Merge commit 'c039c332f23e794deb6d6f37b9f07ff3b27fb2cf' into md
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__, here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__, here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
146 }
147
148 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
149 * 'private' fields and also do memory statistics to find all the
150 * [BEEP] leaks.
151 *
152 */
153
154 /**
155 * __alloc_skb - allocate a network buffer
156 * @size: size to allocate
157 * @gfp_mask: allocation mask
158 * @fclone: allocate from fclone cache instead of head cache
159 * and allocate a cloned (child) skb
160 * @node: numa node to allocate memory on
161 *
162 * Allocate a new &sk_buff. The returned buffer has no headroom and a
163 * tail room of at least size bytes. The object has a reference count
164 * of one. The return is the buffer. On a failure the return is %NULL.
165 *
166 * Buffers may only be allocated from interrupts using a @gfp_mask of
167 * %GFP_ATOMIC.
168 */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 int fclone, int node)
171 {
172 struct kmem_cache *cache;
173 struct skb_shared_info *shinfo;
174 struct sk_buff *skb;
175 u8 *data;
176
177 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178
179 /* Get the HEAD */
180 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 if (!skb)
182 goto out;
183 prefetchw(skb);
184
185 /* We do our best to align skb_shared_info on a separate cache
186 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 * Both skb->head and skb_shared_info are cache line aligned.
189 */
190 size = SKB_DATA_ALIGN(size);
191 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 data = kmalloc_node_track_caller(size, gfp_mask, node);
193 if (!data)
194 goto nodata;
195 /* kmalloc(size) might give us more room than requested.
196 * Put skb_shared_info exactly at the end of allocated zone,
197 * to allow max possible filling before reallocation.
198 */
199 size = SKB_WITH_OVERHEAD(ksize(data));
200 prefetchw(data + size);
201
202 /*
203 * Only clear those fields we need to clear, not those that we will
204 * actually initialise below. Hence, don't put any more fields after
205 * the tail pointer in struct sk_buff!
206 */
207 memset(skb, 0, offsetof(struct sk_buff, tail));
208 /* Account for allocated memory : skb + skb->head */
209 skb->truesize = SKB_TRUESIZE(size);
210 atomic_set(&skb->users, 1);
211 skb->head = data;
212 skb->data = data;
213 skb_reset_tail_pointer(skb);
214 skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 skb->mac_header = ~0U;
217 #endif
218
219 /* make sure we initialize shinfo sequentially */
220 shinfo = skb_shinfo(skb);
221 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 atomic_set(&shinfo->dataref, 1);
223 kmemcheck_annotate_variable(shinfo->destructor_arg);
224
225 if (fclone) {
226 struct sk_buff *child = skb + 1;
227 atomic_t *fclone_ref = (atomic_t *) (child + 1);
228
229 kmemcheck_annotate_bitfield(child, flags1);
230 kmemcheck_annotate_bitfield(child, flags2);
231 skb->fclone = SKB_FCLONE_ORIG;
232 atomic_set(fclone_ref, 1);
233
234 child->fclone = SKB_FCLONE_UNAVAILABLE;
235 }
236 out:
237 return skb;
238 nodata:
239 kmem_cache_free(cache, skb);
240 skb = NULL;
241 goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244
245 /**
246 * build_skb - build a network buffer
247 * @data: data buffer provided by caller
248 * @frag_size: size of fragment, or 0 if head was kmalloced
249 *
250 * Allocate a new &sk_buff. Caller provides space holding head and
251 * skb_shared_info. @data must have been allocated by kmalloc()
252 * The return is the new skb buffer.
253 * On a failure the return is %NULL, and @data is not freed.
254 * Notes :
255 * Before IO, driver allocates only data buffer where NIC put incoming frame
256 * Driver should add room at head (NET_SKB_PAD) and
257 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
259 * before giving packet to stack.
260 * RX rings only contains data buffers, not full skbs.
261 */
262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
263 {
264 struct skb_shared_info *shinfo;
265 struct sk_buff *skb;
266 unsigned int size = frag_size ? : ksize(data);
267
268 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 if (!skb)
270 return NULL;
271
272 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273
274 memset(skb, 0, offsetof(struct sk_buff, tail));
275 skb->truesize = SKB_TRUESIZE(size);
276 skb->head_frag = frag_size != 0;
277 atomic_set(&skb->users, 1);
278 skb->head = data;
279 skb->data = data;
280 skb_reset_tail_pointer(skb);
281 skb->end = skb->tail + size;
282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
283 skb->mac_header = ~0U;
284 #endif
285
286 /* make sure we initialize shinfo sequentially */
287 shinfo = skb_shinfo(skb);
288 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
289 atomic_set(&shinfo->dataref, 1);
290 kmemcheck_annotate_variable(shinfo->destructor_arg);
291
292 return skb;
293 }
294 EXPORT_SYMBOL(build_skb);
295
296 struct netdev_alloc_cache {
297 struct page *page;
298 unsigned int offset;
299 unsigned int pagecnt_bias;
300 };
301 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
302
303 #define NETDEV_PAGECNT_BIAS (PAGE_SIZE / SMP_CACHE_BYTES)
304
305 /**
306 * netdev_alloc_frag - allocate a page fragment
307 * @fragsz: fragment size
308 *
309 * Allocates a frag from a page for receive buffer.
310 * Uses GFP_ATOMIC allocations.
311 */
312 void *netdev_alloc_frag(unsigned int fragsz)
313 {
314 struct netdev_alloc_cache *nc;
315 void *data = NULL;
316 unsigned long flags;
317
318 local_irq_save(flags);
319 nc = &__get_cpu_var(netdev_alloc_cache);
320 if (unlikely(!nc->page)) {
321 refill:
322 nc->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
323 if (unlikely(!nc->page))
324 goto end;
325 recycle:
326 atomic_set(&nc->page->_count, NETDEV_PAGECNT_BIAS);
327 nc->pagecnt_bias = NETDEV_PAGECNT_BIAS;
328 nc->offset = 0;
329 }
330
331 if (nc->offset + fragsz > PAGE_SIZE) {
332 /* avoid unnecessary locked operations if possible */
333 if ((atomic_read(&nc->page->_count) == nc->pagecnt_bias) ||
334 atomic_sub_and_test(nc->pagecnt_bias, &nc->page->_count))
335 goto recycle;
336 goto refill;
337 }
338
339 data = page_address(nc->page) + nc->offset;
340 nc->offset += fragsz;
341 nc->pagecnt_bias--;
342 end:
343 local_irq_restore(flags);
344 return data;
345 }
346 EXPORT_SYMBOL(netdev_alloc_frag);
347
348 /**
349 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
350 * @dev: network device to receive on
351 * @length: length to allocate
352 * @gfp_mask: get_free_pages mask, passed to alloc_skb
353 *
354 * Allocate a new &sk_buff and assign it a usage count of one. The
355 * buffer has unspecified headroom built in. Users should allocate
356 * the headroom they think they need without accounting for the
357 * built in space. The built in space is used for optimisations.
358 *
359 * %NULL is returned if there is no free memory.
360 */
361 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
362 unsigned int length, gfp_t gfp_mask)
363 {
364 struct sk_buff *skb = NULL;
365 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
366 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
367
368 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
369 void *data = netdev_alloc_frag(fragsz);
370
371 if (likely(data)) {
372 skb = build_skb(data, fragsz);
373 if (unlikely(!skb))
374 put_page(virt_to_head_page(data));
375 }
376 } else {
377 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
378 }
379 if (likely(skb)) {
380 skb_reserve(skb, NET_SKB_PAD);
381 skb->dev = dev;
382 }
383 return skb;
384 }
385 EXPORT_SYMBOL(__netdev_alloc_skb);
386
387 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
388 int size, unsigned int truesize)
389 {
390 skb_fill_page_desc(skb, i, page, off, size);
391 skb->len += size;
392 skb->data_len += size;
393 skb->truesize += truesize;
394 }
395 EXPORT_SYMBOL(skb_add_rx_frag);
396
397 static void skb_drop_list(struct sk_buff **listp)
398 {
399 struct sk_buff *list = *listp;
400
401 *listp = NULL;
402
403 do {
404 struct sk_buff *this = list;
405 list = list->next;
406 kfree_skb(this);
407 } while (list);
408 }
409
410 static inline void skb_drop_fraglist(struct sk_buff *skb)
411 {
412 skb_drop_list(&skb_shinfo(skb)->frag_list);
413 }
414
415 static void skb_clone_fraglist(struct sk_buff *skb)
416 {
417 struct sk_buff *list;
418
419 skb_walk_frags(skb, list)
420 skb_get(list);
421 }
422
423 static void skb_free_head(struct sk_buff *skb)
424 {
425 if (skb->head_frag)
426 put_page(virt_to_head_page(skb->head));
427 else
428 kfree(skb->head);
429 }
430
431 static void skb_release_data(struct sk_buff *skb)
432 {
433 if (!skb->cloned ||
434 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
435 &skb_shinfo(skb)->dataref)) {
436 if (skb_shinfo(skb)->nr_frags) {
437 int i;
438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
439 skb_frag_unref(skb, i);
440 }
441
442 /*
443 * If skb buf is from userspace, we need to notify the caller
444 * the lower device DMA has done;
445 */
446 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
447 struct ubuf_info *uarg;
448
449 uarg = skb_shinfo(skb)->destructor_arg;
450 if (uarg->callback)
451 uarg->callback(uarg);
452 }
453
454 if (skb_has_frag_list(skb))
455 skb_drop_fraglist(skb);
456
457 skb_free_head(skb);
458 }
459 }
460
461 /*
462 * Free an skbuff by memory without cleaning the state.
463 */
464 static void kfree_skbmem(struct sk_buff *skb)
465 {
466 struct sk_buff *other;
467 atomic_t *fclone_ref;
468
469 switch (skb->fclone) {
470 case SKB_FCLONE_UNAVAILABLE:
471 kmem_cache_free(skbuff_head_cache, skb);
472 break;
473
474 case SKB_FCLONE_ORIG:
475 fclone_ref = (atomic_t *) (skb + 2);
476 if (atomic_dec_and_test(fclone_ref))
477 kmem_cache_free(skbuff_fclone_cache, skb);
478 break;
479
480 case SKB_FCLONE_CLONE:
481 fclone_ref = (atomic_t *) (skb + 1);
482 other = skb - 1;
483
484 /* The clone portion is available for
485 * fast-cloning again.
486 */
487 skb->fclone = SKB_FCLONE_UNAVAILABLE;
488
489 if (atomic_dec_and_test(fclone_ref))
490 kmem_cache_free(skbuff_fclone_cache, other);
491 break;
492 }
493 }
494
495 static void skb_release_head_state(struct sk_buff *skb)
496 {
497 skb_dst_drop(skb);
498 #ifdef CONFIG_XFRM
499 secpath_put(skb->sp);
500 #endif
501 if (skb->destructor) {
502 WARN_ON(in_irq());
503 skb->destructor(skb);
504 }
505 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
506 nf_conntrack_put(skb->nfct);
507 #endif
508 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
509 nf_conntrack_put_reasm(skb->nfct_reasm);
510 #endif
511 #ifdef CONFIG_BRIDGE_NETFILTER
512 nf_bridge_put(skb->nf_bridge);
513 #endif
514 /* XXX: IS this still necessary? - JHS */
515 #ifdef CONFIG_NET_SCHED
516 skb->tc_index = 0;
517 #ifdef CONFIG_NET_CLS_ACT
518 skb->tc_verd = 0;
519 #endif
520 #endif
521 }
522
523 /* Free everything but the sk_buff shell. */
524 static void skb_release_all(struct sk_buff *skb)
525 {
526 skb_release_head_state(skb);
527 skb_release_data(skb);
528 }
529
530 /**
531 * __kfree_skb - private function
532 * @skb: buffer
533 *
534 * Free an sk_buff. Release anything attached to the buffer.
535 * Clean the state. This is an internal helper function. Users should
536 * always call kfree_skb
537 */
538
539 void __kfree_skb(struct sk_buff *skb)
540 {
541 skb_release_all(skb);
542 kfree_skbmem(skb);
543 }
544 EXPORT_SYMBOL(__kfree_skb);
545
546 /**
547 * kfree_skb - free an sk_buff
548 * @skb: buffer to free
549 *
550 * Drop a reference to the buffer and free it if the usage count has
551 * hit zero.
552 */
553 void kfree_skb(struct sk_buff *skb)
554 {
555 if (unlikely(!skb))
556 return;
557 if (likely(atomic_read(&skb->users) == 1))
558 smp_rmb();
559 else if (likely(!atomic_dec_and_test(&skb->users)))
560 return;
561 trace_kfree_skb(skb, __builtin_return_address(0));
562 __kfree_skb(skb);
563 }
564 EXPORT_SYMBOL(kfree_skb);
565
566 /**
567 * consume_skb - free an skbuff
568 * @skb: buffer to free
569 *
570 * Drop a ref to the buffer and free it if the usage count has hit zero
571 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
572 * is being dropped after a failure and notes that
573 */
574 void consume_skb(struct sk_buff *skb)
575 {
576 if (unlikely(!skb))
577 return;
578 if (likely(atomic_read(&skb->users) == 1))
579 smp_rmb();
580 else if (likely(!atomic_dec_and_test(&skb->users)))
581 return;
582 trace_consume_skb(skb);
583 __kfree_skb(skb);
584 }
585 EXPORT_SYMBOL(consume_skb);
586
587 /**
588 * skb_recycle - clean up an skb for reuse
589 * @skb: buffer
590 *
591 * Recycles the skb to be reused as a receive buffer. This
592 * function does any necessary reference count dropping, and
593 * cleans up the skbuff as if it just came from __alloc_skb().
594 */
595 void skb_recycle(struct sk_buff *skb)
596 {
597 struct skb_shared_info *shinfo;
598
599 skb_release_head_state(skb);
600
601 shinfo = skb_shinfo(skb);
602 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
603 atomic_set(&shinfo->dataref, 1);
604
605 memset(skb, 0, offsetof(struct sk_buff, tail));
606 skb->data = skb->head + NET_SKB_PAD;
607 skb_reset_tail_pointer(skb);
608 }
609 EXPORT_SYMBOL(skb_recycle);
610
611 /**
612 * skb_recycle_check - check if skb can be reused for receive
613 * @skb: buffer
614 * @skb_size: minimum receive buffer size
615 *
616 * Checks that the skb passed in is not shared or cloned, and
617 * that it is linear and its head portion at least as large as
618 * skb_size so that it can be recycled as a receive buffer.
619 * If these conditions are met, this function does any necessary
620 * reference count dropping and cleans up the skbuff as if it
621 * just came from __alloc_skb().
622 */
623 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
624 {
625 if (!skb_is_recycleable(skb, skb_size))
626 return false;
627
628 skb_recycle(skb);
629
630 return true;
631 }
632 EXPORT_SYMBOL(skb_recycle_check);
633
634 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
635 {
636 new->tstamp = old->tstamp;
637 new->dev = old->dev;
638 new->transport_header = old->transport_header;
639 new->network_header = old->network_header;
640 new->mac_header = old->mac_header;
641 skb_dst_copy(new, old);
642 new->rxhash = old->rxhash;
643 new->ooo_okay = old->ooo_okay;
644 new->l4_rxhash = old->l4_rxhash;
645 new->no_fcs = old->no_fcs;
646 #ifdef CONFIG_XFRM
647 new->sp = secpath_get(old->sp);
648 #endif
649 memcpy(new->cb, old->cb, sizeof(old->cb));
650 new->csum = old->csum;
651 new->local_df = old->local_df;
652 new->pkt_type = old->pkt_type;
653 new->ip_summed = old->ip_summed;
654 skb_copy_queue_mapping(new, old);
655 new->priority = old->priority;
656 #if IS_ENABLED(CONFIG_IP_VS)
657 new->ipvs_property = old->ipvs_property;
658 #endif
659 new->protocol = old->protocol;
660 new->mark = old->mark;
661 new->skb_iif = old->skb_iif;
662 __nf_copy(new, old);
663 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
664 new->nf_trace = old->nf_trace;
665 #endif
666 #ifdef CONFIG_NET_SCHED
667 new->tc_index = old->tc_index;
668 #ifdef CONFIG_NET_CLS_ACT
669 new->tc_verd = old->tc_verd;
670 #endif
671 #endif
672 new->vlan_tci = old->vlan_tci;
673
674 skb_copy_secmark(new, old);
675 }
676
677 /*
678 * You should not add any new code to this function. Add it to
679 * __copy_skb_header above instead.
680 */
681 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
682 {
683 #define C(x) n->x = skb->x
684
685 n->next = n->prev = NULL;
686 n->sk = NULL;
687 __copy_skb_header(n, skb);
688
689 C(len);
690 C(data_len);
691 C(mac_len);
692 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
693 n->cloned = 1;
694 n->nohdr = 0;
695 n->destructor = NULL;
696 C(tail);
697 C(end);
698 C(head);
699 C(head_frag);
700 C(data);
701 C(truesize);
702 atomic_set(&n->users, 1);
703
704 atomic_inc(&(skb_shinfo(skb)->dataref));
705 skb->cloned = 1;
706
707 return n;
708 #undef C
709 }
710
711 /**
712 * skb_morph - morph one skb into another
713 * @dst: the skb to receive the contents
714 * @src: the skb to supply the contents
715 *
716 * This is identical to skb_clone except that the target skb is
717 * supplied by the user.
718 *
719 * The target skb is returned upon exit.
720 */
721 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
722 {
723 skb_release_all(dst);
724 return __skb_clone(dst, src);
725 }
726 EXPORT_SYMBOL_GPL(skb_morph);
727
728 /**
729 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
730 * @skb: the skb to modify
731 * @gfp_mask: allocation priority
732 *
733 * This must be called on SKBTX_DEV_ZEROCOPY skb.
734 * It will copy all frags into kernel and drop the reference
735 * to userspace pages.
736 *
737 * If this function is called from an interrupt gfp_mask() must be
738 * %GFP_ATOMIC.
739 *
740 * Returns 0 on success or a negative error code on failure
741 * to allocate kernel memory to copy to.
742 */
743 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
744 {
745 int i;
746 int num_frags = skb_shinfo(skb)->nr_frags;
747 struct page *page, *head = NULL;
748 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
749
750 for (i = 0; i < num_frags; i++) {
751 u8 *vaddr;
752 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
753
754 page = alloc_page(gfp_mask);
755 if (!page) {
756 while (head) {
757 struct page *next = (struct page *)head->private;
758 put_page(head);
759 head = next;
760 }
761 return -ENOMEM;
762 }
763 vaddr = kmap_atomic(skb_frag_page(f));
764 memcpy(page_address(page),
765 vaddr + f->page_offset, skb_frag_size(f));
766 kunmap_atomic(vaddr);
767 page->private = (unsigned long)head;
768 head = page;
769 }
770
771 /* skb frags release userspace buffers */
772 for (i = 0; i < num_frags; i++)
773 skb_frag_unref(skb, i);
774
775 uarg->callback(uarg);
776
777 /* skb frags point to kernel buffers */
778 for (i = num_frags - 1; i >= 0; i--) {
779 __skb_fill_page_desc(skb, i, head, 0,
780 skb_shinfo(skb)->frags[i].size);
781 head = (struct page *)head->private;
782 }
783
784 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
785 return 0;
786 }
787 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
788
789 /**
790 * skb_clone - duplicate an sk_buff
791 * @skb: buffer to clone
792 * @gfp_mask: allocation priority
793 *
794 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
795 * copies share the same packet data but not structure. The new
796 * buffer has a reference count of 1. If the allocation fails the
797 * function returns %NULL otherwise the new buffer is returned.
798 *
799 * If this function is called from an interrupt gfp_mask() must be
800 * %GFP_ATOMIC.
801 */
802
803 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
804 {
805 struct sk_buff *n;
806
807 if (skb_orphan_frags(skb, gfp_mask))
808 return NULL;
809
810 n = skb + 1;
811 if (skb->fclone == SKB_FCLONE_ORIG &&
812 n->fclone == SKB_FCLONE_UNAVAILABLE) {
813 atomic_t *fclone_ref = (atomic_t *) (n + 1);
814 n->fclone = SKB_FCLONE_CLONE;
815 atomic_inc(fclone_ref);
816 } else {
817 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
818 if (!n)
819 return NULL;
820
821 kmemcheck_annotate_bitfield(n, flags1);
822 kmemcheck_annotate_bitfield(n, flags2);
823 n->fclone = SKB_FCLONE_UNAVAILABLE;
824 }
825
826 return __skb_clone(n, skb);
827 }
828 EXPORT_SYMBOL(skb_clone);
829
830 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
831 {
832 #ifndef NET_SKBUFF_DATA_USES_OFFSET
833 /*
834 * Shift between the two data areas in bytes
835 */
836 unsigned long offset = new->data - old->data;
837 #endif
838
839 __copy_skb_header(new, old);
840
841 #ifndef NET_SKBUFF_DATA_USES_OFFSET
842 /* {transport,network,mac}_header are relative to skb->head */
843 new->transport_header += offset;
844 new->network_header += offset;
845 if (skb_mac_header_was_set(new))
846 new->mac_header += offset;
847 #endif
848 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
849 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
850 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
851 }
852
853 /**
854 * skb_copy - create private copy of an sk_buff
855 * @skb: buffer to copy
856 * @gfp_mask: allocation priority
857 *
858 * Make a copy of both an &sk_buff and its data. This is used when the
859 * caller wishes to modify the data and needs a private copy of the
860 * data to alter. Returns %NULL on failure or the pointer to the buffer
861 * on success. The returned buffer has a reference count of 1.
862 *
863 * As by-product this function converts non-linear &sk_buff to linear
864 * one, so that &sk_buff becomes completely private and caller is allowed
865 * to modify all the data of returned buffer. This means that this
866 * function is not recommended for use in circumstances when only
867 * header is going to be modified. Use pskb_copy() instead.
868 */
869
870 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
871 {
872 int headerlen = skb_headroom(skb);
873 unsigned int size = skb_end_offset(skb) + skb->data_len;
874 struct sk_buff *n = alloc_skb(size, gfp_mask);
875
876 if (!n)
877 return NULL;
878
879 /* Set the data pointer */
880 skb_reserve(n, headerlen);
881 /* Set the tail pointer and length */
882 skb_put(n, skb->len);
883
884 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
885 BUG();
886
887 copy_skb_header(n, skb);
888 return n;
889 }
890 EXPORT_SYMBOL(skb_copy);
891
892 /**
893 * __pskb_copy - create copy of an sk_buff with private head.
894 * @skb: buffer to copy
895 * @headroom: headroom of new skb
896 * @gfp_mask: allocation priority
897 *
898 * Make a copy of both an &sk_buff and part of its data, located
899 * in header. Fragmented data remain shared. This is used when
900 * the caller wishes to modify only header of &sk_buff and needs
901 * private copy of the header to alter. Returns %NULL on failure
902 * or the pointer to the buffer on success.
903 * The returned buffer has a reference count of 1.
904 */
905
906 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
907 {
908 unsigned int size = skb_headlen(skb) + headroom;
909 struct sk_buff *n = alloc_skb(size, gfp_mask);
910
911 if (!n)
912 goto out;
913
914 /* Set the data pointer */
915 skb_reserve(n, headroom);
916 /* Set the tail pointer and length */
917 skb_put(n, skb_headlen(skb));
918 /* Copy the bytes */
919 skb_copy_from_linear_data(skb, n->data, n->len);
920
921 n->truesize += skb->data_len;
922 n->data_len = skb->data_len;
923 n->len = skb->len;
924
925 if (skb_shinfo(skb)->nr_frags) {
926 int i;
927
928 if (skb_orphan_frags(skb, gfp_mask)) {
929 kfree_skb(n);
930 n = NULL;
931 goto out;
932 }
933 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
934 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
935 skb_frag_ref(skb, i);
936 }
937 skb_shinfo(n)->nr_frags = i;
938 }
939
940 if (skb_has_frag_list(skb)) {
941 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
942 skb_clone_fraglist(n);
943 }
944
945 copy_skb_header(n, skb);
946 out:
947 return n;
948 }
949 EXPORT_SYMBOL(__pskb_copy);
950
951 /**
952 * pskb_expand_head - reallocate header of &sk_buff
953 * @skb: buffer to reallocate
954 * @nhead: room to add at head
955 * @ntail: room to add at tail
956 * @gfp_mask: allocation priority
957 *
958 * Expands (or creates identical copy, if &nhead and &ntail are zero)
959 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
960 * reference count of 1. Returns zero in the case of success or error,
961 * if expansion failed. In the last case, &sk_buff is not changed.
962 *
963 * All the pointers pointing into skb header may change and must be
964 * reloaded after call to this function.
965 */
966
967 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
968 gfp_t gfp_mask)
969 {
970 int i;
971 u8 *data;
972 int size = nhead + skb_end_offset(skb) + ntail;
973 long off;
974
975 BUG_ON(nhead < 0);
976
977 if (skb_shared(skb))
978 BUG();
979
980 size = SKB_DATA_ALIGN(size);
981
982 data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
983 gfp_mask);
984 if (!data)
985 goto nodata;
986 size = SKB_WITH_OVERHEAD(ksize(data));
987
988 /* Copy only real data... and, alas, header. This should be
989 * optimized for the cases when header is void.
990 */
991 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
992
993 memcpy((struct skb_shared_info *)(data + size),
994 skb_shinfo(skb),
995 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
996
997 /*
998 * if shinfo is shared we must drop the old head gracefully, but if it
999 * is not we can just drop the old head and let the existing refcount
1000 * be since all we did is relocate the values
1001 */
1002 if (skb_cloned(skb)) {
1003 /* copy this zero copy skb frags */
1004 if (skb_orphan_frags(skb, gfp_mask))
1005 goto nofrags;
1006 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1007 skb_frag_ref(skb, i);
1008
1009 if (skb_has_frag_list(skb))
1010 skb_clone_fraglist(skb);
1011
1012 skb_release_data(skb);
1013 } else {
1014 skb_free_head(skb);
1015 }
1016 off = (data + nhead) - skb->head;
1017
1018 skb->head = data;
1019 skb->head_frag = 0;
1020 skb->data += off;
1021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1022 skb->end = size;
1023 off = nhead;
1024 #else
1025 skb->end = skb->head + size;
1026 #endif
1027 /* {transport,network,mac}_header and tail are relative to skb->head */
1028 skb->tail += off;
1029 skb->transport_header += off;
1030 skb->network_header += off;
1031 if (skb_mac_header_was_set(skb))
1032 skb->mac_header += off;
1033 /* Only adjust this if it actually is csum_start rather than csum */
1034 if (skb->ip_summed == CHECKSUM_PARTIAL)
1035 skb->csum_start += nhead;
1036 skb->cloned = 0;
1037 skb->hdr_len = 0;
1038 skb->nohdr = 0;
1039 atomic_set(&skb_shinfo(skb)->dataref, 1);
1040 return 0;
1041
1042 nofrags:
1043 kfree(data);
1044 nodata:
1045 return -ENOMEM;
1046 }
1047 EXPORT_SYMBOL(pskb_expand_head);
1048
1049 /* Make private copy of skb with writable head and some headroom */
1050
1051 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1052 {
1053 struct sk_buff *skb2;
1054 int delta = headroom - skb_headroom(skb);
1055
1056 if (delta <= 0)
1057 skb2 = pskb_copy(skb, GFP_ATOMIC);
1058 else {
1059 skb2 = skb_clone(skb, GFP_ATOMIC);
1060 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1061 GFP_ATOMIC)) {
1062 kfree_skb(skb2);
1063 skb2 = NULL;
1064 }
1065 }
1066 return skb2;
1067 }
1068 EXPORT_SYMBOL(skb_realloc_headroom);
1069
1070 /**
1071 * skb_copy_expand - copy and expand sk_buff
1072 * @skb: buffer to copy
1073 * @newheadroom: new free bytes at head
1074 * @newtailroom: new free bytes at tail
1075 * @gfp_mask: allocation priority
1076 *
1077 * Make a copy of both an &sk_buff and its data and while doing so
1078 * allocate additional space.
1079 *
1080 * This is used when the caller wishes to modify the data and needs a
1081 * private copy of the data to alter as well as more space for new fields.
1082 * Returns %NULL on failure or the pointer to the buffer
1083 * on success. The returned buffer has a reference count of 1.
1084 *
1085 * You must pass %GFP_ATOMIC as the allocation priority if this function
1086 * is called from an interrupt.
1087 */
1088 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1089 int newheadroom, int newtailroom,
1090 gfp_t gfp_mask)
1091 {
1092 /*
1093 * Allocate the copy buffer
1094 */
1095 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1096 gfp_mask);
1097 int oldheadroom = skb_headroom(skb);
1098 int head_copy_len, head_copy_off;
1099 int off;
1100
1101 if (!n)
1102 return NULL;
1103
1104 skb_reserve(n, newheadroom);
1105
1106 /* Set the tail pointer and length */
1107 skb_put(n, skb->len);
1108
1109 head_copy_len = oldheadroom;
1110 head_copy_off = 0;
1111 if (newheadroom <= head_copy_len)
1112 head_copy_len = newheadroom;
1113 else
1114 head_copy_off = newheadroom - head_copy_len;
1115
1116 /* Copy the linear header and data. */
1117 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1118 skb->len + head_copy_len))
1119 BUG();
1120
1121 copy_skb_header(n, skb);
1122
1123 off = newheadroom - oldheadroom;
1124 if (n->ip_summed == CHECKSUM_PARTIAL)
1125 n->csum_start += off;
1126 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1127 n->transport_header += off;
1128 n->network_header += off;
1129 if (skb_mac_header_was_set(skb))
1130 n->mac_header += off;
1131 #endif
1132
1133 return n;
1134 }
1135 EXPORT_SYMBOL(skb_copy_expand);
1136
1137 /**
1138 * skb_pad - zero pad the tail of an skb
1139 * @skb: buffer to pad
1140 * @pad: space to pad
1141 *
1142 * Ensure that a buffer is followed by a padding area that is zero
1143 * filled. Used by network drivers which may DMA or transfer data
1144 * beyond the buffer end onto the wire.
1145 *
1146 * May return error in out of memory cases. The skb is freed on error.
1147 */
1148
1149 int skb_pad(struct sk_buff *skb, int pad)
1150 {
1151 int err;
1152 int ntail;
1153
1154 /* If the skbuff is non linear tailroom is always zero.. */
1155 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1156 memset(skb->data+skb->len, 0, pad);
1157 return 0;
1158 }
1159
1160 ntail = skb->data_len + pad - (skb->end - skb->tail);
1161 if (likely(skb_cloned(skb) || ntail > 0)) {
1162 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1163 if (unlikely(err))
1164 goto free_skb;
1165 }
1166
1167 /* FIXME: The use of this function with non-linear skb's really needs
1168 * to be audited.
1169 */
1170 err = skb_linearize(skb);
1171 if (unlikely(err))
1172 goto free_skb;
1173
1174 memset(skb->data + skb->len, 0, pad);
1175 return 0;
1176
1177 free_skb:
1178 kfree_skb(skb);
1179 return err;
1180 }
1181 EXPORT_SYMBOL(skb_pad);
1182
1183 /**
1184 * skb_put - add data to a buffer
1185 * @skb: buffer to use
1186 * @len: amount of data to add
1187 *
1188 * This function extends the used data area of the buffer. If this would
1189 * exceed the total buffer size the kernel will panic. A pointer to the
1190 * first byte of the extra data is returned.
1191 */
1192 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1193 {
1194 unsigned char *tmp = skb_tail_pointer(skb);
1195 SKB_LINEAR_ASSERT(skb);
1196 skb->tail += len;
1197 skb->len += len;
1198 if (unlikely(skb->tail > skb->end))
1199 skb_over_panic(skb, len, __builtin_return_address(0));
1200 return tmp;
1201 }
1202 EXPORT_SYMBOL(skb_put);
1203
1204 /**
1205 * skb_push - add data to the start of a buffer
1206 * @skb: buffer to use
1207 * @len: amount of data to add
1208 *
1209 * This function extends the used data area of the buffer at the buffer
1210 * start. If this would exceed the total buffer headroom the kernel will
1211 * panic. A pointer to the first byte of the extra data is returned.
1212 */
1213 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1214 {
1215 skb->data -= len;
1216 skb->len += len;
1217 if (unlikely(skb->data<skb->head))
1218 skb_under_panic(skb, len, __builtin_return_address(0));
1219 return skb->data;
1220 }
1221 EXPORT_SYMBOL(skb_push);
1222
1223 /**
1224 * skb_pull - remove data from the start of a buffer
1225 * @skb: buffer to use
1226 * @len: amount of data to remove
1227 *
1228 * This function removes data from the start of a buffer, returning
1229 * the memory to the headroom. A pointer to the next data in the buffer
1230 * is returned. Once the data has been pulled future pushes will overwrite
1231 * the old data.
1232 */
1233 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1234 {
1235 return skb_pull_inline(skb, len);
1236 }
1237 EXPORT_SYMBOL(skb_pull);
1238
1239 /**
1240 * skb_trim - remove end from a buffer
1241 * @skb: buffer to alter
1242 * @len: new length
1243 *
1244 * Cut the length of a buffer down by removing data from the tail. If
1245 * the buffer is already under the length specified it is not modified.
1246 * The skb must be linear.
1247 */
1248 void skb_trim(struct sk_buff *skb, unsigned int len)
1249 {
1250 if (skb->len > len)
1251 __skb_trim(skb, len);
1252 }
1253 EXPORT_SYMBOL(skb_trim);
1254
1255 /* Trims skb to length len. It can change skb pointers.
1256 */
1257
1258 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1259 {
1260 struct sk_buff **fragp;
1261 struct sk_buff *frag;
1262 int offset = skb_headlen(skb);
1263 int nfrags = skb_shinfo(skb)->nr_frags;
1264 int i;
1265 int err;
1266
1267 if (skb_cloned(skb) &&
1268 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1269 return err;
1270
1271 i = 0;
1272 if (offset >= len)
1273 goto drop_pages;
1274
1275 for (; i < nfrags; i++) {
1276 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1277
1278 if (end < len) {
1279 offset = end;
1280 continue;
1281 }
1282
1283 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1284
1285 drop_pages:
1286 skb_shinfo(skb)->nr_frags = i;
1287
1288 for (; i < nfrags; i++)
1289 skb_frag_unref(skb, i);
1290
1291 if (skb_has_frag_list(skb))
1292 skb_drop_fraglist(skb);
1293 goto done;
1294 }
1295
1296 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1297 fragp = &frag->next) {
1298 int end = offset + frag->len;
1299
1300 if (skb_shared(frag)) {
1301 struct sk_buff *nfrag;
1302
1303 nfrag = skb_clone(frag, GFP_ATOMIC);
1304 if (unlikely(!nfrag))
1305 return -ENOMEM;
1306
1307 nfrag->next = frag->next;
1308 consume_skb(frag);
1309 frag = nfrag;
1310 *fragp = frag;
1311 }
1312
1313 if (end < len) {
1314 offset = end;
1315 continue;
1316 }
1317
1318 if (end > len &&
1319 unlikely((err = pskb_trim(frag, len - offset))))
1320 return err;
1321
1322 if (frag->next)
1323 skb_drop_list(&frag->next);
1324 break;
1325 }
1326
1327 done:
1328 if (len > skb_headlen(skb)) {
1329 skb->data_len -= skb->len - len;
1330 skb->len = len;
1331 } else {
1332 skb->len = len;
1333 skb->data_len = 0;
1334 skb_set_tail_pointer(skb, len);
1335 }
1336
1337 return 0;
1338 }
1339 EXPORT_SYMBOL(___pskb_trim);
1340
1341 /**
1342 * __pskb_pull_tail - advance tail of skb header
1343 * @skb: buffer to reallocate
1344 * @delta: number of bytes to advance tail
1345 *
1346 * The function makes a sense only on a fragmented &sk_buff,
1347 * it expands header moving its tail forward and copying necessary
1348 * data from fragmented part.
1349 *
1350 * &sk_buff MUST have reference count of 1.
1351 *
1352 * Returns %NULL (and &sk_buff does not change) if pull failed
1353 * or value of new tail of skb in the case of success.
1354 *
1355 * All the pointers pointing into skb header may change and must be
1356 * reloaded after call to this function.
1357 */
1358
1359 /* Moves tail of skb head forward, copying data from fragmented part,
1360 * when it is necessary.
1361 * 1. It may fail due to malloc failure.
1362 * 2. It may change skb pointers.
1363 *
1364 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1365 */
1366 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1367 {
1368 /* If skb has not enough free space at tail, get new one
1369 * plus 128 bytes for future expansions. If we have enough
1370 * room at tail, reallocate without expansion only if skb is cloned.
1371 */
1372 int i, k, eat = (skb->tail + delta) - skb->end;
1373
1374 if (eat > 0 || skb_cloned(skb)) {
1375 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1376 GFP_ATOMIC))
1377 return NULL;
1378 }
1379
1380 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1381 BUG();
1382
1383 /* Optimization: no fragments, no reasons to preestimate
1384 * size of pulled pages. Superb.
1385 */
1386 if (!skb_has_frag_list(skb))
1387 goto pull_pages;
1388
1389 /* Estimate size of pulled pages. */
1390 eat = delta;
1391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1392 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1393
1394 if (size >= eat)
1395 goto pull_pages;
1396 eat -= size;
1397 }
1398
1399 /* If we need update frag list, we are in troubles.
1400 * Certainly, it possible to add an offset to skb data,
1401 * but taking into account that pulling is expected to
1402 * be very rare operation, it is worth to fight against
1403 * further bloating skb head and crucify ourselves here instead.
1404 * Pure masohism, indeed. 8)8)
1405 */
1406 if (eat) {
1407 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1408 struct sk_buff *clone = NULL;
1409 struct sk_buff *insp = NULL;
1410
1411 do {
1412 BUG_ON(!list);
1413
1414 if (list->len <= eat) {
1415 /* Eaten as whole. */
1416 eat -= list->len;
1417 list = list->next;
1418 insp = list;
1419 } else {
1420 /* Eaten partially. */
1421
1422 if (skb_shared(list)) {
1423 /* Sucks! We need to fork list. :-( */
1424 clone = skb_clone(list, GFP_ATOMIC);
1425 if (!clone)
1426 return NULL;
1427 insp = list->next;
1428 list = clone;
1429 } else {
1430 /* This may be pulled without
1431 * problems. */
1432 insp = list;
1433 }
1434 if (!pskb_pull(list, eat)) {
1435 kfree_skb(clone);
1436 return NULL;
1437 }
1438 break;
1439 }
1440 } while (eat);
1441
1442 /* Free pulled out fragments. */
1443 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1444 skb_shinfo(skb)->frag_list = list->next;
1445 kfree_skb(list);
1446 }
1447 /* And insert new clone at head. */
1448 if (clone) {
1449 clone->next = list;
1450 skb_shinfo(skb)->frag_list = clone;
1451 }
1452 }
1453 /* Success! Now we may commit changes to skb data. */
1454
1455 pull_pages:
1456 eat = delta;
1457 k = 0;
1458 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1459 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1460
1461 if (size <= eat) {
1462 skb_frag_unref(skb, i);
1463 eat -= size;
1464 } else {
1465 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1466 if (eat) {
1467 skb_shinfo(skb)->frags[k].page_offset += eat;
1468 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1469 eat = 0;
1470 }
1471 k++;
1472 }
1473 }
1474 skb_shinfo(skb)->nr_frags = k;
1475
1476 skb->tail += delta;
1477 skb->data_len -= delta;
1478
1479 return skb_tail_pointer(skb);
1480 }
1481 EXPORT_SYMBOL(__pskb_pull_tail);
1482
1483 /**
1484 * skb_copy_bits - copy bits from skb to kernel buffer
1485 * @skb: source skb
1486 * @offset: offset in source
1487 * @to: destination buffer
1488 * @len: number of bytes to copy
1489 *
1490 * Copy the specified number of bytes from the source skb to the
1491 * destination buffer.
1492 *
1493 * CAUTION ! :
1494 * If its prototype is ever changed,
1495 * check arch/{*}/net/{*}.S files,
1496 * since it is called from BPF assembly code.
1497 */
1498 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1499 {
1500 int start = skb_headlen(skb);
1501 struct sk_buff *frag_iter;
1502 int i, copy;
1503
1504 if (offset > (int)skb->len - len)
1505 goto fault;
1506
1507 /* Copy header. */
1508 if ((copy = start - offset) > 0) {
1509 if (copy > len)
1510 copy = len;
1511 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1512 if ((len -= copy) == 0)
1513 return 0;
1514 offset += copy;
1515 to += copy;
1516 }
1517
1518 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1519 int end;
1520 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1521
1522 WARN_ON(start > offset + len);
1523
1524 end = start + skb_frag_size(f);
1525 if ((copy = end - offset) > 0) {
1526 u8 *vaddr;
1527
1528 if (copy > len)
1529 copy = len;
1530
1531 vaddr = kmap_atomic(skb_frag_page(f));
1532 memcpy(to,
1533 vaddr + f->page_offset + offset - start,
1534 copy);
1535 kunmap_atomic(vaddr);
1536
1537 if ((len -= copy) == 0)
1538 return 0;
1539 offset += copy;
1540 to += copy;
1541 }
1542 start = end;
1543 }
1544
1545 skb_walk_frags(skb, frag_iter) {
1546 int end;
1547
1548 WARN_ON(start > offset + len);
1549
1550 end = start + frag_iter->len;
1551 if ((copy = end - offset) > 0) {
1552 if (copy > len)
1553 copy = len;
1554 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1555 goto fault;
1556 if ((len -= copy) == 0)
1557 return 0;
1558 offset += copy;
1559 to += copy;
1560 }
1561 start = end;
1562 }
1563
1564 if (!len)
1565 return 0;
1566
1567 fault:
1568 return -EFAULT;
1569 }
1570 EXPORT_SYMBOL(skb_copy_bits);
1571
1572 /*
1573 * Callback from splice_to_pipe(), if we need to release some pages
1574 * at the end of the spd in case we error'ed out in filling the pipe.
1575 */
1576 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1577 {
1578 put_page(spd->pages[i]);
1579 }
1580
1581 static struct page *linear_to_page(struct page *page, unsigned int *len,
1582 unsigned int *offset,
1583 struct sk_buff *skb, struct sock *sk)
1584 {
1585 struct page *p = sk->sk_sndmsg_page;
1586 unsigned int off;
1587
1588 if (!p) {
1589 new_page:
1590 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1591 if (!p)
1592 return NULL;
1593
1594 off = sk->sk_sndmsg_off = 0;
1595 /* hold one ref to this page until it's full */
1596 } else {
1597 unsigned int mlen;
1598
1599 /* If we are the only user of the page, we can reset offset */
1600 if (page_count(p) == 1)
1601 sk->sk_sndmsg_off = 0;
1602 off = sk->sk_sndmsg_off;
1603 mlen = PAGE_SIZE - off;
1604 if (mlen < 64 && mlen < *len) {
1605 put_page(p);
1606 goto new_page;
1607 }
1608
1609 *len = min_t(unsigned int, *len, mlen);
1610 }
1611
1612 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1613 sk->sk_sndmsg_off += *len;
1614 *offset = off;
1615
1616 return p;
1617 }
1618
1619 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1620 struct page *page,
1621 unsigned int offset)
1622 {
1623 return spd->nr_pages &&
1624 spd->pages[spd->nr_pages - 1] == page &&
1625 (spd->partial[spd->nr_pages - 1].offset +
1626 spd->partial[spd->nr_pages - 1].len == offset);
1627 }
1628
1629 /*
1630 * Fill page/offset/length into spd, if it can hold more pages.
1631 */
1632 static bool spd_fill_page(struct splice_pipe_desc *spd,
1633 struct pipe_inode_info *pipe, struct page *page,
1634 unsigned int *len, unsigned int offset,
1635 struct sk_buff *skb, bool linear,
1636 struct sock *sk)
1637 {
1638 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1639 return true;
1640
1641 if (linear) {
1642 page = linear_to_page(page, len, &offset, skb, sk);
1643 if (!page)
1644 return true;
1645 }
1646 if (spd_can_coalesce(spd, page, offset)) {
1647 spd->partial[spd->nr_pages - 1].len += *len;
1648 return false;
1649 }
1650 get_page(page);
1651 spd->pages[spd->nr_pages] = page;
1652 spd->partial[spd->nr_pages].len = *len;
1653 spd->partial[spd->nr_pages].offset = offset;
1654 spd->nr_pages++;
1655
1656 return false;
1657 }
1658
1659 static inline void __segment_seek(struct page **page, unsigned int *poff,
1660 unsigned int *plen, unsigned int off)
1661 {
1662 unsigned long n;
1663
1664 *poff += off;
1665 n = *poff / PAGE_SIZE;
1666 if (n)
1667 *page = nth_page(*page, n);
1668
1669 *poff = *poff % PAGE_SIZE;
1670 *plen -= off;
1671 }
1672
1673 static bool __splice_segment(struct page *page, unsigned int poff,
1674 unsigned int plen, unsigned int *off,
1675 unsigned int *len, struct sk_buff *skb,
1676 struct splice_pipe_desc *spd, bool linear,
1677 struct sock *sk,
1678 struct pipe_inode_info *pipe)
1679 {
1680 if (!*len)
1681 return true;
1682
1683 /* skip this segment if already processed */
1684 if (*off >= plen) {
1685 *off -= plen;
1686 return false;
1687 }
1688
1689 /* ignore any bits we already processed */
1690 if (*off) {
1691 __segment_seek(&page, &poff, &plen, *off);
1692 *off = 0;
1693 }
1694
1695 do {
1696 unsigned int flen = min(*len, plen);
1697
1698 /* the linear region may spread across several pages */
1699 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1700
1701 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1702 return true;
1703
1704 __segment_seek(&page, &poff, &plen, flen);
1705 *len -= flen;
1706
1707 } while (*len && plen);
1708
1709 return false;
1710 }
1711
1712 /*
1713 * Map linear and fragment data from the skb to spd. It reports true if the
1714 * pipe is full or if we already spliced the requested length.
1715 */
1716 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1717 unsigned int *offset, unsigned int *len,
1718 struct splice_pipe_desc *spd, struct sock *sk)
1719 {
1720 int seg;
1721
1722 /* map the linear part :
1723 * If skb->head_frag is set, this 'linear' part is backed by a
1724 * fragment, and if the head is not shared with any clones then
1725 * we can avoid a copy since we own the head portion of this page.
1726 */
1727 if (__splice_segment(virt_to_page(skb->data),
1728 (unsigned long) skb->data & (PAGE_SIZE - 1),
1729 skb_headlen(skb),
1730 offset, len, skb, spd,
1731 skb_head_is_locked(skb),
1732 sk, pipe))
1733 return true;
1734
1735 /*
1736 * then map the fragments
1737 */
1738 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1739 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1740
1741 if (__splice_segment(skb_frag_page(f),
1742 f->page_offset, skb_frag_size(f),
1743 offset, len, skb, spd, false, sk, pipe))
1744 return true;
1745 }
1746
1747 return false;
1748 }
1749
1750 /*
1751 * Map data from the skb to a pipe. Should handle both the linear part,
1752 * the fragments, and the frag list. It does NOT handle frag lists within
1753 * the frag list, if such a thing exists. We'd probably need to recurse to
1754 * handle that cleanly.
1755 */
1756 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1757 struct pipe_inode_info *pipe, unsigned int tlen,
1758 unsigned int flags)
1759 {
1760 struct partial_page partial[MAX_SKB_FRAGS];
1761 struct page *pages[MAX_SKB_FRAGS];
1762 struct splice_pipe_desc spd = {
1763 .pages = pages,
1764 .partial = partial,
1765 .nr_pages_max = MAX_SKB_FRAGS,
1766 .flags = flags,
1767 .ops = &sock_pipe_buf_ops,
1768 .spd_release = sock_spd_release,
1769 };
1770 struct sk_buff *frag_iter;
1771 struct sock *sk = skb->sk;
1772 int ret = 0;
1773
1774 /*
1775 * __skb_splice_bits() only fails if the output has no room left,
1776 * so no point in going over the frag_list for the error case.
1777 */
1778 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1779 goto done;
1780 else if (!tlen)
1781 goto done;
1782
1783 /*
1784 * now see if we have a frag_list to map
1785 */
1786 skb_walk_frags(skb, frag_iter) {
1787 if (!tlen)
1788 break;
1789 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1790 break;
1791 }
1792
1793 done:
1794 if (spd.nr_pages) {
1795 /*
1796 * Drop the socket lock, otherwise we have reverse
1797 * locking dependencies between sk_lock and i_mutex
1798 * here as compared to sendfile(). We enter here
1799 * with the socket lock held, and splice_to_pipe() will
1800 * grab the pipe inode lock. For sendfile() emulation,
1801 * we call into ->sendpage() with the i_mutex lock held
1802 * and networking will grab the socket lock.
1803 */
1804 release_sock(sk);
1805 ret = splice_to_pipe(pipe, &spd);
1806 lock_sock(sk);
1807 }
1808
1809 return ret;
1810 }
1811
1812 /**
1813 * skb_store_bits - store bits from kernel buffer to skb
1814 * @skb: destination buffer
1815 * @offset: offset in destination
1816 * @from: source buffer
1817 * @len: number of bytes to copy
1818 *
1819 * Copy the specified number of bytes from the source buffer to the
1820 * destination skb. This function handles all the messy bits of
1821 * traversing fragment lists and such.
1822 */
1823
1824 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1825 {
1826 int start = skb_headlen(skb);
1827 struct sk_buff *frag_iter;
1828 int i, copy;
1829
1830 if (offset > (int)skb->len - len)
1831 goto fault;
1832
1833 if ((copy = start - offset) > 0) {
1834 if (copy > len)
1835 copy = len;
1836 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1837 if ((len -= copy) == 0)
1838 return 0;
1839 offset += copy;
1840 from += copy;
1841 }
1842
1843 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1844 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1845 int end;
1846
1847 WARN_ON(start > offset + len);
1848
1849 end = start + skb_frag_size(frag);
1850 if ((copy = end - offset) > 0) {
1851 u8 *vaddr;
1852
1853 if (copy > len)
1854 copy = len;
1855
1856 vaddr = kmap_atomic(skb_frag_page(frag));
1857 memcpy(vaddr + frag->page_offset + offset - start,
1858 from, copy);
1859 kunmap_atomic(vaddr);
1860
1861 if ((len -= copy) == 0)
1862 return 0;
1863 offset += copy;
1864 from += copy;
1865 }
1866 start = end;
1867 }
1868
1869 skb_walk_frags(skb, frag_iter) {
1870 int end;
1871
1872 WARN_ON(start > offset + len);
1873
1874 end = start + frag_iter->len;
1875 if ((copy = end - offset) > 0) {
1876 if (copy > len)
1877 copy = len;
1878 if (skb_store_bits(frag_iter, offset - start,
1879 from, copy))
1880 goto fault;
1881 if ((len -= copy) == 0)
1882 return 0;
1883 offset += copy;
1884 from += copy;
1885 }
1886 start = end;
1887 }
1888 if (!len)
1889 return 0;
1890
1891 fault:
1892 return -EFAULT;
1893 }
1894 EXPORT_SYMBOL(skb_store_bits);
1895
1896 /* Checksum skb data. */
1897
1898 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1899 int len, __wsum csum)
1900 {
1901 int start = skb_headlen(skb);
1902 int i, copy = start - offset;
1903 struct sk_buff *frag_iter;
1904 int pos = 0;
1905
1906 /* Checksum header. */
1907 if (copy > 0) {
1908 if (copy > len)
1909 copy = len;
1910 csum = csum_partial(skb->data + offset, copy, csum);
1911 if ((len -= copy) == 0)
1912 return csum;
1913 offset += copy;
1914 pos = copy;
1915 }
1916
1917 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1918 int end;
1919 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1920
1921 WARN_ON(start > offset + len);
1922
1923 end = start + skb_frag_size(frag);
1924 if ((copy = end - offset) > 0) {
1925 __wsum csum2;
1926 u8 *vaddr;
1927
1928 if (copy > len)
1929 copy = len;
1930 vaddr = kmap_atomic(skb_frag_page(frag));
1931 csum2 = csum_partial(vaddr + frag->page_offset +
1932 offset - start, copy, 0);
1933 kunmap_atomic(vaddr);
1934 csum = csum_block_add(csum, csum2, pos);
1935 if (!(len -= copy))
1936 return csum;
1937 offset += copy;
1938 pos += copy;
1939 }
1940 start = end;
1941 }
1942
1943 skb_walk_frags(skb, frag_iter) {
1944 int end;
1945
1946 WARN_ON(start > offset + len);
1947
1948 end = start + frag_iter->len;
1949 if ((copy = end - offset) > 0) {
1950 __wsum csum2;
1951 if (copy > len)
1952 copy = len;
1953 csum2 = skb_checksum(frag_iter, offset - start,
1954 copy, 0);
1955 csum = csum_block_add(csum, csum2, pos);
1956 if ((len -= copy) == 0)
1957 return csum;
1958 offset += copy;
1959 pos += copy;
1960 }
1961 start = end;
1962 }
1963 BUG_ON(len);
1964
1965 return csum;
1966 }
1967 EXPORT_SYMBOL(skb_checksum);
1968
1969 /* Both of above in one bottle. */
1970
1971 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1972 u8 *to, int len, __wsum csum)
1973 {
1974 int start = skb_headlen(skb);
1975 int i, copy = start - offset;
1976 struct sk_buff *frag_iter;
1977 int pos = 0;
1978
1979 /* Copy header. */
1980 if (copy > 0) {
1981 if (copy > len)
1982 copy = len;
1983 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1984 copy, csum);
1985 if ((len -= copy) == 0)
1986 return csum;
1987 offset += copy;
1988 to += copy;
1989 pos = copy;
1990 }
1991
1992 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1993 int end;
1994
1995 WARN_ON(start > offset + len);
1996
1997 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1998 if ((copy = end - offset) > 0) {
1999 __wsum csum2;
2000 u8 *vaddr;
2001 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2002
2003 if (copy > len)
2004 copy = len;
2005 vaddr = kmap_atomic(skb_frag_page(frag));
2006 csum2 = csum_partial_copy_nocheck(vaddr +
2007 frag->page_offset +
2008 offset - start, to,
2009 copy, 0);
2010 kunmap_atomic(vaddr);
2011 csum = csum_block_add(csum, csum2, pos);
2012 if (!(len -= copy))
2013 return csum;
2014 offset += copy;
2015 to += copy;
2016 pos += copy;
2017 }
2018 start = end;
2019 }
2020
2021 skb_walk_frags(skb, frag_iter) {
2022 __wsum csum2;
2023 int end;
2024
2025 WARN_ON(start > offset + len);
2026
2027 end = start + frag_iter->len;
2028 if ((copy = end - offset) > 0) {
2029 if (copy > len)
2030 copy = len;
2031 csum2 = skb_copy_and_csum_bits(frag_iter,
2032 offset - start,
2033 to, copy, 0);
2034 csum = csum_block_add(csum, csum2, pos);
2035 if ((len -= copy) == 0)
2036 return csum;
2037 offset += copy;
2038 to += copy;
2039 pos += copy;
2040 }
2041 start = end;
2042 }
2043 BUG_ON(len);
2044 return csum;
2045 }
2046 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2047
2048 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2049 {
2050 __wsum csum;
2051 long csstart;
2052
2053 if (skb->ip_summed == CHECKSUM_PARTIAL)
2054 csstart = skb_checksum_start_offset(skb);
2055 else
2056 csstart = skb_headlen(skb);
2057
2058 BUG_ON(csstart > skb_headlen(skb));
2059
2060 skb_copy_from_linear_data(skb, to, csstart);
2061
2062 csum = 0;
2063 if (csstart != skb->len)
2064 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2065 skb->len - csstart, 0);
2066
2067 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2068 long csstuff = csstart + skb->csum_offset;
2069
2070 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2071 }
2072 }
2073 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2074
2075 /**
2076 * skb_dequeue - remove from the head of the queue
2077 * @list: list to dequeue from
2078 *
2079 * Remove the head of the list. The list lock is taken so the function
2080 * may be used safely with other locking list functions. The head item is
2081 * returned or %NULL if the list is empty.
2082 */
2083
2084 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2085 {
2086 unsigned long flags;
2087 struct sk_buff *result;
2088
2089 spin_lock_irqsave(&list->lock, flags);
2090 result = __skb_dequeue(list);
2091 spin_unlock_irqrestore(&list->lock, flags);
2092 return result;
2093 }
2094 EXPORT_SYMBOL(skb_dequeue);
2095
2096 /**
2097 * skb_dequeue_tail - remove from the tail of the queue
2098 * @list: list to dequeue from
2099 *
2100 * Remove the tail of the list. The list lock is taken so the function
2101 * may be used safely with other locking list functions. The tail item is
2102 * returned or %NULL if the list is empty.
2103 */
2104 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2105 {
2106 unsigned long flags;
2107 struct sk_buff *result;
2108
2109 spin_lock_irqsave(&list->lock, flags);
2110 result = __skb_dequeue_tail(list);
2111 spin_unlock_irqrestore(&list->lock, flags);
2112 return result;
2113 }
2114 EXPORT_SYMBOL(skb_dequeue_tail);
2115
2116 /**
2117 * skb_queue_purge - empty a list
2118 * @list: list to empty
2119 *
2120 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2121 * the list and one reference dropped. This function takes the list
2122 * lock and is atomic with respect to other list locking functions.
2123 */
2124 void skb_queue_purge(struct sk_buff_head *list)
2125 {
2126 struct sk_buff *skb;
2127 while ((skb = skb_dequeue(list)) != NULL)
2128 kfree_skb(skb);
2129 }
2130 EXPORT_SYMBOL(skb_queue_purge);
2131
2132 /**
2133 * skb_queue_head - queue a buffer at the list head
2134 * @list: list to use
2135 * @newsk: buffer to queue
2136 *
2137 * Queue a buffer at the start of the list. This function takes the
2138 * list lock and can be used safely with other locking &sk_buff functions
2139 * safely.
2140 *
2141 * A buffer cannot be placed on two lists at the same time.
2142 */
2143 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2144 {
2145 unsigned long flags;
2146
2147 spin_lock_irqsave(&list->lock, flags);
2148 __skb_queue_head(list, newsk);
2149 spin_unlock_irqrestore(&list->lock, flags);
2150 }
2151 EXPORT_SYMBOL(skb_queue_head);
2152
2153 /**
2154 * skb_queue_tail - queue a buffer at the list tail
2155 * @list: list to use
2156 * @newsk: buffer to queue
2157 *
2158 * Queue a buffer at the tail of the list. This function takes the
2159 * list lock and can be used safely with other locking &sk_buff functions
2160 * safely.
2161 *
2162 * A buffer cannot be placed on two lists at the same time.
2163 */
2164 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2165 {
2166 unsigned long flags;
2167
2168 spin_lock_irqsave(&list->lock, flags);
2169 __skb_queue_tail(list, newsk);
2170 spin_unlock_irqrestore(&list->lock, flags);
2171 }
2172 EXPORT_SYMBOL(skb_queue_tail);
2173
2174 /**
2175 * skb_unlink - remove a buffer from a list
2176 * @skb: buffer to remove
2177 * @list: list to use
2178 *
2179 * Remove a packet from a list. The list locks are taken and this
2180 * function is atomic with respect to other list locked calls
2181 *
2182 * You must know what list the SKB is on.
2183 */
2184 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2185 {
2186 unsigned long flags;
2187
2188 spin_lock_irqsave(&list->lock, flags);
2189 __skb_unlink(skb, list);
2190 spin_unlock_irqrestore(&list->lock, flags);
2191 }
2192 EXPORT_SYMBOL(skb_unlink);
2193
2194 /**
2195 * skb_append - append a buffer
2196 * @old: buffer to insert after
2197 * @newsk: buffer to insert
2198 * @list: list to use
2199 *
2200 * Place a packet after a given packet in a list. The list locks are taken
2201 * and this function is atomic with respect to other list locked calls.
2202 * A buffer cannot be placed on two lists at the same time.
2203 */
2204 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2205 {
2206 unsigned long flags;
2207
2208 spin_lock_irqsave(&list->lock, flags);
2209 __skb_queue_after(list, old, newsk);
2210 spin_unlock_irqrestore(&list->lock, flags);
2211 }
2212 EXPORT_SYMBOL(skb_append);
2213
2214 /**
2215 * skb_insert - insert a buffer
2216 * @old: buffer to insert before
2217 * @newsk: buffer to insert
2218 * @list: list to use
2219 *
2220 * Place a packet before a given packet in a list. The list locks are
2221 * taken and this function is atomic with respect to other list locked
2222 * calls.
2223 *
2224 * A buffer cannot be placed on two lists at the same time.
2225 */
2226 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2227 {
2228 unsigned long flags;
2229
2230 spin_lock_irqsave(&list->lock, flags);
2231 __skb_insert(newsk, old->prev, old, list);
2232 spin_unlock_irqrestore(&list->lock, flags);
2233 }
2234 EXPORT_SYMBOL(skb_insert);
2235
2236 static inline void skb_split_inside_header(struct sk_buff *skb,
2237 struct sk_buff* skb1,
2238 const u32 len, const int pos)
2239 {
2240 int i;
2241
2242 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2243 pos - len);
2244 /* And move data appendix as is. */
2245 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2246 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2247
2248 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2249 skb_shinfo(skb)->nr_frags = 0;
2250 skb1->data_len = skb->data_len;
2251 skb1->len += skb1->data_len;
2252 skb->data_len = 0;
2253 skb->len = len;
2254 skb_set_tail_pointer(skb, len);
2255 }
2256
2257 static inline void skb_split_no_header(struct sk_buff *skb,
2258 struct sk_buff* skb1,
2259 const u32 len, int pos)
2260 {
2261 int i, k = 0;
2262 const int nfrags = skb_shinfo(skb)->nr_frags;
2263
2264 skb_shinfo(skb)->nr_frags = 0;
2265 skb1->len = skb1->data_len = skb->len - len;
2266 skb->len = len;
2267 skb->data_len = len - pos;
2268
2269 for (i = 0; i < nfrags; i++) {
2270 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2271
2272 if (pos + size > len) {
2273 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2274
2275 if (pos < len) {
2276 /* Split frag.
2277 * We have two variants in this case:
2278 * 1. Move all the frag to the second
2279 * part, if it is possible. F.e.
2280 * this approach is mandatory for TUX,
2281 * where splitting is expensive.
2282 * 2. Split is accurately. We make this.
2283 */
2284 skb_frag_ref(skb, i);
2285 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2286 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2287 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2288 skb_shinfo(skb)->nr_frags++;
2289 }
2290 k++;
2291 } else
2292 skb_shinfo(skb)->nr_frags++;
2293 pos += size;
2294 }
2295 skb_shinfo(skb1)->nr_frags = k;
2296 }
2297
2298 /**
2299 * skb_split - Split fragmented skb to two parts at length len.
2300 * @skb: the buffer to split
2301 * @skb1: the buffer to receive the second part
2302 * @len: new length for skb
2303 */
2304 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2305 {
2306 int pos = skb_headlen(skb);
2307
2308 if (len < pos) /* Split line is inside header. */
2309 skb_split_inside_header(skb, skb1, len, pos);
2310 else /* Second chunk has no header, nothing to copy. */
2311 skb_split_no_header(skb, skb1, len, pos);
2312 }
2313 EXPORT_SYMBOL(skb_split);
2314
2315 /* Shifting from/to a cloned skb is a no-go.
2316 *
2317 * Caller cannot keep skb_shinfo related pointers past calling here!
2318 */
2319 static int skb_prepare_for_shift(struct sk_buff *skb)
2320 {
2321 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2322 }
2323
2324 /**
2325 * skb_shift - Shifts paged data partially from skb to another
2326 * @tgt: buffer into which tail data gets added
2327 * @skb: buffer from which the paged data comes from
2328 * @shiftlen: shift up to this many bytes
2329 *
2330 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2331 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2332 * It's up to caller to free skb if everything was shifted.
2333 *
2334 * If @tgt runs out of frags, the whole operation is aborted.
2335 *
2336 * Skb cannot include anything else but paged data while tgt is allowed
2337 * to have non-paged data as well.
2338 *
2339 * TODO: full sized shift could be optimized but that would need
2340 * specialized skb free'er to handle frags without up-to-date nr_frags.
2341 */
2342 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2343 {
2344 int from, to, merge, todo;
2345 struct skb_frag_struct *fragfrom, *fragto;
2346
2347 BUG_ON(shiftlen > skb->len);
2348 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2349
2350 todo = shiftlen;
2351 from = 0;
2352 to = skb_shinfo(tgt)->nr_frags;
2353 fragfrom = &skb_shinfo(skb)->frags[from];
2354
2355 /* Actual merge is delayed until the point when we know we can
2356 * commit all, so that we don't have to undo partial changes
2357 */
2358 if (!to ||
2359 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2360 fragfrom->page_offset)) {
2361 merge = -1;
2362 } else {
2363 merge = to - 1;
2364
2365 todo -= skb_frag_size(fragfrom);
2366 if (todo < 0) {
2367 if (skb_prepare_for_shift(skb) ||
2368 skb_prepare_for_shift(tgt))
2369 return 0;
2370
2371 /* All previous frag pointers might be stale! */
2372 fragfrom = &skb_shinfo(skb)->frags[from];
2373 fragto = &skb_shinfo(tgt)->frags[merge];
2374
2375 skb_frag_size_add(fragto, shiftlen);
2376 skb_frag_size_sub(fragfrom, shiftlen);
2377 fragfrom->page_offset += shiftlen;
2378
2379 goto onlymerged;
2380 }
2381
2382 from++;
2383 }
2384
2385 /* Skip full, not-fitting skb to avoid expensive operations */
2386 if ((shiftlen == skb->len) &&
2387 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2388 return 0;
2389
2390 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2391 return 0;
2392
2393 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2394 if (to == MAX_SKB_FRAGS)
2395 return 0;
2396
2397 fragfrom = &skb_shinfo(skb)->frags[from];
2398 fragto = &skb_shinfo(tgt)->frags[to];
2399
2400 if (todo >= skb_frag_size(fragfrom)) {
2401 *fragto = *fragfrom;
2402 todo -= skb_frag_size(fragfrom);
2403 from++;
2404 to++;
2405
2406 } else {
2407 __skb_frag_ref(fragfrom);
2408 fragto->page = fragfrom->page;
2409 fragto->page_offset = fragfrom->page_offset;
2410 skb_frag_size_set(fragto, todo);
2411
2412 fragfrom->page_offset += todo;
2413 skb_frag_size_sub(fragfrom, todo);
2414 todo = 0;
2415
2416 to++;
2417 break;
2418 }
2419 }
2420
2421 /* Ready to "commit" this state change to tgt */
2422 skb_shinfo(tgt)->nr_frags = to;
2423
2424 if (merge >= 0) {
2425 fragfrom = &skb_shinfo(skb)->frags[0];
2426 fragto = &skb_shinfo(tgt)->frags[merge];
2427
2428 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2429 __skb_frag_unref(fragfrom);
2430 }
2431
2432 /* Reposition in the original skb */
2433 to = 0;
2434 while (from < skb_shinfo(skb)->nr_frags)
2435 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2436 skb_shinfo(skb)->nr_frags = to;
2437
2438 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2439
2440 onlymerged:
2441 /* Most likely the tgt won't ever need its checksum anymore, skb on
2442 * the other hand might need it if it needs to be resent
2443 */
2444 tgt->ip_summed = CHECKSUM_PARTIAL;
2445 skb->ip_summed = CHECKSUM_PARTIAL;
2446
2447 /* Yak, is it really working this way? Some helper please? */
2448 skb->len -= shiftlen;
2449 skb->data_len -= shiftlen;
2450 skb->truesize -= shiftlen;
2451 tgt->len += shiftlen;
2452 tgt->data_len += shiftlen;
2453 tgt->truesize += shiftlen;
2454
2455 return shiftlen;
2456 }
2457
2458 /**
2459 * skb_prepare_seq_read - Prepare a sequential read of skb data
2460 * @skb: the buffer to read
2461 * @from: lower offset of data to be read
2462 * @to: upper offset of data to be read
2463 * @st: state variable
2464 *
2465 * Initializes the specified state variable. Must be called before
2466 * invoking skb_seq_read() for the first time.
2467 */
2468 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2469 unsigned int to, struct skb_seq_state *st)
2470 {
2471 st->lower_offset = from;
2472 st->upper_offset = to;
2473 st->root_skb = st->cur_skb = skb;
2474 st->frag_idx = st->stepped_offset = 0;
2475 st->frag_data = NULL;
2476 }
2477 EXPORT_SYMBOL(skb_prepare_seq_read);
2478
2479 /**
2480 * skb_seq_read - Sequentially read skb data
2481 * @consumed: number of bytes consumed by the caller so far
2482 * @data: destination pointer for data to be returned
2483 * @st: state variable
2484 *
2485 * Reads a block of skb data at &consumed relative to the
2486 * lower offset specified to skb_prepare_seq_read(). Assigns
2487 * the head of the data block to &data and returns the length
2488 * of the block or 0 if the end of the skb data or the upper
2489 * offset has been reached.
2490 *
2491 * The caller is not required to consume all of the data
2492 * returned, i.e. &consumed is typically set to the number
2493 * of bytes already consumed and the next call to
2494 * skb_seq_read() will return the remaining part of the block.
2495 *
2496 * Note 1: The size of each block of data returned can be arbitrary,
2497 * this limitation is the cost for zerocopy seqeuental
2498 * reads of potentially non linear data.
2499 *
2500 * Note 2: Fragment lists within fragments are not implemented
2501 * at the moment, state->root_skb could be replaced with
2502 * a stack for this purpose.
2503 */
2504 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2505 struct skb_seq_state *st)
2506 {
2507 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2508 skb_frag_t *frag;
2509
2510 if (unlikely(abs_offset >= st->upper_offset))
2511 return 0;
2512
2513 next_skb:
2514 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2515
2516 if (abs_offset < block_limit && !st->frag_data) {
2517 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2518 return block_limit - abs_offset;
2519 }
2520
2521 if (st->frag_idx == 0 && !st->frag_data)
2522 st->stepped_offset += skb_headlen(st->cur_skb);
2523
2524 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2525 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2526 block_limit = skb_frag_size(frag) + st->stepped_offset;
2527
2528 if (abs_offset < block_limit) {
2529 if (!st->frag_data)
2530 st->frag_data = kmap_atomic(skb_frag_page(frag));
2531
2532 *data = (u8 *) st->frag_data + frag->page_offset +
2533 (abs_offset - st->stepped_offset);
2534
2535 return block_limit - abs_offset;
2536 }
2537
2538 if (st->frag_data) {
2539 kunmap_atomic(st->frag_data);
2540 st->frag_data = NULL;
2541 }
2542
2543 st->frag_idx++;
2544 st->stepped_offset += skb_frag_size(frag);
2545 }
2546
2547 if (st->frag_data) {
2548 kunmap_atomic(st->frag_data);
2549 st->frag_data = NULL;
2550 }
2551
2552 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2553 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2554 st->frag_idx = 0;
2555 goto next_skb;
2556 } else if (st->cur_skb->next) {
2557 st->cur_skb = st->cur_skb->next;
2558 st->frag_idx = 0;
2559 goto next_skb;
2560 }
2561
2562 return 0;
2563 }
2564 EXPORT_SYMBOL(skb_seq_read);
2565
2566 /**
2567 * skb_abort_seq_read - Abort a sequential read of skb data
2568 * @st: state variable
2569 *
2570 * Must be called if skb_seq_read() was not called until it
2571 * returned 0.
2572 */
2573 void skb_abort_seq_read(struct skb_seq_state *st)
2574 {
2575 if (st->frag_data)
2576 kunmap_atomic(st->frag_data);
2577 }
2578 EXPORT_SYMBOL(skb_abort_seq_read);
2579
2580 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2581
2582 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2583 struct ts_config *conf,
2584 struct ts_state *state)
2585 {
2586 return skb_seq_read(offset, text, TS_SKB_CB(state));
2587 }
2588
2589 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2590 {
2591 skb_abort_seq_read(TS_SKB_CB(state));
2592 }
2593
2594 /**
2595 * skb_find_text - Find a text pattern in skb data
2596 * @skb: the buffer to look in
2597 * @from: search offset
2598 * @to: search limit
2599 * @config: textsearch configuration
2600 * @state: uninitialized textsearch state variable
2601 *
2602 * Finds a pattern in the skb data according to the specified
2603 * textsearch configuration. Use textsearch_next() to retrieve
2604 * subsequent occurrences of the pattern. Returns the offset
2605 * to the first occurrence or UINT_MAX if no match was found.
2606 */
2607 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2608 unsigned int to, struct ts_config *config,
2609 struct ts_state *state)
2610 {
2611 unsigned int ret;
2612
2613 config->get_next_block = skb_ts_get_next_block;
2614 config->finish = skb_ts_finish;
2615
2616 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2617
2618 ret = textsearch_find(config, state);
2619 return (ret <= to - from ? ret : UINT_MAX);
2620 }
2621 EXPORT_SYMBOL(skb_find_text);
2622
2623 /**
2624 * skb_append_datato_frags - append the user data to a skb
2625 * @sk: sock structure
2626 * @skb: skb structure to be appened with user data.
2627 * @getfrag: call back function to be used for getting the user data
2628 * @from: pointer to user message iov
2629 * @length: length of the iov message
2630 *
2631 * Description: This procedure append the user data in the fragment part
2632 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2633 */
2634 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2635 int (*getfrag)(void *from, char *to, int offset,
2636 int len, int odd, struct sk_buff *skb),
2637 void *from, int length)
2638 {
2639 int frg_cnt = 0;
2640 skb_frag_t *frag = NULL;
2641 struct page *page = NULL;
2642 int copy, left;
2643 int offset = 0;
2644 int ret;
2645
2646 do {
2647 /* Return error if we don't have space for new frag */
2648 frg_cnt = skb_shinfo(skb)->nr_frags;
2649 if (frg_cnt >= MAX_SKB_FRAGS)
2650 return -EFAULT;
2651
2652 /* allocate a new page for next frag */
2653 page = alloc_pages(sk->sk_allocation, 0);
2654
2655 /* If alloc_page fails just return failure and caller will
2656 * free previous allocated pages by doing kfree_skb()
2657 */
2658 if (page == NULL)
2659 return -ENOMEM;
2660
2661 /* initialize the next frag */
2662 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2663 skb->truesize += PAGE_SIZE;
2664 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2665
2666 /* get the new initialized frag */
2667 frg_cnt = skb_shinfo(skb)->nr_frags;
2668 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2669
2670 /* copy the user data to page */
2671 left = PAGE_SIZE - frag->page_offset;
2672 copy = (length > left)? left : length;
2673
2674 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2675 offset, copy, 0, skb);
2676 if (ret < 0)
2677 return -EFAULT;
2678
2679 /* copy was successful so update the size parameters */
2680 skb_frag_size_add(frag, copy);
2681 skb->len += copy;
2682 skb->data_len += copy;
2683 offset += copy;
2684 length -= copy;
2685
2686 } while (length > 0);
2687
2688 return 0;
2689 }
2690 EXPORT_SYMBOL(skb_append_datato_frags);
2691
2692 /**
2693 * skb_pull_rcsum - pull skb and update receive checksum
2694 * @skb: buffer to update
2695 * @len: length of data pulled
2696 *
2697 * This function performs an skb_pull on the packet and updates
2698 * the CHECKSUM_COMPLETE checksum. It should be used on
2699 * receive path processing instead of skb_pull unless you know
2700 * that the checksum difference is zero (e.g., a valid IP header)
2701 * or you are setting ip_summed to CHECKSUM_NONE.
2702 */
2703 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2704 {
2705 BUG_ON(len > skb->len);
2706 skb->len -= len;
2707 BUG_ON(skb->len < skb->data_len);
2708 skb_postpull_rcsum(skb, skb->data, len);
2709 return skb->data += len;
2710 }
2711 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2712
2713 /**
2714 * skb_segment - Perform protocol segmentation on skb.
2715 * @skb: buffer to segment
2716 * @features: features for the output path (see dev->features)
2717 *
2718 * This function performs segmentation on the given skb. It returns
2719 * a pointer to the first in a list of new skbs for the segments.
2720 * In case of error it returns ERR_PTR(err).
2721 */
2722 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2723 {
2724 struct sk_buff *segs = NULL;
2725 struct sk_buff *tail = NULL;
2726 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2727 unsigned int mss = skb_shinfo(skb)->gso_size;
2728 unsigned int doffset = skb->data - skb_mac_header(skb);
2729 unsigned int offset = doffset;
2730 unsigned int headroom;
2731 unsigned int len;
2732 int sg = !!(features & NETIF_F_SG);
2733 int nfrags = skb_shinfo(skb)->nr_frags;
2734 int err = -ENOMEM;
2735 int i = 0;
2736 int pos;
2737
2738 __skb_push(skb, doffset);
2739 headroom = skb_headroom(skb);
2740 pos = skb_headlen(skb);
2741
2742 do {
2743 struct sk_buff *nskb;
2744 skb_frag_t *frag;
2745 int hsize;
2746 int size;
2747
2748 len = skb->len - offset;
2749 if (len > mss)
2750 len = mss;
2751
2752 hsize = skb_headlen(skb) - offset;
2753 if (hsize < 0)
2754 hsize = 0;
2755 if (hsize > len || !sg)
2756 hsize = len;
2757
2758 if (!hsize && i >= nfrags) {
2759 BUG_ON(fskb->len != len);
2760
2761 pos += len;
2762 nskb = skb_clone(fskb, GFP_ATOMIC);
2763 fskb = fskb->next;
2764
2765 if (unlikely(!nskb))
2766 goto err;
2767
2768 hsize = skb_end_offset(nskb);
2769 if (skb_cow_head(nskb, doffset + headroom)) {
2770 kfree_skb(nskb);
2771 goto err;
2772 }
2773
2774 nskb->truesize += skb_end_offset(nskb) - hsize;
2775 skb_release_head_state(nskb);
2776 __skb_push(nskb, doffset);
2777 } else {
2778 nskb = alloc_skb(hsize + doffset + headroom,
2779 GFP_ATOMIC);
2780
2781 if (unlikely(!nskb))
2782 goto err;
2783
2784 skb_reserve(nskb, headroom);
2785 __skb_put(nskb, doffset);
2786 }
2787
2788 if (segs)
2789 tail->next = nskb;
2790 else
2791 segs = nskb;
2792 tail = nskb;
2793
2794 __copy_skb_header(nskb, skb);
2795 nskb->mac_len = skb->mac_len;
2796
2797 /* nskb and skb might have different headroom */
2798 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2799 nskb->csum_start += skb_headroom(nskb) - headroom;
2800
2801 skb_reset_mac_header(nskb);
2802 skb_set_network_header(nskb, skb->mac_len);
2803 nskb->transport_header = (nskb->network_header +
2804 skb_network_header_len(skb));
2805 skb_copy_from_linear_data(skb, nskb->data, doffset);
2806
2807 if (fskb != skb_shinfo(skb)->frag_list)
2808 continue;
2809
2810 if (!sg) {
2811 nskb->ip_summed = CHECKSUM_NONE;
2812 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2813 skb_put(nskb, len),
2814 len, 0);
2815 continue;
2816 }
2817
2818 frag = skb_shinfo(nskb)->frags;
2819
2820 skb_copy_from_linear_data_offset(skb, offset,
2821 skb_put(nskb, hsize), hsize);
2822
2823 while (pos < offset + len && i < nfrags) {
2824 *frag = skb_shinfo(skb)->frags[i];
2825 __skb_frag_ref(frag);
2826 size = skb_frag_size(frag);
2827
2828 if (pos < offset) {
2829 frag->page_offset += offset - pos;
2830 skb_frag_size_sub(frag, offset - pos);
2831 }
2832
2833 skb_shinfo(nskb)->nr_frags++;
2834
2835 if (pos + size <= offset + len) {
2836 i++;
2837 pos += size;
2838 } else {
2839 skb_frag_size_sub(frag, pos + size - (offset + len));
2840 goto skip_fraglist;
2841 }
2842
2843 frag++;
2844 }
2845
2846 if (pos < offset + len) {
2847 struct sk_buff *fskb2 = fskb;
2848
2849 BUG_ON(pos + fskb->len != offset + len);
2850
2851 pos += fskb->len;
2852 fskb = fskb->next;
2853
2854 if (fskb2->next) {
2855 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2856 if (!fskb2)
2857 goto err;
2858 } else
2859 skb_get(fskb2);
2860
2861 SKB_FRAG_ASSERT(nskb);
2862 skb_shinfo(nskb)->frag_list = fskb2;
2863 }
2864
2865 skip_fraglist:
2866 nskb->data_len = len - hsize;
2867 nskb->len += nskb->data_len;
2868 nskb->truesize += nskb->data_len;
2869 } while ((offset += len) < skb->len);
2870
2871 return segs;
2872
2873 err:
2874 while ((skb = segs)) {
2875 segs = skb->next;
2876 kfree_skb(skb);
2877 }
2878 return ERR_PTR(err);
2879 }
2880 EXPORT_SYMBOL_GPL(skb_segment);
2881
2882 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2883 {
2884 struct sk_buff *p = *head;
2885 struct sk_buff *nskb;
2886 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2887 struct skb_shared_info *pinfo = skb_shinfo(p);
2888 unsigned int headroom;
2889 unsigned int len = skb_gro_len(skb);
2890 unsigned int offset = skb_gro_offset(skb);
2891 unsigned int headlen = skb_headlen(skb);
2892 unsigned int delta_truesize;
2893
2894 if (p->len + len >= 65536)
2895 return -E2BIG;
2896
2897 if (pinfo->frag_list)
2898 goto merge;
2899 else if (headlen <= offset) {
2900 skb_frag_t *frag;
2901 skb_frag_t *frag2;
2902 int i = skbinfo->nr_frags;
2903 int nr_frags = pinfo->nr_frags + i;
2904
2905 offset -= headlen;
2906
2907 if (nr_frags > MAX_SKB_FRAGS)
2908 return -E2BIG;
2909
2910 pinfo->nr_frags = nr_frags;
2911 skbinfo->nr_frags = 0;
2912
2913 frag = pinfo->frags + nr_frags;
2914 frag2 = skbinfo->frags + i;
2915 do {
2916 *--frag = *--frag2;
2917 } while (--i);
2918
2919 frag->page_offset += offset;
2920 skb_frag_size_sub(frag, offset);
2921
2922 /* all fragments truesize : remove (head size + sk_buff) */
2923 delta_truesize = skb->truesize -
2924 SKB_TRUESIZE(skb_end_offset(skb));
2925
2926 skb->truesize -= skb->data_len;
2927 skb->len -= skb->data_len;
2928 skb->data_len = 0;
2929
2930 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2931 goto done;
2932 } else if (skb->head_frag) {
2933 int nr_frags = pinfo->nr_frags;
2934 skb_frag_t *frag = pinfo->frags + nr_frags;
2935 struct page *page = virt_to_head_page(skb->head);
2936 unsigned int first_size = headlen - offset;
2937 unsigned int first_offset;
2938
2939 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2940 return -E2BIG;
2941
2942 first_offset = skb->data -
2943 (unsigned char *)page_address(page) +
2944 offset;
2945
2946 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2947
2948 frag->page.p = page;
2949 frag->page_offset = first_offset;
2950 skb_frag_size_set(frag, first_size);
2951
2952 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2953 /* We dont need to clear skbinfo->nr_frags here */
2954
2955 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2956 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2957 goto done;
2958 } else if (skb_gro_len(p) != pinfo->gso_size)
2959 return -E2BIG;
2960
2961 headroom = skb_headroom(p);
2962 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2963 if (unlikely(!nskb))
2964 return -ENOMEM;
2965
2966 __copy_skb_header(nskb, p);
2967 nskb->mac_len = p->mac_len;
2968
2969 skb_reserve(nskb, headroom);
2970 __skb_put(nskb, skb_gro_offset(p));
2971
2972 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2973 skb_set_network_header(nskb, skb_network_offset(p));
2974 skb_set_transport_header(nskb, skb_transport_offset(p));
2975
2976 __skb_pull(p, skb_gro_offset(p));
2977 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2978 p->data - skb_mac_header(p));
2979
2980 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2981 skb_shinfo(nskb)->frag_list = p;
2982 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2983 pinfo->gso_size = 0;
2984 skb_header_release(p);
2985 nskb->prev = p;
2986
2987 nskb->data_len += p->len;
2988 nskb->truesize += p->truesize;
2989 nskb->len += p->len;
2990
2991 *head = nskb;
2992 nskb->next = p->next;
2993 p->next = NULL;
2994
2995 p = nskb;
2996
2997 merge:
2998 delta_truesize = skb->truesize;
2999 if (offset > headlen) {
3000 unsigned int eat = offset - headlen;
3001
3002 skbinfo->frags[0].page_offset += eat;
3003 skb_frag_size_sub(&skbinfo->frags[0], eat);
3004 skb->data_len -= eat;
3005 skb->len -= eat;
3006 offset = headlen;
3007 }
3008
3009 __skb_pull(skb, offset);
3010
3011 p->prev->next = skb;
3012 p->prev = skb;
3013 skb_header_release(skb);
3014
3015 done:
3016 NAPI_GRO_CB(p)->count++;
3017 p->data_len += len;
3018 p->truesize += delta_truesize;
3019 p->len += len;
3020
3021 NAPI_GRO_CB(skb)->same_flow = 1;
3022 return 0;
3023 }
3024 EXPORT_SYMBOL_GPL(skb_gro_receive);
3025
3026 void __init skb_init(void)
3027 {
3028 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3029 sizeof(struct sk_buff),
3030 0,
3031 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3032 NULL);
3033 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3034 (2*sizeof(struct sk_buff)) +
3035 sizeof(atomic_t),
3036 0,
3037 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3038 NULL);
3039 }
3040
3041 /**
3042 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3043 * @skb: Socket buffer containing the buffers to be mapped
3044 * @sg: The scatter-gather list to map into
3045 * @offset: The offset into the buffer's contents to start mapping
3046 * @len: Length of buffer space to be mapped
3047 *
3048 * Fill the specified scatter-gather list with mappings/pointers into a
3049 * region of the buffer space attached to a socket buffer.
3050 */
3051 static int
3052 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3053 {
3054 int start = skb_headlen(skb);
3055 int i, copy = start - offset;
3056 struct sk_buff *frag_iter;
3057 int elt = 0;
3058
3059 if (copy > 0) {
3060 if (copy > len)
3061 copy = len;
3062 sg_set_buf(sg, skb->data + offset, copy);
3063 elt++;
3064 if ((len -= copy) == 0)
3065 return elt;
3066 offset += copy;
3067 }
3068
3069 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3070 int end;
3071
3072 WARN_ON(start > offset + len);
3073
3074 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3075 if ((copy = end - offset) > 0) {
3076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077
3078 if (copy > len)
3079 copy = len;
3080 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3081 frag->page_offset+offset-start);
3082 elt++;
3083 if (!(len -= copy))
3084 return elt;
3085 offset += copy;
3086 }
3087 start = end;
3088 }
3089
3090 skb_walk_frags(skb, frag_iter) {
3091 int end;
3092
3093 WARN_ON(start > offset + len);
3094
3095 end = start + frag_iter->len;
3096 if ((copy = end - offset) > 0) {
3097 if (copy > len)
3098 copy = len;
3099 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3100 copy);
3101 if ((len -= copy) == 0)
3102 return elt;
3103 offset += copy;
3104 }
3105 start = end;
3106 }
3107 BUG_ON(len);
3108 return elt;
3109 }
3110
3111 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3112 {
3113 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3114
3115 sg_mark_end(&sg[nsg - 1]);
3116
3117 return nsg;
3118 }
3119 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3120
3121 /**
3122 * skb_cow_data - Check that a socket buffer's data buffers are writable
3123 * @skb: The socket buffer to check.
3124 * @tailbits: Amount of trailing space to be added
3125 * @trailer: Returned pointer to the skb where the @tailbits space begins
3126 *
3127 * Make sure that the data buffers attached to a socket buffer are
3128 * writable. If they are not, private copies are made of the data buffers
3129 * and the socket buffer is set to use these instead.
3130 *
3131 * If @tailbits is given, make sure that there is space to write @tailbits
3132 * bytes of data beyond current end of socket buffer. @trailer will be
3133 * set to point to the skb in which this space begins.
3134 *
3135 * The number of scatterlist elements required to completely map the
3136 * COW'd and extended socket buffer will be returned.
3137 */
3138 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3139 {
3140 int copyflag;
3141 int elt;
3142 struct sk_buff *skb1, **skb_p;
3143
3144 /* If skb is cloned or its head is paged, reallocate
3145 * head pulling out all the pages (pages are considered not writable
3146 * at the moment even if they are anonymous).
3147 */
3148 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3149 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3150 return -ENOMEM;
3151
3152 /* Easy case. Most of packets will go this way. */
3153 if (!skb_has_frag_list(skb)) {
3154 /* A little of trouble, not enough of space for trailer.
3155 * This should not happen, when stack is tuned to generate
3156 * good frames. OK, on miss we reallocate and reserve even more
3157 * space, 128 bytes is fair. */
3158
3159 if (skb_tailroom(skb) < tailbits &&
3160 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3161 return -ENOMEM;
3162
3163 /* Voila! */
3164 *trailer = skb;
3165 return 1;
3166 }
3167
3168 /* Misery. We are in troubles, going to mincer fragments... */
3169
3170 elt = 1;
3171 skb_p = &skb_shinfo(skb)->frag_list;
3172 copyflag = 0;
3173
3174 while ((skb1 = *skb_p) != NULL) {
3175 int ntail = 0;
3176
3177 /* The fragment is partially pulled by someone,
3178 * this can happen on input. Copy it and everything
3179 * after it. */
3180
3181 if (skb_shared(skb1))
3182 copyflag = 1;
3183
3184 /* If the skb is the last, worry about trailer. */
3185
3186 if (skb1->next == NULL && tailbits) {
3187 if (skb_shinfo(skb1)->nr_frags ||
3188 skb_has_frag_list(skb1) ||
3189 skb_tailroom(skb1) < tailbits)
3190 ntail = tailbits + 128;
3191 }
3192
3193 if (copyflag ||
3194 skb_cloned(skb1) ||
3195 ntail ||
3196 skb_shinfo(skb1)->nr_frags ||
3197 skb_has_frag_list(skb1)) {
3198 struct sk_buff *skb2;
3199
3200 /* Fuck, we are miserable poor guys... */
3201 if (ntail == 0)
3202 skb2 = skb_copy(skb1, GFP_ATOMIC);
3203 else
3204 skb2 = skb_copy_expand(skb1,
3205 skb_headroom(skb1),
3206 ntail,
3207 GFP_ATOMIC);
3208 if (unlikely(skb2 == NULL))
3209 return -ENOMEM;
3210
3211 if (skb1->sk)
3212 skb_set_owner_w(skb2, skb1->sk);
3213
3214 /* Looking around. Are we still alive?
3215 * OK, link new skb, drop old one */
3216
3217 skb2->next = skb1->next;
3218 *skb_p = skb2;
3219 kfree_skb(skb1);
3220 skb1 = skb2;
3221 }
3222 elt++;
3223 *trailer = skb1;
3224 skb_p = &skb1->next;
3225 }
3226
3227 return elt;
3228 }
3229 EXPORT_SYMBOL_GPL(skb_cow_data);
3230
3231 static void sock_rmem_free(struct sk_buff *skb)
3232 {
3233 struct sock *sk = skb->sk;
3234
3235 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3236 }
3237
3238 /*
3239 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3240 */
3241 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3242 {
3243 int len = skb->len;
3244
3245 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3246 (unsigned int)sk->sk_rcvbuf)
3247 return -ENOMEM;
3248
3249 skb_orphan(skb);
3250 skb->sk = sk;
3251 skb->destructor = sock_rmem_free;
3252 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3253
3254 /* before exiting rcu section, make sure dst is refcounted */
3255 skb_dst_force(skb);
3256
3257 skb_queue_tail(&sk->sk_error_queue, skb);
3258 if (!sock_flag(sk, SOCK_DEAD))
3259 sk->sk_data_ready(sk, len);
3260 return 0;
3261 }
3262 EXPORT_SYMBOL(sock_queue_err_skb);
3263
3264 void skb_tstamp_tx(struct sk_buff *orig_skb,
3265 struct skb_shared_hwtstamps *hwtstamps)
3266 {
3267 struct sock *sk = orig_skb->sk;
3268 struct sock_exterr_skb *serr;
3269 struct sk_buff *skb;
3270 int err;
3271
3272 if (!sk)
3273 return;
3274
3275 skb = skb_clone(orig_skb, GFP_ATOMIC);
3276 if (!skb)
3277 return;
3278
3279 if (hwtstamps) {
3280 *skb_hwtstamps(skb) =
3281 *hwtstamps;
3282 } else {
3283 /*
3284 * no hardware time stamps available,
3285 * so keep the shared tx_flags and only
3286 * store software time stamp
3287 */
3288 skb->tstamp = ktime_get_real();
3289 }
3290
3291 serr = SKB_EXT_ERR(skb);
3292 memset(serr, 0, sizeof(*serr));
3293 serr->ee.ee_errno = ENOMSG;
3294 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3295
3296 err = sock_queue_err_skb(sk, skb);
3297
3298 if (err)
3299 kfree_skb(skb);
3300 }
3301 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3302
3303 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3304 {
3305 struct sock *sk = skb->sk;
3306 struct sock_exterr_skb *serr;
3307 int err;
3308
3309 skb->wifi_acked_valid = 1;
3310 skb->wifi_acked = acked;
3311
3312 serr = SKB_EXT_ERR(skb);
3313 memset(serr, 0, sizeof(*serr));
3314 serr->ee.ee_errno = ENOMSG;
3315 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3316
3317 err = sock_queue_err_skb(sk, skb);
3318 if (err)
3319 kfree_skb(skb);
3320 }
3321 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3322
3323
3324 /**
3325 * skb_partial_csum_set - set up and verify partial csum values for packet
3326 * @skb: the skb to set
3327 * @start: the number of bytes after skb->data to start checksumming.
3328 * @off: the offset from start to place the checksum.
3329 *
3330 * For untrusted partially-checksummed packets, we need to make sure the values
3331 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3332 *
3333 * This function checks and sets those values and skb->ip_summed: if this
3334 * returns false you should drop the packet.
3335 */
3336 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3337 {
3338 if (unlikely(start > skb_headlen(skb)) ||
3339 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3340 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3341 start, off, skb_headlen(skb));
3342 return false;
3343 }
3344 skb->ip_summed = CHECKSUM_PARTIAL;
3345 skb->csum_start = skb_headroom(skb) + start;
3346 skb->csum_offset = off;
3347 return true;
3348 }
3349 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3350
3351 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3352 {
3353 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3354 skb->dev->name);
3355 }
3356 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3357
3358 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3359 {
3360 if (head_stolen)
3361 kmem_cache_free(skbuff_head_cache, skb);
3362 else
3363 __kfree_skb(skb);
3364 }
3365 EXPORT_SYMBOL(kfree_skb_partial);
3366
3367 /**
3368 * skb_try_coalesce - try to merge skb to prior one
3369 * @to: prior buffer
3370 * @from: buffer to add
3371 * @fragstolen: pointer to boolean
3372 * @delta_truesize: how much more was allocated than was requested
3373 */
3374 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3375 bool *fragstolen, int *delta_truesize)
3376 {
3377 int i, delta, len = from->len;
3378
3379 *fragstolen = false;
3380
3381 if (skb_cloned(to))
3382 return false;
3383
3384 if (len <= skb_tailroom(to)) {
3385 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3386 *delta_truesize = 0;
3387 return true;
3388 }
3389
3390 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3391 return false;
3392
3393 if (skb_headlen(from) != 0) {
3394 struct page *page;
3395 unsigned int offset;
3396
3397 if (skb_shinfo(to)->nr_frags +
3398 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3399 return false;
3400
3401 if (skb_head_is_locked(from))
3402 return false;
3403
3404 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3405
3406 page = virt_to_head_page(from->head);
3407 offset = from->data - (unsigned char *)page_address(page);
3408
3409 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3410 page, offset, skb_headlen(from));
3411 *fragstolen = true;
3412 } else {
3413 if (skb_shinfo(to)->nr_frags +
3414 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3415 return false;
3416
3417 delta = from->truesize -
3418 SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3419 }
3420
3421 WARN_ON_ONCE(delta < len);
3422
3423 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3424 skb_shinfo(from)->frags,
3425 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3426 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3427
3428 if (!skb_cloned(from))
3429 skb_shinfo(from)->nr_frags = 0;
3430
3431 /* if the skb is cloned this does nothing since we set nr_frags to 0 */
3432 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3433 skb_frag_ref(from, i);
3434
3435 to->truesize += delta;
3436 to->len += len;
3437 to->data_len += len;
3438
3439 *delta_truesize = delta;
3440 return true;
3441 }
3442 EXPORT_SYMBOL(skb_try_coalesce);
This page took 0.099667 seconds and 6 git commands to generate.