
766 /**
767 * pskb_copy - create copy of an sk_buff with private head.
768 * @skb: buffer to copy
769 * @gfp_mask: allocation priority
770 *
771 * Make a copy of both an &sk_buff and part of its data, located
772 * in header. Fragmented data remain shared. This is used when
773 * the caller wishes to modify only header of &sk_buff and needs
774 * private copy of the header to alter. Returns %NULL on failure
775 * or the pointer to the buffer on success.
776 * The returned buffer has a reference count of 1.
777 */
778
779 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
780 {
781 unsigned int size = skb_end_pointer(skb) - skb->head;
782 struct sk_buff *n = alloc_skb(size, gfp_mask);
783
784 if (!n)
785 goto out;
786
787 /* Set the data pointer */
788 skb_reserve(n, skb_headroom(skb));
789 /* Set the tail pointer and length */
790 skb_put(n, skb_headlen(skb));
791 /* Copy the bytes */
792 skb_copy_from_linear_data(skb, n->data, n->len);
793
794 n->truesize += skb->data_len;
795 n->data_len = skb->data_len;
796 n->len = skb->len;
797
798 if (skb_shinfo(skb)->nr_frags) {
799 int i;
800
801 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
802 if (skb_copy_ubufs(skb, gfp_mask)) {
803 kfree_skb(n);
804 n = NULL;
805 goto out;
806 }
807 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
808 }
809 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
810 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
811 get_page(skb_shinfo(n)->frags[i].page);
812 }
813 skb_shinfo(n)->nr_frags = i;
814 }
815
816 if (skb_has_frag_list(skb)) {
817 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
818 skb_clone_fraglist(n);
819 }
820
821 copy_skb_header(n, skb);
822 out:
823 return n;
824 }
825 EXPORT_SYMBOL(pskb_copy);
826
827 /**
828 * pskb_expand_head - reallocate header of &sk_buff
829 * @skb: buffer to reallocate
830 * @nhead: room to add at head
831 * @ntail: room to add at tail
832 * @gfp_mask: allocation priority
833 *
834 * Expands (or creates identical copy, if &nhead and &ntail are zero)
835 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
836 * reference count of 1. Returns zero in the case of success or error,
837 * if expansion failed. In the last case, &sk_buff is not changed.
838 *
839 * All the pointers pointing into skb header may change and must be
840 * reloaded after call to this function.
841 */
842
843 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
844 gfp_t gfp_mask)
845 {
846 int i;
847 u8 *data;
848 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
849 long off;
850 bool fastpath;
851
852 BUG_ON(nhead < 0);
853
854 if (skb_shared(skb))
855 BUG();
856
857 size = SKB_DATA_ALIGN(size);
858
859 /* Check if we can avoid taking references on fragments if we own
860 * the last reference on skb->head. (see skb_release_data())
861 */
862 if (!skb->cloned)
863 fastpath = true;
864 else {
865 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
866 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
867 }
868
869 if (fastpath &&
870 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
871 memmove(skb->head + size, skb_shinfo(skb),
872 offsetof(struct skb_shared_info,
873 frags[skb_shinfo(skb)->nr_frags]));
874 memmove(skb->head + nhead, skb->head,
875 skb_tail_pointer(skb) - skb->head);
876 off = nhead;
877 goto adjust_others;
878 }
879
880 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
881 if (!data)
882 goto nodata;
883
884 /* Copy only real data... and, alas, header. This should be
885 * optimized for the cases when header is void.
886 */
887 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
888
889 memcpy((struct skb_shared_info *)(data + size),
890 skb_shinfo(skb),
891 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
892
893 if (fastpath) {
894 kfree(skb->head);
895 } else {
896 /* copy this zero copy skb frags */
897 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
898 if (skb_copy_ubufs(skb, gfp_mask))
899 goto nofrags;
900 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
901 }
902 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
903 get_page(skb_shinfo(skb)->frags[i].page);
904
905 if (skb_has_frag_list(skb))
906 skb_clone_fraglist(skb);
907
908 skb_release_data(skb);
909 }
910 off = (data + nhead) - skb->head;
911
912 skb->head = data;
913 adjust_others:
914 skb->data += off;
915 #ifdef NET_SKBUFF_DATA_USES_OFFSET
916 skb->end = size;
917 off = nhead;
918 #else
919 skb->end = skb->head + size;
920 #endif
921 /* {transport,network,mac}_header and tail are relative to skb->head */
922 skb->tail += off;
923 skb->transport_header += off;
924 skb->network_header += off;
925 if (skb_mac_header_was_set(skb))
926 skb->mac_header += off;
927 /* Only adjust this if it actually is csum_start rather than csum */
928 if (skb->ip_summed == CHECKSUM_PARTIAL)
929 skb->csum_start += nhead;
930 skb->cloned = 0;
931 skb->hdr_len = 0;
932 skb->nohdr = 0;
933 atomic_set(&skb_shinfo(skb)->dataref, 1);
934 return 0;
935
936 nofrags:
937 kfree(data);
938 nodata:
939 return -ENOMEM;
940 }
941 EXPORT_SYMBOL(pskb_expand_head);
942
943 /* Make private copy of skb with writable head and some headroom */
944
945 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
946 {
947 struct sk_buff *skb2;
948 int delta = headroom - skb_headroom(skb);
949
950 if (delta <= 0)
951 skb2 = pskb_copy(skb, GFP_ATOMIC);
952 else {
953 skb2 = skb_clone(skb, GFP_ATOMIC);
954 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
955 GFP_ATOMIC)) {
956 kfree_skb(skb2);
957 skb2 = NULL;
958 }
959 }
960 return skb2;
961 }
962 EXPORT_SYMBOL(skb_realloc_headroom);
963
964 /**
965 * skb_copy_expand - copy and expand sk_buff
966 * @skb: buffer to copy
967 * @newheadroom: new free bytes at head
968 * @newtailroom: new free bytes at tail
969 * @gfp_mask: allocation priority
970 *
971 * Make a copy of both an &sk_buff and its data and while doing so
972 * allocate additional space.
973 *
974 * This is used when the caller wishes to modify the data and needs a
975 * private copy of the data to alter as well as more space for new fields.
976 * Returns %NULL on failure or the pointer to the buffer
977 * on success. The returned buffer has a reference count of 1.
978 *
979 * You must pass %GFP_ATOMIC as the allocation priority if this function
980 * is called from an interrupt.
981 */
982 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
983 int newheadroom, int newtailroom,
984 gfp_t gfp_mask)
985 {
986 /*
987 * Allocate the copy buffer
988 */
989 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
990 gfp_mask);
991 int oldheadroom = skb_headroom(skb);
992 int head_copy_len, head_copy_off;
993 int off;
994
995 if (!n)
996 return NULL;
997
998 skb_reserve(n, newheadroom);
999
1000 /* Set the tail pointer and length */
1001 skb_put(n, skb->len);
1002
1003 head_copy_len = oldheadroom;
1004 head_copy_off = 0;
1005 if (newheadroom <= head_copy_len)
1006 head_copy_len = newheadroom;
1007 else
1008 head_copy_off = newheadroom - head_copy_len;
1009
1010 /* Copy the linear header and data. */
1011 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1012 skb->len + head_copy_len))
1013 BUG();
1014
1015 copy_skb_header(n, skb);
1016
1017 off = newheadroom - oldheadroom;
1018 if (n->ip_summed == CHECKSUM_PARTIAL)
1019 n->csum_start += off;
1020 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1021 n->transport_header += off;
1022 n->network_header += off;
1023 if (skb_mac_header_was_set(skb))
1024 n->mac_header += off;
1025 #endif
1026
1027 return n;
1028 }
1029 EXPORT_SYMBOL(skb_copy_expand);
1030
1031 /**
1032 * skb_pad - zero pad the tail of an skb
1033 * @skb: buffer to pad
1034 * @pad: space to pad
1035 *
1036 * Ensure that a buffer is followed by a padding area that is zero
1037 * filled. Used by network drivers which may DMA or transfer data
1038 * beyond the buffer end onto the wire.
1039 *
1040 * May return error in out of memory cases. The skb is freed on error.
1041 */
1042
1043 int skb_pad(struct sk_buff *skb, int pad)
1044 {
1045 int err;
1046 int ntail;
1047
1048 /* If the skbuff is non linear tailroom is always zero.. */
1049 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1050 memset(skb->data+skb->len, 0, pad);
1051 return 0;
1052 }
1053
1054 ntail = skb->data_len + pad - (skb->end - skb->tail);
1055 if (likely(skb_cloned(skb) || ntail > 0)) {
1056 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1057 if (unlikely(err))
1058 goto free_skb;
1059 }
1060
1061 /* FIXME: The use of this function with non-linear skb's really needs
1062 * to be audited.
1063 */
1064 err = skb_linearize(skb);
1065 if (unlikely(err))
1066 goto free_skb;
1067
1068 memset(skb->data + skb->len, 0, pad);
1069 return 0;
1070
1071 free_skb:
1072 kfree_skb(skb);
1073 return err;
1074 }
1075 EXPORT_SYMBOL(skb_pad);
1076
1077 /**
1078 * skb_put - add data to a buffer
1079 * @skb: buffer to use
1080 * @len: amount of data to add
1081 *
1082 * This function extends the used data area of the buffer. If this would
1083 * exceed the total buffer size the kernel will panic. A pointer to the
1084 * first byte of the extra data is returned.
1085 */
1086 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1087 {
1088 unsigned char *tmp = skb_tail_pointer(skb);
1089 SKB_LINEAR_ASSERT(skb);
1090 skb->tail += len;
1091 skb->len += len;
1092 if (unlikely(skb->tail > skb->end))
1093 skb_over_panic(skb, len, __builtin_return_address(0));
1094 return tmp;
1095 }
1096 EXPORT_SYMBOL(skb_put);
1097
1098 /**
1099 * skb_push - add data to the start of a buffer
1100 * @skb: buffer to use
1101 * @len: amount of data to add
1102 *
1103 * This function extends the used data area of the buffer at the buffer
1104 * start. If this would exceed the total buffer headroom the kernel will
1105 * panic. A pointer to the first byte of the extra data is returned.
1106 */
1107 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1108 {
1109 skb->data -= len;
1110 skb->len += len;
1111 if (unlikely(skb->data<skb->head))
1112 skb_under_panic(skb, len, __builtin_return_address(0));
1113 return skb->data;
1114 }
1115 EXPORT_SYMBOL(skb_push);
1116
1117 /**
1118 * skb_pull - remove data from the start of a buffer
1119 * @skb: buffer to use
1120 * @len: amount of data to remove
1121 *
1122 * This function removes data from the start of a buffer, returning
1123 * the memory to the headroom. A pointer to the next data in the buffer
1124 * is returned. Once the data has been pulled future pushes will overwrite
1125 * the old data.
1126 */
1127 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1128 {
1129 return skb_pull_inline(skb, len);
1130 }
1131 EXPORT_SYMBOL(skb_pull);
1132
1133 /**
1134 * skb_trim - remove end from a buffer
1135 * @skb: buffer to alter
1136 * @len: new length
1137 *
1138 * Cut the length of a buffer down by removing data from the tail. If
1139 * the buffer is already under the length specified it is not modified.
1140 * The skb must be linear.
1141 */
1142 void skb_trim(struct sk_buff *skb, unsigned int len)
1143 {
1144 if (skb->len > len)
1145 __skb_trim(skb, len);
1146 }
1147 EXPORT_SYMBOL(skb_trim);
1148
1149 /* Trims skb to length len. It can change skb pointers.
1150 */
1151
1152 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1153 {
1154 struct sk_buff **fragp;
1155 struct sk_buff *frag;
1156 int offset = skb_headlen(skb);
1157 int nfrags = skb_shinfo(skb)->nr_frags;
1158 int i;
1159 int err;
1160
1161 if (skb_cloned(skb) &&
1162 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1163 return err;
1164
1165 i = 0;
1166 if (offset >= len)
1167 goto drop_pages;
1168
1169 for (; i < nfrags; i++) {
1170 int end = offset + skb_shinfo(skb)->frags[i].size;
1171
1172 if (end < len) {
1173 offset = end;
1174 continue;
1175 }
1176
1177 skb_shinfo(skb)->frags[i++].size = len - offset;
1178
1179 drop_pages:
1180 skb_shinfo(skb)->nr_frags = i;
1181
1182 for (; i < nfrags; i++)
1183 put_page(skb_shinfo(skb)->frags[i].page);
1184
1185 if (skb_has_frag_list(skb))
1186 skb_drop_fraglist(skb);
1187 goto done;
1188 }
1189
1190 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1191 fragp = &frag->next) {
1192 int end = offset + frag->len;
1193
1194 if (skb_shared(frag)) {
1195 struct sk_buff *nfrag;
1196
1197 nfrag = skb_clone(frag, GFP_ATOMIC);
1198 if (unlikely(!nfrag))
1199 return -ENOMEM;
1200
1201 nfrag->next = frag->next;
1202 kfree_skb(frag);
1203 frag = nfrag;
1204 *fragp = frag;
1205 }
1206
1207 if (end < len) {
1208 offset = end;
1209 continue;
1210 }
1211
1212 if (end > len &&
1213 unlikely((err = pskb_trim(frag, len - offset))))
1214 return err;
1215
1216 if (frag->next)
1217 skb_drop_list(&frag->next);
1218 break;
1219 }
1220
1221 done:
1222 if (len > skb_headlen(skb)) {
1223 skb->data_len -= skb->len - len;
1224 skb->len = len;
1225 } else {
1226 skb->len = len;
1227 skb->data_len = 0;
1228 skb_set_tail_pointer(skb, len);
1229 }
1230
1231 return 0;
1232 }
1233 EXPORT_SYMBOL(___pskb_trim);
1234
1235 /**
1236 * __pskb_pull_tail - advance tail of skb header
1237 * @skb: buffer to reallocate
1238 * @delta: number of bytes to advance tail
1239 *
1240 * The function makes a sense only on a fragmented &sk_buff,
1241 * it expands header moving its tail forward and copying necessary
1242 * data from fragmented part.
1243 *
1244 * &sk_buff MUST have reference count of 1.
1245 *
1246 * Returns %NULL (and &sk_buff does not change) if pull failed
1247 * or value of new tail of skb in the case of success.
1248 *
1249 * All the pointers pointing into skb header may change and must be
1250 * reloaded after call to this function.
1251 */
1252
1253 /* Moves tail of skb head forward, copying data from fragmented part,
1254 * when it is necessary.
1255 * 1. It may fail due to malloc failure.
1256 * 2. It may change skb pointers.
1257 *
1258 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1259 */
1260 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1261 {
1262 /* If skb has not enough free space at tail, get new one
1263 * plus 128 bytes for future expansions. If we have enough
1264 * room at tail, reallocate without expansion only if skb is cloned.
1265 */
1266 int i, k, eat = (skb->tail + delta) - skb->end;
1267
1268 if (eat > 0 || skb_cloned(skb)) {
1269 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1270 GFP_ATOMIC))
1271 return NULL;
1272 }
1273
1274 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1275 BUG();
1276
1277 /* Optimization: no fragments, no reasons to preestimate
1278 * size of pulled pages. Superb.
1279 */
1280 if (!skb_has_frag_list(skb))
1281 goto pull_pages;
1282
1283 /* Estimate size of pulled pages. */
1284 eat = delta;
1285 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1286 if (skb_shinfo(skb)->frags[i].size >= eat)
1287 goto pull_pages;
1288 eat -= skb_shinfo(skb)->frags[i].size;
1289 }
1290
1291 /* If we need update frag list, we are in troubles.
1292 * Certainly, it possible to add an offset to skb data,
1293 * but taking into account that pulling is expected to
1294 * be very rare operation, it is worth to fight against
1295 * further bloating skb head and crucify ourselves here instead.
1296 * Pure masohism, indeed. 8)8)
1297 */
1298 if (eat) {
1299 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1300 struct sk_buff *clone = NULL;
1301 struct sk_buff *insp = NULL;
1302
1303 do {
1304 BUG_ON(!list);
1305
1306 if (list->len <= eat) {
1307 /* Eaten as whole. */
1308 eat -= list->len;
1309 list = list->next;
1310 insp = list;
1311 } else {
1312 /* Eaten partially. */
1313
1314 if (skb_shared(list)) {
1315 /* Sucks! We need to fork list. :-( */
1316 clone = skb_clone(list, GFP_ATOMIC);
1317 if (!clone)
1318 return NULL;
1319 insp = list->next;
1320 list = clone;
1321 } else {
1322 /* This may be pulled without
1323 * problems. */
1324 insp = list;
1325 }
1326 if (!pskb_pull(list, eat)) {
1327 kfree_skb(clone);
1328 return NULL;
1329 }
1330 break;
1331 }
1332 } while (eat);
1333
1334 /* Free pulled out fragments. */
1335 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1336 skb_shinfo(skb)->frag_list = list->next;
1337 kfree_skb(list);
1338 }
1339 /* And insert new clone at head. */
1340 if (clone) {
1341 clone->next = list;
1342 skb_shinfo(skb)->frag_list = clone;
1343 }
1344 }
1345 /* Success! Now we may commit changes to skb data. */
1346
1347 pull_pages:
1348 eat = delta;
1349 k = 0;
1350 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1351 if (skb_shinfo(skb)->frags[i].size <= eat) {
1352 put_page(skb_shinfo(skb)->frags[i].page);
1353 eat -= skb_shinfo(skb)->frags[i].size;
1354 } else {
1355 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1356 if (eat) {
1357 skb_shinfo(skb)->frags[k].page_offset += eat;
1358 skb_shinfo(skb)->frags[k].size -= eat;
1359 eat = 0;
1360 }
1361 k++;
1362 }
1363 }
1364 skb_shinfo(skb)->nr_frags = k;
1365
1366 skb->tail += delta;
1367 skb->data_len -= delta;
1368
1369 return skb_tail_pointer(skb);
1370 }
1371 EXPORT_SYMBOL(__pskb_pull_tail);
1372
1373 /**
1374 * skb_copy_bits - copy bits from skb to kernel buffer
1375 * @skb: source skb
1376 * @offset: offset in source
1377 * @to: destination buffer
1378 * @len: number of bytes to copy
1379 *
1380 * Copy the specified number of bytes from the source skb to the
1381 * destination buffer.
1382 *
1383 * CAUTION ! :
1384 * If its prototype is ever changed,
1385 * check arch/{*}/net/{*}.S files,
1386 * since it is called from BPF assembly code.
1387 */
1388 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1389 {
1390 int start = skb_headlen(skb);
1391 struct sk_buff *frag_iter;
1392 int i, copy;
1393
1394 if (offset > (int)skb->len - len)
1395 goto fault;
1396
1397 /* Copy header. */
1398 if ((copy = start - offset) > 0) {
1399 if (copy > len)
1400 copy = len;
1401 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1402 if ((len -= copy) == 0)
1403 return 0;
1404 offset += copy;
1405 to += copy;
1406 }
1407
1408 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1409 int end;
1410
1411 WARN_ON(start > offset + len);
1412
1413 end = start + skb_shinfo(skb)->frags[i].size;
1414 if ((copy = end - offset) > 0) {
1415 u8 *vaddr;
1416
1417 if (copy > len)
1418 copy = len;
1419
1420 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1421 memcpy(to,
1422 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1423 offset - start, copy);
1424 kunmap_skb_frag(vaddr);
1425
1426 if ((len -= copy) == 0)
1427 return 0;
1428 offset += copy;
1429 to += copy;
1430 }
1431 start = end;
1432 }
1433
1434 skb_walk_frags(skb, frag_iter) {
1435 int end;
1436
1437 WARN_ON(start > offset + len);
1438
1439 end = start + frag_iter->len;
1440 if ((copy = end - offset) > 0) {
1441 if (copy > len)
1442 copy = len;
1443 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1444 goto fault;
1445 if ((len -= copy) == 0)
1446 return 0;
1447 offset += copy;
1448 to += copy;
1449 }
1450 start = end;
1451 }
1452
1453 if (!len)
1454 return 0;
1455
1456 fault:
1457 return -EFAULT;
1458 }
1459 EXPORT_SYMBOL(skb_copy_bits);
1460
1461 /*
1462 * Callback from splice_to_pipe(), if we need to release some pages
1463 * at the end of the spd in case we error'ed out in filling the pipe.
1464 */
1465 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1466 {
1467 put_page(spd->pages[i]);
1468 }
1469
1470 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1471 unsigned int *offset,
1472 struct sk_buff *skb, struct sock *sk)
1473 {
1474 struct page *p = sk->sk_sndmsg_page;
1475 unsigned int off;
1476
1477 if (!p) {
1478 new_page:
1479 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1480 if (!p)
1481 return NULL;
1482
1483 off = sk->sk_sndmsg_off = 0;
1484 /* hold one ref to this page until it's full */
1485 } else {
1486 unsigned int mlen;
1487
1488 off = sk->sk_sndmsg_off;
1489 mlen = PAGE_SIZE - off;
1490 if (mlen < 64 && mlen < *len) {
1491 put_page(p);
1492 goto new_page;
1493 }
1494
1495 *len = min_t(unsigned int, *len, mlen);
1496 }
1497
1498 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1499 sk->sk_sndmsg_off += *len;
1500 *offset = off;
1501 get_page(p);
1502
1503 return p;
1504 }
1505
1506 /*
1507 * Fill page/offset/length into spd, if it can hold more pages.
1508 */
1509 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1510 struct pipe_inode_info *pipe, struct page *page,
1511 unsigned int *len, unsigned int offset,
1512 struct sk_buff *skb, int linear,
1513 struct sock *sk)
1514 {
1515 if (unlikely(spd->nr_pages == pipe->buffers))
1516 return 1;
1517
1518 if (linear) {
1519 page = linear_to_page(page, len, &offset, skb, sk);
1520 if (!page)
1521 return 1;
1522 } else
1523 get_page(page);
1524
1525 spd->pages[spd->nr_pages] = page;
1526 spd->partial[spd->nr_pages].len = *len;
1527 spd->partial[spd->nr_pages].offset = offset;
1528 spd->nr_pages++;
1529
1530 return 0;
1531 }
1532
1533 static inline void __segment_seek(struct page **page, unsigned int *poff,
1534 unsigned int *plen, unsigned int off)
1535 {
1536 unsigned long n;
1537
1538 *poff += off;
1539 n = *poff / PAGE_SIZE;
1540 if (n)
1541 *page = nth_page(*page, n);
1542
1543 *poff = *poff % PAGE_SIZE;
1544 *plen -= off;
1545 }
1546
1547 static inline int __splice_segment(struct page *page, unsigned int poff,
1548 unsigned int plen, unsigned int *off,
1549 unsigned int *len, struct sk_buff *skb,
1550 struct splice_pipe_desc *spd, int linear,
1551 struct sock *sk,
1552 struct pipe_inode_info *pipe)
1553 {
1554 if (!*len)
1555 return 1;
1556
1557 /* skip this segment if already processed */
1558 if (*off >= plen) {
1559 *off -= plen;
1560 return 0;
1561 }
1562
1563 /* ignore any bits we already processed */
1564 if (*off) {
1565 __segment_seek(&page, &poff, &plen, *off);
1566 *off = 0;
1567 }
1568
1569 do {
1570 unsigned int flen = min(*len, plen);
1571
1572 /* the linear region may spread across several pages */
1573 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1574
1575 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1576 return 1;
1577
1578 __segment_seek(&page, &poff, &plen, flen);
1579 *len -= flen;
1580
1581 } while (*len && plen);
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Map linear and fragment data from the skb to spd. It reports failure if the
1588 * pipe is full or if we already spliced the requested length.
1589 */
1590 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1591 unsigned int *offset, unsigned int *len,
1592 struct splice_pipe_desc *spd, struct sock *sk)
1593 {
1594 int seg;
1595
1596 /*
1597 * map the linear part
1598 */
1599 if (__splice_segment(virt_to_page(skb->data),
1600 (unsigned long) skb->data & (PAGE_SIZE - 1),
1601 skb_headlen(skb),
1602 offset, len, skb, spd, 1, sk, pipe))
1603 return 1;
1604
1605 /*
1606 * then map the fragments
1607 */
1608 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1609 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1610
1611 if (__splice_segment(f->page, f->page_offset, f->size,
1612 offset, len, skb, spd, 0, sk, pipe))
1613 return 1;
1614 }
1615
1616 return 0;
1617 }
1618
1619 /*
1620 * Map data from the skb to a pipe. Should handle both the linear part,
1621 * the fragments, and the frag list. It does NOT handle frag lists within
1622 * the frag list, if such a thing exists. We'd probably need to recurse to
1623 * handle that cleanly.
1624 */
1625 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1626 struct pipe_inode_info *pipe, unsigned int tlen,
1627 unsigned int flags)
1628 {
1629 struct partial_page partial[PIPE_DEF_BUFFERS];
1630 struct page *pages[PIPE_DEF_BUFFERS];
1631 struct splice_pipe_desc spd = {
1632 .pages = pages,
1633 .partial = partial,
1634 .flags = flags,
1635 .ops = &sock_pipe_buf_ops,
1636 .spd_release = sock_spd_release,
1637 };
1638 struct sk_buff *frag_iter;
1639 struct sock *sk = skb->sk;
1640 int ret = 0;
1641
1642 if (splice_grow_spd(pipe, &spd))
1643 return -ENOMEM;
1644
1645 /*
1646 * __skb_splice_bits() only fails if the output has no room left,
1647 * so no point in going over the frag_list for the error case.
1648 */
1649 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1650 goto done;
1651 else if (!tlen)
1652 goto done;
1653
1654 /*
1655 * now see if we have a frag_list to map
1656 */
1657 skb_walk_frags(skb, frag_iter) {
1658 if (!tlen)
1659 break;
1660 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1661 break;
1662 }
1663
1664 done:
1665 if (spd.nr_pages) {
1666 /*
1667 * Drop the socket lock, otherwise we have reverse
1668 * locking dependencies between sk_lock and i_mutex
1669 * here as compared to sendfile(). We enter here
1670 * with the socket lock held, and splice_to_pipe() will
1671 * grab the pipe inode lock. For sendfile() emulation,
1672 * we call into ->sendpage() with the i_mutex lock held
1673 * and networking will grab the socket lock.
1674 */
1675 release_sock(sk);
1676 ret = splice_to_pipe(pipe, &spd);
1677 lock_sock(sk);
1678 }
1679
1680 splice_shrink_spd(pipe, &spd);
1681 return ret;
1682 }
1683
1684 /**
1685 * skb_store_bits - store bits from kernel buffer to skb
1686 * @skb: destination buffer
1687 * @offset: offset in destination
1688 * @from: source buffer
1689 * @len: number of bytes to copy
1690 *
1691 * Copy the specified number of bytes from the source buffer to the
1692 * destination skb. This function handles all the messy bits of
1693 * traversing fragment lists and such.
1694 */
1695
1696 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1697 {
1698 int start = skb_headlen(skb);
1699 struct sk_buff *frag_iter;
1700 int i, copy;
1701
1702 if (offset > (int)skb->len - len)
1703 goto fault;
1704
1705 if ((copy = start - offset) > 0) {
1706 if (copy > len)
1707 copy = len;
1708 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1709 if ((len -= copy) == 0)
1710 return 0;
1711 offset += copy;
1712 from += copy;
1713 }
1714
1715 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1716 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1717 int end;
1718
1719 WARN_ON(start > offset + len);
1720
1721 end = start + frag->size;
1722 if ((copy = end - offset) > 0) {
1723 u8 *vaddr;
1724
1725 if (copy > len)
1726 copy = len;
1727
1728 vaddr = kmap_skb_frag(frag);
1729 memcpy(vaddr + frag->page_offset + offset - start,
1730 from, copy);
1731 kunmap_skb_frag(vaddr);
1732
1733 if ((len -= copy) == 0)
1734 return 0;
1735 offset += copy;
1736 from += copy;
1737 }
1738 start = end;
1739 }
1740
1741 skb_walk_frags(skb, frag_iter) {
1742 int end;
1743
1744 WARN_ON(start > offset + len);
1745
1746 end = start + frag_iter->len;
1747 if ((copy = end - offset) > 0) {
1748 if (copy > len)
1749 copy = len;
1750 if (skb_store_bits(frag_iter, offset - start,
1751 from, copy))
1752 goto fault;
1753 if ((len -= copy) == 0)
1754 return 0;
1755 offset += copy;
1756 from += copy;
1757 }
1758 start = end;
1759 }
1760 if (!len)
1761 return 0;
1762
1763 fault:
1764 return -EFAULT;
1765 }
1766 EXPORT_SYMBOL(skb_store_bits);
1767
1768 /* Checksum skb data. */
1769
1770 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1771 int len, __wsum csum)
1772 {
1773 int start = skb_headlen(skb);
1774 int i, copy = start - offset;
1775 struct sk_buff *frag_iter;
1776 int pos = 0;
1777
1778 /* Checksum header. */
1779 if (copy > 0) {
1780 if (copy > len)
1781 copy = len;
1782 csum = csum_partial(skb->data + offset, copy, csum);
1783 if ((len -= copy) == 0)
1784 return csum;
1785 offset += copy;
1786 pos = copy;
1787 }
1788
1789 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1790 int end;
1791
1792 WARN_ON(start > offset + len);
1793
1794 end = start + skb_shinfo(skb)->frags[i].size;
1795 if ((copy = end - offset) > 0) {
1796 __wsum csum2;
1797 u8 *vaddr;
1798 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1799
1800 if (copy > len)
1801 copy = len;
1802 vaddr = kmap_skb_frag(frag);
1803 csum2 = csum_partial(vaddr + frag->page_offset +
1804 offset - start, copy, 0);
1805 kunmap_skb_frag(vaddr);
1806 csum = csum_block_add(csum, csum2, pos);
1807 if (!(len -= copy))
1808 return csum;
1809 offset += copy;
1810 pos += copy;
1811 }
1812 start = end;
1813 }
1814
1815 skb_walk_frags(skb, frag_iter) {
1816 int end;
1817
1818 WARN_ON(start > offset + len);
1819
1820 end = start + frag_iter->len;
1821 if ((copy = end - offset) > 0) {
1822 __wsum csum2;
1823 if (copy > len)
1824 copy = len;
1825 csum2 = skb_checksum(frag_iter, offset - start,
1826 copy, 0);
1827 csum = csum_block_add(csum, csum2, pos);
1828 if ((len -= copy) == 0)
1829 return csum;
1830 offset += copy;
1831 pos += copy;
1832 }
1833 start = end;
1834 }
1835 BUG_ON(len);
1836
1837 return csum;
1838 }
1839 EXPORT_SYMBOL(skb_checksum);
1840
1841 /* Both of above in one bottle. */
1842
1843 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1844 u8 *to, int len, __wsum csum)
1845 {
1846 int start = skb_headlen(skb);
1847 int i, copy = start - offset;
1848 struct sk_buff *frag_iter;
1849 int pos = 0;
1850
1851 /* Copy header. */
1852 if (copy > 0) {
1853 if (copy > len)
1854 copy = len;
1855 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1856 copy, csum);
1857 if ((len -= copy) == 0)
1858 return csum;
1859 offset += copy;
1860 to += copy;
1861 pos = copy;
1862 }
1863
1864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1865 int end;
1866
1867 WARN_ON(start > offset + len);
1868
1869 end = start + skb_shinfo(skb)->frags[i].size;
1870 if ((copy = end - offset) > 0) {
1871 __wsum csum2;
1872 u8 *vaddr;
1873 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1874
1875 if (copy > len)
1876 copy = len;
1877 vaddr = kmap_skb_frag(frag);
1878 csum2 = csum_partial_copy_nocheck(vaddr +
1879 frag->page_offset +
1880 offset - start, to,
1881 copy, 0);
1882 kunmap_skb_frag(vaddr);
1883 csum = csum_block_add(csum, csum2, pos);
1884 if (!(len -= copy))
1885 return csum;
1886 offset += copy;
1887 to += copy;
1888 pos += copy;
1889 }
1890 start = end;
1891 }
1892
1893 skb_walk_frags(skb, frag_iter) {
1894 __wsum csum2;
1895 int end;
1896
1897 WARN_ON(start > offset + len);
1898
1899 end = start + frag_iter->len;
1900 if ((copy = end - offset) > 0) {
1901 if (copy > len)
1902 copy = len;
1903 csum2 = skb_copy_and_csum_bits(frag_iter,
1904 offset - start,
1905 to, copy, 0);
1906 csum = csum_block_add(csum, csum2, pos);
1907 if ((len -= copy) == 0)
1908 return csum;
1909 offset += copy;
1910 to += copy;
1911 pos += copy;
1912 }
1913 start = end;
1914 }
1915 BUG_ON(len);
1916 return csum;
1917 }
1918 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1919
1920 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1921 {
1922 __wsum csum;
1923 long csstart;
1924
1925 if (skb->ip_summed == CHECKSUM_PARTIAL)
1926 csstart = skb_checksum_start_offset(skb);
1927 else
1928 csstart = skb_headlen(skb);
1929
1930 BUG_ON(csstart > skb_headlen(skb));
1931
1932 skb_copy_from_linear_data(skb, to, csstart);
1933
1934 csum = 0;
1935 if (csstart != skb->len)
1936 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1937 skb->len - csstart, 0);
1938
1939 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1940 long csstuff = csstart + skb->csum_offset;
1941
1942 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1943 }
1944 }
1945 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1946
1947 /**
1948 * skb_dequeue - remove from the head of the queue
1949 * @list: list to dequeue from
1950 *
1951 * Remove the head of the list. The list lock is taken so the function
1952 * may be used safely with other locking list functions. The head item is
1953 * returned or %NULL if the list is empty.
1954 */
1955
1956 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1957 {
1958 unsigned long flags;
1959 struct sk_buff *result;
1960
1961 spin_lock_irqsave(&list->lock, flags);
1962 result = __skb_dequeue(list);
1963 spin_unlock_irqrestore(&list->lock, flags);
1964 return result;
1965 }
1966 EXPORT_SYMBOL(skb_dequeue);
1967
1968 /**
1969 * skb_dequeue_tail - remove from the tail of the queue
1970 * @list: list to dequeue from
1971 *
1972 * Remove the tail of the list. The list lock is taken so the function
1973 * may be used safely with other locking list functions. The tail item is
1974 * returned or %NULL if the list is empty.
1975 */
1976 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1977 {
1978 unsigned long flags;
1979 struct sk_buff *result;
1980
1981 spin_lock_irqsave(&list->lock, flags);
1982 result = __skb_dequeue_tail(list);
1983 spin_unlock_irqrestore(&list->lock, flags);
1984 return result;
1985 }
1986 EXPORT_SYMBOL(skb_dequeue_tail);
1987
1988 /**
1989 * skb_queue_purge - empty a list
1990 * @list: list to empty
1991 *
1992 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1993 * the list and one reference dropped. This function takes the list
1994 * lock and is atomic with respect to other list locking functions.
1995 */
1996 void skb_queue_purge(struct sk_buff_head *list)
1997 {
1998 struct sk_buff *skb;
1999 while ((skb = skb_dequeue(list)) != NULL)
2000 kfree_skb(skb);
2001 }
2002 EXPORT_SYMBOL(skb_queue_purge);
2003
2004 /**
2005 * skb_queue_head - queue a buffer at the list head
2006 * @list: list to use
2007 * @newsk: buffer to queue
2008 *
2009 * Queue a buffer at the start of the list. This function takes the
2010 * list lock and can be used safely with other locking &sk_buff functions
2011 * safely.
2012 *
2013 * A buffer cannot be placed on two lists at the same time.
2014 */
2015 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2016 {
2017 unsigned long flags;
2018
2019 spin_lock_irqsave(&list->lock, flags);
2020 __skb_queue_head(list, newsk);
2021 spin_unlock_irqrestore(&list->lock, flags);
2022 }
2023 EXPORT_SYMBOL(skb_queue_head);
2024
2025 /**
2026 * skb_queue_tail - queue a buffer at the list tail
2027 * @list: list to use
2028 * @newsk: buffer to queue
2029 *
2030 * Queue a buffer at the tail of the list. This function takes the
2031 * list lock and can be used safely with other locking &sk_buff functions
2032 * safely.
2033 *
2034 * A buffer cannot be placed on two lists at the same time.
2035 */
2036 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2037 {
2038 unsigned long flags;
2039
2040 spin_lock_irqsave(&list->lock, flags);
2041 __skb_queue_tail(list, newsk);
2042 spin_unlock_irqrestore(&list->lock, flags);
2043 }
2044 EXPORT_SYMBOL(skb_queue_tail);
2045
2046 /**
2047 * skb_unlink - remove a buffer from a list
2048 * @skb: buffer to remove
2049 * @list: list to use
2050 *
2051 * Remove a packet from a list. The list locks are taken and this
2052 * function is atomic with respect to other list locked calls
2053 *
2054 * You must know what list the SKB is on.
2055 */
2056 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2057 {
2058 unsigned long flags;
2059
2060 spin_lock_irqsave(&list->lock, flags);
2061 __skb_unlink(skb, list);
2062 spin_unlock_irqrestore(&list->lock, flags);
2063 }
2064 EXPORT_SYMBOL(skb_unlink);
2065
2066 /**
2067 * skb_append - append a buffer
2068 * @old: buffer to insert after
2069 * @newsk: buffer to insert
2070 * @list: list to use
2071 *
2072 * Place a packet after a given packet in a list. The list locks are taken
2073 * and this function is atomic with respect to other list locked calls.
2074 * A buffer cannot be placed on two lists at the same time.
2075 */
2076 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2077 {
2078 unsigned long flags;
2079
2080 spin_lock_irqsave(&list->lock, flags);
2081 __skb_queue_after(list, old, newsk);
2082 spin_unlock_irqrestore(&list->lock, flags);
2083 }
2084 EXPORT_SYMBOL(skb_append);
2085
2086 /**
2087 * skb_insert - insert a buffer
2088 * @old: buffer to insert before
2089 * @newsk: buffer to insert
2090 * @list: list to use
2091 *
2092 * Place a packet before a given packet in a list. The list locks are
2093 * taken and this function is atomic with respect to other list locked
2094 * calls.
2095 *
2096 * A buffer cannot be placed on two lists at the same time.
2097 */
2098 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2099 {
2100 unsigned long flags;
2101
2102 spin_lock_irqsave(&list->lock, flags);
2103 __skb_insert(newsk, old->prev, old, list);
2104 spin_unlock_irqrestore(&list->lock, flags);
2105 }
2106 EXPORT_SYMBOL(skb_insert);
2107
2108 static inline void skb_split_inside_header(struct sk_buff *skb,
2109 struct sk_buff* skb1,
2110 const u32 len, const int pos)
2111 {
2112 int i;
2113
2114 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2115 pos - len);
2116 /* And move data appendix as is. */
2117 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2118 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2119
2120 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2121 skb_shinfo(skb)->nr_frags = 0;
2122 skb1->data_len = skb->data_len;
2123 skb1->len += skb1->data_len;
2124 skb->data_len = 0;
2125 skb->len = len;
2126 skb_set_tail_pointer(skb, len);
2127 }
2128
2129 static inline void skb_split_no_header(struct sk_buff *skb,
2130 struct sk_buff* skb1,
2131 const u32 len, int pos)
2132 {
2133 int i, k = 0;
2134 const int nfrags = skb_shinfo(skb)->nr_frags;
2135
2136 skb_shinfo(skb)->nr_frags = 0;
2137 skb1->len = skb1->data_len = skb->len - len;
2138 skb->len = len;
2139 skb->data_len = len - pos;
2140
2141 for (i = 0; i < nfrags; i++) {
2142 int size = skb_shinfo(skb)->frags[i].size;
2143
2144 if (pos + size > len) {
2145 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2146
2147 if (pos < len) {
2148 /* Split frag.
2149 * We have two variants in this case:
2150 * 1. Move all the frag to the second
2151 * part, if it is possible. F.e.
2152 * this approach is mandatory for TUX,
2153 * where splitting is expensive.
2154 * 2. Split is accurately. We make this.
2155 */
2156 get_page(skb_shinfo(skb)->frags[i].page);
2157 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2158 skb_shinfo(skb1)->frags[0].size -= len - pos;
2159 skb_shinfo(skb)->frags[i].size = len - pos;
2160 skb_shinfo(skb)->nr_frags++;
2161 }
2162 k++;
2163 } else
2164 skb_shinfo(skb)->nr_frags++;
2165 pos += size;
2166 }
2167 skb_shinfo(skb1)->nr_frags = k;
2168 }
2169
2170 /**
2171 * skb_split - Split fragmented skb to two parts at length len.
2172 * @skb: the buffer to split
2173 * @skb1: the buffer to receive the second part
2174 * @len: new length for skb
2175 */
2176 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2177 {
2178 int pos = skb_headlen(skb);
2179
2180 if (len < pos) /* Split line is inside header. */
2181 skb_split_inside_header(skb, skb1, len, pos);
2182 else /* Second chunk has no header, nothing to copy. */
2183 skb_split_no_header(skb, skb1, len, pos);
2184 }
2185 EXPORT_SYMBOL(skb_split);
2186
2187 /* Shifting from/to a cloned skb is a no-go.
2188 *
2189 * Caller cannot keep skb_shinfo related pointers past calling here!
2190 */
2191 static int skb_prepare_for_shift(struct sk_buff *skb)
2192 {
2193 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2194 }
2195
2196 /**
2197 * skb_shift - Shifts paged data partially from skb to another
2198 * @tgt: buffer into which tail data gets added
2199 * @skb: buffer from which the paged data comes from
2200 * @shiftlen: shift up to this many bytes
2201 *
2202 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2203 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2204 * It's up to caller to free skb if everything was shifted.
2205 *
2206 * If @tgt runs out of frags, the whole operation is aborted.
2207 *
2208 * Skb cannot include anything else but paged data while tgt is allowed
2209 * to have non-paged data as well.
2210 *
2211 * TODO: full sized shift could be optimized but that would need
2212 * specialized skb free'er to handle frags without up-to-date nr_frags.
2213 */
2214 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2215 {
2216 int from, to, merge, todo;
2217 struct skb_frag_struct *fragfrom, *fragto;
2218
2219 BUG_ON(shiftlen > skb->len);
2220 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2221
2222 todo = shiftlen;
2223 from = 0;
2224 to = skb_shinfo(tgt)->nr_frags;
2225 fragfrom = &skb_shinfo(skb)->frags[from];
2226
2227 /* Actual merge is delayed until the point when we know we can
2228 * commit all, so that we don't have to undo partial changes
2229 */
2230 if (!to ||
2231 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2232 merge = -1;
2233 } else {
2234 merge = to - 1;
2235
2236 todo -= fragfrom->size;
2237 if (todo < 0) {
2238 if (skb_prepare_for_shift(skb) ||
2239 skb_prepare_for_shift(tgt))
2240 return 0;
2241
2242 /* All previous frag pointers might be stale! */
2243 fragfrom = &skb_shinfo(skb)->frags[from];
2244 fragto = &skb_shinfo(tgt)->frags[merge];
2245
2246 fragto->size += shiftlen;
2247 fragfrom->size -= shiftlen;
2248 fragfrom->page_offset += shiftlen;
2249
2250 goto onlymerged;
2251 }
2252
2253 from++;
2254 }
2255
2256 /* Skip full, not-fitting skb to avoid expensive operations */
2257 if ((shiftlen == skb->len) &&
2258 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2259 return 0;
2260
2261 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2262 return 0;
2263
2264 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2265 if (to == MAX_SKB_FRAGS)
2266 return 0;
2267
2268 fragfrom = &skb_shinfo(skb)->frags[from];
2269 fragto = &skb_shinfo(tgt)->frags[to];
2270
2271 if (todo >= fragfrom->size) {
2272 *fragto = *fragfrom;
2273 todo -= fragfrom->size;
2274 from++;
2275 to++;
2276
2277 } else {
2278 get_page(fragfrom->page);
2279 fragto->page = fragfrom->page;
2280 fragto->page_offset = fragfrom->page_offset;
2281 fragto->size = todo;
2282
2283 fragfrom->page_offset += todo;
2284 fragfrom->size -= todo;
2285 todo = 0;
2286
2287 to++;
2288 break;
2289 }
2290 }
2291
2292 /* Ready to "commit" this state change to tgt */
2293 skb_shinfo(tgt)->nr_frags = to;
2294
2295 if (merge >= 0) {
2296 fragfrom = &skb_shinfo(skb)->frags[0];
2297 fragto = &skb_shinfo(tgt)->frags[merge];
2298
2299 fragto->size += fragfrom->size;
2300 put_page(fragfrom->page);
2301 }
2302
2303 /* Reposition in the original skb */
2304 to = 0;
2305 while (from < skb_shinfo(skb)->nr_frags)
2306 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2307 skb_shinfo(skb)->nr_frags = to;
2308
2309 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2310
2311 onlymerged:
2312 /* Most likely the tgt won't ever need its checksum anymore, skb on
2313 * the other hand might need it if it needs to be resent
2314 */
2315 tgt->ip_summed = CHECKSUM_PARTIAL;
2316 skb->ip_summed = CHECKSUM_PARTIAL;
2317
2318 /* Yak, is it really working this way? Some helper please? */
2319 skb->len -= shiftlen;
2320 skb->data_len -= shiftlen;
2321 skb->truesize -= shiftlen;
2322 tgt->len += shiftlen;
2323 tgt->data_len += shiftlen;
2324 tgt->truesize += shiftlen;
2325
2326 return shiftlen;
2327 }
2328
2329 /**
2330 * skb_prepare_seq_read - Prepare a sequential read of skb data
2331 * @skb: the buffer to read
2332 * @from: lower offset of data to be read
2333 * @to: upper offset of data to be read
2334 * @st: state variable
2335 *
2336 * Initializes the specified state variable. Must be called before
2337 * invoking skb_seq_read() for the first time.
2338 */
2339 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2340 unsigned int to, struct skb_seq_state *st)
2341 {
2342 st->lower_offset = from;
2343 st->upper_offset = to;
2344 st->root_skb = st->cur_skb = skb;
2345 st->frag_idx = st->stepped_offset = 0;
2346 st->frag_data = NULL;
2347 }
2348 EXPORT_SYMBOL(skb_prepare_seq_read);
2349
2350 /**
2351 * skb_seq_read - Sequentially read skb data
2352 * @consumed: number of bytes consumed by the caller so far
2353 * @data: destination pointer for data to be returned
2354 * @st: state variable
2355 *
2356 * Reads a block of skb data at &consumed relative to the
2357 * lower offset specified to skb_prepare_seq_read(). Assigns
2358 * the head of the data block to &data and returns the length
2359 * of the block or 0 if the end of the skb data or the upper
2360 * offset has been reached.
2361 *
2362 * The caller is not required to consume all of the data
2363 * returned, i.e. &consumed is typically set to the number
2364 * of bytes already consumed and the next call to
2365 * skb_seq_read() will return the remaining part of the block.
2366 *
2367 * Note 1: The size of each block of data returned can be arbitrary,
2368 * this limitation is the cost for zerocopy seqeuental
2369 * reads of potentially non linear data.
2370 *
2371 * Note 2: Fragment lists within fragments are not implemented
2372 * at the moment, state->root_skb could be replaced with
2373 * a stack for this purpose.
2374 */
2375 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2376 struct skb_seq_state *st)
2377 {
2378 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2379 skb_frag_t *frag;
2380
2381 if (unlikely(abs_offset >= st->upper_offset))
2382 return 0;
2383
2384 next_skb:
2385 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2386
2387 if (abs_offset < block_limit && !st->frag_data) {
2388 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2389 return block_limit - abs_offset;
2390 }
2391
2392 if (st->frag_idx == 0 && !st->frag_data)
2393 st->stepped_offset += skb_headlen(st->cur_skb);
2394
2395 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2396 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2397 block_limit = frag->size + st->stepped_offset;
2398
2399 if (abs_offset < block_limit) {
2400 if (!st->frag_data)
2401 st->frag_data = kmap_skb_frag(frag);
2402
2403 *data = (u8 *) st->frag_data + frag->page_offset +
2404 (abs_offset - st->stepped_offset);
2405
2406 return block_limit - abs_offset;
2407 }
2408
2409 if (st->frag_data) {
2410 kunmap_skb_frag(st->frag_data);
2411 st->frag_data = NULL;
2412 }
2413
2414 st->frag_idx++;
2415 st->stepped_offset += frag->size;
2416 }
2417
2418 if (st->frag_data) {
2419 kunmap_skb_frag(st->frag_data);
2420 st->frag_data = NULL;
2421 }
2422
2423 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2424 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2425 st->frag_idx = 0;
2426 goto next_skb;
2427 } else if (st->cur_skb->next) {
2428 st->cur_skb = st->cur_skb->next;
2429 st->frag_idx = 0;
2430 goto next_skb;
2431 }
2432
2433 return 0;
2434 }
2435 EXPORT_SYMBOL(skb_seq_read);
2436
2437 /**
2438 * skb_abort_seq_read - Abort a sequential read of skb data
2439 * @st: state variable
2440 *
2441 * Must be called if skb_seq_read() was not called until it
2442 * returned 0.
2443 */
2444 void skb_abort_seq_read(struct skb_seq_state *st)
2445 {
2446 if (st->frag_data)
2447 kunmap_skb_frag(st->frag_data);
2448 }
2449 EXPORT_SYMBOL(skb_abort_seq_read);
2450
2451 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2452
2453 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2454 struct ts_config *conf,
2455 struct ts_state *state)
2456 {
2457 return skb_seq_read(offset, text, TS_SKB_CB(state));
2458 }
2459
2460 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2461 {
2462 skb_abort_seq_read(TS_SKB_CB(state));
2463 }
2464
2465 /**
2466 * skb_find_text - Find a text pattern in skb data
2467 * @skb: the buffer to look in
2468 * @from: search offset
2469 * @to: search limit
2470 * @config: textsearch configuration
2471 * @state: uninitialized textsearch state variable
2472 *
2473 * Finds a pattern in the skb data according to the specified
2474 * textsearch configuration. Use textsearch_next() to retrieve
2475 * subsequent occurrences of the pattern. Returns the offset
2476 * to the first occurrence or UINT_MAX if no match was found.
2477 */
2478 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2479 unsigned int to, struct ts_config *config,
2480 struct ts_state *state)
2481 {
2482 unsigned int ret;
2483
2484 config->get_next_block = skb_ts_get_next_block;
2485 config->finish = skb_ts_finish;
2486
2487 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2488
2489 ret = textsearch_find(config, state);
2490 return (ret <= to - from ? ret : UINT_MAX);
2491 }
2492 EXPORT_SYMBOL(skb_find_text);
2493
2494 /**
2495 * skb_append_datato_frags: - append the user data to a skb
2496 * @sk: sock structure
2497 * @skb: skb structure to be appened with user data.
2498 * @getfrag: call back function to be used for getting the user data
2499 * @from: pointer to user message iov
2500 * @length: length of the iov message
2501 *
2502 * Description: This procedure append the user data in the fragment part
2503 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2504 */
2505 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2506 int (*getfrag)(void *from, char *to, int offset,
2507 int len, int odd, struct sk_buff *skb),
2508 void *from, int length)
2509 {
2510 int frg_cnt = 0;
2511 skb_frag_t *frag = NULL;
2512 struct page *page = NULL;
2513 int copy, left;
2514 int offset = 0;
2515 int ret;
2516
2517 do {
2518 /* Return error if we don't have space for new frag */
2519 frg_cnt = skb_shinfo(skb)->nr_frags;
2520 if (frg_cnt >= MAX_SKB_FRAGS)
2521 return -EFAULT;
2522
2523 /* allocate a new page for next frag */
2524 page = alloc_pages(sk->sk_allocation, 0);
2525
2526 /* If alloc_page fails just return failure and caller will
2527 * free previous allocated pages by doing kfree_skb()
2528 */
2529 if (page == NULL)
2530 return -ENOMEM;
2531
2532 /* initialize the next frag */
2533 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2534 skb->truesize += PAGE_SIZE;
2535 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2536
2537 /* get the new initialized frag */
2538 frg_cnt = skb_shinfo(skb)->nr_frags;
2539 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2540
2541 /* copy the user data to page */
2542 left = PAGE_SIZE - frag->page_offset;
2543 copy = (length > left)? left : length;
2544
2545 ret = getfrag(from, (page_address(frag->page) +
2546 frag->page_offset + frag->size),
2547 offset, copy, 0, skb);
2548 if (ret < 0)
2549 return -EFAULT;
2550
2551 /* copy was successful so update the size parameters */
2552 frag->size += copy;
2553 skb->len += copy;
2554 skb->data_len += copy;
2555 offset += copy;
2556 length -= copy;
2557
2558 } while (length > 0);
2559
2560 return 0;
2561 }
2562 EXPORT_SYMBOL(skb_append_datato_frags);
2563
2564 /**
2565 * skb_pull_rcsum - pull skb and update receive checksum
2566 * @skb: buffer to update
2567 * @len: length of data pulled
2568 *
2569 * This function performs an skb_pull on the packet and updates
2570 * the CHECKSUM_COMPLETE checksum. It should be used on
2571 * receive path processing instead of skb_pull unless you know
2572 * that the checksum difference is zero (e.g., a valid IP header)
2573 * or you are setting ip_summed to CHECKSUM_NONE.
2574 */
2575 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2576 {
2577 BUG_ON(len > skb->len);
2578 skb->len -= len;
2579 BUG_ON(skb->len < skb->data_len);
2580 skb_postpull_rcsum(skb, skb->data, len);
2581 return skb->data += len;
2582 }
2583 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2584
2585 /**
2586 * skb_segment - Perform protocol segmentation on skb.
2587 * @skb: buffer to segment
2588 * @features: features for the output path (see dev->features)
2589 *
2590 * This function performs segmentation on the given skb. It returns
2591 * a pointer to the first in a list of new skbs for the segments.
2592 * In case of error it returns ERR_PTR(err).
2593 */
2594 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2595 {
2596 struct sk_buff *segs = NULL;
2597 struct sk_buff *tail = NULL;
2598 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2599 unsigned int mss = skb_shinfo(skb)->gso_size;
2600 unsigned int doffset = skb->data - skb_mac_header(skb);
2601 unsigned int offset = doffset;
2602 unsigned int headroom;
2603 unsigned int len;
2604 int sg = !!(features & NETIF_F_SG);
2605 int nfrags = skb_shinfo(skb)->nr_frags;
2606 int err = -ENOMEM;
2607 int i = 0;
2608 int pos;
2609
2610 __skb_push(skb, doffset);
2611 headroom = skb_headroom(skb);
2612 pos = skb_headlen(skb);
2613
2614 do {
2615 struct sk_buff *nskb;
2616 skb_frag_t *frag;
2617 int hsize;
2618 int size;
2619
2620 len = skb->len - offset;
2621 if (len > mss)
2622 len = mss;
2623
2624 hsize = skb_headlen(skb) - offset;
2625 if (hsize < 0)
2626 hsize = 0;
2627 if (hsize > len || !sg)
2628 hsize = len;
2629
2630 if (!hsize && i >= nfrags) {
2631 BUG_ON(fskb->len != len);
2632
2633 pos += len;
2634 nskb = skb_clone(fskb, GFP_ATOMIC);
2635 fskb = fskb->next;
2636
2637 if (unlikely(!nskb))
2638 goto err;
2639
2640 hsize = skb_end_pointer(nskb) - nskb->head;
2641 if (skb_cow_head(nskb, doffset + headroom)) {
2642 kfree_skb(nskb);
2643 goto err;
2644 }
2645
2646 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2647 hsize;
2648 skb_release_head_state(nskb);
2649 __skb_push(nskb, doffset);
2650 } else {
2651 nskb = alloc_skb(hsize + doffset + headroom,
2652 GFP_ATOMIC);
2653
2654 if (unlikely(!nskb))
2655 goto err;
2656
2657 skb_reserve(nskb, headroom);
2658 __skb_put(nskb, doffset);
2659 }
2660
2661 if (segs)
2662 tail->next = nskb;
2663 else
2664 segs = nskb;
2665 tail = nskb;
2666
2667 __copy_skb_header(nskb, skb);
2668 nskb->mac_len = skb->mac_len;
2669
2670 /* nskb and skb might have different headroom */
2671 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2672 nskb->csum_start += skb_headroom(nskb) - headroom;
2673
2674 skb_reset_mac_header(nskb);
2675 skb_set_network_header(nskb, skb->mac_len);
2676 nskb->transport_header = (nskb->network_header +
2677 skb_network_header_len(skb));
2678 skb_copy_from_linear_data(skb, nskb->data, doffset);
2679
2680 if (fskb != skb_shinfo(skb)->frag_list)
2681 continue;
2682
2683 if (!sg) {
2684 nskb->ip_summed = CHECKSUM_NONE;
2685 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2686 skb_put(nskb, len),
2687 len, 0);
2688 continue;
2689 }
2690
2691 frag = skb_shinfo(nskb)->frags;
2692
2693 skb_copy_from_linear_data_offset(skb, offset,
2694 skb_put(nskb, hsize), hsize);
2695
2696 while (pos < offset + len && i < nfrags) {
2697 *frag = skb_shinfo(skb)->frags[i];
2698 get_page(frag->page);
2699 size = frag->size;
2700
2701 if (pos < offset) {
2702 frag->page_offset += offset - pos;
2703 frag->size -= offset - pos;
2704 }
2705
2706 skb_shinfo(nskb)->nr_frags++;
2707
2708 if (pos + size <= offset + len) {
2709 i++;
2710 pos += size;
2711 } else {
2712 frag->size -= pos + size - (offset + len);
2713 goto skip_fraglist;
2714 }
2715
2716 frag++;
2717 }
2718
2719 if (pos < offset + len) {
2720 struct sk_buff *fskb2 = fskb;
2721
2722 BUG_ON(pos + fskb->len != offset + len);
2723
2724 pos += fskb->len;
2725 fskb = fskb->next;
2726
2727 if (fskb2->next) {
2728 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2729 if (!fskb2)
2730 goto err;
2731 } else
2732 skb_get(fskb2);
2733
2734 SKB_FRAG_ASSERT(nskb);
2735 skb_shinfo(nskb)->frag_list = fskb2;
2736 }
2737
2738 skip_fraglist:
2739 nskb->data_len = len - hsize;
2740 nskb->len += nskb->data_len;
2741 nskb->truesize += nskb->data_len;
2742 } while ((offset += len) < skb->len);
2743
2744 return segs;
2745
2746 err:
2747 while ((skb = segs)) {
2748 segs = skb->next;
2749 kfree_skb(skb);
2750 }
2751 return ERR_PTR(err);
2752 }
2753 EXPORT_SYMBOL_GPL(skb_segment);
2754
2755 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2756 {
2757 struct sk_buff *p = *head;
2758 struct sk_buff *nskb;
2759 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2760 struct skb_shared_info *pinfo = skb_shinfo(p);
2761 unsigned int headroom;
2762 unsigned int len = skb_gro_len(skb);
2763 unsigned int offset = skb_gro_offset(skb);
2764 unsigned int headlen = skb_headlen(skb);
2765
2766 if (p->len + len >= 65536)
2767 return -E2BIG;
2768
2769 if (pinfo->frag_list)
2770 goto merge;
2771 else if (headlen <= offset) {
2772 skb_frag_t *frag;
2773 skb_frag_t *frag2;
2774 int i = skbinfo->nr_frags;
2775 int nr_frags = pinfo->nr_frags + i;
2776
2777 offset -= headlen;
2778
2779 if (nr_frags > MAX_SKB_FRAGS)
2780 return -E2BIG;
2781
2782 pinfo->nr_frags = nr_frags;
2783 skbinfo->nr_frags = 0;
2784
2785 frag = pinfo->frags + nr_frags;
2786 frag2 = skbinfo->frags + i;
2787 do {
2788 *--frag = *--frag2;
2789 } while (--i);
2790
2791 frag->page_offset += offset;
2792 frag->size -= offset;
2793
2794 skb->truesize -= skb->data_len;
2795 skb->len -= skb->data_len;
2796 skb->data_len = 0;
2797
2798 NAPI_GRO_CB(skb)->free = 1;
2799 goto done;
2800 } else if (skb_gro_len(p) != pinfo->gso_size)
2801 return -E2BIG;
2802
2803 headroom = skb_headroom(p);
2804 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2805 if (unlikely(!nskb))
2806 return -ENOMEM;
2807
2808 __copy_skb_header(nskb, p);
2809 nskb->mac_len = p->mac_len;
2810
2811 skb_reserve(nskb, headroom);
2812 __skb_put(nskb, skb_gro_offset(p));
2813
2814 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2815 skb_set_network_header(nskb, skb_network_offset(p));
2816 skb_set_transport_header(nskb, skb_transport_offset(p));
2817
2818 __skb_pull(p, skb_gro_offset(p));
2819 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2820 p->data - skb_mac_header(p));
2821
2822 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2823 skb_shinfo(nskb)->frag_list = p;
2824 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2825 pinfo->gso_size = 0;
2826 skb_header_release(p);
2827 nskb->prev = p;
2828
2829 nskb->data_len += p->len;
2830 nskb->truesize += p->len;
2831 nskb->len += p->len;
2832
2833 *head = nskb;
2834 nskb->next = p->next;
2835 p->next = NULL;
2836
2837 p = nskb;
2838
2839 merge:
2840 if (offset > headlen) {
2841 unsigned int eat = offset - headlen;
2842
2843 skbinfo->frags[0].page_offset += eat;
2844 skbinfo->frags[0].size -= eat;
2845 skb->data_len -= eat;
2846 skb->len -= eat;
2847 offset = headlen;
2848 }
2849
2850 __skb_pull(skb, offset);
2851
2852 p->prev->next = skb;
2853 p->prev = skb;
2854 skb_header_release(skb);
2855
2856 done:
2857 NAPI_GRO_CB(p)->count++;
2858 p->data_len += len;
2859 p->truesize += len;
2860 p->len += len;
2861
2862 NAPI_GRO_CB(skb)->same_flow = 1;
2863 return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(skb_gro_receive);
2866
2867 void __init skb_init(void)
2868 {
2869 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2870 sizeof(struct sk_buff),
2871 0,
2872 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2873 NULL);
2874 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2875 (2*sizeof(struct sk_buff)) +
2876 sizeof(atomic_t),
2877 0,
2878 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2879 NULL);
2880 }
2881
2882 /**
2883 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2884 * @skb: Socket buffer containing the buffers to be mapped
2885 * @sg: The scatter-gather list to map into
2886 * @offset: The offset into the buffer's contents to start mapping
2887 * @len: Length of buffer space to be mapped
2888 *
2889 * Fill the specified scatter-gather list with mappings/pointers into a
2890 * region of the buffer space attached to a socket buffer.
2891 */
2892 static int
2893 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2894 {
2895 int start = skb_headlen(skb);
2896 int i, copy = start - offset;
2897 struct sk_buff *frag_iter;
2898 int elt = 0;
2899
2900 if (copy > 0) {
2901 if (copy > len)
2902 copy = len;
2903 sg_set_buf(sg, skb->data + offset, copy);
2904 elt++;
2905 if ((len -= copy) == 0)
2906 return elt;
2907 offset += copy;
2908 }
2909
2910 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2911 int end;
2912
2913 WARN_ON(start > offset + len);
2914
2915 end = start + skb_shinfo(skb)->frags[i].size;
2916 if ((copy = end - offset) > 0) {
2917 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2918
2919 if (copy > len)
2920 copy = len;
2921 sg_set_page(&sg[elt], frag->page, copy,
2922 frag->page_offset+offset-start);
2923 elt++;
2924 if (!(len -= copy))
2925 return elt;
2926 offset += copy;
2927 }
2928 start = end;
2929 }
2930
2931 skb_walk_frags(skb, frag_iter) {
2932 int end;
2933
2934 WARN_ON(start > offset + len);
2935
2936 end = start + frag_iter->len;
2937 if ((copy = end - offset) > 0) {
2938 if (copy > len)
2939 copy = len;
2940 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2941 copy);
2942 if ((len -= copy) == 0)
2943 return elt;
2944 offset += copy;
2945 }
2946 start = end;
2947 }
2948 BUG_ON(len);
2949 return elt;
2950 }
2951
2952 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2953 {
2954 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2955
2956 sg_mark_end(&sg[nsg - 1]);
2957
2958 return nsg;
2959 }
2960 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2961
2962 /**
2963 * skb_cow_data - Check that a socket buffer's data buffers are writable
2964 * @skb: The socket buffer to check.
2965 * @tailbits: Amount of trailing space to be added
2966 * @trailer: Returned pointer to the skb where the @tailbits space begins
2967 *
2968 * Make sure that the data buffers attached to a socket buffer are
2969 * writable. If they are not, private copies are made of the data buffers
2970 * and the socket buffer is set to use these instead.
2971 *
2972 * If @tailbits is given, make sure that there is space to write @tailbits
2973 * bytes of data beyond current end of socket buffer. @trailer will be
2974 * set to point to the skb in which this space begins.
2975 *
2976 * The number of scatterlist elements required to completely map the
2977 * COW'd and extended socket buffer will be returned.
2978 */
2979 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2980 {
2981 int copyflag;
2982 int elt;
2983 struct sk_buff *skb1, **skb_p;
2984
2985 /* If skb is cloned or its head is paged, reallocate
2986 * head pulling out all the pages (pages are considered not writable
2987 * at the moment even if they are anonymous).
2988 */
2989 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2990 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2991 return -ENOMEM;
2992
2993 /* Easy case. Most of packets will go this way. */
2994 if (!skb_has_frag_list(skb)) {
2995 /* A little of trouble, not enough of space for trailer.
2996 * This should not happen, when stack is tuned to generate
2997 * good frames. OK, on miss we reallocate and reserve even more
2998 * space, 128 bytes is fair. */
2999
3000 if (skb_tailroom(skb) < tailbits &&
3001 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3002 return -ENOMEM;
3003
3004 /* Voila! */
3005 *trailer = skb;
3006 return 1;
3007 }
3008
3009 /* Misery. We are in troubles, going to mincer fragments... */
3010
3011 elt = 1;
3012 skb_p = &skb_shinfo(skb)->frag_list;
3013 copyflag = 0;
3014
3015 while ((skb1 = *skb_p) != NULL) {
3016 int ntail = 0;
3017
3018 /* The fragment is partially pulled by someone,
3019 * this can happen on input. Copy it and everything
3020 * after it. */
3021
3022 if (skb_shared(skb1))
3023 copyflag = 1;
3024
3025 /* If the skb is the last, worry about trailer. */
3026
3027 if (skb1->next == NULL && tailbits) {
3028 if (skb_shinfo(skb1)->nr_frags ||
3029 skb_has_frag_list(skb1) ||
3030 skb_tailroom(skb1) < tailbits)
3031 ntail = tailbits + 128;
3032 }
3033
3034 if (copyflag ||
3035 skb_cloned(skb1) ||
3036 ntail ||
3037 skb_shinfo(skb1)->nr_frags ||
3038 skb_has_frag_list(skb1)) {
3039 struct sk_buff *skb2;
3040
3041 /* Fuck, we are miserable poor guys... */
3042 if (ntail == 0)
3043 skb2 = skb_copy(skb1, GFP_ATOMIC);
3044 else
3045 skb2 = skb_copy_expand(skb1,
3046 skb_headroom(skb1),
3047 ntail,
3048 GFP_ATOMIC);
3049 if (unlikely(skb2 == NULL))
3050 return -ENOMEM;
3051
3052 if (skb1->sk)
3053 skb_set_owner_w(skb2, skb1->sk);
3054
3055 /* Looking around. Are we still alive?
3056 * OK, link new skb, drop old one */
3057
3058 skb2->next = skb1->next;
3059 *skb_p = skb2;
3060 kfree_skb(skb1);
3061 skb1 = skb2;
3062 }
3063 elt++;
3064 *trailer = skb1;
3065 skb_p = &skb1->next;
3066 }
3067
3068 return elt;
3069 }
3070 EXPORT_SYMBOL_GPL(skb_cow_data);
3071
3072 static void sock_rmem_free(struct sk_buff *skb)
3073 {
3074 struct sock *sk = skb->sk;
3075
3076 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3077 }
3078
3079 /*
3080 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3081 */
3082 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3083 {
3084 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3085 (unsigned)sk->sk_rcvbuf)
3086 return -ENOMEM;
3087
3088 skb_orphan(skb);
3089 skb->sk = sk;
3090 skb->destructor = sock_rmem_free;
3091 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3092
3093 /* before exiting rcu section, make sure dst is refcounted */
3094 skb_dst_force(skb);
3095
3096 skb_queue_tail(&sk->sk_error_queue, skb);
3097 if (!sock_flag(sk, SOCK_DEAD))
3098 sk->sk_data_ready(sk, skb->len);
3099 return 0;
3100 }
3101 EXPORT_SYMBOL(sock_queue_err_skb);
3102
3103 void skb_tstamp_tx(struct sk_buff *orig_skb,
3104 struct skb_shared_hwtstamps *hwtstamps)
3105 {
3106 struct sock *sk = orig_skb->sk;
3107 struct sock_exterr_skb *serr;
3108 struct sk_buff *skb;
3109 int err;
3110
3111 if (!sk)
3112 return;
3113
3114 skb = skb_clone(orig_skb, GFP_ATOMIC);
3115 if (!skb)
3116 return;
3117
3118 if (hwtstamps) {
3119 *skb_hwtstamps(skb) =
3120 *hwtstamps;
3121 } else {
3122 /*
3123 * no hardware time stamps available,
3124 * so keep the shared tx_flags and only
3125 * store software time stamp
3126 */
3127 skb->tstamp = ktime_get_real();
3128 }
3129
3130 serr = SKB_EXT_ERR(skb);
3131 memset(serr, 0, sizeof(*serr));
3132 serr->ee.ee_errno = ENOMSG;
3133 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3134
3135 err = sock_queue_err_skb(sk, skb);
3136
3137 if (err)
3138 kfree_skb(skb);
3139 }
3140 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3141
3142
3143 /**
3144 * skb_partial_csum_set - set up and verify partial csum values for packet
3145 * @skb: the skb to set
3146 * @start: the number of bytes after skb->data to start checksumming.
3147 * @off: the offset from start to place the checksum.
3148 *
3149 * For untrusted partially-checksummed packets, we need to make sure the values
3150 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3151 *
3152 * This function checks and sets those values and skb->ip_summed: if this
3153 * returns false you should drop the packet.
3154 */
3155 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3156 {
3157 if (unlikely(start > skb_headlen(skb)) ||
3158 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3159 if (net_ratelimit())
3160 printk(KERN_WARNING
3161 "bad partial csum: csum=%u/%u len=%u\n",
3162 start, off, skb_headlen(skb));
3163 return false;
3164 }
3165 skb->ip_summed = CHECKSUM_PARTIAL;
3166 skb->csum_start = skb_headroom(skb) + start;
3167 skb->csum_offset = off;
3168 return true;
3169 }
3170 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3171
3172 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3173 {
3174 if (net_ratelimit())
3175 pr_warning("%s: received packets cannot be forwarded"
3176 " while LRO is enabled\n", skb->dev->name);
3177 }
3178 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.101961 seconds and 4 git commands to generate.