Merge master.kernel.org:/pub/scm/linux/kernel/git/willy/parisc-2.6
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8 *
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
24 *
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
35 */
36
37 /*
38 * The functions in this file will not compile correctly with gcc 2.4.x
39 */
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/highmem.h>
60
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69
70 static kmem_cache_t *skbuff_head_cache __read_mostly;
71 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
72
73 /*
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
76 * reliable.
77 */
78
79 /**
80 * skb_over_panic - private function
81 * @skb: buffer
82 * @sz: size
83 * @here: address
84 *
85 * Out of line support code for skb_put(). Not user callable.
86 */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
93 BUG();
94 }
95
96 /**
97 * skb_under_panic - private function
98 * @skb: buffer
99 * @sz: size
100 * @here: address
101 *
102 * Out of line support code for skb_push(). Not user callable.
103 */
104
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
111 BUG();
112 }
113
114 void skb_truesize_bug(struct sk_buff *skb)
115 {
116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb->truesize, skb->len, sizeof(struct sk_buff));
119 }
120 EXPORT_SYMBOL(skb_truesize_bug);
121
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
124 * [BEEP] leaks.
125 *
126 */
127
128 /**
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
134 *
135 * Allocate a new &sk_buff. The returned buffer has no headroom and a
136 * tail room of size bytes. The object has a reference count of one.
137 * The return is the buffer. On a failure the return is %NULL.
138 *
139 * Buffers may only be allocated from interrupts using a @gfp_mask of
140 * %GFP_ATOMIC.
141 */
142 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
143 int fclone)
144 {
145 kmem_cache_t *cache;
146 struct skb_shared_info *shinfo;
147 struct sk_buff *skb;
148 u8 *data;
149
150 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
151
152 /* Get the HEAD */
153 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
154 if (!skb)
155 goto out;
156
157 /* Get the DATA. Size must match skb_add_mtu(). */
158 size = SKB_DATA_ALIGN(size);
159 data = kmalloc_track_caller(size + sizeof(struct skb_shared_info),
160 gfp_mask);
161 if (!data)
162 goto nodata;
163
164 memset(skb, 0, offsetof(struct sk_buff, truesize));
165 skb->truesize = size + sizeof(struct sk_buff);
166 atomic_set(&skb->users, 1);
167 skb->head = data;
168 skb->data = data;
169 skb->tail = data;
170 skb->end = data + size;
171 /* make sure we initialize shinfo sequentially */
172 shinfo = skb_shinfo(skb);
173 atomic_set(&shinfo->dataref, 1);
174 shinfo->nr_frags = 0;
175 shinfo->gso_size = 0;
176 shinfo->gso_segs = 0;
177 shinfo->gso_type = 0;
178 shinfo->ip6_frag_id = 0;
179 shinfo->frag_list = NULL;
180
181 if (fclone) {
182 struct sk_buff *child = skb + 1;
183 atomic_t *fclone_ref = (atomic_t *) (child + 1);
184
185 skb->fclone = SKB_FCLONE_ORIG;
186 atomic_set(fclone_ref, 1);
187
188 child->fclone = SKB_FCLONE_UNAVAILABLE;
189 }
190 out:
191 return skb;
192 nodata:
193 kmem_cache_free(cache, skb);
194 skb = NULL;
195 goto out;
196 }
197
198 /**
199 * alloc_skb_from_cache - allocate a network buffer
200 * @cp: kmem_cache from which to allocate the data area
201 * (object size must be big enough for @size bytes + skb overheads)
202 * @size: size to allocate
203 * @gfp_mask: allocation mask
204 *
205 * Allocate a new &sk_buff. The returned buffer has no headroom and
206 * tail room of size bytes. The object has a reference count of one.
207 * The return is the buffer. On a failure the return is %NULL.
208 *
209 * Buffers may only be allocated from interrupts using a @gfp_mask of
210 * %GFP_ATOMIC.
211 */
212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
213 unsigned int size,
214 gfp_t gfp_mask)
215 {
216 struct sk_buff *skb;
217 u8 *data;
218
219 /* Get the HEAD */
220 skb = kmem_cache_alloc(skbuff_head_cache,
221 gfp_mask & ~__GFP_DMA);
222 if (!skb)
223 goto out;
224
225 /* Get the DATA. */
226 size = SKB_DATA_ALIGN(size);
227 data = kmem_cache_alloc(cp, gfp_mask);
228 if (!data)
229 goto nodata;
230
231 memset(skb, 0, offsetof(struct sk_buff, truesize));
232 skb->truesize = size + sizeof(struct sk_buff);
233 atomic_set(&skb->users, 1);
234 skb->head = data;
235 skb->data = data;
236 skb->tail = data;
237 skb->end = data + size;
238
239 atomic_set(&(skb_shinfo(skb)->dataref), 1);
240 skb_shinfo(skb)->nr_frags = 0;
241 skb_shinfo(skb)->gso_size = 0;
242 skb_shinfo(skb)->gso_segs = 0;
243 skb_shinfo(skb)->gso_type = 0;
244 skb_shinfo(skb)->frag_list = NULL;
245 out:
246 return skb;
247 nodata:
248 kmem_cache_free(skbuff_head_cache, skb);
249 skb = NULL;
250 goto out;
251 }
252
253 /**
254 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
255 * @dev: network device to receive on
256 * @length: length to allocate
257 * @gfp_mask: get_free_pages mask, passed to alloc_skb
258 *
259 * Allocate a new &sk_buff and assign it a usage count of one. The
260 * buffer has unspecified headroom built in. Users should allocate
261 * the headroom they think they need without accounting for the
262 * built in space. The built in space is used for optimisations.
263 *
264 * %NULL is returned if there is no free memory.
265 */
266 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
267 unsigned int length, gfp_t gfp_mask)
268 {
269 struct sk_buff *skb;
270
271 skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
272 if (likely(skb)) {
273 skb_reserve(skb, NET_SKB_PAD);
274 skb->dev = dev;
275 }
276 return skb;
277 }
278
279 static void skb_drop_list(struct sk_buff **listp)
280 {
281 struct sk_buff *list = *listp;
282
283 *listp = NULL;
284
285 do {
286 struct sk_buff *this = list;
287 list = list->next;
288 kfree_skb(this);
289 } while (list);
290 }
291
292 static inline void skb_drop_fraglist(struct sk_buff *skb)
293 {
294 skb_drop_list(&skb_shinfo(skb)->frag_list);
295 }
296
297 static void skb_clone_fraglist(struct sk_buff *skb)
298 {
299 struct sk_buff *list;
300
301 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
302 skb_get(list);
303 }
304
305 static void skb_release_data(struct sk_buff *skb)
306 {
307 if (!skb->cloned ||
308 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
309 &skb_shinfo(skb)->dataref)) {
310 if (skb_shinfo(skb)->nr_frags) {
311 int i;
312 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
313 put_page(skb_shinfo(skb)->frags[i].page);
314 }
315
316 if (skb_shinfo(skb)->frag_list)
317 skb_drop_fraglist(skb);
318
319 kfree(skb->head);
320 }
321 }
322
323 /*
324 * Free an skbuff by memory without cleaning the state.
325 */
326 void kfree_skbmem(struct sk_buff *skb)
327 {
328 struct sk_buff *other;
329 atomic_t *fclone_ref;
330
331 skb_release_data(skb);
332 switch (skb->fclone) {
333 case SKB_FCLONE_UNAVAILABLE:
334 kmem_cache_free(skbuff_head_cache, skb);
335 break;
336
337 case SKB_FCLONE_ORIG:
338 fclone_ref = (atomic_t *) (skb + 2);
339 if (atomic_dec_and_test(fclone_ref))
340 kmem_cache_free(skbuff_fclone_cache, skb);
341 break;
342
343 case SKB_FCLONE_CLONE:
344 fclone_ref = (atomic_t *) (skb + 1);
345 other = skb - 1;
346
347 /* The clone portion is available for
348 * fast-cloning again.
349 */
350 skb->fclone = SKB_FCLONE_UNAVAILABLE;
351
352 if (atomic_dec_and_test(fclone_ref))
353 kmem_cache_free(skbuff_fclone_cache, other);
354 break;
355 };
356 }
357
358 /**
359 * __kfree_skb - private function
360 * @skb: buffer
361 *
362 * Free an sk_buff. Release anything attached to the buffer.
363 * Clean the state. This is an internal helper function. Users should
364 * always call kfree_skb
365 */
366
367 void __kfree_skb(struct sk_buff *skb)
368 {
369 dst_release(skb->dst);
370 #ifdef CONFIG_XFRM
371 secpath_put(skb->sp);
372 #endif
373 if (skb->destructor) {
374 WARN_ON(in_irq());
375 skb->destructor(skb);
376 }
377 #ifdef CONFIG_NETFILTER
378 nf_conntrack_put(skb->nfct);
379 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
380 nf_conntrack_put_reasm(skb->nfct_reasm);
381 #endif
382 #ifdef CONFIG_BRIDGE_NETFILTER
383 nf_bridge_put(skb->nf_bridge);
384 #endif
385 #endif
386 /* XXX: IS this still necessary? - JHS */
387 #ifdef CONFIG_NET_SCHED
388 skb->tc_index = 0;
389 #ifdef CONFIG_NET_CLS_ACT
390 skb->tc_verd = 0;
391 #endif
392 #endif
393
394 kfree_skbmem(skb);
395 }
396
397 /**
398 * kfree_skb - free an sk_buff
399 * @skb: buffer to free
400 *
401 * Drop a reference to the buffer and free it if the usage count has
402 * hit zero.
403 */
404 void kfree_skb(struct sk_buff *skb)
405 {
406 if (unlikely(!skb))
407 return;
408 if (likely(atomic_read(&skb->users) == 1))
409 smp_rmb();
410 else if (likely(!atomic_dec_and_test(&skb->users)))
411 return;
412 __kfree_skb(skb);
413 }
414
415 /**
416 * skb_clone - duplicate an sk_buff
417 * @skb: buffer to clone
418 * @gfp_mask: allocation priority
419 *
420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
421 * copies share the same packet data but not structure. The new
422 * buffer has a reference count of 1. If the allocation fails the
423 * function returns %NULL otherwise the new buffer is returned.
424 *
425 * If this function is called from an interrupt gfp_mask() must be
426 * %GFP_ATOMIC.
427 */
428
429 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
430 {
431 struct sk_buff *n;
432
433 n = skb + 1;
434 if (skb->fclone == SKB_FCLONE_ORIG &&
435 n->fclone == SKB_FCLONE_UNAVAILABLE) {
436 atomic_t *fclone_ref = (atomic_t *) (n + 1);
437 n->fclone = SKB_FCLONE_CLONE;
438 atomic_inc(fclone_ref);
439 } else {
440 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
441 if (!n)
442 return NULL;
443 n->fclone = SKB_FCLONE_UNAVAILABLE;
444 }
445
446 #define C(x) n->x = skb->x
447
448 n->next = n->prev = NULL;
449 n->sk = NULL;
450 C(tstamp);
451 C(dev);
452 C(h);
453 C(nh);
454 C(mac);
455 C(dst);
456 dst_clone(skb->dst);
457 C(sp);
458 #ifdef CONFIG_INET
459 secpath_get(skb->sp);
460 #endif
461 memcpy(n->cb, skb->cb, sizeof(skb->cb));
462 C(len);
463 C(data_len);
464 C(csum);
465 C(local_df);
466 n->cloned = 1;
467 n->nohdr = 0;
468 C(pkt_type);
469 C(ip_summed);
470 C(priority);
471 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
472 C(ipvs_property);
473 #endif
474 C(protocol);
475 n->destructor = NULL;
476 #ifdef CONFIG_NETFILTER
477 C(nfmark);
478 C(nfct);
479 nf_conntrack_get(skb->nfct);
480 C(nfctinfo);
481 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
482 C(nfct_reasm);
483 nf_conntrack_get_reasm(skb->nfct_reasm);
484 #endif
485 #ifdef CONFIG_BRIDGE_NETFILTER
486 C(nf_bridge);
487 nf_bridge_get(skb->nf_bridge);
488 #endif
489 #endif /*CONFIG_NETFILTER*/
490 #ifdef CONFIG_NET_SCHED
491 C(tc_index);
492 #ifdef CONFIG_NET_CLS_ACT
493 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
494 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
495 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
496 C(input_dev);
497 #endif
498 skb_copy_secmark(n, skb);
499 #endif
500 C(truesize);
501 atomic_set(&n->users, 1);
502 C(head);
503 C(data);
504 C(tail);
505 C(end);
506
507 atomic_inc(&(skb_shinfo(skb)->dataref));
508 skb->cloned = 1;
509
510 return n;
511 }
512
513 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
514 {
515 /*
516 * Shift between the two data areas in bytes
517 */
518 unsigned long offset = new->data - old->data;
519
520 new->sk = NULL;
521 new->dev = old->dev;
522 new->priority = old->priority;
523 new->protocol = old->protocol;
524 new->dst = dst_clone(old->dst);
525 #ifdef CONFIG_INET
526 new->sp = secpath_get(old->sp);
527 #endif
528 new->h.raw = old->h.raw + offset;
529 new->nh.raw = old->nh.raw + offset;
530 new->mac.raw = old->mac.raw + offset;
531 memcpy(new->cb, old->cb, sizeof(old->cb));
532 new->local_df = old->local_df;
533 new->fclone = SKB_FCLONE_UNAVAILABLE;
534 new->pkt_type = old->pkt_type;
535 new->tstamp = old->tstamp;
536 new->destructor = NULL;
537 #ifdef CONFIG_NETFILTER
538 new->nfmark = old->nfmark;
539 new->nfct = old->nfct;
540 nf_conntrack_get(old->nfct);
541 new->nfctinfo = old->nfctinfo;
542 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
543 new->nfct_reasm = old->nfct_reasm;
544 nf_conntrack_get_reasm(old->nfct_reasm);
545 #endif
546 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
547 new->ipvs_property = old->ipvs_property;
548 #endif
549 #ifdef CONFIG_BRIDGE_NETFILTER
550 new->nf_bridge = old->nf_bridge;
551 nf_bridge_get(old->nf_bridge);
552 #endif
553 #endif
554 #ifdef CONFIG_NET_SCHED
555 #ifdef CONFIG_NET_CLS_ACT
556 new->tc_verd = old->tc_verd;
557 #endif
558 new->tc_index = old->tc_index;
559 #endif
560 skb_copy_secmark(new, old);
561 atomic_set(&new->users, 1);
562 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
563 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
564 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
565 }
566
567 /**
568 * skb_copy - create private copy of an sk_buff
569 * @skb: buffer to copy
570 * @gfp_mask: allocation priority
571 *
572 * Make a copy of both an &sk_buff and its data. This is used when the
573 * caller wishes to modify the data and needs a private copy of the
574 * data to alter. Returns %NULL on failure or the pointer to the buffer
575 * on success. The returned buffer has a reference count of 1.
576 *
577 * As by-product this function converts non-linear &sk_buff to linear
578 * one, so that &sk_buff becomes completely private and caller is allowed
579 * to modify all the data of returned buffer. This means that this
580 * function is not recommended for use in circumstances when only
581 * header is going to be modified. Use pskb_copy() instead.
582 */
583
584 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
585 {
586 int headerlen = skb->data - skb->head;
587 /*
588 * Allocate the copy buffer
589 */
590 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
591 gfp_mask);
592 if (!n)
593 return NULL;
594
595 /* Set the data pointer */
596 skb_reserve(n, headerlen);
597 /* Set the tail pointer and length */
598 skb_put(n, skb->len);
599 n->csum = skb->csum;
600 n->ip_summed = skb->ip_summed;
601
602 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
603 BUG();
604
605 copy_skb_header(n, skb);
606 return n;
607 }
608
609
610 /**
611 * pskb_copy - create copy of an sk_buff with private head.
612 * @skb: buffer to copy
613 * @gfp_mask: allocation priority
614 *
615 * Make a copy of both an &sk_buff and part of its data, located
616 * in header. Fragmented data remain shared. This is used when
617 * the caller wishes to modify only header of &sk_buff and needs
618 * private copy of the header to alter. Returns %NULL on failure
619 * or the pointer to the buffer on success.
620 * The returned buffer has a reference count of 1.
621 */
622
623 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
624 {
625 /*
626 * Allocate the copy buffer
627 */
628 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
629
630 if (!n)
631 goto out;
632
633 /* Set the data pointer */
634 skb_reserve(n, skb->data - skb->head);
635 /* Set the tail pointer and length */
636 skb_put(n, skb_headlen(skb));
637 /* Copy the bytes */
638 memcpy(n->data, skb->data, n->len);
639 n->csum = skb->csum;
640 n->ip_summed = skb->ip_summed;
641
642 n->data_len = skb->data_len;
643 n->len = skb->len;
644
645 if (skb_shinfo(skb)->nr_frags) {
646 int i;
647
648 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
649 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
650 get_page(skb_shinfo(n)->frags[i].page);
651 }
652 skb_shinfo(n)->nr_frags = i;
653 }
654
655 if (skb_shinfo(skb)->frag_list) {
656 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
657 skb_clone_fraglist(n);
658 }
659
660 copy_skb_header(n, skb);
661 out:
662 return n;
663 }
664
665 /**
666 * pskb_expand_head - reallocate header of &sk_buff
667 * @skb: buffer to reallocate
668 * @nhead: room to add at head
669 * @ntail: room to add at tail
670 * @gfp_mask: allocation priority
671 *
672 * Expands (or creates identical copy, if &nhead and &ntail are zero)
673 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
674 * reference count of 1. Returns zero in the case of success or error,
675 * if expansion failed. In the last case, &sk_buff is not changed.
676 *
677 * All the pointers pointing into skb header may change and must be
678 * reloaded after call to this function.
679 */
680
681 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
682 gfp_t gfp_mask)
683 {
684 int i;
685 u8 *data;
686 int size = nhead + (skb->end - skb->head) + ntail;
687 long off;
688
689 if (skb_shared(skb))
690 BUG();
691
692 size = SKB_DATA_ALIGN(size);
693
694 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
695 if (!data)
696 goto nodata;
697
698 /* Copy only real data... and, alas, header. This should be
699 * optimized for the cases when header is void. */
700 memcpy(data + nhead, skb->head, skb->tail - skb->head);
701 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
702
703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
704 get_page(skb_shinfo(skb)->frags[i].page);
705
706 if (skb_shinfo(skb)->frag_list)
707 skb_clone_fraglist(skb);
708
709 skb_release_data(skb);
710
711 off = (data + nhead) - skb->head;
712
713 skb->head = data;
714 skb->end = data + size;
715 skb->data += off;
716 skb->tail += off;
717 skb->mac.raw += off;
718 skb->h.raw += off;
719 skb->nh.raw += off;
720 skb->cloned = 0;
721 skb->nohdr = 0;
722 atomic_set(&skb_shinfo(skb)->dataref, 1);
723 return 0;
724
725 nodata:
726 return -ENOMEM;
727 }
728
729 /* Make private copy of skb with writable head and some headroom */
730
731 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
732 {
733 struct sk_buff *skb2;
734 int delta = headroom - skb_headroom(skb);
735
736 if (delta <= 0)
737 skb2 = pskb_copy(skb, GFP_ATOMIC);
738 else {
739 skb2 = skb_clone(skb, GFP_ATOMIC);
740 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
741 GFP_ATOMIC)) {
742 kfree_skb(skb2);
743 skb2 = NULL;
744 }
745 }
746 return skb2;
747 }
748
749
750 /**
751 * skb_copy_expand - copy and expand sk_buff
752 * @skb: buffer to copy
753 * @newheadroom: new free bytes at head
754 * @newtailroom: new free bytes at tail
755 * @gfp_mask: allocation priority
756 *
757 * Make a copy of both an &sk_buff and its data and while doing so
758 * allocate additional space.
759 *
760 * This is used when the caller wishes to modify the data and needs a
761 * private copy of the data to alter as well as more space for new fields.
762 * Returns %NULL on failure or the pointer to the buffer
763 * on success. The returned buffer has a reference count of 1.
764 *
765 * You must pass %GFP_ATOMIC as the allocation priority if this function
766 * is called from an interrupt.
767 *
768 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
769 * only by netfilter in the cases when checksum is recalculated? --ANK
770 */
771 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
772 int newheadroom, int newtailroom,
773 gfp_t gfp_mask)
774 {
775 /*
776 * Allocate the copy buffer
777 */
778 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
779 gfp_mask);
780 int head_copy_len, head_copy_off;
781
782 if (!n)
783 return NULL;
784
785 skb_reserve(n, newheadroom);
786
787 /* Set the tail pointer and length */
788 skb_put(n, skb->len);
789
790 head_copy_len = skb_headroom(skb);
791 head_copy_off = 0;
792 if (newheadroom <= head_copy_len)
793 head_copy_len = newheadroom;
794 else
795 head_copy_off = newheadroom - head_copy_len;
796
797 /* Copy the linear header and data. */
798 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
799 skb->len + head_copy_len))
800 BUG();
801
802 copy_skb_header(n, skb);
803
804 return n;
805 }
806
807 /**
808 * skb_pad - zero pad the tail of an skb
809 * @skb: buffer to pad
810 * @pad: space to pad
811 *
812 * Ensure that a buffer is followed by a padding area that is zero
813 * filled. Used by network drivers which may DMA or transfer data
814 * beyond the buffer end onto the wire.
815 *
816 * May return error in out of memory cases. The skb is freed on error.
817 */
818
819 int skb_pad(struct sk_buff *skb, int pad)
820 {
821 int err;
822 int ntail;
823
824 /* If the skbuff is non linear tailroom is always zero.. */
825 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
826 memset(skb->data+skb->len, 0, pad);
827 return 0;
828 }
829
830 ntail = skb->data_len + pad - (skb->end - skb->tail);
831 if (likely(skb_cloned(skb) || ntail > 0)) {
832 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
833 if (unlikely(err))
834 goto free_skb;
835 }
836
837 /* FIXME: The use of this function with non-linear skb's really needs
838 * to be audited.
839 */
840 err = skb_linearize(skb);
841 if (unlikely(err))
842 goto free_skb;
843
844 memset(skb->data + skb->len, 0, pad);
845 return 0;
846
847 free_skb:
848 kfree_skb(skb);
849 return err;
850 }
851
852 /* Trims skb to length len. It can change skb pointers.
853 */
854
855 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
856 {
857 struct sk_buff **fragp;
858 struct sk_buff *frag;
859 int offset = skb_headlen(skb);
860 int nfrags = skb_shinfo(skb)->nr_frags;
861 int i;
862 int err;
863
864 if (skb_cloned(skb) &&
865 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
866 return err;
867
868 i = 0;
869 if (offset >= len)
870 goto drop_pages;
871
872 for (; i < nfrags; i++) {
873 int end = offset + skb_shinfo(skb)->frags[i].size;
874
875 if (end < len) {
876 offset = end;
877 continue;
878 }
879
880 skb_shinfo(skb)->frags[i++].size = len - offset;
881
882 drop_pages:
883 skb_shinfo(skb)->nr_frags = i;
884
885 for (; i < nfrags; i++)
886 put_page(skb_shinfo(skb)->frags[i].page);
887
888 if (skb_shinfo(skb)->frag_list)
889 skb_drop_fraglist(skb);
890 goto done;
891 }
892
893 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
894 fragp = &frag->next) {
895 int end = offset + frag->len;
896
897 if (skb_shared(frag)) {
898 struct sk_buff *nfrag;
899
900 nfrag = skb_clone(frag, GFP_ATOMIC);
901 if (unlikely(!nfrag))
902 return -ENOMEM;
903
904 nfrag->next = frag->next;
905 kfree_skb(frag);
906 frag = nfrag;
907 *fragp = frag;
908 }
909
910 if (end < len) {
911 offset = end;
912 continue;
913 }
914
915 if (end > len &&
916 unlikely((err = pskb_trim(frag, len - offset))))
917 return err;
918
919 if (frag->next)
920 skb_drop_list(&frag->next);
921 break;
922 }
923
924 done:
925 if (len > skb_headlen(skb)) {
926 skb->data_len -= skb->len - len;
927 skb->len = len;
928 } else {
929 skb->len = len;
930 skb->data_len = 0;
931 skb->tail = skb->data + len;
932 }
933
934 return 0;
935 }
936
937 /**
938 * __pskb_pull_tail - advance tail of skb header
939 * @skb: buffer to reallocate
940 * @delta: number of bytes to advance tail
941 *
942 * The function makes a sense only on a fragmented &sk_buff,
943 * it expands header moving its tail forward and copying necessary
944 * data from fragmented part.
945 *
946 * &sk_buff MUST have reference count of 1.
947 *
948 * Returns %NULL (and &sk_buff does not change) if pull failed
949 * or value of new tail of skb in the case of success.
950 *
951 * All the pointers pointing into skb header may change and must be
952 * reloaded after call to this function.
953 */
954
955 /* Moves tail of skb head forward, copying data from fragmented part,
956 * when it is necessary.
957 * 1. It may fail due to malloc failure.
958 * 2. It may change skb pointers.
959 *
960 * It is pretty complicated. Luckily, it is called only in exceptional cases.
961 */
962 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
963 {
964 /* If skb has not enough free space at tail, get new one
965 * plus 128 bytes for future expansions. If we have enough
966 * room at tail, reallocate without expansion only if skb is cloned.
967 */
968 int i, k, eat = (skb->tail + delta) - skb->end;
969
970 if (eat > 0 || skb_cloned(skb)) {
971 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
972 GFP_ATOMIC))
973 return NULL;
974 }
975
976 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
977 BUG();
978
979 /* Optimization: no fragments, no reasons to preestimate
980 * size of pulled pages. Superb.
981 */
982 if (!skb_shinfo(skb)->frag_list)
983 goto pull_pages;
984
985 /* Estimate size of pulled pages. */
986 eat = delta;
987 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
988 if (skb_shinfo(skb)->frags[i].size >= eat)
989 goto pull_pages;
990 eat -= skb_shinfo(skb)->frags[i].size;
991 }
992
993 /* If we need update frag list, we are in troubles.
994 * Certainly, it possible to add an offset to skb data,
995 * but taking into account that pulling is expected to
996 * be very rare operation, it is worth to fight against
997 * further bloating skb head and crucify ourselves here instead.
998 * Pure masohism, indeed. 8)8)
999 */
1000 if (eat) {
1001 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1002 struct sk_buff *clone = NULL;
1003 struct sk_buff *insp = NULL;
1004
1005 do {
1006 BUG_ON(!list);
1007
1008 if (list->len <= eat) {
1009 /* Eaten as whole. */
1010 eat -= list->len;
1011 list = list->next;
1012 insp = list;
1013 } else {
1014 /* Eaten partially. */
1015
1016 if (skb_shared(list)) {
1017 /* Sucks! We need to fork list. :-( */
1018 clone = skb_clone(list, GFP_ATOMIC);
1019 if (!clone)
1020 return NULL;
1021 insp = list->next;
1022 list = clone;
1023 } else {
1024 /* This may be pulled without
1025 * problems. */
1026 insp = list;
1027 }
1028 if (!pskb_pull(list, eat)) {
1029 if (clone)
1030 kfree_skb(clone);
1031 return NULL;
1032 }
1033 break;
1034 }
1035 } while (eat);
1036
1037 /* Free pulled out fragments. */
1038 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1039 skb_shinfo(skb)->frag_list = list->next;
1040 kfree_skb(list);
1041 }
1042 /* And insert new clone at head. */
1043 if (clone) {
1044 clone->next = list;
1045 skb_shinfo(skb)->frag_list = clone;
1046 }
1047 }
1048 /* Success! Now we may commit changes to skb data. */
1049
1050 pull_pages:
1051 eat = delta;
1052 k = 0;
1053 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1054 if (skb_shinfo(skb)->frags[i].size <= eat) {
1055 put_page(skb_shinfo(skb)->frags[i].page);
1056 eat -= skb_shinfo(skb)->frags[i].size;
1057 } else {
1058 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1059 if (eat) {
1060 skb_shinfo(skb)->frags[k].page_offset += eat;
1061 skb_shinfo(skb)->frags[k].size -= eat;
1062 eat = 0;
1063 }
1064 k++;
1065 }
1066 }
1067 skb_shinfo(skb)->nr_frags = k;
1068
1069 skb->tail += delta;
1070 skb->data_len -= delta;
1071
1072 return skb->tail;
1073 }
1074
1075 /* Copy some data bits from skb to kernel buffer. */
1076
1077 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1078 {
1079 int i, copy;
1080 int start = skb_headlen(skb);
1081
1082 if (offset > (int)skb->len - len)
1083 goto fault;
1084
1085 /* Copy header. */
1086 if ((copy = start - offset) > 0) {
1087 if (copy > len)
1088 copy = len;
1089 memcpy(to, skb->data + offset, copy);
1090 if ((len -= copy) == 0)
1091 return 0;
1092 offset += copy;
1093 to += copy;
1094 }
1095
1096 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1097 int end;
1098
1099 BUG_TRAP(start <= offset + len);
1100
1101 end = start + skb_shinfo(skb)->frags[i].size;
1102 if ((copy = end - offset) > 0) {
1103 u8 *vaddr;
1104
1105 if (copy > len)
1106 copy = len;
1107
1108 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1109 memcpy(to,
1110 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1111 offset - start, copy);
1112 kunmap_skb_frag(vaddr);
1113
1114 if ((len -= copy) == 0)
1115 return 0;
1116 offset += copy;
1117 to += copy;
1118 }
1119 start = end;
1120 }
1121
1122 if (skb_shinfo(skb)->frag_list) {
1123 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1124
1125 for (; list; list = list->next) {
1126 int end;
1127
1128 BUG_TRAP(start <= offset + len);
1129
1130 end = start + list->len;
1131 if ((copy = end - offset) > 0) {
1132 if (copy > len)
1133 copy = len;
1134 if (skb_copy_bits(list, offset - start,
1135 to, copy))
1136 goto fault;
1137 if ((len -= copy) == 0)
1138 return 0;
1139 offset += copy;
1140 to += copy;
1141 }
1142 start = end;
1143 }
1144 }
1145 if (!len)
1146 return 0;
1147
1148 fault:
1149 return -EFAULT;
1150 }
1151
1152 /**
1153 * skb_store_bits - store bits from kernel buffer to skb
1154 * @skb: destination buffer
1155 * @offset: offset in destination
1156 * @from: source buffer
1157 * @len: number of bytes to copy
1158 *
1159 * Copy the specified number of bytes from the source buffer to the
1160 * destination skb. This function handles all the messy bits of
1161 * traversing fragment lists and such.
1162 */
1163
1164 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1165 {
1166 int i, copy;
1167 int start = skb_headlen(skb);
1168
1169 if (offset > (int)skb->len - len)
1170 goto fault;
1171
1172 if ((copy = start - offset) > 0) {
1173 if (copy > len)
1174 copy = len;
1175 memcpy(skb->data + offset, from, copy);
1176 if ((len -= copy) == 0)
1177 return 0;
1178 offset += copy;
1179 from += copy;
1180 }
1181
1182 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1183 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1184 int end;
1185
1186 BUG_TRAP(start <= offset + len);
1187
1188 end = start + frag->size;
1189 if ((copy = end - offset) > 0) {
1190 u8 *vaddr;
1191
1192 if (copy > len)
1193 copy = len;
1194
1195 vaddr = kmap_skb_frag(frag);
1196 memcpy(vaddr + frag->page_offset + offset - start,
1197 from, copy);
1198 kunmap_skb_frag(vaddr);
1199
1200 if ((len -= copy) == 0)
1201 return 0;
1202 offset += copy;
1203 from += copy;
1204 }
1205 start = end;
1206 }
1207
1208 if (skb_shinfo(skb)->frag_list) {
1209 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1210
1211 for (; list; list = list->next) {
1212 int end;
1213
1214 BUG_TRAP(start <= offset + len);
1215
1216 end = start + list->len;
1217 if ((copy = end - offset) > 0) {
1218 if (copy > len)
1219 copy = len;
1220 if (skb_store_bits(list, offset - start,
1221 from, copy))
1222 goto fault;
1223 if ((len -= copy) == 0)
1224 return 0;
1225 offset += copy;
1226 from += copy;
1227 }
1228 start = end;
1229 }
1230 }
1231 if (!len)
1232 return 0;
1233
1234 fault:
1235 return -EFAULT;
1236 }
1237
1238 EXPORT_SYMBOL(skb_store_bits);
1239
1240 /* Checksum skb data. */
1241
1242 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1243 int len, unsigned int csum)
1244 {
1245 int start = skb_headlen(skb);
1246 int i, copy = start - offset;
1247 int pos = 0;
1248
1249 /* Checksum header. */
1250 if (copy > 0) {
1251 if (copy > len)
1252 copy = len;
1253 csum = csum_partial(skb->data + offset, copy, csum);
1254 if ((len -= copy) == 0)
1255 return csum;
1256 offset += copy;
1257 pos = copy;
1258 }
1259
1260 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1261 int end;
1262
1263 BUG_TRAP(start <= offset + len);
1264
1265 end = start + skb_shinfo(skb)->frags[i].size;
1266 if ((copy = end - offset) > 0) {
1267 unsigned int csum2;
1268 u8 *vaddr;
1269 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1270
1271 if (copy > len)
1272 copy = len;
1273 vaddr = kmap_skb_frag(frag);
1274 csum2 = csum_partial(vaddr + frag->page_offset +
1275 offset - start, copy, 0);
1276 kunmap_skb_frag(vaddr);
1277 csum = csum_block_add(csum, csum2, pos);
1278 if (!(len -= copy))
1279 return csum;
1280 offset += copy;
1281 pos += copy;
1282 }
1283 start = end;
1284 }
1285
1286 if (skb_shinfo(skb)->frag_list) {
1287 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1288
1289 for (; list; list = list->next) {
1290 int end;
1291
1292 BUG_TRAP(start <= offset + len);
1293
1294 end = start + list->len;
1295 if ((copy = end - offset) > 0) {
1296 unsigned int csum2;
1297 if (copy > len)
1298 copy = len;
1299 csum2 = skb_checksum(list, offset - start,
1300 copy, 0);
1301 csum = csum_block_add(csum, csum2, pos);
1302 if ((len -= copy) == 0)
1303 return csum;
1304 offset += copy;
1305 pos += copy;
1306 }
1307 start = end;
1308 }
1309 }
1310 BUG_ON(len);
1311
1312 return csum;
1313 }
1314
1315 /* Both of above in one bottle. */
1316
1317 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1318 u8 *to, int len, unsigned int csum)
1319 {
1320 int start = skb_headlen(skb);
1321 int i, copy = start - offset;
1322 int pos = 0;
1323
1324 /* Copy header. */
1325 if (copy > 0) {
1326 if (copy > len)
1327 copy = len;
1328 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1329 copy, csum);
1330 if ((len -= copy) == 0)
1331 return csum;
1332 offset += copy;
1333 to += copy;
1334 pos = copy;
1335 }
1336
1337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1338 int end;
1339
1340 BUG_TRAP(start <= offset + len);
1341
1342 end = start + skb_shinfo(skb)->frags[i].size;
1343 if ((copy = end - offset) > 0) {
1344 unsigned int csum2;
1345 u8 *vaddr;
1346 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1347
1348 if (copy > len)
1349 copy = len;
1350 vaddr = kmap_skb_frag(frag);
1351 csum2 = csum_partial_copy_nocheck(vaddr +
1352 frag->page_offset +
1353 offset - start, to,
1354 copy, 0);
1355 kunmap_skb_frag(vaddr);
1356 csum = csum_block_add(csum, csum2, pos);
1357 if (!(len -= copy))
1358 return csum;
1359 offset += copy;
1360 to += copy;
1361 pos += copy;
1362 }
1363 start = end;
1364 }
1365
1366 if (skb_shinfo(skb)->frag_list) {
1367 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1368
1369 for (; list; list = list->next) {
1370 unsigned int csum2;
1371 int end;
1372
1373 BUG_TRAP(start <= offset + len);
1374
1375 end = start + list->len;
1376 if ((copy = end - offset) > 0) {
1377 if (copy > len)
1378 copy = len;
1379 csum2 = skb_copy_and_csum_bits(list,
1380 offset - start,
1381 to, copy, 0);
1382 csum = csum_block_add(csum, csum2, pos);
1383 if ((len -= copy) == 0)
1384 return csum;
1385 offset += copy;
1386 to += copy;
1387 pos += copy;
1388 }
1389 start = end;
1390 }
1391 }
1392 BUG_ON(len);
1393 return csum;
1394 }
1395
1396 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1397 {
1398 unsigned int csum;
1399 long csstart;
1400
1401 if (skb->ip_summed == CHECKSUM_PARTIAL)
1402 csstart = skb->h.raw - skb->data;
1403 else
1404 csstart = skb_headlen(skb);
1405
1406 BUG_ON(csstart > skb_headlen(skb));
1407
1408 memcpy(to, skb->data, csstart);
1409
1410 csum = 0;
1411 if (csstart != skb->len)
1412 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1413 skb->len - csstart, 0);
1414
1415 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1416 long csstuff = csstart + skb->csum;
1417
1418 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1419 }
1420 }
1421
1422 /**
1423 * skb_dequeue - remove from the head of the queue
1424 * @list: list to dequeue from
1425 *
1426 * Remove the head of the list. The list lock is taken so the function
1427 * may be used safely with other locking list functions. The head item is
1428 * returned or %NULL if the list is empty.
1429 */
1430
1431 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1432 {
1433 unsigned long flags;
1434 struct sk_buff *result;
1435
1436 spin_lock_irqsave(&list->lock, flags);
1437 result = __skb_dequeue(list);
1438 spin_unlock_irqrestore(&list->lock, flags);
1439 return result;
1440 }
1441
1442 /**
1443 * skb_dequeue_tail - remove from the tail of the queue
1444 * @list: list to dequeue from
1445 *
1446 * Remove the tail of the list. The list lock is taken so the function
1447 * may be used safely with other locking list functions. The tail item is
1448 * returned or %NULL if the list is empty.
1449 */
1450 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1451 {
1452 unsigned long flags;
1453 struct sk_buff *result;
1454
1455 spin_lock_irqsave(&list->lock, flags);
1456 result = __skb_dequeue_tail(list);
1457 spin_unlock_irqrestore(&list->lock, flags);
1458 return result;
1459 }
1460
1461 /**
1462 * skb_queue_purge - empty a list
1463 * @list: list to empty
1464 *
1465 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1466 * the list and one reference dropped. This function takes the list
1467 * lock and is atomic with respect to other list locking functions.
1468 */
1469 void skb_queue_purge(struct sk_buff_head *list)
1470 {
1471 struct sk_buff *skb;
1472 while ((skb = skb_dequeue(list)) != NULL)
1473 kfree_skb(skb);
1474 }
1475
1476 /**
1477 * skb_queue_head - queue a buffer at the list head
1478 * @list: list to use
1479 * @newsk: buffer to queue
1480 *
1481 * Queue a buffer at the start of the list. This function takes the
1482 * list lock and can be used safely with other locking &sk_buff functions
1483 * safely.
1484 *
1485 * A buffer cannot be placed on two lists at the same time.
1486 */
1487 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1488 {
1489 unsigned long flags;
1490
1491 spin_lock_irqsave(&list->lock, flags);
1492 __skb_queue_head(list, newsk);
1493 spin_unlock_irqrestore(&list->lock, flags);
1494 }
1495
1496 /**
1497 * skb_queue_tail - queue a buffer at the list tail
1498 * @list: list to use
1499 * @newsk: buffer to queue
1500 *
1501 * Queue a buffer at the tail of the list. This function takes the
1502 * list lock and can be used safely with other locking &sk_buff functions
1503 * safely.
1504 *
1505 * A buffer cannot be placed on two lists at the same time.
1506 */
1507 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1508 {
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&list->lock, flags);
1512 __skb_queue_tail(list, newsk);
1513 spin_unlock_irqrestore(&list->lock, flags);
1514 }
1515
1516 /**
1517 * skb_unlink - remove a buffer from a list
1518 * @skb: buffer to remove
1519 * @list: list to use
1520 *
1521 * Remove a packet from a list. The list locks are taken and this
1522 * function is atomic with respect to other list locked calls
1523 *
1524 * You must know what list the SKB is on.
1525 */
1526 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1527 {
1528 unsigned long flags;
1529
1530 spin_lock_irqsave(&list->lock, flags);
1531 __skb_unlink(skb, list);
1532 spin_unlock_irqrestore(&list->lock, flags);
1533 }
1534
1535 /**
1536 * skb_append - append a buffer
1537 * @old: buffer to insert after
1538 * @newsk: buffer to insert
1539 * @list: list to use
1540 *
1541 * Place a packet after a given packet in a list. The list locks are taken
1542 * and this function is atomic with respect to other list locked calls.
1543 * A buffer cannot be placed on two lists at the same time.
1544 */
1545 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1546 {
1547 unsigned long flags;
1548
1549 spin_lock_irqsave(&list->lock, flags);
1550 __skb_append(old, newsk, list);
1551 spin_unlock_irqrestore(&list->lock, flags);
1552 }
1553
1554
1555 /**
1556 * skb_insert - insert a buffer
1557 * @old: buffer to insert before
1558 * @newsk: buffer to insert
1559 * @list: list to use
1560 *
1561 * Place a packet before a given packet in a list. The list locks are
1562 * taken and this function is atomic with respect to other list locked
1563 * calls.
1564 *
1565 * A buffer cannot be placed on two lists at the same time.
1566 */
1567 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1568 {
1569 unsigned long flags;
1570
1571 spin_lock_irqsave(&list->lock, flags);
1572 __skb_insert(newsk, old->prev, old, list);
1573 spin_unlock_irqrestore(&list->lock, flags);
1574 }
1575
1576 #if 0
1577 /*
1578 * Tune the memory allocator for a new MTU size.
1579 */
1580 void skb_add_mtu(int mtu)
1581 {
1582 /* Must match allocation in alloc_skb */
1583 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1584
1585 kmem_add_cache_size(mtu);
1586 }
1587 #endif
1588
1589 static inline void skb_split_inside_header(struct sk_buff *skb,
1590 struct sk_buff* skb1,
1591 const u32 len, const int pos)
1592 {
1593 int i;
1594
1595 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1596
1597 /* And move data appendix as is. */
1598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1599 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1600
1601 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1602 skb_shinfo(skb)->nr_frags = 0;
1603 skb1->data_len = skb->data_len;
1604 skb1->len += skb1->data_len;
1605 skb->data_len = 0;
1606 skb->len = len;
1607 skb->tail = skb->data + len;
1608 }
1609
1610 static inline void skb_split_no_header(struct sk_buff *skb,
1611 struct sk_buff* skb1,
1612 const u32 len, int pos)
1613 {
1614 int i, k = 0;
1615 const int nfrags = skb_shinfo(skb)->nr_frags;
1616
1617 skb_shinfo(skb)->nr_frags = 0;
1618 skb1->len = skb1->data_len = skb->len - len;
1619 skb->len = len;
1620 skb->data_len = len - pos;
1621
1622 for (i = 0; i < nfrags; i++) {
1623 int size = skb_shinfo(skb)->frags[i].size;
1624
1625 if (pos + size > len) {
1626 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1627
1628 if (pos < len) {
1629 /* Split frag.
1630 * We have two variants in this case:
1631 * 1. Move all the frag to the second
1632 * part, if it is possible. F.e.
1633 * this approach is mandatory for TUX,
1634 * where splitting is expensive.
1635 * 2. Split is accurately. We make this.
1636 */
1637 get_page(skb_shinfo(skb)->frags[i].page);
1638 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1639 skb_shinfo(skb1)->frags[0].size -= len - pos;
1640 skb_shinfo(skb)->frags[i].size = len - pos;
1641 skb_shinfo(skb)->nr_frags++;
1642 }
1643 k++;
1644 } else
1645 skb_shinfo(skb)->nr_frags++;
1646 pos += size;
1647 }
1648 skb_shinfo(skb1)->nr_frags = k;
1649 }
1650
1651 /**
1652 * skb_split - Split fragmented skb to two parts at length len.
1653 * @skb: the buffer to split
1654 * @skb1: the buffer to receive the second part
1655 * @len: new length for skb
1656 */
1657 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1658 {
1659 int pos = skb_headlen(skb);
1660
1661 if (len < pos) /* Split line is inside header. */
1662 skb_split_inside_header(skb, skb1, len, pos);
1663 else /* Second chunk has no header, nothing to copy. */
1664 skb_split_no_header(skb, skb1, len, pos);
1665 }
1666
1667 /**
1668 * skb_prepare_seq_read - Prepare a sequential read of skb data
1669 * @skb: the buffer to read
1670 * @from: lower offset of data to be read
1671 * @to: upper offset of data to be read
1672 * @st: state variable
1673 *
1674 * Initializes the specified state variable. Must be called before
1675 * invoking skb_seq_read() for the first time.
1676 */
1677 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1678 unsigned int to, struct skb_seq_state *st)
1679 {
1680 st->lower_offset = from;
1681 st->upper_offset = to;
1682 st->root_skb = st->cur_skb = skb;
1683 st->frag_idx = st->stepped_offset = 0;
1684 st->frag_data = NULL;
1685 }
1686
1687 /**
1688 * skb_seq_read - Sequentially read skb data
1689 * @consumed: number of bytes consumed by the caller so far
1690 * @data: destination pointer for data to be returned
1691 * @st: state variable
1692 *
1693 * Reads a block of skb data at &consumed relative to the
1694 * lower offset specified to skb_prepare_seq_read(). Assigns
1695 * the head of the data block to &data and returns the length
1696 * of the block or 0 if the end of the skb data or the upper
1697 * offset has been reached.
1698 *
1699 * The caller is not required to consume all of the data
1700 * returned, i.e. &consumed is typically set to the number
1701 * of bytes already consumed and the next call to
1702 * skb_seq_read() will return the remaining part of the block.
1703 *
1704 * Note: The size of each block of data returned can be arbitary,
1705 * this limitation is the cost for zerocopy seqeuental
1706 * reads of potentially non linear data.
1707 *
1708 * Note: Fragment lists within fragments are not implemented
1709 * at the moment, state->root_skb could be replaced with
1710 * a stack for this purpose.
1711 */
1712 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1713 struct skb_seq_state *st)
1714 {
1715 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1716 skb_frag_t *frag;
1717
1718 if (unlikely(abs_offset >= st->upper_offset))
1719 return 0;
1720
1721 next_skb:
1722 block_limit = skb_headlen(st->cur_skb);
1723
1724 if (abs_offset < block_limit) {
1725 *data = st->cur_skb->data + abs_offset;
1726 return block_limit - abs_offset;
1727 }
1728
1729 if (st->frag_idx == 0 && !st->frag_data)
1730 st->stepped_offset += skb_headlen(st->cur_skb);
1731
1732 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1733 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1734 block_limit = frag->size + st->stepped_offset;
1735
1736 if (abs_offset < block_limit) {
1737 if (!st->frag_data)
1738 st->frag_data = kmap_skb_frag(frag);
1739
1740 *data = (u8 *) st->frag_data + frag->page_offset +
1741 (abs_offset - st->stepped_offset);
1742
1743 return block_limit - abs_offset;
1744 }
1745
1746 if (st->frag_data) {
1747 kunmap_skb_frag(st->frag_data);
1748 st->frag_data = NULL;
1749 }
1750
1751 st->frag_idx++;
1752 st->stepped_offset += frag->size;
1753 }
1754
1755 if (st->cur_skb->next) {
1756 st->cur_skb = st->cur_skb->next;
1757 st->frag_idx = 0;
1758 goto next_skb;
1759 } else if (st->root_skb == st->cur_skb &&
1760 skb_shinfo(st->root_skb)->frag_list) {
1761 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1762 goto next_skb;
1763 }
1764
1765 return 0;
1766 }
1767
1768 /**
1769 * skb_abort_seq_read - Abort a sequential read of skb data
1770 * @st: state variable
1771 *
1772 * Must be called if skb_seq_read() was not called until it
1773 * returned 0.
1774 */
1775 void skb_abort_seq_read(struct skb_seq_state *st)
1776 {
1777 if (st->frag_data)
1778 kunmap_skb_frag(st->frag_data);
1779 }
1780
1781 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1782
1783 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1784 struct ts_config *conf,
1785 struct ts_state *state)
1786 {
1787 return skb_seq_read(offset, text, TS_SKB_CB(state));
1788 }
1789
1790 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1791 {
1792 skb_abort_seq_read(TS_SKB_CB(state));
1793 }
1794
1795 /**
1796 * skb_find_text - Find a text pattern in skb data
1797 * @skb: the buffer to look in
1798 * @from: search offset
1799 * @to: search limit
1800 * @config: textsearch configuration
1801 * @state: uninitialized textsearch state variable
1802 *
1803 * Finds a pattern in the skb data according to the specified
1804 * textsearch configuration. Use textsearch_next() to retrieve
1805 * subsequent occurrences of the pattern. Returns the offset
1806 * to the first occurrence or UINT_MAX if no match was found.
1807 */
1808 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1809 unsigned int to, struct ts_config *config,
1810 struct ts_state *state)
1811 {
1812 unsigned int ret;
1813
1814 config->get_next_block = skb_ts_get_next_block;
1815 config->finish = skb_ts_finish;
1816
1817 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1818
1819 ret = textsearch_find(config, state);
1820 return (ret <= to - from ? ret : UINT_MAX);
1821 }
1822
1823 /**
1824 * skb_append_datato_frags: - append the user data to a skb
1825 * @sk: sock structure
1826 * @skb: skb structure to be appened with user data.
1827 * @getfrag: call back function to be used for getting the user data
1828 * @from: pointer to user message iov
1829 * @length: length of the iov message
1830 *
1831 * Description: This procedure append the user data in the fragment part
1832 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1833 */
1834 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1835 int (*getfrag)(void *from, char *to, int offset,
1836 int len, int odd, struct sk_buff *skb),
1837 void *from, int length)
1838 {
1839 int frg_cnt = 0;
1840 skb_frag_t *frag = NULL;
1841 struct page *page = NULL;
1842 int copy, left;
1843 int offset = 0;
1844 int ret;
1845
1846 do {
1847 /* Return error if we don't have space for new frag */
1848 frg_cnt = skb_shinfo(skb)->nr_frags;
1849 if (frg_cnt >= MAX_SKB_FRAGS)
1850 return -EFAULT;
1851
1852 /* allocate a new page for next frag */
1853 page = alloc_pages(sk->sk_allocation, 0);
1854
1855 /* If alloc_page fails just return failure and caller will
1856 * free previous allocated pages by doing kfree_skb()
1857 */
1858 if (page == NULL)
1859 return -ENOMEM;
1860
1861 /* initialize the next frag */
1862 sk->sk_sndmsg_page = page;
1863 sk->sk_sndmsg_off = 0;
1864 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1865 skb->truesize += PAGE_SIZE;
1866 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1867
1868 /* get the new initialized frag */
1869 frg_cnt = skb_shinfo(skb)->nr_frags;
1870 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1871
1872 /* copy the user data to page */
1873 left = PAGE_SIZE - frag->page_offset;
1874 copy = (length > left)? left : length;
1875
1876 ret = getfrag(from, (page_address(frag->page) +
1877 frag->page_offset + frag->size),
1878 offset, copy, 0, skb);
1879 if (ret < 0)
1880 return -EFAULT;
1881
1882 /* copy was successful so update the size parameters */
1883 sk->sk_sndmsg_off += copy;
1884 frag->size += copy;
1885 skb->len += copy;
1886 skb->data_len += copy;
1887 offset += copy;
1888 length -= copy;
1889
1890 } while (length > 0);
1891
1892 return 0;
1893 }
1894
1895 /**
1896 * skb_pull_rcsum - pull skb and update receive checksum
1897 * @skb: buffer to update
1898 * @start: start of data before pull
1899 * @len: length of data pulled
1900 *
1901 * This function performs an skb_pull on the packet and updates
1902 * update the CHECKSUM_COMPLETE checksum. It should be used on
1903 * receive path processing instead of skb_pull unless you know
1904 * that the checksum difference is zero (e.g., a valid IP header)
1905 * or you are setting ip_summed to CHECKSUM_NONE.
1906 */
1907 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1908 {
1909 BUG_ON(len > skb->len);
1910 skb->len -= len;
1911 BUG_ON(skb->len < skb->data_len);
1912 skb_postpull_rcsum(skb, skb->data, len);
1913 return skb->data += len;
1914 }
1915
1916 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1917
1918 /**
1919 * skb_segment - Perform protocol segmentation on skb.
1920 * @skb: buffer to segment
1921 * @features: features for the output path (see dev->features)
1922 *
1923 * This function performs segmentation on the given skb. It returns
1924 * the segment at the given position. It returns NULL if there are
1925 * no more segments to generate, or when an error is encountered.
1926 */
1927 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1928 {
1929 struct sk_buff *segs = NULL;
1930 struct sk_buff *tail = NULL;
1931 unsigned int mss = skb_shinfo(skb)->gso_size;
1932 unsigned int doffset = skb->data - skb->mac.raw;
1933 unsigned int offset = doffset;
1934 unsigned int headroom;
1935 unsigned int len;
1936 int sg = features & NETIF_F_SG;
1937 int nfrags = skb_shinfo(skb)->nr_frags;
1938 int err = -ENOMEM;
1939 int i = 0;
1940 int pos;
1941
1942 __skb_push(skb, doffset);
1943 headroom = skb_headroom(skb);
1944 pos = skb_headlen(skb);
1945
1946 do {
1947 struct sk_buff *nskb;
1948 skb_frag_t *frag;
1949 int hsize, nsize;
1950 int k;
1951 int size;
1952
1953 len = skb->len - offset;
1954 if (len > mss)
1955 len = mss;
1956
1957 hsize = skb_headlen(skb) - offset;
1958 if (hsize < 0)
1959 hsize = 0;
1960 nsize = hsize + doffset;
1961 if (nsize > len + doffset || !sg)
1962 nsize = len + doffset;
1963
1964 nskb = alloc_skb(nsize + headroom, GFP_ATOMIC);
1965 if (unlikely(!nskb))
1966 goto err;
1967
1968 if (segs)
1969 tail->next = nskb;
1970 else
1971 segs = nskb;
1972 tail = nskb;
1973
1974 nskb->dev = skb->dev;
1975 nskb->priority = skb->priority;
1976 nskb->protocol = skb->protocol;
1977 nskb->dst = dst_clone(skb->dst);
1978 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1979 nskb->pkt_type = skb->pkt_type;
1980 nskb->mac_len = skb->mac_len;
1981
1982 skb_reserve(nskb, headroom);
1983 nskb->mac.raw = nskb->data;
1984 nskb->nh.raw = nskb->data + skb->mac_len;
1985 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1986 memcpy(skb_put(nskb, doffset), skb->data, doffset);
1987
1988 if (!sg) {
1989 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1990 skb_put(nskb, len),
1991 len, 0);
1992 continue;
1993 }
1994
1995 frag = skb_shinfo(nskb)->frags;
1996 k = 0;
1997
1998 nskb->ip_summed = CHECKSUM_PARTIAL;
1999 nskb->csum = skb->csum;
2000 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2001
2002 while (pos < offset + len) {
2003 BUG_ON(i >= nfrags);
2004
2005 *frag = skb_shinfo(skb)->frags[i];
2006 get_page(frag->page);
2007 size = frag->size;
2008
2009 if (pos < offset) {
2010 frag->page_offset += offset - pos;
2011 frag->size -= offset - pos;
2012 }
2013
2014 k++;
2015
2016 if (pos + size <= offset + len) {
2017 i++;
2018 pos += size;
2019 } else {
2020 frag->size -= pos + size - (offset + len);
2021 break;
2022 }
2023
2024 frag++;
2025 }
2026
2027 skb_shinfo(nskb)->nr_frags = k;
2028 nskb->data_len = len - hsize;
2029 nskb->len += nskb->data_len;
2030 nskb->truesize += nskb->data_len;
2031 } while ((offset += len) < skb->len);
2032
2033 return segs;
2034
2035 err:
2036 while ((skb = segs)) {
2037 segs = skb->next;
2038 kfree(skb);
2039 }
2040 return ERR_PTR(err);
2041 }
2042
2043 EXPORT_SYMBOL_GPL(skb_segment);
2044
2045 void __init skb_init(void)
2046 {
2047 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2048 sizeof(struct sk_buff),
2049 0,
2050 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2051 NULL, NULL);
2052 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2053 (2*sizeof(struct sk_buff)) +
2054 sizeof(atomic_t),
2055 0,
2056 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2057 NULL, NULL);
2058 }
2059
2060 EXPORT_SYMBOL(___pskb_trim);
2061 EXPORT_SYMBOL(__kfree_skb);
2062 EXPORT_SYMBOL(kfree_skb);
2063 EXPORT_SYMBOL(__pskb_pull_tail);
2064 EXPORT_SYMBOL(__alloc_skb);
2065 EXPORT_SYMBOL(__netdev_alloc_skb);
2066 EXPORT_SYMBOL(pskb_copy);
2067 EXPORT_SYMBOL(pskb_expand_head);
2068 EXPORT_SYMBOL(skb_checksum);
2069 EXPORT_SYMBOL(skb_clone);
2070 EXPORT_SYMBOL(skb_clone_fraglist);
2071 EXPORT_SYMBOL(skb_copy);
2072 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2073 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2074 EXPORT_SYMBOL(skb_copy_bits);
2075 EXPORT_SYMBOL(skb_copy_expand);
2076 EXPORT_SYMBOL(skb_over_panic);
2077 EXPORT_SYMBOL(skb_pad);
2078 EXPORT_SYMBOL(skb_realloc_headroom);
2079 EXPORT_SYMBOL(skb_under_panic);
2080 EXPORT_SYMBOL(skb_dequeue);
2081 EXPORT_SYMBOL(skb_dequeue_tail);
2082 EXPORT_SYMBOL(skb_insert);
2083 EXPORT_SYMBOL(skb_queue_purge);
2084 EXPORT_SYMBOL(skb_queue_head);
2085 EXPORT_SYMBOL(skb_queue_tail);
2086 EXPORT_SYMBOL(skb_unlink);
2087 EXPORT_SYMBOL(skb_append);
2088 EXPORT_SYMBOL(skb_split);
2089 EXPORT_SYMBOL(skb_prepare_seq_read);
2090 EXPORT_SYMBOL(skb_seq_read);
2091 EXPORT_SYMBOL(skb_abort_seq_read);
2092 EXPORT_SYMBOL(skb_find_text);
2093 EXPORT_SYMBOL(skb_append_datato_frags);
This page took 0.071874 seconds and 6 git commands to generate.