Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
71
72 #include "kmap_skb.h"
73
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
129 }
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
186
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192 prefetchw(data + size);
193
194 /*
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
198 */
199 memset(skb, 0, offsetof(struct sk_buff, tail));
200 skb->truesize = size + sizeof(struct sk_buff);
201 atomic_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb->mac_header = ~0U;
208 #endif
209
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214 kmemcheck_annotate_variable(shinfo->destructor_arg);
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 kmemcheck_annotate_bitfield(child, flags1);
221 kmemcheck_annotate_bitfield(child, flags2);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
224
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
226 }
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
233 }
234 EXPORT_SYMBOL(__alloc_skb);
235
236 /**
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
241 *
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
246 *
247 * %NULL is returned if there is no free memory.
248 */
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 unsigned int length, gfp_t gfp_mask)
251 {
252 struct sk_buff *skb;
253
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
258 }
259 return skb;
260 }
261 EXPORT_SYMBOL(__netdev_alloc_skb);
262
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 int size)
265 {
266 skb_fill_page_desc(skb, i, page, off, size);
267 skb->len += size;
268 skb->data_len += size;
269 skb->truesize += size;
270 }
271 EXPORT_SYMBOL(skb_add_rx_frag);
272
273 /**
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
276 *
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
281 *
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
284 */
285 struct sk_buff *dev_alloc_skb(unsigned int length)
286 {
287 /*
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
290 */
291 return __dev_alloc_skb(length, GFP_ATOMIC);
292 }
293 EXPORT_SYMBOL(dev_alloc_skb);
294
295 static void skb_drop_list(struct sk_buff **listp)
296 {
297 struct sk_buff *list = *listp;
298
299 *listp = NULL;
300
301 do {
302 struct sk_buff *this = list;
303 list = list->next;
304 kfree_skb(this);
305 } while (list);
306 }
307
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
309 {
310 skb_drop_list(&skb_shinfo(skb)->frag_list);
311 }
312
313 static void skb_clone_fraglist(struct sk_buff *skb)
314 {
315 struct sk_buff *list;
316
317 skb_walk_frags(skb, list)
318 skb_get(list);
319 }
320
321 static void skb_release_data(struct sk_buff *skb)
322 {
323 if (!skb->cloned ||
324 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 &skb_shinfo(skb)->dataref)) {
326 if (skb_shinfo(skb)->nr_frags) {
327 int i;
328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 put_page(skb_shinfo(skb)->frags[i].page);
330 }
331
332 /*
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
335 */
336 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
337 struct ubuf_info *uarg;
338
339 uarg = skb_shinfo(skb)->destructor_arg;
340 if (uarg->callback)
341 uarg->callback(uarg);
342 }
343
344 if (skb_has_frag_list(skb))
345 skb_drop_fraglist(skb);
346
347 kfree(skb->head);
348 }
349 }
350
351 /*
352 * Free an skbuff by memory without cleaning the state.
353 */
354 static void kfree_skbmem(struct sk_buff *skb)
355 {
356 struct sk_buff *other;
357 atomic_t *fclone_ref;
358
359 switch (skb->fclone) {
360 case SKB_FCLONE_UNAVAILABLE:
361 kmem_cache_free(skbuff_head_cache, skb);
362 break;
363
364 case SKB_FCLONE_ORIG:
365 fclone_ref = (atomic_t *) (skb + 2);
366 if (atomic_dec_and_test(fclone_ref))
367 kmem_cache_free(skbuff_fclone_cache, skb);
368 break;
369
370 case SKB_FCLONE_CLONE:
371 fclone_ref = (atomic_t *) (skb + 1);
372 other = skb - 1;
373
374 /* The clone portion is available for
375 * fast-cloning again.
376 */
377 skb->fclone = SKB_FCLONE_UNAVAILABLE;
378
379 if (atomic_dec_and_test(fclone_ref))
380 kmem_cache_free(skbuff_fclone_cache, other);
381 break;
382 }
383 }
384
385 static void skb_release_head_state(struct sk_buff *skb)
386 {
387 skb_dst_drop(skb);
388 #ifdef CONFIG_XFRM
389 secpath_put(skb->sp);
390 #endif
391 if (skb->destructor) {
392 WARN_ON(in_irq());
393 skb->destructor(skb);
394 }
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb->nfct);
397 #endif
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb->nfct_reasm);
400 #endif
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb->nf_bridge);
403 #endif
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
406 skb->tc_index = 0;
407 #ifdef CONFIG_NET_CLS_ACT
408 skb->tc_verd = 0;
409 #endif
410 #endif
411 }
412
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff *skb)
415 {
416 skb_release_head_state(skb);
417 skb_release_data(skb);
418 }
419
420 /**
421 * __kfree_skb - private function
422 * @skb: buffer
423 *
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
427 */
428
429 void __kfree_skb(struct sk_buff *skb)
430 {
431 skb_release_all(skb);
432 kfree_skbmem(skb);
433 }
434 EXPORT_SYMBOL(__kfree_skb);
435
436 /**
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
439 *
440 * Drop a reference to the buffer and free it if the usage count has
441 * hit zero.
442 */
443 void kfree_skb(struct sk_buff *skb)
444 {
445 if (unlikely(!skb))
446 return;
447 if (likely(atomic_read(&skb->users) == 1))
448 smp_rmb();
449 else if (likely(!atomic_dec_and_test(&skb->users)))
450 return;
451 trace_kfree_skb(skb, __builtin_return_address(0));
452 __kfree_skb(skb);
453 }
454 EXPORT_SYMBOL(kfree_skb);
455
456 /**
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
459 *
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
463 */
464 void consume_skb(struct sk_buff *skb)
465 {
466 if (unlikely(!skb))
467 return;
468 if (likely(atomic_read(&skb->users) == 1))
469 smp_rmb();
470 else if (likely(!atomic_dec_and_test(&skb->users)))
471 return;
472 trace_consume_skb(skb);
473 __kfree_skb(skb);
474 }
475 EXPORT_SYMBOL(consume_skb);
476
477 /**
478 * skb_recycle_check - check if skb can be reused for receive
479 * @skb: buffer
480 * @skb_size: minimum receive buffer size
481 *
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
488 */
489 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
490 {
491 struct skb_shared_info *shinfo;
492
493 if (irqs_disabled())
494 return false;
495
496 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
497 return false;
498
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return false;
501
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return false;
505
506 if (skb_shared(skb) || skb_cloned(skb))
507 return false;
508
509 skb_release_head_state(skb);
510
511 shinfo = skb_shinfo(skb);
512 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
513 atomic_set(&shinfo->dataref, 1);
514
515 memset(skb, 0, offsetof(struct sk_buff, tail));
516 skb->data = skb->head + NET_SKB_PAD;
517 skb_reset_tail_pointer(skb);
518
519 return true;
520 }
521 EXPORT_SYMBOL(skb_recycle_check);
522
523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
524 {
525 new->tstamp = old->tstamp;
526 new->dev = old->dev;
527 new->transport_header = old->transport_header;
528 new->network_header = old->network_header;
529 new->mac_header = old->mac_header;
530 skb_dst_copy(new, old);
531 new->rxhash = old->rxhash;
532 #ifdef CONFIG_XFRM
533 new->sp = secpath_get(old->sp);
534 #endif
535 memcpy(new->cb, old->cb, sizeof(old->cb));
536 new->csum = old->csum;
537 new->local_df = old->local_df;
538 new->pkt_type = old->pkt_type;
539 new->ip_summed = old->ip_summed;
540 skb_copy_queue_mapping(new, old);
541 new->priority = old->priority;
542 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
543 new->ipvs_property = old->ipvs_property;
544 #endif
545 new->protocol = old->protocol;
546 new->mark = old->mark;
547 new->skb_iif = old->skb_iif;
548 __nf_copy(new, old);
549 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
550 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
551 new->nf_trace = old->nf_trace;
552 #endif
553 #ifdef CONFIG_NET_SCHED
554 new->tc_index = old->tc_index;
555 #ifdef CONFIG_NET_CLS_ACT
556 new->tc_verd = old->tc_verd;
557 #endif
558 #endif
559 new->vlan_tci = old->vlan_tci;
560
561 skb_copy_secmark(new, old);
562 }
563
564 /*
565 * You should not add any new code to this function. Add it to
566 * __copy_skb_header above instead.
567 */
568 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
569 {
570 #define C(x) n->x = skb->x
571
572 n->next = n->prev = NULL;
573 n->sk = NULL;
574 __copy_skb_header(n, skb);
575
576 C(len);
577 C(data_len);
578 C(mac_len);
579 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
580 n->cloned = 1;
581 n->nohdr = 0;
582 n->destructor = NULL;
583 C(tail);
584 C(end);
585 C(head);
586 C(data);
587 C(truesize);
588 atomic_set(&n->users, 1);
589
590 atomic_inc(&(skb_shinfo(skb)->dataref));
591 skb->cloned = 1;
592
593 return n;
594 #undef C
595 }
596
597 /**
598 * skb_morph - morph one skb into another
599 * @dst: the skb to receive the contents
600 * @src: the skb to supply the contents
601 *
602 * This is identical to skb_clone except that the target skb is
603 * supplied by the user.
604 *
605 * The target skb is returned upon exit.
606 */
607 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
608 {
609 skb_release_all(dst);
610 return __skb_clone(dst, src);
611 }
612 EXPORT_SYMBOL_GPL(skb_morph);
613
614 /* skb frags copy userspace buffers to kernel */
615 static int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
616 {
617 int i;
618 int num_frags = skb_shinfo(skb)->nr_frags;
619 struct page *page, *head = NULL;
620 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
621
622 for (i = 0; i < num_frags; i++) {
623 u8 *vaddr;
624 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
625
626 page = alloc_page(GFP_ATOMIC);
627 if (!page) {
628 while (head) {
629 struct page *next = (struct page *)head->private;
630 put_page(head);
631 head = next;
632 }
633 return -ENOMEM;
634 }
635 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
636 memcpy(page_address(page),
637 vaddr + f->page_offset, f->size);
638 kunmap_skb_frag(vaddr);
639 page->private = (unsigned long)head;
640 head = page;
641 }
642
643 /* skb frags release userspace buffers */
644 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
645 put_page(skb_shinfo(skb)->frags[i].page);
646
647 uarg->callback(uarg);
648
649 /* skb frags point to kernel buffers */
650 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
651 skb_shinfo(skb)->frags[i - 1].page_offset = 0;
652 skb_shinfo(skb)->frags[i - 1].page = head;
653 head = (struct page *)head->private;
654 }
655 return 0;
656 }
657
658
659 /**
660 * skb_clone - duplicate an sk_buff
661 * @skb: buffer to clone
662 * @gfp_mask: allocation priority
663 *
664 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
665 * copies share the same packet data but not structure. The new
666 * buffer has a reference count of 1. If the allocation fails the
667 * function returns %NULL otherwise the new buffer is returned.
668 *
669 * If this function is called from an interrupt gfp_mask() must be
670 * %GFP_ATOMIC.
671 */
672
673 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
674 {
675 struct sk_buff *n;
676
677 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
678 if (skb_copy_ubufs(skb, gfp_mask))
679 return NULL;
680 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
681 }
682
683 n = skb + 1;
684 if (skb->fclone == SKB_FCLONE_ORIG &&
685 n->fclone == SKB_FCLONE_UNAVAILABLE) {
686 atomic_t *fclone_ref = (atomic_t *) (n + 1);
687 n->fclone = SKB_FCLONE_CLONE;
688 atomic_inc(fclone_ref);
689 } else {
690 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
691 if (!n)
692 return NULL;
693
694 kmemcheck_annotate_bitfield(n, flags1);
695 kmemcheck_annotate_bitfield(n, flags2);
696 n->fclone = SKB_FCLONE_UNAVAILABLE;
697 }
698
699 return __skb_clone(n, skb);
700 }
701 EXPORT_SYMBOL(skb_clone);
702
703 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
704 {
705 #ifndef NET_SKBUFF_DATA_USES_OFFSET
706 /*
707 * Shift between the two data areas in bytes
708 */
709 unsigned long offset = new->data - old->data;
710 #endif
711
712 __copy_skb_header(new, old);
713
714 #ifndef NET_SKBUFF_DATA_USES_OFFSET
715 /* {transport,network,mac}_header are relative to skb->head */
716 new->transport_header += offset;
717 new->network_header += offset;
718 if (skb_mac_header_was_set(new))
719 new->mac_header += offset;
720 #endif
721 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
722 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
723 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
724 }
725
726 /**
727 * skb_copy - create private copy of an sk_buff
728 * @skb: buffer to copy
729 * @gfp_mask: allocation priority
730 *
731 * Make a copy of both an &sk_buff and its data. This is used when the
732 * caller wishes to modify the data and needs a private copy of the
733 * data to alter. Returns %NULL on failure or the pointer to the buffer
734 * on success. The returned buffer has a reference count of 1.
735 *
736 * As by-product this function converts non-linear &sk_buff to linear
737 * one, so that &sk_buff becomes completely private and caller is allowed
738 * to modify all the data of returned buffer. This means that this
739 * function is not recommended for use in circumstances when only
740 * header is going to be modified. Use pskb_copy() instead.
741 */
742
743 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
744 {
745 int headerlen = skb_headroom(skb);
746 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
747 struct sk_buff *n = alloc_skb(size, gfp_mask);
748
749 if (!n)
750 return NULL;
751
752 /* Set the data pointer */
753 skb_reserve(n, headerlen);
754 /* Set the tail pointer and length */
755 skb_put(n, skb->len);
756
757 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
758 BUG();
759
760 copy_skb_header(n, skb);
761 return n;
762 }
763 EXPORT_SYMBOL(skb_copy);
764
765 /**
766 * pskb_copy - create copy of an sk_buff with private head.
767 * @skb: buffer to copy
768 * @gfp_mask: allocation priority
769 *
770 * Make a copy of both an &sk_buff and part of its data, located
771 * in header. Fragmented data remain shared. This is used when
772 * the caller wishes to modify only header of &sk_buff and needs
773 * private copy of the header to alter. Returns %NULL on failure
774 * or the pointer to the buffer on success.
775 * The returned buffer has a reference count of 1.
776 */
777
778 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
779 {
780 unsigned int size = skb_end_pointer(skb) - skb->head;
781 struct sk_buff *n = alloc_skb(size, gfp_mask);
782
783 if (!n)
784 goto out;
785
786 /* Set the data pointer */
787 skb_reserve(n, skb_headroom(skb));
788 /* Set the tail pointer and length */
789 skb_put(n, skb_headlen(skb));
790 /* Copy the bytes */
791 skb_copy_from_linear_data(skb, n->data, n->len);
792
793 n->truesize += skb->data_len;
794 n->data_len = skb->data_len;
795 n->len = skb->len;
796
797 if (skb_shinfo(skb)->nr_frags) {
798 int i;
799
800 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
801 if (skb_copy_ubufs(skb, gfp_mask)) {
802 kfree_skb(n);
803 n = NULL;
804 goto out;
805 }
806 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
807 }
808 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
809 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
810 get_page(skb_shinfo(n)->frags[i].page);
811 }
812 skb_shinfo(n)->nr_frags = i;
813 }
814
815 if (skb_has_frag_list(skb)) {
816 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
817 skb_clone_fraglist(n);
818 }
819
820 copy_skb_header(n, skb);
821 out:
822 return n;
823 }
824 EXPORT_SYMBOL(pskb_copy);
825
826 /**
827 * pskb_expand_head - reallocate header of &sk_buff
828 * @skb: buffer to reallocate
829 * @nhead: room to add at head
830 * @ntail: room to add at tail
831 * @gfp_mask: allocation priority
832 *
833 * Expands (or creates identical copy, if &nhead and &ntail are zero)
834 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
835 * reference count of 1. Returns zero in the case of success or error,
836 * if expansion failed. In the last case, &sk_buff is not changed.
837 *
838 * All the pointers pointing into skb header may change and must be
839 * reloaded after call to this function.
840 */
841
842 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
843 gfp_t gfp_mask)
844 {
845 int i;
846 u8 *data;
847 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
848 long off;
849 bool fastpath;
850
851 BUG_ON(nhead < 0);
852
853 if (skb_shared(skb))
854 BUG();
855
856 size = SKB_DATA_ALIGN(size);
857
858 /* Check if we can avoid taking references on fragments if we own
859 * the last reference on skb->head. (see skb_release_data())
860 */
861 if (!skb->cloned)
862 fastpath = true;
863 else {
864 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
865 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
866 }
867
868 if (fastpath &&
869 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
870 memmove(skb->head + size, skb_shinfo(skb),
871 offsetof(struct skb_shared_info,
872 frags[skb_shinfo(skb)->nr_frags]));
873 memmove(skb->head + nhead, skb->head,
874 skb_tail_pointer(skb) - skb->head);
875 off = nhead;
876 goto adjust_others;
877 }
878
879 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
880 if (!data)
881 goto nodata;
882
883 /* Copy only real data... and, alas, header. This should be
884 * optimized for the cases when header is void.
885 */
886 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
887
888 memcpy((struct skb_shared_info *)(data + size),
889 skb_shinfo(skb),
890 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
891
892 if (fastpath) {
893 kfree(skb->head);
894 } else {
895 /* copy this zero copy skb frags */
896 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
897 if (skb_copy_ubufs(skb, gfp_mask))
898 goto nofrags;
899 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
900 }
901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
902 get_page(skb_shinfo(skb)->frags[i].page);
903
904 if (skb_has_frag_list(skb))
905 skb_clone_fraglist(skb);
906
907 skb_release_data(skb);
908 }
909 off = (data + nhead) - skb->head;
910
911 skb->head = data;
912 adjust_others:
913 skb->data += off;
914 #ifdef NET_SKBUFF_DATA_USES_OFFSET
915 skb->end = size;
916 off = nhead;
917 #else
918 skb->end = skb->head + size;
919 #endif
920 /* {transport,network,mac}_header and tail are relative to skb->head */
921 skb->tail += off;
922 skb->transport_header += off;
923 skb->network_header += off;
924 if (skb_mac_header_was_set(skb))
925 skb->mac_header += off;
926 /* Only adjust this if it actually is csum_start rather than csum */
927 if (skb->ip_summed == CHECKSUM_PARTIAL)
928 skb->csum_start += nhead;
929 skb->cloned = 0;
930 skb->hdr_len = 0;
931 skb->nohdr = 0;
932 atomic_set(&skb_shinfo(skb)->dataref, 1);
933 return 0;
934
935 nofrags:
936 kfree(data);
937 nodata:
938 return -ENOMEM;
939 }
940 EXPORT_SYMBOL(pskb_expand_head);
941
942 /* Make private copy of skb with writable head and some headroom */
943
944 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
945 {
946 struct sk_buff *skb2;
947 int delta = headroom - skb_headroom(skb);
948
949 if (delta <= 0)
950 skb2 = pskb_copy(skb, GFP_ATOMIC);
951 else {
952 skb2 = skb_clone(skb, GFP_ATOMIC);
953 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
954 GFP_ATOMIC)) {
955 kfree_skb(skb2);
956 skb2 = NULL;
957 }
958 }
959 return skb2;
960 }
961 EXPORT_SYMBOL(skb_realloc_headroom);
962
963 /**
964 * skb_copy_expand - copy and expand sk_buff
965 * @skb: buffer to copy
966 * @newheadroom: new free bytes at head
967 * @newtailroom: new free bytes at tail
968 * @gfp_mask: allocation priority
969 *
970 * Make a copy of both an &sk_buff and its data and while doing so
971 * allocate additional space.
972 *
973 * This is used when the caller wishes to modify the data and needs a
974 * private copy of the data to alter as well as more space for new fields.
975 * Returns %NULL on failure or the pointer to the buffer
976 * on success. The returned buffer has a reference count of 1.
977 *
978 * You must pass %GFP_ATOMIC as the allocation priority if this function
979 * is called from an interrupt.
980 */
981 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
982 int newheadroom, int newtailroom,
983 gfp_t gfp_mask)
984 {
985 /*
986 * Allocate the copy buffer
987 */
988 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
989 gfp_mask);
990 int oldheadroom = skb_headroom(skb);
991 int head_copy_len, head_copy_off;
992 int off;
993
994 if (!n)
995 return NULL;
996
997 skb_reserve(n, newheadroom);
998
999 /* Set the tail pointer and length */
1000 skb_put(n, skb->len);
1001
1002 head_copy_len = oldheadroom;
1003 head_copy_off = 0;
1004 if (newheadroom <= head_copy_len)
1005 head_copy_len = newheadroom;
1006 else
1007 head_copy_off = newheadroom - head_copy_len;
1008
1009 /* Copy the linear header and data. */
1010 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1011 skb->len + head_copy_len))
1012 BUG();
1013
1014 copy_skb_header(n, skb);
1015
1016 off = newheadroom - oldheadroom;
1017 if (n->ip_summed == CHECKSUM_PARTIAL)
1018 n->csum_start += off;
1019 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1020 n->transport_header += off;
1021 n->network_header += off;
1022 if (skb_mac_header_was_set(skb))
1023 n->mac_header += off;
1024 #endif
1025
1026 return n;
1027 }
1028 EXPORT_SYMBOL(skb_copy_expand);
1029
1030 /**
1031 * skb_pad - zero pad the tail of an skb
1032 * @skb: buffer to pad
1033 * @pad: space to pad
1034 *
1035 * Ensure that a buffer is followed by a padding area that is zero
1036 * filled. Used by network drivers which may DMA or transfer data
1037 * beyond the buffer end onto the wire.
1038 *
1039 * May return error in out of memory cases. The skb is freed on error.
1040 */
1041
1042 int skb_pad(struct sk_buff *skb, int pad)
1043 {
1044 int err;
1045 int ntail;
1046
1047 /* If the skbuff is non linear tailroom is always zero.. */
1048 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1049 memset(skb->data+skb->len, 0, pad);
1050 return 0;
1051 }
1052
1053 ntail = skb->data_len + pad - (skb->end - skb->tail);
1054 if (likely(skb_cloned(skb) || ntail > 0)) {
1055 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1056 if (unlikely(err))
1057 goto free_skb;
1058 }
1059
1060 /* FIXME: The use of this function with non-linear skb's really needs
1061 * to be audited.
1062 */
1063 err = skb_linearize(skb);
1064 if (unlikely(err))
1065 goto free_skb;
1066
1067 memset(skb->data + skb->len, 0, pad);
1068 return 0;
1069
1070 free_skb:
1071 kfree_skb(skb);
1072 return err;
1073 }
1074 EXPORT_SYMBOL(skb_pad);
1075
1076 /**
1077 * skb_put - add data to a buffer
1078 * @skb: buffer to use
1079 * @len: amount of data to add
1080 *
1081 * This function extends the used data area of the buffer. If this would
1082 * exceed the total buffer size the kernel will panic. A pointer to the
1083 * first byte of the extra data is returned.
1084 */
1085 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1086 {
1087 unsigned char *tmp = skb_tail_pointer(skb);
1088 SKB_LINEAR_ASSERT(skb);
1089 skb->tail += len;
1090 skb->len += len;
1091 if (unlikely(skb->tail > skb->end))
1092 skb_over_panic(skb, len, __builtin_return_address(0));
1093 return tmp;
1094 }
1095 EXPORT_SYMBOL(skb_put);
1096
1097 /**
1098 * skb_push - add data to the start of a buffer
1099 * @skb: buffer to use
1100 * @len: amount of data to add
1101 *
1102 * This function extends the used data area of the buffer at the buffer
1103 * start. If this would exceed the total buffer headroom the kernel will
1104 * panic. A pointer to the first byte of the extra data is returned.
1105 */
1106 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1107 {
1108 skb->data -= len;
1109 skb->len += len;
1110 if (unlikely(skb->data<skb->head))
1111 skb_under_panic(skb, len, __builtin_return_address(0));
1112 return skb->data;
1113 }
1114 EXPORT_SYMBOL(skb_push);
1115
1116 /**
1117 * skb_pull - remove data from the start of a buffer
1118 * @skb: buffer to use
1119 * @len: amount of data to remove
1120 *
1121 * This function removes data from the start of a buffer, returning
1122 * the memory to the headroom. A pointer to the next data in the buffer
1123 * is returned. Once the data has been pulled future pushes will overwrite
1124 * the old data.
1125 */
1126 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1127 {
1128 return skb_pull_inline(skb, len);
1129 }
1130 EXPORT_SYMBOL(skb_pull);
1131
1132 /**
1133 * skb_trim - remove end from a buffer
1134 * @skb: buffer to alter
1135 * @len: new length
1136 *
1137 * Cut the length of a buffer down by removing data from the tail. If
1138 * the buffer is already under the length specified it is not modified.
1139 * The skb must be linear.
1140 */
1141 void skb_trim(struct sk_buff *skb, unsigned int len)
1142 {
1143 if (skb->len > len)
1144 __skb_trim(skb, len);
1145 }
1146 EXPORT_SYMBOL(skb_trim);
1147
1148 /* Trims skb to length len. It can change skb pointers.
1149 */
1150
1151 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1152 {
1153 struct sk_buff **fragp;
1154 struct sk_buff *frag;
1155 int offset = skb_headlen(skb);
1156 int nfrags = skb_shinfo(skb)->nr_frags;
1157 int i;
1158 int err;
1159
1160 if (skb_cloned(skb) &&
1161 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1162 return err;
1163
1164 i = 0;
1165 if (offset >= len)
1166 goto drop_pages;
1167
1168 for (; i < nfrags; i++) {
1169 int end = offset + skb_shinfo(skb)->frags[i].size;
1170
1171 if (end < len) {
1172 offset = end;
1173 continue;
1174 }
1175
1176 skb_shinfo(skb)->frags[i++].size = len - offset;
1177
1178 drop_pages:
1179 skb_shinfo(skb)->nr_frags = i;
1180
1181 for (; i < nfrags; i++)
1182 put_page(skb_shinfo(skb)->frags[i].page);
1183
1184 if (skb_has_frag_list(skb))
1185 skb_drop_fraglist(skb);
1186 goto done;
1187 }
1188
1189 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1190 fragp = &frag->next) {
1191 int end = offset + frag->len;
1192
1193 if (skb_shared(frag)) {
1194 struct sk_buff *nfrag;
1195
1196 nfrag = skb_clone(frag, GFP_ATOMIC);
1197 if (unlikely(!nfrag))
1198 return -ENOMEM;
1199
1200 nfrag->next = frag->next;
1201 kfree_skb(frag);
1202 frag = nfrag;
1203 *fragp = frag;
1204 }
1205
1206 if (end < len) {
1207 offset = end;
1208 continue;
1209 }
1210
1211 if (end > len &&
1212 unlikely((err = pskb_trim(frag, len - offset))))
1213 return err;
1214
1215 if (frag->next)
1216 skb_drop_list(&frag->next);
1217 break;
1218 }
1219
1220 done:
1221 if (len > skb_headlen(skb)) {
1222 skb->data_len -= skb->len - len;
1223 skb->len = len;
1224 } else {
1225 skb->len = len;
1226 skb->data_len = 0;
1227 skb_set_tail_pointer(skb, len);
1228 }
1229
1230 return 0;
1231 }
1232 EXPORT_SYMBOL(___pskb_trim);
1233
1234 /**
1235 * __pskb_pull_tail - advance tail of skb header
1236 * @skb: buffer to reallocate
1237 * @delta: number of bytes to advance tail
1238 *
1239 * The function makes a sense only on a fragmented &sk_buff,
1240 * it expands header moving its tail forward and copying necessary
1241 * data from fragmented part.
1242 *
1243 * &sk_buff MUST have reference count of 1.
1244 *
1245 * Returns %NULL (and &sk_buff does not change) if pull failed
1246 * or value of new tail of skb in the case of success.
1247 *
1248 * All the pointers pointing into skb header may change and must be
1249 * reloaded after call to this function.
1250 */
1251
1252 /* Moves tail of skb head forward, copying data from fragmented part,
1253 * when it is necessary.
1254 * 1. It may fail due to malloc failure.
1255 * 2. It may change skb pointers.
1256 *
1257 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1258 */
1259 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1260 {
1261 /* If skb has not enough free space at tail, get new one
1262 * plus 128 bytes for future expansions. If we have enough
1263 * room at tail, reallocate without expansion only if skb is cloned.
1264 */
1265 int i, k, eat = (skb->tail + delta) - skb->end;
1266
1267 if (eat > 0 || skb_cloned(skb)) {
1268 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1269 GFP_ATOMIC))
1270 return NULL;
1271 }
1272
1273 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1274 BUG();
1275
1276 /* Optimization: no fragments, no reasons to preestimate
1277 * size of pulled pages. Superb.
1278 */
1279 if (!skb_has_frag_list(skb))
1280 goto pull_pages;
1281
1282 /* Estimate size of pulled pages. */
1283 eat = delta;
1284 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1285 if (skb_shinfo(skb)->frags[i].size >= eat)
1286 goto pull_pages;
1287 eat -= skb_shinfo(skb)->frags[i].size;
1288 }
1289
1290 /* If we need update frag list, we are in troubles.
1291 * Certainly, it possible to add an offset to skb data,
1292 * but taking into account that pulling is expected to
1293 * be very rare operation, it is worth to fight against
1294 * further bloating skb head and crucify ourselves here instead.
1295 * Pure masohism, indeed. 8)8)
1296 */
1297 if (eat) {
1298 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1299 struct sk_buff *clone = NULL;
1300 struct sk_buff *insp = NULL;
1301
1302 do {
1303 BUG_ON(!list);
1304
1305 if (list->len <= eat) {
1306 /* Eaten as whole. */
1307 eat -= list->len;
1308 list = list->next;
1309 insp = list;
1310 } else {
1311 /* Eaten partially. */
1312
1313 if (skb_shared(list)) {
1314 /* Sucks! We need to fork list. :-( */
1315 clone = skb_clone(list, GFP_ATOMIC);
1316 if (!clone)
1317 return NULL;
1318 insp = list->next;
1319 list = clone;
1320 } else {
1321 /* This may be pulled without
1322 * problems. */
1323 insp = list;
1324 }
1325 if (!pskb_pull(list, eat)) {
1326 kfree_skb(clone);
1327 return NULL;
1328 }
1329 break;
1330 }
1331 } while (eat);
1332
1333 /* Free pulled out fragments. */
1334 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1335 skb_shinfo(skb)->frag_list = list->next;
1336 kfree_skb(list);
1337 }
1338 /* And insert new clone at head. */
1339 if (clone) {
1340 clone->next = list;
1341 skb_shinfo(skb)->frag_list = clone;
1342 }
1343 }
1344 /* Success! Now we may commit changes to skb data. */
1345
1346 pull_pages:
1347 eat = delta;
1348 k = 0;
1349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350 if (skb_shinfo(skb)->frags[i].size <= eat) {
1351 put_page(skb_shinfo(skb)->frags[i].page);
1352 eat -= skb_shinfo(skb)->frags[i].size;
1353 } else {
1354 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1355 if (eat) {
1356 skb_shinfo(skb)->frags[k].page_offset += eat;
1357 skb_shinfo(skb)->frags[k].size -= eat;
1358 eat = 0;
1359 }
1360 k++;
1361 }
1362 }
1363 skb_shinfo(skb)->nr_frags = k;
1364
1365 skb->tail += delta;
1366 skb->data_len -= delta;
1367
1368 return skb_tail_pointer(skb);
1369 }
1370 EXPORT_SYMBOL(__pskb_pull_tail);
1371
1372 /* Copy some data bits from skb to kernel buffer. */
1373
1374 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1375 {
1376 int start = skb_headlen(skb);
1377 struct sk_buff *frag_iter;
1378 int i, copy;
1379
1380 if (offset > (int)skb->len - len)
1381 goto fault;
1382
1383 /* Copy header. */
1384 if ((copy = start - offset) > 0) {
1385 if (copy > len)
1386 copy = len;
1387 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1388 if ((len -= copy) == 0)
1389 return 0;
1390 offset += copy;
1391 to += copy;
1392 }
1393
1394 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1395 int end;
1396
1397 WARN_ON(start > offset + len);
1398
1399 end = start + skb_shinfo(skb)->frags[i].size;
1400 if ((copy = end - offset) > 0) {
1401 u8 *vaddr;
1402
1403 if (copy > len)
1404 copy = len;
1405
1406 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1407 memcpy(to,
1408 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1409 offset - start, copy);
1410 kunmap_skb_frag(vaddr);
1411
1412 if ((len -= copy) == 0)
1413 return 0;
1414 offset += copy;
1415 to += copy;
1416 }
1417 start = end;
1418 }
1419
1420 skb_walk_frags(skb, frag_iter) {
1421 int end;
1422
1423 WARN_ON(start > offset + len);
1424
1425 end = start + frag_iter->len;
1426 if ((copy = end - offset) > 0) {
1427 if (copy > len)
1428 copy = len;
1429 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1430 goto fault;
1431 if ((len -= copy) == 0)
1432 return 0;
1433 offset += copy;
1434 to += copy;
1435 }
1436 start = end;
1437 }
1438
1439 if (!len)
1440 return 0;
1441
1442 fault:
1443 return -EFAULT;
1444 }
1445 EXPORT_SYMBOL(skb_copy_bits);
1446
1447 /*
1448 * Callback from splice_to_pipe(), if we need to release some pages
1449 * at the end of the spd in case we error'ed out in filling the pipe.
1450 */
1451 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1452 {
1453 put_page(spd->pages[i]);
1454 }
1455
1456 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1457 unsigned int *offset,
1458 struct sk_buff *skb, struct sock *sk)
1459 {
1460 struct page *p = sk->sk_sndmsg_page;
1461 unsigned int off;
1462
1463 if (!p) {
1464 new_page:
1465 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1466 if (!p)
1467 return NULL;
1468
1469 off = sk->sk_sndmsg_off = 0;
1470 /* hold one ref to this page until it's full */
1471 } else {
1472 unsigned int mlen;
1473
1474 off = sk->sk_sndmsg_off;
1475 mlen = PAGE_SIZE - off;
1476 if (mlen < 64 && mlen < *len) {
1477 put_page(p);
1478 goto new_page;
1479 }
1480
1481 *len = min_t(unsigned int, *len, mlen);
1482 }
1483
1484 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1485 sk->sk_sndmsg_off += *len;
1486 *offset = off;
1487 get_page(p);
1488
1489 return p;
1490 }
1491
1492 /*
1493 * Fill page/offset/length into spd, if it can hold more pages.
1494 */
1495 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1496 struct pipe_inode_info *pipe, struct page *page,
1497 unsigned int *len, unsigned int offset,
1498 struct sk_buff *skb, int linear,
1499 struct sock *sk)
1500 {
1501 if (unlikely(spd->nr_pages == pipe->buffers))
1502 return 1;
1503
1504 if (linear) {
1505 page = linear_to_page(page, len, &offset, skb, sk);
1506 if (!page)
1507 return 1;
1508 } else
1509 get_page(page);
1510
1511 spd->pages[spd->nr_pages] = page;
1512 spd->partial[spd->nr_pages].len = *len;
1513 spd->partial[spd->nr_pages].offset = offset;
1514 spd->nr_pages++;
1515
1516 return 0;
1517 }
1518
1519 static inline void __segment_seek(struct page **page, unsigned int *poff,
1520 unsigned int *plen, unsigned int off)
1521 {
1522 unsigned long n;
1523
1524 *poff += off;
1525 n = *poff / PAGE_SIZE;
1526 if (n)
1527 *page = nth_page(*page, n);
1528
1529 *poff = *poff % PAGE_SIZE;
1530 *plen -= off;
1531 }
1532
1533 static inline int __splice_segment(struct page *page, unsigned int poff,
1534 unsigned int plen, unsigned int *off,
1535 unsigned int *len, struct sk_buff *skb,
1536 struct splice_pipe_desc *spd, int linear,
1537 struct sock *sk,
1538 struct pipe_inode_info *pipe)
1539 {
1540 if (!*len)
1541 return 1;
1542
1543 /* skip this segment if already processed */
1544 if (*off >= plen) {
1545 *off -= plen;
1546 return 0;
1547 }
1548
1549 /* ignore any bits we already processed */
1550 if (*off) {
1551 __segment_seek(&page, &poff, &plen, *off);
1552 *off = 0;
1553 }
1554
1555 do {
1556 unsigned int flen = min(*len, plen);
1557
1558 /* the linear region may spread across several pages */
1559 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1560
1561 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1562 return 1;
1563
1564 __segment_seek(&page, &poff, &plen, flen);
1565 *len -= flen;
1566
1567 } while (*len && plen);
1568
1569 return 0;
1570 }
1571
1572 /*
1573 * Map linear and fragment data from the skb to spd. It reports failure if the
1574 * pipe is full or if we already spliced the requested length.
1575 */
1576 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1577 unsigned int *offset, unsigned int *len,
1578 struct splice_pipe_desc *spd, struct sock *sk)
1579 {
1580 int seg;
1581
1582 /*
1583 * map the linear part
1584 */
1585 if (__splice_segment(virt_to_page(skb->data),
1586 (unsigned long) skb->data & (PAGE_SIZE - 1),
1587 skb_headlen(skb),
1588 offset, len, skb, spd, 1, sk, pipe))
1589 return 1;
1590
1591 /*
1592 * then map the fragments
1593 */
1594 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1595 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1596
1597 if (__splice_segment(f->page, f->page_offset, f->size,
1598 offset, len, skb, spd, 0, sk, pipe))
1599 return 1;
1600 }
1601
1602 return 0;
1603 }
1604
1605 /*
1606 * Map data from the skb to a pipe. Should handle both the linear part,
1607 * the fragments, and the frag list. It does NOT handle frag lists within
1608 * the frag list, if such a thing exists. We'd probably need to recurse to
1609 * handle that cleanly.
1610 */
1611 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1612 struct pipe_inode_info *pipe, unsigned int tlen,
1613 unsigned int flags)
1614 {
1615 struct partial_page partial[PIPE_DEF_BUFFERS];
1616 struct page *pages[PIPE_DEF_BUFFERS];
1617 struct splice_pipe_desc spd = {
1618 .pages = pages,
1619 .partial = partial,
1620 .flags = flags,
1621 .ops = &sock_pipe_buf_ops,
1622 .spd_release = sock_spd_release,
1623 };
1624 struct sk_buff *frag_iter;
1625 struct sock *sk = skb->sk;
1626 int ret = 0;
1627
1628 if (splice_grow_spd(pipe, &spd))
1629 return -ENOMEM;
1630
1631 /*
1632 * __skb_splice_bits() only fails if the output has no room left,
1633 * so no point in going over the frag_list for the error case.
1634 */
1635 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1636 goto done;
1637 else if (!tlen)
1638 goto done;
1639
1640 /*
1641 * now see if we have a frag_list to map
1642 */
1643 skb_walk_frags(skb, frag_iter) {
1644 if (!tlen)
1645 break;
1646 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1647 break;
1648 }
1649
1650 done:
1651 if (spd.nr_pages) {
1652 /*
1653 * Drop the socket lock, otherwise we have reverse
1654 * locking dependencies between sk_lock and i_mutex
1655 * here as compared to sendfile(). We enter here
1656 * with the socket lock held, and splice_to_pipe() will
1657 * grab the pipe inode lock. For sendfile() emulation,
1658 * we call into ->sendpage() with the i_mutex lock held
1659 * and networking will grab the socket lock.
1660 */
1661 release_sock(sk);
1662 ret = splice_to_pipe(pipe, &spd);
1663 lock_sock(sk);
1664 }
1665
1666 splice_shrink_spd(pipe, &spd);
1667 return ret;
1668 }
1669
1670 /**
1671 * skb_store_bits - store bits from kernel buffer to skb
1672 * @skb: destination buffer
1673 * @offset: offset in destination
1674 * @from: source buffer
1675 * @len: number of bytes to copy
1676 *
1677 * Copy the specified number of bytes from the source buffer to the
1678 * destination skb. This function handles all the messy bits of
1679 * traversing fragment lists and such.
1680 */
1681
1682 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1683 {
1684 int start = skb_headlen(skb);
1685 struct sk_buff *frag_iter;
1686 int i, copy;
1687
1688 if (offset > (int)skb->len - len)
1689 goto fault;
1690
1691 if ((copy = start - offset) > 0) {
1692 if (copy > len)
1693 copy = len;
1694 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1695 if ((len -= copy) == 0)
1696 return 0;
1697 offset += copy;
1698 from += copy;
1699 }
1700
1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1702 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703 int end;
1704
1705 WARN_ON(start > offset + len);
1706
1707 end = start + frag->size;
1708 if ((copy = end - offset) > 0) {
1709 u8 *vaddr;
1710
1711 if (copy > len)
1712 copy = len;
1713
1714 vaddr = kmap_skb_frag(frag);
1715 memcpy(vaddr + frag->page_offset + offset - start,
1716 from, copy);
1717 kunmap_skb_frag(vaddr);
1718
1719 if ((len -= copy) == 0)
1720 return 0;
1721 offset += copy;
1722 from += copy;
1723 }
1724 start = end;
1725 }
1726
1727 skb_walk_frags(skb, frag_iter) {
1728 int end;
1729
1730 WARN_ON(start > offset + len);
1731
1732 end = start + frag_iter->len;
1733 if ((copy = end - offset) > 0) {
1734 if (copy > len)
1735 copy = len;
1736 if (skb_store_bits(frag_iter, offset - start,
1737 from, copy))
1738 goto fault;
1739 if ((len -= copy) == 0)
1740 return 0;
1741 offset += copy;
1742 from += copy;
1743 }
1744 start = end;
1745 }
1746 if (!len)
1747 return 0;
1748
1749 fault:
1750 return -EFAULT;
1751 }
1752 EXPORT_SYMBOL(skb_store_bits);
1753
1754 /* Checksum skb data. */
1755
1756 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1757 int len, __wsum csum)
1758 {
1759 int start = skb_headlen(skb);
1760 int i, copy = start - offset;
1761 struct sk_buff *frag_iter;
1762 int pos = 0;
1763
1764 /* Checksum header. */
1765 if (copy > 0) {
1766 if (copy > len)
1767 copy = len;
1768 csum = csum_partial(skb->data + offset, copy, csum);
1769 if ((len -= copy) == 0)
1770 return csum;
1771 offset += copy;
1772 pos = copy;
1773 }
1774
1775 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1776 int end;
1777
1778 WARN_ON(start > offset + len);
1779
1780 end = start + skb_shinfo(skb)->frags[i].size;
1781 if ((copy = end - offset) > 0) {
1782 __wsum csum2;
1783 u8 *vaddr;
1784 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1785
1786 if (copy > len)
1787 copy = len;
1788 vaddr = kmap_skb_frag(frag);
1789 csum2 = csum_partial(vaddr + frag->page_offset +
1790 offset - start, copy, 0);
1791 kunmap_skb_frag(vaddr);
1792 csum = csum_block_add(csum, csum2, pos);
1793 if (!(len -= copy))
1794 return csum;
1795 offset += copy;
1796 pos += copy;
1797 }
1798 start = end;
1799 }
1800
1801 skb_walk_frags(skb, frag_iter) {
1802 int end;
1803
1804 WARN_ON(start > offset + len);
1805
1806 end = start + frag_iter->len;
1807 if ((copy = end - offset) > 0) {
1808 __wsum csum2;
1809 if (copy > len)
1810 copy = len;
1811 csum2 = skb_checksum(frag_iter, offset - start,
1812 copy, 0);
1813 csum = csum_block_add(csum, csum2, pos);
1814 if ((len -= copy) == 0)
1815 return csum;
1816 offset += copy;
1817 pos += copy;
1818 }
1819 start = end;
1820 }
1821 BUG_ON(len);
1822
1823 return csum;
1824 }
1825 EXPORT_SYMBOL(skb_checksum);
1826
1827 /* Both of above in one bottle. */
1828
1829 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1830 u8 *to, int len, __wsum csum)
1831 {
1832 int start = skb_headlen(skb);
1833 int i, copy = start - offset;
1834 struct sk_buff *frag_iter;
1835 int pos = 0;
1836
1837 /* Copy header. */
1838 if (copy > 0) {
1839 if (copy > len)
1840 copy = len;
1841 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1842 copy, csum);
1843 if ((len -= copy) == 0)
1844 return csum;
1845 offset += copy;
1846 to += copy;
1847 pos = copy;
1848 }
1849
1850 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1851 int end;
1852
1853 WARN_ON(start > offset + len);
1854
1855 end = start + skb_shinfo(skb)->frags[i].size;
1856 if ((copy = end - offset) > 0) {
1857 __wsum csum2;
1858 u8 *vaddr;
1859 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1860
1861 if (copy > len)
1862 copy = len;
1863 vaddr = kmap_skb_frag(frag);
1864 csum2 = csum_partial_copy_nocheck(vaddr +
1865 frag->page_offset +
1866 offset - start, to,
1867 copy, 0);
1868 kunmap_skb_frag(vaddr);
1869 csum = csum_block_add(csum, csum2, pos);
1870 if (!(len -= copy))
1871 return csum;
1872 offset += copy;
1873 to += copy;
1874 pos += copy;
1875 }
1876 start = end;
1877 }
1878
1879 skb_walk_frags(skb, frag_iter) {
1880 __wsum csum2;
1881 int end;
1882
1883 WARN_ON(start > offset + len);
1884
1885 end = start + frag_iter->len;
1886 if ((copy = end - offset) > 0) {
1887 if (copy > len)
1888 copy = len;
1889 csum2 = skb_copy_and_csum_bits(frag_iter,
1890 offset - start,
1891 to, copy, 0);
1892 csum = csum_block_add(csum, csum2, pos);
1893 if ((len -= copy) == 0)
1894 return csum;
1895 offset += copy;
1896 to += copy;
1897 pos += copy;
1898 }
1899 start = end;
1900 }
1901 BUG_ON(len);
1902 return csum;
1903 }
1904 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1905
1906 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1907 {
1908 __wsum csum;
1909 long csstart;
1910
1911 if (skb->ip_summed == CHECKSUM_PARTIAL)
1912 csstart = skb_checksum_start_offset(skb);
1913 else
1914 csstart = skb_headlen(skb);
1915
1916 BUG_ON(csstart > skb_headlen(skb));
1917
1918 skb_copy_from_linear_data(skb, to, csstart);
1919
1920 csum = 0;
1921 if (csstart != skb->len)
1922 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1923 skb->len - csstart, 0);
1924
1925 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1926 long csstuff = csstart + skb->csum_offset;
1927
1928 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1929 }
1930 }
1931 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1932
1933 /**
1934 * skb_dequeue - remove from the head of the queue
1935 * @list: list to dequeue from
1936 *
1937 * Remove the head of the list. The list lock is taken so the function
1938 * may be used safely with other locking list functions. The head item is
1939 * returned or %NULL if the list is empty.
1940 */
1941
1942 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1943 {
1944 unsigned long flags;
1945 struct sk_buff *result;
1946
1947 spin_lock_irqsave(&list->lock, flags);
1948 result = __skb_dequeue(list);
1949 spin_unlock_irqrestore(&list->lock, flags);
1950 return result;
1951 }
1952 EXPORT_SYMBOL(skb_dequeue);
1953
1954 /**
1955 * skb_dequeue_tail - remove from the tail of the queue
1956 * @list: list to dequeue from
1957 *
1958 * Remove the tail of the list. The list lock is taken so the function
1959 * may be used safely with other locking list functions. The tail item is
1960 * returned or %NULL if the list is empty.
1961 */
1962 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1963 {
1964 unsigned long flags;
1965 struct sk_buff *result;
1966
1967 spin_lock_irqsave(&list->lock, flags);
1968 result = __skb_dequeue_tail(list);
1969 spin_unlock_irqrestore(&list->lock, flags);
1970 return result;
1971 }
1972 EXPORT_SYMBOL(skb_dequeue_tail);
1973
1974 /**
1975 * skb_queue_purge - empty a list
1976 * @list: list to empty
1977 *
1978 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1979 * the list and one reference dropped. This function takes the list
1980 * lock and is atomic with respect to other list locking functions.
1981 */
1982 void skb_queue_purge(struct sk_buff_head *list)
1983 {
1984 struct sk_buff *skb;
1985 while ((skb = skb_dequeue(list)) != NULL)
1986 kfree_skb(skb);
1987 }
1988 EXPORT_SYMBOL(skb_queue_purge);
1989
1990 /**
1991 * skb_queue_head - queue a buffer at the list head
1992 * @list: list to use
1993 * @newsk: buffer to queue
1994 *
1995 * Queue a buffer at the start of the list. This function takes the
1996 * list lock and can be used safely with other locking &sk_buff functions
1997 * safely.
1998 *
1999 * A buffer cannot be placed on two lists at the same time.
2000 */
2001 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2002 {
2003 unsigned long flags;
2004
2005 spin_lock_irqsave(&list->lock, flags);
2006 __skb_queue_head(list, newsk);
2007 spin_unlock_irqrestore(&list->lock, flags);
2008 }
2009 EXPORT_SYMBOL(skb_queue_head);
2010
2011 /**
2012 * skb_queue_tail - queue a buffer at the list tail
2013 * @list: list to use
2014 * @newsk: buffer to queue
2015 *
2016 * Queue a buffer at the tail of the list. This function takes the
2017 * list lock and can be used safely with other locking &sk_buff functions
2018 * safely.
2019 *
2020 * A buffer cannot be placed on two lists at the same time.
2021 */
2022 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2023 {
2024 unsigned long flags;
2025
2026 spin_lock_irqsave(&list->lock, flags);
2027 __skb_queue_tail(list, newsk);
2028 spin_unlock_irqrestore(&list->lock, flags);
2029 }
2030 EXPORT_SYMBOL(skb_queue_tail);
2031
2032 /**
2033 * skb_unlink - remove a buffer from a list
2034 * @skb: buffer to remove
2035 * @list: list to use
2036 *
2037 * Remove a packet from a list. The list locks are taken and this
2038 * function is atomic with respect to other list locked calls
2039 *
2040 * You must know what list the SKB is on.
2041 */
2042 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2043 {
2044 unsigned long flags;
2045
2046 spin_lock_irqsave(&list->lock, flags);
2047 __skb_unlink(skb, list);
2048 spin_unlock_irqrestore(&list->lock, flags);
2049 }
2050 EXPORT_SYMBOL(skb_unlink);
2051
2052 /**
2053 * skb_append - append a buffer
2054 * @old: buffer to insert after
2055 * @newsk: buffer to insert
2056 * @list: list to use
2057 *
2058 * Place a packet after a given packet in a list. The list locks are taken
2059 * and this function is atomic with respect to other list locked calls.
2060 * A buffer cannot be placed on two lists at the same time.
2061 */
2062 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2063 {
2064 unsigned long flags;
2065
2066 spin_lock_irqsave(&list->lock, flags);
2067 __skb_queue_after(list, old, newsk);
2068 spin_unlock_irqrestore(&list->lock, flags);
2069 }
2070 EXPORT_SYMBOL(skb_append);
2071
2072 /**
2073 * skb_insert - insert a buffer
2074 * @old: buffer to insert before
2075 * @newsk: buffer to insert
2076 * @list: list to use
2077 *
2078 * Place a packet before a given packet in a list. The list locks are
2079 * taken and this function is atomic with respect to other list locked
2080 * calls.
2081 *
2082 * A buffer cannot be placed on two lists at the same time.
2083 */
2084 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2085 {
2086 unsigned long flags;
2087
2088 spin_lock_irqsave(&list->lock, flags);
2089 __skb_insert(newsk, old->prev, old, list);
2090 spin_unlock_irqrestore(&list->lock, flags);
2091 }
2092 EXPORT_SYMBOL(skb_insert);
2093
2094 static inline void skb_split_inside_header(struct sk_buff *skb,
2095 struct sk_buff* skb1,
2096 const u32 len, const int pos)
2097 {
2098 int i;
2099
2100 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2101 pos - len);
2102 /* And move data appendix as is. */
2103 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2104 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2105
2106 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2107 skb_shinfo(skb)->nr_frags = 0;
2108 skb1->data_len = skb->data_len;
2109 skb1->len += skb1->data_len;
2110 skb->data_len = 0;
2111 skb->len = len;
2112 skb_set_tail_pointer(skb, len);
2113 }
2114
2115 static inline void skb_split_no_header(struct sk_buff *skb,
2116 struct sk_buff* skb1,
2117 const u32 len, int pos)
2118 {
2119 int i, k = 0;
2120 const int nfrags = skb_shinfo(skb)->nr_frags;
2121
2122 skb_shinfo(skb)->nr_frags = 0;
2123 skb1->len = skb1->data_len = skb->len - len;
2124 skb->len = len;
2125 skb->data_len = len - pos;
2126
2127 for (i = 0; i < nfrags; i++) {
2128 int size = skb_shinfo(skb)->frags[i].size;
2129
2130 if (pos + size > len) {
2131 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2132
2133 if (pos < len) {
2134 /* Split frag.
2135 * We have two variants in this case:
2136 * 1. Move all the frag to the second
2137 * part, if it is possible. F.e.
2138 * this approach is mandatory for TUX,
2139 * where splitting is expensive.
2140 * 2. Split is accurately. We make this.
2141 */
2142 get_page(skb_shinfo(skb)->frags[i].page);
2143 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2144 skb_shinfo(skb1)->frags[0].size -= len - pos;
2145 skb_shinfo(skb)->frags[i].size = len - pos;
2146 skb_shinfo(skb)->nr_frags++;
2147 }
2148 k++;
2149 } else
2150 skb_shinfo(skb)->nr_frags++;
2151 pos += size;
2152 }
2153 skb_shinfo(skb1)->nr_frags = k;
2154 }
2155
2156 /**
2157 * skb_split - Split fragmented skb to two parts at length len.
2158 * @skb: the buffer to split
2159 * @skb1: the buffer to receive the second part
2160 * @len: new length for skb
2161 */
2162 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2163 {
2164 int pos = skb_headlen(skb);
2165
2166 if (len < pos) /* Split line is inside header. */
2167 skb_split_inside_header(skb, skb1, len, pos);
2168 else /* Second chunk has no header, nothing to copy. */
2169 skb_split_no_header(skb, skb1, len, pos);
2170 }
2171 EXPORT_SYMBOL(skb_split);
2172
2173 /* Shifting from/to a cloned skb is a no-go.
2174 *
2175 * Caller cannot keep skb_shinfo related pointers past calling here!
2176 */
2177 static int skb_prepare_for_shift(struct sk_buff *skb)
2178 {
2179 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2180 }
2181
2182 /**
2183 * skb_shift - Shifts paged data partially from skb to another
2184 * @tgt: buffer into which tail data gets added
2185 * @skb: buffer from which the paged data comes from
2186 * @shiftlen: shift up to this many bytes
2187 *
2188 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2189 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2190 * It's up to caller to free skb if everything was shifted.
2191 *
2192 * If @tgt runs out of frags, the whole operation is aborted.
2193 *
2194 * Skb cannot include anything else but paged data while tgt is allowed
2195 * to have non-paged data as well.
2196 *
2197 * TODO: full sized shift could be optimized but that would need
2198 * specialized skb free'er to handle frags without up-to-date nr_frags.
2199 */
2200 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2201 {
2202 int from, to, merge, todo;
2203 struct skb_frag_struct *fragfrom, *fragto;
2204
2205 BUG_ON(shiftlen > skb->len);
2206 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2207
2208 todo = shiftlen;
2209 from = 0;
2210 to = skb_shinfo(tgt)->nr_frags;
2211 fragfrom = &skb_shinfo(skb)->frags[from];
2212
2213 /* Actual merge is delayed until the point when we know we can
2214 * commit all, so that we don't have to undo partial changes
2215 */
2216 if (!to ||
2217 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2218 merge = -1;
2219 } else {
2220 merge = to - 1;
2221
2222 todo -= fragfrom->size;
2223 if (todo < 0) {
2224 if (skb_prepare_for_shift(skb) ||
2225 skb_prepare_for_shift(tgt))
2226 return 0;
2227
2228 /* All previous frag pointers might be stale! */
2229 fragfrom = &skb_shinfo(skb)->frags[from];
2230 fragto = &skb_shinfo(tgt)->frags[merge];
2231
2232 fragto->size += shiftlen;
2233 fragfrom->size -= shiftlen;
2234 fragfrom->page_offset += shiftlen;
2235
2236 goto onlymerged;
2237 }
2238
2239 from++;
2240 }
2241
2242 /* Skip full, not-fitting skb to avoid expensive operations */
2243 if ((shiftlen == skb->len) &&
2244 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2245 return 0;
2246
2247 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2248 return 0;
2249
2250 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2251 if (to == MAX_SKB_FRAGS)
2252 return 0;
2253
2254 fragfrom = &skb_shinfo(skb)->frags[from];
2255 fragto = &skb_shinfo(tgt)->frags[to];
2256
2257 if (todo >= fragfrom->size) {
2258 *fragto = *fragfrom;
2259 todo -= fragfrom->size;
2260 from++;
2261 to++;
2262
2263 } else {
2264 get_page(fragfrom->page);
2265 fragto->page = fragfrom->page;
2266 fragto->page_offset = fragfrom->page_offset;
2267 fragto->size = todo;
2268
2269 fragfrom->page_offset += todo;
2270 fragfrom->size -= todo;
2271 todo = 0;
2272
2273 to++;
2274 break;
2275 }
2276 }
2277
2278 /* Ready to "commit" this state change to tgt */
2279 skb_shinfo(tgt)->nr_frags = to;
2280
2281 if (merge >= 0) {
2282 fragfrom = &skb_shinfo(skb)->frags[0];
2283 fragto = &skb_shinfo(tgt)->frags[merge];
2284
2285 fragto->size += fragfrom->size;
2286 put_page(fragfrom->page);
2287 }
2288
2289 /* Reposition in the original skb */
2290 to = 0;
2291 while (from < skb_shinfo(skb)->nr_frags)
2292 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2293 skb_shinfo(skb)->nr_frags = to;
2294
2295 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2296
2297 onlymerged:
2298 /* Most likely the tgt won't ever need its checksum anymore, skb on
2299 * the other hand might need it if it needs to be resent
2300 */
2301 tgt->ip_summed = CHECKSUM_PARTIAL;
2302 skb->ip_summed = CHECKSUM_PARTIAL;
2303
2304 /* Yak, is it really working this way? Some helper please? */
2305 skb->len -= shiftlen;
2306 skb->data_len -= shiftlen;
2307 skb->truesize -= shiftlen;
2308 tgt->len += shiftlen;
2309 tgt->data_len += shiftlen;
2310 tgt->truesize += shiftlen;
2311
2312 return shiftlen;
2313 }
2314
2315 /**
2316 * skb_prepare_seq_read - Prepare a sequential read of skb data
2317 * @skb: the buffer to read
2318 * @from: lower offset of data to be read
2319 * @to: upper offset of data to be read
2320 * @st: state variable
2321 *
2322 * Initializes the specified state variable. Must be called before
2323 * invoking skb_seq_read() for the first time.
2324 */
2325 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2326 unsigned int to, struct skb_seq_state *st)
2327 {
2328 st->lower_offset = from;
2329 st->upper_offset = to;
2330 st->root_skb = st->cur_skb = skb;
2331 st->frag_idx = st->stepped_offset = 0;
2332 st->frag_data = NULL;
2333 }
2334 EXPORT_SYMBOL(skb_prepare_seq_read);
2335
2336 /**
2337 * skb_seq_read - Sequentially read skb data
2338 * @consumed: number of bytes consumed by the caller so far
2339 * @data: destination pointer for data to be returned
2340 * @st: state variable
2341 *
2342 * Reads a block of skb data at &consumed relative to the
2343 * lower offset specified to skb_prepare_seq_read(). Assigns
2344 * the head of the data block to &data and returns the length
2345 * of the block or 0 if the end of the skb data or the upper
2346 * offset has been reached.
2347 *
2348 * The caller is not required to consume all of the data
2349 * returned, i.e. &consumed is typically set to the number
2350 * of bytes already consumed and the next call to
2351 * skb_seq_read() will return the remaining part of the block.
2352 *
2353 * Note 1: The size of each block of data returned can be arbitrary,
2354 * this limitation is the cost for zerocopy seqeuental
2355 * reads of potentially non linear data.
2356 *
2357 * Note 2: Fragment lists within fragments are not implemented
2358 * at the moment, state->root_skb could be replaced with
2359 * a stack for this purpose.
2360 */
2361 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2362 struct skb_seq_state *st)
2363 {
2364 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2365 skb_frag_t *frag;
2366
2367 if (unlikely(abs_offset >= st->upper_offset))
2368 return 0;
2369
2370 next_skb:
2371 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2372
2373 if (abs_offset < block_limit && !st->frag_data) {
2374 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2375 return block_limit - abs_offset;
2376 }
2377
2378 if (st->frag_idx == 0 && !st->frag_data)
2379 st->stepped_offset += skb_headlen(st->cur_skb);
2380
2381 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2382 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2383 block_limit = frag->size + st->stepped_offset;
2384
2385 if (abs_offset < block_limit) {
2386 if (!st->frag_data)
2387 st->frag_data = kmap_skb_frag(frag);
2388
2389 *data = (u8 *) st->frag_data + frag->page_offset +
2390 (abs_offset - st->stepped_offset);
2391
2392 return block_limit - abs_offset;
2393 }
2394
2395 if (st->frag_data) {
2396 kunmap_skb_frag(st->frag_data);
2397 st->frag_data = NULL;
2398 }
2399
2400 st->frag_idx++;
2401 st->stepped_offset += frag->size;
2402 }
2403
2404 if (st->frag_data) {
2405 kunmap_skb_frag(st->frag_data);
2406 st->frag_data = NULL;
2407 }
2408
2409 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2410 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2411 st->frag_idx = 0;
2412 goto next_skb;
2413 } else if (st->cur_skb->next) {
2414 st->cur_skb = st->cur_skb->next;
2415 st->frag_idx = 0;
2416 goto next_skb;
2417 }
2418
2419 return 0;
2420 }
2421 EXPORT_SYMBOL(skb_seq_read);
2422
2423 /**
2424 * skb_abort_seq_read - Abort a sequential read of skb data
2425 * @st: state variable
2426 *
2427 * Must be called if skb_seq_read() was not called until it
2428 * returned 0.
2429 */
2430 void skb_abort_seq_read(struct skb_seq_state *st)
2431 {
2432 if (st->frag_data)
2433 kunmap_skb_frag(st->frag_data);
2434 }
2435 EXPORT_SYMBOL(skb_abort_seq_read);
2436
2437 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2438
2439 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2440 struct ts_config *conf,
2441 struct ts_state *state)
2442 {
2443 return skb_seq_read(offset, text, TS_SKB_CB(state));
2444 }
2445
2446 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2447 {
2448 skb_abort_seq_read(TS_SKB_CB(state));
2449 }
2450
2451 /**
2452 * skb_find_text - Find a text pattern in skb data
2453 * @skb: the buffer to look in
2454 * @from: search offset
2455 * @to: search limit
2456 * @config: textsearch configuration
2457 * @state: uninitialized textsearch state variable
2458 *
2459 * Finds a pattern in the skb data according to the specified
2460 * textsearch configuration. Use textsearch_next() to retrieve
2461 * subsequent occurrences of the pattern. Returns the offset
2462 * to the first occurrence or UINT_MAX if no match was found.
2463 */
2464 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2465 unsigned int to, struct ts_config *config,
2466 struct ts_state *state)
2467 {
2468 unsigned int ret;
2469
2470 config->get_next_block = skb_ts_get_next_block;
2471 config->finish = skb_ts_finish;
2472
2473 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2474
2475 ret = textsearch_find(config, state);
2476 return (ret <= to - from ? ret : UINT_MAX);
2477 }
2478 EXPORT_SYMBOL(skb_find_text);
2479
2480 /**
2481 * skb_append_datato_frags: - append the user data to a skb
2482 * @sk: sock structure
2483 * @skb: skb structure to be appened with user data.
2484 * @getfrag: call back function to be used for getting the user data
2485 * @from: pointer to user message iov
2486 * @length: length of the iov message
2487 *
2488 * Description: This procedure append the user data in the fragment part
2489 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2490 */
2491 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2492 int (*getfrag)(void *from, char *to, int offset,
2493 int len, int odd, struct sk_buff *skb),
2494 void *from, int length)
2495 {
2496 int frg_cnt = 0;
2497 skb_frag_t *frag = NULL;
2498 struct page *page = NULL;
2499 int copy, left;
2500 int offset = 0;
2501 int ret;
2502
2503 do {
2504 /* Return error if we don't have space for new frag */
2505 frg_cnt = skb_shinfo(skb)->nr_frags;
2506 if (frg_cnt >= MAX_SKB_FRAGS)
2507 return -EFAULT;
2508
2509 /* allocate a new page for next frag */
2510 page = alloc_pages(sk->sk_allocation, 0);
2511
2512 /* If alloc_page fails just return failure and caller will
2513 * free previous allocated pages by doing kfree_skb()
2514 */
2515 if (page == NULL)
2516 return -ENOMEM;
2517
2518 /* initialize the next frag */
2519 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2520 skb->truesize += PAGE_SIZE;
2521 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2522
2523 /* get the new initialized frag */
2524 frg_cnt = skb_shinfo(skb)->nr_frags;
2525 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2526
2527 /* copy the user data to page */
2528 left = PAGE_SIZE - frag->page_offset;
2529 copy = (length > left)? left : length;
2530
2531 ret = getfrag(from, (page_address(frag->page) +
2532 frag->page_offset + frag->size),
2533 offset, copy, 0, skb);
2534 if (ret < 0)
2535 return -EFAULT;
2536
2537 /* copy was successful so update the size parameters */
2538 frag->size += copy;
2539 skb->len += copy;
2540 skb->data_len += copy;
2541 offset += copy;
2542 length -= copy;
2543
2544 } while (length > 0);
2545
2546 return 0;
2547 }
2548 EXPORT_SYMBOL(skb_append_datato_frags);
2549
2550 /**
2551 * skb_pull_rcsum - pull skb and update receive checksum
2552 * @skb: buffer to update
2553 * @len: length of data pulled
2554 *
2555 * This function performs an skb_pull on the packet and updates
2556 * the CHECKSUM_COMPLETE checksum. It should be used on
2557 * receive path processing instead of skb_pull unless you know
2558 * that the checksum difference is zero (e.g., a valid IP header)
2559 * or you are setting ip_summed to CHECKSUM_NONE.
2560 */
2561 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2562 {
2563 BUG_ON(len > skb->len);
2564 skb->len -= len;
2565 BUG_ON(skb->len < skb->data_len);
2566 skb_postpull_rcsum(skb, skb->data, len);
2567 return skb->data += len;
2568 }
2569 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2570
2571 /**
2572 * skb_segment - Perform protocol segmentation on skb.
2573 * @skb: buffer to segment
2574 * @features: features for the output path (see dev->features)
2575 *
2576 * This function performs segmentation on the given skb. It returns
2577 * a pointer to the first in a list of new skbs for the segments.
2578 * In case of error it returns ERR_PTR(err).
2579 */
2580 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2581 {
2582 struct sk_buff *segs = NULL;
2583 struct sk_buff *tail = NULL;
2584 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2585 unsigned int mss = skb_shinfo(skb)->gso_size;
2586 unsigned int doffset = skb->data - skb_mac_header(skb);
2587 unsigned int offset = doffset;
2588 unsigned int headroom;
2589 unsigned int len;
2590 int sg = !!(features & NETIF_F_SG);
2591 int nfrags = skb_shinfo(skb)->nr_frags;
2592 int err = -ENOMEM;
2593 int i = 0;
2594 int pos;
2595
2596 __skb_push(skb, doffset);
2597 headroom = skb_headroom(skb);
2598 pos = skb_headlen(skb);
2599
2600 do {
2601 struct sk_buff *nskb;
2602 skb_frag_t *frag;
2603 int hsize;
2604 int size;
2605
2606 len = skb->len - offset;
2607 if (len > mss)
2608 len = mss;
2609
2610 hsize = skb_headlen(skb) - offset;
2611 if (hsize < 0)
2612 hsize = 0;
2613 if (hsize > len || !sg)
2614 hsize = len;
2615
2616 if (!hsize && i >= nfrags) {
2617 BUG_ON(fskb->len != len);
2618
2619 pos += len;
2620 nskb = skb_clone(fskb, GFP_ATOMIC);
2621 fskb = fskb->next;
2622
2623 if (unlikely(!nskb))
2624 goto err;
2625
2626 hsize = skb_end_pointer(nskb) - nskb->head;
2627 if (skb_cow_head(nskb, doffset + headroom)) {
2628 kfree_skb(nskb);
2629 goto err;
2630 }
2631
2632 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2633 hsize;
2634 skb_release_head_state(nskb);
2635 __skb_push(nskb, doffset);
2636 } else {
2637 nskb = alloc_skb(hsize + doffset + headroom,
2638 GFP_ATOMIC);
2639
2640 if (unlikely(!nskb))
2641 goto err;
2642
2643 skb_reserve(nskb, headroom);
2644 __skb_put(nskb, doffset);
2645 }
2646
2647 if (segs)
2648 tail->next = nskb;
2649 else
2650 segs = nskb;
2651 tail = nskb;
2652
2653 __copy_skb_header(nskb, skb);
2654 nskb->mac_len = skb->mac_len;
2655
2656 /* nskb and skb might have different headroom */
2657 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2658 nskb->csum_start += skb_headroom(nskb) - headroom;
2659
2660 skb_reset_mac_header(nskb);
2661 skb_set_network_header(nskb, skb->mac_len);
2662 nskb->transport_header = (nskb->network_header +
2663 skb_network_header_len(skb));
2664 skb_copy_from_linear_data(skb, nskb->data, doffset);
2665
2666 if (fskb != skb_shinfo(skb)->frag_list)
2667 continue;
2668
2669 if (!sg) {
2670 nskb->ip_summed = CHECKSUM_NONE;
2671 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2672 skb_put(nskb, len),
2673 len, 0);
2674 continue;
2675 }
2676
2677 frag = skb_shinfo(nskb)->frags;
2678
2679 skb_copy_from_linear_data_offset(skb, offset,
2680 skb_put(nskb, hsize), hsize);
2681
2682 while (pos < offset + len && i < nfrags) {
2683 *frag = skb_shinfo(skb)->frags[i];
2684 get_page(frag->page);
2685 size = frag->size;
2686
2687 if (pos < offset) {
2688 frag->page_offset += offset - pos;
2689 frag->size -= offset - pos;
2690 }
2691
2692 skb_shinfo(nskb)->nr_frags++;
2693
2694 if (pos + size <= offset + len) {
2695 i++;
2696 pos += size;
2697 } else {
2698 frag->size -= pos + size - (offset + len);
2699 goto skip_fraglist;
2700 }
2701
2702 frag++;
2703 }
2704
2705 if (pos < offset + len) {
2706 struct sk_buff *fskb2 = fskb;
2707
2708 BUG_ON(pos + fskb->len != offset + len);
2709
2710 pos += fskb->len;
2711 fskb = fskb->next;
2712
2713 if (fskb2->next) {
2714 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2715 if (!fskb2)
2716 goto err;
2717 } else
2718 skb_get(fskb2);
2719
2720 SKB_FRAG_ASSERT(nskb);
2721 skb_shinfo(nskb)->frag_list = fskb2;
2722 }
2723
2724 skip_fraglist:
2725 nskb->data_len = len - hsize;
2726 nskb->len += nskb->data_len;
2727 nskb->truesize += nskb->data_len;
2728 } while ((offset += len) < skb->len);
2729
2730 return segs;
2731
2732 err:
2733 while ((skb = segs)) {
2734 segs = skb->next;
2735 kfree_skb(skb);
2736 }
2737 return ERR_PTR(err);
2738 }
2739 EXPORT_SYMBOL_GPL(skb_segment);
2740
2741 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2742 {
2743 struct sk_buff *p = *head;
2744 struct sk_buff *nskb;
2745 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2746 struct skb_shared_info *pinfo = skb_shinfo(p);
2747 unsigned int headroom;
2748 unsigned int len = skb_gro_len(skb);
2749 unsigned int offset = skb_gro_offset(skb);
2750 unsigned int headlen = skb_headlen(skb);
2751
2752 if (p->len + len >= 65536)
2753 return -E2BIG;
2754
2755 if (pinfo->frag_list)
2756 goto merge;
2757 else if (headlen <= offset) {
2758 skb_frag_t *frag;
2759 skb_frag_t *frag2;
2760 int i = skbinfo->nr_frags;
2761 int nr_frags = pinfo->nr_frags + i;
2762
2763 offset -= headlen;
2764
2765 if (nr_frags > MAX_SKB_FRAGS)
2766 return -E2BIG;
2767
2768 pinfo->nr_frags = nr_frags;
2769 skbinfo->nr_frags = 0;
2770
2771 frag = pinfo->frags + nr_frags;
2772 frag2 = skbinfo->frags + i;
2773 do {
2774 *--frag = *--frag2;
2775 } while (--i);
2776
2777 frag->page_offset += offset;
2778 frag->size -= offset;
2779
2780 skb->truesize -= skb->data_len;
2781 skb->len -= skb->data_len;
2782 skb->data_len = 0;
2783
2784 NAPI_GRO_CB(skb)->free = 1;
2785 goto done;
2786 } else if (skb_gro_len(p) != pinfo->gso_size)
2787 return -E2BIG;
2788
2789 headroom = skb_headroom(p);
2790 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2791 if (unlikely(!nskb))
2792 return -ENOMEM;
2793
2794 __copy_skb_header(nskb, p);
2795 nskb->mac_len = p->mac_len;
2796
2797 skb_reserve(nskb, headroom);
2798 __skb_put(nskb, skb_gro_offset(p));
2799
2800 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2801 skb_set_network_header(nskb, skb_network_offset(p));
2802 skb_set_transport_header(nskb, skb_transport_offset(p));
2803
2804 __skb_pull(p, skb_gro_offset(p));
2805 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2806 p->data - skb_mac_header(p));
2807
2808 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2809 skb_shinfo(nskb)->frag_list = p;
2810 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2811 pinfo->gso_size = 0;
2812 skb_header_release(p);
2813 nskb->prev = p;
2814
2815 nskb->data_len += p->len;
2816 nskb->truesize += p->len;
2817 nskb->len += p->len;
2818
2819 *head = nskb;
2820 nskb->next = p->next;
2821 p->next = NULL;
2822
2823 p = nskb;
2824
2825 merge:
2826 if (offset > headlen) {
2827 unsigned int eat = offset - headlen;
2828
2829 skbinfo->frags[0].page_offset += eat;
2830 skbinfo->frags[0].size -= eat;
2831 skb->data_len -= eat;
2832 skb->len -= eat;
2833 offset = headlen;
2834 }
2835
2836 __skb_pull(skb, offset);
2837
2838 p->prev->next = skb;
2839 p->prev = skb;
2840 skb_header_release(skb);
2841
2842 done:
2843 NAPI_GRO_CB(p)->count++;
2844 p->data_len += len;
2845 p->truesize += len;
2846 p->len += len;
2847
2848 NAPI_GRO_CB(skb)->same_flow = 1;
2849 return 0;
2850 }
2851 EXPORT_SYMBOL_GPL(skb_gro_receive);
2852
2853 void __init skb_init(void)
2854 {
2855 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2856 sizeof(struct sk_buff),
2857 0,
2858 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2859 NULL);
2860 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2861 (2*sizeof(struct sk_buff)) +
2862 sizeof(atomic_t),
2863 0,
2864 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2865 NULL);
2866 }
2867
2868 /**
2869 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2870 * @skb: Socket buffer containing the buffers to be mapped
2871 * @sg: The scatter-gather list to map into
2872 * @offset: The offset into the buffer's contents to start mapping
2873 * @len: Length of buffer space to be mapped
2874 *
2875 * Fill the specified scatter-gather list with mappings/pointers into a
2876 * region of the buffer space attached to a socket buffer.
2877 */
2878 static int
2879 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2880 {
2881 int start = skb_headlen(skb);
2882 int i, copy = start - offset;
2883 struct sk_buff *frag_iter;
2884 int elt = 0;
2885
2886 if (copy > 0) {
2887 if (copy > len)
2888 copy = len;
2889 sg_set_buf(sg, skb->data + offset, copy);
2890 elt++;
2891 if ((len -= copy) == 0)
2892 return elt;
2893 offset += copy;
2894 }
2895
2896 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2897 int end;
2898
2899 WARN_ON(start > offset + len);
2900
2901 end = start + skb_shinfo(skb)->frags[i].size;
2902 if ((copy = end - offset) > 0) {
2903 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2904
2905 if (copy > len)
2906 copy = len;
2907 sg_set_page(&sg[elt], frag->page, copy,
2908 frag->page_offset+offset-start);
2909 elt++;
2910 if (!(len -= copy))
2911 return elt;
2912 offset += copy;
2913 }
2914 start = end;
2915 }
2916
2917 skb_walk_frags(skb, frag_iter) {
2918 int end;
2919
2920 WARN_ON(start > offset + len);
2921
2922 end = start + frag_iter->len;
2923 if ((copy = end - offset) > 0) {
2924 if (copy > len)
2925 copy = len;
2926 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2927 copy);
2928 if ((len -= copy) == 0)
2929 return elt;
2930 offset += copy;
2931 }
2932 start = end;
2933 }
2934 BUG_ON(len);
2935 return elt;
2936 }
2937
2938 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2939 {
2940 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2941
2942 sg_mark_end(&sg[nsg - 1]);
2943
2944 return nsg;
2945 }
2946 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2947
2948 /**
2949 * skb_cow_data - Check that a socket buffer's data buffers are writable
2950 * @skb: The socket buffer to check.
2951 * @tailbits: Amount of trailing space to be added
2952 * @trailer: Returned pointer to the skb where the @tailbits space begins
2953 *
2954 * Make sure that the data buffers attached to a socket buffer are
2955 * writable. If they are not, private copies are made of the data buffers
2956 * and the socket buffer is set to use these instead.
2957 *
2958 * If @tailbits is given, make sure that there is space to write @tailbits
2959 * bytes of data beyond current end of socket buffer. @trailer will be
2960 * set to point to the skb in which this space begins.
2961 *
2962 * The number of scatterlist elements required to completely map the
2963 * COW'd and extended socket buffer will be returned.
2964 */
2965 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2966 {
2967 int copyflag;
2968 int elt;
2969 struct sk_buff *skb1, **skb_p;
2970
2971 /* If skb is cloned or its head is paged, reallocate
2972 * head pulling out all the pages (pages are considered not writable
2973 * at the moment even if they are anonymous).
2974 */
2975 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2976 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2977 return -ENOMEM;
2978
2979 /* Easy case. Most of packets will go this way. */
2980 if (!skb_has_frag_list(skb)) {
2981 /* A little of trouble, not enough of space for trailer.
2982 * This should not happen, when stack is tuned to generate
2983 * good frames. OK, on miss we reallocate and reserve even more
2984 * space, 128 bytes is fair. */
2985
2986 if (skb_tailroom(skb) < tailbits &&
2987 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2988 return -ENOMEM;
2989
2990 /* Voila! */
2991 *trailer = skb;
2992 return 1;
2993 }
2994
2995 /* Misery. We are in troubles, going to mincer fragments... */
2996
2997 elt = 1;
2998 skb_p = &skb_shinfo(skb)->frag_list;
2999 copyflag = 0;
3000
3001 while ((skb1 = *skb_p) != NULL) {
3002 int ntail = 0;
3003
3004 /* The fragment is partially pulled by someone,
3005 * this can happen on input. Copy it and everything
3006 * after it. */
3007
3008 if (skb_shared(skb1))
3009 copyflag = 1;
3010
3011 /* If the skb is the last, worry about trailer. */
3012
3013 if (skb1->next == NULL && tailbits) {
3014 if (skb_shinfo(skb1)->nr_frags ||
3015 skb_has_frag_list(skb1) ||
3016 skb_tailroom(skb1) < tailbits)
3017 ntail = tailbits + 128;
3018 }
3019
3020 if (copyflag ||
3021 skb_cloned(skb1) ||
3022 ntail ||
3023 skb_shinfo(skb1)->nr_frags ||
3024 skb_has_frag_list(skb1)) {
3025 struct sk_buff *skb2;
3026
3027 /* Fuck, we are miserable poor guys... */
3028 if (ntail == 0)
3029 skb2 = skb_copy(skb1, GFP_ATOMIC);
3030 else
3031 skb2 = skb_copy_expand(skb1,
3032 skb_headroom(skb1),
3033 ntail,
3034 GFP_ATOMIC);
3035 if (unlikely(skb2 == NULL))
3036 return -ENOMEM;
3037
3038 if (skb1->sk)
3039 skb_set_owner_w(skb2, skb1->sk);
3040
3041 /* Looking around. Are we still alive?
3042 * OK, link new skb, drop old one */
3043
3044 skb2->next = skb1->next;
3045 *skb_p = skb2;
3046 kfree_skb(skb1);
3047 skb1 = skb2;
3048 }
3049 elt++;
3050 *trailer = skb1;
3051 skb_p = &skb1->next;
3052 }
3053
3054 return elt;
3055 }
3056 EXPORT_SYMBOL_GPL(skb_cow_data);
3057
3058 static void sock_rmem_free(struct sk_buff *skb)
3059 {
3060 struct sock *sk = skb->sk;
3061
3062 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3063 }
3064
3065 /*
3066 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3067 */
3068 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3069 {
3070 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3071 (unsigned)sk->sk_rcvbuf)
3072 return -ENOMEM;
3073
3074 skb_orphan(skb);
3075 skb->sk = sk;
3076 skb->destructor = sock_rmem_free;
3077 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3078
3079 /* before exiting rcu section, make sure dst is refcounted */
3080 skb_dst_force(skb);
3081
3082 skb_queue_tail(&sk->sk_error_queue, skb);
3083 if (!sock_flag(sk, SOCK_DEAD))
3084 sk->sk_data_ready(sk, skb->len);
3085 return 0;
3086 }
3087 EXPORT_SYMBOL(sock_queue_err_skb);
3088
3089 void skb_tstamp_tx(struct sk_buff *orig_skb,
3090 struct skb_shared_hwtstamps *hwtstamps)
3091 {
3092 struct sock *sk = orig_skb->sk;
3093 struct sock_exterr_skb *serr;
3094 struct sk_buff *skb;
3095 int err;
3096
3097 if (!sk)
3098 return;
3099
3100 skb = skb_clone(orig_skb, GFP_ATOMIC);
3101 if (!skb)
3102 return;
3103
3104 if (hwtstamps) {
3105 *skb_hwtstamps(skb) =
3106 *hwtstamps;
3107 } else {
3108 /*
3109 * no hardware time stamps available,
3110 * so keep the shared tx_flags and only
3111 * store software time stamp
3112 */
3113 skb->tstamp = ktime_get_real();
3114 }
3115
3116 serr = SKB_EXT_ERR(skb);
3117 memset(serr, 0, sizeof(*serr));
3118 serr->ee.ee_errno = ENOMSG;
3119 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3120
3121 err = sock_queue_err_skb(sk, skb);
3122
3123 if (err)
3124 kfree_skb(skb);
3125 }
3126 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3127
3128
3129 /**
3130 * skb_partial_csum_set - set up and verify partial csum values for packet
3131 * @skb: the skb to set
3132 * @start: the number of bytes after skb->data to start checksumming.
3133 * @off: the offset from start to place the checksum.
3134 *
3135 * For untrusted partially-checksummed packets, we need to make sure the values
3136 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3137 *
3138 * This function checks and sets those values and skb->ip_summed: if this
3139 * returns false you should drop the packet.
3140 */
3141 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3142 {
3143 if (unlikely(start > skb_headlen(skb)) ||
3144 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3145 if (net_ratelimit())
3146 printk(KERN_WARNING
3147 "bad partial csum: csum=%u/%u len=%u\n",
3148 start, off, skb_headlen(skb));
3149 return false;
3150 }
3151 skb->ip_summed = CHECKSUM_PARTIAL;
3152 skb->csum_start = skb_headroom(skb) + start;
3153 skb->csum_offset = off;
3154 return true;
3155 }
3156 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3157
3158 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3159 {
3160 if (net_ratelimit())
3161 pr_warning("%s: received packets cannot be forwarded"
3162 " while LRO is enabled\n", skb->dev->name);
3163 }
3164 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.096297 seconds and 6 git commands to generate.