Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
71
72 #include "kmap_skb.h"
73
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
129 }
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
186
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192 prefetchw(data + size);
193
194 /*
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
198 */
199 memset(skb, 0, offsetof(struct sk_buff, tail));
200 skb->truesize = size + sizeof(struct sk_buff);
201 atomic_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb->mac_header = ~0U;
208 #endif
209
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214 kmemcheck_annotate_variable(shinfo->destructor_arg);
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 kmemcheck_annotate_bitfield(child, flags1);
221 kmemcheck_annotate_bitfield(child, flags2);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
224
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
226 }
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
233 }
234 EXPORT_SYMBOL(__alloc_skb);
235
236 /**
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
241 *
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
246 *
247 * %NULL is returned if there is no free memory.
248 */
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 unsigned int length, gfp_t gfp_mask)
251 {
252 struct sk_buff *skb;
253
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
258 }
259 return skb;
260 }
261 EXPORT_SYMBOL(__netdev_alloc_skb);
262
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 int size)
265 {
266 skb_fill_page_desc(skb, i, page, off, size);
267 skb->len += size;
268 skb->data_len += size;
269 skb->truesize += size;
270 }
271 EXPORT_SYMBOL(skb_add_rx_frag);
272
273 /**
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
276 *
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
281 *
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
284 */
285 struct sk_buff *dev_alloc_skb(unsigned int length)
286 {
287 /*
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
290 */
291 return __dev_alloc_skb(length, GFP_ATOMIC);
292 }
293 EXPORT_SYMBOL(dev_alloc_skb);
294
295 static void skb_drop_list(struct sk_buff **listp)
296 {
297 struct sk_buff *list = *listp;
298
299 *listp = NULL;
300
301 do {
302 struct sk_buff *this = list;
303 list = list->next;
304 kfree_skb(this);
305 } while (list);
306 }
307
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
309 {
310 skb_drop_list(&skb_shinfo(skb)->frag_list);
311 }
312
313 static void skb_clone_fraglist(struct sk_buff *skb)
314 {
315 struct sk_buff *list;
316
317 skb_walk_frags(skb, list)
318 skb_get(list);
319 }
320
321 static void skb_release_data(struct sk_buff *skb)
322 {
323 if (!skb->cloned ||
324 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 &skb_shinfo(skb)->dataref)) {
326 if (skb_shinfo(skb)->nr_frags) {
327 int i;
328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 put_page(skb_shinfo(skb)->frags[i].page);
330 }
331
332 /*
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
335 */
336 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
337 struct ubuf_info *uarg;
338
339 uarg = skb_shinfo(skb)->destructor_arg;
340 if (uarg->callback)
341 uarg->callback(uarg);
342 }
343
344 if (skb_has_frag_list(skb))
345 skb_drop_fraglist(skb);
346
347 kfree(skb->head);
348 }
349 }
350
351 /*
352 * Free an skbuff by memory without cleaning the state.
353 */
354 static void kfree_skbmem(struct sk_buff *skb)
355 {
356 struct sk_buff *other;
357 atomic_t *fclone_ref;
358
359 switch (skb->fclone) {
360 case SKB_FCLONE_UNAVAILABLE:
361 kmem_cache_free(skbuff_head_cache, skb);
362 break;
363
364 case SKB_FCLONE_ORIG:
365 fclone_ref = (atomic_t *) (skb + 2);
366 if (atomic_dec_and_test(fclone_ref))
367 kmem_cache_free(skbuff_fclone_cache, skb);
368 break;
369
370 case SKB_FCLONE_CLONE:
371 fclone_ref = (atomic_t *) (skb + 1);
372 other = skb - 1;
373
374 /* The clone portion is available for
375 * fast-cloning again.
376 */
377 skb->fclone = SKB_FCLONE_UNAVAILABLE;
378
379 if (atomic_dec_and_test(fclone_ref))
380 kmem_cache_free(skbuff_fclone_cache, other);
381 break;
382 }
383 }
384
385 static void skb_release_head_state(struct sk_buff *skb)
386 {
387 skb_dst_drop(skb);
388 #ifdef CONFIG_XFRM
389 secpath_put(skb->sp);
390 #endif
391 if (skb->destructor) {
392 WARN_ON(in_irq());
393 skb->destructor(skb);
394 }
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb->nfct);
397 #endif
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb->nfct_reasm);
400 #endif
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb->nf_bridge);
403 #endif
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
406 skb->tc_index = 0;
407 #ifdef CONFIG_NET_CLS_ACT
408 skb->tc_verd = 0;
409 #endif
410 #endif
411 }
412
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff *skb)
415 {
416 skb_release_head_state(skb);
417 skb_release_data(skb);
418 }
419
420 /**
421 * __kfree_skb - private function
422 * @skb: buffer
423 *
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
427 */
428
429 void __kfree_skb(struct sk_buff *skb)
430 {
431 skb_release_all(skb);
432 kfree_skbmem(skb);
433 }
434 EXPORT_SYMBOL(__kfree_skb);
435
436 /**
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
439 *
440 * Drop a reference to the buffer and free it if the usage count has
441 * hit zero.
442 */
443 void kfree_skb(struct sk_buff *skb)
444 {
445 if (unlikely(!skb))
446 return;
447 if (likely(atomic_read(&skb->users) == 1))
448 smp_rmb();
449 else if (likely(!atomic_dec_and_test(&skb->users)))
450 return;
451 trace_kfree_skb(skb, __builtin_return_address(0));
452 __kfree_skb(skb);
453 }
454 EXPORT_SYMBOL(kfree_skb);
455
456 /**
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
459 *
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
463 */
464 void consume_skb(struct sk_buff *skb)
465 {
466 if (unlikely(!skb))
467 return;
468 if (likely(atomic_read(&skb->users) == 1))
469 smp_rmb();
470 else if (likely(!atomic_dec_and_test(&skb->users)))
471 return;
472 trace_consume_skb(skb);
473 __kfree_skb(skb);
474 }
475 EXPORT_SYMBOL(consume_skb);
476
477 /**
478 * skb_recycle_check - check if skb can be reused for receive
479 * @skb: buffer
480 * @skb_size: minimum receive buffer size
481 *
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
488 */
489 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
490 {
491 struct skb_shared_info *shinfo;
492
493 if (irqs_disabled())
494 return false;
495
496 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
497 return false;
498
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return false;
501
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return false;
505
506 if (skb_shared(skb) || skb_cloned(skb))
507 return false;
508
509 skb_release_head_state(skb);
510
511 shinfo = skb_shinfo(skb);
512 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
513 atomic_set(&shinfo->dataref, 1);
514
515 memset(skb, 0, offsetof(struct sk_buff, tail));
516 skb->data = skb->head + NET_SKB_PAD;
517 skb_reset_tail_pointer(skb);
518
519 return true;
520 }
521 EXPORT_SYMBOL(skb_recycle_check);
522
523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
524 {
525 new->tstamp = old->tstamp;
526 new->dev = old->dev;
527 new->transport_header = old->transport_header;
528 new->network_header = old->network_header;
529 new->mac_header = old->mac_header;
530 skb_dst_copy(new, old);
531 new->rxhash = old->rxhash;
532 #ifdef CONFIG_XFRM
533 new->sp = secpath_get(old->sp);
534 #endif
535 memcpy(new->cb, old->cb, sizeof(old->cb));
536 new->csum = old->csum;
537 new->local_df = old->local_df;
538 new->pkt_type = old->pkt_type;
539 new->ip_summed = old->ip_summed;
540 skb_copy_queue_mapping(new, old);
541 new->priority = old->priority;
542 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
543 new->ipvs_property = old->ipvs_property;
544 #endif
545 new->protocol = old->protocol;
546 new->mark = old->mark;
547 new->skb_iif = old->skb_iif;
548 __nf_copy(new, old);
549 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
550 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
551 new->nf_trace = old->nf_trace;
552 #endif
553 #ifdef CONFIG_NET_SCHED
554 new->tc_index = old->tc_index;
555 #ifdef CONFIG_NET_CLS_ACT
556 new->tc_verd = old->tc_verd;
557 #endif
558 #endif
559 new->vlan_tci = old->vlan_tci;
560
561 skb_copy_secmark(new, old);
562 }
563
564 /*
565 * You should not add any new code to this function. Add it to
566 * __copy_skb_header above instead.
567 */
568 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
569 {
570 #define C(x) n->x = skb->x
571
572 n->next = n->prev = NULL;
573 n->sk = NULL;
574 __copy_skb_header(n, skb);
575
576 C(len);
577 C(data_len);
578 C(mac_len);
579 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
580 n->cloned = 1;
581 n->nohdr = 0;
582 n->destructor = NULL;
583 C(tail);
584 C(end);
585 C(head);
586 C(data);
587 C(truesize);
588 atomic_set(&n->users, 1);
589
590 atomic_inc(&(skb_shinfo(skb)->dataref));
591 skb->cloned = 1;
592
593 return n;
594 #undef C
595 }
596
597 /**
598 * skb_morph - morph one skb into another
599 * @dst: the skb to receive the contents
600 * @src: the skb to supply the contents
601 *
602 * This is identical to skb_clone except that the target skb is
603 * supplied by the user.
604 *
605 * The target skb is returned upon exit.
606 */
607 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
608 {
609 skb_release_all(dst);
610 return __skb_clone(dst, src);
611 }
612 EXPORT_SYMBOL_GPL(skb_morph);
613
614 /* skb frags copy userspace buffers to kernel */
615 static int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
616 {
617 int i;
618 int num_frags = skb_shinfo(skb)->nr_frags;
619 struct page *page, *head = NULL;
620 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
621
622 for (i = 0; i < num_frags; i++) {
623 u8 *vaddr;
624 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
625
626 page = alloc_page(GFP_ATOMIC);
627 if (!page) {
628 while (head) {
629 struct page *next = (struct page *)head->private;
630 put_page(head);
631 head = next;
632 }
633 return -ENOMEM;
634 }
635 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
636 memcpy(page_address(page),
637 vaddr + f->page_offset, f->size);
638 kunmap_skb_frag(vaddr);
639 page->private = (unsigned long)head;
640 head = page;
641 }
642
643 /* skb frags release userspace buffers */
644 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
645 put_page(skb_shinfo(skb)->frags[i].page);
646
647 uarg->callback(uarg);
648
649 /* skb frags point to kernel buffers */
650 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
651 skb_shinfo(skb)->frags[i - 1].page_offset = 0;
652 skb_shinfo(skb)->frags[i - 1].page = head;
653 head = (struct page *)head->private;
654 }
655 return 0;
656 }
657
658
659 /**
660 * skb_clone - duplicate an sk_buff
661 * @skb: buffer to clone
662 * @gfp_mask: allocation priority
663 *
664 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
665 * copies share the same packet data but not structure. The new
666 * buffer has a reference count of 1. If the allocation fails the
667 * function returns %NULL otherwise the new buffer is returned.
668 *
669 * If this function is called from an interrupt gfp_mask() must be
670 * %GFP_ATOMIC.
671 */
672
673 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
674 {
675 struct sk_buff *n;
676
677 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
678 if (skb_copy_ubufs(skb, gfp_mask))
679 return NULL;
680 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
681 }
682
683 n = skb + 1;
684 if (skb->fclone == SKB_FCLONE_ORIG &&
685 n->fclone == SKB_FCLONE_UNAVAILABLE) {
686 atomic_t *fclone_ref = (atomic_t *) (n + 1);
687 n->fclone = SKB_FCLONE_CLONE;
688 atomic_inc(fclone_ref);
689 } else {
690 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
691 if (!n)
692 return NULL;
693
694 kmemcheck_annotate_bitfield(n, flags1);
695 kmemcheck_annotate_bitfield(n, flags2);
696 n->fclone = SKB_FCLONE_UNAVAILABLE;
697 }
698
699 return __skb_clone(n, skb);
700 }
701 EXPORT_SYMBOL(skb_clone);
702
703 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
704 {
705 #ifndef NET_SKBUFF_DATA_USES_OFFSET
706 /*
707 * Shift between the two data areas in bytes
708 */
709 unsigned long offset = new->data - old->data;
710 #endif
711
712 __copy_skb_header(new, old);
713
714 #ifndef NET_SKBUFF_DATA_USES_OFFSET
715 /* {transport,network,mac}_header are relative to skb->head */
716 new->transport_header += offset;
717 new->network_header += offset;
718 if (skb_mac_header_was_set(new))
719 new->mac_header += offset;
720 #endif
721 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
722 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
723 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
724 }
725
726 /**
727 * skb_copy - create private copy of an sk_buff
728 * @skb: buffer to copy
729 * @gfp_mask: allocation priority
730 *
731 * Make a copy of both an &sk_buff and its data. This is used when the
732 * caller wishes to modify the data and needs a private copy of the
733 * data to alter. Returns %NULL on failure or the pointer to the buffer
734 * on success. The returned buffer has a reference count of 1.
735 *
736 * As by-product this function converts non-linear &sk_buff to linear
737 * one, so that &sk_buff becomes completely private and caller is allowed
738 * to modify all the data of returned buffer. This means that this
739 * function is not recommended for use in circumstances when only
740 * header is going to be modified. Use pskb_copy() instead.
741 */
742
743 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
744 {
745 int headerlen = skb_headroom(skb);
746 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
747 struct sk_buff *n = alloc_skb(size, gfp_mask);
748
749 if (!n)
750 return NULL;
751
752 /* Set the data pointer */
753 skb_reserve(n, headerlen);
754 /* Set the tail pointer and length */
755 skb_put(n, skb->len);
756
757 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
758 BUG();
759
760 copy_skb_header(n, skb);
761 return n;
762 }
763 EXPORT_SYMBOL(skb_copy);
764
765 /**
766 * pskb_copy - create copy of an sk_buff with private head.
767 * @skb: buffer to copy
768 * @gfp_mask: allocation priority
769 *
770 * Make a copy of both an &sk_buff and part of its data, located
771 * in header. Fragmented data remain shared. This is used when
772 * the caller wishes to modify only header of &sk_buff and needs
773 * private copy of the header to alter. Returns %NULL on failure
774 * or the pointer to the buffer on success.
775 * The returned buffer has a reference count of 1.
776 */
777
778 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
779 {
780 unsigned int size = skb_end_pointer(skb) - skb->head;
781 struct sk_buff *n = alloc_skb(size, gfp_mask);
782
783 if (!n)
784 goto out;
785
786 /* Set the data pointer */
787 skb_reserve(n, skb_headroom(skb));
788 /* Set the tail pointer and length */
789 skb_put(n, skb_headlen(skb));
790 /* Copy the bytes */
791 skb_copy_from_linear_data(skb, n->data, n->len);
792
793 n->truesize += skb->data_len;
794 n->data_len = skb->data_len;
795 n->len = skb->len;
796
797 if (skb_shinfo(skb)->nr_frags) {
798 int i;
799
800 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
801 if (skb_copy_ubufs(skb, gfp_mask)) {
802 kfree(n);
803 goto out;
804 }
805 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
806 }
807 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
808 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
809 get_page(skb_shinfo(n)->frags[i].page);
810 }
811 skb_shinfo(n)->nr_frags = i;
812 }
813
814 if (skb_has_frag_list(skb)) {
815 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
816 skb_clone_fraglist(n);
817 }
818
819 copy_skb_header(n, skb);
820 out:
821 return n;
822 }
823 EXPORT_SYMBOL(pskb_copy);
824
825 /**
826 * pskb_expand_head - reallocate header of &sk_buff
827 * @skb: buffer to reallocate
828 * @nhead: room to add at head
829 * @ntail: room to add at tail
830 * @gfp_mask: allocation priority
831 *
832 * Expands (or creates identical copy, if &nhead and &ntail are zero)
833 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
834 * reference count of 1. Returns zero in the case of success or error,
835 * if expansion failed. In the last case, &sk_buff is not changed.
836 *
837 * All the pointers pointing into skb header may change and must be
838 * reloaded after call to this function.
839 */
840
841 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
842 gfp_t gfp_mask)
843 {
844 int i;
845 u8 *data;
846 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
847 long off;
848 bool fastpath;
849
850 BUG_ON(nhead < 0);
851
852 if (skb_shared(skb))
853 BUG();
854
855 size = SKB_DATA_ALIGN(size);
856
857 /* Check if we can avoid taking references on fragments if we own
858 * the last reference on skb->head. (see skb_release_data())
859 */
860 if (!skb->cloned)
861 fastpath = true;
862 else {
863 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
864 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
865 }
866
867 if (fastpath &&
868 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
869 memmove(skb->head + size, skb_shinfo(skb),
870 offsetof(struct skb_shared_info,
871 frags[skb_shinfo(skb)->nr_frags]));
872 memmove(skb->head + nhead, skb->head,
873 skb_tail_pointer(skb) - skb->head);
874 off = nhead;
875 goto adjust_others;
876 }
877
878 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
879 if (!data)
880 goto nodata;
881
882 /* Copy only real data... and, alas, header. This should be
883 * optimized for the cases when header is void.
884 */
885 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
886
887 memcpy((struct skb_shared_info *)(data + size),
888 skb_shinfo(skb),
889 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
890
891 if (fastpath) {
892 kfree(skb->head);
893 } else {
894 /* copy this zero copy skb frags */
895 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
896 if (skb_copy_ubufs(skb, gfp_mask))
897 goto nofrags;
898 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
899 }
900 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
901 get_page(skb_shinfo(skb)->frags[i].page);
902
903 if (skb_has_frag_list(skb))
904 skb_clone_fraglist(skb);
905
906 skb_release_data(skb);
907 }
908 off = (data + nhead) - skb->head;
909
910 skb->head = data;
911 adjust_others:
912 skb->data += off;
913 #ifdef NET_SKBUFF_DATA_USES_OFFSET
914 skb->end = size;
915 off = nhead;
916 #else
917 skb->end = skb->head + size;
918 #endif
919 /* {transport,network,mac}_header and tail are relative to skb->head */
920 skb->tail += off;
921 skb->transport_header += off;
922 skb->network_header += off;
923 if (skb_mac_header_was_set(skb))
924 skb->mac_header += off;
925 /* Only adjust this if it actually is csum_start rather than csum */
926 if (skb->ip_summed == CHECKSUM_PARTIAL)
927 skb->csum_start += nhead;
928 skb->cloned = 0;
929 skb->hdr_len = 0;
930 skb->nohdr = 0;
931 atomic_set(&skb_shinfo(skb)->dataref, 1);
932 return 0;
933
934 nofrags:
935 kfree(data);
936 nodata:
937 return -ENOMEM;
938 }
939 EXPORT_SYMBOL(pskb_expand_head);
940
941 /* Make private copy of skb with writable head and some headroom */
942
943 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
944 {
945 struct sk_buff *skb2;
946 int delta = headroom - skb_headroom(skb);
947
948 if (delta <= 0)
949 skb2 = pskb_copy(skb, GFP_ATOMIC);
950 else {
951 skb2 = skb_clone(skb, GFP_ATOMIC);
952 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
953 GFP_ATOMIC)) {
954 kfree_skb(skb2);
955 skb2 = NULL;
956 }
957 }
958 return skb2;
959 }
960 EXPORT_SYMBOL(skb_realloc_headroom);
961
962 /**
963 * skb_copy_expand - copy and expand sk_buff
964 * @skb: buffer to copy
965 * @newheadroom: new free bytes at head
966 * @newtailroom: new free bytes at tail
967 * @gfp_mask: allocation priority
968 *
969 * Make a copy of both an &sk_buff and its data and while doing so
970 * allocate additional space.
971 *
972 * This is used when the caller wishes to modify the data and needs a
973 * private copy of the data to alter as well as more space for new fields.
974 * Returns %NULL on failure or the pointer to the buffer
975 * on success. The returned buffer has a reference count of 1.
976 *
977 * You must pass %GFP_ATOMIC as the allocation priority if this function
978 * is called from an interrupt.
979 */
980 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
981 int newheadroom, int newtailroom,
982 gfp_t gfp_mask)
983 {
984 /*
985 * Allocate the copy buffer
986 */
987 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
988 gfp_mask);
989 int oldheadroom = skb_headroom(skb);
990 int head_copy_len, head_copy_off;
991 int off;
992
993 if (!n)
994 return NULL;
995
996 skb_reserve(n, newheadroom);
997
998 /* Set the tail pointer and length */
999 skb_put(n, skb->len);
1000
1001 head_copy_len = oldheadroom;
1002 head_copy_off = 0;
1003 if (newheadroom <= head_copy_len)
1004 head_copy_len = newheadroom;
1005 else
1006 head_copy_off = newheadroom - head_copy_len;
1007
1008 /* Copy the linear header and data. */
1009 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1010 skb->len + head_copy_len))
1011 BUG();
1012
1013 copy_skb_header(n, skb);
1014
1015 off = newheadroom - oldheadroom;
1016 if (n->ip_summed == CHECKSUM_PARTIAL)
1017 n->csum_start += off;
1018 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1019 n->transport_header += off;
1020 n->network_header += off;
1021 if (skb_mac_header_was_set(skb))
1022 n->mac_header += off;
1023 #endif
1024
1025 return n;
1026 }
1027 EXPORT_SYMBOL(skb_copy_expand);
1028
1029 /**
1030 * skb_pad - zero pad the tail of an skb
1031 * @skb: buffer to pad
1032 * @pad: space to pad
1033 *
1034 * Ensure that a buffer is followed by a padding area that is zero
1035 * filled. Used by network drivers which may DMA or transfer data
1036 * beyond the buffer end onto the wire.
1037 *
1038 * May return error in out of memory cases. The skb is freed on error.
1039 */
1040
1041 int skb_pad(struct sk_buff *skb, int pad)
1042 {
1043 int err;
1044 int ntail;
1045
1046 /* If the skbuff is non linear tailroom is always zero.. */
1047 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1048 memset(skb->data+skb->len, 0, pad);
1049 return 0;
1050 }
1051
1052 ntail = skb->data_len + pad - (skb->end - skb->tail);
1053 if (likely(skb_cloned(skb) || ntail > 0)) {
1054 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1055 if (unlikely(err))
1056 goto free_skb;
1057 }
1058
1059 /* FIXME: The use of this function with non-linear skb's really needs
1060 * to be audited.
1061 */
1062 err = skb_linearize(skb);
1063 if (unlikely(err))
1064 goto free_skb;
1065
1066 memset(skb->data + skb->len, 0, pad);
1067 return 0;
1068
1069 free_skb:
1070 kfree_skb(skb);
1071 return err;
1072 }
1073 EXPORT_SYMBOL(skb_pad);
1074
1075 /**
1076 * skb_put - add data to a buffer
1077 * @skb: buffer to use
1078 * @len: amount of data to add
1079 *
1080 * This function extends the used data area of the buffer. If this would
1081 * exceed the total buffer size the kernel will panic. A pointer to the
1082 * first byte of the extra data is returned.
1083 */
1084 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1085 {
1086 unsigned char *tmp = skb_tail_pointer(skb);
1087 SKB_LINEAR_ASSERT(skb);
1088 skb->tail += len;
1089 skb->len += len;
1090 if (unlikely(skb->tail > skb->end))
1091 skb_over_panic(skb, len, __builtin_return_address(0));
1092 return tmp;
1093 }
1094 EXPORT_SYMBOL(skb_put);
1095
1096 /**
1097 * skb_push - add data to the start of a buffer
1098 * @skb: buffer to use
1099 * @len: amount of data to add
1100 *
1101 * This function extends the used data area of the buffer at the buffer
1102 * start. If this would exceed the total buffer headroom the kernel will
1103 * panic. A pointer to the first byte of the extra data is returned.
1104 */
1105 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1106 {
1107 skb->data -= len;
1108 skb->len += len;
1109 if (unlikely(skb->data<skb->head))
1110 skb_under_panic(skb, len, __builtin_return_address(0));
1111 return skb->data;
1112 }
1113 EXPORT_SYMBOL(skb_push);
1114
1115 /**
1116 * skb_pull - remove data from the start of a buffer
1117 * @skb: buffer to use
1118 * @len: amount of data to remove
1119 *
1120 * This function removes data from the start of a buffer, returning
1121 * the memory to the headroom. A pointer to the next data in the buffer
1122 * is returned. Once the data has been pulled future pushes will overwrite
1123 * the old data.
1124 */
1125 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1126 {
1127 return skb_pull_inline(skb, len);
1128 }
1129 EXPORT_SYMBOL(skb_pull);
1130
1131 /**
1132 * skb_trim - remove end from a buffer
1133 * @skb: buffer to alter
1134 * @len: new length
1135 *
1136 * Cut the length of a buffer down by removing data from the tail. If
1137 * the buffer is already under the length specified it is not modified.
1138 * The skb must be linear.
1139 */
1140 void skb_trim(struct sk_buff *skb, unsigned int len)
1141 {
1142 if (skb->len > len)
1143 __skb_trim(skb, len);
1144 }
1145 EXPORT_SYMBOL(skb_trim);
1146
1147 /* Trims skb to length len. It can change skb pointers.
1148 */
1149
1150 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1151 {
1152 struct sk_buff **fragp;
1153 struct sk_buff *frag;
1154 int offset = skb_headlen(skb);
1155 int nfrags = skb_shinfo(skb)->nr_frags;
1156 int i;
1157 int err;
1158
1159 if (skb_cloned(skb) &&
1160 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1161 return err;
1162
1163 i = 0;
1164 if (offset >= len)
1165 goto drop_pages;
1166
1167 for (; i < nfrags; i++) {
1168 int end = offset + skb_shinfo(skb)->frags[i].size;
1169
1170 if (end < len) {
1171 offset = end;
1172 continue;
1173 }
1174
1175 skb_shinfo(skb)->frags[i++].size = len - offset;
1176
1177 drop_pages:
1178 skb_shinfo(skb)->nr_frags = i;
1179
1180 for (; i < nfrags; i++)
1181 put_page(skb_shinfo(skb)->frags[i].page);
1182
1183 if (skb_has_frag_list(skb))
1184 skb_drop_fraglist(skb);
1185 goto done;
1186 }
1187
1188 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1189 fragp = &frag->next) {
1190 int end = offset + frag->len;
1191
1192 if (skb_shared(frag)) {
1193 struct sk_buff *nfrag;
1194
1195 nfrag = skb_clone(frag, GFP_ATOMIC);
1196 if (unlikely(!nfrag))
1197 return -ENOMEM;
1198
1199 nfrag->next = frag->next;
1200 kfree_skb(frag);
1201 frag = nfrag;
1202 *fragp = frag;
1203 }
1204
1205 if (end < len) {
1206 offset = end;
1207 continue;
1208 }
1209
1210 if (end > len &&
1211 unlikely((err = pskb_trim(frag, len - offset))))
1212 return err;
1213
1214 if (frag->next)
1215 skb_drop_list(&frag->next);
1216 break;
1217 }
1218
1219 done:
1220 if (len > skb_headlen(skb)) {
1221 skb->data_len -= skb->len - len;
1222 skb->len = len;
1223 } else {
1224 skb->len = len;
1225 skb->data_len = 0;
1226 skb_set_tail_pointer(skb, len);
1227 }
1228
1229 return 0;
1230 }
1231 EXPORT_SYMBOL(___pskb_trim);
1232
1233 /**
1234 * __pskb_pull_tail - advance tail of skb header
1235 * @skb: buffer to reallocate
1236 * @delta: number of bytes to advance tail
1237 *
1238 * The function makes a sense only on a fragmented &sk_buff,
1239 * it expands header moving its tail forward and copying necessary
1240 * data from fragmented part.
1241 *
1242 * &sk_buff MUST have reference count of 1.
1243 *
1244 * Returns %NULL (and &sk_buff does not change) if pull failed
1245 * or value of new tail of skb in the case of success.
1246 *
1247 * All the pointers pointing into skb header may change and must be
1248 * reloaded after call to this function.
1249 */
1250
1251 /* Moves tail of skb head forward, copying data from fragmented part,
1252 * when it is necessary.
1253 * 1. It may fail due to malloc failure.
1254 * 2. It may change skb pointers.
1255 *
1256 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1257 */
1258 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1259 {
1260 /* If skb has not enough free space at tail, get new one
1261 * plus 128 bytes for future expansions. If we have enough
1262 * room at tail, reallocate without expansion only if skb is cloned.
1263 */
1264 int i, k, eat = (skb->tail + delta) - skb->end;
1265
1266 if (eat > 0 || skb_cloned(skb)) {
1267 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1268 GFP_ATOMIC))
1269 return NULL;
1270 }
1271
1272 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1273 BUG();
1274
1275 /* Optimization: no fragments, no reasons to preestimate
1276 * size of pulled pages. Superb.
1277 */
1278 if (!skb_has_frag_list(skb))
1279 goto pull_pages;
1280
1281 /* Estimate size of pulled pages. */
1282 eat = delta;
1283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1284 if (skb_shinfo(skb)->frags[i].size >= eat)
1285 goto pull_pages;
1286 eat -= skb_shinfo(skb)->frags[i].size;
1287 }
1288
1289 /* If we need update frag list, we are in troubles.
1290 * Certainly, it possible to add an offset to skb data,
1291 * but taking into account that pulling is expected to
1292 * be very rare operation, it is worth to fight against
1293 * further bloating skb head and crucify ourselves here instead.
1294 * Pure masohism, indeed. 8)8)
1295 */
1296 if (eat) {
1297 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1298 struct sk_buff *clone = NULL;
1299 struct sk_buff *insp = NULL;
1300
1301 do {
1302 BUG_ON(!list);
1303
1304 if (list->len <= eat) {
1305 /* Eaten as whole. */
1306 eat -= list->len;
1307 list = list->next;
1308 insp = list;
1309 } else {
1310 /* Eaten partially. */
1311
1312 if (skb_shared(list)) {
1313 /* Sucks! We need to fork list. :-( */
1314 clone = skb_clone(list, GFP_ATOMIC);
1315 if (!clone)
1316 return NULL;
1317 insp = list->next;
1318 list = clone;
1319 } else {
1320 /* This may be pulled without
1321 * problems. */
1322 insp = list;
1323 }
1324 if (!pskb_pull(list, eat)) {
1325 kfree_skb(clone);
1326 return NULL;
1327 }
1328 break;
1329 }
1330 } while (eat);
1331
1332 /* Free pulled out fragments. */
1333 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1334 skb_shinfo(skb)->frag_list = list->next;
1335 kfree_skb(list);
1336 }
1337 /* And insert new clone at head. */
1338 if (clone) {
1339 clone->next = list;
1340 skb_shinfo(skb)->frag_list = clone;
1341 }
1342 }
1343 /* Success! Now we may commit changes to skb data. */
1344
1345 pull_pages:
1346 eat = delta;
1347 k = 0;
1348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1349 if (skb_shinfo(skb)->frags[i].size <= eat) {
1350 put_page(skb_shinfo(skb)->frags[i].page);
1351 eat -= skb_shinfo(skb)->frags[i].size;
1352 } else {
1353 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1354 if (eat) {
1355 skb_shinfo(skb)->frags[k].page_offset += eat;
1356 skb_shinfo(skb)->frags[k].size -= eat;
1357 eat = 0;
1358 }
1359 k++;
1360 }
1361 }
1362 skb_shinfo(skb)->nr_frags = k;
1363
1364 skb->tail += delta;
1365 skb->data_len -= delta;
1366
1367 return skb_tail_pointer(skb);
1368 }
1369 EXPORT_SYMBOL(__pskb_pull_tail);
1370
1371 /* Copy some data bits from skb to kernel buffer. */
1372
1373 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1374 {
1375 int start = skb_headlen(skb);
1376 struct sk_buff *frag_iter;
1377 int i, copy;
1378
1379 if (offset > (int)skb->len - len)
1380 goto fault;
1381
1382 /* Copy header. */
1383 if ((copy = start - offset) > 0) {
1384 if (copy > len)
1385 copy = len;
1386 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1387 if ((len -= copy) == 0)
1388 return 0;
1389 offset += copy;
1390 to += copy;
1391 }
1392
1393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1394 int end;
1395
1396 WARN_ON(start > offset + len);
1397
1398 end = start + skb_shinfo(skb)->frags[i].size;
1399 if ((copy = end - offset) > 0) {
1400 u8 *vaddr;
1401
1402 if (copy > len)
1403 copy = len;
1404
1405 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1406 memcpy(to,
1407 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1408 offset - start, copy);
1409 kunmap_skb_frag(vaddr);
1410
1411 if ((len -= copy) == 0)
1412 return 0;
1413 offset += copy;
1414 to += copy;
1415 }
1416 start = end;
1417 }
1418
1419 skb_walk_frags(skb, frag_iter) {
1420 int end;
1421
1422 WARN_ON(start > offset + len);
1423
1424 end = start + frag_iter->len;
1425 if ((copy = end - offset) > 0) {
1426 if (copy > len)
1427 copy = len;
1428 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1429 goto fault;
1430 if ((len -= copy) == 0)
1431 return 0;
1432 offset += copy;
1433 to += copy;
1434 }
1435 start = end;
1436 }
1437
1438 if (!len)
1439 return 0;
1440
1441 fault:
1442 return -EFAULT;
1443 }
1444 EXPORT_SYMBOL(skb_copy_bits);
1445
1446 /*
1447 * Callback from splice_to_pipe(), if we need to release some pages
1448 * at the end of the spd in case we error'ed out in filling the pipe.
1449 */
1450 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1451 {
1452 put_page(spd->pages[i]);
1453 }
1454
1455 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1456 unsigned int *offset,
1457 struct sk_buff *skb, struct sock *sk)
1458 {
1459 struct page *p = sk->sk_sndmsg_page;
1460 unsigned int off;
1461
1462 if (!p) {
1463 new_page:
1464 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1465 if (!p)
1466 return NULL;
1467
1468 off = sk->sk_sndmsg_off = 0;
1469 /* hold one ref to this page until it's full */
1470 } else {
1471 unsigned int mlen;
1472
1473 off = sk->sk_sndmsg_off;
1474 mlen = PAGE_SIZE - off;
1475 if (mlen < 64 && mlen < *len) {
1476 put_page(p);
1477 goto new_page;
1478 }
1479
1480 *len = min_t(unsigned int, *len, mlen);
1481 }
1482
1483 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1484 sk->sk_sndmsg_off += *len;
1485 *offset = off;
1486 get_page(p);
1487
1488 return p;
1489 }
1490
1491 /*
1492 * Fill page/offset/length into spd, if it can hold more pages.
1493 */
1494 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1495 struct pipe_inode_info *pipe, struct page *page,
1496 unsigned int *len, unsigned int offset,
1497 struct sk_buff *skb, int linear,
1498 struct sock *sk)
1499 {
1500 if (unlikely(spd->nr_pages == pipe->buffers))
1501 return 1;
1502
1503 if (linear) {
1504 page = linear_to_page(page, len, &offset, skb, sk);
1505 if (!page)
1506 return 1;
1507 } else
1508 get_page(page);
1509
1510 spd->pages[spd->nr_pages] = page;
1511 spd->partial[spd->nr_pages].len = *len;
1512 spd->partial[spd->nr_pages].offset = offset;
1513 spd->nr_pages++;
1514
1515 return 0;
1516 }
1517
1518 static inline void __segment_seek(struct page **page, unsigned int *poff,
1519 unsigned int *plen, unsigned int off)
1520 {
1521 unsigned long n;
1522
1523 *poff += off;
1524 n = *poff / PAGE_SIZE;
1525 if (n)
1526 *page = nth_page(*page, n);
1527
1528 *poff = *poff % PAGE_SIZE;
1529 *plen -= off;
1530 }
1531
1532 static inline int __splice_segment(struct page *page, unsigned int poff,
1533 unsigned int plen, unsigned int *off,
1534 unsigned int *len, struct sk_buff *skb,
1535 struct splice_pipe_desc *spd, int linear,
1536 struct sock *sk,
1537 struct pipe_inode_info *pipe)
1538 {
1539 if (!*len)
1540 return 1;
1541
1542 /* skip this segment if already processed */
1543 if (*off >= plen) {
1544 *off -= plen;
1545 return 0;
1546 }
1547
1548 /* ignore any bits we already processed */
1549 if (*off) {
1550 __segment_seek(&page, &poff, &plen, *off);
1551 *off = 0;
1552 }
1553
1554 do {
1555 unsigned int flen = min(*len, plen);
1556
1557 /* the linear region may spread across several pages */
1558 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1559
1560 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1561 return 1;
1562
1563 __segment_seek(&page, &poff, &plen, flen);
1564 *len -= flen;
1565
1566 } while (*len && plen);
1567
1568 return 0;
1569 }
1570
1571 /*
1572 * Map linear and fragment data from the skb to spd. It reports failure if the
1573 * pipe is full or if we already spliced the requested length.
1574 */
1575 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1576 unsigned int *offset, unsigned int *len,
1577 struct splice_pipe_desc *spd, struct sock *sk)
1578 {
1579 int seg;
1580
1581 /*
1582 * map the linear part
1583 */
1584 if (__splice_segment(virt_to_page(skb->data),
1585 (unsigned long) skb->data & (PAGE_SIZE - 1),
1586 skb_headlen(skb),
1587 offset, len, skb, spd, 1, sk, pipe))
1588 return 1;
1589
1590 /*
1591 * then map the fragments
1592 */
1593 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1594 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1595
1596 if (__splice_segment(f->page, f->page_offset, f->size,
1597 offset, len, skb, spd, 0, sk, pipe))
1598 return 1;
1599 }
1600
1601 return 0;
1602 }
1603
1604 /*
1605 * Map data from the skb to a pipe. Should handle both the linear part,
1606 * the fragments, and the frag list. It does NOT handle frag lists within
1607 * the frag list, if such a thing exists. We'd probably need to recurse to
1608 * handle that cleanly.
1609 */
1610 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1611 struct pipe_inode_info *pipe, unsigned int tlen,
1612 unsigned int flags)
1613 {
1614 struct partial_page partial[PIPE_DEF_BUFFERS];
1615 struct page *pages[PIPE_DEF_BUFFERS];
1616 struct splice_pipe_desc spd = {
1617 .pages = pages,
1618 .partial = partial,
1619 .flags = flags,
1620 .ops = &sock_pipe_buf_ops,
1621 .spd_release = sock_spd_release,
1622 };
1623 struct sk_buff *frag_iter;
1624 struct sock *sk = skb->sk;
1625 int ret = 0;
1626
1627 if (splice_grow_spd(pipe, &spd))
1628 return -ENOMEM;
1629
1630 /*
1631 * __skb_splice_bits() only fails if the output has no room left,
1632 * so no point in going over the frag_list for the error case.
1633 */
1634 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1635 goto done;
1636 else if (!tlen)
1637 goto done;
1638
1639 /*
1640 * now see if we have a frag_list to map
1641 */
1642 skb_walk_frags(skb, frag_iter) {
1643 if (!tlen)
1644 break;
1645 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1646 break;
1647 }
1648
1649 done:
1650 if (spd.nr_pages) {
1651 /*
1652 * Drop the socket lock, otherwise we have reverse
1653 * locking dependencies between sk_lock and i_mutex
1654 * here as compared to sendfile(). We enter here
1655 * with the socket lock held, and splice_to_pipe() will
1656 * grab the pipe inode lock. For sendfile() emulation,
1657 * we call into ->sendpage() with the i_mutex lock held
1658 * and networking will grab the socket lock.
1659 */
1660 release_sock(sk);
1661 ret = splice_to_pipe(pipe, &spd);
1662 lock_sock(sk);
1663 }
1664
1665 splice_shrink_spd(pipe, &spd);
1666 return ret;
1667 }
1668
1669 /**
1670 * skb_store_bits - store bits from kernel buffer to skb
1671 * @skb: destination buffer
1672 * @offset: offset in destination
1673 * @from: source buffer
1674 * @len: number of bytes to copy
1675 *
1676 * Copy the specified number of bytes from the source buffer to the
1677 * destination skb. This function handles all the messy bits of
1678 * traversing fragment lists and such.
1679 */
1680
1681 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1682 {
1683 int start = skb_headlen(skb);
1684 struct sk_buff *frag_iter;
1685 int i, copy;
1686
1687 if (offset > (int)skb->len - len)
1688 goto fault;
1689
1690 if ((copy = start - offset) > 0) {
1691 if (copy > len)
1692 copy = len;
1693 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1694 if ((len -= copy) == 0)
1695 return 0;
1696 offset += copy;
1697 from += copy;
1698 }
1699
1700 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1701 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1702 int end;
1703
1704 WARN_ON(start > offset + len);
1705
1706 end = start + frag->size;
1707 if ((copy = end - offset) > 0) {
1708 u8 *vaddr;
1709
1710 if (copy > len)
1711 copy = len;
1712
1713 vaddr = kmap_skb_frag(frag);
1714 memcpy(vaddr + frag->page_offset + offset - start,
1715 from, copy);
1716 kunmap_skb_frag(vaddr);
1717
1718 if ((len -= copy) == 0)
1719 return 0;
1720 offset += copy;
1721 from += copy;
1722 }
1723 start = end;
1724 }
1725
1726 skb_walk_frags(skb, frag_iter) {
1727 int end;
1728
1729 WARN_ON(start > offset + len);
1730
1731 end = start + frag_iter->len;
1732 if ((copy = end - offset) > 0) {
1733 if (copy > len)
1734 copy = len;
1735 if (skb_store_bits(frag_iter, offset - start,
1736 from, copy))
1737 goto fault;
1738 if ((len -= copy) == 0)
1739 return 0;
1740 offset += copy;
1741 from += copy;
1742 }
1743 start = end;
1744 }
1745 if (!len)
1746 return 0;
1747
1748 fault:
1749 return -EFAULT;
1750 }
1751 EXPORT_SYMBOL(skb_store_bits);
1752
1753 /* Checksum skb data. */
1754
1755 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1756 int len, __wsum csum)
1757 {
1758 int start = skb_headlen(skb);
1759 int i, copy = start - offset;
1760 struct sk_buff *frag_iter;
1761 int pos = 0;
1762
1763 /* Checksum header. */
1764 if (copy > 0) {
1765 if (copy > len)
1766 copy = len;
1767 csum = csum_partial(skb->data + offset, copy, csum);
1768 if ((len -= copy) == 0)
1769 return csum;
1770 offset += copy;
1771 pos = copy;
1772 }
1773
1774 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1775 int end;
1776
1777 WARN_ON(start > offset + len);
1778
1779 end = start + skb_shinfo(skb)->frags[i].size;
1780 if ((copy = end - offset) > 0) {
1781 __wsum csum2;
1782 u8 *vaddr;
1783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1784
1785 if (copy > len)
1786 copy = len;
1787 vaddr = kmap_skb_frag(frag);
1788 csum2 = csum_partial(vaddr + frag->page_offset +
1789 offset - start, copy, 0);
1790 kunmap_skb_frag(vaddr);
1791 csum = csum_block_add(csum, csum2, pos);
1792 if (!(len -= copy))
1793 return csum;
1794 offset += copy;
1795 pos += copy;
1796 }
1797 start = end;
1798 }
1799
1800 skb_walk_frags(skb, frag_iter) {
1801 int end;
1802
1803 WARN_ON(start > offset + len);
1804
1805 end = start + frag_iter->len;
1806 if ((copy = end - offset) > 0) {
1807 __wsum csum2;
1808 if (copy > len)
1809 copy = len;
1810 csum2 = skb_checksum(frag_iter, offset - start,
1811 copy, 0);
1812 csum = csum_block_add(csum, csum2, pos);
1813 if ((len -= copy) == 0)
1814 return csum;
1815 offset += copy;
1816 pos += copy;
1817 }
1818 start = end;
1819 }
1820 BUG_ON(len);
1821
1822 return csum;
1823 }
1824 EXPORT_SYMBOL(skb_checksum);
1825
1826 /* Both of above in one bottle. */
1827
1828 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1829 u8 *to, int len, __wsum csum)
1830 {
1831 int start = skb_headlen(skb);
1832 int i, copy = start - offset;
1833 struct sk_buff *frag_iter;
1834 int pos = 0;
1835
1836 /* Copy header. */
1837 if (copy > 0) {
1838 if (copy > len)
1839 copy = len;
1840 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1841 copy, csum);
1842 if ((len -= copy) == 0)
1843 return csum;
1844 offset += copy;
1845 to += copy;
1846 pos = copy;
1847 }
1848
1849 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1850 int end;
1851
1852 WARN_ON(start > offset + len);
1853
1854 end = start + skb_shinfo(skb)->frags[i].size;
1855 if ((copy = end - offset) > 0) {
1856 __wsum csum2;
1857 u8 *vaddr;
1858 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1859
1860 if (copy > len)
1861 copy = len;
1862 vaddr = kmap_skb_frag(frag);
1863 csum2 = csum_partial_copy_nocheck(vaddr +
1864 frag->page_offset +
1865 offset - start, to,
1866 copy, 0);
1867 kunmap_skb_frag(vaddr);
1868 csum = csum_block_add(csum, csum2, pos);
1869 if (!(len -= copy))
1870 return csum;
1871 offset += copy;
1872 to += copy;
1873 pos += copy;
1874 }
1875 start = end;
1876 }
1877
1878 skb_walk_frags(skb, frag_iter) {
1879 __wsum csum2;
1880 int end;
1881
1882 WARN_ON(start > offset + len);
1883
1884 end = start + frag_iter->len;
1885 if ((copy = end - offset) > 0) {
1886 if (copy > len)
1887 copy = len;
1888 csum2 = skb_copy_and_csum_bits(frag_iter,
1889 offset - start,
1890 to, copy, 0);
1891 csum = csum_block_add(csum, csum2, pos);
1892 if ((len -= copy) == 0)
1893 return csum;
1894 offset += copy;
1895 to += copy;
1896 pos += copy;
1897 }
1898 start = end;
1899 }
1900 BUG_ON(len);
1901 return csum;
1902 }
1903 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1904
1905 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1906 {
1907 __wsum csum;
1908 long csstart;
1909
1910 if (skb->ip_summed == CHECKSUM_PARTIAL)
1911 csstart = skb_checksum_start_offset(skb);
1912 else
1913 csstart = skb_headlen(skb);
1914
1915 BUG_ON(csstart > skb_headlen(skb));
1916
1917 skb_copy_from_linear_data(skb, to, csstart);
1918
1919 csum = 0;
1920 if (csstart != skb->len)
1921 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1922 skb->len - csstart, 0);
1923
1924 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1925 long csstuff = csstart + skb->csum_offset;
1926
1927 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1928 }
1929 }
1930 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1931
1932 /**
1933 * skb_dequeue - remove from the head of the queue
1934 * @list: list to dequeue from
1935 *
1936 * Remove the head of the list. The list lock is taken so the function
1937 * may be used safely with other locking list functions. The head item is
1938 * returned or %NULL if the list is empty.
1939 */
1940
1941 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1942 {
1943 unsigned long flags;
1944 struct sk_buff *result;
1945
1946 spin_lock_irqsave(&list->lock, flags);
1947 result = __skb_dequeue(list);
1948 spin_unlock_irqrestore(&list->lock, flags);
1949 return result;
1950 }
1951 EXPORT_SYMBOL(skb_dequeue);
1952
1953 /**
1954 * skb_dequeue_tail - remove from the tail of the queue
1955 * @list: list to dequeue from
1956 *
1957 * Remove the tail of the list. The list lock is taken so the function
1958 * may be used safely with other locking list functions. The tail item is
1959 * returned or %NULL if the list is empty.
1960 */
1961 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1962 {
1963 unsigned long flags;
1964 struct sk_buff *result;
1965
1966 spin_lock_irqsave(&list->lock, flags);
1967 result = __skb_dequeue_tail(list);
1968 spin_unlock_irqrestore(&list->lock, flags);
1969 return result;
1970 }
1971 EXPORT_SYMBOL(skb_dequeue_tail);
1972
1973 /**
1974 * skb_queue_purge - empty a list
1975 * @list: list to empty
1976 *
1977 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1978 * the list and one reference dropped. This function takes the list
1979 * lock and is atomic with respect to other list locking functions.
1980 */
1981 void skb_queue_purge(struct sk_buff_head *list)
1982 {
1983 struct sk_buff *skb;
1984 while ((skb = skb_dequeue(list)) != NULL)
1985 kfree_skb(skb);
1986 }
1987 EXPORT_SYMBOL(skb_queue_purge);
1988
1989 /**
1990 * skb_queue_head - queue a buffer at the list head
1991 * @list: list to use
1992 * @newsk: buffer to queue
1993 *
1994 * Queue a buffer at the start of the list. This function takes the
1995 * list lock and can be used safely with other locking &sk_buff functions
1996 * safely.
1997 *
1998 * A buffer cannot be placed on two lists at the same time.
1999 */
2000 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2001 {
2002 unsigned long flags;
2003
2004 spin_lock_irqsave(&list->lock, flags);
2005 __skb_queue_head(list, newsk);
2006 spin_unlock_irqrestore(&list->lock, flags);
2007 }
2008 EXPORT_SYMBOL(skb_queue_head);
2009
2010 /**
2011 * skb_queue_tail - queue a buffer at the list tail
2012 * @list: list to use
2013 * @newsk: buffer to queue
2014 *
2015 * Queue a buffer at the tail of the list. This function takes the
2016 * list lock and can be used safely with other locking &sk_buff functions
2017 * safely.
2018 *
2019 * A buffer cannot be placed on two lists at the same time.
2020 */
2021 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2022 {
2023 unsigned long flags;
2024
2025 spin_lock_irqsave(&list->lock, flags);
2026 __skb_queue_tail(list, newsk);
2027 spin_unlock_irqrestore(&list->lock, flags);
2028 }
2029 EXPORT_SYMBOL(skb_queue_tail);
2030
2031 /**
2032 * skb_unlink - remove a buffer from a list
2033 * @skb: buffer to remove
2034 * @list: list to use
2035 *
2036 * Remove a packet from a list. The list locks are taken and this
2037 * function is atomic with respect to other list locked calls
2038 *
2039 * You must know what list the SKB is on.
2040 */
2041 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2042 {
2043 unsigned long flags;
2044
2045 spin_lock_irqsave(&list->lock, flags);
2046 __skb_unlink(skb, list);
2047 spin_unlock_irqrestore(&list->lock, flags);
2048 }
2049 EXPORT_SYMBOL(skb_unlink);
2050
2051 /**
2052 * skb_append - append a buffer
2053 * @old: buffer to insert after
2054 * @newsk: buffer to insert
2055 * @list: list to use
2056 *
2057 * Place a packet after a given packet in a list. The list locks are taken
2058 * and this function is atomic with respect to other list locked calls.
2059 * A buffer cannot be placed on two lists at the same time.
2060 */
2061 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2062 {
2063 unsigned long flags;
2064
2065 spin_lock_irqsave(&list->lock, flags);
2066 __skb_queue_after(list, old, newsk);
2067 spin_unlock_irqrestore(&list->lock, flags);
2068 }
2069 EXPORT_SYMBOL(skb_append);
2070
2071 /**
2072 * skb_insert - insert a buffer
2073 * @old: buffer to insert before
2074 * @newsk: buffer to insert
2075 * @list: list to use
2076 *
2077 * Place a packet before a given packet in a list. The list locks are
2078 * taken and this function is atomic with respect to other list locked
2079 * calls.
2080 *
2081 * A buffer cannot be placed on two lists at the same time.
2082 */
2083 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2084 {
2085 unsigned long flags;
2086
2087 spin_lock_irqsave(&list->lock, flags);
2088 __skb_insert(newsk, old->prev, old, list);
2089 spin_unlock_irqrestore(&list->lock, flags);
2090 }
2091 EXPORT_SYMBOL(skb_insert);
2092
2093 static inline void skb_split_inside_header(struct sk_buff *skb,
2094 struct sk_buff* skb1,
2095 const u32 len, const int pos)
2096 {
2097 int i;
2098
2099 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2100 pos - len);
2101 /* And move data appendix as is. */
2102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2103 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2104
2105 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2106 skb_shinfo(skb)->nr_frags = 0;
2107 skb1->data_len = skb->data_len;
2108 skb1->len += skb1->data_len;
2109 skb->data_len = 0;
2110 skb->len = len;
2111 skb_set_tail_pointer(skb, len);
2112 }
2113
2114 static inline void skb_split_no_header(struct sk_buff *skb,
2115 struct sk_buff* skb1,
2116 const u32 len, int pos)
2117 {
2118 int i, k = 0;
2119 const int nfrags = skb_shinfo(skb)->nr_frags;
2120
2121 skb_shinfo(skb)->nr_frags = 0;
2122 skb1->len = skb1->data_len = skb->len - len;
2123 skb->len = len;
2124 skb->data_len = len - pos;
2125
2126 for (i = 0; i < nfrags; i++) {
2127 int size = skb_shinfo(skb)->frags[i].size;
2128
2129 if (pos + size > len) {
2130 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2131
2132 if (pos < len) {
2133 /* Split frag.
2134 * We have two variants in this case:
2135 * 1. Move all the frag to the second
2136 * part, if it is possible. F.e.
2137 * this approach is mandatory for TUX,
2138 * where splitting is expensive.
2139 * 2. Split is accurately. We make this.
2140 */
2141 get_page(skb_shinfo(skb)->frags[i].page);
2142 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2143 skb_shinfo(skb1)->frags[0].size -= len - pos;
2144 skb_shinfo(skb)->frags[i].size = len - pos;
2145 skb_shinfo(skb)->nr_frags++;
2146 }
2147 k++;
2148 } else
2149 skb_shinfo(skb)->nr_frags++;
2150 pos += size;
2151 }
2152 skb_shinfo(skb1)->nr_frags = k;
2153 }
2154
2155 /**
2156 * skb_split - Split fragmented skb to two parts at length len.
2157 * @skb: the buffer to split
2158 * @skb1: the buffer to receive the second part
2159 * @len: new length for skb
2160 */
2161 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2162 {
2163 int pos = skb_headlen(skb);
2164
2165 if (len < pos) /* Split line is inside header. */
2166 skb_split_inside_header(skb, skb1, len, pos);
2167 else /* Second chunk has no header, nothing to copy. */
2168 skb_split_no_header(skb, skb1, len, pos);
2169 }
2170 EXPORT_SYMBOL(skb_split);
2171
2172 /* Shifting from/to a cloned skb is a no-go.
2173 *
2174 * Caller cannot keep skb_shinfo related pointers past calling here!
2175 */
2176 static int skb_prepare_for_shift(struct sk_buff *skb)
2177 {
2178 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2179 }
2180
2181 /**
2182 * skb_shift - Shifts paged data partially from skb to another
2183 * @tgt: buffer into which tail data gets added
2184 * @skb: buffer from which the paged data comes from
2185 * @shiftlen: shift up to this many bytes
2186 *
2187 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2188 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2189 * It's up to caller to free skb if everything was shifted.
2190 *
2191 * If @tgt runs out of frags, the whole operation is aborted.
2192 *
2193 * Skb cannot include anything else but paged data while tgt is allowed
2194 * to have non-paged data as well.
2195 *
2196 * TODO: full sized shift could be optimized but that would need
2197 * specialized skb free'er to handle frags without up-to-date nr_frags.
2198 */
2199 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2200 {
2201 int from, to, merge, todo;
2202 struct skb_frag_struct *fragfrom, *fragto;
2203
2204 BUG_ON(shiftlen > skb->len);
2205 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2206
2207 todo = shiftlen;
2208 from = 0;
2209 to = skb_shinfo(tgt)->nr_frags;
2210 fragfrom = &skb_shinfo(skb)->frags[from];
2211
2212 /* Actual merge is delayed until the point when we know we can
2213 * commit all, so that we don't have to undo partial changes
2214 */
2215 if (!to ||
2216 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2217 merge = -1;
2218 } else {
2219 merge = to - 1;
2220
2221 todo -= fragfrom->size;
2222 if (todo < 0) {
2223 if (skb_prepare_for_shift(skb) ||
2224 skb_prepare_for_shift(tgt))
2225 return 0;
2226
2227 /* All previous frag pointers might be stale! */
2228 fragfrom = &skb_shinfo(skb)->frags[from];
2229 fragto = &skb_shinfo(tgt)->frags[merge];
2230
2231 fragto->size += shiftlen;
2232 fragfrom->size -= shiftlen;
2233 fragfrom->page_offset += shiftlen;
2234
2235 goto onlymerged;
2236 }
2237
2238 from++;
2239 }
2240
2241 /* Skip full, not-fitting skb to avoid expensive operations */
2242 if ((shiftlen == skb->len) &&
2243 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2244 return 0;
2245
2246 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2247 return 0;
2248
2249 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2250 if (to == MAX_SKB_FRAGS)
2251 return 0;
2252
2253 fragfrom = &skb_shinfo(skb)->frags[from];
2254 fragto = &skb_shinfo(tgt)->frags[to];
2255
2256 if (todo >= fragfrom->size) {
2257 *fragto = *fragfrom;
2258 todo -= fragfrom->size;
2259 from++;
2260 to++;
2261
2262 } else {
2263 get_page(fragfrom->page);
2264 fragto->page = fragfrom->page;
2265 fragto->page_offset = fragfrom->page_offset;
2266 fragto->size = todo;
2267
2268 fragfrom->page_offset += todo;
2269 fragfrom->size -= todo;
2270 todo = 0;
2271
2272 to++;
2273 break;
2274 }
2275 }
2276
2277 /* Ready to "commit" this state change to tgt */
2278 skb_shinfo(tgt)->nr_frags = to;
2279
2280 if (merge >= 0) {
2281 fragfrom = &skb_shinfo(skb)->frags[0];
2282 fragto = &skb_shinfo(tgt)->frags[merge];
2283
2284 fragto->size += fragfrom->size;
2285 put_page(fragfrom->page);
2286 }
2287
2288 /* Reposition in the original skb */
2289 to = 0;
2290 while (from < skb_shinfo(skb)->nr_frags)
2291 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2292 skb_shinfo(skb)->nr_frags = to;
2293
2294 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2295
2296 onlymerged:
2297 /* Most likely the tgt won't ever need its checksum anymore, skb on
2298 * the other hand might need it if it needs to be resent
2299 */
2300 tgt->ip_summed = CHECKSUM_PARTIAL;
2301 skb->ip_summed = CHECKSUM_PARTIAL;
2302
2303 /* Yak, is it really working this way? Some helper please? */
2304 skb->len -= shiftlen;
2305 skb->data_len -= shiftlen;
2306 skb->truesize -= shiftlen;
2307 tgt->len += shiftlen;
2308 tgt->data_len += shiftlen;
2309 tgt->truesize += shiftlen;
2310
2311 return shiftlen;
2312 }
2313
2314 /**
2315 * skb_prepare_seq_read - Prepare a sequential read of skb data
2316 * @skb: the buffer to read
2317 * @from: lower offset of data to be read
2318 * @to: upper offset of data to be read
2319 * @st: state variable
2320 *
2321 * Initializes the specified state variable. Must be called before
2322 * invoking skb_seq_read() for the first time.
2323 */
2324 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2325 unsigned int to, struct skb_seq_state *st)
2326 {
2327 st->lower_offset = from;
2328 st->upper_offset = to;
2329 st->root_skb = st->cur_skb = skb;
2330 st->frag_idx = st->stepped_offset = 0;
2331 st->frag_data = NULL;
2332 }
2333 EXPORT_SYMBOL(skb_prepare_seq_read);
2334
2335 /**
2336 * skb_seq_read - Sequentially read skb data
2337 * @consumed: number of bytes consumed by the caller so far
2338 * @data: destination pointer for data to be returned
2339 * @st: state variable
2340 *
2341 * Reads a block of skb data at &consumed relative to the
2342 * lower offset specified to skb_prepare_seq_read(). Assigns
2343 * the head of the data block to &data and returns the length
2344 * of the block or 0 if the end of the skb data or the upper
2345 * offset has been reached.
2346 *
2347 * The caller is not required to consume all of the data
2348 * returned, i.e. &consumed is typically set to the number
2349 * of bytes already consumed and the next call to
2350 * skb_seq_read() will return the remaining part of the block.
2351 *
2352 * Note 1: The size of each block of data returned can be arbitrary,
2353 * this limitation is the cost for zerocopy seqeuental
2354 * reads of potentially non linear data.
2355 *
2356 * Note 2: Fragment lists within fragments are not implemented
2357 * at the moment, state->root_skb could be replaced with
2358 * a stack for this purpose.
2359 */
2360 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2361 struct skb_seq_state *st)
2362 {
2363 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2364 skb_frag_t *frag;
2365
2366 if (unlikely(abs_offset >= st->upper_offset))
2367 return 0;
2368
2369 next_skb:
2370 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2371
2372 if (abs_offset < block_limit && !st->frag_data) {
2373 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2374 return block_limit - abs_offset;
2375 }
2376
2377 if (st->frag_idx == 0 && !st->frag_data)
2378 st->stepped_offset += skb_headlen(st->cur_skb);
2379
2380 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2381 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2382 block_limit = frag->size + st->stepped_offset;
2383
2384 if (abs_offset < block_limit) {
2385 if (!st->frag_data)
2386 st->frag_data = kmap_skb_frag(frag);
2387
2388 *data = (u8 *) st->frag_data + frag->page_offset +
2389 (abs_offset - st->stepped_offset);
2390
2391 return block_limit - abs_offset;
2392 }
2393
2394 if (st->frag_data) {
2395 kunmap_skb_frag(st->frag_data);
2396 st->frag_data = NULL;
2397 }
2398
2399 st->frag_idx++;
2400 st->stepped_offset += frag->size;
2401 }
2402
2403 if (st->frag_data) {
2404 kunmap_skb_frag(st->frag_data);
2405 st->frag_data = NULL;
2406 }
2407
2408 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2409 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2410 st->frag_idx = 0;
2411 goto next_skb;
2412 } else if (st->cur_skb->next) {
2413 st->cur_skb = st->cur_skb->next;
2414 st->frag_idx = 0;
2415 goto next_skb;
2416 }
2417
2418 return 0;
2419 }
2420 EXPORT_SYMBOL(skb_seq_read);
2421
2422 /**
2423 * skb_abort_seq_read - Abort a sequential read of skb data
2424 * @st: state variable
2425 *
2426 * Must be called if skb_seq_read() was not called until it
2427 * returned 0.
2428 */
2429 void skb_abort_seq_read(struct skb_seq_state *st)
2430 {
2431 if (st->frag_data)
2432 kunmap_skb_frag(st->frag_data);
2433 }
2434 EXPORT_SYMBOL(skb_abort_seq_read);
2435
2436 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2437
2438 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2439 struct ts_config *conf,
2440 struct ts_state *state)
2441 {
2442 return skb_seq_read(offset, text, TS_SKB_CB(state));
2443 }
2444
2445 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2446 {
2447 skb_abort_seq_read(TS_SKB_CB(state));
2448 }
2449
2450 /**
2451 * skb_find_text - Find a text pattern in skb data
2452 * @skb: the buffer to look in
2453 * @from: search offset
2454 * @to: search limit
2455 * @config: textsearch configuration
2456 * @state: uninitialized textsearch state variable
2457 *
2458 * Finds a pattern in the skb data according to the specified
2459 * textsearch configuration. Use textsearch_next() to retrieve
2460 * subsequent occurrences of the pattern. Returns the offset
2461 * to the first occurrence or UINT_MAX if no match was found.
2462 */
2463 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2464 unsigned int to, struct ts_config *config,
2465 struct ts_state *state)
2466 {
2467 unsigned int ret;
2468
2469 config->get_next_block = skb_ts_get_next_block;
2470 config->finish = skb_ts_finish;
2471
2472 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2473
2474 ret = textsearch_find(config, state);
2475 return (ret <= to - from ? ret : UINT_MAX);
2476 }
2477 EXPORT_SYMBOL(skb_find_text);
2478
2479 /**
2480 * skb_append_datato_frags: - append the user data to a skb
2481 * @sk: sock structure
2482 * @skb: skb structure to be appened with user data.
2483 * @getfrag: call back function to be used for getting the user data
2484 * @from: pointer to user message iov
2485 * @length: length of the iov message
2486 *
2487 * Description: This procedure append the user data in the fragment part
2488 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2489 */
2490 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2491 int (*getfrag)(void *from, char *to, int offset,
2492 int len, int odd, struct sk_buff *skb),
2493 void *from, int length)
2494 {
2495 int frg_cnt = 0;
2496 skb_frag_t *frag = NULL;
2497 struct page *page = NULL;
2498 int copy, left;
2499 int offset = 0;
2500 int ret;
2501
2502 do {
2503 /* Return error if we don't have space for new frag */
2504 frg_cnt = skb_shinfo(skb)->nr_frags;
2505 if (frg_cnt >= MAX_SKB_FRAGS)
2506 return -EFAULT;
2507
2508 /* allocate a new page for next frag */
2509 page = alloc_pages(sk->sk_allocation, 0);
2510
2511 /* If alloc_page fails just return failure and caller will
2512 * free previous allocated pages by doing kfree_skb()
2513 */
2514 if (page == NULL)
2515 return -ENOMEM;
2516
2517 /* initialize the next frag */
2518 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2519 skb->truesize += PAGE_SIZE;
2520 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2521
2522 /* get the new initialized frag */
2523 frg_cnt = skb_shinfo(skb)->nr_frags;
2524 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2525
2526 /* copy the user data to page */
2527 left = PAGE_SIZE - frag->page_offset;
2528 copy = (length > left)? left : length;
2529
2530 ret = getfrag(from, (page_address(frag->page) +
2531 frag->page_offset + frag->size),
2532 offset, copy, 0, skb);
2533 if (ret < 0)
2534 return -EFAULT;
2535
2536 /* copy was successful so update the size parameters */
2537 frag->size += copy;
2538 skb->len += copy;
2539 skb->data_len += copy;
2540 offset += copy;
2541 length -= copy;
2542
2543 } while (length > 0);
2544
2545 return 0;
2546 }
2547 EXPORT_SYMBOL(skb_append_datato_frags);
2548
2549 /**
2550 * skb_pull_rcsum - pull skb and update receive checksum
2551 * @skb: buffer to update
2552 * @len: length of data pulled
2553 *
2554 * This function performs an skb_pull on the packet and updates
2555 * the CHECKSUM_COMPLETE checksum. It should be used on
2556 * receive path processing instead of skb_pull unless you know
2557 * that the checksum difference is zero (e.g., a valid IP header)
2558 * or you are setting ip_summed to CHECKSUM_NONE.
2559 */
2560 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2561 {
2562 BUG_ON(len > skb->len);
2563 skb->len -= len;
2564 BUG_ON(skb->len < skb->data_len);
2565 skb_postpull_rcsum(skb, skb->data, len);
2566 return skb->data += len;
2567 }
2568 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2569
2570 /**
2571 * skb_segment - Perform protocol segmentation on skb.
2572 * @skb: buffer to segment
2573 * @features: features for the output path (see dev->features)
2574 *
2575 * This function performs segmentation on the given skb. It returns
2576 * a pointer to the first in a list of new skbs for the segments.
2577 * In case of error it returns ERR_PTR(err).
2578 */
2579 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2580 {
2581 struct sk_buff *segs = NULL;
2582 struct sk_buff *tail = NULL;
2583 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2584 unsigned int mss = skb_shinfo(skb)->gso_size;
2585 unsigned int doffset = skb->data - skb_mac_header(skb);
2586 unsigned int offset = doffset;
2587 unsigned int headroom;
2588 unsigned int len;
2589 int sg = !!(features & NETIF_F_SG);
2590 int nfrags = skb_shinfo(skb)->nr_frags;
2591 int err = -ENOMEM;
2592 int i = 0;
2593 int pos;
2594
2595 __skb_push(skb, doffset);
2596 headroom = skb_headroom(skb);
2597 pos = skb_headlen(skb);
2598
2599 do {
2600 struct sk_buff *nskb;
2601 skb_frag_t *frag;
2602 int hsize;
2603 int size;
2604
2605 len = skb->len - offset;
2606 if (len > mss)
2607 len = mss;
2608
2609 hsize = skb_headlen(skb) - offset;
2610 if (hsize < 0)
2611 hsize = 0;
2612 if (hsize > len || !sg)
2613 hsize = len;
2614
2615 if (!hsize && i >= nfrags) {
2616 BUG_ON(fskb->len != len);
2617
2618 pos += len;
2619 nskb = skb_clone(fskb, GFP_ATOMIC);
2620 fskb = fskb->next;
2621
2622 if (unlikely(!nskb))
2623 goto err;
2624
2625 hsize = skb_end_pointer(nskb) - nskb->head;
2626 if (skb_cow_head(nskb, doffset + headroom)) {
2627 kfree_skb(nskb);
2628 goto err;
2629 }
2630
2631 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2632 hsize;
2633 skb_release_head_state(nskb);
2634 __skb_push(nskb, doffset);
2635 } else {
2636 nskb = alloc_skb(hsize + doffset + headroom,
2637 GFP_ATOMIC);
2638
2639 if (unlikely(!nskb))
2640 goto err;
2641
2642 skb_reserve(nskb, headroom);
2643 __skb_put(nskb, doffset);
2644 }
2645
2646 if (segs)
2647 tail->next = nskb;
2648 else
2649 segs = nskb;
2650 tail = nskb;
2651
2652 __copy_skb_header(nskb, skb);
2653 nskb->mac_len = skb->mac_len;
2654
2655 /* nskb and skb might have different headroom */
2656 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2657 nskb->csum_start += skb_headroom(nskb) - headroom;
2658
2659 skb_reset_mac_header(nskb);
2660 skb_set_network_header(nskb, skb->mac_len);
2661 nskb->transport_header = (nskb->network_header +
2662 skb_network_header_len(skb));
2663 skb_copy_from_linear_data(skb, nskb->data, doffset);
2664
2665 if (fskb != skb_shinfo(skb)->frag_list)
2666 continue;
2667
2668 if (!sg) {
2669 nskb->ip_summed = CHECKSUM_NONE;
2670 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2671 skb_put(nskb, len),
2672 len, 0);
2673 continue;
2674 }
2675
2676 frag = skb_shinfo(nskb)->frags;
2677
2678 skb_copy_from_linear_data_offset(skb, offset,
2679 skb_put(nskb, hsize), hsize);
2680
2681 while (pos < offset + len && i < nfrags) {
2682 *frag = skb_shinfo(skb)->frags[i];
2683 get_page(frag->page);
2684 size = frag->size;
2685
2686 if (pos < offset) {
2687 frag->page_offset += offset - pos;
2688 frag->size -= offset - pos;
2689 }
2690
2691 skb_shinfo(nskb)->nr_frags++;
2692
2693 if (pos + size <= offset + len) {
2694 i++;
2695 pos += size;
2696 } else {
2697 frag->size -= pos + size - (offset + len);
2698 goto skip_fraglist;
2699 }
2700
2701 frag++;
2702 }
2703
2704 if (pos < offset + len) {
2705 struct sk_buff *fskb2 = fskb;
2706
2707 BUG_ON(pos + fskb->len != offset + len);
2708
2709 pos += fskb->len;
2710 fskb = fskb->next;
2711
2712 if (fskb2->next) {
2713 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2714 if (!fskb2)
2715 goto err;
2716 } else
2717 skb_get(fskb2);
2718
2719 SKB_FRAG_ASSERT(nskb);
2720 skb_shinfo(nskb)->frag_list = fskb2;
2721 }
2722
2723 skip_fraglist:
2724 nskb->data_len = len - hsize;
2725 nskb->len += nskb->data_len;
2726 nskb->truesize += nskb->data_len;
2727 } while ((offset += len) < skb->len);
2728
2729 return segs;
2730
2731 err:
2732 while ((skb = segs)) {
2733 segs = skb->next;
2734 kfree_skb(skb);
2735 }
2736 return ERR_PTR(err);
2737 }
2738 EXPORT_SYMBOL_GPL(skb_segment);
2739
2740 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2741 {
2742 struct sk_buff *p = *head;
2743 struct sk_buff *nskb;
2744 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2745 struct skb_shared_info *pinfo = skb_shinfo(p);
2746 unsigned int headroom;
2747 unsigned int len = skb_gro_len(skb);
2748 unsigned int offset = skb_gro_offset(skb);
2749 unsigned int headlen = skb_headlen(skb);
2750
2751 if (p->len + len >= 65536)
2752 return -E2BIG;
2753
2754 if (pinfo->frag_list)
2755 goto merge;
2756 else if (headlen <= offset) {
2757 skb_frag_t *frag;
2758 skb_frag_t *frag2;
2759 int i = skbinfo->nr_frags;
2760 int nr_frags = pinfo->nr_frags + i;
2761
2762 offset -= headlen;
2763
2764 if (nr_frags > MAX_SKB_FRAGS)
2765 return -E2BIG;
2766
2767 pinfo->nr_frags = nr_frags;
2768 skbinfo->nr_frags = 0;
2769
2770 frag = pinfo->frags + nr_frags;
2771 frag2 = skbinfo->frags + i;
2772 do {
2773 *--frag = *--frag2;
2774 } while (--i);
2775
2776 frag->page_offset += offset;
2777 frag->size -= offset;
2778
2779 skb->truesize -= skb->data_len;
2780 skb->len -= skb->data_len;
2781 skb->data_len = 0;
2782
2783 NAPI_GRO_CB(skb)->free = 1;
2784 goto done;
2785 } else if (skb_gro_len(p) != pinfo->gso_size)
2786 return -E2BIG;
2787
2788 headroom = skb_headroom(p);
2789 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2790 if (unlikely(!nskb))
2791 return -ENOMEM;
2792
2793 __copy_skb_header(nskb, p);
2794 nskb->mac_len = p->mac_len;
2795
2796 skb_reserve(nskb, headroom);
2797 __skb_put(nskb, skb_gro_offset(p));
2798
2799 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2800 skb_set_network_header(nskb, skb_network_offset(p));
2801 skb_set_transport_header(nskb, skb_transport_offset(p));
2802
2803 __skb_pull(p, skb_gro_offset(p));
2804 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2805 p->data - skb_mac_header(p));
2806
2807 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2808 skb_shinfo(nskb)->frag_list = p;
2809 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2810 pinfo->gso_size = 0;
2811 skb_header_release(p);
2812 nskb->prev = p;
2813
2814 nskb->data_len += p->len;
2815 nskb->truesize += p->len;
2816 nskb->len += p->len;
2817
2818 *head = nskb;
2819 nskb->next = p->next;
2820 p->next = NULL;
2821
2822 p = nskb;
2823
2824 merge:
2825 if (offset > headlen) {
2826 unsigned int eat = offset - headlen;
2827
2828 skbinfo->frags[0].page_offset += eat;
2829 skbinfo->frags[0].size -= eat;
2830 skb->data_len -= eat;
2831 skb->len -= eat;
2832 offset = headlen;
2833 }
2834
2835 __skb_pull(skb, offset);
2836
2837 p->prev->next = skb;
2838 p->prev = skb;
2839 skb_header_release(skb);
2840
2841 done:
2842 NAPI_GRO_CB(p)->count++;
2843 p->data_len += len;
2844 p->truesize += len;
2845 p->len += len;
2846
2847 NAPI_GRO_CB(skb)->same_flow = 1;
2848 return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(skb_gro_receive);
2851
2852 void __init skb_init(void)
2853 {
2854 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2855 sizeof(struct sk_buff),
2856 0,
2857 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2858 NULL);
2859 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2860 (2*sizeof(struct sk_buff)) +
2861 sizeof(atomic_t),
2862 0,
2863 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2864 NULL);
2865 }
2866
2867 /**
2868 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2869 * @skb: Socket buffer containing the buffers to be mapped
2870 * @sg: The scatter-gather list to map into
2871 * @offset: The offset into the buffer's contents to start mapping
2872 * @len: Length of buffer space to be mapped
2873 *
2874 * Fill the specified scatter-gather list with mappings/pointers into a
2875 * region of the buffer space attached to a socket buffer.
2876 */
2877 static int
2878 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2879 {
2880 int start = skb_headlen(skb);
2881 int i, copy = start - offset;
2882 struct sk_buff *frag_iter;
2883 int elt = 0;
2884
2885 if (copy > 0) {
2886 if (copy > len)
2887 copy = len;
2888 sg_set_buf(sg, skb->data + offset, copy);
2889 elt++;
2890 if ((len -= copy) == 0)
2891 return elt;
2892 offset += copy;
2893 }
2894
2895 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2896 int end;
2897
2898 WARN_ON(start > offset + len);
2899
2900 end = start + skb_shinfo(skb)->frags[i].size;
2901 if ((copy = end - offset) > 0) {
2902 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2903
2904 if (copy > len)
2905 copy = len;
2906 sg_set_page(&sg[elt], frag->page, copy,
2907 frag->page_offset+offset-start);
2908 elt++;
2909 if (!(len -= copy))
2910 return elt;
2911 offset += copy;
2912 }
2913 start = end;
2914 }
2915
2916 skb_walk_frags(skb, frag_iter) {
2917 int end;
2918
2919 WARN_ON(start > offset + len);
2920
2921 end = start + frag_iter->len;
2922 if ((copy = end - offset) > 0) {
2923 if (copy > len)
2924 copy = len;
2925 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2926 copy);
2927 if ((len -= copy) == 0)
2928 return elt;
2929 offset += copy;
2930 }
2931 start = end;
2932 }
2933 BUG_ON(len);
2934 return elt;
2935 }
2936
2937 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2938 {
2939 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2940
2941 sg_mark_end(&sg[nsg - 1]);
2942
2943 return nsg;
2944 }
2945 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2946
2947 /**
2948 * skb_cow_data - Check that a socket buffer's data buffers are writable
2949 * @skb: The socket buffer to check.
2950 * @tailbits: Amount of trailing space to be added
2951 * @trailer: Returned pointer to the skb where the @tailbits space begins
2952 *
2953 * Make sure that the data buffers attached to a socket buffer are
2954 * writable. If they are not, private copies are made of the data buffers
2955 * and the socket buffer is set to use these instead.
2956 *
2957 * If @tailbits is given, make sure that there is space to write @tailbits
2958 * bytes of data beyond current end of socket buffer. @trailer will be
2959 * set to point to the skb in which this space begins.
2960 *
2961 * The number of scatterlist elements required to completely map the
2962 * COW'd and extended socket buffer will be returned.
2963 */
2964 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2965 {
2966 int copyflag;
2967 int elt;
2968 struct sk_buff *skb1, **skb_p;
2969
2970 /* If skb is cloned or its head is paged, reallocate
2971 * head pulling out all the pages (pages are considered not writable
2972 * at the moment even if they are anonymous).
2973 */
2974 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2975 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2976 return -ENOMEM;
2977
2978 /* Easy case. Most of packets will go this way. */
2979 if (!skb_has_frag_list(skb)) {
2980 /* A little of trouble, not enough of space for trailer.
2981 * This should not happen, when stack is tuned to generate
2982 * good frames. OK, on miss we reallocate and reserve even more
2983 * space, 128 bytes is fair. */
2984
2985 if (skb_tailroom(skb) < tailbits &&
2986 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2987 return -ENOMEM;
2988
2989 /* Voila! */
2990 *trailer = skb;
2991 return 1;
2992 }
2993
2994 /* Misery. We are in troubles, going to mincer fragments... */
2995
2996 elt = 1;
2997 skb_p = &skb_shinfo(skb)->frag_list;
2998 copyflag = 0;
2999
3000 while ((skb1 = *skb_p) != NULL) {
3001 int ntail = 0;
3002
3003 /* The fragment is partially pulled by someone,
3004 * this can happen on input. Copy it and everything
3005 * after it. */
3006
3007 if (skb_shared(skb1))
3008 copyflag = 1;
3009
3010 /* If the skb is the last, worry about trailer. */
3011
3012 if (skb1->next == NULL && tailbits) {
3013 if (skb_shinfo(skb1)->nr_frags ||
3014 skb_has_frag_list(skb1) ||
3015 skb_tailroom(skb1) < tailbits)
3016 ntail = tailbits + 128;
3017 }
3018
3019 if (copyflag ||
3020 skb_cloned(skb1) ||
3021 ntail ||
3022 skb_shinfo(skb1)->nr_frags ||
3023 skb_has_frag_list(skb1)) {
3024 struct sk_buff *skb2;
3025
3026 /* Fuck, we are miserable poor guys... */
3027 if (ntail == 0)
3028 skb2 = skb_copy(skb1, GFP_ATOMIC);
3029 else
3030 skb2 = skb_copy_expand(skb1,
3031 skb_headroom(skb1),
3032 ntail,
3033 GFP_ATOMIC);
3034 if (unlikely(skb2 == NULL))
3035 return -ENOMEM;
3036
3037 if (skb1->sk)
3038 skb_set_owner_w(skb2, skb1->sk);
3039
3040 /* Looking around. Are we still alive?
3041 * OK, link new skb, drop old one */
3042
3043 skb2->next = skb1->next;
3044 *skb_p = skb2;
3045 kfree_skb(skb1);
3046 skb1 = skb2;
3047 }
3048 elt++;
3049 *trailer = skb1;
3050 skb_p = &skb1->next;
3051 }
3052
3053 return elt;
3054 }
3055 EXPORT_SYMBOL_GPL(skb_cow_data);
3056
3057 static void sock_rmem_free(struct sk_buff *skb)
3058 {
3059 struct sock *sk = skb->sk;
3060
3061 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3062 }
3063
3064 /*
3065 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3066 */
3067 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3068 {
3069 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3070 (unsigned)sk->sk_rcvbuf)
3071 return -ENOMEM;
3072
3073 skb_orphan(skb);
3074 skb->sk = sk;
3075 skb->destructor = sock_rmem_free;
3076 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3077
3078 /* before exiting rcu section, make sure dst is refcounted */
3079 skb_dst_force(skb);
3080
3081 skb_queue_tail(&sk->sk_error_queue, skb);
3082 if (!sock_flag(sk, SOCK_DEAD))
3083 sk->sk_data_ready(sk, skb->len);
3084 return 0;
3085 }
3086 EXPORT_SYMBOL(sock_queue_err_skb);
3087
3088 void skb_tstamp_tx(struct sk_buff *orig_skb,
3089 struct skb_shared_hwtstamps *hwtstamps)
3090 {
3091 struct sock *sk = orig_skb->sk;
3092 struct sock_exterr_skb *serr;
3093 struct sk_buff *skb;
3094 int err;
3095
3096 if (!sk)
3097 return;
3098
3099 skb = skb_clone(orig_skb, GFP_ATOMIC);
3100 if (!skb)
3101 return;
3102
3103 if (hwtstamps) {
3104 *skb_hwtstamps(skb) =
3105 *hwtstamps;
3106 } else {
3107 /*
3108 * no hardware time stamps available,
3109 * so keep the shared tx_flags and only
3110 * store software time stamp
3111 */
3112 skb->tstamp = ktime_get_real();
3113 }
3114
3115 serr = SKB_EXT_ERR(skb);
3116 memset(serr, 0, sizeof(*serr));
3117 serr->ee.ee_errno = ENOMSG;
3118 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3119
3120 err = sock_queue_err_skb(sk, skb);
3121
3122 if (err)
3123 kfree_skb(skb);
3124 }
3125 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3126
3127
3128 /**
3129 * skb_partial_csum_set - set up and verify partial csum values for packet
3130 * @skb: the skb to set
3131 * @start: the number of bytes after skb->data to start checksumming.
3132 * @off: the offset from start to place the checksum.
3133 *
3134 * For untrusted partially-checksummed packets, we need to make sure the values
3135 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3136 *
3137 * This function checks and sets those values and skb->ip_summed: if this
3138 * returns false you should drop the packet.
3139 */
3140 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3141 {
3142 if (unlikely(start > skb_headlen(skb)) ||
3143 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3144 if (net_ratelimit())
3145 printk(KERN_WARNING
3146 "bad partial csum: csum=%u/%u len=%u\n",
3147 start, off, skb_headlen(skb));
3148 return false;
3149 }
3150 skb->ip_summed = CHECKSUM_PARTIAL;
3151 skb->csum_start = skb_headroom(skb) + start;
3152 skb->csum_offset = off;
3153 return true;
3154 }
3155 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3156
3157 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3158 {
3159 if (net_ratelimit())
3160 pr_warning("%s: received packets cannot be forwarded"
3161 " while LRO is enabled\n", skb->dev->name);
3162 }
3163 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.09763 seconds and 6 git commands to generate.